• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
bpf_get_raw_tracepoint_module(const char * name)46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
bpf_get_raw_tracepoint_module(const char * name)68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
trace_call_bpf(struct trace_event_call * call,void * ctx)95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret;
219 
220 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 	if (unlikely(ret < 0))
222 		memset(dst, 0, size);
223 	return ret;
224 }
225 
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 	   const void *, unsafe_ptr)
228 {
229 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231 
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 	.func		= bpf_probe_read_kernel,
234 	.gpl_only	= true,
235 	.ret_type	= RET_INTEGER,
236 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
237 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
238 	.arg3_type	= ARG_ANYTHING,
239 };
240 
241 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 	int ret;
245 
246 	/*
247 	 * The strncpy_from_kernel_nofault() call will likely not fill the
248 	 * entire buffer, but that's okay in this circumstance as we're probing
249 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 	 * as well probe the stack. Thus, memory is explicitly cleared
251 	 * only in error case, so that improper users ignoring return
252 	 * code altogether don't copy garbage; otherwise length of string
253 	 * is returned that can be used for bpf_perf_event_output() et al.
254 	 */
255 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 	if (unlikely(ret < 0))
257 		memset(dst, 0, size);
258 	return ret;
259 }
260 
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 	   const void *, unsafe_ptr)
263 {
264 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266 
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 	.func		= bpf_probe_read_kernel_str,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
273 	.arg3_type	= ARG_ANYTHING,
274 };
275 
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 	   const void *, unsafe_ptr)
279 {
280 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 		return bpf_probe_read_user_common(dst, size,
282 				(__force void __user *)unsafe_ptr);
283 	}
284 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286 
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 	.func		= bpf_probe_read_compat,
289 	.gpl_only	= true,
290 	.ret_type	= RET_INTEGER,
291 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
292 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
293 	.arg3_type	= ARG_ANYTHING,
294 };
295 
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 	   const void *, unsafe_ptr)
298 {
299 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 		return bpf_probe_read_user_str_common(dst, size,
301 				(__force void __user *)unsafe_ptr);
302 	}
303 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305 
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 	.func		= bpf_probe_read_compat_str,
308 	.gpl_only	= true,
309 	.ret_type	= RET_INTEGER,
310 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
311 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
312 	.arg3_type	= ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315 
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 	   u32, size)
318 {
319 	/*
320 	 * Ensure we're in user context which is safe for the helper to
321 	 * run. This helper has no business in a kthread.
322 	 *
323 	 * access_ok() should prevent writing to non-user memory, but in
324 	 * some situations (nommu, temporary switch, etc) access_ok() does
325 	 * not provide enough validation, hence the check on KERNEL_DS.
326 	 *
327 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 	 * state, when the task or mm are switched. This is specifically
329 	 * required to prevent the use of temporary mm.
330 	 */
331 
332 	if (unlikely(in_interrupt() ||
333 		     current->flags & (PF_KTHREAD | PF_EXITING)))
334 		return -EPERM;
335 	if (unlikely(uaccess_kernel()))
336 		return -EPERM;
337 	if (unlikely(!nmi_uaccess_okay()))
338 		return -EPERM;
339 
340 	return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342 
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 	.func		= bpf_probe_write_user,
345 	.gpl_only	= true,
346 	.ret_type	= RET_INTEGER,
347 	.arg1_type	= ARG_ANYTHING,
348 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
349 	.arg3_type	= ARG_CONST_SIZE,
350 };
351 
bpf_get_probe_write_proto(void)352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 	if (!capable(CAP_SYS_ADMIN))
355 		return NULL;
356 
357 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 			    current->comm, task_pid_nr(current));
359 
360 	return &bpf_probe_write_user_proto;
361 }
362 
363 #define MAX_TRACE_PRINTK_VARARGS	3
364 #define BPF_TRACE_PRINTK_SIZE		1024
365 
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)366 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
367 	   u64, arg2, u64, arg3)
368 {
369 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
370 	struct bpf_bprintf_data data = {
371 		.get_bin_args	= true,
372 		.get_buf	= true,
373 	};
374 	int ret;
375 
376 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
377 				  MAX_TRACE_PRINTK_VARARGS, &data);
378 	if (ret < 0)
379 		return ret;
380 
381 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
382 
383 	trace_bpf_trace_printk(data.buf);
384 
385 	bpf_bprintf_cleanup(&data);
386 
387 	return ret;
388 }
389 
390 static const struct bpf_func_proto bpf_trace_printk_proto = {
391 	.func		= bpf_trace_printk,
392 	.gpl_only	= true,
393 	.ret_type	= RET_INTEGER,
394 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
395 	.arg2_type	= ARG_CONST_SIZE,
396 };
397 
bpf_get_trace_printk_proto(void)398 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
399 {
400 	/*
401 	 * This program might be calling bpf_trace_printk,
402 	 * so enable the associated bpf_trace/bpf_trace_printk event.
403 	 * Repeat this each time as it is possible a user has
404 	 * disabled bpf_trace_printk events.  By loading a program
405 	 * calling bpf_trace_printk() however the user has expressed
406 	 * the intent to see such events.
