• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	/*
39 	 * With ZNS drives, closing an explicitly open zone that has not been
40 	 * written will change the zone state to "closed", that is, the zone
41 	 * will remain active. Since this can then cause failure of explicit
42 	 * open operation on other zones if the drive active zone resources
43 	 * are exceeded, make sure that the zone does not remain active by
44 	 * resetting it.
45 	 */
46 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
47 		op = REQ_OP_ZONE_RESET;
48 
49 	trace_zonefs_zone_mgmt(inode, op);
50 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
51 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
52 	if (ret) {
53 		zonefs_err(inode->i_sb,
54 			   "Zone management operation %s at %llu failed %d\n",
55 			   blk_op_str(op), zi->i_zsector, ret);
56 		return ret;
57 	}
58 
59 	return 0;
60 }
61 
zonefs_i_size_write(struct inode * inode,loff_t isize)62 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
63 {
64 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 
66 	i_size_write(inode, isize);
67 	/*
68 	 * A full zone is no longer open/active and does not need
69 	 * explicit closing.
70 	 */
71 	if (isize >= zi->i_max_size)
72 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
73 }
74 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)75 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
76 				   loff_t length, unsigned int flags,
77 				   struct iomap *iomap, struct iomap *srcmap)
78 {
79 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
80 	struct super_block *sb = inode->i_sb;
81 	loff_t isize;
82 
83 	/*
84 	 * All blocks are always mapped below EOF. If reading past EOF,
85 	 * act as if there is a hole up to the file maximum size.
86 	 */
87 	mutex_lock(&zi->i_truncate_mutex);
88 	iomap->bdev = inode->i_sb->s_bdev;
89 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
90 	isize = i_size_read(inode);
91 	if (iomap->offset >= isize) {
92 		iomap->type = IOMAP_HOLE;
93 		iomap->addr = IOMAP_NULL_ADDR;
94 		iomap->length = length;
95 	} else {
96 		iomap->type = IOMAP_MAPPED;
97 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
98 		iomap->length = isize - iomap->offset;
99 	}
100 	mutex_unlock(&zi->i_truncate_mutex);
101 
102 	trace_zonefs_iomap_begin(inode, iomap);
103 
104 	return 0;
105 }
106 
107 static const struct iomap_ops zonefs_read_iomap_ops = {
108 	.iomap_begin	= zonefs_read_iomap_begin,
109 };
110 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)111 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
112 				    loff_t length, unsigned int flags,
113 				    struct iomap *iomap, struct iomap *srcmap)
114 {
115 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
116 	struct super_block *sb = inode->i_sb;
117 	loff_t isize;
118 
119 	/* All write I/Os should always be within the file maximum size */
120 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
121 		return -EIO;
122 
123 	/*
124 	 * Sequential zones can only accept direct writes. This is already
125 	 * checked when writes are issued, so warn if we see a page writeback
126 	 * operation.
127 	 */
128 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
129 			 !(flags & IOMAP_DIRECT)))
130 		return -EIO;
131 
132 	/*
133 	 * For conventional zones, all blocks are always mapped. For sequential
134 	 * zones, all blocks after always mapped below the inode size (zone
135 	 * write pointer) and unwriten beyond.
136 	 */
137 	mutex_lock(&zi->i_truncate_mutex);
138 	iomap->bdev = inode->i_sb->s_bdev;
139 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
140 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
141 	isize = i_size_read(inode);
142 	if (iomap->offset >= isize) {
143 		iomap->type = IOMAP_UNWRITTEN;
144 		iomap->length = zi->i_max_size - iomap->offset;
145 	} else {
146 		iomap->type = IOMAP_MAPPED;
147 		iomap->length = isize - iomap->offset;
148 	}
149 	mutex_unlock(&zi->i_truncate_mutex);
150 
151 	trace_zonefs_iomap_begin(inode, iomap);
152 
153 	return 0;
154 }
155 
156 static const struct iomap_ops zonefs_write_iomap_ops = {
157 	.iomap_begin	= zonefs_write_iomap_begin,
158 };
159 
zonefs_readpage(struct file * unused,struct page * page)160 static int zonefs_readpage(struct file *unused, struct page *page)
161 {
162 	return iomap_readpage(page, &zonefs_read_iomap_ops);
163 }
164 
zonefs_readahead(struct readahead_control * rac)165 static void zonefs_readahead(struct readahead_control *rac)
166 {
167 	iomap_readahead(rac, &zonefs_read_iomap_ops);
168 }
169 
170 /*
171  * Map blocks for page writeback. This is used only on conventional zone files,
172  * which implies that the page range can only be within the fixed inode size.
173  */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)174 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
175 				   struct inode *inode, loff_t offset)
176 {
177 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
178 
179 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
180 		return -EIO;
181 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
182 		return -EIO;
183 
184 	/* If the mapping is already OK, nothing needs to be done */
185 	if (offset >= wpc->iomap.offset &&
186 	    offset < wpc->iomap.offset + wpc->iomap.length)
187 		return 0;
188 
189 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
190 					IOMAP_WRITE, &wpc->iomap, NULL);
191 }
192 
193 static const struct iomap_writeback_ops zonefs_writeback_ops = {
194 	.map_blocks		= zonefs_write_map_blocks,
195 };
196 
zonefs_writepage(struct page * page,struct writeback_control * wbc)197 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
198 {
199 	struct iomap_writepage_ctx wpc = { };
200 
201 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
202 }
203 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)204 static int zonefs_writepages(struct address_space *mapping,
205 			     struct writeback_control *wbc)
206 {
207 	struct iomap_writepage_ctx wpc = { };
208 
209 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
210 }
211 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)212 static int zonefs_swap_activate(struct swap_info_struct *sis,
213 				struct file *swap_file, sector_t *span)
214 {
215 	struct inode *inode = file_inode(swap_file);
216 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
217 
218 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
219 		zonefs_err(inode->i_sb,
220 			   "swap file: not a conventional zone file\n");
221 		return -EINVAL;
222 	}
223 
224 	return iomap_swapfile_activate(sis, swap_file, span,
225 				       &zonefs_read_iomap_ops);
226 }
227 
228 static const struct address_space_operations zonefs_file_aops = {
229 	.readpage		= zonefs_readpage,
230 	.readahead		= zonefs_readahead,
231 	.writepage		= zonefs_writepage,
232 	.writepages		= zonefs_writepages,
233 	.set_page_dirty		= __set_page_dirty_nobuffers,
234 	.releasepage		= iomap_releasepage,
235 	.invalidatepage		= iomap_invalidatepage,
236 	.migratepage		= iomap_migrate_page,
237 	.is_partially_uptodate	= iomap_is_partially_uptodate,
238 	.error_remove_page	= generic_error_remove_page,
239 	.direct_IO		= noop_direct_IO,
240 	.swap_activate		= zonefs_swap_activate,
241 };
242 
zonefs_update_stats(struct inode * inode,loff_t new_isize)243 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
244 {
245 	struct super_block *sb = inode->i_sb;
246 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
247 	loff_t old_isize = i_size_read(inode);
248 	loff_t nr_blocks;
249 
250 	if (new_isize == old_isize)
251 		return;
252 
253 	spin_lock(&sbi->s_lock);
254 
255 	/*
256 	 * This may be called for an update after an IO error.
257 	 * So beware of the values seen.
