1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20
21 #include <net/bpf_sk_storage.h>
22
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25
26 #include <asm/tlb.h>
27
28 #include "trace_probe.h"
29 #include "trace.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33
34 #define bpf_event_rcu_dereference(p) \
35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 struct module *module;
40 struct list_head list;
41 };
42
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45
bpf_get_raw_tracepoint_module(const char * name)46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 struct bpf_raw_event_map *btp, *ret = NULL;
49 struct bpf_trace_module *btm;
50 unsigned int i;
51
52 mutex_lock(&bpf_module_mutex);
53 list_for_each_entry(btm, &bpf_trace_modules, list) {
54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 btp = &btm->module->bpf_raw_events[i];
56 if (!strcmp(btp->tp->name, name)) {
57 if (try_module_get(btm->module))
58 ret = btp;
59 goto out;
60 }
61 }
62 }
63 out:
64 mutex_unlock(&bpf_module_mutex);
65 return ret;
66 }
67 #else
bpf_get_raw_tracepoint_module(const char * name)68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 u64 flags, const struct btf **btf,
79 s32 *btf_id);
80
81 /**
82 * trace_call_bpf - invoke BPF program
83 * @call: tracepoint event
84 * @ctx: opaque context pointer
85 *
86 * kprobe handlers execute BPF programs via this helper.
87 * Can be used from static tracepoints in the future.
88 *
89 * Return: BPF programs always return an integer which is interpreted by
90 * kprobe handler as:
91 * 0 - return from kprobe (event is filtered out)
92 * 1 - store kprobe event into ring buffer
93 * Other values are reserved and currently alias to 1
94 */
trace_call_bpf(struct trace_event_call * call,void * ctx)95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 unsigned int ret;
98
99 cant_sleep();
100
101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 /*
103 * since some bpf program is already running on this cpu,
104 * don't call into another bpf program (same or different)
105 * and don't send kprobe event into ring-buffer,
106 * so return zero here
107 */
108 ret = 0;
109 goto out;
110 }
111
112 /*
113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 * to all call sites, we did a bpf_prog_array_valid() there to check
115 * whether call->prog_array is empty or not, which is
116 * a heuristic to speed up execution.
117 *
118 * If bpf_prog_array_valid() fetched prog_array was
119 * non-NULL, we go into trace_call_bpf() and do the actual
120 * proper rcu_dereference() under RCU lock.
121 * If it turns out that prog_array is NULL then, we bail out.
122 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 * was NULL, you'll skip the prog_array with the risk of missing
124 * out of events when it was updated in between this and the
125 * rcu_dereference() which is accepted risk.
126 */
127 ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run);
128
129 out:
130 __this_cpu_dec(bpf_prog_active);
131
132 return ret;
133 }
134
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 regs_set_return_value(regs, rc);
139 override_function_with_return(regs);
140 return 0;
141 }
142
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 .func = bpf_override_return,
145 .gpl_only = true,
146 .ret_type = RET_INTEGER,
147 .arg1_type = ARG_PTR_TO_CTX,
148 .arg2_type = ARG_ANYTHING,
149 };
150 #endif
151
152 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 int ret;
156
157 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 if (unlikely(ret < 0))
159 memset(dst, 0, size);
160 return ret;
161 }
162
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 const void __user *, unsafe_ptr)
165 {
166 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 .func = bpf_probe_read_user,
171 .gpl_only = true,
172 .ret_type = RET_INTEGER,
173 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
174 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
175 .arg3_type = ARG_ANYTHING,
176 };
177
178 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 const void __user *unsafe_ptr)
181 {
182 int ret;
183
184 /*
185 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 * terminator into `dst`.
187 *
188 * strncpy_from_user() does long-sized strides in the fast path. If the
189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 * and keys a hash map with it, then semantically identical strings can
192 * occupy multiple entries in the map.
193 */
194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 if (unlikely(ret < 0))
196 memset(dst, 0, size);
197 return ret;
198 }
199
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 const void __user *, unsafe_ptr)
202 {
203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 .func = bpf_probe_read_user_str,
208 .gpl_only = true,
209 .ret_type = RET_INTEGER,
210 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
211 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
212 .arg3_type = ARG_ANYTHING,
213 };
214
215 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 int ret;
219
220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 if (unlikely(ret < 0))
222 memset(dst, 0, size);
223 return ret;
224 }
225
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 const void *, unsafe_ptr)
228 {
229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 .func = bpf_probe_read_kernel,
234 .gpl_only = true,
235 .ret_type = RET_INTEGER,
236 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
237 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
238 .arg3_type = ARG_ANYTHING,
239 };
240
241 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 int ret;
245
246 /*
247 * The strncpy_from_kernel_nofault() call will likely not fill the
248 * entire buffer, but that's okay in this circumstance as we're probing
249 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 * as well probe the stack. Thus, memory is explicitly cleared
251 * only in error case, so that improper users ignoring return
252 * code altogether don't copy garbage; otherwise length of string
253 * is returned that can be used for bpf_perf_event_output() et al.
254 */
255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 if (unlikely(ret < 0))
257 memset(dst, 0, size);
258 return ret;
259 }
260
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 const void *, unsafe_ptr)
263 {
264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 .func = bpf_probe_read_kernel_str,
269 .gpl_only = true,
270 .ret_type = RET_INTEGER,
271 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
272 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
273 .arg3_type = ARG_ANYTHING,
274 };
275
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 const void *, unsafe_ptr)
279 {
280 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 return bpf_probe_read_user_common(dst, size,
282 (__force void __user *)unsafe_ptr);
283 }
284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 .func = bpf_probe_read_compat,
289 .gpl_only = true,
290 .ret_type = RET_INTEGER,
291 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
292 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
293 .arg3_type = ARG_ANYTHING,
294 };
295
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 const void *, unsafe_ptr)
298 {
299 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 return bpf_probe_read_user_str_common(dst, size,
301 (__force void __user *)unsafe_ptr);
302 }
303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 .func = bpf_probe_read_compat_str,
308 .gpl_only = true,
309 .ret_type = RET_INTEGER,
310 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
311 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
312 .arg3_type = ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 u32, size)
318 {
319 /*
320 * Ensure we're in user context which is safe for the helper to
321 * run. This helper has no business in a kthread.
