1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18
19 #include "../../lib/kstrtox.h"
20
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22 * inside its own verifier_ops->get_func_proto() callback it should return
23 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24 *
25 * Different map implementations will rely on rcu in map methods
26 * lookup/update/delete, therefore eBPF programs must run under rcu lock
27 * if program is allowed to access maps, so check rcu_read_lock_held in
28 * all three functions.
29 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 .func = bpf_map_lookup_elem,
38 .gpl_only = false,
39 .pkt_access = true,
40 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
41 .arg1_type = ARG_CONST_MAP_PTR,
42 .arg2_type = ARG_PTR_TO_MAP_KEY,
43 };
44
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 void *, value, u64, flags)
47 {
48 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 return map->ops->map_update_elem(map, key, value, flags);
50 }
51
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53 .func = bpf_map_update_elem,
54 .gpl_only = false,
55 .pkt_access = true,
56 .ret_type = RET_INTEGER,
57 .arg1_type = ARG_CONST_MAP_PTR,
58 .arg2_type = ARG_PTR_TO_MAP_KEY,
59 .arg3_type = ARG_PTR_TO_MAP_VALUE,
60 .arg4_type = ARG_ANYTHING,
61 };
62
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 return map->ops->map_delete_elem(map, key);
67 }
68
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 .func = bpf_map_delete_elem,
71 .gpl_only = false,
72 .pkt_access = true,
73 .ret_type = RET_INTEGER,
74 .arg1_type = ARG_CONST_MAP_PTR,
75 .arg2_type = ARG_PTR_TO_MAP_KEY,
76 };
77
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80 return map->ops->map_push_elem(map, value, flags);
81 }
82
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84 .func = bpf_map_push_elem,
85 .gpl_only = false,
86 .pkt_access = true,
87 .ret_type = RET_INTEGER,
88 .arg1_type = ARG_CONST_MAP_PTR,
89 .arg2_type = ARG_PTR_TO_MAP_VALUE,
90 .arg3_type = ARG_ANYTHING,
91 };
92
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95 return map->ops->map_pop_elem(map, value);
96 }
97
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 .func = bpf_map_pop_elem,
100 .gpl_only = false,
101 .ret_type = RET_INTEGER,
102 .arg1_type = ARG_CONST_MAP_PTR,
103 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108 return map->ops->map_peek_elem(map, value);
109 }
110
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 .func = bpf_map_peek_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 .func = bpf_user_rnd_u32,
121 .gpl_only = false,
122 .ret_type = RET_INTEGER,
123 };
124
BPF_CALL_0(bpf_get_smp_processor_id)125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127 return smp_processor_id();
128 }
129
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 .func = bpf_get_smp_processor_id,
132 .gpl_only = false,
133 .ret_type = RET_INTEGER,
134 };
135
BPF_CALL_0(bpf_get_numa_node_id)136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138 return numa_node_id();
139 }
140
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 .func = bpf_get_numa_node_id,
143 .gpl_only = false,
144 .ret_type = RET_INTEGER,
145 };
146
BPF_CALL_0(bpf_ktime_get_ns)147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149 /* NMI safe access to clock monotonic */
150 return ktime_get_mono_fast_ns();
151 }
152
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 .func = bpf_ktime_get_ns,
155 .gpl_only = false,
156 .ret_type = RET_INTEGER,
157 };
158
BPF_CALL_0(bpf_ktime_get_boot_ns)159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161 /* NMI safe access to clock boottime */
162 return ktime_get_boot_fast_ns();
163 }
164
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 .func = bpf_ktime_get_boot_ns,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169 };
170
BPF_CALL_0(bpf_ktime_get_coarse_ns)171 BPF_CALL_0(bpf_ktime_get_coarse_ns)
172 {
173 return ktime_get_coarse_ns();
174 }
175
176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 .func = bpf_ktime_get_coarse_ns,
178 .gpl_only = false,
179 .ret_type = RET_INTEGER,
180 };
181
BPF_CALL_0(bpf_get_current_pid_tgid)182 BPF_CALL_0(bpf_get_current_pid_tgid)
183 {
184 struct task_struct *task = current;
185
186 if (unlikely(!task))
187 return -EINVAL;
188
189 return (u64) task->tgid << 32 | task->pid;
190 }
191
192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 .func = bpf_get_current_pid_tgid,
194 .gpl_only = false,
195 .ret_type = RET_INTEGER,
196 };
197
BPF_CALL_0(bpf_get_current_uid_gid)198 BPF_CALL_0(bpf_get_current_uid_gid)
199 {
200 struct task_struct *task = current;
201 kuid_t uid;
202 kgid_t gid;
203
204 if (unlikely(!task))
205 return -EINVAL;
206
207 current_uid_gid(&uid, &gid);
208 return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 from_kuid(&init_user_ns, uid);
210 }
211
212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 .func = bpf_get_current_uid_gid,
214 .gpl_only = false,
215 .ret_type = RET_INTEGER,
216 };
217
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219 {
220 struct task_struct *task = current;
221
222 if (unlikely(!task))
223 goto err_clear;
224
225 strncpy(buf, task->comm, size);
226
227 /* Verifier guarantees that size > 0. For task->comm exceeding
228 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 * done here to save the size test.