258 	 */
259 	if (new_isize < old_isize) {
260 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
261 		if (sbi->s_used_blocks > nr_blocks)
262 			sbi->s_used_blocks -= nr_blocks;
263 		else
264 			sbi->s_used_blocks = 0;
265 	} else {
266 		sbi->s_used_blocks +=
267 			(new_isize - old_isize) >> sb->s_blocksize_bits;
268 		if (sbi->s_used_blocks > sbi->s_blocks)
269 			sbi->s_used_blocks = sbi->s_blocks;
270 	}
271 
272 	spin_unlock(&sbi->s_lock);
273 }
274 
275 /*
276  * Check a zone condition and adjust its file inode access permissions for
277  * offline and readonly zones. Return the inode size corresponding to the
278  * amount of readable data in the zone.
279  */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)280 static loff_t zonefs_check_zone_condition(struct inode *inode,
281 					  struct blk_zone *zone, bool warn,
282 					  bool mount)
283 {
284 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
285 
286 	switch (zone->cond) {
287 	case BLK_ZONE_COND_OFFLINE:
288 		/*
289 		 * Dead zone: make the inode immutable, disable all accesses
290 		 * and set the file size to 0 (zone wp set to zone start).
291 		 */
292 		if (warn)
293 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
294 				    inode->i_ino);
295 		inode->i_flags |= S_IMMUTABLE;
296 		inode->i_mode &= ~0777;
297 		zone->wp = zone->start;
298 		return 0;
299 	case BLK_ZONE_COND_READONLY:
300 		/*
301 		 * The write pointer of read-only zones is invalid. If such a
302 		 * zone is found during mount, the file size cannot be retrieved
303 		 * so we treat the zone as offline (mount == true case).
304 		 * Otherwise, keep the file size as it was when last updated
305 		 * so that the user can recover data. In both cases, writes are
306 		 * always disabled for the zone.
307 		 */
308 		if (warn)
309 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
310 				    inode->i_ino);
311 		inode->i_flags |= S_IMMUTABLE;
312 		if (mount) {
313 			zone->cond = BLK_ZONE_COND_OFFLINE;
314 			inode->i_mode &= ~0777;
315 			zone->wp = zone->start;
316 			return 0;
317 		}
318 		inode->i_mode &= ~0222;
319 		return i_size_read(inode);
320 	case BLK_ZONE_COND_FULL:
321 		/* The write pointer of full zones is invalid. */
322 		return zi->i_max_size;
323 	default:
324 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
325 			return zi->i_max_size;
326 		return (zone->wp - zone->start) << SECTOR_SHIFT;
327 	}
328 }
329 
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)330 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
331 			      void *data)
332 {
333 	struct blk_zone *z = data;
334 
335 	*z = *zone;
336 	return 0;
337 }
338 
zonefs_handle_io_error(struct inode * inode,struct blk_zone * zone,bool write)339 static void zonefs_handle_io_error(struct inode *inode, struct blk_zone *zone,
340 				   bool write)
341 {
342 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
343 	struct super_block *sb = inode->i_sb;
344 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
345 	loff_t isize, data_size;
346 
347 	/*
348 	 * Check the zone condition: if the zone is not "bad" (offline or
349 	 * read-only), read errors are simply signaled to the IO issuer as long
350 	 * as there is no inconsistency between the inode size and the amount of
351 	 * data writen in the zone (data_size).
352 	 */
353 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
354 	isize = i_size_read(inode);
355 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
356 	    zone->cond != BLK_ZONE_COND_READONLY &&
357 	    !write && isize == data_size)
358 		return;
359 
360 	/*
361 	 * At this point, we detected either a bad zone or an inconsistency
362 	 * between the inode size and the amount of data written in the zone.
363 	 * For the latter case, the cause may be a write IO error or an external
364 	 * action on the device. Two error patterns exist:
365 	 * 1) The inode size is lower than the amount of data in the zone:
366 	 *    a write operation partially failed and data was writen at the end
367 	 *    of the file. This can happen in the case of a large direct IO
368 	 *    needing several BIOs and/or write requests to be processed.
369 	 * 2) The inode size is larger than the amount of data in the zone:
370 	 *    this can happen with a deferred write error with the use of the
371 	 *    device side write cache after getting successful write IO
372 	 *    completions. Other possibilities are (a) an external corruption,
373 	 *    e.g. an application reset the zone directly, or (b) the device
374 	 *    has a serious problem (e.g. firmware bug).
375 	 *
376 	 * In all cases, warn about inode size inconsistency and handle the
377 	 * IO error according to the zone condition and to the mount options.
378 	 */
379 	if (isize != data_size)
380 		zonefs_warn(sb,
381 			    "inode %lu: invalid size %lld (should be %lld)\n",
382 			    inode->i_ino, isize, data_size);
383 
384 	/*
385 	 * First handle bad zones signaled by hardware. The mount options
386 	 * errors=zone-ro and errors=zone-offline result in changing the
387 	 * zone condition to read-only and offline respectively, as if the
388 	 * condition was signaled by the hardware.
389 	 */
390 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
391 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
392 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
393 			    inode->i_ino);
394 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
395 			zone->cond = BLK_ZONE_COND_OFFLINE;
396 			data_size = zonefs_check_zone_condition(inode, zone,
397 								false, false);
398 		}
399 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
400 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
401 		zonefs_warn(sb, "inode %lu: write access disabled\n",
402 			    inode->i_ino);
403 		if (zone->cond != BLK_ZONE_COND_READONLY) {
404 			zone->cond = BLK_ZONE_COND_READONLY;
405 			data_size = zonefs_check_zone_condition(inode, zone,
406 								false, false);
407 		}
408 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
409 		   data_size > isize) {
410 		/* Do not expose garbage data */
411 		data_size = isize;
412 	}
413 
414 	/*
415 	 * If the filesystem is mounted with the explicit-open mount option, we
416 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
417 	 * the read-only or offline condition, to avoid attempting an explicit
418 	 * close of the zone when the inode file is closed.
419 	 */
420 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
421 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
422 	     zone->cond == BLK_ZONE_COND_READONLY))
423 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
424 
425 	/*
426 	 * If error=remount-ro was specified, any error result in remounting
427 	 * the volume as read-only.
428 	 */
429 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
430 		zonefs_warn(sb, "remounting filesystem read-only\n");
431 		sb->s_flags |= SB_RDONLY;
432 	}
433 
434 	/*
435 	 * Update block usage stats and the inode size  to prevent access to
436 	 * invalid data.
437 	 */
438 	zonefs_update_stats(inode, data_size);
439 	zonefs_i_size_write(inode, data_size);
440 	zi->i_wpoffset = data_size;
441 }
442 
443 /*
444  * When an file IO error occurs, check the file zone to see if there is a change
445  * in the zone condition (e.g. offline or read-only). For a failed write to a
446  * sequential zone, the zone write pointer position must also be checked to
447  * eventually correct the file size and zonefs inode write pointer offset
448  * (which can be out of sync with the drive due to partial write failures).
449  */
__zonefs_io_error(struct inode * inode,bool write)450 static void __zonefs_io_error(struct inode *inode, bool write)
451 {
452 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
453 	struct super_block *sb = inode->i_sb;
454 	unsigned int noio_flag;
455 	struct blk_zone zone;
456 	int ret;
457 
458 	/*
459 	 * Conventional zone have no write pointer and cannot become read-only
460 	 * or offline. So simply fake a report for a single or aggregated zone
461 	 * and let zonefs_handle_io_error() correct the zone inode information
462 	 * according to the mount options.