407 	 */
408 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
409 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
410 
411 	return &bpf_trace_printk_proto;
412 }
413 
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)414 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
415 	   const void *, args, u32, data_len)
416 {
417 	struct bpf_bprintf_data data = {
418 		.get_bin_args	= true,
419 	};
420 	int err, num_args;
421 
422 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
423 	    (data_len && !args))
424 		return -EINVAL;
425 	num_args = data_len / 8;
426 
427 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
428 	if (err < 0)
429 		return err;
430 
431 	seq_bprintf(m, fmt, data.bin_args);
432 
433 	bpf_bprintf_cleanup(&data);
434 
435 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
436 }
437 
438 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
439 
440 static const struct bpf_func_proto bpf_seq_printf_proto = {
441 	.func		= bpf_seq_printf,
442 	.gpl_only	= true,
443 	.ret_type	= RET_INTEGER,
444 	.arg1_type	= ARG_PTR_TO_BTF_ID,
445 	.arg1_btf_id	= &btf_seq_file_ids[0],
446 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
447 	.arg3_type	= ARG_CONST_SIZE,
448 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
449 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
450 };
451 
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)452 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
453 {
454 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
455 }
456 
457 static const struct bpf_func_proto bpf_seq_write_proto = {
458 	.func		= bpf_seq_write,
459 	.gpl_only	= true,
460 	.ret_type	= RET_INTEGER,
461 	.arg1_type	= ARG_PTR_TO_BTF_ID,
462 	.arg1_btf_id	= &btf_seq_file_ids[0],
463 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
464 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
465 };
466 
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)467 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
468 	   u32, btf_ptr_size, u64, flags)
469 {
470 	const struct btf *btf;
471 	s32 btf_id;
472 	int ret;
473 
474 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
475 	if (ret)
476 		return ret;
477 
478 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
479 }
480 
481 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
482 	.func		= bpf_seq_printf_btf,
483 	.gpl_only	= true,
484 	.ret_type	= RET_INTEGER,
485 	.arg1_type	= ARG_PTR_TO_BTF_ID,
486 	.arg1_btf_id	= &btf_seq_file_ids[0],
487 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
488 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
489 	.arg4_type	= ARG_ANYTHING,
490 };
491 
492 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)493 get_map_perf_counter(struct bpf_map *map, u64 flags,
494 		     u64 *value, u64 *enabled, u64 *running)
495 {
496 	struct bpf_array *array = container_of(map, struct bpf_array, map);
497 	unsigned int cpu = smp_processor_id();
498 	u64 index = flags & BPF_F_INDEX_MASK;
499 	struct bpf_event_entry *ee;
500 
501 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
502 		return -EINVAL;
503 	if (index == BPF_F_CURRENT_CPU)
504 		index = cpu;
505 	if (unlikely(index >= array->map.max_entries))
506 		return -E2BIG;
507 
508 	ee = READ_ONCE(array->ptrs[index]);
509 	if (!ee)
510 		return -ENOENT;
511 
512 	return perf_event_read_local(ee->event, value, enabled, running);
513 }
514 
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)515 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
516 {
517 	u64 value = 0;
518 	int err;
519 
520 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
521 	/*
522 	 * this api is ugly since we miss [-22..-2] range of valid
523 	 * counter values, but that's uapi
524 	 */
525 	if (err)
526 		return err;
527 	return value;
528 }
529 
530 static const struct bpf_func_proto bpf_perf_event_read_proto = {
531 	.func		= bpf_perf_event_read,
532 	.gpl_only	= true,
533 	.ret_type	= RET_INTEGER,
534 	.arg1_type	= ARG_CONST_MAP_PTR,
535 	.arg2_type	= ARG_ANYTHING,
536 };
537 
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)538 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
539 	   struct bpf_perf_event_value *, buf, u32, size)
540 {
541 	int err = -EINVAL;
542 
543 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
544 		goto clear;
545 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
546 				   &buf->running);
547 	if (unlikely(err))
548 		goto clear;
549 	return 0;
550 clear:
551 	memset(buf, 0, size);
552 	return err;
553 }
554 
555 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
556 	.func		= bpf_perf_event_read_value,
557 	.gpl_only	= true,
558 	.ret_type	= RET_INTEGER,
559 	.arg1_type	= ARG_CONST_MAP_PTR,
560 	.arg2_type	= ARG_ANYTHING,
561 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
562 	.arg4_type	= ARG_CONST_SIZE,
563 };
564 
565 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)566 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
567 			u64 flags, struct perf_sample_data *sd)
568 {
569 	struct bpf_array *array = container_of(map, struct bpf_array, map);
570 	unsigned int cpu = smp_processor_id();
571 	u64 index = flags & BPF_F_INDEX_MASK;
572 	struct bpf_event_entry *ee;
573 	struct perf_event *event;
574 
575 	if (index == BPF_F_CURRENT_CPU)
576 		index = cpu;
577 	if (unlikely(index >= array->map.max_entries))
578 		return -E2BIG;
579 
580 	ee = READ_ONCE(array->ptrs[index]);
581 	if (!ee)
582 		return -ENOENT;
583 
584 	event = ee->event;
585 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
586 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
587 		return -EINVAL;
588 
589 	if (unlikely(event->oncpu != cpu))
590 		return -EOPNOTSUPP;
591 
592 	return perf_event_output(event, sd, regs);
593 }
594 
595 /*
596  * Support executing tracepoints in normal, irq, and nmi context that each call
597  * bpf_perf_event_output
598  */
599 struct bpf_trace_sample_data {
600 	struct perf_sample_data sds[3];
601 };
602 
603 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
604 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)605 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
606 	   u64, flags, void *, data, u64, size)
607 {
608 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
609 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
610 	struct perf_raw_record raw = {
611 		.frag = {
612 			.size = size,
613 			.data = data,
614 		},
615 	};
616 	struct perf_sample_data *sd;
617 	int err;
618 
619 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
620 		err = -EBUSY;
621 		goto out;
622 	}
623 
624 	sd = &sds->sds[nest_level - 1];
625 
626 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
627 		err = -EINVAL;
628 		goto out;
629 	}
630 
631 	perf_sample_data_init(sd, 0, 0);
632 	sd->raw = &raw;
633 
634 	err = __bpf_perf_event_output(regs, map, flags, sd);
635 
636 out:
637 	this_cpu_dec(bpf_trace_nest_level);
638 	return err;
639 }
640 
641 static const struct bpf_func_proto bpf_perf_event_output_proto = {
642 	.func		= bpf_perf_event_output,
643 	.gpl_only	= true,
644 	.ret_type	= RET_INTEGER,
645 	.arg1_type	= ARG_PTR_TO_CTX,
646 	.arg2_type	= ARG_CONST_MAP_PTR,
647 	.arg3_type	= ARG_ANYTHING,
648 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
649 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
650 };
651 
652 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
653 struct bpf_nested_pt_regs {
654 	struct pt_regs regs[3];
655 };
656 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
657 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
658 
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)659 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
660 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
661 {
662 	struct perf_raw_frag frag = {
663 		.copy		= ctx_copy,
664 		.size		= ctx_size,
665 		.data		= ctx,
666 	};
667 	struct perf_raw_record raw = {
668 		.frag = {
669 			{
670 				.next	= ctx_size ? &frag : NULL,
671 			},
672 			.size	= meta_size,
673 			.data	= meta,
674 		},
675 	};
676 	struct perf_sample_data *sd;
677 	struct pt_regs *regs;
678 	int nest_level;
679 	u64 ret;
680 
681 	preempt_disable();
682 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
683 
684 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
685 		ret = -EBUSY;
686 		goto out;
687 	}
688 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
689 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
690 
691 	perf_fetch_caller_regs(regs);
692 	perf_sample_data_init(sd, 0, 0);
693 	sd->raw = &raw;
694 
695 	ret = __bpf_perf_event_output(regs, map, flags, sd);
696 out:
697 	this_cpu_dec(bpf_event_output_nest_level);
698 	preempt_enable();
699 	return ret;
700 }
701 
BPF_CALL_0(bpf_get_current_task)702 BPF_CALL_0(bpf_get_current_task)
703 {
704 	return (long) current;
705 }
706 
707 const struct bpf_func_proto bpf_get_current_task_proto = {
708 	.func		= bpf_get_current_task,
709 	.gpl_only	= true,
710 	.ret_type	= RET_INTEGER,
711 };
712 
BPF_CALL_0(bpf_get_current_task_btf)713 BPF_CALL_0(bpf_get_current_task_btf)
714 {
715 	return (unsigned long) current;
716 }
717 
718 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
719 	.func		= bpf_get_current_task_btf,
720 	.gpl_only	= true,
721 	.ret_type	= RET_PTR_TO_BTF_ID,
722 	.ret_btf_id	= &btf_task_struct_ids[0],
723 };
724 
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)725 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
726 {
727 	return (unsigned long) task_pt_regs(task);
728 }
729 
730 BTF_ID_LIST(bpf_task_pt_regs_ids)
731 BTF_ID(struct, pt_regs)
732 
733 const struct bpf_func_proto bpf_task_pt_regs_proto = {
734 	.func		= bpf_task_pt_regs,
735 	.gpl_only	= true,
736 	.arg1_type	= ARG_PTR_TO_BTF_ID,
737 	.arg1_btf_id	= &btf_task_struct_ids[0],
738 	.ret_type	= RET_PTR_TO_BTF_ID,
739 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
740 };
741 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)742 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
743 {
744 	struct bpf_array *array = container_of(map, struct bpf_array, map);
745 	struct cgroup *cgrp;
746 
747 	if (unlikely(idx >= array->map.max_entries))
748 		return -E2BIG;
749 
750 	cgrp = READ_ONCE(array->ptrs[idx]);
751 	if (unlikely(!cgrp))
752 		return -EAGAIN;
753 
754 	return task_under_cgroup_hierarchy(current, cgrp);
755 }
756 
757 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
758 	.func           = bpf_current_task_under_cgroup,
759 	.gpl_only       = false,
760 	.ret_type       = RET_INTEGER,
761 	.arg1_type      = ARG_CONST_MAP_PTR,
762 	.arg2_type      = ARG_ANYTHING,
763 };
764 
765 struct send_signal_irq_work {
766 	struct irq_work irq_work;
767 	struct task_struct *task;
768 	u32 sig;
769 	enum pid_type type;
770 };
771 
772 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
773 
do_bpf_send_signal(struct irq_work * entry)774 static void do_bpf_send_signal(struct irq_work *entry)
775 {
776 	struct send_signal_irq_work *work;
777 
778 	work = container_of(entry, struct send_signal_irq_work, irq_work);
779 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
780 	put_task_struct(work->task);
781 }
782 
bpf_send_signal_common(u32 sig,enum pid_type type)783 static int bpf_send_signal_common(u32 sig, enum pid_type type)
784 {
785 	struct send_signal_irq_work *work = NULL;
786 
787 	/* Similar to bpf_probe_write_user, task needs to be
788 	 * in a sound condition and kernel memory access be
789 	 * permitted in order to send signal to the current
790 	 * task.