230 */
231 buf[size - 1] = 0;
232 return 0;
233 err_clear:
234 memset(buf, 0, size);
235 return -EINVAL;
236 }
237
238 const struct bpf_func_proto bpf_get_current_comm_proto = {
239 .func = bpf_get_current_comm,
240 .gpl_only = false,
241 .ret_type = RET_INTEGER,
242 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
243 .arg2_type = ARG_CONST_SIZE,
244 };
245
246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247
__bpf_spin_lock(struct bpf_spin_lock * lock)248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249 {
250 arch_spinlock_t *l = (void *)lock;
251 union {
252 __u32 val;
253 arch_spinlock_t lock;
254 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255
256 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 arch_spin_lock(l);
260 }
261
__bpf_spin_unlock(struct bpf_spin_lock * lock)262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263 {
264 arch_spinlock_t *l = (void *)lock;
265
266 arch_spin_unlock(l);
267 }
268
269 #else
270
__bpf_spin_lock(struct bpf_spin_lock * lock)271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272 {
273 atomic_t *l = (void *)lock;
274
275 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 do {
277 atomic_cond_read_relaxed(l, !VAL);
278 } while (atomic_xchg(l, 1));
279 }
280
__bpf_spin_unlock(struct bpf_spin_lock * lock)281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282 {
283 atomic_t *l = (void *)lock;
284
285 atomic_set_release(l, 0);
286 }
287
288 #endif
289
290 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)292 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
293 {
294 unsigned long flags;
295
296 local_irq_save(flags);
297 __bpf_spin_lock(lock);
298 __this_cpu_write(irqsave_flags, flags);
299 }
300
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)301 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
302 {
303 __bpf_spin_lock_irqsave(lock);
304 return 0;
305 }
306
307 const struct bpf_func_proto bpf_spin_lock_proto = {
308 .func = bpf_spin_lock,
309 .gpl_only = false,
310 .ret_type = RET_VOID,
311 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
312 };
313
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)314 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
315 {
316 unsigned long flags;
317
318 flags = __this_cpu_read(irqsave_flags);
319 __bpf_spin_unlock(lock);
320 local_irq_restore(flags);
321 }
322
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)323 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
324 {
325 __bpf_spin_unlock_irqrestore(lock);
326 return 0;
327 }
328
329 const struct bpf_func_proto bpf_spin_unlock_proto = {
330 .func = bpf_spin_unlock,
331 .gpl_only = false,
332 .ret_type = RET_VOID,
333 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
334 };
335
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)336 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
337 bool lock_src)
338 {
339 struct bpf_spin_lock *lock;
340
341 if (lock_src)
342 lock = src + map->spin_lock_off;
343 else
344 lock = dst + map->spin_lock_off;
345 preempt_disable();
346 __bpf_spin_lock_irqsave(lock);
347 copy_map_value(map, dst, src);
348 __bpf_spin_unlock_irqrestore(lock);
349 preempt_enable();
350 }
351
BPF_CALL_0(bpf_jiffies64)352 BPF_CALL_0(bpf_jiffies64)
353 {
354 return get_jiffies_64();
355 }
356
357 const struct bpf_func_proto bpf_jiffies64_proto = {
358 .func = bpf_jiffies64,
359 .gpl_only = false,
360 .ret_type = RET_INTEGER,
361 };
362
363 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)364 BPF_CALL_0(bpf_get_current_cgroup_id)
365 {
366 struct cgroup *cgrp;
367 u64 cgrp_id;
368
369 rcu_read_lock();
370 cgrp = task_dfl_cgroup(current);
371 cgrp_id = cgroup_id(cgrp);
372 rcu_read_unlock();
373
374 return cgrp_id;
375 }
376
377 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
378 .func = bpf_get_current_cgroup_id,
379 .gpl_only = false,
380 .ret_type = RET_INTEGER,
381 };
382
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)383 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
384 {
385 struct cgroup *cgrp;
386 struct cgroup *ancestor;
387 u64 cgrp_id;
388
389 rcu_read_lock();
390 cgrp = task_dfl_cgroup(current);
391 ancestor = cgroup_ancestor(cgrp, ancestor_level);
392 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
393 rcu_read_unlock();
394
395 return cgrp_id;
396 }
397
398 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
399 .func = bpf_get_current_ancestor_cgroup_id,
400 .gpl_only = false,
401 .ret_type = RET_INTEGER,
402 .arg1_type = ARG_ANYTHING,
403 };
404
405 #ifdef CONFIG_CGROUP_BPF
406
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)407 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
408 {
409 /* flags argument is not used now,
410 * but provides an ability to extend the API.
411 * verifier checks that its value is correct.