463 	 */
464 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) {
465 		zone.start = zi->i_zsector;
466 		zone.len = zi->i_max_size >> SECTOR_SHIFT;
467 		zone.wp = zone.start + zone.len;
468 		zone.type = BLK_ZONE_TYPE_CONVENTIONAL;
469 		zone.cond = BLK_ZONE_COND_NOT_WP;
470 		zone.capacity = zone.len;
471 		goto handle_io_error;
472 	}
473 
474 	/*
475 	 * Memory allocations in blkdev_report_zones() can trigger a memory
476 	 * reclaim which may in turn cause a recursion into zonefs as well as
477 	 * struct request allocations for the same device. The former case may
478 	 * end up in a deadlock on the inode truncate mutex, while the latter
479 	 * may prevent IO forward progress. Executing the report zones under
480 	 * the GFP_NOIO context avoids both problems.
481 	 */
482 	noio_flag = memalloc_noio_save();
483 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, 1,
484 				  zonefs_io_error_cb, &zone);
485 	memalloc_noio_restore(noio_flag);
486 	if (ret != 1) {
487 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
488 			   inode->i_ino, ret);
489 		zonefs_warn(sb, "remounting filesystem read-only\n");
490 		sb->s_flags |= SB_RDONLY;
491 		return;
492 	}
493 
494 handle_io_error:
495 	zonefs_handle_io_error(inode, &zone, write);
496 }
497 
zonefs_io_error(struct inode * inode,bool write)498 static void zonefs_io_error(struct inode *inode, bool write)
499 {
500 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
501 
502 	mutex_lock(&zi->i_truncate_mutex);
503 	__zonefs_io_error(inode, write);
504 	mutex_unlock(&zi->i_truncate_mutex);
505 }
506 
zonefs_file_truncate(struct inode * inode,loff_t isize)507 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
508 {
509 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
510 	loff_t old_isize;
511 	enum req_opf op;
512 	int ret = 0;
513 
514 	/*
515 	 * Only sequential zone files can be truncated and truncation is allowed
516 	 * only down to a 0 size, which is equivalent to a zone reset, and to
517 	 * the maximum file size, which is equivalent to a zone finish.
518 	 */
519 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
520 		return -EPERM;
521 
522 	if (!isize)
523 		op = REQ_OP_ZONE_RESET;
524 	else if (isize == zi->i_max_size)
525 		op = REQ_OP_ZONE_FINISH;
526 	else
527 		return -EPERM;
528 
529 	inode_dio_wait(inode);
530 
531 	/* Serialize against page faults */
532 	filemap_invalidate_lock(inode->i_mapping);
533 
534 	/* Serialize against zonefs_iomap_begin() */
535 	mutex_lock(&zi->i_truncate_mutex);
536 
537 	old_isize = i_size_read(inode);
538 	if (isize == old_isize)
539 		goto unlock;
540 
541 	ret = zonefs_zone_mgmt(inode, op);
542 	if (ret)
543 		goto unlock;
544 
545 	/*
546 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
547 	 * take care of open zones.
548 	 */
549 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
550 		/*
551 		 * Truncating a zone to EMPTY or FULL is the equivalent of
552 		 * closing the zone. For a truncation to 0, we need to
553 		 * re-open the zone to ensure new writes can be processed.
554 		 * For a truncation to the maximum file size, the zone is
555 		 * closed and writes cannot be accepted anymore, so clear
556 		 * the open flag.
557 		 */
558 		if (!isize)
559 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
560 		else
561 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
562 	}
563 
564 	zonefs_update_stats(inode, isize);
565 	truncate_setsize(inode, isize);
566 	zi->i_wpoffset = isize;
567 
568 unlock:
569 	mutex_unlock(&zi->i_truncate_mutex);
570 	filemap_invalidate_unlock(inode->i_mapping);
571 
572 	return ret;
573 }
574 
zonefs_inode_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)575 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
576 				struct dentry *dentry, struct iattr *iattr)
577 {
578 	struct inode *inode = d_inode(dentry);
579 	int ret;
580 
581 	if (unlikely(IS_IMMUTABLE(inode)))
582 		return -EPERM;
583 
584 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
585 	if (ret)
586 		return ret;
587 
588 	/*
589 	 * Since files and directories cannot be created nor deleted, do not
590 	 * allow setting any write attributes on the sub-directories grouping
591 	 * files by zone type.
592 	 */
593 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
594 	    (iattr->ia_mode & 0222))
595 		return -EPERM;
596 
597 	if (((iattr->ia_valid & ATTR_UID) &&
598 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
599 	    ((iattr->ia_valid & ATTR_GID) &&
600 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
601 		ret = dquot_transfer(inode, iattr);
602 		if (ret)
603 			return ret;
604 	}
605 
606 	if (iattr->ia_valid & ATTR_SIZE) {
607 		ret = zonefs_file_truncate(inode, iattr->ia_size);
608 		if (ret)
609 			return ret;
610 	}
611 
612 	setattr_copy(&init_user_ns, inode, iattr);
613 
614 	return 0;
615 }
616 
617 static const struct inode_operations zonefs_file_inode_operations = {
618 	.setattr	= zonefs_inode_setattr,
619 };
620 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)621 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
622 			     int datasync)
623 {
624 	struct inode *inode = file_inode(file);
625 	int ret = 0;
626 
627 	if (unlikely(IS_IMMUTABLE(inode)))
628 		return -EPERM;
629 
630 	/*
631 	 * Since only direct writes are allowed in sequential files, page cache
632 	 * flush is needed only for conventional zone files.
633 	 */
634 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
635 		ret = file_write_and_wait_range(file, start, end);
636 	if (!ret)
637 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
638 
639 	if (ret)
640 		zonefs_io_error(inode, true);
641 
642 	return ret;
643 }
644 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)645 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
646 {
647 	struct inode *inode = file_inode(vmf->vma->vm_file);
648 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
649 	vm_fault_t ret;
650 
651 	if (unlikely(IS_IMMUTABLE(inode)))
652 		return VM_FAULT_SIGBUS;
653 
654 	/*
655 	 * Sanity check: only conventional zone files can have shared
656 	 * writeable mappings.
657 	 */
658 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
659 		return VM_FAULT_NOPAGE;
660 
661 	sb_start_pagefault(inode->i_sb);
662 	file_update_time(vmf->vma->vm_file);
663 
664 	/* Serialize against truncates */
665 	filemap_invalidate_lock_shared(inode->i_mapping);
666 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
667 	filemap_invalidate_unlock_shared(inode->i_mapping);
668 
669 	sb_end_pagefault(inode->i_sb);
670 	return ret;
671 }
672 
673 static const struct vm_operations_struct zonefs_file_vm_ops = {
674 	.fault		= filemap_fault,
675 	.map_pages	= filemap_map_pages,
676 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
677 };
678 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)679 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
680 {
681 	/*
682 	 * Conventional zones accept random writes, so their files can support
683 	 * shared writable mappings. For sequential zone files, only read
684 	 * mappings are possible since there are no guarantees for write
685 	 * ordering between msync() and page cache writeback.
686 	 */
687 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
688 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
689 		return -EINVAL;
690 
691 	file_accessed(file);
692 	vma->vm_ops = &zonefs_file_vm_ops;
693 
694 	return 0;
695 }
696 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)697 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
698 {
699 	loff_t isize = i_size_read(file_inode(file));
700 
701 	/*
702 	 * Seeks are limited to below the zone size for conventional zones
703 	 * and below the zone write pointer for sequential zones. In both
704 	 * cases, this limit is the inode size.
