1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49
50 #include "blk-mq.h"
51 #ifndef __GENKSYMS__
52 #include "blk-mq-debugfs.h"
53 #endif
54 #include "blk-mq-sched.h"
55 #include "blk-pm.h"
56 #ifndef __GENKSYMS__
57 #include "blk-rq-qos.h"
58 #endif
59
60 struct dentry *blk_debugfs_root;
61
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
68
69 DEFINE_IDA(blk_queue_ida);
70
71 /*
72 * For queue allocation
73 */
74 struct kmem_cache *blk_requestq_cachep;
75
76 /*
77 * Controlling structure to kblockd
78 */
79 static struct workqueue_struct *kblockd_workqueue;
80
81 /**
82 * blk_queue_flag_set - atomically set a queue flag
83 * @flag: flag to be set
84 * @q: request queue
85 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)86 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
87 {
88 set_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_set);
91
92 /**
93 * blk_queue_flag_clear - atomically clear a queue flag
94 * @flag: flag to be cleared
95 * @q: request queue
96 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)97 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
98 {
99 clear_bit(flag, &q->queue_flags);
100 }
101 EXPORT_SYMBOL(blk_queue_flag_clear);
102
103 /**
104 * blk_queue_flag_test_and_set - atomically test and set a queue flag
105 * @flag: flag to be set
106 * @q: request queue
107 *
108 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
109 * the flag was already set.
110 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)111 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
112 {
113 return test_and_set_bit(flag, &q->queue_flags);
114 }
115 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
116
blk_rq_init(struct request_queue * q,struct request * rq)117 void blk_rq_init(struct request_queue *q, struct request *rq)
118 {
119 memset(rq, 0, sizeof(*rq));
120
121 INIT_LIST_HEAD(&rq->queuelist);
122 rq->q = q;
123 rq->__sector = (sector_t) -1;
124 INIT_HLIST_NODE(&rq->hash);
125 RB_CLEAR_NODE(&rq->rb_node);
126 rq->tag = BLK_MQ_NO_TAG;
127 rq->internal_tag = BLK_MQ_NO_TAG;
128 rq->start_time_ns = ktime_get_ns();
129 rq->part = NULL;
130 blk_crypto_rq_set_defaults(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133
134 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
135 static const char *const blk_op_name[] = {
136 REQ_OP_NAME(READ),
137 REQ_OP_NAME(WRITE),
138 REQ_OP_NAME(FLUSH),
139 REQ_OP_NAME(DISCARD),
140 REQ_OP_NAME(SECURE_ERASE),
141 REQ_OP_NAME(ZONE_RESET),
142 REQ_OP_NAME(ZONE_RESET_ALL),
143 REQ_OP_NAME(ZONE_OPEN),
144 REQ_OP_NAME(ZONE_CLOSE),
145 REQ_OP_NAME(ZONE_FINISH),
146 REQ_OP_NAME(ZONE_APPEND),
147 REQ_OP_NAME(WRITE_SAME),
148 REQ_OP_NAME(WRITE_ZEROES),
149 REQ_OP_NAME(DRV_IN),
150 REQ_OP_NAME(DRV_OUT),
151 };
152 #undef REQ_OP_NAME
153
154 /**
155 * blk_op_str - Return string XXX in the REQ_OP_XXX.
156 * @op: REQ_OP_XXX.
157 *
158 * Description: Centralize block layer function to convert REQ_OP_XXX into
159 * string format. Useful in the debugging and tracing bio or request. For
160 * invalid REQ_OP_XXX it returns string "UNKNOWN".
161 */
blk_op_str(unsigned int op)162 inline const char *blk_op_str(unsigned int op)
163 {
164 const char *op_str = "UNKNOWN";
165
166 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
167 op_str = blk_op_name[op];
168
169 return op_str;
170 }
171 EXPORT_SYMBOL_GPL(blk_op_str);
172
173 static const struct {
174 int errno;
175 const char *name;
176 } blk_errors[] = {
177 [BLK_STS_OK] = { 0, "" },
178 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
179 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
180 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
181 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
182 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
183 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
184 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
185 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
186 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
187 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
188 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
189
190 /* device mapper special case, should not leak out: */
191 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
192
193 /* zone device specific errors */
194 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
195 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
196
197 /* everything else not covered above: */
198 [BLK_STS_IOERR] = { -EIO, "I/O" },
199 };
200
errno_to_blk_status(int errno)201 blk_status_t errno_to_blk_status(int errno)
202 {
203 int i;
204
205 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
206 if (blk_errors[i].errno == errno)
207 return (__force blk_status_t)i;
208 }
209
210 return BLK_STS_IOERR;
211 }
212 EXPORT_SYMBOL_GPL(errno_to_blk_status);
213
blk_status_to_errno(blk_status_t status)214 int blk_status_to_errno(blk_status_t status)
215 {
216 int idx = (__force int)status;
217
218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 return -EIO;
220 return blk_errors[idx].errno;
221 }
222 EXPORT_SYMBOL_GPL(blk_status_to_errno);
223
print_req_error(struct request * req,blk_status_t status,const char * caller)224 static void print_req_error(struct request *req, blk_status_t status,
225 const char *caller)
226 {
227 int idx = (__force int)status;
228
229 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
230 return;
231
232 printk_ratelimited(KERN_ERR
233 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
234 "phys_seg %u prio class %u\n",
235 caller, blk_errors[idx].name,
236 req->rq_disk ? req->rq_disk->disk_name : "?",
237 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
238 req->cmd_flags & ~REQ_OP_MASK,
239 req->nr_phys_segments,
240 IOPRIO_PRIO_CLASS(req->ioprio));
241 }
242
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)243 static void req_bio_endio(struct request *rq, struct bio *bio,
244 unsigned int nbytes, blk_status_t error)
245 {
246 if (error)
247 bio->bi_status = error;
248
249 if (unlikely(rq->rq_flags & RQF_QUIET))
250 bio_set_flag(bio, BIO_QUIET);
251
252 bio_advance(bio, nbytes);
253
254 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
255 /*
256 * Partial zone append completions cannot be supported as the
257 * BIO fragments may end up not being written sequentially.
258 */
259 if (bio->bi_iter.bi_size)
260 bio->bi_status = BLK_STS_IOERR;
261 else
262 bio->bi_iter.bi_sector = rq->__sector;
263 }
264
265 /* don't actually finish bio if it's part of flush sequence */
266 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
267 bio_endio(bio);
268 }
269
blk_dump_rq_flags(struct request * rq,char * msg)270 void blk_dump_rq_flags(struct request *rq, char *msg)
271 {
272 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
273 rq->rq_disk ? rq->rq_disk->disk_name : "?",
274 (unsigned long long) rq->cmd_flags);
275
276 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
277 (unsigned long long)blk_rq_pos(rq),
278 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
279 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
280 rq->bio, rq->biotail, blk_rq_bytes(rq));
281 }
282 EXPORT_SYMBOL(blk_dump_rq_flags);
283
284 /**
285 * blk_sync_queue - cancel any pending callbacks on a queue
286 * @q: the queue
287 *
288 * Description:
289 * The block layer may perform asynchronous callback activity
290 * on a queue, such as calling the unplug function after a timeout.