412 */
413 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
414 struct bpf_cgroup_storage *storage;
415 struct bpf_cg_run_ctx *ctx;
416 void *ptr;
417
418 /* get current cgroup storage from BPF run context */
419 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
420 storage = ctx->prog_item->cgroup_storage[stype];
421
422 if (stype == BPF_CGROUP_STORAGE_SHARED)
423 ptr = &READ_ONCE(storage->buf)->data[0];
424 else
425 ptr = this_cpu_ptr(storage->percpu_buf);
426
427 return (unsigned long)ptr;
428 }
429
430 const struct bpf_func_proto bpf_get_local_storage_proto = {
431 .func = bpf_get_local_storage,
432 .gpl_only = false,
433 .ret_type = RET_PTR_TO_MAP_VALUE,
434 .arg1_type = ARG_CONST_MAP_PTR,
435 .arg2_type = ARG_ANYTHING,
436 };
437 #endif
438
439 #define BPF_STRTOX_BASE_MASK 0x1F
440
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)441 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
442 unsigned long long *res, bool *is_negative)
443 {
444 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
445 const char *cur_buf = buf;
446 size_t cur_len = buf_len;
447 unsigned int consumed;
448 size_t val_len;
449 char str[64];
450
451 if (!buf || !buf_len || !res || !is_negative)
452 return -EINVAL;
453
454 if (base != 0 && base != 8 && base != 10 && base != 16)
455 return -EINVAL;
456
457 if (flags & ~BPF_STRTOX_BASE_MASK)
458 return -EINVAL;
459
460 while (cur_buf < buf + buf_len && isspace(*cur_buf))
461 ++cur_buf;
462
463 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
464 if (*is_negative)
465 ++cur_buf;
466
467 consumed = cur_buf - buf;
468 cur_len -= consumed;
469 if (!cur_len)
470 return -EINVAL;
471
472 cur_len = min(cur_len, sizeof(str) - 1);
473 memcpy(str, cur_buf, cur_len);
474 str[cur_len] = '\0';
475 cur_buf = str;
476
477 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
478 val_len = _parse_integer(cur_buf, base, res);
479
480 if (val_len & KSTRTOX_OVERFLOW)
481 return -ERANGE;
482
483 if (val_len == 0)
484 return -EINVAL;
485
486 cur_buf += val_len;
487 consumed += cur_buf - str;
488
489 return consumed;
490 }
491
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)492 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
493 long long *res)
494 {
495 unsigned long long _res;
496 bool is_negative;
497 int err;
498
499 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
500 if (err < 0)
501 return err;
502 if (is_negative) {
503 if ((long long)-_res > 0)
504 return -ERANGE;
505 *res = -_res;
506 } else {
507 if ((long long)_res < 0)
508 return -ERANGE;
509 *res = _res;
510 }
511 return err;
512 }
513
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)514 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
515 long *, res)
516 {
517 long long _res;
518 int err;
519
520 err = __bpf_strtoll(buf, buf_len, flags, &_res);
521 if (err < 0)
522 return err;
523 if (_res != (long)_res)
524 return -ERANGE;
525 *res = _res;
526 return err;
527 }
528
529 const struct bpf_func_proto bpf_strtol_proto = {
530 .func = bpf_strtol,
531 .gpl_only = false,
532 .ret_type = RET_INTEGER,
533 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
534 .arg2_type = ARG_CONST_SIZE,
535 .arg3_type = ARG_ANYTHING,
536 .arg4_type = ARG_PTR_TO_LONG,
537 };
538
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)539 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
540 unsigned long *, res)
541 {
542 unsigned long long _res;
543 bool is_negative;
544 int err;
545
546 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
547 if (err < 0)
548 return err;
549 if (is_negative)
550 return -EINVAL;
551 if (_res != (unsigned long)_res)
552 return -ERANGE;
553 *res = _res;
554 return err;
555 }
556
557 const struct bpf_func_proto bpf_strtoul_proto = {
558 .func = bpf_strtoul,
559 .gpl_only = false,
560 .ret_type = RET_INTEGER,
561 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
562 .arg2_type = ARG_CONST_SIZE,
563 .arg3_type = ARG_ANYTHING,
564 .arg4_type = ARG_PTR_TO_LONG,
565 };
566 #endif
567
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)568 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
569 struct bpf_pidns_info *, nsdata, u32, size)
570 {
571 struct task_struct *task = current;
572 struct pid_namespace *pidns;
573 int err = -EINVAL;
574
575 if (unlikely(size != sizeof(struct bpf_pidns_info)))
576 goto clear;
577
578 if (unlikely((u64)(dev_t)dev != dev))
579 goto clear;
580
581 if (unlikely(!task))
582 goto clear;
583
584 pidns = task_active_pid_ns(task);
585 if (unlikely(!pidns)) {
586 err = -ENOENT;
587 goto clear;
588 }
589
590 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
591 goto clear;
592
593 nsdata->pid = task_pid_nr_ns(task, pidns);
594 nsdata->tgid = task_tgid_nr_ns(task, pidns);
595 return 0;
596 clear:
597 memset((void *)nsdata, 0, (size_t) size);
598 return err;
599 }
600
601 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
602 .func = bpf_get_ns_current_pid_tgid,
603 .gpl_only = false,
604 .ret_type = RET_INTEGER,
605 .arg1_type = ARG_ANYTHING,
606 .arg2_type = ARG_ANYTHING,
607 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
608 .arg4_type = ARG_CONST_SIZE,
609 };
610
611 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
612 .func = bpf_get_raw_cpu_id,
613 .gpl_only = false,
614 .ret_type = RET_INTEGER,
615 };
616
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)617 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
618 u64, flags, void *, data, u64, size)
619 {
620 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
621 return -EINVAL;
622
623 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
624 }
625
626 const struct bpf_func_proto bpf_event_output_data_proto = {
627 .func = bpf_event_output_data,
628 .gpl_only = true,
629 .ret_type = RET_INTEGER,
630 .arg1_type = ARG_PTR_TO_CTX,
631 .arg2_type = ARG_CONST_MAP_PTR,
632 .arg3_type = ARG_ANYTHING,
633 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
634 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
635 };
636
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)637 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
638 const void __user *, user_ptr)
639 {
640 int ret = copy_from_user(dst, user_ptr, size);
641
642 if (unlikely(ret)) {
643 memset(dst, 0, size);
644 ret = -EFAULT;
645 }
646
647 return ret;
648 }
649
650 const struct bpf_func_proto bpf_copy_from_user_proto = {
651 .func = bpf_copy_from_user,
652 .gpl_only = false,
653 .ret_type = RET_INTEGER,
654 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
655 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
656 .arg3_type = ARG_ANYTHING,
657 };
658
