• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 #include <linux/blk-crypto.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 #include <trace/hooks/block.h>
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49 
blk_mq_poll_stats_bkt(const struct request * rq)50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52 	int ddir, sectors, bucket;
53 
54 	ddir = rq_data_dir(rq);
55 	sectors = blk_rq_stats_sectors(rq);
56 
57 	bucket = ddir + 2 * ilog2(sectors);
58 
59 	if (bucket < 0)
60 		return -1;
61 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 
64 	return bucket;
65 }
66 
67 /*
68  * Check if any of the ctx, dispatch list or elevator
69  * have pending work in this hardware queue.
70  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)71 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
72 {
73 	return !list_empty_careful(&hctx->dispatch) ||
74 		sbitmap_any_bit_set(&hctx->ctx_map) ||
75 			blk_mq_sched_has_work(hctx);
76 }
77 
78 /*
79  * Mark this ctx as having pending work in this hardware queue
80  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)81 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
82 				     struct blk_mq_ctx *ctx)
83 {
84 	const int bit = ctx->index_hw[hctx->type];
85 
86 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
87 		sbitmap_set_bit(&hctx->ctx_map, bit);
88 }
89 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)90 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
91 				      struct blk_mq_ctx *ctx)
92 {
93 	const int bit = ctx->index_hw[hctx->type];
94 
95 	sbitmap_clear_bit(&hctx->ctx_map, bit);
96 }
97 
98 struct mq_inflight {
99 	struct block_device *part;
100 	unsigned int inflight[2];
101 };
102 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)103 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
104 				  struct request *rq, void *priv,
105 				  bool reserved)
106 {
107 	struct mq_inflight *mi = priv;
108 
109 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
110 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
111 		mi->inflight[rq_data_dir(rq)]++;
112 
113 	return true;
114 }
115 
blk_mq_in_flight(struct request_queue * q,struct block_device * part)116 unsigned int blk_mq_in_flight(struct request_queue *q,
117 		struct block_device *part)
118 {
119 	struct mq_inflight mi = { .part = part };
120 
121 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 
123 	return mi.inflight[0] + mi.inflight[1];
124 }
125 
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])126 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
127 		unsigned int inflight[2])
128 {
129 	struct mq_inflight mi = { .part = part };
130 
131 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
132 	inflight[0] = mi.inflight[0];
133 	inflight[1] = mi.inflight[1];
134 }
135 
blk_freeze_queue_start(struct request_queue * q)136 void blk_freeze_queue_start(struct request_queue *q)
137 {
138 	mutex_lock(&q->mq_freeze_lock);
139 	if (++q->mq_freeze_depth == 1) {
140 		percpu_ref_kill(&q->q_usage_counter);
141 		mutex_unlock(&q->mq_freeze_lock);
142 		if (queue_is_mq(q))
143 			blk_mq_run_hw_queues(q, false);
144 	} else {
145 		mutex_unlock(&q->mq_freeze_lock);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	blk_mq_freeze_queue_wait(q);
180 }
181 
blk_mq_freeze_queue(struct request_queue * q)182 void blk_mq_freeze_queue(struct request_queue *q)
183 {
184 	/*
185 	 * ...just an alias to keep freeze and unfreeze actions balanced
186 	 * in the blk_mq_* namespace
187 	 */
188 	blk_freeze_queue(q);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
191 
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)192 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
193 {
194 	mutex_lock(&q->mq_freeze_lock);
195 	if (force_atomic)
196 		q->q_usage_counter.data->force_atomic = true;
197 	q->mq_freeze_depth--;
198 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
199 	if (!q->mq_freeze_depth) {
200 		percpu_ref_resurrect(&q->q_usage_counter);
201 		wake_up_all(&q->mq_freeze_wq);
202 	}
203 	mutex_unlock(&q->mq_freeze_lock);
204 }
205 
blk_mq_unfreeze_queue(struct request_queue * q)206 void blk_mq_unfreeze_queue(struct request_queue *q)
207 {
208 	__blk_mq_unfreeze_queue(q, false);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
211 
212 /*
213  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214  * mpt3sas driver such that this function can be removed.
215  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 {
218 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 }
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
221 
222 /**
223  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224  * @q: request queue.
225  *
226  * Note: this function does not prevent that the struct request end_io()
227  * callback function is invoked. Once this function is returned, we make
228  * sure no dispatch can happen until the queue is unquiesced via
229  * blk_mq_unquiesce_queue().
230  */
blk_mq_quiesce_queue(struct request_queue * q)231 void blk_mq_quiesce_queue(struct request_queue *q)
232 {
233 	struct blk_mq_hw_ctx *hctx;
234 	unsigned int i;
235 	bool rcu = false;
236 
237 	blk_mq_quiesce_queue_nowait(q);
238 
239 	queue_for_each_hw_ctx(q, hctx, i) {
240 		if (hctx->flags & BLK_MQ_F_BLOCKING)
241 			synchronize_srcu(hctx->srcu);
242 		else
243 			rcu = true;
244 	}
245 	if (rcu)
246 		synchronize_rcu();
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
blk_mq_unquiesce_queue(struct request_queue * q)257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260 
261 	/* dispatch requests which are inserted during quiescing */
262 	blk_mq_run_hw_queues(q, true);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265 
blk_mq_wake_waiters(struct request_queue * q)266 void blk_mq_wake_waiters(struct request_queue *q)
267 {
268 	struct blk_mq_hw_ctx *hctx;
269 	unsigned int i;
270 
271 	queue_for_each_hw_ctx(q, hctx, i)
272 		if (blk_mq_hw_queue_mapped(hctx))
273 			blk_mq_tag_wakeup_all(hctx->tags, true);
274 }
275 
276 /*
277  * Only need start/end time stamping if we have iostat or
278  * blk stats enabled, or using an IO scheduler.
279  */
blk_mq_need_time_stamp(struct request * rq)280 static inline bool blk_mq_need_time_stamp(struct request *rq)
281 {
282 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
283 }
284 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)285 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
286 		unsigned int tag, u64 alloc_time_ns)
287 {
288 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
289 	struct request *rq = tags->static_rqs[tag];
290 
291 	if (data->q->elevator) {
292 		rq->tag = BLK_MQ_NO_TAG;
293 		rq->internal_tag = tag;
294 	} else {
295 		rq->tag = tag;
296 		rq->internal_tag = BLK_MQ_NO_TAG;
297 	}
298 
299 	/* csd/requeue_work/fifo_time is initialized before use */
300 	rq->q = data->q;
301 	rq->mq_ctx = data->ctx;
302 	rq->mq_hctx = data->hctx;
303 	rq->rq_flags = 0;
304 	rq->cmd_flags = data->cmd_flags;
305 	if (data->flags & BLK_MQ_REQ_PM)
306 		rq->rq_flags |= RQF_PM;
307 	if (blk_queue_io_stat(data->q))
308 		rq->rq_flags |= RQF_IO_STAT;
309 	INIT_LIST_HEAD(&rq->queuelist);
310 	INIT_HLIST_NODE(&rq->hash);
311 	RB_CLEAR_NODE(&rq->rb_node);
312 	rq->rq_disk = NULL;
313 	rq->part = NULL;
314 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
315 	rq->alloc_time_ns = alloc_time_ns;
316 #endif
317 	if (blk_mq_need_time_stamp(rq))
318 		rq->start_time_ns = ktime_get_ns();
319 	else
320 		rq->start_time_ns = 0;
321 	rq->io_start_time_ns = 0;
322 	rq->stats_sectors = 0;
323 	rq->nr_phys_segments = 0;
324 #if defined(CONFIG_BLK_DEV_INTEGRITY)
325 	rq->nr_integrity_segments = 0;
326 #endif
327 	blk_crypto_rq_set_defaults(rq);
328 	/* tag was already set */
329 	WRITE_ONCE(rq->deadline, 0);
330 
331 	rq->timeout = 0;
332 
333 	rq->end_io = NULL;
334 	rq->end_io_data = NULL;
335 
336 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
337 	refcount_set(&rq->ref, 1);
338 
339 	if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH) {
340 		struct elevator_queue *e = data->q->elevator;
341 
342 		rq->elv.icq = NULL;
343 		if (e && e->type->ops.prepare_request) {
344 			if (e->type->icq_cache)
345 				blk_mq_sched_assign_ioc(rq);
346 
347 			e->type->ops.prepare_request(rq);
348 			rq->rq_flags |= RQF_ELVPRIV;
349 		}
350 	}
351 
352 	data->hctx->queued++;
353 	trace_android_vh_blk_rq_ctx_init(rq, tags, data, alloc_time_ns);
354 	return rq;
355 }
356 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)357 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
358 {
359 	struct request_queue *q = data->q;
360 	struct elevator_queue *e = q->elevator;
361 	u64 alloc_time_ns = 0;
362 	unsigned int tag;
363 
364 	/* alloc_time includes depth and tag waits */
365 	if (blk_queue_rq_alloc_time(q))
366 		alloc_time_ns = ktime_get_ns();
367 
368 	if (data->cmd_flags & REQ_NOWAIT)
369 		data->flags |= BLK_MQ_REQ_NOWAIT;
370 
371 	if (e) {
372 		/*
373 		 * Do not limit the depth for passthrough requests nor for flush
374 		 * requests nor for requests with a reserved tag.
375 		 */
376 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
377 		    !blk_op_is_passthrough(data->cmd_flags) &&
378 		    e->type->ops.limit_depth &&
379 		    !(data->flags & BLK_MQ_REQ_RESERVED))
380 			e->type->ops.limit_depth(data->cmd_flags, data);
381 	}
382 
383 retry:
384 	data->ctx = blk_mq_get_ctx(q);
385 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
386 	if (!e)
387 		blk_mq_tag_busy(data->hctx);
388 
389 	/*
390 	 * Waiting allocations only fail because of an inactive hctx.  In that
391 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
392 	 * should have migrated us to an online CPU by now.
393 	 */
394 	tag = blk_mq_get_tag(data);
395 	if (tag == BLK_MQ_NO_TAG) {
396 		if (data->flags & BLK_MQ_REQ_NOWAIT)
397 			return NULL;
398 
399 		/*
400 		 * Give up the CPU and sleep for a random short time to ensure
401 		 * that thread using a realtime scheduling class are migrated
402 		 * off the CPU, and thus off the hctx that is going away.
403 		 */
404 		msleep(3);
405 		goto retry;
406 	}
407 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
408 }
409 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)410 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
411 		blk_mq_req_flags_t flags)
412 {
413 	struct blk_mq_alloc_data data = {
414 		.q		= q,
415 		.flags		= flags,
416 		.cmd_flags	= op,
417 	};
418 	struct request *rq;
419 	int ret;
420 
421 	ret = blk_queue_enter(q, flags);
422 	if (ret)
423 		return ERR_PTR(ret);
424 
425 	rq = __blk_mq_alloc_request(&data);
426 	if (!rq)
427 		goto out_queue_exit;
428 	rq->__data_len = 0;
429 	rq->__sector = (sector_t) -1;
430 	rq->bio = rq->biotail = NULL;
431 	return rq;
432 out_queue_exit:
433 	blk_queue_exit(q);
434 	return ERR_PTR(-EWOULDBLOCK);
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 	struct blk_mq_alloc_data data = {
442 		.q		= q,
443 		.flags		= flags,
444 		.cmd_flags	= op,
445 	};
446 	u64 alloc_time_ns = 0;
447 	unsigned int cpu;
448 	unsigned int tag;
449 	int ret;
450 
451 	/* alloc_time includes depth and tag waits */
452 	if (blk_queue_rq_alloc_time(q))
453 		alloc_time_ns = ktime_get_ns();
454 
455 	/*
456 	 * If the tag allocator sleeps we could get an allocation for a
457 	 * different hardware context.  No need to complicate the low level
458 	 * allocator for this for the rare use case of a command tied to
459 	 * a specific queue.
460 	 */
461 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
462 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
463 		return ERR_PTR(-EINVAL);
464 
465 	if (hctx_idx >= q->nr_hw_queues)
466 		return ERR_PTR(-EIO);
467 
468 	ret = blk_queue_enter(q, flags);
469 	if (ret)
470 		return ERR_PTR(ret);
471 
472 	/*
473 	 * Check if the hardware context is actually mapped to anything.
474 	 * If not tell the caller that it should skip this queue.
475 	 */
476 	ret = -EXDEV;
477 	data.hctx = q->queue_hw_ctx[hctx_idx];
478 	if (!blk_mq_hw_queue_mapped(data.hctx))
479 		goto out_queue_exit;
480 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
481 	if (cpu >= nr_cpu_ids)
482 		goto out_queue_exit;
483 	data.ctx = __blk_mq_get_ctx(q, cpu);
484 
485 	if (!q->elevator)
486 		blk_mq_tag_busy(data.hctx);
487 
488 	ret = -EWOULDBLOCK;
489 	tag = blk_mq_get_tag(&data);
490 	if (tag == BLK_MQ_NO_TAG)
491 		goto out_queue_exit;
492 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
493 
494 out_queue_exit:
495 	blk_queue_exit(q);
496 	return ERR_PTR(ret);
497 }
498 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
499 
__blk_mq_free_request(struct request * rq)500 static void __blk_mq_free_request(struct request *rq)
501 {
502 	struct request_queue *q = rq->q;
503 	struct blk_mq_ctx *ctx = rq->mq_ctx;
504 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505 	const int sched_tag = rq->internal_tag;
506 
507 	blk_crypto_free_request(rq);
508 	blk_pm_mark_last_busy(rq);
509 	rq->mq_hctx = NULL;
510 	if (rq->tag != BLK_MQ_NO_TAG)
511 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
512 	if (sched_tag != BLK_MQ_NO_TAG)
513 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
514 	blk_mq_sched_restart(hctx);
515 	blk_queue_exit(q);
516 }
517 
blk_mq_free_request(struct request * rq)518 void blk_mq_free_request(struct request *rq)
519 {
520 	struct request_queue *q = rq->q;
521 	struct elevator_queue *e = q->elevator;
522 	struct blk_mq_ctx *ctx = rq->mq_ctx;
523 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
524 
525 	if (rq->rq_flags & RQF_ELVPRIV) {
526 		if (e && e->type->ops.finish_request)
527 			e->type->ops.finish_request(rq);
528 		if (rq->elv.icq) {
529 			put_io_context(rq->elv.icq->ioc);
530 			rq->elv.icq = NULL;
531 		}
532 	}
533 
534 	ctx->rq_completed[rq_is_sync(rq)]++;
535 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
536 		__blk_mq_dec_active_requests(hctx);
537 
538 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
539 		laptop_io_completion(q->disk->bdi);
540 
541 	rq_qos_done(q, rq);
542 
543 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
544 	if (refcount_dec_and_test(&rq->ref))
545 		__blk_mq_free_request(rq);
546 }
547 EXPORT_SYMBOL_GPL(blk_mq_free_request);
548 
__blk_mq_end_request(struct request * rq,blk_status_t error)549 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
550 {
551 	u64 now = 0;
552 
553 	if (blk_mq_need_time_stamp(rq))
554 		now = ktime_get_ns();
555 
556 	if (rq->rq_flags & RQF_STATS) {
557 		blk_mq_poll_stats_start(rq->q);
558 		blk_stat_add(rq, now);
559 	}
560 
561 	blk_mq_sched_completed_request(rq, now);
562 
563 	blk_account_io_done(rq, now);
564 
565 	if (rq->end_io) {
566 		rq_qos_done(rq->q, rq);
567 		rq->end_io(rq, error);
568 	} else {
569 		blk_mq_free_request(rq);
570 	}
571 }
572 EXPORT_SYMBOL(__blk_mq_end_request);
573 
blk_mq_end_request(struct request * rq,blk_status_t error)574 void blk_mq_end_request(struct request *rq, blk_status_t error)
575 {
576 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
577 		BUG();
578 	__blk_mq_end_request(rq, error);
579 }
580 EXPORT_SYMBOL(blk_mq_end_request);
581 
blk_complete_reqs(struct llist_head * list)582 static void blk_complete_reqs(struct llist_head *list)
583 {
584 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
585 	struct request *rq, *next;
586 
587 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
588 		rq->q->mq_ops->complete(rq);
589 }
590 
blk_done_softirq(struct softirq_action * h)591 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
592 {
593 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
594 }
595 
blk_softirq_cpu_dead(unsigned int cpu)596 static int blk_softirq_cpu_dead(unsigned int cpu)
597 {
598 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
599 	return 0;
600 }
601 
__blk_mq_complete_request_remote(void * data)602 static void __blk_mq_complete_request_remote(void *data)
603 {
604 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
605 }
606 
blk_mq_complete_need_ipi(struct request * rq)607 static inline bool blk_mq_complete_need_ipi(struct request *rq)
608 {
609 	int cpu = raw_smp_processor_id();
610 
611 	if (!IS_ENABLED(CONFIG_SMP) ||
612 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
613 		return false;
614 	/*
615 	 * With force threaded interrupts enabled, raising softirq from an SMP
616 	 * function call will always result in waking the ksoftirqd thread.