322 *
323 * access_ok() should prevent writing to non-user memory, but in
324 * some situations (nommu, temporary switch, etc) access_ok() does
325 * not provide enough validation, hence the check on KERNEL_DS.
326 *
327 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 * state, when the task or mm are switched. This is specifically
329 * required to prevent the use of temporary mm.
330 */
331
332 if (unlikely(in_interrupt() ||
333 current->flags & (PF_KTHREAD | PF_EXITING)))
334 return -EPERM;
335 if (unlikely(uaccess_kernel()))
336 return -EPERM;
337 if (unlikely(!nmi_uaccess_okay()))
338 return -EPERM;
339
340 return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 .func = bpf_probe_write_user,
345 .gpl_only = true,
346 .ret_type = RET_INTEGER,
347 .arg1_type = ARG_ANYTHING,
348 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
349 .arg3_type = ARG_CONST_SIZE,
350 };
351
bpf_get_probe_write_proto(void)352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 if (!capable(CAP_SYS_ADMIN))
355 return NULL;
356
357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 current->comm, task_pid_nr(current));
359
360 return &bpf_probe_write_user_proto;
361 }
362
363 #define MAX_TRACE_PRINTK_VARARGS 3
364 #define BPF_TRACE_PRINTK_SIZE 1024
365
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)366 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
367 u64, arg2, u64, arg3)
368 {
369 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
370 struct bpf_bprintf_data data = {
371 .get_bin_args = true,
372 .get_buf = true,
373 };
374 int ret;
375
376 ret = bpf_bprintf_prepare(fmt, fmt_size, args,
377 MAX_TRACE_PRINTK_VARARGS, &data);
378 if (ret < 0)
379 return ret;
380
381 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
382
383 trace_bpf_trace_printk(data.buf);
384
385 bpf_bprintf_cleanup(&data);
386
387 return ret;
388 }
389
390 static const struct bpf_func_proto bpf_trace_printk_proto = {
391 .func = bpf_trace_printk,
392 .gpl_only = true,
393 .ret_type = RET_INTEGER,
394 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
395 .arg2_type = ARG_CONST_SIZE,
396 };
397
bpf_get_trace_printk_proto(void)398 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
399 {
400 /*
401 * This program might be calling bpf_trace_printk,
402 * so enable the associated bpf_trace/bpf_trace_printk event.
403 * Repeat this each time as it is possible a user has
404 * disabled bpf_trace_printk events. By loading a program
405 * calling bpf_trace_printk() however the user has expressed
406 * the intent to see such events.
407 */
408 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
409 pr_warn_ratelimited("could not enable bpf_trace_printk events");
410
411 return &bpf_trace_printk_proto;
412 }
413
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)414 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
415 const void *, args, u32, data_len)
416 {
417 struct bpf_bprintf_data data = {
418 .get_bin_args = true,
419 };
420 int err, num_args;
421
422 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
423 (data_len && !args))
424 return -EINVAL;
425 num_args = data_len / 8;
426
427 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
428 if (err < 0)
429 return err;
430
431 seq_bprintf(m, fmt, data.bin_args);
432
433 bpf_bprintf_cleanup(&data);
434
435 return seq_has_overflowed(m) ? -EOVERFLOW : 0;
436 }
437
438 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
439
440 static const struct bpf_func_proto bpf_seq_printf_proto = {
441 .func = bpf_seq_printf,
442 .gpl_only = true,
443 .ret_type = RET_INTEGER,
444 .arg1_type = ARG_PTR_TO_BTF_ID,
445 .arg1_btf_id = &btf_seq_file_ids[0],
446 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
447 .arg3_type = ARG_CONST_SIZE,
448 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
449 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
450 };
451
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)452 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
453 {
454 return seq_write(m, data, len) ? -EOVERFLOW : 0;
455 }
456
457 static const struct bpf_func_proto bpf_seq_write_proto = {
458 .func = bpf_seq_write,
459 .gpl_only = true,
460 .ret_type = RET_INTEGER,
461 .arg1_type = ARG_PTR_TO_BTF_ID,
462 .arg1_btf_id = &btf_seq_file_ids[0],
463 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
464 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
465 };
466
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)467 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
468 u32, btf_ptr_size, u64, flags)
469 {
470 const struct btf *btf;
471 s32 btf_id;
472 int ret;
473
474 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
475 if (ret)
476 return ret;
477
478 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
479 }
480
481 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
482 .func = bpf_seq_printf_btf,
483 .gpl_only = true,
484 .ret_type = RET_INTEGER,
485 .arg1_type = ARG_PTR_TO_BTF_ID,
486 .arg1_btf_id = &btf_seq_file_ids[0],
487 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
488 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
489 .arg4_type = ARG_ANYTHING,
490 };
491
492 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)493 get_map_perf_counter(struct bpf_map *map, u64 flags,
494 u64 *value, u64 *enabled, u64 *running)
495 {
496 struct bpf_array *array = container_of(map, struct bpf_array, map);
497 unsigned int cpu = smp_processor_id();
498 u64 index = flags & BPF_F_INDEX_MASK;
499 struct bpf_event_entry *ee;
500
501 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
502 return -EINVAL;
503 if (index == BPF_F_CURRENT_CPU)
504 index = cpu;
505 if (unlikely(index >= array->map.max_entries))
506 return -E2BIG;
507
508 ee = READ_ONCE(array->ptrs[index]);
509 if (!ee)
510 return -ENOENT;
511
512 return perf_event_read_local(ee->event, value, enabled, running);
513 }
514
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)515 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
516 {
517 u64 value = 0;
518 int err;
519
520 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
521 /*
522 * this api is ugly since we miss [-22..-2] range of valid
523 * counter values, but that's uapi
524 */
525 if (err)
526 return err;
527 return value;
528 }
529
530 static const struct bpf_func_proto bpf_perf_event_read_proto = {
531 .func = bpf_perf_event_read,
532 .gpl_only = true,
533 .ret_type = RET_INTEGER,
534 .arg1_type = ARG_CONST_MAP_PTR,
535 .arg2_type = ARG_ANYTHING,
536 };
537
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)538 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
539 struct bpf_perf_event_value *, buf, u32, size)
540 {
541 int err = -EINVAL;
542
543 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
544 goto clear;
545 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
546 &buf->running);