291 * A block device may call blk_sync_queue to ensure that any
292 * such activity is cancelled, thus allowing it to release resources
293 * that the callbacks might use. The caller must already have made sure
294 * that its ->submit_bio will not re-add plugging prior to calling
295 * this function.
296 *
297 * This function does not cancel any asynchronous activity arising
298 * out of elevator or throttling code. That would require elevator_exit()
299 * and blkcg_exit_queue() to be called with queue lock initialized.
300 *
301 */
blk_sync_queue(struct request_queue * q)302 void blk_sync_queue(struct request_queue *q)
303 {
304 del_timer_sync(&q->timeout);
305 cancel_work_sync(&q->timeout_work);
306 }
307 EXPORT_SYMBOL(blk_sync_queue);
308
309 /**
310 * blk_set_pm_only - increment pm_only counter
311 * @q: request queue pointer
312 */
blk_set_pm_only(struct request_queue * q)313 void blk_set_pm_only(struct request_queue *q)
314 {
315 atomic_inc(&q->pm_only);
316 }
317 EXPORT_SYMBOL_GPL(blk_set_pm_only);
318
blk_clear_pm_only(struct request_queue * q)319 void blk_clear_pm_only(struct request_queue *q)
320 {
321 int pm_only;
322
323 pm_only = atomic_dec_return(&q->pm_only);
324 WARN_ON_ONCE(pm_only < 0);
325 if (pm_only == 0)
326 wake_up_all(&q->mq_freeze_wq);
327 }
328 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
329
330 /**
331 * blk_put_queue - decrement the request_queue refcount
332 * @q: the request_queue structure to decrement the refcount for
333 *
334 * Decrements the refcount of the request_queue kobject. When this reaches 0
335 * we'll have blk_release_queue() called.
336 *
337 * Context: Any context, but the last reference must not be dropped from
338 * atomic context.
339 */
blk_put_queue(struct request_queue * q)340 void blk_put_queue(struct request_queue *q)
341 {
342 kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345
blk_queue_start_drain(struct request_queue * q)346 void blk_queue_start_drain(struct request_queue *q)
347 {
348 /*
349 * When queue DYING flag is set, we need to block new req
350 * entering queue, so we call blk_freeze_queue_start() to
351 * prevent I/O from crossing blk_queue_enter().
352 */
353 blk_freeze_queue_start(q);
354 if (queue_is_mq(q))
355 blk_mq_wake_waiters(q);
356 /* Make blk_queue_enter() reexamine the DYING flag. */
357 wake_up_all(&q->mq_freeze_wq);
358 }
359
360 /**
361 * blk_cleanup_queue - shutdown a request queue
362 * @q: request queue to shutdown
363 *
364 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
365 * put it. All future requests will be failed immediately with -ENODEV.
366 *
367 * Context: can sleep
368 */
blk_cleanup_queue(struct request_queue * q)369 void blk_cleanup_queue(struct request_queue *q)
370 {
371 /* cannot be called from atomic context */
372 might_sleep();
373
374 WARN_ON_ONCE(blk_queue_registered(q));
375
376 /* mark @q DYING, no new request or merges will be allowed afterwards */
377 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
378 blk_queue_start_drain(q);
379
380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382
383 /*
384 * Drain all requests queued before DYING marking. Set DEAD flag to
385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 * after draining finished.
387 */
388 blk_freeze_queue(q);
389
390 /* cleanup rq qos structures for queue without disk */
391 rq_qos_exit(q);
392
393 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
394
395 blk_sync_queue(q);
396 if (queue_is_mq(q)) {
397 blk_mq_cancel_work_sync(q);
398 blk_mq_exit_queue(q);
399 }
400
401 /*
402 * In theory, request pool of sched_tags belongs to request queue.
403 * However, the current implementation requires tag_set for freeing
404 * requests, so free the pool now.
405 *
406 * Queue has become frozen, there can't be any in-queue requests, so
407 * it is safe to free requests now.
408 */
409 mutex_lock(&q->sysfs_lock);
410 if (q->elevator)
411 blk_mq_sched_free_requests(q);
412 mutex_unlock(&q->sysfs_lock);
413
414 /* @q is and will stay empty, shutdown and put */
415 blk_put_queue(q);
416 }
417 EXPORT_SYMBOL(blk_cleanup_queue);
418
blk_try_enter_queue(struct request_queue * q,bool pm)419 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
420 {
421 rcu_read_lock();
422 if (!percpu_ref_tryget_live(&q->q_usage_counter))
423 goto fail;
424
425 /*
426 * The code that increments the pm_only counter must ensure that the
427 * counter is globally visible before the queue is unfrozen.
428 */
429 if (blk_queue_pm_only(q) &&
430 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
431 goto fail_put;
432
433 rcu_read_unlock();
434 return true;
435
436 fail_put:
437 percpu_ref_put(&q->q_usage_counter);
438 fail:
439 rcu_read_unlock();
440 return false;
441 }
442
443 /**
444 * blk_queue_enter() - try to increase q->q_usage_counter
445 * @q: request queue pointer
446 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
447 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)448 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
449 {
450 const bool pm = flags & BLK_MQ_REQ_PM;
451
452 while (!blk_try_enter_queue(q, pm)) {
453 if (flags & BLK_MQ_REQ_NOWAIT)
454 return -EAGAIN;
455
456 /*
457 * read pair of barrier in blk_freeze_queue_start(), we need to
458 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
459 * reading .mq_freeze_depth or queue dying flag, otherwise the
460 * following wait may never return if the two reads are
461 * reordered.
462 */
463 smp_rmb();
464 wait_event(q->mq_freeze_wq,
465 (!q->mq_freeze_depth &&
466 blk_pm_resume_queue(pm, q)) ||
467 blk_queue_dying(q));
468 if (blk_queue_dying(q))
469 return -ENODEV;
470 }
471
472 return 0;
473 }
474
bio_queue_enter(struct bio * bio)475 static inline int bio_queue_enter(struct bio *bio)
476 {
477 struct gendisk *disk = bio->bi_bdev->bd_disk;
478 struct request_queue *q = disk->queue;
479
480 while (!blk_try_enter_queue(q, false)) {
481 if (bio->bi_opf & REQ_NOWAIT) {
482 if (test_bit(GD_DEAD, &disk->state))
483 goto dead;
484 bio_wouldblock_error(bio);
485 return -EAGAIN;
486 }
487
488 /*
489 * read pair of barrier in blk_freeze_queue_start(), we need to
490 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
491 * reading .mq_freeze_depth or queue dying flag, otherwise the
492 * following wait may never return if the two reads are
493 * reordered.
