1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
107
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117 };
118
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125 };
126
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130 };
131
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135 };
136
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158 };
159
audit_match_perm(struct audit_context * ctx,int mask)160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 unsigned n;
163
164 if (unlikely(!ctx))
165 return 0;
166 n = ctx->major;
167
168 switch (audit_classify_syscall(ctx->arch, n)) {
169 case 0: /* native */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
178 return 1;
179 return 0;
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 return 1;
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
186 return 1;
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 return 1;
190 return 0;
191 case 2: /* open */
192 return mask & ACC_MODE(ctx->argv[1]);
193 case 3: /* openat */
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 case 5: /* execve */
198 return mask & AUDIT_PERM_EXEC;
199 default:
200 return 0;
201 }
202 }
203
audit_match_filetype(struct audit_context * ctx,int val)204 static int audit_match_filetype(struct audit_context *ctx, int val)
205 {
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
208
209 if (unlikely(!ctx))
210 return 0;
211
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
215 return 1;
216 }
217
218 return 0;
219 }
220
221 /*
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
229 */
230
audit_set_auditable(struct audit_context * ctx)231 static void audit_set_auditable(struct audit_context *ctx)
232 {
233 if (!ctx->prio) {
234 ctx->prio = 1;
235 ctx->current_state = AUDIT_STATE_RECORD;
236 }
237 }
238
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 {
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
243
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
grow_tree_refs(struct audit_context * ctx)261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 if (!ctx->trees) {
267 ctx->trees = p;
268 return 0;
269 }
270 if (p)
271 p->next = ctx->trees;
272 else
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
275 return 1;
276 }
277
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)278 static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
280 {
281 struct audit_tree_refs *q;
282 int n;
283
284 if (!p) {
285 /* we started with empty chain */
286 p = ctx->first_trees;
287 count = 31;
288 /* if the very first allocation has failed, nothing to do */
289 if (!p)
290 return;
291 }
292 n = count;
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 while (n--) {
295 audit_put_chunk(q->c[n]);
296 q->c[n] = NULL;
297 }
298 }
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
301 q->c[n] = NULL;
302 }
303 ctx->trees = p;
304 ctx->tree_count = count;
305 }
306
free_tree_refs(struct audit_context * ctx)307 static void free_tree_refs(struct audit_context *ctx)
308 {
309 struct audit_tree_refs *p, *q;
310
311 for (p = ctx->first_trees; p; p = q) {
312 q = p->next;
313 kfree(p);
314 }
315 }
316
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318 {
319 struct audit_tree_refs *p;
320 int n;
321
322 if (!tree)
323 return 0;
324 /* full ones */
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 /* partial */
331 if (p) {
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
334 return 1;
335 }
336 return 0;
337 }
338
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)339 static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343 {
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_uid_comparator(uid, f->op, name->uid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361 }
362
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)363 static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
367 {
368 struct audit_names *n;
369 int rc;
370
371 if (name) {
372 rc = audit_gid_comparator(gid, f->op, name->gid);
373 if (rc)
374 return rc;
375 }
376
377 if (ctx) {
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
380 if (rc)
381 return rc;
382 }
383 }
384 return 0;
385 }
386
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)387 static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
392 {
393 switch (f->val) {
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->euid);
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 cred->suid);
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 cred->fsuid);
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 default:
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
458 return 0;
459 }
460 return 0;
461 }
462
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
465 * otherwise.
466 *
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
470 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)471 static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
476 bool task_creation)
477 {
478 const struct cred *cred;
479 int i, need_sid = 1;
480 u32 sid;
481 unsigned int sessionid;
482
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
488 int result = 0;
489 pid_t pid;
490
491 switch (f->type) {
492 case AUDIT_PID:
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_EXE:
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
506 result = !result;
507 break;
508 case AUDIT_UID:
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 break;
511 case AUDIT_EUID:
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 break;
514 case AUDIT_SUID:
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 break;
517 case AUDIT_FSUID:
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 break;
520 case AUDIT_GID:
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
523 if (!result)
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
526 if (result)
527 result = !groups_search(cred->group_info, f->gid);
528 }
529 break;
530 case AUDIT_EGID:
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
533 if (!result)
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
536 if (result)
537 result = !groups_search(cred->group_info, f->gid);
538 }
539 break;
540 case AUDIT_SGID:
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 break;
543 case AUDIT_FSGID:
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 break;
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
549 break;
550 case AUDIT_PERS:
551 result = audit_comparator(tsk->personality, f->op, f->val);
552 break;
553 case AUDIT_ARCH:
554 if (ctx)
555 result = audit_comparator(ctx->arch, f->op, f->val);
556 break;
557
558 case AUDIT_EXIT:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
561 break;
562 case AUDIT_SUCCESS:
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 if (f->val)
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 else
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 }
569 break;
570 case AUDIT_DEVMAJOR:
571 if (name) {
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 ++result;
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_DEVMINOR:
586 if (name) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
589 ++result;
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 ++result;
595 break;
596 }
597 }
598 }
599 break;
600 case AUDIT_INODE:
601 if (name)
602 result = audit_comparator(name->ino, f->op, f->val);
603 else if (ctx) {
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
606 ++result;
607 break;
608 }
609 }
610 }
611 break;
612 case AUDIT_OBJ_UID:
613 if (name) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
615 } else if (ctx) {
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 break;
624 case AUDIT_OBJ_GID:
625 if (name) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
627 } else if (ctx) {
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 ++result;
631 break;
632 }
633 }
634 }
635 break;
636 case AUDIT_WATCH:
637 if (name) {
638 result = audit_watch_compare(rule->watch,
639 name->ino,
640 name->dev);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_DIR:
646 if (ctx) {
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
649 result = !result;
650 }
651 break;
652 case AUDIT_LOGINUID:
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
654 f->op, f->uid);
655 break;
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 break;
659 case AUDIT_SADDR_FAM:
660 if (ctx && ctx->sockaddr)
661 result = audit_comparator(ctx->sockaddr->ss_family,
662 f->op, f->val);
663 break;
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
667 case AUDIT_SUBJ_SEN:
668 case AUDIT_SUBJ_CLR:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
673 logged upon error */
674 if (f->lsm_rule) {
675 if (need_sid) {
676 security_task_getsecid_subj(tsk, &sid);
677 need_sid = 0;
678 }
679 result = security_audit_rule_match(sid, f->type,
680 f->op,
681 f->lsm_rule);
682 }
683 break;
684 case AUDIT_OBJ_USER:
685 case AUDIT_OBJ_ROLE:
686 case AUDIT_OBJ_TYPE:
687 case AUDIT_OBJ_LEV_LOW:
688 case AUDIT_OBJ_LEV_HIGH:
689 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
690 also applies here */
691 if (f->lsm_rule) {
692 /* Find files that match */
693 if (name) {
694 result = security_audit_rule_match(
695 name->osid,
696 f->type,
697 f->op,
698 f->lsm_rule);
699 } else if (ctx) {
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (security_audit_rule_match(
702 n->osid,
703 f->type,
704 f->op,
705 f->lsm_rule)) {
706 ++result;
707 break;
708 }
709 }
710 }
711 /* Find ipc objects that match */
712 if (!ctx || ctx->type != AUDIT_IPC)
713 break;
714 if (security_audit_rule_match(ctx->ipc.osid,
715 f->type, f->op,
716 f->lsm_rule))
717 ++result;
718 }
719 break;
720 case AUDIT_ARG0:
721 case AUDIT_ARG1:
722 case AUDIT_ARG2:
723 case AUDIT_ARG3:
724 if (ctx)
725 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
726 break;
727 case AUDIT_FILTERKEY:
728 /* ignore this field for filtering */
729 result = 1;
730 break;
731 case AUDIT_PERM:
732 result = audit_match_perm(ctx, f->val);
733 if (f->op == Audit_not_equal)
734 result = !result;
735 break;
736 case AUDIT_FILETYPE:
737 result = audit_match_filetype(ctx, f->val);
738 if (f->op == Audit_not_equal)
739 result = !result;
740 break;
741 case AUDIT_FIELD_COMPARE:
742 result = audit_field_compare(tsk, cred, f, ctx, name);
743 break;
744 }
745 if (!result)
746 return 0;
747 }
748
749 if (ctx) {
750 if (rule->prio <= ctx->prio)
751 return 0;
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
758 switch (rule->action) {
759 case AUDIT_NEVER:
760 *state = AUDIT_STATE_DISABLED;
761 break;
762 case AUDIT_ALWAYS:
763 *state = AUDIT_STATE_RECORD;
764 break;
765 }
766 return 1;
767 }
768
769 /* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
audit_filter_task(struct task_struct * tsk,char ** key)773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774 {
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_STATE_BUILD;
790 }
791
audit_in_mask(const struct audit_krule * rule,unsigned long val)792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793 {
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806 }
807
808 /* At syscall exit time, this filter is called if the audit_state is
809 * not low enough that auditing cannot take place, but is also not
810 * high enough that we already know we have to write an audit record
811 * (i.e., the state is AUDIT_STATE_BUILD).