791 	 */
792 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
793 		return -EPERM;
794 	if (unlikely(uaccess_kernel()))
795 		return -EPERM;
796 	if (unlikely(!nmi_uaccess_okay()))
797 		return -EPERM;
798 	/* Task should not be pid=1 to avoid kernel panic. */
799 	if (unlikely(is_global_init(current)))
800 		return -EPERM;
801 
802 	if (irqs_disabled()) {
803 		/* Do an early check on signal validity. Otherwise,
804 		 * the error is lost in deferred irq_work.
805 		 */
806 		if (unlikely(!valid_signal(sig)))
807 			return -EINVAL;
808 
809 		work = this_cpu_ptr(&send_signal_work);
810 		if (irq_work_is_busy(&work->irq_work))
811 			return -EBUSY;
812 
813 		/* Add the current task, which is the target of sending signal,
814 		 * to the irq_work. The current task may change when queued
815 		 * irq works get executed.
816 		 */
817 		work->task = get_task_struct(current);
818 		work->sig = sig;
819 		work->type = type;
820 		irq_work_queue(&work->irq_work);
821 		return 0;
822 	}
823 
824 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
825 }
826 
BPF_CALL_1(bpf_send_signal,u32,sig)827 BPF_CALL_1(bpf_send_signal, u32, sig)
828 {
829 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
830 }
831 
832 static const struct bpf_func_proto bpf_send_signal_proto = {
833 	.func		= bpf_send_signal,
834 	.gpl_only	= false,
835 	.ret_type	= RET_INTEGER,
836 	.arg1_type	= ARG_ANYTHING,
837 };
838 
BPF_CALL_1(bpf_send_signal_thread,u32,sig)839 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
840 {
841 	return bpf_send_signal_common(sig, PIDTYPE_PID);
842 }
843 
844 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
845 	.func		= bpf_send_signal_thread,
846 	.gpl_only	= false,
847 	.ret_type	= RET_INTEGER,
848 	.arg1_type	= ARG_ANYTHING,
849 };
850 
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)851 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
852 {
853 	struct path copy;
854 	long len;
855 	char *p;
856 
857 	if (!sz)
858 		return 0;
859 
860 	/*
861 	 * The path pointer is verified as trusted and safe to use,
862 	 * but let's double check it's valid anyway to workaround
863 	 * potentially broken verifier.
864 	 */
865 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
866 	if (len < 0)
867 		return len;
868 
869 	p = d_path(&copy, buf, sz);
870 	if (IS_ERR(p)) {
871 		len = PTR_ERR(p);
872 	} else {
873 		len = buf + sz - p;
874 		memmove(buf, p, len);
875 	}
876 
877 	return len;
878 }
879 
880 BTF_SET_START(btf_allowlist_d_path)
881 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)882 BTF_ID(func, security_file_permission)
883 BTF_ID(func, security_inode_getattr)
884 BTF_ID(func, security_file_open)
885 #endif
886 #ifdef CONFIG_SECURITY_PATH
887 BTF_ID(func, security_path_truncate)
888 #endif
889 BTF_ID(func, vfs_truncate)
890 BTF_ID(func, vfs_fallocate)
891 BTF_ID(func, dentry_open)
892 BTF_ID(func, vfs_getattr)
893 BTF_ID(func, filp_close)
894 BTF_SET_END(btf_allowlist_d_path)
895 
896 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
897 {
898 	if (prog->type == BPF_PROG_TYPE_TRACING &&
899 	    prog->expected_attach_type == BPF_TRACE_ITER)
900 		return true;
901 
902 	if (prog->type == BPF_PROG_TYPE_LSM)
903 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
904 
905 	return btf_id_set_contains(&btf_allowlist_d_path,
906 				   prog->aux->attach_btf_id);
907 }
908 
909 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
910 
911 static const struct bpf_func_proto bpf_d_path_proto = {
912 	.func		= bpf_d_path,
913 	.gpl_only	= false,
914 	.ret_type	= RET_INTEGER,
915 	.arg1_type	= ARG_PTR_TO_BTF_ID,
916 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
917 	.arg2_type	= ARG_PTR_TO_MEM,
918 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
919 	.allowed	= bpf_d_path_allowed,
920 };
921 
922 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
923 			 BTF_F_PTR_RAW | BTF_F_ZERO)
924 
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)925 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
926 				  u64 flags, const struct btf **btf,
927 				  s32 *btf_id)
928 {
929 	const struct btf_type *t;
930 
931 	if (unlikely(flags & ~(BTF_F_ALL)))
932 		return -EINVAL;
933 
934 	if (btf_ptr_size != sizeof(struct btf_ptr))
935 		return -EINVAL;
936 
937 	*btf = bpf_get_btf_vmlinux();
938 
939 	if (IS_ERR_OR_NULL(*btf))
940 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
941 
942 	if (ptr->type_id > 0)
943 		*btf_id = ptr->type_id;
944 	else
945 		return -EINVAL;
946 
947 	if (*btf_id > 0)
948 		t = btf_type_by_id(*btf, *btf_id);
949 	if (*btf_id <= 0 || !t)
950 		return -ENOENT;
951 
952 	return 0;
953 }
954 
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)955 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
956 	   u32, btf_ptr_size, u64, flags)
957 {
958 	const struct btf *btf;
959 	s32 btf_id;
960 	int ret;
961 
962 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
963 	if (ret)
964 		return ret;
965 
966 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
967 				      flags);
968 }
969 
970 const struct bpf_func_proto bpf_snprintf_btf_proto = {
971 	.func		= bpf_snprintf_btf,
972 	.gpl_only	= false,
973 	.ret_type	= RET_INTEGER,
974 	.arg1_type	= ARG_PTR_TO_MEM,
975 	.arg2_type	= ARG_CONST_SIZE,
976 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
977 	.arg4_type	= ARG_CONST_SIZE,
978 	.arg5_type	= ARG_ANYTHING,
979 };
980 
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)981 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
982 {
983 	/* This helper call is inlined by verifier. */
984 	return ((u64 *)ctx)[-1];
985 }
986 
987 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
988 	.func		= bpf_get_func_ip_tracing,
989 	.gpl_only	= true,
990 	.ret_type	= RET_INTEGER,
991 	.arg1_type	= ARG_PTR_TO_CTX,
992 };
993 
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)994 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
995 {
996 	struct kprobe *kp = kprobe_running();
997 
998 	return kp ? (uintptr_t)kp->addr : 0;
999 }
1000 
1001 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1002 	.func		= bpf_get_func_ip_kprobe,
1003 	.gpl_only	= true,
1004 	.ret_type	= RET_INTEGER,
1005 	.arg1_type	= ARG_PTR_TO_CTX,
1006 };
1007 
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1008 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1009 {
1010 	struct bpf_trace_run_ctx *run_ctx;
1011 
1012 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1013 	return run_ctx->bpf_cookie;
1014 }
1015 