547 if (unlikely(err))
548 goto clear;
549 return 0;
550 clear:
551 memset(buf, 0, size);
552 return err;
553 }
554
555 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
556 .func = bpf_perf_event_read_value,
557 .gpl_only = true,
558 .ret_type = RET_INTEGER,
559 .arg1_type = ARG_CONST_MAP_PTR,
560 .arg2_type = ARG_ANYTHING,
561 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
562 .arg4_type = ARG_CONST_SIZE,
563 };
564
565 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)566 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
567 u64 flags, struct perf_sample_data *sd)
568 {
569 struct bpf_array *array = container_of(map, struct bpf_array, map);
570 unsigned int cpu = smp_processor_id();
571 u64 index = flags & BPF_F_INDEX_MASK;
572 struct bpf_event_entry *ee;
573 struct perf_event *event;
574
575 if (index == BPF_F_CURRENT_CPU)
576 index = cpu;
577 if (unlikely(index >= array->map.max_entries))
578 return -E2BIG;
579
580 ee = READ_ONCE(array->ptrs[index]);
581 if (!ee)
582 return -ENOENT;
583
584 event = ee->event;
585 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
586 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
587 return -EINVAL;
588
589 if (unlikely(event->oncpu != cpu))
590 return -EOPNOTSUPP;
591
592 return perf_event_output(event, sd, regs);
593 }
594
595 /*
596 * Support executing tracepoints in normal, irq, and nmi context that each call
597 * bpf_perf_event_output
598 */
599 struct bpf_trace_sample_data {
600 struct perf_sample_data sds[3];
601 };
602
603 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
604 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)605 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
606 u64, flags, void *, data, u64, size)
607 {
608 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
609 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
610 struct perf_raw_record raw = {
611 .frag = {
612 .size = size,
613 .data = data,
614 },
615 };
616 struct perf_sample_data *sd;
617 int err;
618
619 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
620 err = -EBUSY;
621 goto out;
622 }
623
624 sd = &sds->sds[nest_level - 1];
625
626 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
627 err = -EINVAL;
628 goto out;
629 }
630
631 perf_sample_data_init(sd, 0, 0);
632 sd->raw = &raw;
633
634 err = __bpf_perf_event_output(regs, map, flags, sd);
635
636 out:
637 this_cpu_dec(bpf_trace_nest_level);
638 return err;
639 }
640
641 static const struct bpf_func_proto bpf_perf_event_output_proto = {
642 .func = bpf_perf_event_output,
643 .gpl_only = true,
644 .ret_type = RET_INTEGER,
645 .arg1_type = ARG_PTR_TO_CTX,
646 .arg2_type = ARG_CONST_MAP_PTR,
647 .arg3_type = ARG_ANYTHING,
648 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
649 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
650 };
651
652 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
653 struct bpf_nested_pt_regs {
654 struct pt_regs regs[3];
655 };
656 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
657 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
658
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)659 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
660 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
661 {
662 struct perf_raw_frag frag = {
663 .copy = ctx_copy,
664 .size = ctx_size,
665 .data = ctx,
666 };
667 struct perf_raw_record raw = {
668 .frag = {
669 {
670 .next = ctx_size ? &frag : NULL,
671 },
672 .size = meta_size,
673 .data = meta,
674 },
675 };
676 struct perf_sample_data *sd;
677 struct pt_regs *regs;
678 int nest_level;
679 u64 ret;
680
681 preempt_disable();
682 nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
683
684 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
685 ret = -EBUSY;
686 goto out;
687 }
688 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
689 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
690
691 perf_fetch_caller_regs(regs);
692 perf_sample_data_init(sd, 0, 0);
693 sd->raw = &raw;
694
695 ret = __bpf_perf_event_output(regs, map, flags, sd);
696 out:
697 this_cpu_dec(bpf_event_output_nest_level);
698 preempt_enable();
699 return ret;
700 }
701
BPF_CALL_0(bpf_get_current_task)702 BPF_CALL_0(bpf_get_current_task)
703 {
704 return (long) current;
705 }
706
707 const struct bpf_func_proto bpf_get_current_task_proto = {
708 .func = bpf_get_current_task,
709 .gpl_only = true,
710 .ret_type = RET_INTEGER,
711 };
712
BPF_CALL_0(bpf_get_current_task_btf)713 BPF_CALL_0(bpf_get_current_task_btf)
714 {
715 return (unsigned long) current;
716 }
717
718 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
719 .func = bpf_get_current_task_btf,
720 .gpl_only = true,
721 .ret_type = RET_PTR_TO_BTF_ID,
722 .ret_btf_id = &btf_task_struct_ids[0],
723 };
724
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)725 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
726 {
727 return (unsigned long) task_pt_regs(task);
728 }
729
730 BTF_ID_LIST(bpf_task_pt_regs_ids)
731 BTF_ID(struct, pt_regs)
732
733 const struct bpf_func_proto bpf_task_pt_regs_proto = {
734 .func = bpf_task_pt_regs,
735 .gpl_only = true,
736 .arg1_type = ARG_PTR_TO_BTF_ID,
737 .arg1_btf_id = &btf_task_struct_ids[0],
738 .ret_type = RET_PTR_TO_BTF_ID,
739 .ret_btf_id = &bpf_task_pt_regs_ids[0],
740 };
741
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)742 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
743 {
744 struct bpf_array *array = container_of(map, struct bpf_array, map);
745 struct cgroup *cgrp;
746
747 if (unlikely(idx >= array->map.max_entries))
748 return -E2BIG;
749
750 cgrp = READ_ONCE(array->ptrs[idx]);
751 if (unlikely(!cgrp))
752 return -EAGAIN;
753
754 return task_under_cgroup_hierarchy(current, cgrp);
755 }
756
757 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
758 .func = bpf_current_task_under_cgroup,
759 .gpl_only = false,
760 .ret_type = RET_INTEGER,
761 .arg1_type = ARG_CONST_MAP_PTR,
762 .arg2_type = ARG_ANYTHING,
763 };
764
765 struct send_signal_irq_work {
766 struct irq_work irq_work;
767 struct task_struct *task;
768 u32 sig;
769 enum pid_type type;
770 };
771
772 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
773
do_bpf_send_signal(struct irq_work * entry)774 static void do_bpf_send_signal(struct irq_work *entry)
775 {
776 struct send_signal_irq_work *work;
777
778 work = container_of(entry, struct send_signal_irq_work, irq_work);
779 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
780 put_task_struct(work->task);
781 }
782
bpf_send_signal_common(u32 sig,enum pid_type type)783 static int bpf_send_signal_common(u32 sig, enum pid_type type)
784 {
785 struct send_signal_irq_work *work = NULL;
786
787 /* Similar to bpf_probe_write_user, task needs to be
788 * in a sound condition and kernel memory access be
789 * permitted in order to send signal to the current
790 * task.