812 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)813 static void audit_filter_syscall(struct task_struct *tsk,
814 struct audit_context *ctx)
815 {
816 struct audit_entry *e;
817 enum audit_state state;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
824 if (audit_in_mask(&e->rule, ctx->major) &&
825 audit_filter_rules(tsk, &e->rule, ctx, NULL,
826 &state, false)) {
827 rcu_read_unlock();
828 ctx->current_state = state;
829 return;
830 }
831 }
832 rcu_read_unlock();
833 return;
834 }
835
836 /*
837 * Given an audit_name check the inode hash table to see if they match.
838 * Called holding the rcu read lock to protect the use of audit_inode_hash
839 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)840 static int audit_filter_inode_name(struct task_struct *tsk,
841 struct audit_names *n,
842 struct audit_context *ctx) {
843 int h = audit_hash_ino((u32)n->ino);
844 struct list_head *list = &audit_inode_hash[h];
845 struct audit_entry *e;
846 enum audit_state state;
847
848 list_for_each_entry_rcu(e, list, list) {
849 if (audit_in_mask(&e->rule, ctx->major) &&
850 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
851 ctx->current_state = state;
852 return 1;
853 }
854 }
855 return 0;
856 }
857
858 /* At syscall exit time, this filter is called if any audit_names have been
859 * collected during syscall processing. We only check rules in sublists at hash
860 * buckets applicable to the inode numbers in audit_names.
861 * Regarding audit_state, same rules apply as for audit_filter_syscall().
862 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)863 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
864 {
865 struct audit_names *n;
866
867 if (auditd_test_task(tsk))
868 return;
869
870 rcu_read_lock();
871
872 list_for_each_entry(n, &ctx->names_list, list) {
873 if (audit_filter_inode_name(tsk, n, ctx))
874 break;
875 }
876 rcu_read_unlock();
877 }
878
audit_proctitle_free(struct audit_context * context)879 static inline void audit_proctitle_free(struct audit_context *context)
880 {
881 kfree(context->proctitle.value);
882 context->proctitle.value = NULL;
883 context->proctitle.len = 0;
884 }
885
audit_free_module(struct audit_context * context)886 static inline void audit_free_module(struct audit_context *context)
887 {
888 if (context->type == AUDIT_KERN_MODULE) {
889 kfree(context->module.name);
890 context->module.name = NULL;
891 }
892 }
audit_free_names(struct audit_context * context)893 static inline void audit_free_names(struct audit_context *context)
894 {
895 struct audit_names *n, *next;
896
897 list_for_each_entry_safe(n, next, &context->names_list, list) {
898 list_del(&n->list);
899 if (n->name)
900 putname(n->name);
901 if (n->should_free)
902 kfree(n);
903 }
904 context->name_count = 0;
905 path_put(&context->pwd);
906 context->pwd.dentry = NULL;
907 context->pwd.mnt = NULL;
908 }
909
audit_free_aux(struct audit_context * context)910 static inline void audit_free_aux(struct audit_context *context)
911 {
912 struct audit_aux_data *aux;
913
914 while ((aux = context->aux)) {
915 context->aux = aux->next;
916 kfree(aux);
917 }
918 while ((aux = context->aux_pids)) {
919 context->aux_pids = aux->next;
920 kfree(aux);
921 }
922 }
923
audit_alloc_context(enum audit_state state)924 static inline struct audit_context *audit_alloc_context(enum audit_state state)
925 {
926 struct audit_context *context;
927
928 context = kzalloc(sizeof(*context), GFP_KERNEL);
929 if (!context)
930 return NULL;
931 context->state = state;
932 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
933 INIT_LIST_HEAD(&context->killed_trees);
934 INIT_LIST_HEAD(&context->names_list);
935 context->fds[0] = -1;
936 context->return_valid = AUDITSC_INVALID;
937 return context;
938 }
939
940 /**
941 * audit_alloc - allocate an audit context block for a task
942 * @tsk: task
943 *
944 * Filter on the task information and allocate a per-task audit context
945 * if necessary. Doing so turns on system call auditing for the
946 * specified task. This is called from copy_process, so no lock is
947 * needed.
948 */
audit_alloc(struct task_struct * tsk)949 int audit_alloc(struct task_struct *tsk)
950 {
951 struct audit_context *context;
952 enum audit_state state;
953 char *key = NULL;
954
955 if (likely(!audit_ever_enabled))
956 return 0; /* Return if not auditing. */
957
958 state = audit_filter_task(tsk, &key);
959 if (state == AUDIT_STATE_DISABLED) {
960 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
961 return 0;
962 }
963
964 if (!(context = audit_alloc_context(state))) {
965 kfree(key);
966 audit_log_lost("out of memory in audit_alloc");
967 return -ENOMEM;
968 }
969 context->filterkey = key;
970
971 audit_set_context(tsk, context);
972 set_task_syscall_work(tsk, SYSCALL_AUDIT);
973 return 0;
974 }
975
audit_free_context(struct audit_context * context)976 static inline void audit_free_context(struct audit_context *context)
977 {
978 audit_free_module(context);
979 audit_free_names(context);
980 unroll_tree_refs(context, NULL, 0);
981 free_tree_refs(context);
982 audit_free_aux(context);
983 kfree(context->filterkey);
984 kfree(context->sockaddr);
985 audit_proctitle_free(context);
986 kfree(context);
987 }
988
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 kuid_t auid, kuid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992 {
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003 from_kuid(&init_user_ns, auid),
1004 from_kuid(&init_user_ns, uid), sessionid);
1005 if (sid) {
1006 if (security_secid_to_secctx(sid, &ctx, &len)) {
1007 audit_log_format(ab, " obj=(none)");
1008 rc = 1;
1009 } else {
1010 audit_log_format(ab, " obj=%s", ctx);
1011 security_release_secctx(ctx, len);
1012 }
1013 }
1014 audit_log_format(ab, " ocomm=");
1015 audit_log_untrustedstring(ab, comm);
1016 audit_log_end(ab);
1017
1018 return rc;
1019 }
1020
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1021 static void audit_log_execve_info(struct audit_context *context,
1022 struct audit_buffer **ab)
1023 {
1024 long len_max;
1025 long len_rem;
1026 long len_full;
1027 long len_buf;
1028 long len_abuf = 0;
1029 long len_tmp;
1030 bool require_data;
1031 bool encode;
1032 unsigned int iter;
1033 unsigned int arg;
1034 char *buf_head;
1035 char *buf;
1036 const char __user *p = (const char __user *)current->mm->arg_start;
1037
1038 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1039 * data we put in the audit record for this argument (see the
1040 * code below) ... at this point in time 96 is plenty */
1041 char abuf[96];
1042
1043 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044 * current value of 7500 is not as important as the fact that it
1045 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1046 * room if we go over a little bit in the logging below */
1047 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048 len_max = MAX_EXECVE_AUDIT_LEN;
1049
1050 /* scratch buffer to hold the userspace args */
1051 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1052 if (!buf_head) {
1053 audit_panic("out of memory for argv string");
1054 return;
1055 }
1056 buf = buf_head;
1057
1058 audit_log_format(*ab, "argc=%d", context->execve.argc);
1059
1060 len_rem = len_max;
1061 len_buf = 0;
1062 len_full = 0;
1063 require_data = true;
1064 encode = false;
1065 iter = 0;
1066 arg = 0;
1067 do {
1068 /* NOTE: we don't ever want to trust this value for anything
1069 * serious, but the audit record format insists we
1070 * provide an argument length for really long arguments,
1071 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072 * to use strncpy_from_user() to obtain this value for
1073 * recording in the log, although we don't use it
1074 * anywhere here to avoid a double-fetch problem */
1075 if (len_full == 0)
1076 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1077
1078 /* read more data from userspace */
1079 if (require_data) {
1080 /* can we make more room in the buffer? */
1081 if (buf != buf_head) {
1082 memmove(buf_head, buf, len_buf);
1083 buf = buf_head;
1084 }
1085
1086 /* fetch as much as we can of the argument */
1087 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1088 len_max - len_buf);
1089 if (len_tmp == -EFAULT) {
1090 /* unable to copy from userspace */
1091 send_sig(SIGKILL, current, 0);
1092 goto out;
1093 } else if (len_tmp == (len_max - len_buf)) {
1094 /* buffer is not large enough */
1095 require_data = true;
1096 /* NOTE: if we are going to span multiple
1097 * buffers force the encoding so we stand
1098 * a chance at a sane len_full value and
1099 * consistent record encoding */
1100 encode = true;
1101 len_full = len_full * 2;
1102 p += len_tmp;
1103 } else {
1104 require_data = false;
1105 if (!encode)
1106 encode = audit_string_contains_control(
1107 buf, len_tmp);
1108 /* try to use a trusted value for len_full */
1109 if (len_full < len_max)
1110 len_full = (encode ?