1016 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1017 	.func		= bpf_get_attach_cookie_trace,
1018 	.gpl_only	= false,
1019 	.ret_type	= RET_INTEGER,
1020 	.arg1_type	= ARG_PTR_TO_CTX,
1021 };
1022 
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1023 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1024 {
1025 	return ctx->event->bpf_cookie;
1026 }
1027 
1028 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1029 	.func		= bpf_get_attach_cookie_pe,
1030 	.gpl_only	= false,
1031 	.ret_type	= RET_INTEGER,
1032 	.arg1_type	= ARG_PTR_TO_CTX,
1033 };
1034 
1035 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1036 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1037 {
1038 	switch (func_id) {
1039 	case BPF_FUNC_map_lookup_elem:
1040 		return &bpf_map_lookup_elem_proto;
1041 	case BPF_FUNC_map_update_elem:
1042 		return &bpf_map_update_elem_proto;
1043 	case BPF_FUNC_map_delete_elem:
1044 		return &bpf_map_delete_elem_proto;
1045 	case BPF_FUNC_map_push_elem:
1046 		return &bpf_map_push_elem_proto;
1047 	case BPF_FUNC_map_pop_elem:
1048 		return &bpf_map_pop_elem_proto;
1049 	case BPF_FUNC_map_peek_elem:
1050 		return &bpf_map_peek_elem_proto;
1051 	case BPF_FUNC_ktime_get_ns:
1052 		return &bpf_ktime_get_ns_proto;
1053 	case BPF_FUNC_ktime_get_boot_ns:
1054 		return &bpf_ktime_get_boot_ns_proto;
1055 	case BPF_FUNC_tail_call:
1056 		return &bpf_tail_call_proto;
1057 	case BPF_FUNC_get_current_pid_tgid:
1058 		return &bpf_get_current_pid_tgid_proto;
1059 	case BPF_FUNC_get_current_task:
1060 		return &bpf_get_current_task_proto;
1061 	case BPF_FUNC_get_current_task_btf:
1062 		return &bpf_get_current_task_btf_proto;
1063 	case BPF_FUNC_task_pt_regs:
1064 		return &bpf_task_pt_regs_proto;
1065 	case BPF_FUNC_get_current_uid_gid:
1066 		return &bpf_get_current_uid_gid_proto;
1067 	case BPF_FUNC_get_current_comm:
1068 		return &bpf_get_current_comm_proto;
1069 	case BPF_FUNC_trace_printk:
1070 		return bpf_get_trace_printk_proto();
1071 	case BPF_FUNC_get_smp_processor_id:
1072 		return &bpf_get_smp_processor_id_proto;
1073 	case BPF_FUNC_get_numa_node_id:
1074 		return &bpf_get_numa_node_id_proto;
1075 	case BPF_FUNC_perf_event_read:
1076 		return &bpf_perf_event_read_proto;
1077 	case BPF_FUNC_current_task_under_cgroup:
1078 		return &bpf_current_task_under_cgroup_proto;
1079 	case BPF_FUNC_get_prandom_u32:
1080 		return &bpf_get_prandom_u32_proto;
1081 	case BPF_FUNC_probe_write_user:
1082 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1083 		       NULL : bpf_get_probe_write_proto();
1084 	case BPF_FUNC_probe_read_user:
1085 		return &bpf_probe_read_user_proto;
1086 	case BPF_FUNC_probe_read_kernel:
1087 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1088 		       NULL : &bpf_probe_read_kernel_proto;
1089 	case BPF_FUNC_probe_read_user_str:
1090 		return &bpf_probe_read_user_str_proto;
1091 	case BPF_FUNC_probe_read_kernel_str:
1092 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1093 		       NULL : &bpf_probe_read_kernel_str_proto;
1094 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1095 	case BPF_FUNC_probe_read:
1096 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1097 		       NULL : &bpf_probe_read_compat_proto;
1098 	case BPF_FUNC_probe_read_str:
1099 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1100 		       NULL : &bpf_probe_read_compat_str_proto;
1101 #endif
1102 #ifdef CONFIG_CGROUPS
1103 	case BPF_FUNC_get_current_cgroup_id:
1104 		return &bpf_get_current_cgroup_id_proto;
1105 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1106 		return &bpf_get_current_ancestor_cgroup_id_proto;
1107 #endif
1108 	case BPF_FUNC_send_signal:
1109 		return &bpf_send_signal_proto;
1110 	case BPF_FUNC_send_signal_thread:
1111 		return &bpf_send_signal_thread_proto;
1112 	case BPF_FUNC_perf_event_read_value:
1113 		return &bpf_perf_event_read_value_proto;
1114 	case BPF_FUNC_get_ns_current_pid_tgid:
1115 		return &bpf_get_ns_current_pid_tgid_proto;
1116 	case BPF_FUNC_ringbuf_output:
1117 		return &bpf_ringbuf_output_proto;
1118 	case BPF_FUNC_ringbuf_reserve:
1119 		return &bpf_ringbuf_reserve_proto;
1120 	case BPF_FUNC_ringbuf_submit:
1121 		return &bpf_ringbuf_submit_proto;
1122 	case BPF_FUNC_ringbuf_discard:
1123 		return &bpf_ringbuf_discard_proto;
1124 	case BPF_FUNC_ringbuf_query:
1125 		return &bpf_ringbuf_query_proto;
1126 	case BPF_FUNC_jiffies64:
1127 		return &bpf_jiffies64_proto;
1128 	case BPF_FUNC_get_task_stack:
1129 		return &bpf_get_task_stack_proto;
1130 	case BPF_FUNC_copy_from_user:
1131 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1132 	case BPF_FUNC_snprintf_btf:
1133 		return &bpf_snprintf_btf_proto;
1134 	case BPF_FUNC_per_cpu_ptr:
1135 		return &bpf_per_cpu_ptr_proto;
1136 	case BPF_FUNC_this_cpu_ptr:
1137 		return &bpf_this_cpu_ptr_proto;
1138 	case BPF_FUNC_task_storage_get:
1139 		return &bpf_task_storage_get_proto;
1140 	case BPF_FUNC_task_storage_delete:
1141 		return &bpf_task_storage_delete_proto;
1142 	case BPF_FUNC_for_each_map_elem:
1143 		return &bpf_for_each_map_elem_proto;
1144 	case BPF_FUNC_snprintf:
1145 		return &bpf_snprintf_proto;
1146 	case BPF_FUNC_get_func_ip:
1147 		return &bpf_get_func_ip_proto_tracing;
1148 	default:
1149 		return bpf_base_func_proto(func_id);
1150 	}
1151 }
1152 
1153 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1154 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1155 {
1156 	switch (func_id) {
1157 	case BPF_FUNC_perf_event_output:
1158 		return &bpf_perf_event_output_proto;
1159 	case BPF_FUNC_get_stackid:
1160 		return &bpf_get_stackid_proto;
1161 	case BPF_FUNC_get_stack:
1162 		return &bpf_get_stack_proto;
1163 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1164 	case BPF_FUNC_override_return:
1165 		return &bpf_override_return_proto;
1166 #endif
1167 	case BPF_FUNC_get_func_ip:
1168 		return &bpf_get_func_ip_proto_kprobe;
1169 	case BPF_FUNC_get_attach_cookie:
1170 		return &bpf_get_attach_cookie_proto_trace;
1171 	default:
1172 		return bpf_tracing_func_proto(func_id, prog);
1173 	}
1174 }
1175 
1176 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1177 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1178 					const struct bpf_prog *prog,
1179 					struct bpf_insn_access_aux *info)
1180 {
1181 	if (off < 0 || off >= sizeof(struct pt_regs))
1182 		return false;
1183 	if (type != BPF_READ)
1184 		return false;
1185 	if (off % size != 0)
1186 		return false;
1187 	/*
1188 	 * Assertion for 32 bit to make sure last 8 byte access
1189 	 * (BPF_DW) to the last 4 byte member is disallowed.
