• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/avc.h>
49 
50 struct avc_entry {
51 	u32			ssid;
52 	u32			tsid;
53 	u16			tclass;
54 	struct av_decision	avd;
55 	struct avc_xperms_node	*xp_node;
56 };
57 
58 struct avc_node {
59 	struct avc_entry	ae;
60 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
61 	struct rcu_head		rhead;
62 };
63 
64 struct avc_xperms_decision_node {
65 	struct extended_perms_decision xpd;
66 	struct list_head xpd_list; /* list of extended_perms_decision */
67 };
68 
69 struct avc_xperms_node {
70 	struct extended_perms xp;
71 	struct list_head xpd_head; /* list head of extended_perms_decision */
72 };
73 
74 struct avc_cache {
75 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
76 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
77 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
78 	atomic_t		active_nodes;
79 	u32			latest_notif;	/* latest revocation notification */
80 };
81 
82 struct avc_callback_node {
83 	int (*callback) (u32 event);
84 	u32 events;
85 	struct avc_callback_node *next;
86 };
87 
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91 
92 struct selinux_avc {
93 	unsigned int avc_cache_threshold;
94 	struct avc_cache avc_cache;
95 };
96 
97 static struct selinux_avc selinux_avc;
98 
selinux_avc_init(struct selinux_avc ** avc)99 void selinux_avc_init(struct selinux_avc **avc)
100 {
101 	int i;
102 
103 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
104 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
105 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
106 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
107 	}
108 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
109 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
110 	*avc = &selinux_avc;
111 }
112 
avc_get_cache_threshold(struct selinux_avc * avc)113 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
114 {
115 	return avc->avc_cache_threshold;
116 }
117 
avc_set_cache_threshold(struct selinux_avc * avc,unsigned int cache_threshold)118 void avc_set_cache_threshold(struct selinux_avc *avc,
119 			     unsigned int cache_threshold)
120 {
121 	avc->avc_cache_threshold = cache_threshold;
122 }
123 
124 static struct avc_callback_node *avc_callbacks __ro_after_init;
125 static struct kmem_cache *avc_node_cachep __ro_after_init;
126 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
127 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
128 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
129 
avc_hash(u32 ssid,u32 tsid,u16 tclass)130 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131 {
132 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133 }
134 
135 /**
136  * avc_init - Initialize the AVC.
137  *
138  * Initialize the access vector cache.
139  */
avc_init(void)140 void __init avc_init(void)
141 {
142 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
143 					0, SLAB_PANIC, NULL);
144 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
145 					sizeof(struct avc_xperms_node),
146 					0, SLAB_PANIC, NULL);
147 	avc_xperms_decision_cachep = kmem_cache_create(
148 					"avc_xperms_decision_node",
149 					sizeof(struct avc_xperms_decision_node),
150 					0, SLAB_PANIC, NULL);
151 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
152 					sizeof(struct extended_perms_data),
153 					0, SLAB_PANIC, NULL);
154 }
155 
avc_get_hash_stats(struct selinux_avc * avc,char * page)156 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
157 {
158 	int i, chain_len, max_chain_len, slots_used;
159 	struct avc_node *node;
160 	struct hlist_head *head;
161 
162 	rcu_read_lock();
163 
164 	slots_used = 0;
165 	max_chain_len = 0;
166 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
167 		head = &avc->avc_cache.slots[i];
168 		if (!hlist_empty(head)) {
169 			slots_used++;
170 			chain_len = 0;
171 			hlist_for_each_entry_rcu(node, head, list)
172 				chain_len++;
173 			if (chain_len > max_chain_len)
174 				max_chain_len = chain_len;
175 		}
176 	}
177 
178 	rcu_read_unlock();
179 
180 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
181 			 "longest chain: %d\n",
182 			 atomic_read(&avc->avc_cache.active_nodes),
183 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
184 }
185 
186 /*
187  * using a linked list for extended_perms_decision lookup because the list is
188  * always small. i.e. less than 5, typically 1
189  */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)190 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
191 					struct avc_xperms_node *xp_node)
192 {
193 	struct avc_xperms_decision_node *xpd_node;
194 