494 */
495 smp_rmb();
496 wait_event(q->mq_freeze_wq,
497 (!q->mq_freeze_depth &&
498 blk_pm_resume_queue(false, q)) ||
499 test_bit(GD_DEAD, &disk->state));
500 if (test_bit(GD_DEAD, &disk->state))
501 goto dead;
502 }
503
504 return 0;
505 dead:
506 bio_io_error(bio);
507 return -ENODEV;
508 }
509
blk_queue_exit(struct request_queue * q)510 void blk_queue_exit(struct request_queue *q)
511 {
512 percpu_ref_put(&q->q_usage_counter);
513 }
514
blk_queue_usage_counter_release(struct percpu_ref * ref)515 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
516 {
517 struct request_queue *q =
518 container_of(ref, struct request_queue, q_usage_counter);
519
520 wake_up_all(&q->mq_freeze_wq);
521 }
522
blk_rq_timed_out_timer(struct timer_list * t)523 static void blk_rq_timed_out_timer(struct timer_list *t)
524 {
525 struct request_queue *q = from_timer(q, t, timeout);
526
527 kblockd_schedule_work(&q->timeout_work);
528 }
529
blk_timeout_work(struct work_struct * work)530 static void blk_timeout_work(struct work_struct *work)
531 {
532 }
533
blk_alloc_queue(int node_id)534 struct request_queue *blk_alloc_queue(int node_id)
535 {
536 struct request_queue *q;
537 int ret;
538
539 q = kmem_cache_alloc_node(blk_requestq_cachep,
540 GFP_KERNEL | __GFP_ZERO, node_id);
541 if (!q)
542 return NULL;
543
544 q->last_merge = NULL;
545
546 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
547 if (q->id < 0)
548 goto fail_q;
549
550 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
551 if (ret)
552 goto fail_id;
553
554 q->stats = blk_alloc_queue_stats();
555 if (!q->stats)
556 goto fail_split;
557
558 q->node = node_id;
559
560 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
561
562 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
563 INIT_WORK(&q->timeout_work, blk_timeout_work);
564 INIT_LIST_HEAD(&q->icq_list);
565 #ifdef CONFIG_BLK_CGROUP
566 INIT_LIST_HEAD(&q->blkg_list);
567 #endif
568
569 kobject_init(&q->kobj, &blk_queue_ktype);
570
571 mutex_init(&q->debugfs_mutex);
572 mutex_init(&q->sysfs_lock);
573 mutex_init(&q->sysfs_dir_lock);
574 spin_lock_init(&q->queue_lock);
575
576 init_waitqueue_head(&q->mq_freeze_wq);
577 mutex_init(&q->mq_freeze_lock);
578
579 /*
580 * Init percpu_ref in atomic mode so that it's faster to shutdown.
581 * See blk_register_queue() for details.
582 */
583 if (percpu_ref_init(&q->q_usage_counter,
584 blk_queue_usage_counter_release,
585 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
586 goto fail_stats;
587
588 if (blkcg_init_queue(q))
589 goto fail_ref;
590
591 blk_queue_dma_alignment(q, 511);
592 blk_set_default_limits(&q->limits);
593 q->nr_requests = BLKDEV_MAX_RQ;
594
595 return q;
596
597 fail_ref:
598 percpu_ref_exit(&q->q_usage_counter);
599 fail_stats:
600 blk_free_queue_stats(q->stats);
601 fail_split:
602 bioset_exit(&q->bio_split);
603 fail_id:
604 ida_simple_remove(&blk_queue_ida, q->id);
605 fail_q:
606 kmem_cache_free(blk_requestq_cachep, q);
607 return NULL;
608 }
609
610 /**
611 * blk_get_queue - increment the request_queue refcount
612 * @q: the request_queue structure to increment the refcount for
613 *
614 * Increment the refcount of the request_queue kobject.
615 *
616 * Context: Any context.
617 */
blk_get_queue(struct request_queue * q)618 bool blk_get_queue(struct request_queue *q)
619 {
620 if (likely(!blk_queue_dying(q))) {
621 __blk_get_queue(q);
622 return true;
623 }
624
625 return false;
626 }
627 EXPORT_SYMBOL(blk_get_queue);
628
629 /**
630 * blk_get_request - allocate a request
631 * @q: request queue to allocate a request for
632 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
633 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
634 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)635 struct request *blk_get_request(struct request_queue *q, unsigned int op,
636 blk_mq_req_flags_t flags)
637 {
638 struct request *req;
639
640 WARN_ON_ONCE(op & REQ_NOWAIT);
641 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
642
643 req = blk_mq_alloc_request(q, op, flags);
644 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
645 q->mq_ops->initialize_rq_fn(req);
646
647 return req;
648 }
649 EXPORT_SYMBOL(blk_get_request);
650
blk_put_request(struct request * req)651 void blk_put_request(struct request *req)
652 {
653 blk_mq_free_request(req);
654 }
655 EXPORT_SYMBOL(blk_put_request);
656
handle_bad_sector(struct bio * bio,sector_t maxsector)657 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
658 {
659 char b[BDEVNAME_SIZE];
660
661 pr_info_ratelimited("attempt to access beyond end of device\n"
662 "%s: rw=%d, want=%llu, limit=%llu\n",
663 bio_devname(bio, b), bio->bi_opf,
664 bio_end_sector(bio), maxsector);
665 }
666
667 #ifdef CONFIG_FAIL_MAKE_REQUEST
668
669 static DECLARE_FAULT_ATTR(fail_make_request);
670
setup_fail_make_request(char * str)671 static int __init setup_fail_make_request(char *str)
672 {
673 return setup_fault_attr(&fail_make_request, str);
674 }
675 __setup("fail_make_request=", setup_fail_make_request);
676
should_fail_request(struct block_device * part,unsigned int bytes)677 static bool should_fail_request(struct block_device *part, unsigned int bytes)
678 {
679 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
680 }
681
fail_make_request_debugfs(void)682 static int __init fail_make_request_debugfs(void)
683 {
684 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
685 NULL, &fail_make_request);
686
687 return PTR_ERR_OR_ZERO(dir);
688 }
689
690 late_initcall(fail_make_request_debugfs);
691
692 #else /* CONFIG_FAIL_MAKE_REQUEST */
693
should_fail_request(struct block_device * part,unsigned int bytes)694 static inline bool should_fail_request(struct block_device *part,
695 unsigned int bytes)
696 {
697 return false;
698 }
699
700 #endif /* CONFIG_FAIL_MAKE_REQUEST */
701
bio_check_ro(struct bio * bio)702 static inline void bio_check_ro(struct bio *bio)
703 {
704 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
705 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
706 return;
707 pr_warn_ratelimited("Trying to write to read-only block-device %pg\n",
708 bio->bi_bdev);
709 /* Older lvm-tools actually trigger this */
710 }
711 }
712
should_fail_bio(struct bio * bio)713 static noinline int should_fail_bio(struct bio *bio)
714 {
715 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
716 return -EIO;
717 return 0;
718 }
719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720
721 /*
722 * Check whether this bio extends beyond the end of the device or partition.