1190 	 */
1191 	if (off + size > sizeof(struct pt_regs))
1192 		return false;
1193 
1194 	return true;
1195 }
1196 
1197 const struct bpf_verifier_ops kprobe_verifier_ops = {
1198 	.get_func_proto  = kprobe_prog_func_proto,
1199 	.is_valid_access = kprobe_prog_is_valid_access,
1200 };
1201 
1202 const struct bpf_prog_ops kprobe_prog_ops = {
1203 };
1204 
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1205 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1206 	   u64, flags, void *, data, u64, size)
1207 {
1208 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1209 
1210 	/*
1211 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1212 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1213 	 * from there and call the same bpf_perf_event_output() helper inline.
1214 	 */
1215 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1216 }
1217 
1218 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1219 	.func		= bpf_perf_event_output_tp,
1220 	.gpl_only	= true,
1221 	.ret_type	= RET_INTEGER,
1222 	.arg1_type	= ARG_PTR_TO_CTX,
1223 	.arg2_type	= ARG_CONST_MAP_PTR,
1224 	.arg3_type	= ARG_ANYTHING,
1225 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1226 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1227 };
1228 
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1229 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1230 	   u64, flags)
1231 {
1232 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1233 
1234 	/*
1235 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1236 	 * the other helper's function body cannot be inlined due to being
1237 	 * external, thus we need to call raw helper function.
1238 	 */
1239 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1240 			       flags, 0, 0);
1241 }
1242 
1243 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1244 	.func		= bpf_get_stackid_tp,
1245 	.gpl_only	= true,
1246 	.ret_type	= RET_INTEGER,
1247 	.arg1_type	= ARG_PTR_TO_CTX,
1248 	.arg2_type	= ARG_CONST_MAP_PTR,
1249 	.arg3_type	= ARG_ANYTHING,
1250 };
1251 
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1252 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1253 	   u64, flags)
1254 {
1255 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1256 
1257 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1258 			     (unsigned long) size, flags, 0);
1259 }
1260 
1261 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1262 	.func		= bpf_get_stack_tp,
1263 	.gpl_only	= true,
1264 	.ret_type	= RET_INTEGER,
1265 	.arg1_type	= ARG_PTR_TO_CTX,
1266 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1267 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1268 	.arg4_type	= ARG_ANYTHING,
1269 };
1270 
1271 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1272 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1273 {
1274 	switch (func_id) {
1275 	case BPF_FUNC_perf_event_output:
1276 		return &bpf_perf_event_output_proto_tp;
1277 	case BPF_FUNC_get_stackid:
1278 		return &bpf_get_stackid_proto_tp;
1279 	case BPF_FUNC_get_stack:
1280 		return &bpf_get_stack_proto_tp;
1281 	case BPF_FUNC_get_attach_cookie:
1282 		return &bpf_get_attach_cookie_proto_trace;
1283 	default:
1284 		return bpf_tracing_func_proto(func_id, prog);
1285 	}
1286 }
1287 
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1288 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1289 				    const struct bpf_prog *prog,
1290 				    struct bpf_insn_access_aux *info)
1291 {
1292 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1293 		return false;
1294 	if (type != BPF_READ)
1295 		return false;
1296 	if (off % size != 0)
1297 		return false;
1298 
1299 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1300 	return true;
1301 }
1302 
1303 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1304 	.get_func_proto  = tp_prog_func_proto,
1305 	.is_valid_access = tp_prog_is_valid_access,
1306 };
1307 
1308 const struct bpf_prog_ops tracepoint_prog_ops = {
1309 };
1310 
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1311 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1312 	   struct bpf_perf_event_value *, buf, u32, size)
1313 {
1314 	int err = -EINVAL;
1315 
1316 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1317 		goto clear;
1318 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1319 				    &buf->running);
1320 	if (unlikely(err))
1321 		goto clear;
1322 	return 0;
1323 clear:
1324 	memset(buf, 0, size);
1325 	return err;
1326 }
1327 
1328 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1329          .func           = bpf_perf_prog_read_value,
1330          .gpl_only       = true,
1331          .ret_type       = RET_INTEGER,
1332          .arg1_type      = ARG_PTR_TO_CTX,
1333          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1334          .arg3_type      = ARG_CONST_SIZE,
1335 };
1336 
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1337 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1338 	   void *, buf, u32, size, u64, flags)
1339 {
1340 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1341 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1342 	u32 to_copy;
1343 
1344 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1345 		return -EINVAL;
1346 
1347 	if (unlikely(!br_stack))
1348 		return -ENOENT;
1349 
1350 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1351 		return br_stack->nr * br_entry_size;
1352 
1353 	if (!buf || (size % br_entry_size != 0))
1354 		return -EINVAL;
1355 
1356 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1357 	memcpy(buf, br_stack->entries, to_copy);
1358 
1359 	return to_copy;
1360 }
1361 
1362 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1363 	.func           = bpf_read_branch_records,
1364 	.gpl_only       = true,
1365 	.ret_type       = RET_INTEGER,
1366 	.arg1_type      = ARG_PTR_TO_CTX,
1367 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1368 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1369 	.arg4_type      = ARG_ANYTHING,
1370 };
1371 
1372 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1373 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1374 {
1375 	switch (func_id) {
1376 	case BPF_FUNC_perf_event_output:
1377 		return &bpf_perf_event_output_proto_tp;
1378 	case BPF_FUNC_get_stackid:
1379 		return &bpf_get_stackid_proto_pe;
1380 	case BPF_FUNC_get_stack:
1381 		return &bpf_get_stack_proto_pe;
1382 	case BPF_FUNC_perf_prog_read_value:
1383 		return &bpf_perf_prog_read_value_proto;
1384 	case BPF_FUNC_read_branch_records:
1385 		return &bpf_read_branch_records_proto;
1386 	case BPF_FUNC_get_attach_cookie:
1387 		return &bpf_get_attach_cookie_proto_pe;
1388 	default:
1389 		return bpf_tracing_func_proto(func_id, prog);
1390 	}
1391 }
1392 
1393 /*
1394  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1395  * to avoid potential recursive reuse issue when/if tracepoints are added
1396  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1397  *
1398  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1399  * in normal, irq, and nmi context.