195 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
196 		if (xpd_node->xpd.driver == driver)
197 			return &xpd_node->xpd;
198 	}
199 	return NULL;
200 }
201 
202 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)203 avc_xperms_has_perm(struct extended_perms_decision *xpd,
204 					u8 perm, u8 which)
205 {
206 	unsigned int rc = 0;
207 
208 	if ((which == XPERMS_ALLOWED) &&
209 			(xpd->used & XPERMS_ALLOWED))
210 		rc = security_xperm_test(xpd->allowed->p, perm);
211 	else if ((which == XPERMS_AUDITALLOW) &&
212 			(xpd->used & XPERMS_AUDITALLOW))
213 		rc = security_xperm_test(xpd->auditallow->p, perm);
214 	else if ((which == XPERMS_DONTAUDIT) &&
215 			(xpd->used & XPERMS_DONTAUDIT))
216 		rc = security_xperm_test(xpd->dontaudit->p, perm);
217 	return rc;
218 }
219 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)220 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
221 				u8 driver, u8 perm)
222 {
223 	struct extended_perms_decision *xpd;
224 	security_xperm_set(xp_node->xp.drivers.p, driver);
225 	xpd = avc_xperms_decision_lookup(driver, xp_node);
226 	if (xpd && xpd->allowed)
227 		security_xperm_set(xpd->allowed->p, perm);
228 }
229 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)230 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
231 {
232 	struct extended_perms_decision *xpd;
233 
234 	xpd = &xpd_node->xpd;
235 	if (xpd->allowed)
236 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
237 	if (xpd->auditallow)
238 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
239 	if (xpd->dontaudit)
240 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
241 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
242 }
243 
avc_xperms_free(struct avc_xperms_node * xp_node)244 static void avc_xperms_free(struct avc_xperms_node *xp_node)
245 {
246 	struct avc_xperms_decision_node *xpd_node, *tmp;
247 
248 	if (!xp_node)
249 		return;
250 
251 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
252 		list_del(&xpd_node->xpd_list);
253 		avc_xperms_decision_free(xpd_node);
254 	}
255 	kmem_cache_free(avc_xperms_cachep, xp_node);
256 }
257 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)258 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
259 					struct extended_perms_decision *src)
260 {
261 	dest->driver = src->driver;
262 	dest->used = src->used;
263 	if (dest->used & XPERMS_ALLOWED)
264 		memcpy(dest->allowed->p, src->allowed->p,
265 				sizeof(src->allowed->p));
266 	if (dest->used & XPERMS_AUDITALLOW)
267 		memcpy(dest->auditallow->p, src->auditallow->p,
268 				sizeof(src->auditallow->p));
269 	if (dest->used & XPERMS_DONTAUDIT)
270 		memcpy(dest->dontaudit->p, src->dontaudit->p,
271 				sizeof(src->dontaudit->p));
272 }
273 
274 /*
275  * similar to avc_copy_xperms_decision, but only copy decision
276  * information relevant to this perm
277  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)278 static inline void avc_quick_copy_xperms_decision(u8 perm,
279 			struct extended_perms_decision *dest,
280 			struct extended_perms_decision *src)
281 {
282 	/*
283 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
284 	 * command permission
285 	 */
286 	u8 i = perm >> 5;
287 
288 	dest->used = src->used;
289 	if (dest->used & XPERMS_ALLOWED)
290 		dest->allowed->p[i] = src->allowed->p[i];
291 	if (dest->used & XPERMS_AUDITALLOW)
292 		dest->auditallow->p[i] = src->auditallow->p[i];
293 	if (dest->used & XPERMS_DONTAUDIT)
294 		dest->dontaudit->p[i] = src->dontaudit->p[i];
295 }
296 
297 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)298 		*avc_xperms_decision_alloc(u8 which)
299 {
300 	struct avc_xperms_decision_node *xpd_node;
301 	struct extended_perms_decision *xpd;
302 
303 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
304 				     GFP_NOWAIT | __GFP_NOWARN);
305 	if (!xpd_node)
306 		return NULL;
307 
308 	xpd = &xpd_node->xpd;
309 	if (which & XPERMS_ALLOWED) {
310 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
311 						GFP_NOWAIT | __GFP_NOWARN);
312 		if (!xpd->allowed)
313 			goto error;
314 	}
315 	if (which & XPERMS_AUDITALLOW) {
316 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
317 						GFP_NOWAIT | __GFP_NOWARN);
318 		if (!xpd->auditallow)
319 			goto error;
320 	}
321 	if (which & XPERMS_DONTAUDIT) {
322 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
323 						GFP_NOWAIT | __GFP_NOWARN);
324 		if (!xpd->dontaudit)
325 			goto error;
326 	}
327 	return xpd_node;
328 error:
329 	avc_xperms_decision_free(xpd_node);
330 	return NULL;
331 }
332 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)333 static int avc_add_xperms_decision(struct avc_node *node,