723 * This may well happen - the kernel calls bread() without checking the size of
724 * the device, e.g., when mounting a file system.
725 */
bio_check_eod(struct bio * bio)726 static inline int bio_check_eod(struct bio *bio)
727 {
728 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
729 unsigned int nr_sectors = bio_sectors(bio);
730
731 if (nr_sectors && maxsector &&
732 (nr_sectors > maxsector ||
733 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 handle_bad_sector(bio, maxsector);
735 return -EIO;
736 }
737 return 0;
738 }
739
740 /*
741 * Remap block n of partition p to block n+start(p) of the disk.
742 */
blk_partition_remap(struct bio * bio)743 static int blk_partition_remap(struct bio *bio)
744 {
745 struct block_device *p = bio->bi_bdev;
746
747 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
748 return -EIO;
749 if (bio_sectors(bio)) {
750 bio->bi_iter.bi_sector += p->bd_start_sect;
751 trace_block_bio_remap(bio, p->bd_dev,
752 bio->bi_iter.bi_sector -
753 p->bd_start_sect);
754 }
755 bio_set_flag(bio, BIO_REMAPPED);
756 return 0;
757 }
758
759 /*
760 * Check write append to a zoned block device.
761 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)762 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
763 struct bio *bio)
764 {
765 sector_t pos = bio->bi_iter.bi_sector;
766 int nr_sectors = bio_sectors(bio);
767
768 /* Only applicable to zoned block devices */
769 if (!blk_queue_is_zoned(q))
770 return BLK_STS_NOTSUPP;
771
772 /* The bio sector must point to the start of a sequential zone */
773 if (!bdev_is_zone_start(bio->bi_bdev, pos) ||
774 !blk_queue_zone_is_seq(q, pos))
775 return BLK_STS_IOERR;
776
777 /*
778 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
779 * split and could result in non-contiguous sectors being written in
780 * different zones.
781 */
782 if (nr_sectors > q->limits.chunk_sectors)
783 return BLK_STS_IOERR;
784
785 /* Make sure the BIO is small enough and will not get split */
786 if (nr_sectors > q->limits.max_zone_append_sectors)
787 return BLK_STS_IOERR;
788
789 bio->bi_opf |= REQ_NOMERGE;
790
791 return BLK_STS_OK;
792 }
793
submit_bio_checks(struct bio * bio)794 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
795 {
796 struct block_device *bdev = bio->bi_bdev;
797 struct request_queue *q = bdev->bd_disk->queue;
798 blk_status_t status = BLK_STS_IOERR;
799 struct blk_plug *plug;
800
801 might_sleep();
802
803 plug = blk_mq_plug(q, bio);
804 if (plug && plug->nowait)
805 bio->bi_opf |= REQ_NOWAIT;
806
807 /*
808 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
809 * if queue does not support NOWAIT.
810 */
811 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
812 goto not_supported;
813
814 if (should_fail_bio(bio))
815 goto end_io;
816 bio_check_ro(bio);
817 if (!bio_flagged(bio, BIO_REMAPPED)) {
818 if (unlikely(bio_check_eod(bio)))
819 goto end_io;
820 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
821 goto end_io;
822 }
823
824 /*
825 * Filter flush bio's early so that bio based drivers without flush
826 * support don't have to worry about them.
827 */
828 if (op_is_flush(bio->bi_opf) &&
829 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
830 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
831 if (!bio_sectors(bio)) {
832 status = BLK_STS_OK;
833 goto end_io;
834 }
835 }
836
837 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
838 bio_clear_hipri(bio);
839
840 switch (bio_op(bio)) {
841 case REQ_OP_DISCARD:
842 if (!blk_queue_discard(q))
843 goto not_supported;
844 break;
845 case REQ_OP_SECURE_ERASE:
846 if (!blk_queue_secure_erase(q))
847 goto not_supported;
848 break;
849 case REQ_OP_WRITE_SAME:
850 if (!q->limits.max_write_same_sectors)
851 goto not_supported;
852 break;
853 case REQ_OP_ZONE_APPEND:
854 status = blk_check_zone_append(q, bio);
855 if (status != BLK_STS_OK)
856 goto end_io;
857 break;
858 case REQ_OP_ZONE_RESET:
859 case REQ_OP_ZONE_OPEN:
860 case REQ_OP_ZONE_CLOSE:
861 case REQ_OP_ZONE_FINISH:
862 if (!blk_queue_is_zoned(q))
863 goto not_supported;
864 break;
865 case REQ_OP_ZONE_RESET_ALL:
866 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
867 goto not_supported;
868 break;
869 case REQ_OP_WRITE_ZEROES:
870 if (!q->limits.max_write_zeroes_sectors)
871 goto not_supported;
872 break;
873 default:
874 break;
875 }
876
877 /*
878 * Various block parts want %current->io_context, so allocate it up
879 * front rather than dealing with lots of pain to allocate it only
880 * where needed. This may fail and the block layer knows how to live
881 * with it.
882 */
883 if (unlikely(!current->io_context))
884 create_task_io_context(current, GFP_ATOMIC, q->node);
885
886 if (blk_throtl_bio(bio))
887 return false;
888
889 blk_cgroup_bio_start(bio);
890 blkcg_bio_issue_init(bio);
891
892 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
893 trace_block_bio_queue(bio);
894 /* Now that enqueuing has been traced, we need to trace
895 * completion as well.
896 */
897 bio_set_flag(bio, BIO_TRACE_COMPLETION);
898 }
899 return true;
900
901 not_supported:
902 status = BLK_STS_NOTSUPP;
903 end_io:
904 bio->bi_status = status;
905 bio_endio(bio);
906 return false;
907 }
908
__submit_bio(struct bio * bio)909 static blk_qc_t __submit_bio(struct bio *bio)
910 {
911 struct gendisk *disk = bio->bi_bdev->bd_disk;
912 blk_qc_t ret = BLK_QC_T_NONE;
913
914 if (unlikely(bio_queue_enter(bio) != 0))
915 return BLK_QC_T_NONE;
916
917 if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
918 goto queue_exit;
919 if (disk->fops->submit_bio) {
920 ret = disk->fops->submit_bio(bio);
921 goto queue_exit;
922 }
923 return blk_mq_submit_bio(bio);
924
925 queue_exit:
926 blk_queue_exit(disk->queue);
927 return ret;
928 }
929
930 /*
931 * The loop in this function may be a bit non-obvious, and so deserves some
932 * explanation:
933 *
934 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
935 * that), so we have a list with a single bio.