617 	 * This is probably worse than completing the request on a different
618 	 * cache domain.
619 	 */
620 	if (force_irqthreads())
621 		return false;
622 
623 	/* same CPU or cache domain?  Complete locally */
624 	if (cpu == rq->mq_ctx->cpu ||
625 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
626 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
627 		return false;
628 
629 	/* don't try to IPI to an offline CPU */
630 	return cpu_online(rq->mq_ctx->cpu);
631 }
632 
blk_mq_complete_send_ipi(struct request * rq)633 static void blk_mq_complete_send_ipi(struct request *rq)
634 {
635 	struct llist_head *list;
636 	unsigned int cpu;
637 
638 	cpu = rq->mq_ctx->cpu;
639 	list = &per_cpu(blk_cpu_done, cpu);
640 	if (llist_add(&rq->ipi_list, list)) {
641 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
642 		smp_call_function_single_async(cpu, &rq->csd);
643 	}
644 }
645 
blk_mq_raise_softirq(struct request * rq)646 static void blk_mq_raise_softirq(struct request *rq)
647 {
648 	struct llist_head *list;
649 
650 	preempt_disable();
651 	list = this_cpu_ptr(&blk_cpu_done);
652 	if (llist_add(&rq->ipi_list, list))
653 		raise_softirq(BLOCK_SOFTIRQ);
654 	preempt_enable();
655 }
656 
blk_mq_complete_request_remote(struct request * rq)657 bool blk_mq_complete_request_remote(struct request *rq)
658 {
659 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
660 
661 	/*
662 	 * For a polled request, always complete locallly, it's pointless
663 	 * to redirect the completion.
664 	 */
665 	if (rq->cmd_flags & REQ_HIPRI)
666 		return false;
667 
668 	if (blk_mq_complete_need_ipi(rq)) {
669 		blk_mq_complete_send_ipi(rq);
670 		return true;
671 	}
672 
673 	if (rq->q->nr_hw_queues == 1) {
674 		blk_mq_raise_softirq(rq);
675 		return true;
676 	}
677 	return false;
678 }
679 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
680 
681 /**
682  * blk_mq_complete_request - end I/O on a request
683  * @rq:		the request being processed
684  *
685  * Description:
686  *	Complete a request by scheduling the ->complete_rq operation.
687  **/
blk_mq_complete_request(struct request * rq)688 void blk_mq_complete_request(struct request *rq)
689 {
690 	if (!blk_mq_complete_request_remote(rq))
691 		rq->q->mq_ops->complete(rq);
692 }
693 EXPORT_SYMBOL(blk_mq_complete_request);
694 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)695 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
696 	__releases(hctx->srcu)
697 {
698 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
699 		rcu_read_unlock();
700 	else
701 		srcu_read_unlock(hctx->srcu, srcu_idx);
702 }
703 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)704 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
705 	__acquires(hctx->srcu)
706 {
707 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
708 		/* shut up gcc false positive */
709 		*srcu_idx = 0;
710 		rcu_read_lock();
711 	} else
712 		*srcu_idx = srcu_read_lock(hctx->srcu);
713 }
714 
715 /**
716  * blk_mq_start_request - Start processing a request
717  * @rq: Pointer to request to be started
718  *
719  * Function used by device drivers to notify the block layer that a request
720  * is going to be processed now, so blk layer can do proper initializations
721  * such as starting the timeout timer.
722  */
blk_mq_start_request(struct request * rq)723 void blk_mq_start_request(struct request *rq)
724 {
725 	struct request_queue *q = rq->q;
726 
727 	trace_block_rq_issue(rq);
728 
729 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
730 		rq->io_start_time_ns = ktime_get_ns();
731 		rq->stats_sectors = blk_rq_sectors(rq);
732 		rq->rq_flags |= RQF_STATS;
733 		rq_qos_issue(q, rq);
734 	}
735 
736 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
737 
738 	blk_add_timer(rq);
739 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
740 
741 #ifdef CONFIG_BLK_DEV_INTEGRITY
742 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
743 		q->integrity.profile->prepare_fn(rq);
744 #endif
745 }
746 EXPORT_SYMBOL(blk_mq_start_request);
747 
__blk_mq_requeue_request(struct request * rq)748 static void __blk_mq_requeue_request(struct request *rq)
749 {
750 	struct request_queue *q = rq->q;
751 
752 	blk_mq_put_driver_tag(rq);
753 
754 	trace_block_rq_requeue(rq);
755 	rq_qos_requeue(q, rq);
756 
757 	if (blk_mq_request_started(rq)) {
758 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
759 		rq->rq_flags &= ~RQF_TIMED_OUT;
760 	}
761 }
762 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)763 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
764 {
765 	__blk_mq_requeue_request(rq);
766 
767 	/* this request will be re-inserted to io scheduler queue */
768 	blk_mq_sched_requeue_request(rq);
769 
770 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
771 }
772 EXPORT_SYMBOL(blk_mq_requeue_request);
773 
blk_mq_requeue_work(struct work_struct * work)774 static void blk_mq_requeue_work(struct work_struct *work)
775 {
776 	struct request_queue *q = &container_of(work,
777 			struct internal_request_queue, requeue_work.work)->q;
778 	LIST_HEAD(rq_list);
779 	struct request *rq, *next;
780 
781 	spin_lock_irq(&q->requeue_lock);
782 	list_splice_init(&q->requeue_list, &rq_list);
783 	spin_unlock_irq(&q->requeue_lock);
784 
785 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
786 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
787 			continue;
788 
789 		rq->rq_flags &= ~RQF_SOFTBARRIER;
790 		list_del_init(&rq->queuelist);
791 		/*
792 		 * If RQF_DONTPREP, rq has contained some driver specific
793 		 * data, so insert it to hctx dispatch list to avoid any
794 		 * merge.
795 		 */
796 		if (rq->rq_flags & RQF_DONTPREP)
797 			blk_mq_request_bypass_insert(rq, false, false);
798 		else
799 			blk_mq_sched_insert_request(rq, /*at_head=*/
800 				!blk_rq_is_seq_zoned_write(rq), false, false);
801 	}
802 
803 	while (!list_empty(&rq_list)) {
804 		rq = list_entry(rq_list.next, struct request, queuelist);
805 		list_del_init(&rq->queuelist);
806 		blk_mq_sched_insert_request(rq, false, false, false);
807 	}
808 
809 	blk_mq_run_hw_queues(q, false);
810 }
811 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)812 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
813 				bool kick_requeue_list)
814 {
815 	struct request_queue *q = rq->q;
816 	unsigned long flags;
817 
818 	/*
819 	 * We abuse this flag that is otherwise used by the I/O scheduler to
820 	 * request head insertion from the workqueue.
821 	 */
822 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
823 
824 	spin_lock_irqsave(&q->requeue_lock, flags);
825 	if (at_head) {
826 		rq->rq_flags |= RQF_SOFTBARRIER;
827 		list_add(&rq->queuelist, &q->requeue_list);
828 	} else {
829 		list_add_tail(&rq->queuelist, &q->requeue_list);
830 	}
831 	spin_unlock_irqrestore(&q->requeue_lock, flags);
832 
833 	if (kick_requeue_list)
834 		blk_mq_kick_requeue_list(q);
835 }
836 
blk_mq_kick_requeue_list(struct request_queue * q)837 void blk_mq_kick_requeue_list(struct request_queue *q)
838 {
839 	struct internal_request_queue *iq = to_internal_q(q);
840 
841 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &iq->requeue_work, 0);
842 }
843 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
844 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)845 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
846 				    unsigned long msecs)
847 {
848 	struct internal_request_queue *iq = to_internal_q(q);
849 
850 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &iq->requeue_work,
851 				    msecs_to_jiffies(msecs));
852 }
853 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
854 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)855 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
856 {
857 	if (tag < tags->nr_tags) {
858 		prefetch(tags->rqs[tag]);
859 		return tags->rqs[tag];
860 	}
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(blk_mq_tag_to_rq);
865 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)866 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
867 			       void *priv, bool reserved)
868 {
869 	/*
870 	 * If we find a request that isn't idle and the queue matches,
871 	 * we know the queue is busy. Return false to stop the iteration.
872 	 */
873 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
874 		bool *busy = priv;
875 
876 		*busy = true;
877 		return false;
878 	}
879 
880 	return true;
881 }
882 
blk_mq_queue_inflight(struct request_queue * q)883 bool blk_mq_queue_inflight(struct request_queue *q)
884 {
885 	bool busy = false;
886 
887 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
888 	return busy;
889 }
890 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
891 
blk_mq_rq_timed_out(struct request * req,bool reserved)892 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
893 {
894 	req->rq_flags |= RQF_TIMED_OUT;
895 	if (req->q->mq_ops->timeout) {
896 		enum blk_eh_timer_return ret;
897 
898 		ret = req->q->mq_ops->timeout(req, reserved);
899 		if (ret == BLK_EH_DONE)
900 			return;
901 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
902 	}
903 
904 	blk_add_timer(req);
905 }
906 
blk_mq_req_expired(struct request * rq,unsigned long * next)907 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
908 {
909 	unsigned long deadline;
910 
911 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
912 		return false;
913 	if (rq->rq_flags & RQF_TIMED_OUT)
914 		return false;
915 
916 	deadline = READ_ONCE(rq->deadline);
917 	if (time_after_eq(jiffies, deadline))
918 		return true;
919 
920 	if (*next == 0)
921 		*next = deadline;
922 	else if (time_after(*next, deadline))
923 		*next = deadline;
924 	return false;
925 }
926 
blk_mq_put_rq_ref(struct request * rq)927 void blk_mq_put_rq_ref(struct request *rq)
928 {
929 	if (is_flush_rq(rq))
930 		rq->end_io(rq, 0);
931 	else if (refcount_dec_and_test(&rq->ref))
932 		__blk_mq_free_request(rq);
933 }
934 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)935 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
936 		struct request *rq, void *priv, bool reserved)
937 {
938 	unsigned long *next = priv;
939 
940 	/*
941 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
942 	 * be reallocated underneath the timeout handler's processing, then
943 	 * the expire check is reliable. If the request is not expired, then
944 	 * it was completed and reallocated as a new request after returning
945 	 * from blk_mq_check_expired().
946 	 */
947 	if (blk_mq_req_expired(rq, next))
948 		blk_mq_rq_timed_out(rq, reserved);
949 	return true;
950 }
951 
blk_mq_timeout_work(struct work_struct * work)952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954 	struct request_queue *q =
955 		container_of(work, struct request_queue, timeout_work);
956 	unsigned long next = 0;
957 	struct blk_mq_hw_ctx *hctx;
958 	int i;
959 
960 	/* A deadlock might occur if a request is stuck requiring a
961 	 * timeout at the same time a queue freeze is waiting
962 	 * completion, since the timeout code would not be able to
963 	 * acquire the queue reference here.
964 	 *
965 	 * That's why we don't use blk_queue_enter here; instead, we use
966 	 * percpu_ref_tryget directly, because we need to be able to
967 	 * obtain a reference even in the short window between the queue
968 	 * starting to freeze, by dropping the first reference in
969 	 * blk_freeze_queue_start, and the moment the last request is
970 	 * consumed, marked by the instant q_usage_counter reaches
971 	 * zero.
972 	 */
973 	if (!percpu_ref_tryget(&q->q_usage_counter))
974 		return;
975 
976 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977 
978 	if (next != 0) {
979 		mod_timer(&q->timeout, next);
980 	} else {
981 		/*
982 		 * Request timeouts are handled as a forward rolling timer. If
983 		 * we end up here it means that no requests are pending and
984 		 * also that no request has been pending for a while. Mark
985 		 * each hctx as idle.