334 			struct extended_perms_decision *src)
335 {
336 	struct avc_xperms_decision_node *dest_xpd;
337 
338 	node->ae.xp_node->xp.len++;
339 	dest_xpd = avc_xperms_decision_alloc(src->used);
340 	if (!dest_xpd)
341 		return -ENOMEM;
342 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
343 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
344 	return 0;
345 }
346 
avc_xperms_alloc(void)347 static struct avc_xperms_node *avc_xperms_alloc(void)
348 {
349 	struct avc_xperms_node *xp_node;
350 
351 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
352 	if (!xp_node)
353 		return xp_node;
354 	INIT_LIST_HEAD(&xp_node->xpd_head);
355 	return xp_node;
356 }
357 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)358 static int avc_xperms_populate(struct avc_node *node,
359 				struct avc_xperms_node *src)
360 {
361 	struct avc_xperms_node *dest;
362 	struct avc_xperms_decision_node *dest_xpd;
363 	struct avc_xperms_decision_node *src_xpd;
364 
365 	if (src->xp.len == 0)
366 		return 0;
367 	dest = avc_xperms_alloc();
368 	if (!dest)
369 		return -ENOMEM;
370 
371 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
372 	dest->xp.len = src->xp.len;
373 
374 	/* for each source xpd allocate a destination xpd and copy */
375 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
376 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
377 		if (!dest_xpd)
378 			goto error;
379 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
380 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
381 	}
382 	node->ae.xp_node = dest;
383 	return 0;
384 error:
385 	avc_xperms_free(dest);
386 	return -ENOMEM;
387 
388 }
389 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)390 static inline u32 avc_xperms_audit_required(u32 requested,
391 					struct av_decision *avd,
392 					struct extended_perms_decision *xpd,
393 					u8 perm,
394 					int result,
395 					u32 *deniedp)
396 {
397 	u32 denied, audited;
398 
399 	denied = requested & ~avd->allowed;
400 	if (unlikely(denied)) {
401 		audited = denied & avd->auditdeny;
402 		if (audited && xpd) {
403 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
404 				audited &= ~requested;
405 		}
406 	} else if (result) {
407 		audited = denied = requested;
408 	} else {
409 		audited = requested & avd->auditallow;
410 		if (audited && xpd) {
411 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
412 				audited &= ~requested;
413 		}
414 	}
415 
416 	*deniedp = denied;
417 	return audited;
418 }
419 
avc_xperms_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)420 static inline int avc_xperms_audit(struct selinux_state *state,
421 				   u32 ssid, u32 tsid, u16 tclass,
422 				   u32 requested, struct av_decision *avd,
423 				   struct extended_perms_decision *xpd,
424 				   u8 perm, int result,
425 				   struct common_audit_data *ad)
426 {
427 	u32 audited, denied;
428 
429 	audited = avc_xperms_audit_required(
430 			requested, avd, xpd, perm, result, &denied);
431 	if (likely(!audited))
432 		return 0;
433 	return slow_avc_audit(state, ssid, tsid, tclass, requested,
434 			audited, denied, result, ad);
435 }
436 
avc_node_free(struct rcu_head * rhead)437 static void avc_node_free(struct rcu_head *rhead)
438 {
439 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
440 	avc_xperms_free(node->ae.xp_node);
441 	kmem_cache_free(avc_node_cachep, node);
442 	avc_cache_stats_incr(frees);
443 }
444 
avc_node_delete(struct selinux_avc * avc,struct avc_node * node)445 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
446 {
447 	trace_android_rvh_selinux_avc_node_delete(node);
448 	hlist_del_rcu(&node->list);
449 	call_rcu(&node->rhead, avc_node_free);
450 	atomic_dec(&avc->avc_cache.active_nodes);
451 }
452 
avc_node_kill(struct selinux_avc * avc,struct avc_node * node)453 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
454 {
455 	avc_xperms_free(node->ae.xp_node);
456 	kmem_cache_free(avc_node_cachep, node);
457 	avc_cache_stats_incr(frees);
458 	atomic_dec(&avc->avc_cache.active_nodes);
459 }
460 
avc_node_replace(struct selinux_avc * avc,struct avc_node * new,struct avc_node * old)461 static void avc_node_replace(struct selinux_avc *avc,
462 			     struct avc_node *new, struct avc_node *old)
463 {
464 	trace_android_rvh_selinux_avc_node_replace(old, new);
465 	hlist_replace_rcu(&old->list, &new->list);
466 	call_rcu(&old->rhead, avc_node_free);
467 	atomic_dec(&avc->avc_cache.active_nodes);
468 }
469 
avc_reclaim_node(struct selinux_avc * avc)470 static inline int avc_reclaim_node(struct selinux_avc *avc)
471 {