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)659 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
660 {
661 if (cpu >= nr_cpu_ids)
662 return (unsigned long)NULL;
663
664 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
665 }
666
667 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
668 .func = bpf_per_cpu_ptr,
669 .gpl_only = false,
670 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
671 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
672 .arg2_type = ARG_ANYTHING,
673 };
674
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)675 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
676 {
677 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
678 }
679
680 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
681 .func = bpf_this_cpu_ptr,
682 .gpl_only = false,
683 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
684 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
685 };
686
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)687 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
688 size_t bufsz)
689 {
690 void __user *user_ptr = (__force void __user *)unsafe_ptr;
691
692 buf[0] = 0;
693
694 switch (fmt_ptype) {
695 case 's':
696 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
697 if ((unsigned long)unsafe_ptr < TASK_SIZE)
698 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
699 fallthrough;
700 #endif
701 case 'k':
702 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
703 case 'u':
704 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
705 }
706
707 return -EINVAL;
708 }
709
710 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
711 * arguments representation.
712 */
713 #define MAX_BPRINTF_BIN_ARGS 512
714
715 /* Support executing three nested bprintf helper calls on a given CPU */
716 #define MAX_BPRINTF_NEST_LEVEL 3
717 struct bpf_bprintf_buffers {
718 char bin_args[MAX_BPRINTF_BIN_ARGS];
719 char buf[MAX_BPRINTF_BUF];
720 };
721
722 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
723 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
724
try_get_buffers(struct bpf_bprintf_buffers ** bufs)725 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
726 {
727 int nest_level;
728
729 preempt_disable();
730 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
731 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
732 this_cpu_dec(bpf_bprintf_nest_level);
733 preempt_enable();
734 return -EBUSY;
735 }
736 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
737
738 return 0;
739 }
740
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)741 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
742 {
743 if (!data->bin_args && !data->buf)
744 return;
745 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
746 return;
747 this_cpu_dec(bpf_bprintf_nest_level);
748 preempt_enable();
749 }
750
751 /*
752 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
753 *
754 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
755 *
756 * This can be used in two ways:
757 * - Format string verification only: when data->get_bin_args is false
758 * - Arguments preparation: in addition to the above verification, it writes in
759 * data->bin_args a binary representation of arguments usable by bstr_printf
760 * where pointers from BPF have been sanitized.
761 *
762 * In argument preparation mode, if 0 is returned, safe temporary buffers are
763 * allocated and bpf_bprintf_cleanup should be called to free them after use.
764 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)765 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
766 u32 num_args, struct bpf_bprintf_data *data)
767 {
768 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
769 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
770 struct bpf_bprintf_buffers *buffers = NULL;
771 size_t sizeof_cur_arg, sizeof_cur_ip;
772 int err, i, num_spec = 0;
773 u64 cur_arg;
774 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
775
776 fmt_end = strnchr(fmt, fmt_size, 0);
777 if (!fmt_end)
778 return -EINVAL;
779 fmt_size = fmt_end - fmt;
780
781 if (get_buffers && try_get_buffers(&buffers))
782 return -EBUSY;
783
784 if (data->get_bin_args) {
785 if (num_args)
786 tmp_buf = buffers->bin_args;
787 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
788 data->bin_args = (u32 *)tmp_buf;
789 }
790
791 if (data->get_buf)
792 data->buf = buffers->buf;
793
794 for (i = 0; i < fmt_size; i++) {
795 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
796 err = -EINVAL;
797 goto out;
798 }
799
800 if (fmt[i] != '%')
801 continue;
802
803 if (fmt[i + 1] == '%') {
804 i++;
805 continue;
806 }
807
808 if (num_spec >= num_args) {
809 err = -EINVAL;
810 goto out;
811 }
812
813 /* The string is zero-terminated so if fmt[i] != 0, we can
814 * always access fmt[i + 1], in the worst case it will be a 0
815 */
816 i++;
817
818 /* skip optional "[0 +-][num]" width formatting field */
819 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
820 fmt[i] == ' ')
821 i++;
822 if (fmt[i] >= '1' && fmt[i] <= '9') {
823 i++;
824 while (fmt[i] >= '0' && fmt[i] <= '9')
825 i++;
826 }
827
828 if (fmt[i] == 'p') {
829 sizeof_cur_arg = sizeof(long);
830
831 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
832 fmt[i + 2] == 's') {
833 fmt_ptype = fmt[i + 1];
834 i += 2;
835 goto fmt_str;
836 }
837
838 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
839 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
840 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
841 fmt[i + 1] == 'S') {
842 /* just kernel pointers */
843 if (tmp_buf)
844 cur_arg = raw_args[num_spec];
845 i++;
846 goto nocopy_fmt;
847 }
848
849 if (fmt[i + 1] == 'B') {
850 if (tmp_buf) {
851 err = snprintf(tmp_buf,
852 (tmp_buf_end - tmp_buf),
853 "%pB",
854 (void *)(long)raw_args[num_spec]);
855 tmp_buf += (err + 1);
856 }
857
858 i++;
859 num_spec++;
860 continue;
861 }
862
863 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
864 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
865 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
866 err = -EINVAL;
867 goto out;
868 }
869
870 i += 2;
871 if (!tmp_buf)
872 goto nocopy_fmt;
873
874 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
875 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
876 err = -ENOSPC;
877 goto out;
878 }
879
880 unsafe_ptr = (char *)(long)raw_args[num_spec];
881 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
882 sizeof_cur_ip);
883 if (err < 0)
884 memset(cur_ip, 0, sizeof_cur_ip);
885
886 /* hack: bstr_printf expects IP addresses to be
887 * pre-formatted as strings, ironically, the easiest way
888 * to do that is to call snprintf.