791 */
792 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
793 return -EPERM;
794 if (unlikely(uaccess_kernel()))
795 return -EPERM;
796 if (unlikely(!nmi_uaccess_okay()))
797 return -EPERM;
798 /* Task should not be pid=1 to avoid kernel panic. */
799 if (unlikely(is_global_init(current)))
800 return -EPERM;
801
802 if (irqs_disabled()) {
803 /* Do an early check on signal validity. Otherwise,
804 * the error is lost in deferred irq_work.
805 */
806 if (unlikely(!valid_signal(sig)))
807 return -EINVAL;
808
809 work = this_cpu_ptr(&send_signal_work);
810 if (irq_work_is_busy(&work->irq_work))
811 return -EBUSY;
812
813 /* Add the current task, which is the target of sending signal,
814 * to the irq_work. The current task may change when queued
815 * irq works get executed.
816 */
817 work->task = get_task_struct(current);
818 work->sig = sig;
819 work->type = type;
820 irq_work_queue(&work->irq_work);
821 return 0;
822 }
823
824 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
825 }
826
BPF_CALL_1(bpf_send_signal,u32,sig)827 BPF_CALL_1(bpf_send_signal, u32, sig)
828 {
829 return bpf_send_signal_common(sig, PIDTYPE_TGID);
830 }
831
832 static const struct bpf_func_proto bpf_send_signal_proto = {
833 .func = bpf_send_signal,
834 .gpl_only = false,
835 .ret_type = RET_INTEGER,
836 .arg1_type = ARG_ANYTHING,
837 };
838
BPF_CALL_1(bpf_send_signal_thread,u32,sig)839 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
840 {
841 return bpf_send_signal_common(sig, PIDTYPE_PID);
842 }
843
844 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
845 .func = bpf_send_signal_thread,
846 .gpl_only = false,
847 .ret_type = RET_INTEGER,
848 .arg1_type = ARG_ANYTHING,
849 };
850
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)851 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
852 {
853 struct path copy;
854 long len;
855 char *p;
856
857 if (!sz)
858 return 0;
859
860 /*
861 * The path pointer is verified as trusted and safe to use,
862 * but let's double check it's valid anyway to workaround
863 * potentially broken verifier.
864 */
865 len = copy_from_kernel_nofault(©, path, sizeof(*path));
866 if (len < 0)
867 return len;
868
869 p = d_path(©, buf, sz);
870 if (IS_ERR(p)) {
871 len = PTR_ERR(p);
872 } else {
873 len = buf + sz - p;
874 memmove(buf, p, len);
875 }
876
877 return len;
878 }
879
880 BTF_SET_START(btf_allowlist_d_path)
881 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)882 BTF_ID(func, security_file_permission)
883 BTF_ID(func, security_inode_getattr)
884 BTF_ID(func, security_file_open)
885 #endif
886 #ifdef CONFIG_SECURITY_PATH
887 BTF_ID(func, security_path_truncate)
888 #endif
889 BTF_ID(func, vfs_truncate)
890 BTF_ID(func, vfs_fallocate)
891 BTF_ID(func, dentry_open)
892 BTF_ID(func, vfs_getattr)
893 BTF_ID(func, filp_close)
894 BTF_SET_END(btf_allowlist_d_path)
895
896 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
897 {
898 if (prog->type == BPF_PROG_TYPE_TRACING &&
899 prog->expected_attach_type == BPF_TRACE_ITER)
900 return true;
901
902 if (prog->type == BPF_PROG_TYPE_LSM)
903 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
904
905 return btf_id_set_contains(&btf_allowlist_d_path,
906 prog->aux->attach_btf_id);
907 }
908
909 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
910
911 static const struct bpf_func_proto bpf_d_path_proto = {
912 .func = bpf_d_path,
913 .gpl_only = false,
914 .ret_type = RET_INTEGER,
915 .arg1_type = ARG_PTR_TO_BTF_ID,
916 .arg1_btf_id = &bpf_d_path_btf_ids[0],
917 .arg2_type = ARG_PTR_TO_MEM,
918 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
919 .allowed = bpf_d_path_allowed,
920 };
921
922 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
923 BTF_F_PTR_RAW | BTF_F_ZERO)
924
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)925 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
926 u64 flags, const struct btf **btf,
927 s32 *btf_id)
928 {
929 const struct btf_type *t;
930
931 if (unlikely(flags & ~(BTF_F_ALL)))
932 return -EINVAL;
933
934 if (btf_ptr_size != sizeof(struct btf_ptr))
935 return -EINVAL;
936
937 *btf = bpf_get_btf_vmlinux();
938
939 if (IS_ERR_OR_NULL(*btf))
940 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
941
942 if (ptr->type_id > 0)
943 *btf_id = ptr->type_id;
944 else
945 return -EINVAL;
946
947 if (*btf_id > 0)
948 t = btf_type_by_id(*btf, *btf_id);
949 if (*btf_id <= 0 || !t)
950 return -ENOENT;
951
952 return 0;
953 }
954
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)955 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
956 u32, btf_ptr_size, u64, flags)
957 {
958 const struct btf *btf;
959 s32 btf_id;
960 int ret;
961
962 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
963 if (ret)
964 return ret;
965
966 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
967 flags);
968 }
969
970 const struct bpf_func_proto bpf_snprintf_btf_proto = {
971 .func = bpf_snprintf_btf,
972 .gpl_only = false,
973 .ret_type = RET_INTEGER,
974 .arg1_type = ARG_PTR_TO_MEM,
975 .arg2_type = ARG_CONST_SIZE,
976 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
977 .arg4_type = ARG_CONST_SIZE,
978 .arg5_type = ARG_ANYTHING,
979 };
980
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)981 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
982 {
983 /* This helper call is inlined by verifier. */
984 return ((u64 *)ctx)[-1];
985 }
986
987 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
988 .func = bpf_get_func_ip_tracing,
989 .gpl_only = true,
990 .ret_type = RET_INTEGER,
991 .arg1_type = ARG_PTR_TO_CTX,
992 };
993
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)994 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
995 {
996 struct kprobe *kp = kprobe_running();
997
998 return kp ? (uintptr_t)kp->addr : 0;
999 }
1000
1001 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1002 .func = bpf_get_func_ip_kprobe,
1003 .gpl_only = true,
1004 .ret_type = RET_INTEGER,
1005 .arg1_type = ARG_PTR_TO_CTX,
1006 };
1007
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1008 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1009 {
1010 struct bpf_trace_run_ctx *run_ctx;
1011
1012 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1013 return run_ctx->bpf_cookie;
1014 }
1015
1016 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1017 .func = bpf_get_attach_cookie_trace,
1018 .gpl_only = false,
1019 .ret_type = RET_INTEGER,
1020 .arg1_type = ARG_PTR_TO_CTX,
1021 };