986 		 */
987 		queue_for_each_hw_ctx(q, hctx, i) {
988 			/* the hctx may be unmapped, so check it here */
989 			if (blk_mq_hw_queue_mapped(hctx))
990 				blk_mq_tag_idle(hctx);
991 		}
992 	}
993 	blk_queue_exit(q);
994 }
995 
996 struct flush_busy_ctx_data {
997 	struct blk_mq_hw_ctx *hctx;
998 	struct list_head *list;
999 };
1000 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003 	struct flush_busy_ctx_data *flush_data = data;
1004 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006 	enum hctx_type type = hctx->type;
1007 
1008 	spin_lock(&ctx->lock);
1009 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010 	sbitmap_clear_bit(sb, bitnr);
1011 	spin_unlock(&ctx->lock);
1012 	return true;
1013 }
1014 
1015 /*
1016  * Process software queues that have been marked busy, splicing them
1017  * to the for-dispatch
1018  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021 	struct flush_busy_ctx_data data = {
1022 		.hctx = hctx,
1023 		.list = list,
1024 	};
1025 
1026 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029 
1030 struct dispatch_rq_data {
1031 	struct blk_mq_hw_ctx *hctx;
1032 	struct request *rq;
1033 };
1034 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036 		void *data)
1037 {
1038 	struct dispatch_rq_data *dispatch_data = data;
1039 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041 	enum hctx_type type = hctx->type;
1042 
1043 	spin_lock(&ctx->lock);
1044 	if (!list_empty(&ctx->rq_lists[type])) {
1045 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046 		list_del_init(&dispatch_data->rq->queuelist);
1047 		if (list_empty(&ctx->rq_lists[type]))
1048 			sbitmap_clear_bit(sb, bitnr);
1049 	}
1050 	spin_unlock(&ctx->lock);
1051 
1052 	return !dispatch_data->rq;
1053 }
1054 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056 					struct blk_mq_ctx *start)
1057 {
1058 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1059 	struct dispatch_rq_data data = {
1060 		.hctx = hctx,
1061 		.rq   = NULL,
1062 	};
1063 
1064 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1065 			       dispatch_rq_from_ctx, &data);
1066 
1067 	return data.rq;
1068 }
1069 
queued_to_index(unsigned int queued)1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072 	if (!queued)
1073 		return 0;
1074 
1075 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077 
__blk_mq_get_driver_tag(struct request * rq)1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082 	int tag;
1083 
1084 	blk_mq_tag_busy(rq->mq_hctx);
1085 
1086 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087 		bt = rq->mq_hctx->tags->breserved_tags;
1088 		tag_offset = 0;
1089 	}
1090 
1091 	tag = __sbitmap_queue_get(bt);
1092 	if (tag == BLK_MQ_NO_TAG)
1093 		return false;
1094 
1095 	rq->tag = tag + tag_offset;
1096 	return true;
1097 }
1098 
blk_mq_get_driver_tag(struct request * rq)1099 bool blk_mq_get_driver_tag(struct request *rq)
1100 {
1101 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1102 
1103 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1104 		return false;
1105 
1106 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1107 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1108 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1109 		__blk_mq_inc_active_requests(hctx);
1110 	}
1111 	hctx->tags->rqs[rq->tag] = rq;
1112 	return true;
1113 }
1114 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1115 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1116 				int flags, void *key)
1117 {
1118 	struct blk_mq_hw_ctx *hctx;
1119 
1120 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1121 
1122 	spin_lock(&hctx->dispatch_wait_lock);
1123 	if (!list_empty(&wait->entry)) {
1124 		struct sbitmap_queue *sbq;
1125 
1126 		list_del_init(&wait->entry);
1127 		sbq = hctx->tags->bitmap_tags;
1128 		atomic_dec(&sbq->ws_active);
1129 	}
1130 	spin_unlock(&hctx->dispatch_wait_lock);
1131 
1132 	blk_mq_run_hw_queue(hctx, true);
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1138  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1139  * restart. For both cases, take care to check the condition again after
1140  * marking us as waiting.
1141  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1142 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1143 				 struct request *rq)
1144 {
1145 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1146 	struct wait_queue_head *wq;
1147 	wait_queue_entry_t *wait;
1148 	bool ret;
1149 
1150 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1151 		blk_mq_sched_mark_restart_hctx(hctx);
1152 
1153 		/*
1154 		 * It's possible that a tag was freed in the window between the
1155 		 * allocation failure and adding the hardware queue to the wait
1156 		 * queue.
1157 		 *
1158 		 * Don't clear RESTART here, someone else could have set it.
1159 		 * At most this will cost an extra queue run.
1160 		 */
1161 		return blk_mq_get_driver_tag(rq);
1162 	}
1163 
1164 	wait = &hctx->dispatch_wait;
1165 	if (!list_empty_careful(&wait->entry))
1166 		return false;
1167 
1168 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1169 
1170 	spin_lock_irq(&wq->lock);
1171 	spin_lock(&hctx->dispatch_wait_lock);
1172 	if (!list_empty(&wait->entry)) {
1173 		spin_unlock(&hctx->dispatch_wait_lock);
1174 		spin_unlock_irq(&wq->lock);
1175 		return false;
1176 	}
1177 
1178 	atomic_inc(&sbq->ws_active);
1179 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1180 	__add_wait_queue(wq, wait);
1181 
1182 	/*
1183 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1184 	 * not imply barrier in case of failure.
1185 	 *
1186 	 * Order adding us to wait queue and allocating driver tag.
1187 	 *
1188 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1189 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1190 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1191 	 *
1192 	 * Otherwise, re-order of adding wait queue and getting driver tag
1193 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1194 	 * the waitqueue_active() may not observe us in wait queue.
1195 	 */
1196 	smp_mb();
1197 
1198 	/*
1199 	 * It's possible that a tag was freed in the window between the
1200 	 * allocation failure and adding the hardware queue to the wait
1201 	 * queue.
1202 	 */
1203 	ret = blk_mq_get_driver_tag(rq);
1204 	if (!ret) {
1205 		spin_unlock(&hctx->dispatch_wait_lock);
1206 		spin_unlock_irq(&wq->lock);
1207 		return false;
1208 	}
1209 
1210 	/*
1211 	 * We got a tag, remove ourselves from the wait queue to ensure
1212 	 * someone else gets the wakeup.
1213 	 */
1214 	list_del_init(&wait->entry);
1215 	atomic_dec(&sbq->ws_active);
1216 	spin_unlock(&hctx->dispatch_wait_lock);
1217 	spin_unlock_irq(&wq->lock);
1218 
1219 	return true;
1220 }
1221 
1222 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1223 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1224 /*
1225  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1226  * - EWMA is one simple way to compute running average value
1227  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1228  * - take 4 as factor for avoiding to get too small(0) result, and this
1229  *   factor doesn't matter because EWMA decreases exponentially
1230  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1231 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1232 {
1233 	unsigned int ewma;
1234 
1235 	ewma = hctx->dispatch_busy;
1236 
1237 	if (!ewma && !busy)
1238 		return;
1239 
1240 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1241 	if (busy)
1242 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1243 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1244 
1245 	hctx->dispatch_busy = ewma;
1246 }
1247 
1248 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1249 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1250 static void blk_mq_handle_dev_resource(struct request *rq,
1251 				       struct list_head *list)
1252 {
1253 	struct request *next =
1254 		list_first_entry_or_null(list, struct request, queuelist);
1255 
1256 	/*
1257 	 * If an I/O scheduler has been configured and we got a driver tag for
1258 	 * the next request already, free it.
1259 	 */
1260 	if (next)
1261 		blk_mq_put_driver_tag(next);
1262 
1263 	list_add(&rq->queuelist, list);
1264 	__blk_mq_requeue_request(rq);
1265 }
1266 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1267 static void blk_mq_handle_zone_resource(struct request *rq,
1268 					struct list_head *zone_list)
1269 {
1270 	/*
1271 	 * If we end up here it is because we cannot dispatch a request to a
1272 	 * specific zone due to LLD level zone-write locking or other zone
1273 	 * related resource not being available. In this case, set the request
1274 	 * aside in zone_list for retrying it later.
1275 	 */
1276 	list_add(&rq->queuelist, zone_list);
1277 	__blk_mq_requeue_request(rq);
1278 }
1279 
1280 enum prep_dispatch {
1281 	PREP_DISPATCH_OK,
1282 	PREP_DISPATCH_NO_TAG,
1283 	PREP_DISPATCH_NO_BUDGET,
1284 };
1285 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1286 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1287 						  bool need_budget)
1288 {
1289 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1290 	int budget_token = -1;
1291 
1292 	if (need_budget) {
1293 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1294 		if (budget_token < 0) {
1295 			blk_mq_put_driver_tag(rq);
1296 			return PREP_DISPATCH_NO_BUDGET;
1297 		}
1298 		blk_mq_set_rq_budget_token(rq, budget_token);
1299 	}
1300 
1301 	if (!blk_mq_get_driver_tag(rq)) {
1302 		/*
1303 		 * The initial allocation attempt failed, so we need to
1304 		 * rerun the hardware queue when a tag is freed. The
1305 		 * waitqueue takes care of that. If the queue is run
1306 		 * before we add this entry back on the dispatch list,
1307 		 * we'll re-run it below.
1308 		 */
1309 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1310 			/*
1311 			 * All budgets not got from this function will be put
1312 			 * together during handling partial dispatch
1313 			 */
1314 			if (need_budget)
1315 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1316 			return PREP_DISPATCH_NO_TAG;
1317 		}
1318 	}
1319 
1320 	return PREP_DISPATCH_OK;
1321 }
1322 
1323 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)1324 static void blk_mq_release_budgets(struct request_queue *q,
1325 		struct list_head *list)
1326 {
1327 	struct request *rq;
1328 
1329 	list_for_each_entry(rq, list, queuelist) {
1330 		int budget_token = blk_mq_get_rq_budget_token(rq);
1331 
1332 		if (budget_token >= 0)
1333 			blk_mq_put_dispatch_budget(q, budget_token);
1334 	}
1335 }
1336 
1337 /*
1338  * Returns true if we did some work AND can potentially do more.
1339  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 			     unsigned int nr_budgets)
1342 {
1343 	enum prep_dispatch prep;
1344 	struct request_queue *q = hctx->queue;
1345 	struct request *rq, *nxt;
1346 	int errors, queued;
1347 	blk_status_t ret = BLK_STS_OK;
1348 	LIST_HEAD(zone_list);
1349 	bool needs_resource = false;
1350 
1351 	if (list_empty(list))
1352 		return false;
1353 
1354 	/*
1355 	 * Now process all the entries, sending them to the driver.
1356 	 */
1357 	errors = queued = 0;
1358 	do {
1359 		struct blk_mq_queue_data bd;
1360 
1361 		rq = list_first_entry(list, struct request, queuelist);
1362 
1363 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1364 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1365 		if (prep != PREP_DISPATCH_OK)
1366 			break;
1367 
1368 		list_del_init(&rq->queuelist);
1369 
1370 		bd.rq = rq;
1371 
1372 		/*
1373 		 * Flag last if we have no more requests, or if we have more
1374 		 * but can't assign a driver tag to it.
1375 		 */
1376 		if (list_empty(list))
1377 			bd.last = true;
1378 		else {
1379 			nxt = list_first_entry(list, struct request, queuelist);
1380 			bd.last = !blk_mq_get_driver_tag(nxt);
1381 		}
1382 
1383 		/*
1384 		 * once the request is queued to lld, no need to cover the
1385 		 * budget any more
1386 		 */
1387 		if (nr_budgets)
1388 			nr_budgets--;
1389 		ret = q->mq_ops->queue_rq(hctx, &bd);
1390 		switch (ret) {
1391 		case BLK_STS_OK:
1392 			queued++;
1393 			break;
1394 		case BLK_STS_RESOURCE:
1395 			needs_resource = true;
1396 			fallthrough;
1397 		case BLK_STS_DEV_RESOURCE:
1398 			blk_mq_handle_dev_resource(rq, list);
1399 			goto out;
1400 		case BLK_STS_ZONE_RESOURCE:
1401 			/*
1402 			 * Move the request to zone_list and keep going through
1403 			 * the dispatch list to find more requests the drive can
1404 			 * accept.
1405 			 */
1406 			blk_mq_handle_zone_resource(rq, &zone_list);
1407 			needs_resource = true;
1408 			break;
1409 		default:
1410 			errors++;
1411 			blk_mq_end_request(rq, ret);
1412 		}
1413 	} while (!list_empty(list));
1414 out:
1415 	if (!list_empty(&zone_list))
1416 		list_splice_tail_init(&zone_list, list);
1417 
1418 	hctx->dispatched[queued_to_index(queued)]++;
1419 
1420 	/* If we didn't flush the entire list, we could have told the driver
1421 	 * there was more coming, but that turned out to be a lie.
1422 	 */
1423 	if ((!list_empty(list) || errors || needs_resource ||
1424 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1425 		q->mq_ops->commit_rqs(hctx);
1426 	/*
1427 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1428 	 * that is where we will continue on next queue run.
1429 	 */
1430 	if (!list_empty(list)) {
1431 		bool needs_restart;
1432 		/* For non-shared tags, the RESTART check will suffice */
1433 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1434 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1435 
1436 		if (nr_budgets)
1437 			blk_mq_release_budgets(q, list);
1438 
1439 		spin_lock(&hctx->lock);
1440 		list_splice_tail_init(list, &hctx->dispatch);
1441 		spin_unlock(&hctx->lock);
1442 
1443 		/*
1444 		 * Order adding requests to hctx->dispatch and checking
1445 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1446 		 * in blk_mq_sched_restart(). Avoid restart code path to
1447 		 * miss the new added requests to hctx->dispatch, meantime
1448 		 * SCHED_RESTART is observed here.
1449 		 */
1450 		smp_mb();
1451 
1452 		/*
1453 		 * If SCHED_RESTART was set by the caller of this function and
1454 		 * it is no longer set that means that it was cleared by another
1455 		 * thread and hence that a queue rerun is needed.
1456 		 *
1457 		 * If 'no_tag' is set, that means that we failed getting
1458 		 * a driver tag with an I/O scheduler attached. If our dispatch
1459 		 * waitqueue is no longer active, ensure that we run the queue
1460 		 * AFTER adding our entries back to the list.
1461 		 *
1462 		 * If no I/O scheduler has been configured it is possible that
1463 		 * the hardware queue got stopped and restarted before requests
1464 		 * were pushed back onto the dispatch list. Rerun the queue to
1465 		 * avoid starvation. Notes:
1466 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1467 		 *   been stopped before rerunning a queue.
1468 		 * - Some but not all block drivers stop a queue before
1469 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1470 		 *   and dm-rq.
1471 		 *
1472 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1473 		 * bit is set, run queue after a delay to avoid IO stalls
1474 		 * that could otherwise occur if the queue is idle.  We'll do
1475 		 * similar if we couldn't get budget or couldn't lock a zone
1476 		 * and SCHED_RESTART is set.
1477 		 */
1478 		needs_restart = blk_mq_sched_needs_restart(hctx);
1479 		if (prep == PREP_DISPATCH_NO_BUDGET)
1480 			needs_resource = true;
1481 		if (!needs_restart ||
1482 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1483 			blk_mq_run_hw_queue(hctx, true);
1484 		else if (needs_restart && needs_resource)
1485 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1486 
1487 		blk_mq_update_dispatch_busy(hctx, true);
1488 		return false;
1489 	} else
1490 		blk_mq_update_dispatch_busy(hctx, false);
1491 
1492 	return (queued + errors) != 0;
1493 }
1494 
1495 /**
1496  * __blk_mq_run_hw_queue - Run a hardware queue.
1497  * @hctx: Pointer to the hardware queue to run.
1498  *
1499  * Send pending requests to the hardware.
1500  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1501 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1502 {
1503 	int srcu_idx;
1504 
1505 	/*
1506 	 * We can't run the queue inline with ints disabled. Ensure that
1507 	 * we catch bad users of this early.
1508 	 */
1509 	WARN_ON_ONCE(in_interrupt());
1510 
1511 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1512 
1513 	hctx_lock(hctx, &srcu_idx);
1514 	blk_mq_sched_dispatch_requests(hctx);
1515 	hctx_unlock(hctx, srcu_idx);
1516 }
1517 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1518 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1519 {
1520 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1521 
1522 	if (cpu >= nr_cpu_ids)
1523 		cpu = cpumask_first(hctx->cpumask);
1524 	return cpu;
1525 }
1526 
1527 /*
1528  * It'd be great if the workqueue API had a way to pass
1529  * in a mask and had some smarts for more clever placement.
1530  * For now we just round-robin here, switching for every
1531  * BLK_MQ_CPU_WORK_BATCH queued items.
1532  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1533 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1534 {
1535 	bool tried = false;
1536 	int next_cpu = hctx->next_cpu;
1537 
1538 	if (hctx->queue->nr_hw_queues == 1)
1539 		return WORK_CPU_UNBOUND;
1540 
1541 	if (--hctx->next_cpu_batch <= 0) {
1542 select_cpu:
1543 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1544 				cpu_online_mask);
1545 		if (next_cpu >= nr_cpu_ids)
1546 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1547 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1548 	}
1549 
1550 	/*
1551 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1552 	 * and it should only happen in the path of handling CPU DEAD.