936 * - We pretend that we have just taken it off a longer list, so we assign
937 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
938 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
939 * bios through a recursive call to submit_bio_noacct. If it did, we find a
940 * non-NULL value in bio_list and re-enter the loop from the top.
941 * - In this case we really did just take the bio of the top of the list (no
942 * pretending) and so remove it from bio_list, and call into ->submit_bio()
943 * again.
944 *
945 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
946 * bio_list_on_stack[1] contains bios that were submitted before the current
947 * ->submit_bio_bio, but that haven't been processed yet.
948 */
__submit_bio_noacct(struct bio * bio)949 static blk_qc_t __submit_bio_noacct(struct bio *bio)
950 {
951 struct bio_list bio_list_on_stack[2];
952 blk_qc_t ret = BLK_QC_T_NONE;
953
954 BUG_ON(bio->bi_next);
955
956 bio_list_init(&bio_list_on_stack[0]);
957 current->bio_list = bio_list_on_stack;
958
959 do {
960 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
961 struct bio_list lower, same;
962
963 /*
964 * Create a fresh bio_list for all subordinate requests.
965 */
966 bio_list_on_stack[1] = bio_list_on_stack[0];
967 bio_list_init(&bio_list_on_stack[0]);
968
969 ret = __submit_bio(bio);
970
971 /*
972 * Sort new bios into those for a lower level and those for the
973 * same level.
974 */
975 bio_list_init(&lower);
976 bio_list_init(&same);
977 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
978 if (q == bio->bi_bdev->bd_disk->queue)
979 bio_list_add(&same, bio);
980 else
981 bio_list_add(&lower, bio);
982
983 /*
984 * Now assemble so we handle the lowest level first.
985 */
986 bio_list_merge(&bio_list_on_stack[0], &lower);
987 bio_list_merge(&bio_list_on_stack[0], &same);
988 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
989 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
990
991 current->bio_list = NULL;
992 return ret;
993 }
994
__submit_bio_noacct_mq(struct bio * bio)995 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
996 {
997 struct bio_list bio_list[2] = { };
998 blk_qc_t ret;
999
1000 current->bio_list = bio_list;
1001
1002 do {
1003 ret = __submit_bio(bio);
1004 } while ((bio = bio_list_pop(&bio_list[0])));
1005
1006 current->bio_list = NULL;
1007 return ret;
1008 }
1009
1010 /**
1011 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1012 * @bio: The bio describing the location in memory and on the device.
1013 *
1014 * This is a version of submit_bio() that shall only be used for I/O that is
1015 * resubmitted to lower level drivers by stacking block drivers. All file
1016 * systems and other upper level users of the block layer should use
1017 * submit_bio() instead.
1018 */
submit_bio_noacct(struct bio * bio)1019 blk_qc_t submit_bio_noacct(struct bio *bio)
1020 {
1021 /*
1022 * We only want one ->submit_bio to be active at a time, else stack
1023 * usage with stacked devices could be a problem. Use current->bio_list
1024 * to collect a list of requests submited by a ->submit_bio method while
1025 * it is active, and then process them after it returned.
1026 */
1027 if (current->bio_list) {
1028 bio_list_add(¤t->bio_list[0], bio);
1029 return BLK_QC_T_NONE;
1030 }
1031
1032 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1033 return __submit_bio_noacct_mq(bio);
1034 return __submit_bio_noacct(bio);
1035 }
1036 EXPORT_SYMBOL(submit_bio_noacct);
1037
1038 /**
1039 * submit_bio - submit a bio to the block device layer for I/O
1040 * @bio: The &struct bio which describes the I/O
1041 *
1042 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1043 * fully set up &struct bio that describes the I/O that needs to be done. The
1044 * bio will be send to the device described by the bi_bdev field.
1045 *
1046 * The success/failure status of the request, along with notification of
1047 * completion, is delivered asynchronously through the ->bi_end_io() callback
1048 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1049 * been called.
1050 */
submit_bio(struct bio * bio)1051 blk_qc_t submit_bio(struct bio *bio)
1052 {
1053 if (blkcg_punt_bio_submit(bio))
1054 return BLK_QC_T_NONE;
1055
1056 /*
1057 * If it's a regular read/write or a barrier with data attached,
1058 * go through the normal accounting stuff before submission.
1059 */
1060 if (bio_has_data(bio)) {
1061 unsigned int count;
1062
1063 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1064 count = queue_logical_block_size(
1065 bio->bi_bdev->bd_disk->queue) >> 9;
1066 else
1067 count = bio_sectors(bio);
1068
1069 if (op_is_write(bio_op(bio))) {
1070 count_vm_events(PGPGOUT, count);
1071 } else {
1072 task_io_account_read(bio->bi_iter.bi_size);
1073 count_vm_events(PGPGIN, count);
1074 }
1075 }
1076
1077 /*
1078 * If we're reading data that is part of the userspace workingset, count
1079 * submission time as memory stall. When the device is congested, or
1080 * the submitting cgroup IO-throttled, submission can be a significant
1081 * part of overall IO time.
1082 */
1083 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1084 bio_flagged(bio, BIO_WORKINGSET))) {
1085 unsigned long pflags;
1086 blk_qc_t ret;
1087
1088 psi_memstall_enter(&pflags);
1089 ret = submit_bio_noacct(bio);
1090 psi_memstall_leave(&pflags);
1091
1092 return ret;
1093 }
1094
1095 return submit_bio_noacct(bio);
1096 }
1097 EXPORT_SYMBOL(submit_bio);
1098
1099 /**
1100 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1101 * for the new queue limits
1102 * @q: the queue
1103 * @rq: the request being checked
1104 *
1105 * Description:
1106 * @rq may have been made based on weaker limitations of upper-level queues
1107 * in request stacking drivers, and it may violate the limitation of @q.
1108 * Since the block layer and the underlying device driver trust @rq
1109 * after it is inserted to @q, it should be checked against @q before
1110 * the insertion using this generic function.
1111 *
1112 * Request stacking drivers like request-based dm may change the queue
1113 * limits when retrying requests on other queues. Those requests need
1114 * to be checked against the new queue limits again during dispatch.
1115 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1116 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1117 struct request *rq)
1118 {
1119 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1120
1121 if (blk_rq_sectors(rq) > max_sectors) {
1122 /*
1123 * SCSI device does not have a good way to return if
1124 * Write Same/Zero is actually supported. If a device rejects
1125 * a non-read/write command (discard, write same,etc.) the
1126 * low-level device driver will set the relevant queue limit to
1127 * 0 to prevent blk-lib from issuing more of the offending
1128 * operations. Commands queued prior to the queue limit being
1129 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1130 * errors being propagated to upper layers.