1022
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1023 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1024 {
1025 return ctx->event->bpf_cookie;
1026 }
1027
1028 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1029 .func = bpf_get_attach_cookie_pe,
1030 .gpl_only = false,
1031 .ret_type = RET_INTEGER,
1032 .arg1_type = ARG_PTR_TO_CTX,
1033 };
1034
1035 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1036 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1037 {
1038 switch (func_id) {
1039 case BPF_FUNC_map_lookup_elem:
1040 return &bpf_map_lookup_elem_proto;
1041 case BPF_FUNC_map_update_elem:
1042 return &bpf_map_update_elem_proto;
1043 case BPF_FUNC_map_delete_elem:
1044 return &bpf_map_delete_elem_proto;
1045 case BPF_FUNC_map_push_elem:
1046 return &bpf_map_push_elem_proto;
1047 case BPF_FUNC_map_pop_elem:
1048 return &bpf_map_pop_elem_proto;
1049 case BPF_FUNC_map_peek_elem:
1050 return &bpf_map_peek_elem_proto;
1051 case BPF_FUNC_ktime_get_ns:
1052 return &bpf_ktime_get_ns_proto;
1053 case BPF_FUNC_ktime_get_boot_ns:
1054 return &bpf_ktime_get_boot_ns_proto;
1055 case BPF_FUNC_tail_call:
1056 return &bpf_tail_call_proto;
1057 case BPF_FUNC_get_current_pid_tgid:
1058 return &bpf_get_current_pid_tgid_proto;
1059 case BPF_FUNC_get_current_task:
1060 return &bpf_get_current_task_proto;
1061 case BPF_FUNC_get_current_task_btf:
1062 return &bpf_get_current_task_btf_proto;
1063 case BPF_FUNC_task_pt_regs:
1064 return &bpf_task_pt_regs_proto;
1065 case BPF_FUNC_get_current_uid_gid:
1066 return &bpf_get_current_uid_gid_proto;
1067 case BPF_FUNC_get_current_comm:
1068 return &bpf_get_current_comm_proto;
1069 case BPF_FUNC_trace_printk:
1070 return bpf_get_trace_printk_proto();
1071 case BPF_FUNC_get_smp_processor_id:
1072 return &bpf_get_smp_processor_id_proto;
1073 case BPF_FUNC_get_numa_node_id:
1074 return &bpf_get_numa_node_id_proto;
1075 case BPF_FUNC_perf_event_read:
1076 return &bpf_perf_event_read_proto;
1077 case BPF_FUNC_current_task_under_cgroup:
1078 return &bpf_current_task_under_cgroup_proto;
1079 case BPF_FUNC_get_prandom_u32:
1080 return &bpf_get_prandom_u32_proto;
1081 case BPF_FUNC_probe_write_user:
1082 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1083 NULL : bpf_get_probe_write_proto();
1084 case BPF_FUNC_probe_read_user:
1085 return &bpf_probe_read_user_proto;
1086 case BPF_FUNC_probe_read_kernel:
1087 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1088 NULL : &bpf_probe_read_kernel_proto;
1089 case BPF_FUNC_probe_read_user_str:
1090 return &bpf_probe_read_user_str_proto;
1091 case BPF_FUNC_probe_read_kernel_str:
1092 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1093 NULL : &bpf_probe_read_kernel_str_proto;
1094 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1095 case BPF_FUNC_probe_read:
1096 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1097 NULL : &bpf_probe_read_compat_proto;
1098 case BPF_FUNC_probe_read_str:
1099 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1100 NULL : &bpf_probe_read_compat_str_proto;
1101 #endif
1102 #ifdef CONFIG_CGROUPS
1103 case BPF_FUNC_get_current_cgroup_id:
1104 return &bpf_get_current_cgroup_id_proto;
1105 case BPF_FUNC_get_current_ancestor_cgroup_id:
1106 return &bpf_get_current_ancestor_cgroup_id_proto;
1107 #endif
1108 case BPF_FUNC_send_signal:
1109 return &bpf_send_signal_proto;
1110 case BPF_FUNC_send_signal_thread:
1111 return &bpf_send_signal_thread_proto;
1112 case BPF_FUNC_perf_event_read_value:
1113 return &bpf_perf_event_read_value_proto;
1114 case BPF_FUNC_get_ns_current_pid_tgid:
1115 return &bpf_get_ns_current_pid_tgid_proto;
1116 case BPF_FUNC_ringbuf_output:
1117 return &bpf_ringbuf_output_proto;
1118 case BPF_FUNC_ringbuf_reserve:
1119 return &bpf_ringbuf_reserve_proto;
1120 case BPF_FUNC_ringbuf_submit:
1121 return &bpf_ringbuf_submit_proto;
1122 case BPF_FUNC_ringbuf_discard:
1123 return &bpf_ringbuf_discard_proto;
1124 case BPF_FUNC_ringbuf_query:
1125 return &bpf_ringbuf_query_proto;
1126 case BPF_FUNC_jiffies64:
1127 return &bpf_jiffies64_proto;
1128 case BPF_FUNC_get_task_stack:
1129 return &bpf_get_task_stack_proto;
1130 case BPF_FUNC_copy_from_user:
1131 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1132 case BPF_FUNC_snprintf_btf:
1133 return &bpf_snprintf_btf_proto;
1134 case BPF_FUNC_per_cpu_ptr:
1135 return &bpf_per_cpu_ptr_proto;
1136 case BPF_FUNC_this_cpu_ptr:
1137 return &bpf_this_cpu_ptr_proto;
1138 case BPF_FUNC_task_storage_get:
1139 return &bpf_task_storage_get_proto;
1140 case BPF_FUNC_task_storage_delete:
1141 return &bpf_task_storage_delete_proto;
1142 case BPF_FUNC_for_each_map_elem:
1143 return &bpf_for_each_map_elem_proto;
1144 case BPF_FUNC_snprintf:
1145 return &bpf_snprintf_proto;
1146 case BPF_FUNC_get_func_ip:
1147 return &bpf_get_func_ip_proto_tracing;
1148 default:
1149 return bpf_base_func_proto(func_id);
1150 }
1151 }
1152
1153 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1154 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1155 {
1156 switch (func_id) {
1157 case BPF_FUNC_perf_event_output:
1158 return &bpf_perf_event_output_proto;
1159 case BPF_FUNC_get_stackid:
1160 return &bpf_get_stackid_proto;
1161 case BPF_FUNC_get_stack:
1162 return &bpf_get_stack_proto;
1163 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1164 case BPF_FUNC_override_return:
1165 return &bpf_override_return_proto;
1166 #endif
1167 case BPF_FUNC_get_func_ip:
1168 return &bpf_get_func_ip_proto_kprobe;
1169 case BPF_FUNC_get_attach_cookie:
1170 return &bpf_get_attach_cookie_proto_trace;
1171 default:
1172 return bpf_tracing_func_proto(func_id, prog);
1173 }
1174 }
1175
1176 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1177 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1178 const struct bpf_prog *prog,
1179 struct bpf_insn_access_aux *info)
1180 {
1181 if (off < 0 || off >= sizeof(struct pt_regs))
1182 return false;
1183 if (type != BPF_READ)
1184 return false;
1185 if (off % size != 0)
1186 return false;
1187 /*
1188 * Assertion for 32 bit to make sure last 8 byte access
1189 * (BPF_DW) to the last 4 byte member is disallowed.
1190 */
1191 if (off + size > sizeof(struct pt_regs))
1192 return false;
1193
1194 return true;
1195 }
1196
1197 const struct bpf_verifier_ops kprobe_verifier_ops = {
1198 .get_func_proto = kprobe_prog_func_proto,
1199 .is_valid_access = kprobe_prog_is_valid_access,
1200 };
1201
1202 const struct bpf_prog_ops kprobe_prog_ops = {