1553 	 */
1554 	if (!cpu_online(next_cpu)) {
1555 		if (!tried) {
1556 			tried = true;
1557 			goto select_cpu;
1558 		}
1559 
1560 		/*
1561 		 * Make sure to re-select CPU next time once after CPUs
1562 		 * in hctx->cpumask become online again.
1563 		 */
1564 		hctx->next_cpu = next_cpu;
1565 		hctx->next_cpu_batch = 1;
1566 		return WORK_CPU_UNBOUND;
1567 	}
1568 
1569 	hctx->next_cpu = next_cpu;
1570 	return next_cpu;
1571 }
1572 
1573 /**
1574  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1575  * @hctx: Pointer to the hardware queue to run.
1576  * @async: If we want to run the queue asynchronously.
1577  * @msecs: Milliseconds of delay to wait before running the queue.
1578  *
1579  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1580  * with a delay of @msecs.
1581  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1582 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1583 					unsigned long msecs)
1584 {
1585 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1586 		return;
1587 
1588 	if (!async &&
1589 	    !(hctx->flags & BLK_MQ_F_BLOCKING &&
1590 	      blk_queue_is_zoned(hctx->queue)) &&
1591 	    cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
1592 		__blk_mq_run_hw_queue(hctx);
1593 		return;
1594 	}
1595 
1596 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1597 				    msecs_to_jiffies(msecs));
1598 }
1599 
1600 /**
1601  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1602  * @hctx: Pointer to the hardware queue to run.
1603  * @msecs: Milliseconds of delay to wait before running the queue.
1604  *
1605  * Run a hardware queue asynchronously with a delay of @msecs.
1606  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1607 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1608 {
1609 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1610 }
1611 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1612 
1613 /**
1614  * blk_mq_run_hw_queue - Start to run a hardware queue.
1615  * @hctx: Pointer to the hardware queue to run.
1616  * @async: If we want to run the queue asynchronously.
1617  *
1618  * Check if the request queue is not in a quiesced state and if there are
1619  * pending requests to be sent. If this is true, run the queue to send requests
1620  * to hardware.
1621  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1622 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1623 {
1624 	int srcu_idx;
1625 	bool need_run;
1626 
1627 	/*
1628 	 * When queue is quiesced, we may be switching io scheduler, or
1629 	 * updating nr_hw_queues, or other things, and we can't run queue
1630 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1631 	 *
1632 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1633 	 * quiesced.
1634 	 */
1635 	hctx_lock(hctx, &srcu_idx);
1636 	need_run = !blk_queue_quiesced(hctx->queue) &&
1637 		blk_mq_hctx_has_pending(hctx);
1638 	hctx_unlock(hctx, srcu_idx);
1639 
1640 	if (need_run)
1641 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1642 }
1643 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1644 
1645 /*
1646  * Is the request queue handled by an IO scheduler that does not respect
1647  * hardware queues when dispatching?
1648  */
blk_mq_has_sqsched(struct request_queue * q)1649 static bool blk_mq_has_sqsched(struct request_queue *q)
1650 {
1651 	struct elevator_queue *e = q->elevator;
1652 
1653 	if (e && e->type->ops.dispatch_request &&
1654 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1655 		return true;
1656 	return false;
1657 }
1658 
1659 /*
1660  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1661  * scheduler.
1662  */
blk_mq_get_sq_hctx(struct request_queue * q)1663 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1664 {
1665 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1666 	/*
1667 	 * If the IO scheduler does not respect hardware queues when
1668 	 * dispatching, we just don't bother with multiple HW queues and
1669 	 * dispatch from hctx for the current CPU since running multiple queues
1670 	 * just causes lock contention inside the scheduler and pointless cache
1671 	 * bouncing.
1672 	 */
1673 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1674 
1675 	if (!blk_mq_hctx_stopped(hctx))
1676 		return hctx;
1677 	return NULL;
1678 }
1679 
1680 /**
1681  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1682  * @q: Pointer to the request queue to run.
1683  * @async: If we want to run the queue asynchronously.
1684  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1685 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1686 {
1687 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1688 	int i;
1689 
1690 	sq_hctx = NULL;
1691 	if (blk_mq_has_sqsched(q))
1692 		sq_hctx = blk_mq_get_sq_hctx(q);
1693 	queue_for_each_hw_ctx(q, hctx, i) {
1694 		if (blk_mq_hctx_stopped(hctx))
1695 			continue;
1696 		/*
1697 		 * Dispatch from this hctx either if there's no hctx preferred
1698 		 * by IO scheduler or if it has requests that bypass the
1699 		 * scheduler.
1700 		 */
1701 		if (!sq_hctx || sq_hctx == hctx ||
1702 		    !list_empty_careful(&hctx->dispatch))
1703 			blk_mq_run_hw_queue(hctx, async);
1704 	}
1705 }
1706 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1707 
1708 /**
1709  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1710  * @q: Pointer to the request queue to run.
1711  * @msecs: Milliseconds of delay to wait before running the queues.
1712  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1713 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1714 {
1715 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1716 	int i;
1717 
1718 	sq_hctx = NULL;
1719 	if (blk_mq_has_sqsched(q))
1720 		sq_hctx = blk_mq_get_sq_hctx(q);
1721 	queue_for_each_hw_ctx(q, hctx, i) {
1722 		if (blk_mq_hctx_stopped(hctx))
1723 			continue;
1724 		/*
1725 		 * Dispatch from this hctx either if there's no hctx preferred
1726 		 * by IO scheduler or if it has requests that bypass the
1727 		 * scheduler.
1728 		 */
1729 		if (!sq_hctx || sq_hctx == hctx ||
1730 		    !list_empty_careful(&hctx->dispatch))
1731 			blk_mq_delay_run_hw_queue(hctx, msecs);
1732 	}
1733 }
1734 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1735 
1736 /**
1737  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1738  * @q: request queue.
1739  *
1740  * The caller is responsible for serializing this function against
1741  * blk_mq_{start,stop}_hw_queue().
1742  */
blk_mq_queue_stopped(struct request_queue * q)1743 bool blk_mq_queue_stopped(struct request_queue *q)
1744 {
1745 	struct blk_mq_hw_ctx *hctx;
1746 	int i;
1747 
1748 	queue_for_each_hw_ctx(q, hctx, i)
1749 		if (blk_mq_hctx_stopped(hctx))
1750 			return true;
1751 
1752 	return false;
1753 }
1754 EXPORT_SYMBOL(blk_mq_queue_stopped);
1755 
1756 /*
1757  * This function is often used for pausing .queue_rq() by driver when
1758  * there isn't enough resource or some conditions aren't satisfied, and
1759  * BLK_STS_RESOURCE is usually returned.
1760  *
1761  * We do not guarantee that dispatch can be drained or blocked
1762  * after blk_mq_stop_hw_queue() returns. Please use
1763  * blk_mq_quiesce_queue() for that requirement.
1764  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1765 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1766 {
1767 	cancel_delayed_work(&hctx->run_work);
1768 
1769 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1770 }
1771 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1772 
1773 /*
1774  * This function is often used for pausing .queue_rq() by driver when
1775  * there isn't enough resource or some conditions aren't satisfied, and
1776  * BLK_STS_RESOURCE is usually returned.
1777  *
1778  * We do not guarantee that dispatch can be drained or blocked
1779  * after blk_mq_stop_hw_queues() returns. Please use
1780  * blk_mq_quiesce_queue() for that requirement.
1781  */
blk_mq_stop_hw_queues(struct request_queue * q)1782 void blk_mq_stop_hw_queues(struct request_queue *q)
1783 {
1784 	struct blk_mq_hw_ctx *hctx;
1785 	int i;
1786 
1787 	queue_for_each_hw_ctx(q, hctx, i)
1788 		blk_mq_stop_hw_queue(hctx);
1789 }
1790 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1791 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1792 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1793 {
1794 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1795 
1796 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1799 
blk_mq_start_hw_queues(struct request_queue * q)1800 void blk_mq_start_hw_queues(struct request_queue *q)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 	int i;
1804 
1805 	queue_for_each_hw_ctx(q, hctx, i)
1806 		blk_mq_start_hw_queue(hctx);
1807 }
1808 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1809 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1810 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1811 {
1812 	if (!blk_mq_hctx_stopped(hctx))
1813 		return;
1814 
1815 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1816 	blk_mq_run_hw_queue(hctx, async);
1817 }
1818 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1819 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1820 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1821 {
1822 	struct blk_mq_hw_ctx *hctx;
1823 	int i;
1824 
1825 	queue_for_each_hw_ctx(q, hctx, i)
1826 		blk_mq_start_stopped_hw_queue(hctx, async ||
1827 					(hctx->flags & BLK_MQ_F_BLOCKING));
1828 }
1829 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1830 
blk_mq_run_work_fn(struct work_struct * work)1831 static void blk_mq_run_work_fn(struct work_struct *work)
1832 {
1833 	struct blk_mq_hw_ctx *hctx;
1834 
1835 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1836 
1837 	/*
1838 	 * If we are stopped, don't run the queue.
1839 	 */
1840 	if (blk_mq_hctx_stopped(hctx))
1841 		return;
1842 
1843 	__blk_mq_run_hw_queue(hctx);
1844 }
1845 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1846 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1847 					    struct request *rq,
1848 					    bool at_head)
1849 {
1850 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1851 	enum hctx_type type = hctx->type;
1852 
1853 	lockdep_assert_held(&ctx->lock);
1854 
1855 	trace_block_rq_insert(rq);
1856 
1857 	if (at_head)
1858 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1859 	else
1860 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1861 }
1862 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1863 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1864 			     bool at_head)
1865 {
1866 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1867 
1868 	lockdep_assert_held(&ctx->lock);
1869 
1870 	__blk_mq_insert_req_list(hctx, rq, at_head);
1871 	blk_mq_hctx_mark_pending(hctx, ctx);
1872 }
1873 
1874 /**
1875  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1876  * @rq: Pointer to request to be inserted.
1877  * @at_head: true if the request should be inserted at the head of the list.
1878  * @run_queue: If we should run the hardware queue after inserting the request.
1879  *
1880  * Should only be used carefully, when the caller knows we want to
1881  * bypass a potential IO scheduler on the target device.
1882  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1883 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1884 				  bool run_queue)
1885 {
1886 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1887 
1888 	spin_lock(&hctx->lock);
1889 	if (at_head)
1890 		list_add(&rq->queuelist, &hctx->dispatch);
1891 	else
1892 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1893 	spin_unlock(&hctx->lock);
1894 
1895 	if (run_queue)
1896 		blk_mq_run_hw_queue(hctx, false);
1897 }
1898 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1899 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1900 			    struct list_head *list)
1901 
1902 {
1903 	struct request *rq;
1904 	enum hctx_type type = hctx->type;
1905 
1906 	/*
1907 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1908 	 * offline now
1909 	 */
1910 	list_for_each_entry(rq, list, queuelist) {
1911 		BUG_ON(rq->mq_ctx != ctx);
1912 		trace_block_rq_insert(rq);
1913 	}
1914 
1915 	spin_lock(&ctx->lock);
1916 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1917 	blk_mq_hctx_mark_pending(hctx, ctx);
1918 	spin_unlock(&ctx->lock);
1919 }
1920 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1921 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1922 {
1923 	LIST_HEAD(list);
1924 
1925 	if (list_empty(&plug->mq_list))
1926 		return;
1927 	list_splice_init(&plug->mq_list, &list);
1928 	plug->rq_count = 0;
1929 
1930 	do {
1931 		struct list_head rq_list;
1932 		struct request *rq, *head_rq = list_entry_rq(list.next);
1933 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1934 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1935 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1936 		unsigned int depth = 1;
1937 
1938 		list_for_each_continue(pos, &list) {
1939 			rq = list_entry_rq(pos);
1940 			BUG_ON(!rq->q);
1941 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1942 				break;
1943 			depth++;
1944 		}
1945 
1946 		list_cut_before(&rq_list, &list, pos);
1947 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1948 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1949 						from_schedule);
1950 	} while(!list_empty(&list));
1951 }
1952 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1953 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1954 		unsigned int nr_segs)
1955 {
1956 	int err;
1957 
1958 	if (bio->bi_opf & REQ_RAHEAD)
1959 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1960 
1961 	rq->__sector = bio->bi_iter.bi_sector;
1962 	rq->write_hint = bio->bi_write_hint;
1963 	blk_rq_bio_prep(rq, bio, nr_segs);
1964 
1965 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1966 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1967 	WARN_ON_ONCE(err);
1968 
1969 	blk_account_io_start(rq);
1970 }
1971 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1972 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1973 					    struct request *rq,
1974 					    blk_qc_t *cookie, bool last)
1975 {
1976 	struct request_queue *q = rq->q;
1977 	struct blk_mq_queue_data bd = {
1978 		.rq = rq,
1979 		.last = last,
1980 	};
1981 	blk_qc_t new_cookie;
1982 	blk_status_t ret;
1983 
1984 	new_cookie = request_to_qc_t(hctx, rq);
1985 
1986 	/*
1987 	 * For OK queue, we are done. For error, caller may kill it.
1988 	 * Any other error (busy), just add it to our list as we
1989 	 * previously would have done.
1990 	 */
1991 	ret = q->mq_ops->queue_rq(hctx, &bd);
1992 	switch (ret) {
1993 	case BLK_STS_OK:
1994 		blk_mq_update_dispatch_busy(hctx, false);
1995 		*cookie = new_cookie;
1996 		break;
1997 	case BLK_STS_RESOURCE:
1998 	case BLK_STS_DEV_RESOURCE:
1999 		blk_mq_update_dispatch_busy(hctx, true);
2000 		__blk_mq_requeue_request(rq);
2001 		break;
2002 	default:
2003 		blk_mq_update_dispatch_busy(hctx, false);
2004 		*cookie = BLK_QC_T_NONE;
2005 		break;
2006 	}
2007 
2008 	return ret;
2009 }
2010 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2011 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2012 						struct request *rq,
2013 						blk_qc_t *cookie,
2014 						bool bypass_insert, bool last)
2015 {
2016 	struct request_queue *q = rq->q;
2017 	bool run_queue = true;
2018 	int budget_token;
2019 
2020 	/*
2021 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2022 	 *
2023 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2024 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2025 	 * and avoid driver to try to dispatch again.
2026 	 */
2027 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2028 		run_queue = false;
2029 		bypass_insert = false;
2030 		goto insert;
2031 	}
2032 
2033 	if (q->elevator && !bypass_insert)
2034 		goto insert;
2035 
2036 	budget_token = blk_mq_get_dispatch_budget(q);
2037 	if (budget_token < 0)
2038 		goto insert;
2039 
2040 	blk_mq_set_rq_budget_token(rq, budget_token);
2041 
2042 	if (!blk_mq_get_driver_tag(rq)) {
2043 		blk_mq_put_dispatch_budget(q, budget_token);
2044 		goto insert;
2045 	}
2046 
2047 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2048 insert:
2049 	if (bypass_insert)
2050 		return BLK_STS_RESOURCE;
2051 
2052 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2053 
2054 	return BLK_STS_OK;
2055 }
2056 
2057 /**
2058  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2059  * @hctx: Pointer of the associated hardware queue.