1400  */
1401 struct bpf_raw_tp_regs {
1402 	struct pt_regs regs[3];
1403 };
1404 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1405 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1406 static struct pt_regs *get_bpf_raw_tp_regs(void)
1407 {
1408 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1409 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1410 
1411 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1412 		this_cpu_dec(bpf_raw_tp_nest_level);
1413 		return ERR_PTR(-EBUSY);
1414 	}
1415 
1416 	return &tp_regs->regs[nest_level - 1];
1417 }
1418 
put_bpf_raw_tp_regs(void)1419 static void put_bpf_raw_tp_regs(void)
1420 {
1421 	this_cpu_dec(bpf_raw_tp_nest_level);
1422 }
1423 
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1424 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1425 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1426 {
1427 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1428 	int ret;
1429 
1430 	if (IS_ERR(regs))
1431 		return PTR_ERR(regs);
1432 
1433 	perf_fetch_caller_regs(regs);
1434 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1435 
1436 	put_bpf_raw_tp_regs();
1437 	return ret;
1438 }
1439 
1440 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1441 	.func		= bpf_perf_event_output_raw_tp,
1442 	.gpl_only	= true,
1443 	.ret_type	= RET_INTEGER,
1444 	.arg1_type	= ARG_PTR_TO_CTX,
1445 	.arg2_type	= ARG_CONST_MAP_PTR,
1446 	.arg3_type	= ARG_ANYTHING,
1447 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1448 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1449 };
1450 
1451 extern const struct bpf_func_proto bpf_skb_output_proto;
1452 extern const struct bpf_func_proto bpf_xdp_output_proto;
1453 
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1454 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1455 	   struct bpf_map *, map, u64, flags)
1456 {
1457 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1458 	int ret;
1459 
1460 	if (IS_ERR(regs))
1461 		return PTR_ERR(regs);
1462 
1463 	perf_fetch_caller_regs(regs);
1464 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1465 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1466 			      flags, 0, 0);
1467 	put_bpf_raw_tp_regs();
1468 	return ret;
1469 }
1470 
1471 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1472 	.func		= bpf_get_stackid_raw_tp,
1473 	.gpl_only	= true,
1474 	.ret_type	= RET_INTEGER,
1475 	.arg1_type	= ARG_PTR_TO_CTX,
1476 	.arg2_type	= ARG_CONST_MAP_PTR,
1477 	.arg3_type	= ARG_ANYTHING,
1478 };
1479 
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1480 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1481 	   void *, buf, u32, size, u64, flags)
1482 {
1483 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1484 	int ret;
1485 
1486 	if (IS_ERR(regs))
1487 		return PTR_ERR(regs);
1488 
1489 	perf_fetch_caller_regs(regs);
1490 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1491 			    (unsigned long) size, flags, 0);
1492 	put_bpf_raw_tp_regs();
1493 	return ret;
1494 }
1495 
1496 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1497 	.func		= bpf_get_stack_raw_tp,
1498 	.gpl_only	= true,
1499 	.ret_type	= RET_INTEGER,
1500 	.arg1_type	= ARG_PTR_TO_CTX,
1501 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1502 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1503 	.arg4_type	= ARG_ANYTHING,
1504 };
1505 
1506 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1507 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1508 {
1509 	switch (func_id) {
1510 	case BPF_FUNC_perf_event_output:
1511 		return &bpf_perf_event_output_proto_raw_tp;
1512 	case BPF_FUNC_get_stackid:
1513 		return &bpf_get_stackid_proto_raw_tp;
1514 	case BPF_FUNC_get_stack:
1515 		return &bpf_get_stack_proto_raw_tp;
1516 	default:
1517 		return bpf_tracing_func_proto(func_id, prog);
1518 	}
1519 }
1520 
1521 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1522 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1523 {
1524 	const struct bpf_func_proto *fn;
1525 
1526 	switch (func_id) {
1527 #ifdef CONFIG_NET
1528 	case BPF_FUNC_skb_output:
1529 		return &bpf_skb_output_proto;
1530 	case BPF_FUNC_xdp_output:
1531 		return &bpf_xdp_output_proto;
1532 	case BPF_FUNC_skc_to_tcp6_sock:
1533 		return &bpf_skc_to_tcp6_sock_proto;
1534 	case BPF_FUNC_skc_to_tcp_sock:
1535 		return &bpf_skc_to_tcp_sock_proto;
1536 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1537 		return &bpf_skc_to_tcp_timewait_sock_proto;
1538 	case BPF_FUNC_skc_to_tcp_request_sock:
1539 		return &bpf_skc_to_tcp_request_sock_proto;
1540 	case BPF_FUNC_skc_to_udp6_sock:
1541 		return &bpf_skc_to_udp6_sock_proto;
1542 	case BPF_FUNC_sk_storage_get:
1543 		return &bpf_sk_storage_get_tracing_proto;
1544 	case BPF_FUNC_sk_storage_delete:
1545 		return &bpf_sk_storage_delete_tracing_proto;
1546 	case BPF_FUNC_sock_from_file:
1547 		return &bpf_sock_from_file_proto;
1548 	case BPF_FUNC_get_socket_cookie:
1549 		return &bpf_get_socket_ptr_cookie_proto;
1550 #endif
1551 	case BPF_FUNC_seq_printf:
1552 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1553 		       &bpf_seq_printf_proto :
1554 		       NULL;
1555 	case BPF_FUNC_seq_write:
1556 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1557 		       &bpf_seq_write_proto :
1558 		       NULL;
1559 	case BPF_FUNC_seq_printf_btf:
1560 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1561 		       &bpf_seq_printf_btf_proto :
1562 		       NULL;
1563 	case BPF_FUNC_d_path:
1564 		return &bpf_d_path_proto;
1565 	default:
1566 		fn = raw_tp_prog_func_proto(func_id, prog);
1567 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1568 			fn = bpf_iter_get_func_proto(func_id, prog);
1569 		return fn;
1570 	}
1571 }
1572 
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1573 static bool raw_tp_prog_is_valid_access(int off, int size,
1574 					enum bpf_access_type type,
1575 					const struct bpf_prog *prog,
1576 					struct bpf_insn_access_aux *info)
1577 {
1578 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1579 		return false;
1580 	if (type != BPF_READ)
1581 		return false;
1582 	if (off % size != 0)
1583 		return false;
1584 	return true;
1585 }
1586 
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1587 static bool tracing_prog_is_valid_access(int off, int size,
1588 					 enum bpf_access_type type,
1589 					 const struct bpf_prog *prog,
1590 					 struct bpf_insn_access_aux *info)
1591 {
1592 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1593 		return false;
1594 	if (type != BPF_READ)
1595 		return false;
1596 	if (off % size != 0)
1597 		return false;
1598 	return btf_ctx_access(off, size, type, prog, info);
1599 }
1600 
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1601 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1602 				     const union bpf_attr *kattr,
1603 				     union bpf_attr __user *uattr)
1604 {
1605 	return -ENOTSUPP;
1606 }
1607 
1608 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1609 	.get_func_proto  = raw_tp_prog_func_proto,
1610 	.is_valid_access = raw_tp_prog_is_valid_access,
1611 };
1612 