472 	struct avc_node *node;
473 	int hvalue, try, ecx;
474 	unsigned long flags;
475 	struct hlist_head *head;
476 	spinlock_t *lock;
477 
478 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
479 		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
480 			(AVC_CACHE_SLOTS - 1);
481 		head = &avc->avc_cache.slots[hvalue];
482 		lock = &avc->avc_cache.slots_lock[hvalue];
483 
484 		if (!spin_trylock_irqsave(lock, flags))
485 			continue;
486 
487 		rcu_read_lock();
488 		hlist_for_each_entry(node, head, list) {
489 			avc_node_delete(avc, node);
490 			avc_cache_stats_incr(reclaims);
491 			ecx++;
492 			if (ecx >= AVC_CACHE_RECLAIM) {
493 				rcu_read_unlock();
494 				spin_unlock_irqrestore(lock, flags);
495 				goto out;
496 			}
497 		}
498 		rcu_read_unlock();
499 		spin_unlock_irqrestore(lock, flags);
500 	}
501 out:
502 	return ecx;
503 }
504 
avc_alloc_node(struct selinux_avc * avc)505 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
506 {
507 	struct avc_node *node;
508 
509 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
510 	if (!node)
511 		goto out;
512 
513 	INIT_HLIST_NODE(&node->list);
514 	avc_cache_stats_incr(allocations);
515 
516 	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
517 	    avc->avc_cache_threshold)
518 		avc_reclaim_node(avc);
519 
520 out:
521 	return node;
522 }
523 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)524 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
525 {
526 	node->ae.ssid = ssid;
527 	node->ae.tsid = tsid;
528 	node->ae.tclass = tclass;
529 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
530 }
531 
avc_search_node(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)532 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
533 					       u32 ssid, u32 tsid, u16 tclass)
534 {
535 	struct avc_node *node, *ret = NULL;
536 	int hvalue;
537 	struct hlist_head *head;
538 
539 	hvalue = avc_hash(ssid, tsid, tclass);
540 	head = &avc->avc_cache.slots[hvalue];
541 	hlist_for_each_entry_rcu(node, head, list) {
542 		if (ssid == node->ae.ssid &&
543 		    tclass == node->ae.tclass &&
544 		    tsid == node->ae.tsid) {
545 			ret = node;
546 			break;
547 		}
548 	}
549 
550 	return ret;
551 }
552 
553 /**
554  * avc_lookup - Look up an AVC entry.
555  * @ssid: source security identifier
556  * @tsid: target security identifier
557  * @tclass: target security class
558  *
559  * Look up an AVC entry that is valid for the
560  * (@ssid, @tsid), interpreting the permissions
561  * based on @tclass.  If a valid AVC entry exists,
562  * then this function returns the avc_node.
563  * Otherwise, this function returns NULL.
564  */
avc_lookup(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)565 static struct avc_node *avc_lookup(struct selinux_avc *avc,
566 				   u32 ssid, u32 tsid, u16 tclass)
567 {
568 	struct avc_node *node;
569 
570 	avc_cache_stats_incr(lookups);
571 	node = avc_search_node(avc, ssid, tsid, tclass);
572 
573 	if (node) {
574 		trace_android_rvh_selinux_avc_lookup(node, ssid, tsid, tclass);
575 		return node;
576 	}
577 
578 	avc_cache_stats_incr(misses);
579 	return NULL;
580 }
581 
avc_latest_notif_update(struct selinux_avc * avc,int seqno,int is_insert)582 static int avc_latest_notif_update(struct selinux_avc *avc,
583 				   int seqno, int is_insert)
584 {
585 	int ret = 0;
586 	static DEFINE_SPINLOCK(notif_lock);
587 	unsigned long flag;
588 
589 	spin_lock_irqsave(&notif_lock, flag);
590 	if (is_insert) {
591 		if (seqno < avc->avc_cache.latest_notif) {
592 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
593 			       seqno, avc->avc_cache.latest_notif);
594 			ret = -EAGAIN;
595 		}
596 	} else {
597 		if (seqno > avc->avc_cache.latest_notif)
598 			avc->avc_cache.latest_notif = seqno;
599 	}
600 	spin_unlock_irqrestore(&notif_lock, flag);
601 
602 	return ret;
603 }
604 
605 /**
606  * avc_insert - Insert an AVC entry.
607  * @ssid: source security identifier
608  * @tsid: target security identifier
609  * @tclass: target security class
610  * @avd: resulting av decision
611  * @xp_node: resulting extended permissions
612  *
613  * Insert an AVC entry for the SID pair
614  * (@ssid, @tsid) and class @tclass.
615  * The access vectors and the sequence number are
616  * normally provided by the security server in
617  * response to a security_compute_av() call.  If the
618  * sequence number @avd->seqno is not less than the latest
619  * revocation notification, then the function copies
620  * the access vectors into a cache entry, returns
621  * avc_node inserted. Otherwise, this function returns NULL.