2060  * @rq: Pointer to request to be sent.
2061  * @cookie: Request queue cookie.
2062  *
2063  * If the device has enough resources to accept a new request now, send the
2064  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2065  * we can try send it another time in the future. Requests inserted at this
2066  * queue have higher priority.
2067  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2068 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2069 		struct request *rq, blk_qc_t *cookie)
2070 {
2071 	blk_status_t ret;
2072 	int srcu_idx;
2073 
2074 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2075 
2076 	hctx_lock(hctx, &srcu_idx);
2077 
2078 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2079 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2080 		blk_mq_request_bypass_insert(rq, false, true);
2081 	else if (ret != BLK_STS_OK)
2082 		blk_mq_end_request(rq, ret);
2083 
2084 	hctx_unlock(hctx, srcu_idx);
2085 }
2086 
blk_mq_request_issue_directly(struct request * rq,bool last)2087 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2088 {
2089 	blk_status_t ret;
2090 	int srcu_idx;
2091 	blk_qc_t unused_cookie;
2092 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2093 
2094 	hctx_lock(hctx, &srcu_idx);
2095 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2096 	hctx_unlock(hctx, srcu_idx);
2097 
2098 	return ret;
2099 }
2100 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2101 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2102 		struct list_head *list)
2103 {
2104 	int queued = 0;
2105 	int errors = 0;
2106 
2107 	while (!list_empty(list)) {
2108 		blk_status_t ret;
2109 		struct request *rq = list_first_entry(list, struct request,
2110 				queuelist);
2111 
2112 		list_del_init(&rq->queuelist);
2113 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2114 		if (ret != BLK_STS_OK) {
2115 			errors++;
2116 			if (ret == BLK_STS_RESOURCE ||
2117 					ret == BLK_STS_DEV_RESOURCE) {
2118 				blk_mq_request_bypass_insert(rq, false,
2119 							list_empty(list));
2120 				break;
2121 			}
2122 			blk_mq_end_request(rq, ret);
2123 		} else
2124 			queued++;
2125 	}
2126 
2127 	/*
2128 	 * If we didn't flush the entire list, we could have told
2129 	 * the driver there was more coming, but that turned out to
2130 	 * be a lie.
2131 	 */
2132 	if ((!list_empty(list) || errors) &&
2133 	     hctx->queue->mq_ops->commit_rqs && queued)
2134 		hctx->queue->mq_ops->commit_rqs(hctx);
2135 }
2136 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2137 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2138 {
2139 	list_add_tail(&rq->queuelist, &plug->mq_list);
2140 	plug->rq_count++;
2141 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2142 		struct request *tmp;
2143 
2144 		tmp = list_first_entry(&plug->mq_list, struct request,
2145 						queuelist);
2146 		if (tmp->q != rq->q)
2147 			plug->multiple_queues = true;
2148 	}
2149 }
2150 
2151 /*
2152  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2153  * queues. This is important for md arrays to benefit from merging
2154  * requests.
2155  */
blk_plug_max_rq_count(struct blk_plug * plug)2156 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2157 {
2158 	if (plug->multiple_queues)
2159 		return BLK_MAX_REQUEST_COUNT * 2;
2160 	return BLK_MAX_REQUEST_COUNT;
2161 }
2162 
2163 /**
2164  * blk_mq_submit_bio - Create and send a request to block device.
2165  * @bio: Bio pointer.
2166  *
2167  * Builds up a request structure from @q and @bio and send to the device. The
2168  * request may not be queued directly to hardware if:
2169  * * This request can be merged with another one
2170  * * We want to place request at plug queue for possible future merging
2171  * * There is an IO scheduler active at this queue
2172  *
2173  * It will not queue the request if there is an error with the bio, or at the
2174  * request creation.
2175  *
2176  * Returns: Request queue cookie.
2177  */
blk_mq_submit_bio(struct bio * bio)2178 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2179 {
2180 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2181 	const int is_sync = op_is_sync(bio->bi_opf);
2182 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2183 	struct blk_mq_alloc_data data = {
2184 		.q		= q,
2185 	};
2186 	struct request *rq;
2187 	struct blk_plug *plug;
2188 	struct request *same_queue_rq = NULL;
2189 	unsigned int nr_segs;
2190 	blk_qc_t cookie;
2191 	blk_status_t ret;
2192 	bool hipri;
2193 
2194 	blk_queue_bounce(q, &bio);
2195 	__blk_queue_split(&bio, &nr_segs);
2196 	if (!bio)
2197 		goto queue_exit;
2198 
2199 	if (!bio_integrity_prep(bio))
2200 		goto queue_exit;
2201 
2202 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2203 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2204 		goto queue_exit;
2205 
2206 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2207 		goto queue_exit;
2208 
2209 	rq_qos_throttle(q, bio);
2210 
2211 	hipri = bio->bi_opf & REQ_HIPRI;
2212 
2213 	data.cmd_flags = bio->bi_opf;
2214 	rq = __blk_mq_alloc_request(&data);
2215 	if (unlikely(!rq)) {
2216 		rq_qos_cleanup(q, bio);
2217 		if (bio->bi_opf & REQ_NOWAIT)
2218 			bio_wouldblock_error(bio);
2219 		goto queue_exit;
2220 	}
2221 
2222 	trace_block_getrq(bio);
2223 
2224 	rq_qos_track(q, rq, bio);
2225 
2226 	cookie = request_to_qc_t(data.hctx, rq);
2227 
2228 	blk_mq_bio_to_request(rq, bio, nr_segs);
2229 
2230 	ret = blk_crypto_rq_get_keyslot(rq);
2231 	if (ret != BLK_STS_OK) {
2232 		bio->bi_status = ret;
2233 		bio_endio(bio);
2234 		blk_mq_free_request(rq);
2235 		return BLK_QC_T_NONE;
2236 	}
2237 
2238 	plug = blk_mq_plug(q, bio);
2239 	if (unlikely(is_flush_fua)) {
2240 		/* Bypass scheduler for flush requests */
2241 		blk_insert_flush(rq);
2242 		blk_mq_run_hw_queue(data.hctx, true);
2243 	} else if (plug && (q->nr_hw_queues == 1 ||
2244 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2245 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2246 		/*
2247 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2248 		 * we know the driver uses bd->last in a smart fashion.
2249 		 *
2250 		 * Use normal plugging if this disk is slow HDD, as sequential
2251 		 * IO may benefit a lot from plug merging.
2252 		 */
2253 		unsigned int request_count = plug->rq_count;
2254 		struct request *last = NULL;
2255 
2256 		if (!request_count)
2257 			trace_block_plug(q);
2258 		else
2259 			last = list_entry_rq(plug->mq_list.prev);
2260 
2261 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2262 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2263 			blk_flush_plug_list(plug, false);
2264 			trace_block_plug(q);
2265 		}
2266 
2267 		blk_add_rq_to_plug(plug, rq);
2268 	} else if (q->elevator) {
2269 		/* Insert the request at the IO scheduler queue */
2270 		blk_mq_sched_insert_request(rq, false, true, true);
2271 	} else if (plug && !blk_queue_nomerges(q)) {
2272 		/*
2273 		 * We do limited plugging. If the bio can be merged, do that.
2274 		 * Otherwise the existing request in the plug list will be
2275 		 * issued. So the plug list will have one request at most
2276 		 * The plug list might get flushed before this. If that happens,
2277 		 * the plug list is empty, and same_queue_rq is invalid.
2278 		 */
2279 		if (list_empty(&plug->mq_list))
2280 			same_queue_rq = NULL;
2281 		if (same_queue_rq) {
2282 			list_del_init(&same_queue_rq->queuelist);
2283 			plug->rq_count--;
2284 		}
2285 		blk_add_rq_to_plug(plug, rq);
2286 		trace_block_plug(q);
2287 
2288 		if (same_queue_rq) {
2289 			data.hctx = same_queue_rq->mq_hctx;
2290 			trace_block_unplug(q, 1, true);
2291 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2292 					&cookie);
2293 		}
2294 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2295 			!data.hctx->dispatch_busy) {
2296 		/*
2297 		 * There is no scheduler and we can try to send directly
2298 		 * to the hardware.
2299 		 */
2300 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2301 	} else {
2302 		/* Default case. */
2303 		blk_mq_sched_insert_request(rq, false, true, true);
2304 	}
2305 
2306 	if (!hipri)
2307 		return BLK_QC_T_NONE;
2308 	return cookie;
2309 queue_exit:
2310 	blk_queue_exit(q);
2311 	return BLK_QC_T_NONE;
2312 }
2313 
order_to_size(unsigned int order)2314 static size_t order_to_size(unsigned int order)
2315 {
2316 	return (size_t)PAGE_SIZE << order;
2317 }
2318 
2319 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2320 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2321 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2322 {
2323 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2324 	struct page *page;
2325 	unsigned long flags;
2326 
2327 	list_for_each_entry(page, &tags->page_list, lru) {
2328 		unsigned long start = (unsigned long)page_address(page);
2329 		unsigned long end = start + order_to_size(page->private);
2330 		int i;
2331 
2332 		for (i = 0; i < set->queue_depth; i++) {
2333 			struct request *rq = drv_tags->rqs[i];
2334 			unsigned long rq_addr = (unsigned long)rq;
2335 
2336 			if (rq_addr >= start && rq_addr < end) {
2337 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2338 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2339 			}
2340 		}
2341 	}
2342 
2343 	/*
2344 	 * Wait until all pending iteration is done.
2345 	 *
2346 	 * Request reference is cleared and it is guaranteed to be observed
2347 	 * after the ->lock is released.
2348 	 */
2349 	spin_lock_irqsave(&drv_tags->lock, flags);
2350 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2351 }
2352 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2353 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2354 		     unsigned int hctx_idx)
2355 {
2356 	struct page *page;
2357 
2358 	if (tags->rqs && set->ops->exit_request) {
2359 		int i;
2360 
2361 		for (i = 0; i < tags->nr_tags; i++) {
2362 			struct request *rq = tags->static_rqs[i];
2363 
2364 			if (!rq)
2365 				continue;
2366 			set->ops->exit_request(set, rq, hctx_idx);
2367 			tags->static_rqs[i] = NULL;
2368 		}
2369 	}
2370 
2371 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2372 
2373 	while (!list_empty(&tags->page_list)) {
2374 		page = list_first_entry(&tags->page_list, struct page, lru);
2375 		list_del_init(&page->lru);
2376 		/*
2377 		 * Remove kmemleak object previously allocated in
2378 		 * blk_mq_alloc_rqs().
2379 		 */
2380 		kmemleak_free(page_address(page));
2381 		__free_pages(page, page->private);
2382 	}
2383 }
2384 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2385 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2386 {
2387 	kfree(tags->rqs);
2388 	tags->rqs = NULL;
2389 	kfree(tags->static_rqs);
2390 	tags->static_rqs = NULL;
2391 
2392 	blk_mq_free_tags(tags, flags);
2393 }
2394 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2395 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2396 					unsigned int hctx_idx,
2397 					unsigned int nr_tags,
2398 					unsigned int reserved_tags,
2399 					unsigned int flags)
2400 {
2401 	struct blk_mq_tags *tags;
2402 	int node;
2403 
2404 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2405 	if (node == NUMA_NO_NODE)
2406 		node = set->numa_node;
2407 
2408 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2409 	if (!tags)
2410 		return NULL;
2411 
2412 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2413 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2414 				 node);
2415 	if (!tags->rqs) {
2416 		blk_mq_free_tags(tags, flags);
2417 		return NULL;
2418 	}
2419 
2420 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2421 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2422 					node);
2423 	if (!tags->static_rqs) {
2424 		kfree(tags->rqs);
2425 		blk_mq_free_tags(tags, flags);
2426 		return NULL;
2427 	}
2428 
2429 	return tags;
2430 }
2431 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2432 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2433 			       unsigned int hctx_idx, int node)
2434 {
2435 	int ret;
2436 
2437 	if (set->ops->init_request) {
2438 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2439 		if (ret)
2440 			return ret;
2441 	}
2442 
2443 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2444 	return 0;
2445 }
2446 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2447 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2448 		     unsigned int hctx_idx, unsigned int depth)
2449 {
2450 	unsigned int i, j, entries_per_page, max_order = 4;
2451 	size_t rq_size, left;
2452 	int node;
2453 
2454 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2455 	if (node == NUMA_NO_NODE)
2456 		node = set->numa_node;
2457 
2458 	INIT_LIST_HEAD(&tags->page_list);
2459 
2460 	/*
2461 	 * rq_size is the size of the request plus driver payload, rounded
2462 	 * to the cacheline size
2463 	 */
2464 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2465 				cache_line_size());
2466 	trace_android_vh_blk_alloc_rqs(&rq_size, set, tags);
2467 	left = rq_size * depth;
2468 
2469 	for (i = 0; i < depth; ) {
2470 		int this_order = max_order;
2471 		struct page *page;
2472 		int to_do;
2473 		void *p;
2474 
2475 		while (this_order && left < order_to_size(this_order - 1))
2476 			this_order--;
2477 
2478 		do {
2479 			page = alloc_pages_node(node,
2480 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2481 				this_order);
2482 			if (page)
2483 				break;
2484 			if (!this_order--)
2485 				break;
2486 			if (order_to_size(this_order) < rq_size)
2487 				break;
2488 		} while (1);
2489 
2490 		if (!page)
2491 			goto fail;
2492 
2493 		page->private = this_order;
2494 		list_add_tail(&page->lru, &tags->page_list);
2495 
2496 		p = page_address(page);
2497 		/*
2498 		 * Allow kmemleak to scan these pages as they contain pointers
2499 		 * to additional allocations like via ops->init_request().
2500 		 */
2501 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2502 		entries_per_page = order_to_size(this_order) / rq_size;
2503 		to_do = min(entries_per_page, depth - i);
2504 		left -= to_do * rq_size;
2505 		for (j = 0; j < to_do; j++) {
2506 			struct request *rq = p;
2507 
2508 			tags->static_rqs[i] = rq;
2509 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2510 				tags->static_rqs[i] = NULL;
2511 				goto fail;
2512 			}
2513 
2514 			p += rq_size;
2515 			i++;
2516 		}
2517 	}
2518 	return 0;
2519 
2520 fail:
2521 	blk_mq_free_rqs(set, tags, hctx_idx);
2522 	return -ENOMEM;
2523 }
2524 
2525 struct rq_iter_data {
2526 	struct blk_mq_hw_ctx *hctx;
2527 	bool has_rq;
2528 };
2529 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2530 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2531 {
2532 	struct rq_iter_data *iter_data = data;
2533 
2534 	if (rq->mq_hctx != iter_data->hctx)
2535 		return true;
2536 	iter_data->has_rq = true;
2537 	return false;
2538 }
2539 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2540 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2541 {
2542 	struct blk_mq_tags *tags = hctx->sched_tags ?
2543 			hctx->sched_tags : hctx->tags;
2544 	struct rq_iter_data data = {
2545 		.hctx	= hctx,
2546 	};
2547 
2548 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2549 	return data.has_rq;
2550 }
2551 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2552 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2553 		struct blk_mq_hw_ctx *hctx)
2554 {
2555 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2556 		return false;
2557 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2558 		return false;
2559 	return true;
2560 }
2561 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2562 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2563 {
2564 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2565 			struct blk_mq_hw_ctx, cpuhp_online);
2566 
2567 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2568 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2569 		return 0;
2570 
2571 	/*
2572 	 * Prevent new request from being allocated on the current hctx.