889 */
890 ip_spec[2] = fmt[i - 1];
891 ip_spec[3] = fmt[i];
892 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
893 ip_spec, &cur_ip);
894
895 tmp_buf += err + 1;
896 num_spec++;
897
898 continue;
899 } else if (fmt[i] == 's') {
900 fmt_ptype = fmt[i];
901 fmt_str:
902 if (fmt[i + 1] != 0 &&
903 !isspace(fmt[i + 1]) &&
904 !ispunct(fmt[i + 1])) {
905 err = -EINVAL;
906 goto out;
907 }
908
909 if (!tmp_buf)
910 goto nocopy_fmt;
911
912 if (tmp_buf_end == tmp_buf) {
913 err = -ENOSPC;
914 goto out;
915 }
916
917 unsafe_ptr = (char *)(long)raw_args[num_spec];
918 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
919 fmt_ptype,
920 tmp_buf_end - tmp_buf);
921 if (err < 0) {
922 tmp_buf[0] = '\0';
923 err = 1;
924 }
925
926 tmp_buf += err;
927 num_spec++;
928
929 continue;
930 } else if (fmt[i] == 'c') {
931 if (!tmp_buf)
932 goto nocopy_fmt;
933
934 if (tmp_buf_end == tmp_buf) {
935 err = -ENOSPC;
936 goto out;
937 }
938
939 *tmp_buf = raw_args[num_spec];
940 tmp_buf++;
941 num_spec++;
942
943 continue;
944 }
945
946 sizeof_cur_arg = sizeof(int);
947
948 if (fmt[i] == 'l') {
949 sizeof_cur_arg = sizeof(long);
950 i++;
951 }
952 if (fmt[i] == 'l') {
953 sizeof_cur_arg = sizeof(long long);
954 i++;
955 }
956
957 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
958 fmt[i] != 'x' && fmt[i] != 'X') {
959 err = -EINVAL;
960 goto out;
961 }
962
963 if (tmp_buf)
964 cur_arg = raw_args[num_spec];
965 nocopy_fmt:
966 if (tmp_buf) {
967 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
968 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
969 err = -ENOSPC;
970 goto out;
971 }
972
973 if (sizeof_cur_arg == 8) {
974 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
975 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
976 } else {
977 *(u32 *)tmp_buf = (u32)(long)cur_arg;
978 }
979 tmp_buf += sizeof_cur_arg;
980 }
981 num_spec++;
982 }
983
984 err = 0;
985 out:
986 if (err)
987 bpf_bprintf_cleanup(data);
988 return err;
989 }
990
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)991 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
992 const void *, args, u32, data_len)
993 {
994 struct bpf_bprintf_data data = {
995 .get_bin_args = true,
996 };
997 int err, num_args;
998
999 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1000 (data_len && !args))
1001 return -EINVAL;
1002 num_args = data_len / 8;
1003
1004 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1005 * can safely give an unbounded size.
1006 */
1007 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1008 if (err < 0)
1009 return err;
1010
1011 err = bstr_printf(str, str_size, fmt, data.bin_args);
1012
1013 bpf_bprintf_cleanup(&data);
1014
1015 return err + 1;
1016 }
1017
1018 const struct bpf_func_proto bpf_snprintf_proto = {
1019 .func = bpf_snprintf,
1020 .gpl_only = true,
1021 .ret_type = RET_INTEGER,
1022 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1023 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1024 .arg3_type = ARG_PTR_TO_CONST_STR,
1025 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1026 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1027 };
1028
1029 /* BPF map elements can contain 'struct bpf_timer'.
1030 * Such map owns all of its BPF timers.
1031 * 'struct bpf_timer' is allocated as part of map element allocation
1032 * and it's zero initialized.
1033 * That space is used to keep 'struct bpf_timer_kern'.
1034 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1035 * remembers 'struct bpf_map *' pointer it's part of.
1036 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1037 * bpf_timer_start() arms the timer.