1111 len_tmp * 2 : len_tmp);
1112 p += len_tmp + 1;
1113 }
1114 len_buf += len_tmp;
1115 buf_head[len_buf] = '\0';
1116
1117 /* length of the buffer in the audit record? */
1118 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1119 }
1120
1121 /* write as much as we can to the audit log */
1122 if (len_buf >= 0) {
1123 /* NOTE: some magic numbers here - basically if we
1124 * can't fit a reasonable amount of data into the
1125 * existing audit buffer, flush it and start with
1126 * a new buffer */
1127 if ((sizeof(abuf) + 8) > len_rem) {
1128 len_rem = len_max;
1129 audit_log_end(*ab);
1130 *ab = audit_log_start(context,
1131 GFP_KERNEL, AUDIT_EXECVE);
1132 if (!*ab)
1133 goto out;
1134 }
1135
1136 /* create the non-arg portion of the arg record */
1137 len_tmp = 0;
1138 if (require_data || (iter > 0) ||
1139 ((len_abuf + sizeof(abuf)) > len_rem)) {
1140 if (iter == 0) {
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d_len=%lu",
1144 arg, len_full);
1145 }
1146 len_tmp += snprintf(&abuf[len_tmp],
1147 sizeof(abuf) - len_tmp,
1148 " a%d[%d]=", arg, iter++);
1149 } else
1150 len_tmp += snprintf(&abuf[len_tmp],
1151 sizeof(abuf) - len_tmp,
1152 " a%d=", arg);
1153 WARN_ON(len_tmp >= sizeof(abuf));
1154 abuf[sizeof(abuf) - 1] = '\0';
1155
1156 /* log the arg in the audit record */
1157 audit_log_format(*ab, "%s", abuf);
1158 len_rem -= len_tmp;
1159 len_tmp = len_buf;
1160 if (encode) {
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem / 2; /* encoding */
1163 audit_log_n_hex(*ab, buf, len_tmp);
1164 len_rem -= len_tmp * 2;
1165 len_abuf -= len_tmp * 2;
1166 } else {
1167 if (len_abuf > len_rem)
1168 len_tmp = len_rem - 2; /* quotes */
1169 audit_log_n_string(*ab, buf, len_tmp);
1170 len_rem -= len_tmp + 2;
1171 /* don't subtract the "2" because we still need
1172 * to add quotes to the remaining string */
1173 len_abuf -= len_tmp;
1174 }
1175 len_buf -= len_tmp;
1176 buf += len_tmp;
1177 }
1178
1179 /* ready to move to the next argument? */
1180 if ((len_buf == 0) && !require_data) {
1181 arg++;
1182 iter = 0;
1183 len_full = 0;
1184 require_data = true;
1185 encode = false;
1186 }
1187 } while (arg < context->execve.argc);
1188
1189 /* NOTE: the caller handles the final audit_log_end() call */
1190
1191 out:
1192 kfree(buf_head);
1193 }
1194
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1195 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1196 kernel_cap_t *cap)
1197 {
1198 int i;
1199
1200 if (cap_isclear(*cap)) {
1201 audit_log_format(ab, " %s=0", prefix);
1202 return;
1203 }
1204 audit_log_format(ab, " %s=", prefix);
1205 CAP_FOR_EACH_U32(i)
1206 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1207 }
1208
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1209 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1210 {
1211 if (name->fcap_ver == -1) {
1212 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1213 return;
1214 }
1215 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218 name->fcap.fE, name->fcap_ver,
1219 from_kuid(&init_user_ns, name->fcap.rootid));
1220 }
1221
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1222 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1223 {
1224 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1225 const struct timespec64 *tk = &context->time.tk_injoffset;
1226 static const char * const ntp_name[] = {
1227 "offset",
1228 "freq",
1229 "status",
1230 "tai",
1231 "tick",
1232 "adjust",
1233 };
1234 int type;
1235
1236 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1237 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1238 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1239 if (!*ab) {
1240 *ab = audit_log_start(context,
1241 GFP_KERNEL,
1242 AUDIT_TIME_ADJNTPVAL);
1243 if (!*ab)
1244 return;
1245 }
1246 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1247 ntp_name[type],
1248 ntp->vals[type].oldval,
1249 ntp->vals[type].newval);
1250 audit_log_end(*ab);
1251 *ab = NULL;
1252 }
1253 }
1254 }
1255 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1256 if (!*ab) {
1257 *ab = audit_log_start(context, GFP_KERNEL,
1258 AUDIT_TIME_INJOFFSET);
1259 if (!*ab)
1260 return;
1261 }
1262 audit_log_format(*ab, "sec=%lli nsec=%li",
1263 (long long)tk->tv_sec, tk->tv_nsec);
1264 audit_log_end(*ab);
1265 *ab = NULL;
1266 }
1267 }
1268
show_special(struct audit_context * context,int * call_panic)1269 static void show_special(struct audit_context *context, int *call_panic)
1270 {
1271 struct audit_buffer *ab;
1272 int i;
1273
1274 ab = audit_log_start(context, GFP_KERNEL, context->type);
1275 if (!ab)
1276 return;
1277
1278 switch (context->type) {
1279 case AUDIT_SOCKETCALL: {
1280 int nargs = context->socketcall.nargs;
1281
1282 audit_log_format(ab, "nargs=%d", nargs);
1283 for (i = 0; i < nargs; i++)
1284 audit_log_format(ab, " a%d=%lx", i,
1285 context->socketcall.args[i]);
1286 break; }
1287 case AUDIT_IPC: {
1288 u32 osid = context->ipc.osid;
1289
1290 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1291 from_kuid(&init_user_ns, context->ipc.uid),
1292 from_kgid(&init_user_ns, context->ipc.gid),
1293 context->ipc.mode);
1294 if (osid) {
1295 char *ctx = NULL;
1296 u32 len;
1297
1298 if (security_secid_to_secctx(osid, &ctx, &len)) {
1299 audit_log_format(ab, " osid=%u", osid);
1300 *call_panic = 1;
1301 } else {
1302 audit_log_format(ab, " obj=%s", ctx);
1303 security_release_secctx(ctx, len);
1304 }
1305 }
1306 if (context->ipc.has_perm) {
1307 audit_log_end(ab);
1308 ab = audit_log_start(context, GFP_KERNEL,
1309 AUDIT_IPC_SET_PERM);
1310 if (unlikely(!ab))
1311 return;
1312 audit_log_format(ab,
1313 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1314 context->ipc.qbytes,
1315 context->ipc.perm_uid,
1316 context->ipc.perm_gid,
1317 context->ipc.perm_mode);
1318 }
1319 break; }
1320 case AUDIT_MQ_OPEN:
1321 audit_log_format(ab,
1322 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1323 "mq_msgsize=%ld mq_curmsgs=%ld",
1324 context->mq_open.oflag, context->mq_open.mode,
1325 context->mq_open.attr.mq_flags,
1326 context->mq_open.attr.mq_maxmsg,
1327 context->mq_open.attr.mq_msgsize,
1328 context->mq_open.attr.mq_curmsgs);
1329 break;
1330 case AUDIT_MQ_SENDRECV:
1331 audit_log_format(ab,
1332 "mqdes=%d msg_len=%zd msg_prio=%u "
1333 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1334 context->mq_sendrecv.mqdes,
1335 context->mq_sendrecv.msg_len,
1336 context->mq_sendrecv.msg_prio,
1337 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1338 context->mq_sendrecv.abs_timeout.tv_nsec);
1339 break;
1340 case AUDIT_MQ_NOTIFY:
1341 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1342 context->mq_notify.mqdes,
1343 context->mq_notify.sigev_signo);
1344 break;
1345 case AUDIT_MQ_GETSETATTR: {
1346 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1347
1348 audit_log_format(ab,
1349 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1350 "mq_curmsgs=%ld ",
1351 context->mq_getsetattr.mqdes,
1352 attr->mq_flags, attr->mq_maxmsg,
1353 attr->mq_msgsize, attr->mq_curmsgs);
1354 break; }
1355 case AUDIT_CAPSET:
1356 audit_log_format(ab, "pid=%d", context->capset.pid);
1357 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1358 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1359 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1360 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1361 break;
1362 case AUDIT_MMAP:
1363 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1364 context->mmap.flags);
1365 break;
1366 case AUDIT_EXECVE:
1367 audit_log_execve_info(context, &ab);
1368 break;
1369 case AUDIT_KERN_MODULE:
1370 audit_log_format(ab, "name=");
1371 if (context->module.name) {
1372 audit_log_untrustedstring(ab, context->module.name);
1373 } else
1374 audit_log_format(ab, "(null)");
1375
1376 break;
1377 case AUDIT_TIME_ADJNTPVAL:
1378 case AUDIT_TIME_INJOFFSET:
1379 /* this call deviates from the rest, eating the buffer */
1380 audit_log_time(context, &ab);
1381 break;
1382 }
1383 audit_log_end(ab);
1384 }
1385
audit_proctitle_rtrim(char * proctitle,int len)1386 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1387 {
1388 char *end = proctitle + len - 1;
1389
1390 while (end > proctitle && !isprint(*end))
1391 end--;
1392
1393 /* catch the case where proctitle is only 1 non-print character */
1394 len = end - proctitle + 1;
1395 len -= isprint(proctitle[len-1]) == 0;
1396 return len;
1397 }
1398
1399 /*
1400 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1401 * @context: audit_context for the task
1402 * @n: audit_names structure with reportable details