705 	 */
706 	return generic_file_llseek_size(file, offset, whence, isize, isize);
707 }
708 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)709 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
710 					int error, unsigned int flags)
711 {
712 	struct inode *inode = file_inode(iocb->ki_filp);
713 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
714 
715 	if (error) {
716 		zonefs_io_error(inode, true);
717 		return error;
718 	}
719 
720 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
721 		/*
722 		 * Note that we may be seeing completions out of order,
723 		 * but that is not a problem since a write completed
724 		 * successfully necessarily means that all preceding writes
725 		 * were also successful. So we can safely increase the inode
726 		 * size to the write end location.
727 		 */
728 		mutex_lock(&zi->i_truncate_mutex);
729 		if (i_size_read(inode) < iocb->ki_pos + size) {
730 			zonefs_update_stats(inode, iocb->ki_pos + size);
731 			zonefs_i_size_write(inode, iocb->ki_pos + size);
732 		}
733 		mutex_unlock(&zi->i_truncate_mutex);
734 	}
735 
736 	return 0;
737 }
738 
739 static const struct iomap_dio_ops zonefs_write_dio_ops = {
740 	.end_io			= zonefs_file_write_dio_end_io,
741 };
742 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)743 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
744 {
745 	struct inode *inode = file_inode(iocb->ki_filp);
746 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
747 	struct block_device *bdev = inode->i_sb->s_bdev;
748 	unsigned int max = bdev_max_zone_append_sectors(bdev);
749 	pgoff_t start, end;
750 	struct bio *bio;
751 	ssize_t size;
752 	int nr_pages;
753 	ssize_t ret;
754 
755 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
756 	iov_iter_truncate(from, max);
757 
758 	/*
759 	 * If the inode block size (zone write granularity) is smaller than the
760 	 * page size, we may be appending data belonging to the last page of the
761 	 * inode straddling inode->i_size, with that page already cached due to
762 	 * a buffered read or readahead. So make sure to invalidate that page.
763 	 * This will always be a no-op for the case where the block size is
764 	 * equal to the page size.
765 	 */
766 	start = iocb->ki_pos >> PAGE_SHIFT;
767 	end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT;
768 	if (invalidate_inode_pages2_range(inode->i_mapping, start, end))
769 		return -EBUSY;
770 
771 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
772 	if (!nr_pages)
773 		return 0;
774 
775 	bio = bio_alloc(GFP_NOFS, nr_pages);
776 	bio_set_dev(bio, bdev);
777 	bio->bi_iter.bi_sector = zi->i_zsector;
778 	bio->bi_write_hint = iocb->ki_hint;
779 	bio->bi_ioprio = iocb->ki_ioprio;
780 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
781 	if (iocb->ki_flags & IOCB_DSYNC)
782 		bio->bi_opf |= REQ_FUA;
783 
784 	ret = bio_iov_iter_get_pages(bio, from);
785 	if (unlikely(ret))
786 		goto out_release;
787 
788 	size = bio->bi_iter.bi_size;
789 	task_io_account_write(size);
790 
791 	if (iocb->ki_flags & IOCB_HIPRI)
792 		bio_set_polled(bio, iocb);
793 
794 	ret = submit_bio_wait(bio);
795 
796 	/*
797 	 * If the file zone was written underneath the file system, the zone
798 	 * write pointer may not be where we expect it to be, but the zone
799 	 * append write can still succeed. So check manually that we wrote where
800 	 * we intended to, that is, at zi->i_wpoffset.
801 	 */
802 	if (!ret) {
803 		sector_t wpsector =
804 			zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT);
805 
806 		if (bio->bi_iter.bi_sector != wpsector) {
807 			zonefs_warn(inode->i_sb,
808 				"Corrupted write pointer %llu for zone at %llu\n",
809 				bio->bi_iter.bi_sector, zi->i_zsector);
810 			ret = -EIO;
811 		}
812 	}
813 
814 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
815 	trace_zonefs_file_dio_append(inode, size, ret);
816 
817 out_release:
818 	bio_release_pages(bio, false);
819 	bio_put(bio);
820 
821 	if (ret >= 0) {
822 		iocb->ki_pos += size;
823 		return size;
824 	}
825 
826 	return ret;
827 }
828 
829 /*
830  * Do not exceed the LFS limits nor the file zone size. If pos is under the
831  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
832  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)833 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
834 					loff_t count)
835 {
836 	struct inode *inode = file_inode(file);
837 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
838 	loff_t limit = rlimit(RLIMIT_FSIZE);
839 	loff_t max_size = zi->i_max_size;
840 
841 	if (limit != RLIM_INFINITY) {
842 		if (pos >= limit) {
843 			send_sig(SIGXFSZ, current, 0);
844 			return -EFBIG;
845 		}
846 		count = min(count, limit - pos);
847 	}
848 
849 	if (!(file->f_flags & O_LARGEFILE))
850 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
851 
852 	if (unlikely(pos >= max_size))
853 		return -EFBIG;
854 
855 	return min(count, max_size - pos);
856 }
857 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)858 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
859 {
860 	struct file *file = iocb->ki_filp;
861 	struct inode *inode = file_inode(file);
862 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
863 	loff_t count;
864 
865 	if (IS_SWAPFILE(inode))
866 		return -ETXTBSY;
867 
868 	if (!iov_iter_count(from))
869 		return 0;
870 
871 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
872 		return -EINVAL;
873 
874 	if (iocb->ki_flags & IOCB_APPEND) {
875 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
876 			return -EINVAL;
877 		mutex_lock(&zi->i_truncate_mutex);
878 		iocb->ki_pos = zi->i_wpoffset;
879 		mutex_unlock(&zi->i_truncate_mutex);
880 	}
881 
882 	count = zonefs_write_check_limits(file, iocb->ki_pos,
883 					  iov_iter_count(from));
884 	if (count < 0)
885 		return count;
886 
887 	iov_iter_truncate(from, count);
888 	return iov_iter_count(from);
889 }
890 
891 /*
892  * Handle direct writes. For sequential zone files, this is the only possible
893  * write path. For these files, check that the user is issuing writes
894  * sequentially from the end of the file. This code assumes that the block layer
895  * delivers write requests to the device in sequential order. This is always the
896  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
897  * elevator feature is being used (e.g. mq-deadline). The block layer always
898  * automatically select such an elevator for zoned block devices during the
899  * device initialization.
900  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)901 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
902 {
903 	struct inode *inode = file_inode(iocb->ki_filp);
904 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
905 	struct super_block *sb = inode->i_sb;
906 	bool sync = is_sync_kiocb(iocb);
907 	bool append = false;
908 	ssize_t ret, count;
909 
910 	/*
911 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
912 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
913 	 * on the inode lock but the second goes through but is now unaligned).