1613 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1614 #ifdef CONFIG_NET
1615 	.test_run = bpf_prog_test_run_raw_tp,
1616 #endif
1617 };
1618 
1619 const struct bpf_verifier_ops tracing_verifier_ops = {
1620 	.get_func_proto  = tracing_prog_func_proto,
1621 	.is_valid_access = tracing_prog_is_valid_access,
1622 };
1623 
1624 const struct bpf_prog_ops tracing_prog_ops = {
1625 	.test_run = bpf_prog_test_run_tracing,
1626 };
1627 
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1628 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1629 						 enum bpf_access_type type,
1630 						 const struct bpf_prog *prog,
1631 						 struct bpf_insn_access_aux *info)
1632 {
1633 	if (off == 0) {
1634 		if (size != sizeof(u64) || type != BPF_READ)
1635 			return false;
1636 		info->reg_type = PTR_TO_TP_BUFFER;
1637 	}
1638 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1639 }
1640 
1641 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1642 	.get_func_proto  = raw_tp_prog_func_proto,
1643 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1644 };
1645 
1646 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1647 };
1648 
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1649 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1650 				    const struct bpf_prog *prog,
1651 				    struct bpf_insn_access_aux *info)
1652 {
1653 	const int size_u64 = sizeof(u64);
1654 
1655 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1656 		return false;
1657 	if (type != BPF_READ)
1658 		return false;
1659 	if (off % size != 0) {
1660 		if (sizeof(unsigned long) != 4)
1661 			return false;
1662 		if (size != 8)
1663 			return false;
1664 		if (off % size != 4)
1665 			return false;
1666 	}
1667 
1668 	switch (off) {
1669 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1670 		bpf_ctx_record_field_size(info, size_u64);
1671 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1672 			return false;
1673 		break;
1674 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1675 		bpf_ctx_record_field_size(info, size_u64);
1676 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1677 			return false;
1678 		break;
1679 	default:
1680 		if (size != sizeof(long))
1681 			return false;
1682 	}
1683 
1684 	return true;
1685 }
1686 
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1687 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1688 				      const struct bpf_insn *si,
1689 				      struct bpf_insn *insn_buf,
1690 				      struct bpf_prog *prog, u32 *target_size)
1691 {
1692 	struct bpf_insn *insn = insn_buf;
1693 
1694 	switch (si->off) {
1695 	case offsetof(struct bpf_perf_event_data, sample_period):
1696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1697 						       data), si->dst_reg, si->src_reg,
1698 				      offsetof(struct bpf_perf_event_data_kern, data));
1699 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1700 				      bpf_target_off(struct perf_sample_data, period, 8,
1701 						     target_size));
1702 		break;
1703 	case offsetof(struct bpf_perf_event_data, addr):
1704 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1705 						       data), si->dst_reg, si->src_reg,
1706 				      offsetof(struct bpf_perf_event_data_kern, data));
1707 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1708 				      bpf_target_off(struct perf_sample_data, addr, 8,
1709 						     target_size));
1710 		break;
1711 	default:
1712 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1713 						       regs), si->dst_reg, si->src_reg,
1714 				      offsetof(struct bpf_perf_event_data_kern, regs));
1715 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1716 				      si->off);
1717 		break;
1718 	}
1719 
1720 	return insn - insn_buf;
1721 }
1722 
1723 const struct bpf_verifier_ops perf_event_verifier_ops = {
1724 	.get_func_proto		= pe_prog_func_proto,
1725 	.is_valid_access	= pe_prog_is_valid_access,
1726 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1727 };
1728 
1729 const struct bpf_prog_ops perf_event_prog_ops = {
1730 };
1731 
1732 static DEFINE_MUTEX(bpf_event_mutex);
1733 
1734 #define BPF_TRACE_MAX_PROGS 64
1735 
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)1736 int perf_event_attach_bpf_prog(struct perf_event *event,
1737 			       struct bpf_prog *prog,
1738 			       u64 bpf_cookie)
1739 {
1740 	struct bpf_prog_array *old_array;
1741 	struct bpf_prog_array *new_array;
1742 	int ret = -EEXIST;
1743 
1744 	/*
1745 	 * Kprobe override only works if they are on the function entry,
1746 	 * and only if they are on the opt-in list.
1747 	 */
1748 	if (prog->kprobe_override &&
1749 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1750 	     !trace_kprobe_error_injectable(event->tp_event)))
1751 		return -EINVAL;
1752 
1753 	mutex_lock(&bpf_event_mutex);
1754 
1755 	if (event->prog)
1756 		goto unlock;
1757 
1758 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1759 	if (old_array &&
1760 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1761 		ret = -E2BIG;
1762 		goto unlock;
1763 	}
1764 
1765 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1766 	if (ret < 0)
1767 		goto unlock;
1768 
1769 	/* set the new array to event->tp_event and set event->prog */
1770 	event->prog = prog;
1771 	event->bpf_cookie = bpf_cookie;
1772 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1773 	bpf_prog_array_free(old_array);
1774 
1775 unlock:
1776 	mutex_unlock(&bpf_event_mutex);
1777 	return ret;
1778 }
1779 
perf_event_detach_bpf_prog(struct perf_event * event)1780 void perf_event_detach_bpf_prog(struct perf_event *event)
1781 {
1782 	struct bpf_prog_array *old_array;
1783 	struct bpf_prog_array *new_array;
1784 	int ret;
1785 
1786 	mutex_lock(&bpf_event_mutex);
1787 
1788 	if (!event->prog)
1789 		goto unlock;
1790 
1791 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1792 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1793 	if (ret == -ENOENT)
1794 		goto unlock;
1795 	if (ret < 0) {
1796 		bpf_prog_array_delete_safe(old_array, event->prog);
1797 	} else {
1798 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1799 		bpf_prog_array_free(old_array);
1800 	}
1801 
1802 	bpf_prog_put(event->prog);
1803 	event->prog = NULL;
1804 
1805 unlock:
1806 	mutex_unlock(&bpf_event_mutex);
1807 }
1808 
perf_event_query_prog_array(struct perf_event * event,void __user * info)1809 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1810 {
1811 	struct perf_event_query_bpf __user *uquery = info;
1812 	struct perf_event_query_bpf query = {};
1813 	struct bpf_prog_array *progs;
1814 	u32 *ids, prog_cnt, ids_len;
1815 	int ret;
1816 
1817 	if (!perfmon_capable())
1818 		return -EPERM;
1819 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1820 		return -EINVAL;
1821 	if (copy_from_user(&query, uquery, sizeof(query)))
1822 		return -EFAULT;
1823 
1824 	ids_len = query.ids_len;
1825 	if (ids_len > BPF_TRACE_MAX_PROGS)
1826 		return -E2BIG;
1827 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1828 	if (!ids)
1829 		return -ENOMEM;
1830 	/*
1831 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1832 	 * is required when user only wants to check for uquery->prog_cnt.