622  */
avc_insert(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)623 static struct avc_node *avc_insert(struct selinux_avc *avc,
624 				   u32 ssid, u32 tsid, u16 tclass,
625 				   struct av_decision *avd,
626 				   struct avc_xperms_node *xp_node)
627 {
628 	struct avc_node *pos, *node = NULL;
629 	int hvalue;
630 	unsigned long flag;
631 	spinlock_t *lock;
632 	struct hlist_head *head;
633 
634 	if (avc_latest_notif_update(avc, avd->seqno, 1))
635 		return NULL;
636 
637 	node = avc_alloc_node(avc);
638 	if (!node)
639 		return NULL;
640 
641 	avc_node_populate(node, ssid, tsid, tclass, avd);
642 	if (avc_xperms_populate(node, xp_node)) {
643 		avc_node_kill(avc, node);
644 		return NULL;
645 	}
646 
647 	hvalue = avc_hash(ssid, tsid, tclass);
648 	head = &avc->avc_cache.slots[hvalue];
649 	lock = &avc->avc_cache.slots_lock[hvalue];
650 	spin_lock_irqsave(lock, flag);
651 	hlist_for_each_entry(pos, head, list) {
652 		if (pos->ae.ssid == ssid &&
653 			pos->ae.tsid == tsid &&
654 			pos->ae.tclass == tclass) {
655 			avc_node_replace(avc, node, pos);
656 			goto found;
657 		}
658 	}
659 	hlist_add_head_rcu(&node->list, head);
660 	trace_android_rvh_selinux_avc_insert(node);
661 found:
662 	spin_unlock_irqrestore(lock, flag);
663 	return node;
664 }
665 
666 /**
667  * avc_audit_pre_callback - SELinux specific information
668  * will be called by generic audit code
669  * @ab: the audit buffer
670  * @a: audit_data
671  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)672 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
673 {
674 	struct common_audit_data *ad = a;
675 	struct selinux_audit_data *sad = ad->selinux_audit_data;
676 	u32 av = sad->audited;
677 	const char **perms;
678 	int i, perm;
679 
680 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
681 
682 	if (av == 0) {
683 		audit_log_format(ab, " null");
684 		return;
685 	}
686 
687 	perms = secclass_map[sad->tclass-1].perms;
688 
689 	audit_log_format(ab, " {");
690 	i = 0;
691 	perm = 1;
692 	while (i < (sizeof(av) * 8)) {
693 		if ((perm & av) && perms[i]) {
694 			audit_log_format(ab, " %s", perms[i]);
695 			av &= ~perm;
696 		}
697 		i++;
698 		perm <<= 1;
699 	}
700 
701 	if (av)
702 		audit_log_format(ab, " 0x%x", av);
703 
704 	audit_log_format(ab, " } for ");
705 }
706 
707 /**
708  * avc_audit_post_callback - SELinux specific information
709  * will be called by generic audit code
710  * @ab: the audit buffer
711  * @a: audit_data
712  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)713 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
714 {
715 	struct common_audit_data *ad = a;
716 	struct selinux_audit_data *sad = ad->selinux_audit_data;
717 	char *scontext = NULL;
718 	char *tcontext = NULL;
719 	const char *tclass = NULL;
720 	u32 scontext_len;
721 	u32 tcontext_len;
722 	int rc;
723 
724 	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
725 				     &scontext_len);
726 	if (rc)
727 		audit_log_format(ab, " ssid=%d", sad->ssid);
728 	else
729 		audit_log_format(ab, " scontext=%s", scontext);
730 
731 	rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
732 				     &tcontext_len);
733 	if (rc)
734 		audit_log_format(ab, " tsid=%d", sad->tsid);
735 	else
736 		audit_log_format(ab, " tcontext=%s", tcontext);
737 
738 	tclass = secclass_map[sad->tclass-1].name;
739 	audit_log_format(ab, " tclass=%s", tclass);
740 
741 	if (sad->denied)
742 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
743 
744 	trace_selinux_audited(sad, scontext, tcontext, tclass);
745 	kfree(tcontext);
746 	kfree(scontext);
747 
748 	/* in case of invalid context report also the actual context string */
749 	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
750 					   &scontext_len);
751 	if (!rc && scontext) {
752 		if (scontext_len && scontext[scontext_len - 1] == '\0')
753 			scontext_len--;
754 		audit_log_format(ab, " srawcon=");
755 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
756 		kfree(scontext);
757 	}
758 
759 	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
760 					   &scontext_len);
761 	if (!rc && scontext) {
762 		if (scontext_len && scontext[scontext_len - 1] == '\0')
763 			scontext_len--;
764 		audit_log_format(ab, " trawcon=");
765 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
766 		kfree(scontext);
767 	}
768 }
769 
770 /*
771  * This is the slow part of avc audit with big stack footprint.
772  * Note that it is non-blocking and can be called from under
773  * rcu_read_lock().
774  */
slow_avc_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)775 noinline int slow_avc_audit(struct selinux_state *state,
776 			    u32 ssid, u32 tsid, u16 tclass,
777 			    u32 requested, u32 audited, u32 denied, int result,
778 			    struct common_audit_data *a)
779 {
780 	struct common_audit_data stack_data;
781 	struct selinux_audit_data sad;
782 
783 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
784 		return -EINVAL;
785 
786 	if (!a) {
787 		a = &stack_data;
788 		a->type = LSM_AUDIT_DATA_NONE;
789 	}
790 
791 	sad.tclass = tclass;
792 	sad.requested = requested;
793 	sad.ssid = ssid;
794 	sad.tsid = tsid;
795 	sad.audited = audited;
796 	sad.denied = denied;
797 	sad.result = result;
798 	sad.state = state;
799 
800 	a->selinux_audit_data = &sad;
801 
802 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
803 	return 0;
804 }
805 
806 /**
807  * avc_add_callback - Register a callback for security events.