914 	 */
915 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
916 	    (iocb->ki_flags & IOCB_NOWAIT))
917 		return -EOPNOTSUPP;
918 
919 	if (iocb->ki_flags & IOCB_NOWAIT) {
920 		if (!inode_trylock(inode))
921 			return -EAGAIN;
922 	} else {
923 		inode_lock(inode);
924 	}
925 
926 	count = zonefs_write_checks(iocb, from);
927 	if (count <= 0) {
928 		ret = count;
929 		goto inode_unlock;
930 	}
931 
932 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
933 		ret = -EINVAL;
934 		goto inode_unlock;
935 	}
936 
937 	/* Enforce sequential writes (append only) in sequential zones */
938 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
939 		mutex_lock(&zi->i_truncate_mutex);
940 		if (iocb->ki_pos != zi->i_wpoffset) {
941 			mutex_unlock(&zi->i_truncate_mutex);
942 			ret = -EINVAL;
943 			goto inode_unlock;
944 		}
945 		mutex_unlock(&zi->i_truncate_mutex);
946 		append = sync;
947 	}
948 
949 	if (append)
950 		ret = zonefs_file_dio_append(iocb, from);
951 	else
952 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
953 				   &zonefs_write_dio_ops, 0, 0);
954 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
955 	    (ret > 0 || ret == -EIOCBQUEUED)) {
956 		if (ret > 0)
957 			count = ret;
958 		mutex_lock(&zi->i_truncate_mutex);
959 		zi->i_wpoffset += count;
960 		mutex_unlock(&zi->i_truncate_mutex);
961 	}
962 
963 inode_unlock:
964 	inode_unlock(inode);
965 
966 	return ret;
967 }
968 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)969 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
970 					  struct iov_iter *from)
971 {
972 	struct inode *inode = file_inode(iocb->ki_filp);
973 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
974 	ssize_t ret;
975 
976 	/*
977 	 * Direct IO writes are mandatory for sequential zone files so that the
978 	 * write IO issuing order is preserved.
979 	 */
980 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
981 		return -EIO;
982 
983 	if (iocb->ki_flags & IOCB_NOWAIT) {
984 		if (!inode_trylock(inode))
985 			return -EAGAIN;
986 	} else {
987 		inode_lock(inode);
988 	}
989 
990 	ret = zonefs_write_checks(iocb, from);
991 	if (ret <= 0)
992 		goto inode_unlock;
993 
994 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
995 	if (ret > 0)
996 		iocb->ki_pos += ret;
997 	else if (ret == -EIO)
998 		zonefs_io_error(inode, true);
999 
1000 inode_unlock:
1001 	inode_unlock(inode);
1002 	if (ret > 0)
1003 		ret = generic_write_sync(iocb, ret);
1004 
1005 	return ret;
1006 }
1007 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1008 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1009 {
1010 	struct inode *inode = file_inode(iocb->ki_filp);
1011 
1012 	if (unlikely(IS_IMMUTABLE(inode)))
1013 		return -EPERM;
1014 
1015 	if (sb_rdonly(inode->i_sb))
1016 		return -EROFS;
1017 
1018 	/* Write operations beyond the zone size are not allowed */
1019 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1020 		return -EFBIG;
1021 
1022 	if (iocb->ki_flags & IOCB_DIRECT) {
1023 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1024 		if (ret != -ENOTBLK)
1025 			return ret;
1026 	}
1027 
1028 	return zonefs_file_buffered_write(iocb, from);
1029 }
1030 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)1031 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1032 				       int error, unsigned int flags)
1033 {
1034 	if (error) {
1035 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1036 		return error;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1043 	.end_io			= zonefs_file_read_dio_end_io,
1044 };
1045 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1046 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1047 {
1048 	struct inode *inode = file_inode(iocb->ki_filp);
1049 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1050 	struct super_block *sb = inode->i_sb;
1051 	loff_t isize;
1052 	ssize_t ret;
1053 
1054 	/* Offline zones cannot be read */
1055 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1056 		return -EPERM;
1057 
1058 	if (iocb->ki_pos >= zi->i_max_size)
1059 		return 0;
1060 
1061 	if (iocb->ki_flags & IOCB_NOWAIT) {
1062 		if (!inode_trylock_shared(inode))
1063 			return -EAGAIN;
1064 	} else {
1065 		inode_lock_shared(inode);
1066 	}
1067 
1068 	/* Limit read operations to written data */
1069 	mutex_lock(&zi->i_truncate_mutex);
1070 	isize = i_size_read(inode);
1071 	if (iocb->ki_pos >= isize) {
1072 		mutex_unlock(&zi->i_truncate_mutex);
1073 		ret = 0;
1074 		goto inode_unlock;
1075 	}
1076 	iov_iter_truncate(to, isize - iocb->ki_pos);
1077 	mutex_unlock(&zi->i_truncate_mutex);
1078 
1079 	if (iocb->ki_flags & IOCB_DIRECT) {
1080 		size_t count = iov_iter_count(to);
1081 
1082 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1083 			ret = -EINVAL;
1084 			goto inode_unlock;
1085 		}
1086 		file_accessed(iocb->ki_filp);
1087 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1088 				   &zonefs_read_dio_ops, 0, 0);
1089 	} else {
1090 		ret = generic_file_read_iter(iocb, to);
1091 		if (ret == -EIO)
1092 			zonefs_io_error(inode, false);
1093 	}
1094 
1095 inode_unlock:
1096 	inode_unlock_shared(inode);
1097 
1098 	return ret;
1099 }
1100 
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1101 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1102 {
1103 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1104 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1105 
1106 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1107 		return false;
1108 
1109 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1110 		return false;
1111 
1112 	if (!(file->f_mode & FMODE_WRITE))
1113 		return false;
1114 
1115 	return true;
1116 }
1117 
zonefs_open_zone(struct inode * inode)1118 static int zonefs_open_zone(struct inode *inode)
1119 {
1120 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1121 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1122 	int ret = 0;
1123 
1124 	mutex_lock(&zi->i_truncate_mutex);
1125 
1126 	if (!zi->i_wr_refcnt) {
1127 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1128 			atomic_dec(&sbi->s_open_zones);
1129 			ret = -EBUSY;
1130 			goto unlock;
1131 		}
1132 
1133 		if (i_size_read(inode) < zi->i_max_size) {
1134 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1135 			if (ret) {
1136 				atomic_dec(&sbi->s_open_zones);
1137 				goto unlock;
1138 			}
1139 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1140 		}
1141 	}
1142 
1143 	zi->i_wr_refcnt++;
1144 
1145 unlock:
1146 	mutex_unlock(&zi->i_truncate_mutex);
1147 
1148 	return ret;
1149 }
1150 
zonefs_file_open(struct inode * inode,struct file * file)1151 static int zonefs_file_open(struct inode *inode, struct file *file)
1152 {
1153 	int ret;
1154 
1155 	ret = generic_file_open(inode, file);
1156 	if (ret)
1157 		return ret;
1158 
1159 	if (zonefs_file_use_exp_open(inode, file))
1160 		return zonefs_open_zone(inode);
1161 
1162 	return 0;
1163 }
1164 
zonefs_close_zone(struct inode * inode)1165 static void zonefs_close_zone(struct inode *inode)
1166 {
1167 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1168 	int ret = 0;
1169 
1170 	mutex_lock(&zi->i_truncate_mutex);
1171 	zi->i_wr_refcnt--;
1172 	if (!zi->i_wr_refcnt) {
1173 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1174 		struct super_block *sb = inode->i_sb;
1175 
1176 		/*
1177 		 * If the file zone is full, it is not open anymore and we only
1178 		 * need to decrement the open count.
1179 		 */
1180 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1181 			goto dec;
1182 
1183 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1184 		if (ret) {
1185 			__zonefs_io_error(inode, false);
1186 			/*
1187 			 * Leaving zones explicitly open may lead to a state
1188 			 * where most zones cannot be written (zone resources
1189 			 * exhausted). So take preventive action by remounting
1190 			 * read-only.