1833 	 * There is no need to check for it since the case is handled
1834 	 * gracefully in bpf_prog_array_copy_info.
1835 	 */
1836 
1837 	mutex_lock(&bpf_event_mutex);
1838 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1839 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1840 	mutex_unlock(&bpf_event_mutex);
1841 
1842 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1843 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1844 		ret = -EFAULT;
1845 
1846 	kfree(ids);
1847 	return ret;
1848 }
1849 
1850 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1851 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1852 
bpf_get_raw_tracepoint(const char * name)1853 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1854 {
1855 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1856 
1857 	for (; btp < __stop__bpf_raw_tp; btp++) {
1858 		if (!strcmp(btp->tp->name, name))
1859 			return btp;
1860 	}
1861 
1862 	return bpf_get_raw_tracepoint_module(name);
1863 }
1864 
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1865 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1866 {
1867 	struct module *mod;
1868 
1869 	preempt_disable();
1870 	mod = __module_address((unsigned long)btp);
1871 	module_put(mod);
1872 	preempt_enable();
1873 }
1874 
1875 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1876 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1877 {
1878 	cant_sleep();
1879 	rcu_read_lock();
1880 	(void) bpf_prog_run(prog, args);
1881 	rcu_read_unlock();
1882 }
1883 
1884 #define UNPACK(...)			__VA_ARGS__
1885 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1886 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1887 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1888 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1889 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1890 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1891 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1892 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1893 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1894 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1895 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1896 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1897 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1898 
1899 #define SARG(X)		u64 arg##X
1900 #define COPY(X)		args[X] = arg##X
1901 
1902 #define __DL_COM	(,)
1903 #define __DL_SEM	(;)
1904 
1905 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1906 
1907 #define BPF_TRACE_DEFN_x(x)						\
1908 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1909 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1910 	{								\
1911 		u64 args[x];						\
1912 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1913 		__bpf_trace_run(prog, args);				\
1914 	}								\
1915 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1916 BPF_TRACE_DEFN_x(1);
1917 BPF_TRACE_DEFN_x(2);
1918 BPF_TRACE_DEFN_x(3);
1919 BPF_TRACE_DEFN_x(4);
1920 BPF_TRACE_DEFN_x(5);
1921 BPF_TRACE_DEFN_x(6);
1922 BPF_TRACE_DEFN_x(7);
1923 BPF_TRACE_DEFN_x(8);
1924 BPF_TRACE_DEFN_x(9);
1925 BPF_TRACE_DEFN_x(10);
1926 BPF_TRACE_DEFN_x(11);
1927 BPF_TRACE_DEFN_x(12);
1928 
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1929 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1930 {
1931 	struct tracepoint *tp = btp->tp;
1932 
1933 	/*
1934 	 * check that program doesn't access arguments beyond what's
1935 	 * available in this tracepoint
1936 	 */
1937 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1938 		return -EINVAL;
1939 
1940 	if (prog->aux->max_tp_access > btp->writable_size)
1941 		return -EINVAL;
1942 
1943 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1944 						   prog);
1945 }
1946 
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1947 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1948 {
1949 	return __bpf_probe_register(btp, prog);
1950 }
1951 
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1952 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1953 {
1954 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1955 }
1956 
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1957 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1958 			    u32 *fd_type, const char **buf,
1959 			    u64 *probe_offset, u64 *probe_addr)
1960 {
1961 	bool is_tracepoint, is_syscall_tp;
1962 	struct bpf_prog *prog;
1963 	int flags, err = 0;
1964 
1965 	prog = event->prog;
1966 	if (!prog)
1967 		return -ENOENT;
1968 
1969 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1970 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1971 		return -EOPNOTSUPP;
1972 
1973 	*prog_id = prog->aux->id;
1974 	flags = event->tp_event->flags;
1975 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1976 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1977 
1978 	if (is_tracepoint || is_syscall_tp) {
1979 		*buf = is_tracepoint ? event->tp_event->tp->name
1980 				     : event->tp_event->name;
1981 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1982 		*probe_offset = 0x0;
1983 		*probe_addr = 0x0;
1984 	} else {
1985 		/* kprobe/uprobe */
1986 		err = -EOPNOTSUPP;
1987 #ifdef CONFIG_KPROBE_EVENTS
1988 		if (flags & TRACE_EVENT_FL_KPROBE)
1989 			err = bpf_get_kprobe_info(event, fd_type, buf,
1990 						  probe_offset, probe_addr,
1991 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1992 #endif
1993 #ifdef CONFIG_UPROBE_EVENTS
1994 		if (flags & TRACE_EVENT_FL_UPROBE)
1995 			err = bpf_get_uprobe_info(event, fd_type, buf,
1996 						  probe_offset, probe_addr,
1997 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1998 #endif
1999 	}
2000 
2001 	return err;
2002 }
2003 
send_signal_irq_work_init(void)2004 static int __init send_signal_irq_work_init(void)
2005 {
2006 	int cpu;
2007 	struct send_signal_irq_work *work;
2008 
2009 	for_each_possible_cpu(cpu) {
2010 		work = per_cpu_ptr(&send_signal_work, cpu);
2011 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2012 	}
2013 	return 0;
2014 }
2015 
2016 subsys_initcall(send_signal_irq_work_init);
2017 
2018 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2019 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2020 			    void *module)
2021 {
2022 	struct bpf_trace_module *btm, *tmp;
2023 	struct module *mod = module;
2024 	int ret = 0;
2025 
2026 	if (mod->num_bpf_raw_events == 0 ||
2027 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2028 		goto out;
2029 
2030 	mutex_lock(&bpf_module_mutex);
2031 
2032 	switch (op) {
2033 	case MODULE_STATE_COMING:
2034 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2035 		if (btm) {
2036 			btm->module = module;
2037 			list_add(&btm->list, &bpf_trace_modules);
2038 		} else {
2039 			ret = -ENOMEM;
2040 		}
2041 		break;
2042 	case MODULE_STATE_GOING:
2043 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2044 			if (btm->module == module) {
2045 				list_del(&btm->list);
2046 				kfree(btm);
2047 				break;
2048 			}
2049 		}
2050 		break;
2051 	}
2052 
2053 	mutex_unlock(&bpf_module_mutex);
2054 
2055 out:
2056 	return notifier_from_errno(ret);
2057 }
2058 
2059 static struct notifier_block bpf_module_nb = {
2060 	.notifier_call = bpf_event_notify,
2061 };
2062 
bpf_event_init(void)2063 static int __init bpf_event_init(void)
2064 {
2065 	register_module_notifier(&bpf_module_nb);
2066 	return 0;
2067 }
2068 
2069 fs_initcall(bpf_event_init);
2070 #endif /* CONFIG_MODULES */
2071