1203 };
1204
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1205 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1206 u64, flags, void *, data, u64, size)
1207 {
1208 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1209
1210 /*
1211 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1212 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1213 * from there and call the same bpf_perf_event_output() helper inline.
1214 */
1215 return ____bpf_perf_event_output(regs, map, flags, data, size);
1216 }
1217
1218 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1219 .func = bpf_perf_event_output_tp,
1220 .gpl_only = true,
1221 .ret_type = RET_INTEGER,
1222 .arg1_type = ARG_PTR_TO_CTX,
1223 .arg2_type = ARG_CONST_MAP_PTR,
1224 .arg3_type = ARG_ANYTHING,
1225 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1226 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1227 };
1228
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1229 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1230 u64, flags)
1231 {
1232 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1233
1234 /*
1235 * Same comment as in bpf_perf_event_output_tp(), only that this time
1236 * the other helper's function body cannot be inlined due to being
1237 * external, thus we need to call raw helper function.
1238 */
1239 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1240 flags, 0, 0);
1241 }
1242
1243 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1244 .func = bpf_get_stackid_tp,
1245 .gpl_only = true,
1246 .ret_type = RET_INTEGER,
1247 .arg1_type = ARG_PTR_TO_CTX,
1248 .arg2_type = ARG_CONST_MAP_PTR,
1249 .arg3_type = ARG_ANYTHING,
1250 };
1251
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1252 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1253 u64, flags)
1254 {
1255 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1256
1257 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1258 (unsigned long) size, flags, 0);
1259 }
1260
1261 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1262 .func = bpf_get_stack_tp,
1263 .gpl_only = true,
1264 .ret_type = RET_INTEGER,
1265 .arg1_type = ARG_PTR_TO_CTX,
1266 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1267 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1268 .arg4_type = ARG_ANYTHING,
1269 };
1270
1271 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1272 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1273 {
1274 switch (func_id) {
1275 case BPF_FUNC_perf_event_output:
1276 return &bpf_perf_event_output_proto_tp;
1277 case BPF_FUNC_get_stackid:
1278 return &bpf_get_stackid_proto_tp;
1279 case BPF_FUNC_get_stack:
1280 return &bpf_get_stack_proto_tp;
1281 case BPF_FUNC_get_attach_cookie:
1282 return &bpf_get_attach_cookie_proto_trace;
1283 default:
1284 return bpf_tracing_func_proto(func_id, prog);
1285 }
1286 }
1287
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1288 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1289 const struct bpf_prog *prog,
1290 struct bpf_insn_access_aux *info)
1291 {
1292 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1293 return false;
1294 if (type != BPF_READ)
1295 return false;
1296 if (off % size != 0)
1297 return false;
1298
1299 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1300 return true;
1301 }
1302
1303 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1304 .get_func_proto = tp_prog_func_proto,
1305 .is_valid_access = tp_prog_is_valid_access,
1306 };
1307
1308 const struct bpf_prog_ops tracepoint_prog_ops = {
1309 };
1310
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1311 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1312 struct bpf_perf_event_value *, buf, u32, size)
1313 {
1314 int err = -EINVAL;
1315
1316 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1317 goto clear;
1318 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1319 &buf->running);
1320 if (unlikely(err))
1321 goto clear;
1322 return 0;
1323 clear:
1324 memset(buf, 0, size);
1325 return err;
1326 }
1327
1328 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1329 .func = bpf_perf_prog_read_value,
1330 .gpl_only = true,
1331 .ret_type = RET_INTEGER,
1332 .arg1_type = ARG_PTR_TO_CTX,
1333 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1334 .arg3_type = ARG_CONST_SIZE,
1335 };
1336
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1337 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1338 void *, buf, u32, size, u64, flags)
1339 {
1340 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1341 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1342 u32 to_copy;
1343
1344 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1345 return -EINVAL;
1346
1347 if (unlikely(!br_stack))
1348 return -ENOENT;
1349
1350 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1351 return br_stack->nr * br_entry_size;
1352
1353 if (!buf || (size % br_entry_size != 0))
1354 return -EINVAL;
1355
1356 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1357 memcpy(buf, br_stack->entries, to_copy);
1358
1359 return to_copy;
1360 }
1361
1362 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1363 .func = bpf_read_branch_records,
1364 .gpl_only = true,
1365 .ret_type = RET_INTEGER,
1366 .arg1_type = ARG_PTR_TO_CTX,
1367 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1368 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1369 .arg4_type = ARG_ANYTHING,
1370 };
1371
1372 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1373 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1374 {
1375 switch (func_id) {
1376 case BPF_FUNC_perf_event_output:
1377 return &bpf_perf_event_output_proto_tp;
1378 case BPF_FUNC_get_stackid:
1379 return &bpf_get_stackid_proto_pe;
1380 case BPF_FUNC_get_stack:
1381 return &bpf_get_stack_proto_pe;
1382 case BPF_FUNC_perf_prog_read_value:
1383 return &bpf_perf_prog_read_value_proto;
1384 case BPF_FUNC_read_branch_records:
1385 return &bpf_read_branch_records_proto;
1386 case BPF_FUNC_get_attach_cookie:
1387 return &bpf_get_attach_cookie_proto_pe;
1388 default:
1389 return bpf_tracing_func_proto(func_id, prog);
1390 }
1391 }
1392
1393 /*
1394 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1395 * to avoid potential recursive reuse issue when/if tracepoints are added
1396 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1397 *
1398 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1399 * in normal, irq, and nmi context.