1038 * If user space reference to a map goes to zero at this point
1039 * ops->map_release_uref callback is responsible for cancelling the timers,
1040 * freeing their memory, and decrementing prog's refcnts.
1041 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1042 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1043 * freeing the timers when inner map is replaced or deleted by user space.
1044 */
1045 struct bpf_hrtimer {
1046 struct hrtimer timer;
1047 struct bpf_map *map;
1048 struct bpf_prog *prog;
1049 void __rcu *callback_fn;
1050 void *value;
1051 struct rcu_head rcu;
1052 };
1053
1054 /* the actual struct hidden inside uapi struct bpf_timer */
1055 struct bpf_timer_kern {
1056 struct bpf_hrtimer *timer;
1057 /* bpf_spin_lock is used here instead of spinlock_t to make
1058 * sure that it always fits into space resereved by struct bpf_timer
1059 * regardless of LOCKDEP and spinlock debug flags.
1060 */
1061 struct bpf_spin_lock lock;
1062 } __attribute__((aligned(8)));
1063
1064 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1065
bpf_timer_cb(struct hrtimer * hrtimer)1066 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1067 {
1068 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1069 struct bpf_map *map = t->map;
1070 void *value = t->value;
1071 void *callback_fn;
1072 void *key;
1073 u32 idx;
1074
1075 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1076 if (!callback_fn)
1077 goto out;
1078
1079 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1080 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1081 * Remember the timer this callback is servicing to prevent
1082 * deadlock if callback_fn() calls bpf_timer_cancel() or
1083 * bpf_map_delete_elem() on the same timer.
1084 */
1085 this_cpu_write(hrtimer_running, t);
1086 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1087 struct bpf_array *array = container_of(map, struct bpf_array, map);
1088
1089 /* compute the key */
1090 idx = ((char *)value - array->value) / array->elem_size;
1091 key = &idx;
1092 } else { /* hash or lru */
1093 key = value - round_up(map->key_size, 8);
1094 }
1095
1096 BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key,
1097 (u64)(long)value, 0, 0);
1098 /* The verifier checked that return value is zero. */
1099
1100 this_cpu_write(hrtimer_running, NULL);
1101 out:
1102 return HRTIMER_NORESTART;
1103 }
1104
BPF_CALL_3(bpf_timer_init,struct bpf_timer_kern *,timer,struct bpf_map *,map,u64,flags)1105 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1106 u64, flags)
1107 {
1108 clockid_t clockid = flags & (MAX_CLOCKS - 1);
1109 struct bpf_hrtimer *t;
1110 int ret = 0;
1111
1112 BUILD_BUG_ON(MAX_CLOCKS != 16);
1113 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1114 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1115
1116 if (in_nmi())
1117 return -EOPNOTSUPP;
1118
1119 if (flags >= MAX_CLOCKS ||
1120 /* similar to timerfd except _ALARM variants are not supported */
1121 (clockid != CLOCK_MONOTONIC &&
1122 clockid != CLOCK_REALTIME &&
1123 clockid != CLOCK_BOOTTIME))
1124 return -EINVAL;
1125 __bpf_spin_lock_irqsave(&timer->lock);
1126 t = timer->timer;
1127 if (t) {
1128 ret = -EBUSY;
1129 goto out;
1130 }
1131 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1132 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1133 if (!t) {
1134 ret = -ENOMEM;
1135 goto out;
1136 }
1137 t->value = (void *)timer - map->timer_off;
1138 t->map = map;
1139 t->prog = NULL;
1140 rcu_assign_pointer(t->callback_fn, NULL);
1141 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1142 t->timer.function = bpf_timer_cb;
1143 WRITE_ONCE(timer->timer, t);
1144 /* Guarantee the order between timer->timer and map->usercnt. So
1145 * when there are concurrent uref release and bpf timer init, either
1146 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1147 * timer or atomic64_read() below returns a zero usercnt.
1148 */
1149 smp_mb();
1150 if (!atomic64_read(&map->usercnt)) {
1151 /* maps with timers must be either held by user space
1152 * or pinned in bpffs.
1153 */
1154 WRITE_ONCE(timer->timer, NULL);
1155 kfree(t);
1156 ret = -EPERM;
1157 }
1158 out:
1159 __bpf_spin_unlock_irqrestore(&timer->lock);
1160 return ret;
1161 }
1162
1163 static const struct bpf_func_proto bpf_timer_init_proto = {
1164 .func = bpf_timer_init,
1165 .gpl_only = true,
1166 .ret_type = RET_INTEGER,
1167 .arg1_type = ARG_PTR_TO_TIMER,
1168 .arg2_type = ARG_CONST_MAP_PTR,
1169 .arg3_type = ARG_ANYTHING,
1170 };
1171
BPF_CALL_3(bpf_timer_set_callback,struct bpf_timer_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1172 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1173 struct bpf_prog_aux *, aux)
1174 {
1175 struct bpf_prog *prev, *prog = aux->prog;
1176 struct bpf_hrtimer *t;
1177 int ret = 0;
1178
1179 if (in_nmi())
1180 return -EOPNOTSUPP;
1181 __bpf_spin_lock_irqsave(&timer->lock);
1182 t = timer->timer;
1183 if (!t) {
1184 ret = -EINVAL;
1185 goto out;
1186 }
1187 if (!atomic64_read(&t->map->usercnt)) {
1188 /* maps with timers must be either held by user space
1189 * or pinned in bpffs. Otherwise timer might still be
1190 * running even when bpf prog is detached and user space
1191 * is gone, since map_release_uref won't ever be called.