1403 * @path: optional path to report instead of audit_names->name
1404 * @record_num: record number to report when handling a list of names
1405 * @call_panic: optional pointer to int that will be updated if secid fails
1406 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1407 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1408 const struct path *path, int record_num, int *call_panic)
1409 {
1410 struct audit_buffer *ab;
1411
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1413 if (!ab)
1414 return;
1415
1416 audit_log_format(ab, "item=%d", record_num);
1417
1418 if (path)
1419 audit_log_d_path(ab, " name=", path);
1420 else if (n->name) {
1421 switch (n->name_len) {
1422 case AUDIT_NAME_FULL:
1423 /* log the full path */
1424 audit_log_format(ab, " name=");
1425 audit_log_untrustedstring(ab, n->name->name);
1426 break;
1427 case 0:
1428 /* name was specified as a relative path and the
1429 * directory component is the cwd
1430 */
1431 if (context->pwd.dentry && context->pwd.mnt)
1432 audit_log_d_path(ab, " name=", &context->pwd);
1433 else
1434 audit_log_format(ab, " name=(null)");
1435 break;
1436 default:
1437 /* log the name's directory component */
1438 audit_log_format(ab, " name=");
1439 audit_log_n_untrustedstring(ab, n->name->name,
1440 n->name_len);
1441 }
1442 } else
1443 audit_log_format(ab, " name=(null)");
1444
1445 if (n->ino != AUDIT_INO_UNSET)
1446 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1447 n->ino,
1448 MAJOR(n->dev),
1449 MINOR(n->dev),
1450 n->mode,
1451 from_kuid(&init_user_ns, n->uid),
1452 from_kgid(&init_user_ns, n->gid),
1453 MAJOR(n->rdev),
1454 MINOR(n->rdev));
1455 if (n->osid != 0) {
1456 char *ctx = NULL;
1457 u32 len;
1458
1459 if (security_secid_to_secctx(
1460 n->osid, &ctx, &len)) {
1461 audit_log_format(ab, " osid=%u", n->osid);
1462 if (call_panic)
1463 *call_panic = 2;
1464 } else {
1465 audit_log_format(ab, " obj=%s", ctx);
1466 security_release_secctx(ctx, len);
1467 }
1468 }
1469
1470 /* log the audit_names record type */
1471 switch (n->type) {
1472 case AUDIT_TYPE_NORMAL:
1473 audit_log_format(ab, " nametype=NORMAL");
1474 break;
1475 case AUDIT_TYPE_PARENT:
1476 audit_log_format(ab, " nametype=PARENT");
1477 break;
1478 case AUDIT_TYPE_CHILD_DELETE:
1479 audit_log_format(ab, " nametype=DELETE");
1480 break;
1481 case AUDIT_TYPE_CHILD_CREATE:
1482 audit_log_format(ab, " nametype=CREATE");
1483 break;
1484 default:
1485 audit_log_format(ab, " nametype=UNKNOWN");
1486 break;
1487 }
1488
1489 audit_log_fcaps(ab, n);
1490 audit_log_end(ab);
1491 }
1492
audit_log_proctitle(void)1493 static void audit_log_proctitle(void)
1494 {
1495 int res;
1496 char *buf;
1497 char *msg = "(null)";
1498 int len = strlen(msg);
1499 struct audit_context *context = audit_context();
1500 struct audit_buffer *ab;
1501
1502 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1503 if (!ab)
1504 return; /* audit_panic or being filtered */
1505
1506 audit_log_format(ab, "proctitle=");
1507
1508 /* Not cached */
1509 if (!context->proctitle.value) {
1510 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1511 if (!buf)
1512 goto out;
1513 /* Historically called this from procfs naming */
1514 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1515 if (res == 0) {
1516 kfree(buf);
1517 goto out;
1518 }
1519 res = audit_proctitle_rtrim(buf, res);
1520 if (res == 0) {
1521 kfree(buf);
1522 goto out;
1523 }
1524 context->proctitle.value = buf;
1525 context->proctitle.len = res;
1526 }
1527 msg = context->proctitle.value;
1528 len = context->proctitle.len;
1529 out:
1530 audit_log_n_untrustedstring(ab, msg, len);
1531 audit_log_end(ab);
1532 }
1533
audit_log_exit(void)1534 static void audit_log_exit(void)
1535 {
1536 int i, call_panic = 0;
1537 struct audit_context *context = audit_context();
1538 struct audit_buffer *ab;
1539 struct audit_aux_data *aux;
1540 struct audit_names *n;
1541
1542 context->personality = current->personality;
1543
1544 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1545 if (!ab)
1546 return; /* audit_panic has been called */
1547 audit_log_format(ab, "arch=%x syscall=%d",
1548 context->arch, context->major);
1549 if (context->personality != PER_LINUX)
1550 audit_log_format(ab, " per=%lx", context->personality);
1551 if (context->return_valid != AUDITSC_INVALID)
1552 audit_log_format(ab, " success=%s exit=%ld",
1553 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1554 context->return_code);
1555
1556 audit_log_format(ab,
1557 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1558 context->argv[0],
1559 context->argv[1],
1560 context->argv[2],
1561 context->argv[3],
1562 context->name_count);
1563
1564 audit_log_task_info(ab);
1565 audit_log_key(ab, context->filterkey);
1566 audit_log_end(ab);
1567
1568 for (aux = context->aux; aux; aux = aux->next) {
1569
1570 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1571 if (!ab)
1572 continue; /* audit_panic has been called */
1573
1574 switch (aux->type) {
1575
1576 case AUDIT_BPRM_FCAPS: {
1577 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1578
1579 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1580 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1581 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1582 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1583 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1584 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1585 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1586 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1587 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1588 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1589 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1590 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1591 audit_log_format(ab, " frootid=%d",
1592 from_kuid(&init_user_ns,
1593 axs->fcap.rootid));
1594 break; }
1595
1596 }
1597 audit_log_end(ab);
1598 }
1599
1600 if (context->type)
1601 show_special(context, &call_panic);
1602
1603 if (context->fds[0] >= 0) {
1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1605 if (ab) {
1606 audit_log_format(ab, "fd0=%d fd1=%d",
1607 context->fds[0], context->fds[1]);
1608 audit_log_end(ab);
1609 }
1610 }
1611
1612 if (context->sockaddr_len) {
1613 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1614 if (ab) {
1615 audit_log_format(ab, "saddr=");
1616 audit_log_n_hex(ab, (void *)context->sockaddr,
1617 context->sockaddr_len);
1618 audit_log_end(ab);
1619 }
1620 }
1621
1622 for (aux = context->aux_pids; aux; aux = aux->next) {
1623 struct audit_aux_data_pids *axs = (void *)aux;
1624
1625 for (i = 0; i < axs->pid_count; i++)
1626 if (audit_log_pid_context(context, axs->target_pid[i],
1627 axs->target_auid[i],
1628 axs->target_uid[i],
1629 axs->target_sessionid[i],
1630 axs->target_sid[i],
1631 axs->target_comm[i]))
1632 call_panic = 1;
1633 }
1634
1635 if (context->target_pid &&
1636 audit_log_pid_context(context, context->target_pid,
1637 context->target_auid, context->target_uid,
1638 context->target_sessionid,
1639 context->target_sid, context->target_comm))
1640 call_panic = 1;
1641
1642 if (context->pwd.dentry && context->pwd.mnt) {
1643 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1644 if (ab) {
1645 audit_log_d_path(ab, "cwd=", &context->pwd);
1646 audit_log_end(ab);
1647 }
1648 }
1649
1650 i = 0;
1651 list_for_each_entry(n, &context->names_list, list) {
1652 if (n->hidden)
1653 continue;
1654 audit_log_name(context, n, NULL, i++, &call_panic);
1655 }
1656
1657 audit_log_proctitle();
1658
1659 /* Send end of event record to help user space know we are finished */
1660 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1661 if (ab)
1662 audit_log_end(ab);
1663 if (call_panic)
1664 audit_panic("error converting sid to string");
1665 }
1666
1667 /**
1668 * __audit_free - free a per-task audit context
1669 * @tsk: task whose audit context block to free
1670 *
1671 * Called from copy_process and do_exit
1672 */
__audit_free(struct task_struct * tsk)1673 void __audit_free(struct task_struct *tsk)
1674 {
1675 struct audit_context *context = tsk->audit_context;
1676
1677 if (!context)
1678 return;
1679
1680 if (!list_empty(&context->killed_trees))
1681 audit_kill_trees(context);
1682
1683 /* We are called either by do_exit() or the fork() error handling code;
1684 * in the former case tsk == current and in the latter tsk is a
1685 * random task_struct that doesn't doesn't have any meaningful data we
1686 * need to log via audit_log_exit().