2573 	 *
2574 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2575 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2576 	 * seen once we return from the tag allocator.
2577 	 */
2578 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2579 	smp_mb__after_atomic();
2580 
2581 	/*
2582 	 * Try to grab a reference to the queue and wait for any outstanding
2583 	 * requests.  If we could not grab a reference the queue has been
2584 	 * frozen and there are no requests.
2585 	 */
2586 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2587 		while (blk_mq_hctx_has_requests(hctx))
2588 			msleep(5);
2589 		percpu_ref_put(&hctx->queue->q_usage_counter);
2590 	}
2591 
2592 	return 0;
2593 }
2594 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2595 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2596 {
2597 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2598 			struct blk_mq_hw_ctx, cpuhp_online);
2599 
2600 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2601 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2602 	return 0;
2603 }
2604 
2605 /*
2606  * 'cpu' is going away. splice any existing rq_list entries from this
2607  * software queue to the hw queue dispatch list, and ensure that it
2608  * gets run.
2609  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2610 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2611 {
2612 	struct blk_mq_hw_ctx *hctx;
2613 	struct request *rq, *next;
2614 	struct blk_mq_ctx *ctx;
2615 	LIST_HEAD(tmp);
2616 	enum hctx_type type;
2617 
2618 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2619 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2620 		return 0;
2621 
2622 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2623 	type = hctx->type;
2624 
2625 	spin_lock(&ctx->lock);
2626 	if (!list_empty(&ctx->rq_lists[type])) {
2627 		list_splice_init(&ctx->rq_lists[type], &tmp);
2628 		blk_mq_hctx_clear_pending(hctx, ctx);
2629 	}
2630 	spin_unlock(&ctx->lock);
2631 
2632 	if (list_empty(&tmp))
2633 		return 0;
2634 
2635 	list_for_each_entry_safe(rq, next, &tmp, queuelist)
2636 		blk_mq_requeue_request(rq, false);
2637 	blk_mq_kick_requeue_list(hctx->queue);
2638 
2639 	blk_mq_run_hw_queue(hctx, true);
2640 	return 0;
2641 }
2642 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2643 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2644 {
2645 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2646 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2647 						    &hctx->cpuhp_online);
2648 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2649 					    &hctx->cpuhp_dead);
2650 }
2651 
2652 /*
2653  * Before freeing hw queue, clearing the flush request reference in
2654  * tags->rqs[] for avoiding potential UAF.
2655  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2656 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2657 		unsigned int queue_depth, struct request *flush_rq)
2658 {
2659 	int i;
2660 	unsigned long flags;
2661 
2662 	/* The hw queue may not be mapped yet */
2663 	if (!tags)
2664 		return;
2665 
2666 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2667 
2668 	for (i = 0; i < queue_depth; i++)
2669 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2670 
2671 	/*
2672 	 * Wait until all pending iteration is done.
2673 	 *
2674 	 * Request reference is cleared and it is guaranteed to be observed
2675 	 * after the ->lock is released.
2676 	 */
2677 	spin_lock_irqsave(&tags->lock, flags);
2678 	spin_unlock_irqrestore(&tags->lock, flags);
2679 }
2680 
2681 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2682 static void blk_mq_exit_hctx(struct request_queue *q,
2683 		struct blk_mq_tag_set *set,
2684 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2685 {
2686 	struct request *flush_rq = hctx->fq->flush_rq;
2687 
2688 	if (blk_mq_hw_queue_mapped(hctx))
2689 		blk_mq_tag_idle(hctx);
2690 
2691 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2692 			set->queue_depth, flush_rq);
2693 	if (set->ops->exit_request)
2694 		set->ops->exit_request(set, flush_rq, hctx_idx);
2695 
2696 	if (set->ops->exit_hctx)
2697 		set->ops->exit_hctx(hctx, hctx_idx);
2698 
2699 	blk_mq_remove_cpuhp(hctx);
2700 
2701 	spin_lock(&q->unused_hctx_lock);
2702 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2703 	spin_unlock(&q->unused_hctx_lock);
2704 }
2705 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2706 static void blk_mq_exit_hw_queues(struct request_queue *q,
2707 		struct blk_mq_tag_set *set, int nr_queue)
2708 {
2709 	struct blk_mq_hw_ctx *hctx;
2710 	unsigned int i;
2711 
2712 	queue_for_each_hw_ctx(q, hctx, i) {
2713 		if (i == nr_queue)
2714 			break;
2715 		blk_mq_debugfs_unregister_hctx(hctx);
2716 		blk_mq_exit_hctx(q, set, hctx, i);
2717 	}
2718 }
2719 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2720 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2721 {
2722 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2723 
2724 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2725 			   __alignof__(struct blk_mq_hw_ctx)) !=
2726 		     sizeof(struct blk_mq_hw_ctx));
2727 
2728 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2729 		hw_ctx_size += sizeof(struct srcu_struct);
2730 
2731 	return hw_ctx_size;
2732 }
2733 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2734 static int blk_mq_init_hctx(struct request_queue *q,
2735 		struct blk_mq_tag_set *set,
2736 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2737 {
2738 	hctx->queue_num = hctx_idx;
2739 
2740 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2741 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2742 				&hctx->cpuhp_online);
2743 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2744 
2745 	hctx->tags = set->tags[hctx_idx];
2746 
2747 	if (set->ops->init_hctx &&
2748 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2749 		goto unregister_cpu_notifier;
2750 
2751 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2752 				hctx->numa_node))
2753 		goto exit_hctx;
2754 	return 0;
2755 
2756  exit_hctx:
2757 	if (set->ops->exit_hctx)
2758 		set->ops->exit_hctx(hctx, hctx_idx);
2759  unregister_cpu_notifier:
2760 	blk_mq_remove_cpuhp(hctx);
2761 	return -1;
2762 }
2763 
2764 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2765 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2766 		int node)
2767 {
2768 	struct blk_mq_hw_ctx *hctx;
2769 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2770 
2771 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2772 	if (!hctx)
2773 		goto fail_alloc_hctx;
2774 
2775 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2776 		goto free_hctx;
2777 
2778 	atomic_set(&hctx->nr_active, 0);
2779 	if (node == NUMA_NO_NODE)
2780 		node = set->numa_node;
2781 	hctx->numa_node = node;
2782 
2783 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2784 	spin_lock_init(&hctx->lock);
2785 	INIT_LIST_HEAD(&hctx->dispatch);
2786 	hctx->queue = q;
2787 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2788 
2789 	INIT_LIST_HEAD(&hctx->hctx_list);
2790 
2791 	/*
2792 	 * Allocate space for all possible cpus to avoid allocation at
2793 	 * runtime
2794 	 */
2795 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2796 			gfp, node);
2797 	if (!hctx->ctxs)
2798 		goto free_cpumask;
2799 
2800 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2801 				gfp, node, false, false))
2802 		goto free_ctxs;
2803 	hctx->nr_ctx = 0;
2804 
2805 	spin_lock_init(&hctx->dispatch_wait_lock);
2806 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2807 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2808 
2809 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2810 	if (!hctx->fq)
2811 		goto free_bitmap;
2812 
2813 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2814 		init_srcu_struct(hctx->srcu);
2815 	blk_mq_hctx_kobj_init(hctx);
2816 
2817 	return hctx;
2818 
2819  free_bitmap:
2820 	sbitmap_free(&hctx->ctx_map);
2821  free_ctxs:
2822 	kfree(hctx->ctxs);
2823  free_cpumask:
2824 	free_cpumask_var(hctx->cpumask);
2825  free_hctx:
2826 	kfree(hctx);
2827  fail_alloc_hctx:
2828 	return NULL;
2829 }
2830 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2831 static void blk_mq_init_cpu_queues(struct request_queue *q,
2832 				   unsigned int nr_hw_queues)
2833 {
2834 	struct blk_mq_tag_set *set = q->tag_set;
2835 	unsigned int i, j;
2836 
2837 	for_each_possible_cpu(i) {
2838 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2839 		struct blk_mq_hw_ctx *hctx;
2840 		int k;
2841 
2842 		__ctx->cpu = i;
2843 		spin_lock_init(&__ctx->lock);
2844 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2845 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2846 
2847 		__ctx->queue = q;
2848 
2849 		/*
2850 		 * Set local node, IFF we have more than one hw queue. If
2851 		 * not, we remain on the home node of the device
2852 		 */
2853 		for (j = 0; j < set->nr_maps; j++) {
2854 			hctx = blk_mq_map_queue_type(q, j, i);
2855 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2856 				hctx->numa_node = cpu_to_node(i);
2857 		}
2858 	}
2859 }
2860 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2861 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2862 					int hctx_idx)
2863 {
2864 	unsigned int flags = set->flags;
2865 	int ret = 0;
2866 
2867 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2868 					set->queue_depth, set->reserved_tags, flags);
2869 	if (!set->tags[hctx_idx])
2870 		return false;
2871 
2872 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2873 				set->queue_depth);
2874 	if (!ret)
2875 		return true;
2876 
2877 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2878 	set->tags[hctx_idx] = NULL;
2879 	return false;
2880 }
2881 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2882 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2883 					 unsigned int hctx_idx)
2884 {
2885 	unsigned int flags = set->flags;
2886 
2887 	if (set->tags && set->tags[hctx_idx]) {
2888 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2889 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2890 		set->tags[hctx_idx] = NULL;
2891 	}
2892 }
2893 
blk_mq_map_swqueue(struct request_queue * q)2894 static void blk_mq_map_swqueue(struct request_queue *q)
2895 {
2896 	unsigned int i, j, hctx_idx;
2897 	struct blk_mq_hw_ctx *hctx;
2898 	struct blk_mq_ctx *ctx;
2899 	struct blk_mq_tag_set *set = q->tag_set;
2900 
2901 	queue_for_each_hw_ctx(q, hctx, i) {
2902 		cpumask_clear(hctx->cpumask);
2903 		hctx->nr_ctx = 0;
2904 		hctx->dispatch_from = NULL;
2905 	}
2906 
2907 	/*
2908 	 * Map software to hardware queues.
2909 	 *
2910 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2911 	 */
2912 	for_each_possible_cpu(i) {
2913 
2914 		ctx = per_cpu_ptr(q->queue_ctx, i);
2915 		for (j = 0; j < set->nr_maps; j++) {
2916 			if (!set->map[j].nr_queues) {
2917 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2918 						HCTX_TYPE_DEFAULT, i);
2919 				continue;
2920 			}
2921 			hctx_idx = set->map[j].mq_map[i];
2922 			/* unmapped hw queue can be remapped after CPU topo changed */
2923 			if (!set->tags[hctx_idx] &&
2924 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2925 				/*
2926 				 * If tags initialization fail for some hctx,
2927 				 * that hctx won't be brought online.  In this
2928 				 * case, remap the current ctx to hctx[0] which
2929 				 * is guaranteed to always have tags allocated
2930 				 */
2931 				set->map[j].mq_map[i] = 0;
2932 			}
2933 
2934 			hctx = blk_mq_map_queue_type(q, j, i);
2935 			ctx->hctxs[j] = hctx;
2936 			/*
2937 			 * If the CPU is already set in the mask, then we've
2938 			 * mapped this one already. This can happen if
2939 			 * devices share queues across queue maps.
2940 			 */
2941 			if (cpumask_test_cpu(i, hctx->cpumask))
2942 				continue;
2943 
2944 			cpumask_set_cpu(i, hctx->cpumask);
2945 			hctx->type = j;
2946 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2947 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2948 
2949 			/*
2950 			 * If the nr_ctx type overflows, we have exceeded the
2951 			 * amount of sw queues we can support.
2952 			 */
2953 			BUG_ON(!hctx->nr_ctx);
2954 		}
2955 
2956 		for (; j < HCTX_MAX_TYPES; j++)
2957 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2958 					HCTX_TYPE_DEFAULT, i);
2959 	}
2960 
2961 	queue_for_each_hw_ctx(q, hctx, i) {
2962 		/*
2963 		 * If no software queues are mapped to this hardware queue,
2964 		 * disable it and free the request entries.
2965 		 */
2966 		if (!hctx->nr_ctx) {
2967 			/* Never unmap queue 0.  We need it as a
2968 			 * fallback in case of a new remap fails
2969 			 * allocation
2970 			 */
2971 			if (i && set->tags[i])
2972 				blk_mq_free_map_and_requests(set, i);
2973 
2974 			hctx->tags = NULL;
2975 			continue;
2976 		}
2977 
2978 		hctx->tags = set->tags[i];
2979 		WARN_ON(!hctx->tags);
2980 
2981 		/*
2982 		 * Set the map size to the number of mapped software queues.
2983 		 * This is more accurate and more efficient than looping
2984 		 * over all possibly mapped software queues.
2985 		 */
2986 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2987 
2988 		/*
2989 		 * Initialize batch roundrobin counts
2990 		 */
2991 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2992 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2993 	}
2994 }
2995 
2996 /*
2997  * Caller needs to ensure that we're either frozen/quiesced, or that
2998  * the queue isn't live yet.
2999  */
queue_set_hctx_shared(struct request_queue * q,bool shared)3000 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3001 {
3002 	struct blk_mq_hw_ctx *hctx;
3003 	int i;
3004 
3005 	queue_for_each_hw_ctx(q, hctx, i) {
3006 		if (shared) {
3007 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3008 		} else {
3009 			blk_mq_tag_idle(hctx);
3010 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3011 		}
3012 	}
3013 }
3014 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3015 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3016 					 bool shared)
3017 {
3018 	struct request_queue *q;
3019 
3020 	lockdep_assert_held(&set->tag_list_lock);
3021 
3022 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3023 		blk_mq_freeze_queue(q);
3024 		queue_set_hctx_shared(q, shared);
3025 		blk_mq_unfreeze_queue(q);
3026 	}
3027 }
3028 
blk_mq_del_queue_tag_set(struct request_queue * q)3029 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3030 {
3031 	struct blk_mq_tag_set *set = q->tag_set;
3032 
3033 	mutex_lock(&set->tag_list_lock);
3034 	list_del(&q->tag_set_list);
3035 	if (list_is_singular(&set->tag_list)) {
3036 		/* just transitioned to unshared */
3037 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3038 		/* update existing queue */
3039 		blk_mq_update_tag_set_shared(set, false);
3040 	}
3041 	mutex_unlock(&set->tag_list_lock);
3042 	INIT_LIST_HEAD(&q->tag_set_list);
3043 }
3044 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3045 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3046 				     struct request_queue *q)
3047 {
3048 	mutex_lock(&set->tag_list_lock);
3049 
3050 	/*
3051 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3052 	 */
3053 	if (!list_empty(&set->tag_list) &&
3054 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3055 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3056 		/* update existing queue */
3057 		blk_mq_update_tag_set_shared(set, true);
3058 	}
3059 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3060 		queue_set_hctx_shared(q, true);
3061 	list_add_tail(&q->tag_set_list, &set->tag_list);
3062 
3063 	mutex_unlock(&set->tag_list_lock);
3064 }
3065 
3066 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3067 static int blk_mq_alloc_ctxs(struct request_queue *q)
3068 {
3069 	struct blk_mq_ctxs *ctxs;
3070 	int cpu;
3071 
3072 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3073 	if (!ctxs)
3074 		return -ENOMEM;
3075 
3076 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3077 	if (!ctxs->queue_ctx)
3078 		goto fail;
3079 
3080 	for_each_possible_cpu(cpu) {
3081 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3082 		ctx->ctxs = ctxs;
3083 	}
3084 
3085 	q->mq_kobj = &ctxs->kobj;
3086 	q->queue_ctx = ctxs->queue_ctx;
3087 
3088 	return 0;
3089  fail:
3090 	kfree(ctxs);
3091 	return -ENOMEM;
3092 }
3093 
3094 /*
3095  * It is the actual release handler for mq, but we do it from
3096  * request queue's release handler for avoiding use-after-free
3097  * and headache because q->mq_kobj shouldn't have been introduced,
3098  * but we can't group ctx/kctx kobj without it.