1192 */
1193 ret = -EPERM;
1194 goto out;
1195 }
1196 prev = t->prog;
1197 if (prev != prog) {
1198 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1199 * can pick different callback_fn-s within the same prog.
1200 */
1201 prog = bpf_prog_inc_not_zero(prog);
1202 if (IS_ERR(prog)) {
1203 ret = PTR_ERR(prog);
1204 goto out;
1205 }
1206 if (prev)
1207 /* Drop prev prog refcnt when swapping with new prog */
1208 bpf_prog_put(prev);
1209 t->prog = prog;
1210 }
1211 rcu_assign_pointer(t->callback_fn, callback_fn);
1212 out:
1213 __bpf_spin_unlock_irqrestore(&timer->lock);
1214 return ret;
1215 }
1216
1217 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1218 .func = bpf_timer_set_callback,
1219 .gpl_only = true,
1220 .ret_type = RET_INTEGER,
1221 .arg1_type = ARG_PTR_TO_TIMER,
1222 .arg2_type = ARG_PTR_TO_FUNC,
1223 };
1224
BPF_CALL_3(bpf_timer_start,struct bpf_timer_kern *,timer,u64,nsecs,u64,flags)1225 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1226 {
1227 struct bpf_hrtimer *t;
1228 int ret = 0;
1229
1230 if (in_nmi())
1231 return -EOPNOTSUPP;
1232 if (flags)
1233 return -EINVAL;
1234 __bpf_spin_lock_irqsave(&timer->lock);
1235 t = timer->timer;
1236 if (!t || !t->prog) {
1237 ret = -EINVAL;
1238 goto out;
1239 }
1240 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1241 out:
1242 __bpf_spin_unlock_irqrestore(&timer->lock);
1243 return ret;
1244 }
1245
1246 static const struct bpf_func_proto bpf_timer_start_proto = {
1247 .func = bpf_timer_start,
1248 .gpl_only = true,
1249 .ret_type = RET_INTEGER,
1250 .arg1_type = ARG_PTR_TO_TIMER,
1251 .arg2_type = ARG_ANYTHING,
1252 .arg3_type = ARG_ANYTHING,
1253 };
1254
drop_prog_refcnt(struct bpf_hrtimer * t)1255 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1256 {
1257 struct bpf_prog *prog = t->prog;
1258
1259 if (prog) {
1260 bpf_prog_put(prog);
1261 t->prog = NULL;
1262 rcu_assign_pointer(t->callback_fn, NULL);
1263 }
1264 }
1265
BPF_CALL_1(bpf_timer_cancel,struct bpf_timer_kern *,timer)1266 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1267 {
1268 struct bpf_hrtimer *t;
1269 int ret = 0;
1270
1271 if (in_nmi())
1272 return -EOPNOTSUPP;
1273 rcu_read_lock();
1274 __bpf_spin_lock_irqsave(&timer->lock);
1275 t = timer->timer;
1276 if (!t) {
1277 ret = -EINVAL;
1278 goto out;
1279 }
1280 if (this_cpu_read(hrtimer_running) == t) {
1281 /* If bpf callback_fn is trying to bpf_timer_cancel()
1282 * its own timer the hrtimer_cancel() will deadlock
1283 * since it waits for callback_fn to finish
1284 */
1285 ret = -EDEADLK;
1286 goto out;
1287 }
1288 drop_prog_refcnt(t);
1289 out:
1290 __bpf_spin_unlock_irqrestore(&timer->lock);
1291 /* Cancel the timer and wait for associated callback to finish
1292 * if it was running.
1293 */
1294 ret = ret ?: hrtimer_cancel(&t->timer);
1295 rcu_read_unlock();
1296 return ret;
1297 }
1298
1299 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1300 .func = bpf_timer_cancel,
1301 .gpl_only = true,
1302 .ret_type = RET_INTEGER,
1303 .arg1_type = ARG_PTR_TO_TIMER,
1304 };
1305
1306 /* This function is called by map_delete/update_elem for individual element and
1307 * by ops->map_release_uref when the user space reference to a map reaches zero.
1308 */
bpf_timer_cancel_and_free(void * val)1309 void bpf_timer_cancel_and_free(void *val)
1310 {
1311 struct bpf_timer_kern *timer = val;
1312 struct bpf_hrtimer *t;
1313
1314 /* Performance optimization: read timer->timer without lock first. */
1315 if (!READ_ONCE(timer->timer))
1316 return;
1317
1318 __bpf_spin_lock_irqsave(&timer->lock);
1319 /* re-read it under lock */
1320 t = timer->timer;
1321 if (!t)
1322 goto out;
1323 drop_prog_refcnt(t);
1324 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1325 * this timer, since it won't be initialized.
1326 */
1327 WRITE_ONCE(timer->timer, NULL);
1328 out:
1329 __bpf_spin_unlock_irqrestore(&timer->lock);
1330 if (!t)
1331 return;
1332 /* Cancel the timer and wait for callback to complete if it was running.
1333 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1334 * right after for both preallocated and non-preallocated maps.