1400 */
1401 struct bpf_raw_tp_regs {
1402 struct pt_regs regs[3];
1403 };
1404 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1405 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1406 static struct pt_regs *get_bpf_raw_tp_regs(void)
1407 {
1408 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1409 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1410
1411 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1412 this_cpu_dec(bpf_raw_tp_nest_level);
1413 return ERR_PTR(-EBUSY);
1414 }
1415
1416 return &tp_regs->regs[nest_level - 1];
1417 }
1418
put_bpf_raw_tp_regs(void)1419 static void put_bpf_raw_tp_regs(void)
1420 {
1421 this_cpu_dec(bpf_raw_tp_nest_level);
1422 }
1423
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1424 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1425 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1426 {
1427 struct pt_regs *regs = get_bpf_raw_tp_regs();
1428 int ret;
1429
1430 if (IS_ERR(regs))
1431 return PTR_ERR(regs);
1432
1433 perf_fetch_caller_regs(regs);
1434 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1435
1436 put_bpf_raw_tp_regs();
1437 return ret;
1438 }
1439
1440 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1441 .func = bpf_perf_event_output_raw_tp,
1442 .gpl_only = true,
1443 .ret_type = RET_INTEGER,
1444 .arg1_type = ARG_PTR_TO_CTX,
1445 .arg2_type = ARG_CONST_MAP_PTR,
1446 .arg3_type = ARG_ANYTHING,
1447 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1448 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1449 };
1450
1451 extern const struct bpf_func_proto bpf_skb_output_proto;
1452 extern const struct bpf_func_proto bpf_xdp_output_proto;
1453
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1454 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1455 struct bpf_map *, map, u64, flags)
1456 {
1457 struct pt_regs *regs = get_bpf_raw_tp_regs();
1458 int ret;
1459
1460 if (IS_ERR(regs))
1461 return PTR_ERR(regs);
1462
1463 perf_fetch_caller_regs(regs);
1464 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1465 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1466 flags, 0, 0);
1467 put_bpf_raw_tp_regs();
1468 return ret;
1469 }
1470
1471 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1472 .func = bpf_get_stackid_raw_tp,
1473 .gpl_only = true,
1474 .ret_type = RET_INTEGER,
1475 .arg1_type = ARG_PTR_TO_CTX,
1476 .arg2_type = ARG_CONST_MAP_PTR,
1477 .arg3_type = ARG_ANYTHING,
1478 };
1479
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1480 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1481 void *, buf, u32, size, u64, flags)
1482 {
1483 struct pt_regs *regs = get_bpf_raw_tp_regs();
1484 int ret;
1485
1486 if (IS_ERR(regs))
1487 return PTR_ERR(regs);
1488
1489 perf_fetch_caller_regs(regs);
1490 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1491 (unsigned long) size, flags, 0);
1492 put_bpf_raw_tp_regs();
1493 return ret;
1494 }
1495
1496 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1497 .func = bpf_get_stack_raw_tp,
1498 .gpl_only = true,
1499 .ret_type = RET_INTEGER,
1500 .arg1_type = ARG_PTR_TO_CTX,
1501 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1502 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1503 .arg4_type = ARG_ANYTHING,
1504 };
1505
1506 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1507 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1508 {
1509 switch (func_id) {
1510 case BPF_FUNC_perf_event_output:
1511 return &bpf_perf_event_output_proto_raw_tp;
1512 case BPF_FUNC_get_stackid:
1513 return &bpf_get_stackid_proto_raw_tp;
1514 case BPF_FUNC_get_stack:
1515 return &bpf_get_stack_proto_raw_tp;
1516 default:
1517 return bpf_tracing_func_proto(func_id, prog);
1518 }
1519 }
1520
1521 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1522 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1523 {
1524 const struct bpf_func_proto *fn;
1525
1526 switch (func_id) {
1527 #ifdef CONFIG_NET
1528 case BPF_FUNC_skb_output:
1529 return &bpf_skb_output_proto;
1530 case BPF_FUNC_xdp_output:
1531 return &bpf_xdp_output_proto;
1532 case BPF_FUNC_skc_to_tcp6_sock:
1533 return &bpf_skc_to_tcp6_sock_proto;
1534 case BPF_FUNC_skc_to_tcp_sock:
1535 return &bpf_skc_to_tcp_sock_proto;
1536 case BPF_FUNC_skc_to_tcp_timewait_sock:
1537 return &bpf_skc_to_tcp_timewait_sock_proto;
1538 case BPF_FUNC_skc_to_tcp_request_sock:
1539 return &bpf_skc_to_tcp_request_sock_proto;
1540 case BPF_FUNC_skc_to_udp6_sock:
1541 return &bpf_skc_to_udp6_sock_proto;
1542 case BPF_FUNC_sk_storage_get:
1543 return &bpf_sk_storage_get_tracing_proto;
1544 case BPF_FUNC_sk_storage_delete:
1545 return &bpf_sk_storage_delete_tracing_proto;
1546 case BPF_FUNC_sock_from_file:
1547 return &bpf_sock_from_file_proto;
1548 case BPF_FUNC_get_socket_cookie:
1549 return &bpf_get_socket_ptr_cookie_proto;
1550 #endif
1551 case BPF_FUNC_seq_printf:
1552 return prog->expected_attach_type == BPF_TRACE_ITER ?