1191 			 */
1192 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1193 			    !(sb->s_flags & SB_RDONLY)) {
1194 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1195 				sb->s_flags |= SB_RDONLY;
1196 			}
1197 		}
1198 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1199 dec:
1200 		atomic_dec(&sbi->s_open_zones);
1201 	}
1202 	mutex_unlock(&zi->i_truncate_mutex);
1203 }
1204 
zonefs_file_release(struct inode * inode,struct file * file)1205 static int zonefs_file_release(struct inode *inode, struct file *file)
1206 {
1207 	/*
1208 	 * If we explicitly open a zone we must close it again as well, but the
1209 	 * zone management operation can fail (either due to an IO error or as
1210 	 * the zone has gone offline or read-only). Make sure we don't fail the
1211 	 * close(2) for user-space.
1212 	 */
1213 	if (zonefs_file_use_exp_open(inode, file))
1214 		zonefs_close_zone(inode);
1215 
1216 	return 0;
1217 }
1218 
1219 static const struct file_operations zonefs_file_operations = {
1220 	.open		= zonefs_file_open,
1221 	.release	= zonefs_file_release,
1222 	.fsync		= zonefs_file_fsync,
1223 	.mmap		= zonefs_file_mmap,
1224 	.llseek		= zonefs_file_llseek,
1225 	.read_iter	= zonefs_file_read_iter,
1226 	.write_iter	= zonefs_file_write_iter,
1227 	.splice_read	= generic_file_splice_read,
1228 	.splice_write	= iter_file_splice_write,
1229 	.iopoll		= iomap_dio_iopoll,
1230 };
1231 
1232 static struct kmem_cache *zonefs_inode_cachep;
1233 
zonefs_alloc_inode(struct super_block * sb)1234 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1235 {
1236 	struct zonefs_inode_info *zi;
1237 
1238 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1239 	if (!zi)
1240 		return NULL;
1241 
1242 	inode_init_once(&zi->i_vnode);
1243 	mutex_init(&zi->i_truncate_mutex);
1244 	zi->i_wr_refcnt = 0;
1245 	zi->i_flags = 0;
1246 
1247 	return &zi->i_vnode;
1248 }
1249 
zonefs_free_inode(struct inode * inode)1250 static void zonefs_free_inode(struct inode *inode)
1251 {
1252 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1253 }
1254 
1255 /*
1256  * File system stat.
1257  */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1258 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1259 {
1260 	struct super_block *sb = dentry->d_sb;
1261 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1262 	enum zonefs_ztype t;
1263 
1264 	buf->f_type = ZONEFS_MAGIC;
1265 	buf->f_bsize = sb->s_blocksize;
1266 	buf->f_namelen = ZONEFS_NAME_MAX;
1267 
1268 	spin_lock(&sbi->s_lock);
1269 
1270 	buf->f_blocks = sbi->s_blocks;
1271 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1272 		buf->f_bfree = 0;
1273 	else
1274 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1275 	buf->f_bavail = buf->f_bfree;
1276 
1277 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1278 		if (sbi->s_nr_files[t])
1279 			buf->f_files += sbi->s_nr_files[t] + 1;
1280 	}
1281 	buf->f_ffree = 0;
1282 
1283 	spin_unlock(&sbi->s_lock);
1284 
1285 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1286 
1287 	return 0;
1288 }
1289 
1290 enum {
1291 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1292 	Opt_explicit_open, Opt_err,
1293 };
1294 
1295 static const match_table_t tokens = {
1296 	{ Opt_errors_ro,	"errors=remount-ro"},
1297 	{ Opt_errors_zro,	"errors=zone-ro"},
1298 	{ Opt_errors_zol,	"errors=zone-offline"},
1299 	{ Opt_errors_repair,	"errors=repair"},
1300 	{ Opt_explicit_open,	"explicit-open" },
1301 	{ Opt_err,		NULL}
1302 };
1303 
zonefs_parse_options(struct super_block * sb,char * options)1304 static int zonefs_parse_options(struct super_block *sb, char *options)
1305 {
1306 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1307 	substring_t args[MAX_OPT_ARGS];
1308 	char *p;
1309 
1310 	if (!options)
1311 		return 0;
1312 
1313 	while ((p = strsep(&options, ",")) != NULL) {
1314 		int token;
1315 
1316 		if (!*p)
1317 			continue;
1318 
1319 		token = match_token(p, tokens, args);
1320 		switch (token) {
1321 		case Opt_errors_ro:
1322 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1323 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1324 			break;
1325 		case Opt_errors_zro:
1326 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1327 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1328 			break;
1329 		case Opt_errors_zol:
1330 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1331 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1332 			break;
1333 		case Opt_errors_repair:
1334 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1335 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1336 			break;
1337 		case Opt_explicit_open:
1338 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1339 			break;
1340 		default:
1341 			return -EINVAL;
1342 		}
1343 	}
1344 
1345 	return 0;
1346 }
1347 
zonefs_show_options(struct seq_file * seq,struct dentry * root)1348 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1349 {
1350 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1351 
1352 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1353 		seq_puts(seq, ",errors=remount-ro");
1354 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1355 		seq_puts(seq, ",errors=zone-ro");
1356 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1357 		seq_puts(seq, ",errors=zone-offline");
1358 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1359 		seq_puts(seq, ",errors=repair");
1360 
1361 	return 0;
1362 }
1363 
zonefs_remount(struct super_block * sb,int * flags,char * data)1364 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1365 {
1366 	sync_filesystem(sb);
1367 
1368 	return zonefs_parse_options(sb, data);
1369 }
1370 
1371 static const struct super_operations zonefs_sops = {
1372 	.alloc_inode	= zonefs_alloc_inode,
1373 	.free_inode	= zonefs_free_inode,
1374 	.statfs		= zonefs_statfs,
1375 	.remount_fs	= zonefs_remount,
1376 	.show_options	= zonefs_show_options,
1377 };
1378 
1379 static const struct inode_operations zonefs_dir_inode_operations = {
1380 	.lookup		= simple_lookup,
1381 	.setattr	= zonefs_inode_setattr,
1382 };
1383 
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1384 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1385 				  enum zonefs_ztype type)
1386 {
1387 	struct super_block *sb = parent->i_sb;
1388 
1389 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1390 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1391 	inode->i_op = &zonefs_dir_inode_operations;
1392 	inode->i_fop = &simple_dir_operations;
1393 	set_nlink(inode, 2);
1394 	inc_nlink(parent);
1395 }
1396 
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1397 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1398 				  enum zonefs_ztype type)
1399 {
1400 	struct super_block *sb = inode->i_sb;
1401 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1402 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1403 	int ret = 0;
1404 
1405 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1406 	inode->i_mode = S_IFREG | sbi->s_perm;
1407 
1408 	zi->i_ztype = type;
1409 	zi->i_zsector = zone->start;
1410 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1411 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1412 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1413 		zonefs_err(sb,
1414 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1415 			   zi->i_zone_size,
1416 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1417 		return -EINVAL;
1418 	}
1419 
1420 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1421 			       zone->capacity << SECTOR_SHIFT);
1422 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1423 
1424 	inode->i_uid = sbi->s_uid;
1425 	inode->i_gid = sbi->s_gid;
1426 	inode->i_size = zi->i_wpoffset;
1427 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1428 
1429 	inode->i_op = &zonefs_file_inode_operations;
1430 	inode->i_fop = &zonefs_file_operations;
1431 	inode->i_mapping->a_ops = &zonefs_file_aops;
1432 
1433 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1434 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1435 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1436 
1437 	/*
1438 	 * For sequential zones, make sure that any open zone is closed first
1439 	 * to ensure that the initial number of open zones is 0, in sync with
1440 	 * the open zone accounting done when the mount option
1441 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1442 	 */
1443 	if (type == ZONEFS_ZTYPE_SEQ &&
1444 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1445 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1446 		mutex_lock(&zi->i_truncate_mutex);
1447 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1448 		mutex_unlock(&zi->i_truncate_mutex);
1449 	}
1450 
1451 	return ret;
1452 }
1453 
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1454 static struct dentry *zonefs_create_inode(struct dentry *parent,
1455 					const char *name, struct blk_zone *zone,
1456 					enum zonefs_ztype type)
1457 {
1458 	struct inode *dir = d_inode(parent);
1459 	struct dentry *dentry;
1460 	struct inode *inode;
1461 	int ret = -ENOMEM;
1462 
1463 	dentry = d_alloc_name(parent, name);
1464 	if (!dentry)
1465 		return ERR_PTR(ret);
1466 
1467 	inode = new_inode(parent->d_sb);
1468 	if (!inode)
1469 		goto dput;
1470 
1471 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1472 	if (zone) {
1473 		ret = zonefs_init_file_inode(inode, zone, type);
1474 		if (ret) {
1475 			iput(inode);
1476 			goto dput;
1477 		}
1478 	} else {
1479 		zonefs_init_dir_inode(dir, inode, type);
1480 	}
1481 
1482 	d_add(dentry, inode);
1483 	dir->i_size++;
1484 
1485 	return dentry;
1486 
1487 dput:
1488 	dput(dentry);
1489 
1490 	return ERR_PTR(ret);
1491 }
1492 
1493 struct zonefs_zone_data {
1494 	struct super_block	*sb;
1495 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1496 	struct blk_zone		*zones;
1497 };
1498 
1499 /*
1500  * Create a zone group and populate it with zone files.