1687 */
1688 if (tsk == current && !context->dummy && context->in_syscall) {
1689 context->return_valid = AUDITSC_INVALID;
1690 context->return_code = 0;
1691
1692 audit_filter_syscall(tsk, context);
1693 audit_filter_inodes(tsk, context);
1694 if (context->current_state == AUDIT_STATE_RECORD)
1695 audit_log_exit();
1696 }
1697
1698 audit_set_context(tsk, NULL);
1699 audit_free_context(context);
1700 }
1701
1702 /**
1703 * __audit_syscall_entry - fill in an audit record at syscall entry
1704 * @major: major syscall type (function)
1705 * @a1: additional syscall register 1
1706 * @a2: additional syscall register 2
1707 * @a3: additional syscall register 3
1708 * @a4: additional syscall register 4
1709 *
1710 * Fill in audit context at syscall entry. This only happens if the
1711 * audit context was created when the task was created and the state or
1712 * filters demand the audit context be built. If the state from the
1713 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1714 * then the record will be written at syscall exit time (otherwise, it
1715 * will only be written if another part of the kernel requests that it
1716 * be written).
1717 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1718 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1719 unsigned long a3, unsigned long a4)
1720 {
1721 struct audit_context *context = audit_context();
1722 enum audit_state state;
1723
1724 if (!audit_enabled || !context)
1725 return;
1726
1727 BUG_ON(context->in_syscall || context->name_count);
1728
1729 state = context->state;
1730 if (state == AUDIT_STATE_DISABLED)
1731 return;
1732
1733 context->dummy = !audit_n_rules;
1734 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1735 context->prio = 0;
1736 if (auditd_test_task(current))
1737 return;
1738 }
1739
1740 context->arch = syscall_get_arch(current);
1741 context->major = major;
1742 context->argv[0] = a1;
1743 context->argv[1] = a2;
1744 context->argv[2] = a3;
1745 context->argv[3] = a4;
1746 context->serial = 0;
1747 context->in_syscall = 1;
1748 context->current_state = state;
1749 context->ppid = 0;
1750 ktime_get_coarse_real_ts64(&context->ctime);
1751 }
1752
1753 /**
1754 * __audit_syscall_exit - deallocate audit context after a system call
1755 * @success: success value of the syscall
1756 * @return_code: return value of the syscall
1757 *
1758 * Tear down after system call. If the audit context has been marked as
1759 * auditable (either because of the AUDIT_STATE_RECORD state from
1760 * filtering, or because some other part of the kernel wrote an audit
1761 * message), then write out the syscall information. In call cases,
1762 * free the names stored from getname().
1763 */
__audit_syscall_exit(int success,long return_code)1764 void __audit_syscall_exit(int success, long return_code)
1765 {
1766 struct audit_context *context;
1767
1768 context = audit_context();
1769 if (!context)
1770 return;
1771
1772 if (!list_empty(&context->killed_trees))
1773 audit_kill_trees(context);
1774
1775 if (!context->dummy && context->in_syscall) {
1776 if (success)
1777 context->return_valid = AUDITSC_SUCCESS;
1778 else
1779 context->return_valid = AUDITSC_FAILURE;
1780
1781 /*
1782 * we need to fix up the return code in the audit logs if the
1783 * actual return codes are later going to be fixed up by the
1784 * arch specific signal handlers
1785 *
1786 * This is actually a test for:
1787 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1788 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1789 *
1790 * but is faster than a bunch of ||
1791 */
1792 if (unlikely(return_code <= -ERESTARTSYS) &&
1793 (return_code >= -ERESTART_RESTARTBLOCK) &&
1794 (return_code != -ENOIOCTLCMD))
1795 context->return_code = -EINTR;
1796 else
1797 context->return_code = return_code;
1798
1799 audit_filter_syscall(current, context);
1800 audit_filter_inodes(current, context);
1801 if (context->current_state == AUDIT_STATE_RECORD)
1802 audit_log_exit();
1803 }
1804
1805 context->in_syscall = 0;
1806 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1807
1808 audit_free_module(context);
1809 audit_free_names(context);
1810 unroll_tree_refs(context, NULL, 0);
1811 audit_free_aux(context);
1812 context->aux = NULL;
1813 context->aux_pids = NULL;
1814 context->target_pid = 0;
1815 context->target_sid = 0;
1816 context->sockaddr_len = 0;
1817 context->type = 0;
1818 context->fds[0] = -1;
1819 if (context->state != AUDIT_STATE_RECORD) {
1820 kfree(context->filterkey);
1821 context->filterkey = NULL;
1822 }
1823 }
1824
handle_one(const struct inode * inode)1825 static inline void handle_one(const struct inode *inode)
1826 {
1827 struct audit_context *context;
1828 struct audit_tree_refs *p;
1829 struct audit_chunk *chunk;
1830 int count;
1831
1832 if (likely(!inode->i_fsnotify_marks))
1833 return;
1834 context = audit_context();
1835 p = context->trees;
1836 count = context->tree_count;
1837 rcu_read_lock();
1838 chunk = audit_tree_lookup(inode);
1839 rcu_read_unlock();
1840 if (!chunk)
1841 return;
1842 if (likely(put_tree_ref(context, chunk)))
1843 return;
1844 if (unlikely(!grow_tree_refs(context))) {
1845 pr_warn("out of memory, audit has lost a tree reference\n");
1846 audit_set_auditable(context);
1847 audit_put_chunk(chunk);
1848 unroll_tree_refs(context, p, count);
1849 return;
1850 }
1851 put_tree_ref(context, chunk);
1852 }
1853
handle_path(const struct dentry * dentry)1854 static void handle_path(const struct dentry *dentry)
1855 {
1856 struct audit_context *context;
1857 struct audit_tree_refs *p;
1858 const struct dentry *d, *parent;
1859 struct audit_chunk *drop;
1860 unsigned long seq;
1861 int count;
1862
1863 context = audit_context();
1864 p = context->trees;
1865 count = context->tree_count;
1866 retry:
1867 drop = NULL;
1868 d = dentry;
1869 rcu_read_lock();
1870 seq = read_seqbegin(&rename_lock);
1871 for(;;) {
1872 struct inode *inode = d_backing_inode(d);
1873
1874 if (inode && unlikely(inode->i_fsnotify_marks)) {
1875 struct audit_chunk *chunk;
1876
1877 chunk = audit_tree_lookup(inode);
1878 if (chunk) {
1879 if (unlikely(!put_tree_ref(context, chunk))) {
1880 drop = chunk;
1881 break;
1882 }
1883 }
1884 }
1885 parent = d->d_parent;
1886 if (parent == d)
1887 break;
1888 d = parent;
1889 }
1890 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1891 rcu_read_unlock();
1892 if (!drop) {
1893 /* just a race with rename */
1894 unroll_tree_refs(context, p, count);
1895 goto retry;
1896 }
1897 audit_put_chunk(drop);
1898 if (grow_tree_refs(context)) {
1899 /* OK, got more space */
1900 unroll_tree_refs(context, p, count);
1901 goto retry;
1902 }
1903 /* too bad */
1904 pr_warn("out of memory, audit has lost a tree reference\n");
1905 unroll_tree_refs(context, p, count);
1906 audit_set_auditable(context);
1907 return;
1908 }
1909 rcu_read_unlock();
1910 }
1911
audit_alloc_name(struct audit_context * context,unsigned char type)1912 static struct audit_names *audit_alloc_name(struct audit_context *context,
1913 unsigned char type)
1914 {
1915 struct audit_names *aname;
1916
1917 if (context->name_count < AUDIT_NAMES) {
1918 aname = &context->preallocated_names[context->name_count];
1919 memset(aname, 0, sizeof(*aname));
1920 } else {
1921 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1922 if (!aname)
1923 return NULL;
1924 aname->should_free = true;
1925 }
1926
1927 aname->ino = AUDIT_INO_UNSET;
1928 aname->type = type;
1929 list_add_tail(&aname->list, &context->names_list);
1930
1931 context->name_count++;
1932 if (!context->pwd.dentry)
1933 get_fs_pwd(current->fs, &context->pwd);
1934 return aname;
1935 }
1936
1937 /**
1938 * __audit_reusename - fill out filename with info from existing entry
1939 * @uptr: userland ptr to pathname
1940 *
1941 * Search the audit_names list for the current audit context. If there is an
1942 * existing entry with a matching "uptr" then return the filename
1943 * associated with that audit_name. If not, return NULL.