3099  */
blk_mq_release(struct request_queue * q)3100 void blk_mq_release(struct request_queue *q)
3101 {
3102 	struct blk_mq_hw_ctx *hctx, *next;
3103 	int i;
3104 
3105 	queue_for_each_hw_ctx(q, hctx, i)
3106 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3107 
3108 	/* all hctx are in .unused_hctx_list now */
3109 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3110 		list_del_init(&hctx->hctx_list);
3111 		kobject_put(&hctx->kobj);
3112 	}
3113 
3114 	kfree(q->queue_hw_ctx);
3115 
3116 	/*
3117 	 * release .mq_kobj and sw queue's kobject now because
3118 	 * both share lifetime with request queue.
3119 	 */
3120 	blk_mq_sysfs_deinit(q);
3121 }
3122 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3123 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3124 		void *queuedata)
3125 {
3126 	struct request_queue *q;
3127 	int ret;
3128 
3129 	q = blk_alloc_queue(set->numa_node);
3130 	if (!q)
3131 		return ERR_PTR(-ENOMEM);
3132 	q->queuedata = queuedata;
3133 	ret = blk_mq_init_allocated_queue(set, q);
3134 	if (ret) {
3135 		blk_cleanup_queue(q);
3136 		return ERR_PTR(ret);
3137 	}
3138 	return q;
3139 }
3140 
blk_mq_init_queue(struct blk_mq_tag_set * set)3141 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3142 {
3143 	return blk_mq_init_queue_data(set, NULL);
3144 }
3145 EXPORT_SYMBOL(blk_mq_init_queue);
3146 
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)3147 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3148 		struct lock_class_key *lkclass)
3149 {
3150 	struct request_queue *q;
3151 	struct gendisk *disk;
3152 
3153 	q = blk_mq_init_queue_data(set, queuedata);
3154 	if (IS_ERR(q))
3155 		return ERR_CAST(q);
3156 
3157 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3158 	if (!disk) {
3159 		blk_cleanup_queue(q);
3160 		return ERR_PTR(-ENOMEM);
3161 	}
3162 	return disk;
3163 }
3164 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3165 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3166 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3167 		struct blk_mq_tag_set *set, struct request_queue *q,
3168 		int hctx_idx, int node)
3169 {
3170 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3171 
3172 	/* reuse dead hctx first */
3173 	spin_lock(&q->unused_hctx_lock);
3174 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3175 		if (tmp->numa_node == node) {
3176 			hctx = tmp;
3177 			break;
3178 		}
3179 	}
3180 	if (hctx)
3181 		list_del_init(&hctx->hctx_list);
3182 	spin_unlock(&q->unused_hctx_lock);
3183 
3184 	if (!hctx)
3185 		hctx = blk_mq_alloc_hctx(q, set, node);
3186 	if (!hctx)
3187 		goto fail;
3188 
3189 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3190 		goto free_hctx;
3191 
3192 	return hctx;
3193 
3194  free_hctx:
3195 	kobject_put(&hctx->kobj);
3196  fail:
3197 	return NULL;
3198 }
3199 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3200 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3201 						struct request_queue *q)
3202 {
3203 	int i, j, end;
3204 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3205 
3206 	if (q->nr_hw_queues < set->nr_hw_queues) {
3207 		struct blk_mq_hw_ctx **new_hctxs;
3208 
3209 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3210 				       sizeof(*new_hctxs), GFP_KERNEL,
3211 				       set->numa_node);
3212 		if (!new_hctxs)
3213 			return;
3214 		if (hctxs)
3215 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3216 			       sizeof(*hctxs));
3217 		q->queue_hw_ctx = new_hctxs;
3218 		kfree(hctxs);
3219 		hctxs = new_hctxs;
3220 	}
3221 
3222 	/* protect against switching io scheduler  */
3223 	mutex_lock(&q->sysfs_lock);
3224 	for (i = 0; i < set->nr_hw_queues; i++) {
3225 		int node;
3226 		struct blk_mq_hw_ctx *hctx;
3227 
3228 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3229 		/*
3230 		 * If the hw queue has been mapped to another numa node,
3231 		 * we need to realloc the hctx. If allocation fails, fallback
3232 		 * to use the previous one.
3233 		 */
3234 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3235 			continue;
3236 
3237 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3238 		if (hctx) {
3239 			if (hctxs[i])
3240 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3241 			hctxs[i] = hctx;
3242 		} else {
3243 			if (hctxs[i])
3244 				pr_warn("Allocate new hctx on node %d fails,\
3245 						fallback to previous one on node %d\n",
3246 						node, hctxs[i]->numa_node);
3247 			else
3248 				break;
3249 		}
3250 	}
3251 	/*
3252 	 * Increasing nr_hw_queues fails. Free the newly allocated
3253 	 * hctxs and keep the previous q->nr_hw_queues.
3254 	 */
3255 	if (i != set->nr_hw_queues) {
3256 		j = q->nr_hw_queues;
3257 		end = i;
3258 	} else {
3259 		j = i;
3260 		end = q->nr_hw_queues;
3261 		q->nr_hw_queues = set->nr_hw_queues;
3262 	}
3263 
3264 	for (; j < end; j++) {
3265 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3266 
3267 		if (hctx) {
3268 			if (hctx->tags)
3269 				blk_mq_free_map_and_requests(set, j);
3270 			blk_mq_exit_hctx(q, set, hctx, j);
3271 			hctxs[j] = NULL;
3272 		}
3273 	}
3274 	mutex_unlock(&q->sysfs_lock);
3275 }
3276 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)3277 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3278 		struct request_queue *q)
3279 {
3280 	/* mark the queue as mq asap */
3281 	q->mq_ops = set->ops;
3282 
3283 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3284 					     blk_mq_poll_stats_bkt,
3285 					     BLK_MQ_POLL_STATS_BKTS, q);
3286 	if (!q->poll_cb)
3287 		goto err_exit;
3288 
3289 	if (blk_mq_alloc_ctxs(q))
3290 		goto err_poll;
3291 
3292 	/* init q->mq_kobj and sw queues' kobjects */
3293 	blk_mq_sysfs_init(q);
3294 
3295 	INIT_LIST_HEAD(&q->unused_hctx_list);
3296 	spin_lock_init(&q->unused_hctx_lock);
3297 
3298 	blk_mq_realloc_hw_ctxs(set, q);
3299 	if (!q->nr_hw_queues)
3300 		goto err_hctxs;
3301 
3302 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3303 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3304 
3305 	q->tag_set = set;
3306 
3307 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3308 	if (set->nr_maps > HCTX_TYPE_POLL &&
3309 	    set->map[HCTX_TYPE_POLL].nr_queues)
3310 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3311 
3312 	INIT_DELAYED_WORK(&to_internal_q(q)->requeue_work, blk_mq_requeue_work);
3313 	INIT_LIST_HEAD(&q->requeue_list);
3314 	spin_lock_init(&q->requeue_lock);
3315 
3316 	q->nr_requests = set->queue_depth;
3317 
3318 	/*
3319 	 * Default to classic polling
3320 	 */
3321 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3322 
3323 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3324 	blk_mq_add_queue_tag_set(set, q);
3325 	blk_mq_map_swqueue(q);
3326 	return 0;
3327 
3328 err_hctxs:
3329 	kfree(q->queue_hw_ctx);
3330 	q->nr_hw_queues = 0;
3331 	blk_mq_sysfs_deinit(q);
3332 err_poll:
3333 	blk_stat_free_callback(q->poll_cb);
3334 	q->poll_cb = NULL;
3335 err_exit:
3336 	q->mq_ops = NULL;
3337 	return -ENOMEM;
3338 }
3339 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3340 
3341 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3342 void blk_mq_exit_queue(struct request_queue *q)
3343 {
3344 	struct blk_mq_tag_set *set = q->tag_set;
3345 
3346 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3347 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3348 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3349 	blk_mq_del_queue_tag_set(q);
3350 }
3351 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3352 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3353 {
3354 	int i;
3355 
3356 	for (i = 0; i < set->nr_hw_queues; i++) {
3357 		if (!__blk_mq_alloc_map_and_request(set, i))
3358 			goto out_unwind;
3359 		cond_resched();
3360 	}
3361 
3362 	return 0;
3363 
3364 out_unwind:
3365 	while (--i >= 0)
3366 		blk_mq_free_map_and_requests(set, i);
3367 
3368 	return -ENOMEM;
3369 }
3370 
3371 /*
3372  * Allocate the request maps associated with this tag_set. Note that this
3373  * may reduce the depth asked for, if memory is tight. set->queue_depth
3374  * will be updated to reflect the allocated depth.
3375  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3376 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3377 {
3378 	unsigned int depth;
3379 	int err;
3380 
3381 	depth = set->queue_depth;
3382 	do {
3383 		err = __blk_mq_alloc_rq_maps(set);
3384 		if (!err)
3385 			break;
3386 
3387 		set->queue_depth >>= 1;
3388 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3389 			err = -ENOMEM;
3390 			break;
3391 		}
3392 	} while (set->queue_depth);
3393 
3394 	if (!set->queue_depth || err) {
3395 		pr_err("blk-mq: failed to allocate request map\n");
3396 		return -ENOMEM;
3397 	}
3398 
3399 	if (depth != set->queue_depth)
3400 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3401 						depth, set->queue_depth);
3402 
3403 	return 0;
3404 }
3405 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3406 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3407 {
3408 	/*
3409 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3410 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3411 	 * number of hardware queues.
3412 	 */
3413 	if (set->nr_maps == 1)
3414 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3415 
3416 	if (set->ops->map_queues && !is_kdump_kernel()) {
3417 		int i;
3418 
3419 		/*
3420 		 * transport .map_queues is usually done in the following
3421 		 * way:
3422 		 *
3423 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3424 		 * 	mask = get_cpu_mask(queue)
3425 		 * 	for_each_cpu(cpu, mask)
3426 		 * 		set->map[x].mq_map[cpu] = queue;
3427 		 * }
3428 		 *
3429 		 * When we need to remap, the table has to be cleared for
3430 		 * killing stale mapping since one CPU may not be mapped
3431 		 * to any hw queue.
3432 		 */
3433 		for (i = 0; i < set->nr_maps; i++)
3434 			blk_mq_clear_mq_map(&set->map[i]);
3435 
3436 		return set->ops->map_queues(set);
3437 	} else {
3438 		BUG_ON(set->nr_maps > 1);
3439 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3440 	}
3441 }
3442 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3443 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3444 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3445 {
3446 	struct blk_mq_tags **new_tags;
3447 
3448 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3449 		return 0;
3450 
3451 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3452 				GFP_KERNEL, set->numa_node);
3453 	if (!new_tags)
3454 		return -ENOMEM;
3455 
3456 	if (set->tags)
3457 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3458 		       sizeof(*set->tags));
3459 	kfree(set->tags);
3460 	set->tags = new_tags;
3461 	set->nr_hw_queues = new_nr_hw_queues;
3462 
3463 	return 0;
3464 }
3465 
blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)3466 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3467 				int new_nr_hw_queues)
3468 {
3469 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3470 }
3471 
3472 /*
3473  * Alloc a tag set to be associated with one or more request queues.
3474  * May fail with EINVAL for various error conditions. May adjust the
3475  * requested depth down, if it's too large. In that case, the set
3476  * value will be stored in set->queue_depth.
3477  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3478 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3479 {
3480 	int i, ret;
3481 
3482 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3483 
3484 	if (!set->nr_hw_queues)
3485 		return -EINVAL;
3486 	if (!set->queue_depth)
3487 		return -EINVAL;
3488 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3489 		return -EINVAL;
3490 
3491 	if (!set->ops->queue_rq)
3492 		return -EINVAL;
3493 
3494 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3495 		return -EINVAL;
3496 
3497 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3498 		pr_info("blk-mq: reduced tag depth to %u\n",
3499 			BLK_MQ_MAX_DEPTH);
3500 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3501 	}
3502 
3503 	if (!set->nr_maps)
3504 		set->nr_maps = 1;
3505 	else if (set->nr_maps > HCTX_MAX_TYPES)
3506 		return -EINVAL;
3507 
3508 	/*
3509 	 * If a crashdump is active, then we are potentially in a very
3510 	 * memory constrained environment. Limit us to 1 queue and
3511 	 * 64 tags to prevent using too much memory.
3512 	 */
3513 	if (is_kdump_kernel()) {
3514 		set->nr_hw_queues = 1;
3515 		set->nr_maps = 1;
3516 		set->queue_depth = min(64U, set->queue_depth);
3517 	}
3518 	/*
3519 	 * There is no use for more h/w queues than cpus if we just have
3520 	 * a single map
3521 	 */
3522 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3523 		set->nr_hw_queues = nr_cpu_ids;
3524 
3525 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3526 		return -ENOMEM;
3527 
3528 	ret = -ENOMEM;
3529 	for (i = 0; i < set->nr_maps; i++) {
3530 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3531 						  sizeof(set->map[i].mq_map[0]),
3532 						  GFP_KERNEL, set->numa_node);
3533 		if (!set->map[i].mq_map)
3534 			goto out_free_mq_map;
3535 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3536 	}
3537 
3538 	ret = blk_mq_update_queue_map(set);
3539 	if (ret)
3540 		goto out_free_mq_map;
3541 
3542 	ret = blk_mq_alloc_map_and_requests(set);
3543 	if (ret)
3544 		goto out_free_mq_map;
3545 
3546 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3547 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3548 
3549 		if (blk_mq_init_shared_sbitmap(set)) {
3550 			ret = -ENOMEM;
3551 			goto out_free_mq_rq_maps;
3552 		}
3553 	}
3554 
3555 	mutex_init(&set->tag_list_lock);
3556 	INIT_LIST_HEAD(&set->tag_list);
3557 
3558 	return 0;
3559 
3560 out_free_mq_rq_maps:
3561 	for (i = 0; i < set->nr_hw_queues; i++)
3562 		blk_mq_free_map_and_requests(set, i);
3563 out_free_mq_map:
3564 	for (i = 0; i < set->nr_maps; i++) {
3565 		kfree(set->map[i].mq_map);
3566 		set->map[i].mq_map = NULL;
3567 	}
3568 	kfree(set->tags);
3569 	set->tags = NULL;
3570 	return ret;
3571 }
3572 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3573 
3574 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3575 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3576 		const struct blk_mq_ops *ops, unsigned int queue_depth,
3577 		unsigned int set_flags)
3578 {
3579 	memset(set, 0, sizeof(*set));
3580 	set->ops = ops;
3581 	set->nr_hw_queues = 1;
3582 	set->nr_maps = 1;
3583 	set->queue_depth = queue_depth;
3584 	set->numa_node = NUMA_NO_NODE;
3585 	set->flags = set_flags;
3586 	return blk_mq_alloc_tag_set(set);
3587 }
3588 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3589 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3590 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3591 {
3592 	int i, j;
3593 
3594 	for (i = 0; i < set->nr_hw_queues; i++)
3595 		blk_mq_free_map_and_requests(set, i);
3596 
3597 	if (blk_mq_is_sbitmap_shared(set->flags))
3598 		blk_mq_exit_shared_sbitmap(set);
3599 
3600 	for (j = 0; j < set->nr_maps; j++) {
3601 		kfree(set->map[j].mq_map);
3602 		set->map[j].mq_map = NULL;
3603 	}
3604 
3605 	kfree(set->tags);
3606 	set->tags = NULL;
3607 }
3608 EXPORT_SYMBOL(blk_mq_free_tag_set);
3609 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3610 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3611 {
3612 	struct blk_mq_tag_set *set = q->tag_set;
3613 	struct blk_mq_hw_ctx *hctx;
3614 	int i, ret;
3615 
3616 	if (!set)
3617 		return -EINVAL;
3618 
3619 	if (q->nr_requests == nr)
3620 		return 0;
3621 
3622 	blk_mq_freeze_queue(q);
3623 	blk_mq_quiesce_queue(q);
3624 
3625 	ret = 0;
3626 	queue_for_each_hw_ctx(q, hctx, i) {
3627 		if (!hctx->tags)
3628 			continue;
3629 		/*
3630 		 * If we're using an MQ scheduler, just update the scheduler
3631 		 * queue depth. This is similar to what the old code would do.