1501  */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1502 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1503 				enum zonefs_ztype type)
1504 {
1505 	struct super_block *sb = zd->sb;
1506 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1507 	struct blk_zone *zone, *next, *end;
1508 	const char *zgroup_name;
1509 	char *file_name;
1510 	struct dentry *dir, *dent;
1511 	unsigned int n = 0;
1512 	int ret;
1513 
1514 	/* If the group is empty, there is nothing to do */
1515 	if (!zd->nr_zones[type])
1516 		return 0;
1517 
1518 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1519 	if (!file_name)
1520 		return -ENOMEM;
1521 
1522 	if (type == ZONEFS_ZTYPE_CNV)
1523 		zgroup_name = "cnv";
1524 	else
1525 		zgroup_name = "seq";
1526 
1527 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1528 	if (IS_ERR(dir)) {
1529 		ret = PTR_ERR(dir);
1530 		goto free;
1531 	}
1532 
1533 	/*
1534 	 * The first zone contains the super block: skip it.
1535 	 */
1536 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1537 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1538 
1539 		next = zone + 1;
1540 		if (zonefs_zone_type(zone) != type)
1541 			continue;
1542 
1543 		/*
1544 		 * For conventional zones, contiguous zones can be aggregated
1545 		 * together to form larger files. Note that this overwrites the
1546 		 * length of the first zone of the set of contiguous zones
1547 		 * aggregated together. If one offline or read-only zone is
1548 		 * found, assume that all zones aggregated have the same
1549 		 * condition.
1550 		 */
1551 		if (type == ZONEFS_ZTYPE_CNV &&
1552 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1553 			for (; next < end; next++) {
1554 				if (zonefs_zone_type(next) != type)
1555 					break;
1556 				zone->len += next->len;
1557 				zone->capacity += next->capacity;
1558 				if (next->cond == BLK_ZONE_COND_READONLY &&
1559 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1560 					zone->cond = BLK_ZONE_COND_READONLY;
1561 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1562 					zone->cond = BLK_ZONE_COND_OFFLINE;
1563 			}
1564 			if (zone->capacity != zone->len) {
1565 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1566 				ret = -EINVAL;
1567 				goto free;
1568 			}
1569 		}
1570 
1571 		/*
1572 		 * Use the file number within its group as file name.
1573 		 */
1574 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1575 		dent = zonefs_create_inode(dir, file_name, zone, type);
1576 		if (IS_ERR(dent)) {
1577 			ret = PTR_ERR(dent);
1578 			goto free;
1579 		}
1580 
1581 		n++;
1582 	}
1583 
1584 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1585 		    zgroup_name, n, n > 1 ? "s" : "");
1586 
1587 	sbi->s_nr_files[type] = n;
1588 	ret = 0;
1589 
1590 free:
1591 	kfree(file_name);
1592 
1593 	return ret;
1594 }
1595 
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1596 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1597 				   void *data)
1598 {
1599 	struct zonefs_zone_data *zd = data;
1600 
1601 	/*
1602 	 * Count the number of usable zones: the first zone at index 0 contains
1603 	 * the super block and is ignored.
1604 	 */
1605 	switch (zone->type) {
1606 	case BLK_ZONE_TYPE_CONVENTIONAL:
1607 		zone->wp = zone->start + zone->len;
1608 		if (idx)
1609 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1610 		break;
1611 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1612 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1613 		if (idx)
1614 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1615 		break;
1616 	default:
1617 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1618 			   zone->type);
1619 		return -EIO;
1620 	}
1621 
1622 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1623 
1624 	return 0;
1625 }
1626 
zonefs_get_zone_info(struct zonefs_zone_data * zd)1627 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1628 {
1629 	struct block_device *bdev = zd->sb->s_bdev;
1630 	int ret;
1631 
1632 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1633 			     sizeof(struct blk_zone), GFP_KERNEL);
1634 	if (!zd->zones)
1635 		return -ENOMEM;
1636 
1637 	/* Get zones information from the device */
1638 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1639 				  zonefs_get_zone_info_cb, zd);
1640 	if (ret < 0) {
1641 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1642 		return ret;
1643 	}
1644 
1645 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1646 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1647 			   ret, blkdev_nr_zones(bdev->bd_disk));
1648 		return -EIO;
1649 	}
1650 
1651 	return 0;
1652 }
1653 
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1654 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1655 {
1656 	kvfree(zd->zones);
1657 }
1658 
1659 /*
1660  * Read super block information from the device.