1131 */
1132 if (max_sectors == 0)
1133 return BLK_STS_NOTSUPP;
1134
1135 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1136 __func__, blk_rq_sectors(rq), max_sectors);
1137 return BLK_STS_IOERR;
1138 }
1139
1140 /*
1141 * The queue settings related to segment counting may differ from the
1142 * original queue.
1143 */
1144 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1145 if (rq->nr_phys_segments > queue_max_segments(q)) {
1146 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1147 __func__, rq->nr_phys_segments, queue_max_segments(q));
1148 return BLK_STS_IOERR;
1149 }
1150
1151 return BLK_STS_OK;
1152 }
1153
1154 /**
1155 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1156 * @q: the queue to submit the request
1157 * @rq: the request being queued
1158 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1159 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1160 {
1161 blk_status_t ret;
1162
1163 ret = blk_cloned_rq_check_limits(q, rq);
1164 if (ret != BLK_STS_OK)
1165 return ret;
1166
1167 if (rq->rq_disk &&
1168 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1169 return BLK_STS_IOERR;
1170
1171 if (blk_crypto_insert_cloned_request(rq))
1172 return BLK_STS_IOERR;
1173
1174 if (blk_queue_io_stat(q))
1175 blk_account_io_start(rq);
1176
1177 /*
1178 * Since we have a scheduler attached on the top device,
1179 * bypass a potential scheduler on the bottom device for
1180 * insert.
1181 */
1182 return blk_mq_request_issue_directly(rq, true);
1183 }
1184 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1185
1186 /**
1187 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1188 * @rq: request to examine
1189 *
1190 * Description:
1191 * A request could be merge of IOs which require different failure
1192 * handling. This function determines the number of bytes which
1193 * can be failed from the beginning of the request without
1194 * crossing into area which need to be retried further.
1195 *
1196 * Return:
1197 * The number of bytes to fail.
1198 */
blk_rq_err_bytes(const struct request * rq)1199 unsigned int blk_rq_err_bytes(const struct request *rq)
1200 {
1201 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1202 unsigned int bytes = 0;
1203 struct bio *bio;
1204
1205 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1206 return blk_rq_bytes(rq);
1207
1208 /*
1209 * Currently the only 'mixing' which can happen is between
1210 * different fastfail types. We can safely fail portions
1211 * which have all the failfast bits that the first one has -
1212 * the ones which are at least as eager to fail as the first
1213 * one.
1214 */
1215 for (bio = rq->bio; bio; bio = bio->bi_next) {
1216 if ((bio->bi_opf & ff) != ff)
1217 break;
1218 bytes += bio->bi_iter.bi_size;
1219 }
1220
1221 /* this could lead to infinite loop */
1222 BUG_ON(blk_rq_bytes(rq) && !bytes);
1223 return bytes;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1226
update_io_ticks(struct block_device * part,unsigned long now,bool end)1227 static void update_io_ticks(struct block_device *part, unsigned long now,
1228 bool end)
1229 {
1230 unsigned long stamp;
1231 again:
1232 stamp = READ_ONCE(part->bd_stamp);
1233 if (unlikely(time_after(now, stamp))) {
1234 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1235 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1236 }
1237 if (part->bd_partno) {
1238 part = bdev_whole(part);
1239 goto again;
1240 }
1241 }
1242
blk_account_io_completion(struct request * req,unsigned int bytes)1243 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1244 {
1245 if (req->part && blk_do_io_stat(req)) {
1246 const int sgrp = op_stat_group(req_op(req));
1247
1248 part_stat_lock();
1249 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1250 part_stat_unlock();
1251 }
1252 }
1253
blk_account_io_done(struct request * req,u64 now)1254 void blk_account_io_done(struct request *req, u64 now)
1255 {
1256 /*
1257 * Account IO completion. flush_rq isn't accounted as a
1258 * normal IO on queueing nor completion. Accounting the
1259 * containing request is enough.
1260 */
1261 if (req->part && blk_do_io_stat(req) &&
1262 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1263 const int sgrp = op_stat_group(req_op(req));
1264
1265 part_stat_lock();
1266 update_io_ticks(req->part, jiffies, true);
1267 part_stat_inc(req->part, ios[sgrp]);
1268 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1269 part_stat_unlock();
1270 }
1271 }
1272
blk_account_io_start(struct request * rq)1273 void blk_account_io_start(struct request *rq)
1274 {
1275 if (!blk_do_io_stat(rq))
1276 return;
1277
1278 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1279 if (rq->bio && rq->bio->bi_bdev)
1280 rq->part = rq->bio->bi_bdev;
1281 else
1282 rq->part = rq->rq_disk->part0;
1283
1284 part_stat_lock();
1285 update_io_ticks(rq->part, jiffies, false);
1286 part_stat_unlock();
1287 }
1288
__part_start_io_acct(struct block_device * part,unsigned int sectors,unsigned int op,unsigned long start_time)1289 static unsigned long __part_start_io_acct(struct block_device *part,
1290 unsigned int sectors, unsigned int op,
1291 unsigned long start_time)
1292 {
1293 const int sgrp = op_stat_group(op);
1294
1295 part_stat_lock();
1296 update_io_ticks(part, start_time, false);
1297 part_stat_inc(part, ios[sgrp]);
1298 part_stat_add(part, sectors[sgrp], sectors);
1299 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1300 part_stat_unlock();
1301
1302 return start_time;
1303 }
1304
1305 /**
1306 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1307 * @bio: bio to start account for
1308 * @start_time: start time that should be passed back to bio_end_io_acct().
1309 */
bio_start_io_acct_time(struct bio * bio,unsigned long start_time)1310 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1311 {
1312 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1313 bio_op(bio), start_time);
1314 }
1315 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1316
1317 /**
1318 * bio_start_io_acct - start I/O accounting for bio based drivers
1319 * @bio: bio to start account for
1320 *
1321 * Returns the start time that should be passed back to bio_end_io_acct().
1322 */
bio_start_io_acct(struct bio * bio)1323 unsigned long bio_start_io_acct(struct bio *bio)
1324 {
1325 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1326 bio_op(bio), jiffies);
1327 }
1328 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1329
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1330 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1331 unsigned int op)
1332 {
1333 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1334 }
1335 EXPORT_SYMBOL(disk_start_io_acct);
1336
__part_end_io_acct(struct block_device * part,unsigned int op,unsigned long start_time)1337 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1338 unsigned long start_time)
1339 {
1340 const int sgrp = op_stat_group(op);
1341 unsigned long now = READ_ONCE(jiffies);
1342 unsigned long duration = now - start_time;
1343
1344 part_stat_lock();
1345 update_io_ticks(part, now, true);
1346 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1347 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1348 part_stat_unlock();
1349 }
1350
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1351 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1352 struct block_device *orig_bdev)
1353 {
1354 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1355 }
1356 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1357
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1358 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1359 unsigned long start_time)
1360 {
1361 __part_end_io_acct(disk->part0, op, start_time);
1362 }
1363 EXPORT_SYMBOL(disk_end_io_acct);
1364
1365 /*
1366 * Steal bios from a request and add them to a bio list.