808  * @callback: callback function
809  * @events: security events
810  *
811  * Register a callback function for events in the set @events.
812  * Returns %0 on success or -%ENOMEM if insufficient memory
813  * exists to add the callback.
814  */
avc_add_callback(int (* callback)(u32 event),u32 events)815 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
816 {
817 	struct avc_callback_node *c;
818 	int rc = 0;
819 
820 	c = kmalloc(sizeof(*c), GFP_KERNEL);
821 	if (!c) {
822 		rc = -ENOMEM;
823 		goto out;
824 	}
825 
826 	c->callback = callback;
827 	c->events = events;
828 	c->next = avc_callbacks;
829 	avc_callbacks = c;
830 out:
831 	return rc;
832 }
833 
834 /**
835  * avc_update_node - Update an AVC entry
836  * @event : Updating event
837  * @perms : Permission mask bits
838  * @ssid,@tsid,@tclass : identifier of an AVC entry
839  * @seqno : sequence number when decision was made
840  * @xpd: extended_perms_decision to be added to the node
841  * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
842  *
843  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
844  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
845  * otherwise, this function updates the AVC entry. The original AVC-entry object
846  * will release later by RCU.
847  */
avc_update_node(struct selinux_avc * avc,u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)848 static int avc_update_node(struct selinux_avc *avc,
849 			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
850 			   u32 tsid, u16 tclass, u32 seqno,
851 			   struct extended_perms_decision *xpd,
852 			   u32 flags)
853 {
854 	int hvalue, rc = 0;
855 	unsigned long flag;
856 	struct avc_node *pos, *node, *orig = NULL;
857 	struct hlist_head *head;
858 	spinlock_t *lock;
859 
860 	node = avc_alloc_node(avc);
861 	if (!node) {
862 		rc = -ENOMEM;
863 		goto out;
864 	}
865 
866 	/* Lock the target slot */
867 	hvalue = avc_hash(ssid, tsid, tclass);
868 
869 	head = &avc->avc_cache.slots[hvalue];
870 	lock = &avc->avc_cache.slots_lock[hvalue];
871 
872 	spin_lock_irqsave(lock, flag);
873 
874 	hlist_for_each_entry(pos, head, list) {
875 		if (ssid == pos->ae.ssid &&
876 		    tsid == pos->ae.tsid &&
877 		    tclass == pos->ae.tclass &&
878 		    seqno == pos->ae.avd.seqno){
879 			orig = pos;
880 			break;
881 		}
882 	}
883 
884 	if (!orig) {
885 		rc = -ENOENT;
886 		avc_node_kill(avc, node);
887 		goto out_unlock;
888 	}
889 
890 	/*
891 	 * Copy and replace original node.
892 	 */
893 
894 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
895 
896 	if (orig->ae.xp_node) {
897 		rc = avc_xperms_populate(node, orig->ae.xp_node);
898 		if (rc) {
899 			avc_node_kill(avc, node);
900 			goto out_unlock;
901 		}
902 	}
903 
904 	switch (event) {
905 	case AVC_CALLBACK_GRANT:
906 		node->ae.avd.allowed |= perms;
907 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
908 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
909 		break;
910 	case AVC_CALLBACK_TRY_REVOKE:
911 	case AVC_CALLBACK_REVOKE:
912 		node->ae.avd.allowed &= ~perms;
913 		break;
914 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
915 		node->ae.avd.auditallow |= perms;
916 		break;
917 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
918 		node->ae.avd.auditallow &= ~perms;
919 		break;
920 	case AVC_CALLBACK_AUDITDENY_ENABLE:
921 		node->ae.avd.auditdeny |= perms;
922 		break;
923 	case AVC_CALLBACK_AUDITDENY_DISABLE:
924 		node->ae.avd.auditdeny &= ~perms;
925 		break;
926 	case AVC_CALLBACK_ADD_XPERMS:
927 		avc_add_xperms_decision(node, xpd);
928 		break;
929 	}
930 	avc_node_replace(avc, node, orig);
931 out_unlock:
932 	spin_unlock_irqrestore(lock, flag);
933 out:
934 	return rc;
935 }
936 
937 /**
938  * avc_flush - Flush the cache
939  */
avc_flush(struct selinux_avc * avc)940 static void avc_flush(struct selinux_avc *avc)
941 {
942 	struct hlist_head *head;
943 	struct avc_node *node;
944 	spinlock_t *lock;
945 	unsigned long flag;
946 	int i;
947 
948 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
949 		head = &avc->avc_cache.slots[i];
950 		lock = &avc->avc_cache.slots_lock[i];
951 
952 		spin_lock_irqsave(lock, flag);
953 		/*
954 		 * With preemptable RCU, the outer spinlock does not
955 		 * prevent RCU grace periods from ending.