1661  */
zonefs_read_super(struct super_block * sb)1662 static int zonefs_read_super(struct super_block *sb)
1663 {
1664 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1665 	struct zonefs_super *super;
1666 	u32 crc, stored_crc;
1667 	struct page *page;
1668 	struct bio_vec bio_vec;
1669 	struct bio bio;
1670 	int ret;
1671 
1672 	page = alloc_page(GFP_KERNEL);
1673 	if (!page)
1674 		return -ENOMEM;
1675 
1676 	bio_init(&bio, &bio_vec, 1);
1677 	bio.bi_iter.bi_sector = 0;
1678 	bio.bi_opf = REQ_OP_READ;
1679 	bio_set_dev(&bio, sb->s_bdev);
1680 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1681 
1682 	ret = submit_bio_wait(&bio);
1683 	if (ret)
1684 		goto free_page;
1685 
1686 	super = kmap(page);
1687 
1688 	ret = -EINVAL;
1689 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1690 		goto unmap;
1691 
1692 	stored_crc = le32_to_cpu(super->s_crc);
1693 	super->s_crc = 0;
1694 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1695 	if (crc != stored_crc) {
1696 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1697 			   crc, stored_crc);
1698 		goto unmap;
1699 	}
1700 
1701 	sbi->s_features = le64_to_cpu(super->s_features);
1702 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1703 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1704 			   sbi->s_features);
1705 		goto unmap;
1706 	}
1707 
1708 	if (sbi->s_features & ZONEFS_F_UID) {
1709 		sbi->s_uid = make_kuid(current_user_ns(),
1710 				       le32_to_cpu(super->s_uid));
1711 		if (!uid_valid(sbi->s_uid)) {
1712 			zonefs_err(sb, "Invalid UID feature\n");
1713 			goto unmap;
1714 		}
1715 	}
1716 
1717 	if (sbi->s_features & ZONEFS_F_GID) {
1718 		sbi->s_gid = make_kgid(current_user_ns(),
1719 				       le32_to_cpu(super->s_gid));
1720 		if (!gid_valid(sbi->s_gid)) {
1721 			zonefs_err(sb, "Invalid GID feature\n");
1722 			goto unmap;
1723 		}
1724 	}
1725 
1726 	if (sbi->s_features & ZONEFS_F_PERM)
1727 		sbi->s_perm = le32_to_cpu(super->s_perm);
1728 
1729 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1730 		zonefs_err(sb, "Reserved area is being used\n");
1731 		goto unmap;
1732 	}
1733 
1734 	import_uuid(&sbi->s_uuid, super->s_uuid);
1735 	ret = 0;
1736 
1737 unmap:
1738 	kunmap(page);
1739 free_page:
1740 	__free_page(page);
1741 
1742 	return ret;
1743 }
1744 
1745 /*
1746  * Check that the device is zoned. If it is, get the list of zones and create
1747  * sub-directories and files according to the device zone configuration and
1748  * format options.
1749  */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1750 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1751 {
1752 	struct zonefs_zone_data zd;
1753 	struct zonefs_sb_info *sbi;
1754 	struct inode *inode;
1755 	enum zonefs_ztype t;
1756 	int ret;
1757 
1758 	if (!bdev_is_zoned(sb->s_bdev)) {
1759 		zonefs_err(sb, "Not a zoned block device\n");
1760 		return -EINVAL;
1761 	}
1762 
1763 	/*
1764 	 * Initialize super block information: the maximum file size is updated
1765 	 * when the zone files are created so that the format option
1766 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1767 	 * beyond the zone size is taken into account.
1768 	 */
1769 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1770 	if (!sbi)
1771 		return -ENOMEM;
1772 
1773 	spin_lock_init(&sbi->s_lock);
1774 	sb->s_fs_info = sbi;
1775 	sb->s_magic = ZONEFS_MAGIC;
1776 	sb->s_maxbytes = 0;
1777 	sb->s_op = &zonefs_sops;
1778 	sb->s_time_gran	= 1;
1779 
1780 	/*
1781 	 * The block size is set to the device zone write granularity to ensure
1782 	 * that write operations are always aligned according to the device
1783 	 * interface constraints.
1784 	 */
1785 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1786 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1787 	sbi->s_uid = GLOBAL_ROOT_UID;
1788 	sbi->s_gid = GLOBAL_ROOT_GID;
1789 	sbi->s_perm = 0640;
1790 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1791 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1792 	atomic_set(&sbi->s_open_zones, 0);
1793 
1794 	ret = zonefs_read_super(sb);
1795 	if (ret)
1796 		return ret;
1797 
1798 	ret = zonefs_parse_options(sb, data);
1799 	if (ret)
1800 		return ret;
1801 
1802 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1803 	zd.sb = sb;
1804 	ret = zonefs_get_zone_info(&zd);
1805 	if (ret)
1806 		goto cleanup;
1807 
1808 	zonefs_info(sb, "Mounting %u zones",
1809 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1810 
1811 	if (!sbi->s_max_open_zones &&
1812 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1813 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1814 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1815 	}
1816 
1817 	/* Create root directory inode */
1818 	ret = -ENOMEM;
1819 	inode = new_inode(sb);
1820 	if (!inode)
1821 		goto cleanup;
1822 
1823 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1824 	inode->i_mode = S_IFDIR | 0555;
1825 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1826 	inode->i_op = &zonefs_dir_inode_operations;
1827 	inode->i_fop = &simple_dir_operations;
1828 	set_nlink(inode, 2);
1829 
1830 	sb->s_root = d_make_root(inode);
1831 	if (!sb->s_root)
1832 		goto cleanup;
1833 
1834 	/* Create and populate files in zone groups directories */
1835 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1836 		ret = zonefs_create_zgroup(&zd, t);
1837 		if (ret)
1838 			break;
1839 	}
1840 
1841 cleanup:
1842 	zonefs_cleanup_zone_info(&zd);
1843 
1844 	return ret;
1845 }
1846 
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1847 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1848 				   int flags, const char *dev_name, void *data)
1849 {
1850 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1851 }
1852 
zonefs_kill_super(struct super_block * sb)1853 static void zonefs_kill_super(struct super_block *sb)
1854 {
1855 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1856 
1857 	if (sb->s_root)
1858 		d_genocide(sb->s_root);
1859 	kill_block_super(sb);
1860 	kfree(sbi);
1861 }
1862 
1863 /*
1864  * File system definition and registration.
1865  */
1866 static struct file_system_type zonefs_type = {
1867 	.owner		= THIS_MODULE,
1868 	.name		= "zonefs",
1869 	.mount		= zonefs_mount,
1870 	.kill_sb	= zonefs_kill_super,
1871 	.fs_flags	= FS_REQUIRES_DEV,
1872 };
1873 
zonefs_init_inodecache(void)1874 static int __init zonefs_init_inodecache(void)
1875 {
1876 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1877 			sizeof(struct zonefs_inode_info), 0,
1878 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1879 			NULL);
1880 	if (zonefs_inode_cachep == NULL)
1881 		return -ENOMEM;
1882 	return 0;
1883 }
1884 
zonefs_destroy_inodecache(void)1885 static void zonefs_destroy_inodecache(void)
1886 {
1887 	/*
1888 	 * Make sure all delayed rcu free inodes are flushed before we
1889 	 * destroy the inode cache.
1890 	 */
1891 	rcu_barrier();
1892 	kmem_cache_destroy(zonefs_inode_cachep);
1893 }
1894 
zonefs_init(void)1895 static int __init zonefs_init(void)
1896 {
1897 	int ret;
1898 
1899 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1900 
1901 	ret = zonefs_init_inodecache();
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = register_filesystem(&zonefs_type);
1906 	if (ret) {
1907 		zonefs_destroy_inodecache();
1908 		return ret;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
zonefs_exit(void)1914 static void __exit zonefs_exit(void)
1915 {
1916 	zonefs_destroy_inodecache();
1917 	unregister_filesystem(&zonefs_type);
1918 }
1919 
1920 MODULE_AUTHOR("Damien Le Moal");
1921 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1922 MODULE_LICENSE("GPL");
1923 MODULE_ALIAS_FS("zonefs");
1924 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
1925 module_init(zonefs_init);
1926 module_exit(zonefs_exit);
1927