1335 * The timer->timer = NULL was already done and no code path can
1336 * see address 't' anymore.
1337 *
1338 * Check that bpf_map_delete/update_elem() wasn't called from timer
1339 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1340 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1341 * return -1). Though callback_fn is still running on this cpu it's
1342 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1343 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1344 * since timer->timer = NULL was already done. The timer will be
1345 * effectively cancelled because bpf_timer_cb() will return
1346 * HRTIMER_NORESTART.
1347 */
1348 if (this_cpu_read(hrtimer_running) != t)
1349 hrtimer_cancel(&t->timer);
1350 kfree_rcu(t, rcu);
1351 }
1352
1353 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1354 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1355 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1356 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1357 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1358 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1359 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1360
1361 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1362 bpf_base_func_proto(enum bpf_func_id func_id)
1363 {
1364 switch (func_id) {
1365 case BPF_FUNC_map_lookup_elem:
1366 return &bpf_map_lookup_elem_proto;
1367 case BPF_FUNC_map_update_elem:
1368 return &bpf_map_update_elem_proto;
1369 case BPF_FUNC_map_delete_elem:
1370 return &bpf_map_delete_elem_proto;
1371 case BPF_FUNC_map_push_elem:
1372 return &bpf_map_push_elem_proto;
1373 case BPF_FUNC_map_pop_elem:
1374 return &bpf_map_pop_elem_proto;
1375 case BPF_FUNC_map_peek_elem:
1376 return &bpf_map_peek_elem_proto;
1377 case BPF_FUNC_get_prandom_u32:
1378 return &bpf_get_prandom_u32_proto;
1379 case BPF_FUNC_get_smp_processor_id:
1380 return &bpf_get_raw_smp_processor_id_proto;
1381 case BPF_FUNC_get_numa_node_id:
1382 return &bpf_get_numa_node_id_proto;
1383 case BPF_FUNC_tail_call:
1384 return &bpf_tail_call_proto;
1385 case BPF_FUNC_ktime_get_ns:
1386 return &bpf_ktime_get_ns_proto;
1387 case BPF_FUNC_ktime_get_boot_ns:
1388 return &bpf_ktime_get_boot_ns_proto;
1389 case BPF_FUNC_ringbuf_output:
1390 return &bpf_ringbuf_output_proto;
1391 case BPF_FUNC_ringbuf_reserve:
1392 return &bpf_ringbuf_reserve_proto;
1393 case BPF_FUNC_ringbuf_submit:
1394 return &bpf_ringbuf_submit_proto;
1395 case BPF_FUNC_ringbuf_discard:
1396 return &bpf_ringbuf_discard_proto;
1397 case BPF_FUNC_ringbuf_query:
1398 return &bpf_ringbuf_query_proto;
1399 case BPF_FUNC_for_each_map_elem:
1400 return &bpf_for_each_map_elem_proto;
1401 default:
1402 break;
1403 }
1404
1405 if (!bpf_capable())
1406 return NULL;
1407
1408 switch (func_id) {
1409 case BPF_FUNC_spin_lock:
1410 return &bpf_spin_lock_proto;
1411 case BPF_FUNC_spin_unlock:
1412 return &bpf_spin_unlock_proto;
1413 case BPF_FUNC_jiffies64:
1414 return &bpf_jiffies64_proto;
1415 case BPF_FUNC_per_cpu_ptr:
1416 return &bpf_per_cpu_ptr_proto;
1417 case BPF_FUNC_this_cpu_ptr:
1418 return &bpf_this_cpu_ptr_proto;
1419 case BPF_FUNC_timer_init:
1420 return &bpf_timer_init_proto;
1421 case BPF_FUNC_timer_set_callback:
1422 return &bpf_timer_set_callback_proto;
1423 case BPF_FUNC_timer_start:
1424 return &bpf_timer_start_proto;
1425 case BPF_FUNC_timer_cancel:
1426 return &bpf_timer_cancel_proto;
1427 default:
1428 break;
1429 }
1430
1431 if (!perfmon_capable())
1432 return NULL;
1433
1434 switch (func_id) {
1435 case BPF_FUNC_trace_printk:
1436 return bpf_get_trace_printk_proto();
1437 case BPF_FUNC_get_current_task:
1438 return &bpf_get_current_task_proto;
1439 case BPF_FUNC_get_current_task_btf:
1440 return &bpf_get_current_task_btf_proto;
1441 case BPF_FUNC_probe_read_user:
1442 return &bpf_probe_read_user_proto;
1443 case BPF_FUNC_probe_read_kernel:
1444 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1445 NULL : &bpf_probe_read_kernel_proto;
1446 case BPF_FUNC_probe_read_user_str:
1447 return &bpf_probe_read_user_str_proto;
1448 case BPF_FUNC_probe_read_kernel_str:
1449 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1450 NULL : &bpf_probe_read_kernel_str_proto;
1451 case BPF_FUNC_snprintf_btf:
1452 return &bpf_snprintf_btf_proto;
1453 case BPF_FUNC_snprintf:
1454 return &bpf_snprintf_proto;
1455 case BPF_FUNC_task_pt_regs:
1456 return &bpf_task_pt_regs_proto;
1457 default:
1458 return NULL;
1459 }
1460 }
1461