1944 */
1945 struct filename *
__audit_reusename(const __user char * uptr)1946 __audit_reusename(const __user char *uptr)
1947 {
1948 struct audit_context *context = audit_context();
1949 struct audit_names *n;
1950
1951 list_for_each_entry(n, &context->names_list, list) {
1952 if (!n->name)
1953 continue;
1954 if (n->name->uptr == uptr) {
1955 n->name->refcnt++;
1956 return n->name;
1957 }
1958 }
1959 return NULL;
1960 }
1961
1962 /**
1963 * __audit_getname - add a name to the list
1964 * @name: name to add
1965 *
1966 * Add a name to the list of audit names for this context.
1967 * Called from fs/namei.c:getname().
1968 */
__audit_getname(struct filename * name)1969 void __audit_getname(struct filename *name)
1970 {
1971 struct audit_context *context = audit_context();
1972 struct audit_names *n;
1973
1974 if (!context->in_syscall)
1975 return;
1976
1977 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1978 if (!n)
1979 return;
1980
1981 n->name = name;
1982 n->name_len = AUDIT_NAME_FULL;
1983 name->aname = n;
1984 name->refcnt++;
1985 }
1986
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1987 static inline int audit_copy_fcaps(struct audit_names *name,
1988 const struct dentry *dentry)
1989 {
1990 struct cpu_vfs_cap_data caps;
1991 int rc;
1992
1993 if (!dentry)
1994 return 0;
1995
1996 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1997 if (rc)
1998 return rc;
1999
2000 name->fcap.permitted = caps.permitted;
2001 name->fcap.inheritable = caps.inheritable;
2002 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2003 name->fcap.rootid = caps.rootid;
2004 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2005 VFS_CAP_REVISION_SHIFT;
2006
2007 return 0;
2008 }
2009
2010 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2011 static void audit_copy_inode(struct audit_names *name,
2012 const struct dentry *dentry,
2013 struct inode *inode, unsigned int flags)
2014 {
2015 name->ino = inode->i_ino;
2016 name->dev = inode->i_sb->s_dev;
2017 name->mode = inode->i_mode;
2018 name->uid = inode->i_uid;
2019 name->gid = inode->i_gid;
2020 name->rdev = inode->i_rdev;
2021 security_inode_getsecid(inode, &name->osid);
2022 if (flags & AUDIT_INODE_NOEVAL) {
2023 name->fcap_ver = -1;
2024 return;
2025 }
2026 audit_copy_fcaps(name, dentry);
2027 }
2028
2029 /**
2030 * __audit_inode - store the inode and device from a lookup
2031 * @name: name being audited
2032 * @dentry: dentry being audited
2033 * @flags: attributes for this particular entry
2034 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2035 void __audit_inode(struct filename *name, const struct dentry *dentry,
2036 unsigned int flags)
2037 {
2038 struct audit_context *context = audit_context();
2039 struct inode *inode = d_backing_inode(dentry);
2040 struct audit_names *n;
2041 bool parent = flags & AUDIT_INODE_PARENT;
2042 struct audit_entry *e;
2043 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2044 int i;
2045
2046 if (!context->in_syscall)
2047 return;
2048
2049 rcu_read_lock();
2050 list_for_each_entry_rcu(e, list, list) {
2051 for (i = 0; i < e->rule.field_count; i++) {
2052 struct audit_field *f = &e->rule.fields[i];
2053
2054 if (f->type == AUDIT_FSTYPE
2055 && audit_comparator(inode->i_sb->s_magic,
2056 f->op, f->val)
2057 && e->rule.action == AUDIT_NEVER) {
2058 rcu_read_unlock();
2059 return;
2060 }
2061 }
2062 }
2063 rcu_read_unlock();
2064
2065 if (!name)
2066 goto out_alloc;
2067
2068 /*
2069 * If we have a pointer to an audit_names entry already, then we can
2070 * just use it directly if the type is correct.
2071 */
2072 n = name->aname;
2073 if (n) {
2074 if (parent) {
2075 if (n->type == AUDIT_TYPE_PARENT ||
2076 n->type == AUDIT_TYPE_UNKNOWN)
2077 goto out;
2078 } else {
2079 if (n->type != AUDIT_TYPE_PARENT)
2080 goto out;
2081 }
2082 }
2083
2084 list_for_each_entry_reverse(n, &context->names_list, list) {
2085 if (n->ino) {
2086 /* valid inode number, use that for the comparison */
2087 if (n->ino != inode->i_ino ||
2088 n->dev != inode->i_sb->s_dev)
2089 continue;
2090 } else if (n->name) {
2091 /* inode number has not been set, check the name */
2092 if (strcmp(n->name->name, name->name))
2093 continue;
2094 } else
2095 /* no inode and no name (?!) ... this is odd ... */
2096 continue;
2097
2098 /* match the correct record type */
2099 if (parent) {
2100 if (n->type == AUDIT_TYPE_PARENT ||
2101 n->type == AUDIT_TYPE_UNKNOWN)
2102 goto out;
2103 } else {
2104 if (n->type != AUDIT_TYPE_PARENT)
2105 goto out;
2106 }
2107 }
2108
2109 out_alloc:
2110 /* unable to find an entry with both a matching name and type */
2111 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2112 if (!n)
2113 return;
2114 if (name) {
2115 n->name = name;
2116 name->refcnt++;
2117 }
2118
2119 out:
2120 if (parent) {
2121 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2122 n->type = AUDIT_TYPE_PARENT;
2123 if (flags & AUDIT_INODE_HIDDEN)
2124 n->hidden = true;
2125 } else {
2126 n->name_len = AUDIT_NAME_FULL;
2127 n->type = AUDIT_TYPE_NORMAL;
2128 }
2129 handle_path(dentry);
2130 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2131 }
2132
__audit_file(const struct file * file)2133 void __audit_file(const struct file *file)
2134 {
2135 __audit_inode(NULL, file->f_path.dentry, 0);
2136 }
2137
2138 /**
2139 * __audit_inode_child - collect inode info for created/removed objects
2140 * @parent: inode of dentry parent
2141 * @dentry: dentry being audited
2142 * @type: AUDIT_TYPE_* value that we're looking for
2143 *
2144 * For syscalls that create or remove filesystem objects, audit_inode
2145 * can only collect information for the filesystem object's parent.
2146 * This call updates the audit context with the child's information.
2147 * Syscalls that create a new filesystem object must be hooked after
2148 * the object is created. Syscalls that remove a filesystem object
2149 * must be hooked prior, in order to capture the target inode during
2150 * unsuccessful attempts.
2151 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2152 void __audit_inode_child(struct inode *parent,
2153 const struct dentry *dentry,
2154 const unsigned char type)
2155 {
2156 struct audit_context *context = audit_context();
2157 struct inode *inode = d_backing_inode(dentry);
2158 const struct qstr *dname = &dentry->d_name;
2159 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2160 struct audit_entry *e;
2161 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2162 int i;
2163
2164 if (!context->in_syscall)
2165 return;
2166
2167 rcu_read_lock();
2168 list_for_each_entry_rcu(e, list, list) {
2169 for (i = 0; i < e->rule.field_count; i++) {
2170 struct audit_field *f = &e->rule.fields[i];
2171
2172 if (f->type == AUDIT_FSTYPE
2173 && audit_comparator(parent->i_sb->s_magic,
2174 f->op, f->val)
2175 && e->rule.action == AUDIT_NEVER) {
2176 rcu_read_unlock();
2177 return;
2178 }
2179 }
2180 }
2181 rcu_read_unlock();
2182
2183 if (inode)
2184 handle_one(inode);
2185
2186 /* look for a parent entry first */
2187 list_for_each_entry(n, &context->names_list, list) {
2188 if (!n->name ||
2189 (n->type != AUDIT_TYPE_PARENT &&
2190 n->type != AUDIT_TYPE_UNKNOWN))
2191 continue;
2192
2193 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2194 !audit_compare_dname_path(dname,
2195 n->name->name, n->name_len)) {
2196 if (n->type == AUDIT_TYPE_UNKNOWN)
2197 n->type = AUDIT_TYPE_PARENT;
2198 found_parent = n;
2199 break;
2200 }
2201 }
2202
2203 cond_resched();
2204
2205 /* is there a matching child entry? */
2206 list_for_each_entry(n, &context->names_list, list) {
2207 /* can only match entries that have a name */
2208 if (!n->name ||
2209 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2210 continue;
2211
2212 if (!strcmp(dname->name, n->name->name) ||
2213 !audit_compare_dname_path(dname, n->name->name,
2214 found_parent ?