956 		 */
957 		rcu_read_lock();
958 		hlist_for_each_entry(node, head, list)
959 			avc_node_delete(avc, node);
960 		rcu_read_unlock();
961 		spin_unlock_irqrestore(lock, flag);
962 	}
963 }
964 
965 /**
966  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
967  * @seqno: policy sequence number
968  */
avc_ss_reset(struct selinux_avc * avc,u32 seqno)969 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
970 {
971 	struct avc_callback_node *c;
972 	int rc = 0, tmprc;
973 
974 	avc_flush(avc);
975 
976 	for (c = avc_callbacks; c; c = c->next) {
977 		if (c->events & AVC_CALLBACK_RESET) {
978 			tmprc = c->callback(AVC_CALLBACK_RESET);
979 			/* save the first error encountered for the return
980 			   value and continue processing the callbacks */
981 			if (!rc)
982 				rc = tmprc;
983 		}
984 	}
985 
986 	avc_latest_notif_update(avc, seqno, 0);
987 	return rc;
988 }
989 
990 /*
991  * Slow-path helper function for avc_has_perm_noaudit,
992  * when the avc_node lookup fails. We get called with
993  * the RCU read lock held, and need to return with it
994  * still held, but drop if for the security compute.
995  *
996  * Don't inline this, since it's the slow-path and just
997  * results in a bigger stack frame.
998  */
999 static noinline
avc_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)1000 struct avc_node *avc_compute_av(struct selinux_state *state,
1001 				u32 ssid, u32 tsid,
1002 				u16 tclass, struct av_decision *avd,
1003 				struct avc_xperms_node *xp_node)
1004 {
1005 	rcu_read_unlock();
1006 	INIT_LIST_HEAD(&xp_node->xpd_head);
1007 	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1008 	rcu_read_lock();
1009 	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1010 }
1011 
avc_denied(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)1012 static noinline int avc_denied(struct selinux_state *state,
1013 			       u32 ssid, u32 tsid,
1014 			       u16 tclass, u32 requested,
1015 			       u8 driver, u8 xperm, unsigned int flags,
1016 			       struct av_decision *avd)
1017 {
1018 	if (flags & AVC_STRICT)
1019 		return -EACCES;
1020 
1021 	if (enforcing_enabled(state) &&
1022 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1023 		return -EACCES;
1024 
1025 	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1026 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1027 	return 0;
1028 }
1029 
1030 /*
1031  * The avc extended permissions logic adds an additional 256 bits of
1032  * permissions to an avc node when extended permissions for that node are
1033  * specified in the avtab. If the additional 256 permissions is not adequate,
1034  * as-is the case with ioctls, then multiple may be chained together and the
1035  * driver field is used to specify which set contains the permission.
1036  */
avc_has_extended_perms(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1037 int avc_has_extended_perms(struct selinux_state *state,
1038 			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1039 			   u8 driver, u8 xperm, struct common_audit_data *ad)
1040 {
1041 	struct avc_node *node;
1042 	struct av_decision avd;
1043 	u32 denied;
1044 	struct extended_perms_decision local_xpd;
1045 	struct extended_perms_decision *xpd = NULL;
1046 	struct extended_perms_data allowed;
1047 	struct extended_perms_data auditallow;
1048 	struct extended_perms_data dontaudit;
1049 	struct avc_xperms_node local_xp_node;
1050 	struct avc_xperms_node *xp_node;
1051 	int rc = 0, rc2;
1052 
1053 	xp_node = &local_xp_node;
1054 	if (WARN_ON(!requested))
1055 		return -EACCES;
1056 
1057 	rcu_read_lock();
1058 
1059 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1060 	if (unlikely(!node)) {
1061 		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1062 	} else {
1063 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1064 		xp_node = node->ae.xp_node;
1065 	}
1066 	/* if extended permissions are not defined, only consider av_decision */
1067 	if (!xp_node || !xp_node->xp.len)
1068 		goto decision;
1069 
1070 	local_xpd.allowed = &allowed;
1071 	local_xpd.auditallow = &auditallow;
1072 	local_xpd.dontaudit = &dontaudit;
1073 
1074 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1075 	if (unlikely(!xpd)) {
1076 		/*
1077 		 * Compute the extended_perms_decision only if the driver
1078 		 * is flagged
1079 		 */
1080 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1081 			avd.allowed &= ~requested;
1082 			goto decision;
1083 		}
1084 		rcu_read_unlock();
1085 		security_compute_xperms_decision(state, ssid, tsid, tclass,
1086 						 driver, &local_xpd);
1087 		rcu_read_lock();
1088 		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1089 				driver, xperm, ssid, tsid, tclass, avd.seqno,
1090 				&local_xpd, 0);
1091 	} else {
1092 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1093 	}