1367 * The request must not have been partially completed before.
1368 */
blk_steal_bios(struct bio_list * list,struct request * rq)1369 void blk_steal_bios(struct bio_list *list, struct request *rq)
1370 {
1371 if (rq->bio) {
1372 if (list->tail)
1373 list->tail->bi_next = rq->bio;
1374 else
1375 list->head = rq->bio;
1376 list->tail = rq->biotail;
1377
1378 rq->bio = NULL;
1379 rq->biotail = NULL;
1380 }
1381
1382 rq->__data_len = 0;
1383 }
1384 EXPORT_SYMBOL_GPL(blk_steal_bios);
1385
1386 /**
1387 * blk_update_request - Complete multiple bytes without completing the request
1388 * @req: the request being processed
1389 * @error: block status code
1390 * @nr_bytes: number of bytes to complete for @req
1391 *
1392 * Description:
1393 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1394 * the request structure even if @req doesn't have leftover.
1395 * If @req has leftover, sets it up for the next range of segments.
1396 *
1397 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1398 * %false return from this function.
1399 *
1400 * Note:
1401 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1402 * except in the consistency check at the end of this function.
1403 *
1404 * Return:
1405 * %false - this request doesn't have any more data
1406 * %true - this request has more data
1407 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1408 bool blk_update_request(struct request *req, blk_status_t error,
1409 unsigned int nr_bytes)
1410 {
1411 int total_bytes;
1412
1413 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1414
1415 if (!req->bio)
1416 return false;
1417
1418 #ifdef CONFIG_BLK_DEV_INTEGRITY
1419 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1420 error == BLK_STS_OK)
1421 req->q->integrity.profile->complete_fn(req, nr_bytes);
1422 #endif
1423
1424 /*
1425 * Upper layers may call blk_crypto_evict_key() anytime after the last
1426 * bio_endio(). Therefore, the keyslot must be released before that.
1427 */
1428 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1429 __blk_crypto_rq_put_keyslot(req);
1430
1431 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1432 !(req->rq_flags & RQF_QUIET)))
1433 print_req_error(req, error, __func__);
1434
1435 blk_account_io_completion(req, nr_bytes);
1436
1437 total_bytes = 0;
1438 while (req->bio) {
1439 struct bio *bio = req->bio;
1440 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1441
1442 if (bio_bytes == bio->bi_iter.bi_size)
1443 req->bio = bio->bi_next;
1444
1445 /* Completion has already been traced */
1446 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1447 req_bio_endio(req, bio, bio_bytes, error);
1448
1449 total_bytes += bio_bytes;
1450 nr_bytes -= bio_bytes;
1451
1452 if (!nr_bytes)
1453 break;
1454 }
1455
1456 /*
1457 * completely done
1458 */
1459 if (!req->bio) {
1460 /*
1461 * Reset counters so that the request stacking driver
1462 * can find how many bytes remain in the request
1463 * later.
1464 */
1465 req->__data_len = 0;
1466 return false;
1467 }
1468
1469 req->__data_len -= total_bytes;
1470
1471 /* update sector only for requests with clear definition of sector */
1472 if (!blk_rq_is_passthrough(req))
1473 req->__sector += total_bytes >> 9;
1474
1475 /* mixed attributes always follow the first bio */
1476 if (req->rq_flags & RQF_MIXED_MERGE) {
1477 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1478 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1479 }
1480
1481 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1482 /*
1483 * If total number of sectors is less than the first segment
1484 * size, something has gone terribly wrong.
1485 */
1486 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1487 blk_dump_rq_flags(req, "request botched");
1488 req->__data_len = blk_rq_cur_bytes(req);
1489 }
1490
1491 /* recalculate the number of segments */
1492 req->nr_phys_segments = blk_recalc_rq_segments(req);
1493 }
1494
1495 return true;
1496 }
1497 EXPORT_SYMBOL_GPL(blk_update_request);
1498
1499 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1500 /**
1501 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1502 * @rq: the request to be flushed
1503 *
1504 * Description:
1505 * Flush all pages in @rq.
1506 */
rq_flush_dcache_pages(struct request * rq)1507 void rq_flush_dcache_pages(struct request *rq)
1508 {
1509 struct req_iterator iter;
1510 struct bio_vec bvec;
1511
1512 rq_for_each_segment(bvec, rq, iter)
1513 flush_dcache_page(bvec.bv_page);
1514 }
1515 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1516 #endif
1517
1518 /**
1519 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1520 * @q : the queue of the device being checked
1521 *
1522 * Description:
1523 * Check if underlying low-level drivers of a device are busy.
1524 * If the drivers want to export their busy state, they must set own
1525 * exporting function using blk_queue_lld_busy() first.
1526 *
1527 * Basically, this function is used only by request stacking drivers
1528 * to stop dispatching requests to underlying devices when underlying
1529 * devices are busy. This behavior helps more I/O merging on the queue
1530 * of the request stacking driver and prevents I/O throughput regression
1531 * on burst I/O load.
1532 *
1533 * Return:
1534 * 0 - Not busy (The request stacking driver should dispatch request)
1535 * 1 - Busy (The request stacking driver should stop dispatching request)
1536 */
blk_lld_busy(struct request_queue * q)1537 int blk_lld_busy(struct request_queue *q)
1538 {
1539 if (queue_is_mq(q) && q->mq_ops->busy)
1540 return q->mq_ops->busy(q);
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(blk_lld_busy);
1545
1546 /**
1547 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1548 * @rq: the clone request to be cleaned up
1549 *
1550 * Description:
1551 * Free all bios in @rq for a cloned request.
1552 */
blk_rq_unprep_clone(struct request * rq)1553 void blk_rq_unprep_clone(struct request *rq)
1554 {
1555 struct bio *bio;
1556
1557 while ((bio = rq->bio) != NULL) {
1558 rq->bio = bio->bi_next;
1559
1560 bio_put(bio);
1561 }
1562 }
1563 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1564
1565 /**
1566 * blk_rq_prep_clone - Helper function to setup clone request
1567 * @rq: the request to be setup
1568 * @rq_src: original request to be cloned
1569 * @bs: bio_set that bios for clone are allocated from
1570 * @gfp_mask: memory allocation mask for bio
1571 * @bio_ctr: setup function to be called for each clone bio.
1572 * Returns %0 for success, non %0 for failure.
1573 * @data: private data to be passed to @bio_ctr
1574 *
1575 * Description:
1576 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1577 * Also, pages which the original bios are pointing to are not copied
1578 * and the cloned bios just point same pages.
1579 * So cloned bios must be completed before original bios, which means
1580 * the caller must complete @rq before @rq_src.