3632 		 */
3633 		if (!hctx->sched_tags) {
3634 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3635 							false);
3636 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3637 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3638 		} else {
3639 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3640 							nr, true);
3641 			if (blk_mq_is_sbitmap_shared(set->flags)) {
3642 				hctx->sched_tags->bitmap_tags =
3643 					&q->sched_bitmap_tags;
3644 				hctx->sched_tags->breserved_tags =
3645 					&q->sched_breserved_tags;
3646 			}
3647 		}
3648 		if (ret)
3649 			break;
3650 		if (q->elevator && q->elevator->type->ops.depth_updated)
3651 			q->elevator->type->ops.depth_updated(hctx);
3652 	}
3653 	if (!ret) {
3654 		q->nr_requests = nr;
3655 		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3656 			sbitmap_queue_resize(&q->sched_bitmap_tags,
3657 					     nr - set->reserved_tags);
3658 	}
3659 
3660 	blk_mq_unquiesce_queue(q);
3661 	blk_mq_unfreeze_queue(q);
3662 
3663 	return ret;
3664 }
3665 
3666 /*
3667  * request_queue and elevator_type pair.
3668  * It is just used by __blk_mq_update_nr_hw_queues to cache
3669  * the elevator_type associated with a request_queue.
3670  */
3671 struct blk_mq_qe_pair {
3672 	struct list_head node;
3673 	struct request_queue *q;
3674 	struct elevator_type *type;
3675 };
3676 
3677 /*
3678  * Cache the elevator_type in qe pair list and switch the
3679  * io scheduler to 'none'
3680  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3681 static bool blk_mq_elv_switch_none(struct list_head *head,
3682 		struct request_queue *q)
3683 {
3684 	struct blk_mq_qe_pair *qe;
3685 
3686 	if (!q->elevator)
3687 		return true;
3688 
3689 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3690 	if (!qe)
3691 		return false;
3692 
3693 	INIT_LIST_HEAD(&qe->node);
3694 	qe->q = q;
3695 	qe->type = q->elevator->type;
3696 	list_add(&qe->node, head);
3697 
3698 	mutex_lock(&q->sysfs_lock);
3699 	/*
3700 	 * After elevator_switch_mq, the previous elevator_queue will be
3701 	 * released by elevator_release. The reference of the io scheduler
3702 	 * module get by elevator_get will also be put. So we need to get
3703 	 * a reference of the io scheduler module here to prevent it to be
3704 	 * removed.
3705 	 */
3706 	__module_get(qe->type->elevator_owner);
3707 	elevator_switch_mq(q, NULL);
3708 	mutex_unlock(&q->sysfs_lock);
3709 
3710 	return true;
3711 }
3712 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3713 static void blk_mq_elv_switch_back(struct list_head *head,
3714 		struct request_queue *q)
3715 {
3716 	struct blk_mq_qe_pair *qe;
3717 	struct elevator_type *t = NULL;
3718 
3719 	list_for_each_entry(qe, head, node)
3720 		if (qe->q == q) {
3721 			t = qe->type;
3722 			break;
3723 		}
3724 
3725 	if (!t)
3726 		return;
3727 
3728 	list_del(&qe->node);
3729 	kfree(qe);
3730 
3731 	mutex_lock(&q->sysfs_lock);
3732 	elevator_switch_mq(q, t);
3733 	mutex_unlock(&q->sysfs_lock);
3734 }
3735 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3736 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3737 							int nr_hw_queues)
3738 {
3739 	struct request_queue *q;
3740 	LIST_HEAD(head);
3741 	int prev_nr_hw_queues;
3742 
3743 	lockdep_assert_held(&set->tag_list_lock);
3744 
3745 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3746 		nr_hw_queues = nr_cpu_ids;
3747 	if (nr_hw_queues < 1)
3748 		return;
3749 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3750 		return;
3751 
3752 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3753 		blk_mq_freeze_queue(q);
3754 	/*
3755 	 * Switch IO scheduler to 'none', cleaning up the data associated
3756 	 * with the previous scheduler. We will switch back once we are done
3757 	 * updating the new sw to hw queue mappings.
3758 	 */
3759 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3760 		if (!blk_mq_elv_switch_none(&head, q))
3761 			goto switch_back;
3762 
3763 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3764 		blk_mq_debugfs_unregister_hctxs(q);
3765 		blk_mq_sysfs_unregister(q);
3766 	}
3767 
3768 	prev_nr_hw_queues = set->nr_hw_queues;
3769 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3770 	    0)
3771 		goto reregister;
3772 
3773 	set->nr_hw_queues = nr_hw_queues;
3774 fallback:
3775 	blk_mq_update_queue_map(set);
3776 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3777 		blk_mq_realloc_hw_ctxs(set, q);
3778 		if (q->nr_hw_queues != set->nr_hw_queues) {
3779 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3780 					nr_hw_queues, prev_nr_hw_queues);
3781 			set->nr_hw_queues = prev_nr_hw_queues;
3782 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3783 			goto fallback;
3784 		}
3785 		blk_mq_map_swqueue(q);
3786 	}
3787 
3788 reregister:
3789 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3790 		blk_mq_sysfs_register(q);
3791 		blk_mq_debugfs_register_hctxs(q);
3792 	}
3793 
3794 switch_back:
3795 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3796 		blk_mq_elv_switch_back(&head, q);
3797 
3798 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3799 		blk_mq_unfreeze_queue(q);
3800 }
3801 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3802 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3803 {
3804 	mutex_lock(&set->tag_list_lock);
3805 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3806 	mutex_unlock(&set->tag_list_lock);
3807 }
3808 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3809 
3810 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3811 static bool blk_poll_stats_enable(struct request_queue *q)
3812 {
3813 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3814 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3815 		return true;
3816 	blk_stat_add_callback(q, q->poll_cb);
3817 	return false;
3818 }
3819 
blk_mq_poll_stats_start(struct request_queue * q)3820 static void blk_mq_poll_stats_start(struct request_queue *q)
3821 {
3822 	/*
3823 	 * We don't arm the callback if polling stats are not enabled or the
3824 	 * callback is already active.
3825 	 */
3826 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3827 	    blk_stat_is_active(q->poll_cb))
3828 		return;
3829 
3830 	blk_stat_activate_msecs(q->poll_cb, 100);
3831 }
3832 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3833 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3834 {
3835 	struct request_queue *q = cb->data;
3836 	int bucket;
3837 
3838 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3839 		if (cb->stat[bucket].nr_samples)
3840 			q->poll_stat[bucket] = cb->stat[bucket];
3841 	}
3842 }
3843 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3844 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3845 				       struct request *rq)
3846 {
3847 	unsigned long ret = 0;
3848 	int bucket;
3849 
3850 	/*
3851 	 * If stats collection isn't on, don't sleep but turn it on for
3852 	 * future users
3853 	 */
3854 	if (!blk_poll_stats_enable(q))
3855 		return 0;
3856 
3857 	/*
3858 	 * As an optimistic guess, use half of the mean service time
3859 	 * for this type of request. We can (and should) make this smarter.
3860 	 * For instance, if the completion latencies are tight, we can
3861 	 * get closer than just half the mean. This is especially
3862 	 * important on devices where the completion latencies are longer
3863 	 * than ~10 usec. We do use the stats for the relevant IO size
3864 	 * if available which does lead to better estimates.
3865 	 */
3866 	bucket = blk_mq_poll_stats_bkt(rq);
3867 	if (bucket < 0)
3868 		return ret;
3869 
3870 	if (q->poll_stat[bucket].nr_samples)
3871 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3872 
3873 	return ret;
3874 }
3875 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3876 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3877 				     struct request *rq)
3878 {
3879 	struct hrtimer_sleeper hs;
3880 	enum hrtimer_mode mode;
3881 	unsigned int nsecs;
3882 	ktime_t kt;
3883 
3884 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3885 		return false;
3886 
3887 	/*
3888 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3889 	 *
3890 	 *  0:	use half of prev avg
3891 	 * >0:	use this specific value
3892 	 */
3893 	if (q->poll_nsec > 0)
3894 		nsecs = q->poll_nsec;
3895 	else
3896 		nsecs = blk_mq_poll_nsecs(q, rq);
3897 
3898 	if (!nsecs)
3899 		return false;
3900 
3901 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3902 
3903 	/*
3904 	 * This will be replaced with the stats tracking code, using
3905 	 * 'avg_completion_time / 2' as the pre-sleep target.
3906 	 */
3907 	kt = nsecs;
3908 
3909 	mode = HRTIMER_MODE_REL;
3910 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3911 	hrtimer_set_expires(&hs.timer, kt);
3912 
3913 	do {
3914 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3915 			break;
3916 		set_current_state(TASK_UNINTERRUPTIBLE);
3917 		hrtimer_sleeper_start_expires(&hs, mode);
3918 		if (hs.task)
3919 			io_schedule();
3920 		hrtimer_cancel(&hs.timer);
3921 		mode = HRTIMER_MODE_ABS;
3922 	} while (hs.task && !signal_pending(current));
3923 
3924 	__set_current_state(TASK_RUNNING);
3925 	destroy_hrtimer_on_stack(&hs.timer);
3926 	return true;
3927 }
3928 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3929 static bool blk_mq_poll_hybrid(struct request_queue *q,
3930 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3931 {
3932 	struct request *rq;
3933 
3934 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3935 		return false;
3936 
3937 	if (!blk_qc_t_is_internal(cookie))
3938 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3939 	else {
3940 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3941 		/*
3942 		 * With scheduling, if the request has completed, we'll
3943 		 * get a NULL return here, as we clear the sched tag when
3944 		 * that happens. The request still remains valid, like always,
3945 		 * so we should be safe with just the NULL check.
3946 		 */
3947 		if (!rq)
3948 			return false;
3949 	}
3950 
3951 	return blk_mq_poll_hybrid_sleep(q, rq);
3952 }
3953 
3954 /**
3955  * blk_poll - poll for IO completions
3956  * @q:  the queue
3957  * @cookie: cookie passed back at IO submission time
3958  * @spin: whether to spin for completions
3959  *
3960  * Description:
3961  *    Poll for completions on the passed in queue. Returns number of
3962  *    completed entries found. If @spin is true, then blk_poll will continue
3963  *    looping until at least one completion is found, unless the task is
3964  *    otherwise marked running (or we need to reschedule).
3965  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3966 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3967 {
3968 	struct blk_mq_hw_ctx *hctx;
3969 	unsigned int state;
3970 
3971 	if (!blk_qc_t_valid(cookie) ||
3972 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3973 		return 0;
3974 
3975 	if (current->plug)
3976 		blk_flush_plug_list(current->plug, false);
3977 
3978 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3979 
3980 	/*
3981 	 * If we sleep, have the caller restart the poll loop to reset
3982 	 * the state. Like for the other success return cases, the
3983 	 * caller is responsible for checking if the IO completed. If
3984 	 * the IO isn't complete, we'll get called again and will go
3985 	 * straight to the busy poll loop. If specified not to spin,
3986 	 * we also should not sleep.
3987 	 */
3988 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3989 		return 1;
3990 
3991 	hctx->poll_considered++;
3992 
3993 	state = get_current_state();
3994 	do {
3995 		int ret;
3996 
3997 		hctx->poll_invoked++;
3998 
3999 		ret = q->mq_ops->poll(hctx);
4000 		if (ret > 0) {
4001 			hctx->poll_success++;
4002 			__set_current_state(TASK_RUNNING);
4003 			return ret;
4004 		}
4005 
4006 		if (signal_pending_state(state, current))
4007 			__set_current_state(TASK_RUNNING);
4008 
4009 		if (task_is_running(current))
4010 			return 1;
4011 		if (ret < 0 || !spin)
4012 			break;
4013 		cpu_relax();
4014 	} while (!need_resched());
4015 
4016 	__set_current_state(TASK_RUNNING);
4017 	return 0;
4018 }
4019 EXPORT_SYMBOL_GPL(blk_poll);
4020 
blk_mq_rq_cpu(struct request * rq)4021 unsigned int blk_mq_rq_cpu(struct request *rq)
4022 {
4023 	return rq->mq_ctx->cpu;
4024 }
4025 EXPORT_SYMBOL(blk_mq_rq_cpu);
4026 
blk_mq_cancel_work_sync(struct request_queue * q)4027 void blk_mq_cancel_work_sync(struct request_queue *q)
4028 {
4029 	if (queue_is_mq(q)) {
4030 		struct blk_mq_hw_ctx *hctx;
4031 		int i;
4032 
4033 		cancel_delayed_work_sync(&to_internal_q(q)->requeue_work);
4034 
4035 		queue_for_each_hw_ctx(q, hctx, i)
4036 			cancel_delayed_work_sync(&hctx->run_work);
4037 	}
4038 }
4039 
blk_mq_init(void)4040 static int __init blk_mq_init(void)
4041 {
4042 	int i;
4043 
4044 	for_each_possible_cpu(i)
4045 		init_llist_head(&per_cpu(blk_cpu_done, i));
4046 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4047 
4048 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4049 				  "block/softirq:dead", NULL,
4050 				  blk_softirq_cpu_dead);
4051 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4052 				blk_mq_hctx_notify_dead);
4053 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4054 				blk_mq_hctx_notify_online,
4055 				blk_mq_hctx_notify_offline);
4056 	return 0;
4057 }
4058 subsys_initcall(blk_mq_init);
4059