2215 found_parent->name_len :
2216 AUDIT_NAME_FULL)) {
2217 if (n->type == AUDIT_TYPE_UNKNOWN)
2218 n->type = type;
2219 found_child = n;
2220 break;
2221 }
2222 }
2223
2224 if (!found_parent) {
2225 /* create a new, "anonymous" parent record */
2226 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2227 if (!n)
2228 return;
2229 audit_copy_inode(n, NULL, parent, 0);
2230 }
2231
2232 if (!found_child) {
2233 found_child = audit_alloc_name(context, type);
2234 if (!found_child)
2235 return;
2236
2237 /* Re-use the name belonging to the slot for a matching parent
2238 * directory. All names for this context are relinquished in
2239 * audit_free_names() */
2240 if (found_parent) {
2241 found_child->name = found_parent->name;
2242 found_child->name_len = AUDIT_NAME_FULL;
2243 found_child->name->refcnt++;
2244 }
2245 }
2246
2247 if (inode)
2248 audit_copy_inode(found_child, dentry, inode, 0);
2249 else
2250 found_child->ino = AUDIT_INO_UNSET;
2251 }
2252 EXPORT_SYMBOL_GPL(__audit_inode_child);
2253
2254 /**
2255 * auditsc_get_stamp - get local copies of audit_context values
2256 * @ctx: audit_context for the task
2257 * @t: timespec64 to store time recorded in the audit_context
2258 * @serial: serial value that is recorded in the audit_context
2259 *
2260 * Also sets the context as auditable.
2261 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2262 int auditsc_get_stamp(struct audit_context *ctx,
2263 struct timespec64 *t, unsigned int *serial)
2264 {
2265 if (!ctx->in_syscall)
2266 return 0;
2267 if (!ctx->serial)
2268 ctx->serial = audit_serial();
2269 t->tv_sec = ctx->ctime.tv_sec;
2270 t->tv_nsec = ctx->ctime.tv_nsec;
2271 *serial = ctx->serial;
2272 if (!ctx->prio) {
2273 ctx->prio = 1;
2274 ctx->current_state = AUDIT_STATE_RECORD;
2275 }
2276 return 1;
2277 }
2278
2279 /**
2280 * __audit_mq_open - record audit data for a POSIX MQ open
2281 * @oflag: open flag
2282 * @mode: mode bits
2283 * @attr: queue attributes
2284 *
2285 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2286 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2287 {
2288 struct audit_context *context = audit_context();
2289
2290 if (attr)
2291 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2292 else
2293 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2294
2295 context->mq_open.oflag = oflag;
2296 context->mq_open.mode = mode;
2297
2298 context->type = AUDIT_MQ_OPEN;
2299 }
2300
2301 /**
2302 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2303 * @mqdes: MQ descriptor
2304 * @msg_len: Message length
2305 * @msg_prio: Message priority
2306 * @abs_timeout: Message timeout in absolute time
2307 *
2308 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2309 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2310 const struct timespec64 *abs_timeout)
2311 {
2312 struct audit_context *context = audit_context();
2313 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2314
2315 if (abs_timeout)
2316 memcpy(p, abs_timeout, sizeof(*p));
2317 else
2318 memset(p, 0, sizeof(*p));
2319
2320 context->mq_sendrecv.mqdes = mqdes;
2321 context->mq_sendrecv.msg_len = msg_len;
2322 context->mq_sendrecv.msg_prio = msg_prio;
2323
2324 context->type = AUDIT_MQ_SENDRECV;
2325 }
2326
2327 /**
2328 * __audit_mq_notify - record audit data for a POSIX MQ notify
2329 * @mqdes: MQ descriptor
2330 * @notification: Notification event
2331 *
2332 */
2333
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2334 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2335 {
2336 struct audit_context *context = audit_context();
2337
2338 if (notification)
2339 context->mq_notify.sigev_signo = notification->sigev_signo;
2340 else
2341 context->mq_notify.sigev_signo = 0;
2342
2343 context->mq_notify.mqdes = mqdes;
2344 context->type = AUDIT_MQ_NOTIFY;
2345 }
2346
2347 /**
2348 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2349 * @mqdes: MQ descriptor
2350 * @mqstat: MQ flags
2351 *
2352 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2353 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2354 {
2355 struct audit_context *context = audit_context();
2356
2357 context->mq_getsetattr.mqdes = mqdes;
2358 context->mq_getsetattr.mqstat = *mqstat;
2359 context->type = AUDIT_MQ_GETSETATTR;
2360 }
2361
2362 /**
2363 * __audit_ipc_obj - record audit data for ipc object
2364 * @ipcp: ipc permissions
2365 *
2366 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2367 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2368 {
2369 struct audit_context *context = audit_context();
2370
2371 context->ipc.uid = ipcp->uid;
2372 context->ipc.gid = ipcp->gid;
2373 context->ipc.mode = ipcp->mode;
2374 context->ipc.has_perm = 0;
2375 security_ipc_getsecid(ipcp, &context->ipc.osid);
2376 context->type = AUDIT_IPC;
2377 }
2378
2379 /**
2380 * __audit_ipc_set_perm - record audit data for new ipc permissions
2381 * @qbytes: msgq bytes
2382 * @uid: msgq user id
2383 * @gid: msgq group id
2384 * @mode: msgq mode (permissions)
2385 *
2386 * Called only after audit_ipc_obj().
2387 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2388 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2389 {
2390 struct audit_context *context = audit_context();
2391
2392 context->ipc.qbytes = qbytes;
2393 context->ipc.perm_uid = uid;
2394 context->ipc.perm_gid = gid;
2395 context->ipc.perm_mode = mode;
2396 context->ipc.has_perm = 1;
2397 }
2398
__audit_bprm(struct linux_binprm * bprm)2399 void __audit_bprm(struct linux_binprm *bprm)
2400 {
2401 struct audit_context *context = audit_context();
2402
2403 context->type = AUDIT_EXECVE;
2404 context->execve.argc = bprm->argc;
2405 }
2406
2407
2408 /**
2409 * __audit_socketcall - record audit data for sys_socketcall
2410 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2411 * @args: args array
2412 *
2413 */
__audit_socketcall(int nargs,unsigned long * args)2414 int __audit_socketcall(int nargs, unsigned long *args)
2415 {
2416 struct audit_context *context = audit_context();
2417
2418 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2419 return -EINVAL;
2420 context->type = AUDIT_SOCKETCALL;
2421 context->socketcall.nargs = nargs;
2422 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2423 return 0;
2424 }
2425
2426 /**
2427 * __audit_fd_pair - record audit data for pipe and socketpair
2428 * @fd1: the first file descriptor
2429 * @fd2: the second file descriptor
2430 *
2431 */
__audit_fd_pair(int fd1,int fd2)2432 void __audit_fd_pair(int fd1, int fd2)
2433 {
2434 struct audit_context *context = audit_context();
2435
2436 context->fds[0] = fd1;
2437 context->fds[1] = fd2;
2438 }
2439
2440 /**
2441 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2442 * @len: data length in user space
2443 * @a: data address in kernel space
2444 *
2445 * Returns 0 for success or NULL context or < 0 on error.
2446 */
__audit_sockaddr(int len,void * a)2447 int __audit_sockaddr(int len, void *a)
2448 {
2449 struct audit_context *context = audit_context();
2450
2451 if (!context->sockaddr) {
2452 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2453
2454 if (!p)
2455 return -ENOMEM;
2456 context->sockaddr = p;
2457 }
2458
2459 context->sockaddr_len = len;
2460 memcpy(context->sockaddr, a, len);
2461 return 0;
2462 }
2463
__audit_ptrace(struct task_struct * t)2464 void __audit_ptrace(struct task_struct *t)
2465 {
2466 struct audit_context *context = audit_context();
2467
2468 context->target_pid = task_tgid_nr(t);
2469 context->target_auid = audit_get_loginuid(t);
2470 context->target_uid = task_uid(t);
2471 context->target_sessionid = audit_get_sessionid(t);
2472 security_task_getsecid_obj(t, &context->target_sid);
2473 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2474 }
2475
2476 /**
2477 * audit_signal_info_syscall - record signal info for syscalls
2478 * @t: task being signaled
2479 *
2480 * If the audit subsystem is being terminated, record the task (pid)
2481 * and uid that is doing that.