1581 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1582 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1583 struct bio_set *bs, gfp_t gfp_mask,
1584 int (*bio_ctr)(struct bio *, struct bio *, void *),
1585 void *data)
1586 {
1587 struct bio *bio, *bio_src;
1588
1589 if (!bs)
1590 bs = &fs_bio_set;
1591
1592 __rq_for_each_bio(bio_src, rq_src) {
1593 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1594 if (!bio)
1595 goto free_and_out;
1596
1597 if (bio_ctr && bio_ctr(bio, bio_src, data))
1598 goto free_and_out;
1599
1600 if (rq->bio) {
1601 rq->biotail->bi_next = bio;
1602 rq->biotail = bio;
1603 } else {
1604 rq->bio = rq->biotail = bio;
1605 }
1606 bio = NULL;
1607 }
1608
1609 /* Copy attributes of the original request to the clone request. */
1610 rq->__sector = blk_rq_pos(rq_src);
1611 rq->__data_len = blk_rq_bytes(rq_src);
1612 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1613 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1614 rq->special_vec = rq_src->special_vec;
1615 }
1616 rq->nr_phys_segments = rq_src->nr_phys_segments;
1617 rq->ioprio = rq_src->ioprio;
1618
1619 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1620 goto free_and_out;
1621
1622 return 0;
1623
1624 free_and_out:
1625 if (bio)
1626 bio_put(bio);
1627 blk_rq_unprep_clone(rq);
1628
1629 return -ENOMEM;
1630 }
1631 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1632
kblockd_schedule_work(struct work_struct * work)1633 int kblockd_schedule_work(struct work_struct *work)
1634 {
1635 return queue_work(kblockd_workqueue, work);
1636 }
1637 EXPORT_SYMBOL(kblockd_schedule_work);
1638
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1639 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1640 unsigned long delay)
1641 {
1642 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1643 }
1644 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1645
1646 /**
1647 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1648 * @plug: The &struct blk_plug that needs to be initialized
1649 *
1650 * Description:
1651 * blk_start_plug() indicates to the block layer an intent by the caller
1652 * to submit multiple I/O requests in a batch. The block layer may use
1653 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1654 * is called. However, the block layer may choose to submit requests
1655 * before a call to blk_finish_plug() if the number of queued I/Os
1656 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1657 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1658 * the task schedules (see below).
1659 *
1660 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1661 * pending I/O should the task end up blocking between blk_start_plug() and
1662 * blk_finish_plug(). This is important from a performance perspective, but
1663 * also ensures that we don't deadlock. For instance, if the task is blocking
1664 * for a memory allocation, memory reclaim could end up wanting to free a
1665 * page belonging to that request that is currently residing in our private
1666 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1667 * this kind of deadlock.
1668 */
blk_start_plug(struct blk_plug * plug)1669 void blk_start_plug(struct blk_plug *plug)
1670 {
1671 struct task_struct *tsk = current;
1672
1673 /*
1674 * If this is a nested plug, don't actually assign it.
1675 */
1676 if (tsk->plug)
1677 return;
1678
1679 INIT_LIST_HEAD(&plug->mq_list);
1680 INIT_LIST_HEAD(&plug->cb_list);
1681 plug->rq_count = 0;
1682 plug->multiple_queues = false;
1683 plug->nowait = false;
1684
1685 /*
1686 * Store ordering should not be needed here, since a potential
1687 * preempt will imply a full memory barrier
1688 */
1689 tsk->plug = plug;
1690 }
1691 EXPORT_SYMBOL(blk_start_plug);
1692
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1693 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1694 {
1695 LIST_HEAD(callbacks);
1696
1697 while (!list_empty(&plug->cb_list)) {
1698 list_splice_init(&plug->cb_list, &callbacks);
1699
1700 while (!list_empty(&callbacks)) {
1701 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1702 struct blk_plug_cb,
1703 list);
1704 list_del(&cb->list);
1705 cb->callback(cb, from_schedule);
1706 }
1707 }
1708 }
1709
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1710 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1711 int size)
1712 {
1713 struct blk_plug *plug = current->plug;
1714 struct blk_plug_cb *cb;
1715
1716 if (!plug)
1717 return NULL;
1718
1719 list_for_each_entry(cb, &plug->cb_list, list)
1720 if (cb->callback == unplug && cb->data == data)
1721 return cb;
1722
1723 /* Not currently on the callback list */
1724 BUG_ON(size < sizeof(*cb));
1725 cb = kzalloc(size, GFP_ATOMIC);
1726 if (cb) {
1727 cb->data = data;
1728 cb->callback = unplug;
1729 list_add(&cb->list, &plug->cb_list);
1730 }
1731 return cb;
1732 }
1733 EXPORT_SYMBOL(blk_check_plugged);
1734
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1735 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1736 {
1737 flush_plug_callbacks(plug, from_schedule);
1738
1739 if (!list_empty(&plug->mq_list))
1740 blk_mq_flush_plug_list(plug, from_schedule);
1741 }
1742
1743 /**
1744 * blk_finish_plug - mark the end of a batch of submitted I/O
1745 * @plug: The &struct blk_plug passed to blk_start_plug()
1746 *
1747 * Description:
1748 * Indicate that a batch of I/O submissions is complete. This function
1749 * must be paired with an initial call to blk_start_plug(). The intent
1750 * is to allow the block layer to optimize I/O submission. See the
1751 * documentation for blk_start_plug() for more information.
1752 */
blk_finish_plug(struct blk_plug * plug)1753 void blk_finish_plug(struct blk_plug *plug)
1754 {
1755 if (plug != current->plug)
1756 return;
1757 blk_flush_plug_list(plug, false);
1758
1759 current->plug = NULL;
1760 }
1761 EXPORT_SYMBOL(blk_finish_plug);
1762
blk_io_schedule(void)1763 void blk_io_schedule(void)
1764 {
1765 /* Prevent hang_check timer from firing at us during very long I/O */
1766 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1767
1768 if (timeout)
1769 io_schedule_timeout(timeout);
1770 else
1771 io_schedule();
1772 }
1773 EXPORT_SYMBOL_GPL(blk_io_schedule);
1774
blk_dev_init(void)1775 int __init blk_dev_init(void)
1776 {
1777 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1778 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1779 sizeof_field(struct request, cmd_flags));
1780 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1781 sizeof_field(struct bio, bi_opf));
1782
1783 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1784 kblockd_workqueue = alloc_workqueue("kblockd",
1785 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1786 if (!kblockd_workqueue)
1787 panic("Failed to create kblockd\n");
1788
1789 blk_requestq_cachep = kmem_cache_create("request_queue",
1790 sizeof(struct internal_request_queue), 0, SLAB_PANIC, NULL);
1791
1792 blk_debugfs_root = debugfs_create_dir("block", NULL);
1793 blk_mq_debugfs_init();
1794
1795 return 0;
1796 }
1797