1094 	xpd = &local_xpd;
1095 
1096 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1097 		avd.allowed &= ~requested;
1098 
1099 decision:
1100 	denied = requested & ~(avd.allowed);
1101 	if (unlikely(denied))
1102 		rc = avc_denied(state, ssid, tsid, tclass, requested,
1103 				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1104 
1105 	rcu_read_unlock();
1106 
1107 	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1108 			&avd, xpd, xperm, rc, ad);
1109 	if (rc2)
1110 		return rc2;
1111 	return rc;
1112 }
1113 
1114 /**
1115  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1116  * @ssid: source security identifier
1117  * @tsid: target security identifier
1118  * @tclass: target security class
1119  * @requested: requested permissions, interpreted based on @tclass
1120  * @flags:  AVC_STRICT or 0
1121  * @avd: access vector decisions
1122  *
1123  * Check the AVC to determine whether the @requested permissions are granted
1124  * for the SID pair (@ssid, @tsid), interpreting the permissions
1125  * based on @tclass, and call the security server on a cache miss to obtain
1126  * a new decision and add it to the cache.  Return a copy of the decisions
1127  * in @avd.  Return %0 if all @requested permissions are granted,
1128  * -%EACCES if any permissions are denied, or another -errno upon
1129  * other errors.  This function is typically called by avc_has_perm(),
1130  * but may also be called directly to separate permission checking from
1131  * auditing, e.g. in cases where a lock must be held for the check but
1132  * should be released for the auditing.
1133  */
avc_has_perm_noaudit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1134 inline int avc_has_perm_noaudit(struct selinux_state *state,
1135 				u32 ssid, u32 tsid,
1136 				u16 tclass, u32 requested,
1137 				unsigned int flags,
1138 				struct av_decision *avd)
1139 {
1140 	struct avc_node *node;
1141 	struct avc_xperms_node xp_node;
1142 	int rc = 0;
1143 	u32 denied;
1144 
1145 	if (WARN_ON(!requested))
1146 		return -EACCES;
1147 
1148 	rcu_read_lock();
1149 
1150 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1151 	if (unlikely(!node))
1152 		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1153 	else
1154 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1155 
1156 	denied = requested & ~(avd->allowed);
1157 	if (unlikely(denied))
1158 		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1159 				flags, avd);
1160 
1161 	rcu_read_unlock();
1162 	return rc;
1163 }
1164 
1165 /**
1166  * avc_has_perm - Check permissions and perform any appropriate auditing.
1167  * @ssid: source security identifier
1168  * @tsid: target security identifier
1169  * @tclass: target security class
1170  * @requested: requested permissions, interpreted based on @tclass
1171  * @auditdata: auxiliary audit data
1172  *
1173  * Check the AVC to determine whether the @requested permissions are granted
1174  * for the SID pair (@ssid, @tsid), interpreting the permissions
1175  * based on @tclass, and call the security server on a cache miss to obtain
1176  * a new decision and add it to the cache.  Audit the granting or denial of
1177  * permissions in accordance with the policy.  Return %0 if all @requested
1178  * permissions are granted, -%EACCES if any permissions are denied, or
1179  * another -errno upon other errors.
1180  */
avc_has_perm(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1181 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1182 		 u32 requested, struct common_audit_data *auditdata)
1183 {
1184 	struct av_decision avd;
1185 	int rc, rc2;
1186 
1187 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1188 				  &avd);
1189 
1190 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1191 			auditdata);
1192 	if (rc2)
1193 		return rc2;
1194 	return rc;
1195 }
1196 
avc_policy_seqno(struct selinux_state * state)1197 u32 avc_policy_seqno(struct selinux_state *state)
1198 {
1199 	return state->avc->avc_cache.latest_notif;
1200 }
1201 
avc_disable(void)1202 void avc_disable(void)
1203 {
1204 	/*
1205 	 * If you are looking at this because you have realized that we are
1206 	 * not destroying the avc_node_cachep it might be easy to fix, but
1207 	 * I don't know the memory barrier semantics well enough to know.  It's
1208 	 * possible that some other task dereferenced security_ops when
1209 	 * it still pointed to selinux operations.  If that is the case it's
1210 	 * possible that it is about to use the avc and is about to need the
1211 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1212 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1213 	 * the cache and get that memory back.
1214 	 */
1215 	if (avc_node_cachep) {
1216 		avc_flush(selinux_state.avc);
1217 		/* kmem_cache_destroy(avc_node_cachep); */
1218 	}
1219 }
1220