2482 */
audit_signal_info_syscall(struct task_struct * t)2483 int audit_signal_info_syscall(struct task_struct *t)
2484 {
2485 struct audit_aux_data_pids *axp;
2486 struct audit_context *ctx = audit_context();
2487 kuid_t t_uid = task_uid(t);
2488
2489 if (!audit_signals || audit_dummy_context())
2490 return 0;
2491
2492 /* optimize the common case by putting first signal recipient directly
2493 * in audit_context */
2494 if (!ctx->target_pid) {
2495 ctx->target_pid = task_tgid_nr(t);
2496 ctx->target_auid = audit_get_loginuid(t);
2497 ctx->target_uid = t_uid;
2498 ctx->target_sessionid = audit_get_sessionid(t);
2499 security_task_getsecid_obj(t, &ctx->target_sid);
2500 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2501 return 0;
2502 }
2503
2504 axp = (void *)ctx->aux_pids;
2505 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2506 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2507 if (!axp)
2508 return -ENOMEM;
2509
2510 axp->d.type = AUDIT_OBJ_PID;
2511 axp->d.next = ctx->aux_pids;
2512 ctx->aux_pids = (void *)axp;
2513 }
2514 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2515
2516 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2517 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2518 axp->target_uid[axp->pid_count] = t_uid;
2519 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2520 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2521 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2522 axp->pid_count++;
2523
2524 return 0;
2525 }
2526
2527 /**
2528 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2529 * @bprm: pointer to the bprm being processed
2530 * @new: the proposed new credentials
2531 * @old: the old credentials
2532 *
2533 * Simply check if the proc already has the caps given by the file and if not
2534 * store the priv escalation info for later auditing at the end of the syscall
2535 *
2536 * -Eric
2537 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2538 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2539 const struct cred *new, const struct cred *old)
2540 {
2541 struct audit_aux_data_bprm_fcaps *ax;
2542 struct audit_context *context = audit_context();
2543 struct cpu_vfs_cap_data vcaps;
2544
2545 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2546 if (!ax)
2547 return -ENOMEM;
2548
2549 ax->d.type = AUDIT_BPRM_FCAPS;
2550 ax->d.next = context->aux;
2551 context->aux = (void *)ax;
2552
2553 get_vfs_caps_from_disk(&init_user_ns,
2554 bprm->file->f_path.dentry, &vcaps);
2555
2556 ax->fcap.permitted = vcaps.permitted;
2557 ax->fcap.inheritable = vcaps.inheritable;
2558 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2559 ax->fcap.rootid = vcaps.rootid;
2560 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2561
2562 ax->old_pcap.permitted = old->cap_permitted;
2563 ax->old_pcap.inheritable = old->cap_inheritable;
2564 ax->old_pcap.effective = old->cap_effective;
2565 ax->old_pcap.ambient = old->cap_ambient;
2566
2567 ax->new_pcap.permitted = new->cap_permitted;
2568 ax->new_pcap.inheritable = new->cap_inheritable;
2569 ax->new_pcap.effective = new->cap_effective;
2570 ax->new_pcap.ambient = new->cap_ambient;
2571 return 0;
2572 }
2573
2574 /**
2575 * __audit_log_capset - store information about the arguments to the capset syscall
2576 * @new: the new credentials
2577 * @old: the old (current) credentials
2578 *
2579 * Record the arguments userspace sent to sys_capset for later printing by the
2580 * audit system if applicable
2581 */
__audit_log_capset(const struct cred * new,const struct cred * old)2582 void __audit_log_capset(const struct cred *new, const struct cred *old)
2583 {
2584 struct audit_context *context = audit_context();
2585
2586 context->capset.pid = task_tgid_nr(current);
2587 context->capset.cap.effective = new->cap_effective;
2588 context->capset.cap.inheritable = new->cap_effective;
2589 context->capset.cap.permitted = new->cap_permitted;
2590 context->capset.cap.ambient = new->cap_ambient;
2591 context->type = AUDIT_CAPSET;
2592 }
2593
__audit_mmap_fd(int fd,int flags)2594 void __audit_mmap_fd(int fd, int flags)
2595 {
2596 struct audit_context *context = audit_context();
2597
2598 context->mmap.fd = fd;
2599 context->mmap.flags = flags;
2600 context->type = AUDIT_MMAP;
2601 }
2602
__audit_log_kern_module(char * name)2603 void __audit_log_kern_module(char *name)
2604 {
2605 struct audit_context *context = audit_context();
2606
2607 context->module.name = kstrdup(name, GFP_KERNEL);
2608 if (!context->module.name)
2609 audit_log_lost("out of memory in __audit_log_kern_module");
2610 context->type = AUDIT_KERN_MODULE;
2611 }
2612
__audit_fanotify(unsigned int response)2613 void __audit_fanotify(unsigned int response)
2614 {
2615 audit_log(audit_context(), GFP_KERNEL,
2616 AUDIT_FANOTIFY, "resp=%u", response);
2617 }
2618
__audit_tk_injoffset(struct timespec64 offset)2619 void __audit_tk_injoffset(struct timespec64 offset)
2620 {
2621 struct audit_context *context = audit_context();
2622
2623 /* only set type if not already set by NTP */
2624 if (!context->type)
2625 context->type = AUDIT_TIME_INJOFFSET;
2626 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2627 }
2628
__audit_ntp_log(const struct audit_ntp_data * ad)2629 void __audit_ntp_log(const struct audit_ntp_data *ad)
2630 {
2631 struct audit_context *context = audit_context();
2632 int type;
2633
2634 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2635 if (ad->vals[type].newval != ad->vals[type].oldval) {
2636 /* unconditionally set type, overwriting TK */
2637 context->type = AUDIT_TIME_ADJNTPVAL;
2638 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2639 break;
2640 }
2641 }
2642
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2643 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2644 enum audit_nfcfgop op, gfp_t gfp)
2645 {
2646 struct audit_buffer *ab;
2647 char comm[sizeof(current->comm)];
2648
2649 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2650 if (!ab)
2651 return;
2652 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2653 name, af, nentries, audit_nfcfgs[op].s);
2654
2655 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2656 audit_log_task_context(ab); /* subj= */
2657 audit_log_format(ab, " comm=");
2658 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2659 audit_log_end(ab);
2660 }
2661 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2662
audit_log_task(struct audit_buffer * ab)2663 static void audit_log_task(struct audit_buffer *ab)
2664 {
2665 kuid_t auid, uid;
2666 kgid_t gid;
2667 unsigned int sessionid;
2668 char comm[sizeof(current->comm)];
2669
2670 auid = audit_get_loginuid(current);
2671 sessionid = audit_get_sessionid(current);
2672 current_uid_gid(&uid, &gid);
2673
2674 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2675 from_kuid(&init_user_ns, auid),
2676 from_kuid(&init_user_ns, uid),
2677 from_kgid(&init_user_ns, gid),
2678 sessionid);
2679 audit_log_task_context(ab);
2680 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2681 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2682 audit_log_d_path_exe(ab, current->mm);
2683 }
2684
2685 /**
2686 * audit_core_dumps - record information about processes that end abnormally
2687 * @signr: signal value
2688 *
2689 * If a process ends with a core dump, something fishy is going on and we
2690 * should record the event for investigation.
2691 */
audit_core_dumps(long signr)2692 void audit_core_dumps(long signr)
2693 {
2694 struct audit_buffer *ab;
2695
2696 if (!audit_enabled)
2697 return;
2698
2699 if (signr == SIGQUIT) /* don't care for those */
2700 return;
2701
2702 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2703 if (unlikely(!ab))
2704 return;
2705 audit_log_task(ab);
2706 audit_log_format(ab, " sig=%ld res=1", signr);
2707 audit_log_end(ab);
2708 }
2709
2710 /**
2711 * audit_seccomp - record information about a seccomp action
2712 * @syscall: syscall number
2713 * @signr: signal value
2714 * @code: the seccomp action
2715 *
2716 * Record the information associated with a seccomp action. Event filtering for
2717 * seccomp actions that are not to be logged is done in seccomp_log().
2718 * Therefore, this function forces auditing independent of the audit_enabled
2719 * and dummy context state because seccomp actions should be logged even when
2720 * audit is not in use.
2721 */
audit_seccomp(unsigned long syscall,long signr,int code)2722 void audit_seccomp(unsigned long syscall, long signr, int code)
2723 {
2724 struct audit_buffer *ab;
2725
2726 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2727 if (unlikely(!ab))
2728 return;
2729 audit_log_task(ab);
2730 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2731 signr, syscall_get_arch(current), syscall,
2732 in_compat_syscall(), KSTK_EIP(current), code);
2733 audit_log_end(ab);
2734 }
2735
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2736 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2737 int res)
2738 {
2739 struct audit_buffer *ab;
2740
2741 if (!audit_enabled)
2742 return;
2743
2744 ab = audit_log_start(audit_context(), GFP_KERNEL,
2745 AUDIT_CONFIG_CHANGE);
2746 if (unlikely(!ab))
2747 return;
2748
2749 audit_log_format(ab,
2750 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2751 names, old_names, res);
2752 audit_log_end(ab);
2753 }
2754
audit_killed_trees(void)2755 struct list_head *audit_killed_trees(void)
2756 {
2757 struct audit_context *ctx = audit_context();
2758
2759 if (likely(!ctx || !ctx->in_syscall))
2760 return NULL;
2761 return &ctx->killed_trees;
2762 }
2763