1553 &bpf_seq_printf_proto :
1554 NULL;
1555 case BPF_FUNC_seq_write:
1556 return prog->expected_attach_type == BPF_TRACE_ITER ?
1557 &bpf_seq_write_proto :
1558 NULL;
1559 case BPF_FUNC_seq_printf_btf:
1560 return prog->expected_attach_type == BPF_TRACE_ITER ?
1561 &bpf_seq_printf_btf_proto :
1562 NULL;
1563 case BPF_FUNC_d_path:
1564 return &bpf_d_path_proto;
1565 default:
1566 fn = raw_tp_prog_func_proto(func_id, prog);
1567 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1568 fn = bpf_iter_get_func_proto(func_id, prog);
1569 return fn;
1570 }
1571 }
1572
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1573 static bool raw_tp_prog_is_valid_access(int off, int size,
1574 enum bpf_access_type type,
1575 const struct bpf_prog *prog,
1576 struct bpf_insn_access_aux *info)
1577 {
1578 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1579 return false;
1580 if (type != BPF_READ)
1581 return false;
1582 if (off % size != 0)
1583 return false;
1584 return true;
1585 }
1586
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1587 static bool tracing_prog_is_valid_access(int off, int size,
1588 enum bpf_access_type type,
1589 const struct bpf_prog *prog,
1590 struct bpf_insn_access_aux *info)
1591 {
1592 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1593 return false;
1594 if (type != BPF_READ)
1595 return false;
1596 if (off % size != 0)
1597 return false;
1598 return btf_ctx_access(off, size, type, prog, info);
1599 }
1600
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1601 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1602 const union bpf_attr *kattr,
1603 union bpf_attr __user *uattr)
1604 {
1605 return -ENOTSUPP;
1606 }
1607
1608 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1609 .get_func_proto = raw_tp_prog_func_proto,
1610 .is_valid_access = raw_tp_prog_is_valid_access,
1611 };
1612
1613 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1614 #ifdef CONFIG_NET
1615 .test_run = bpf_prog_test_run_raw_tp,
1616 #endif
1617 };
1618
1619 const struct bpf_verifier_ops tracing_verifier_ops = {
1620 .get_func_proto = tracing_prog_func_proto,
1621 .is_valid_access = tracing_prog_is_valid_access,
1622 };
1623
1624 const struct bpf_prog_ops tracing_prog_ops = {
1625 .test_run = bpf_prog_test_run_tracing,
1626 };
1627
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1628 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1629 enum bpf_access_type type,
1630 const struct bpf_prog *prog,
1631 struct bpf_insn_access_aux *info)
1632 {
1633 if (off == 0) {
1634 if (size != sizeof(u64) || type != BPF_READ)
1635 return false;
1636 info->reg_type = PTR_TO_TP_BUFFER;
1637 }
1638 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1639 }
1640
1641 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1642 .get_func_proto = raw_tp_prog_func_proto,
1643 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1644 };
1645
1646 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1647 };
1648
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1649 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1650 const struct bpf_prog *prog,
1651 struct bpf_insn_access_aux *info)
1652 {
1653 const int size_u64 = sizeof(u64);
1654
1655 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1656 return false;
1657 if (type != BPF_READ)
1658 return false;
1659 if (off % size != 0) {
1660 if (sizeof(unsigned long) != 4)
1661 return false;
1662 if (size != 8)
1663 return false;
1664 if (off % size != 4)
1665 return false;
1666 }
1667
1668 switch (off) {
1669 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1670 bpf_ctx_record_field_size(info, size_u64);
1671 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1672 return false;
1673 break;
1674 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1675 bpf_ctx_record_field_size(info, size_u64);
1676 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1677 return false;
1678 break;
1679 default:
1680 if (size != sizeof(long))
1681 return false;
1682 }
1683
1684 return true;
1685 }
1686
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1687 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1688 const struct bpf_insn *si,
1689 struct bpf_insn *insn_buf,
1690 struct bpf_prog *prog, u32 *target_size)
1691 {
1692 struct bpf_insn *insn = insn_buf;
1693
1694 switch (si->off) {
1695 case offsetof(struct bpf_perf_event_data, sample_period):
1696 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1697 data), si->dst_reg, si->src_reg,
1698 offsetof(struct bpf_perf_event_data_kern, data));
1699 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1700 bpf_target_off(struct perf_sample_data, period, 8,
1701 target_size));
1702 break;
1703 case offsetof(struct bpf_perf_event_data, addr):
1704 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1705 data), si->dst_reg, si->src_reg,
1706 offsetof(struct bpf_perf_event_data_kern, data));
1707 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1708 bpf_target_off(struct perf_sample_data, addr, 8,
1709 target_size));
1710 break;
1711 default:
1712 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1713 regs), si->dst_reg, si->src_reg,
1714 offsetof(struct bpf_perf_event_data_kern, regs));
1715 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1716 si->off);
1717 break;
1718 }
1719
1720 return insn - insn_buf;
1721 }
1722
1723 const struct bpf_verifier_ops perf_event_verifier_ops = {
1724 .get_func_proto = pe_prog_func_proto,
1725 .is_valid_access = pe_prog_is_valid_access,
1726 .convert_ctx_access = pe_prog_convert_ctx_access,
1727 };
1728
1729 const struct bpf_prog_ops perf_event_prog_ops = {
1730 };
1731
1732 static DEFINE_MUTEX(bpf_event_mutex);
1733
1734 #define BPF_TRACE_MAX_PROGS 64
1735
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)1736 int perf_event_attach_bpf_prog(struct perf_event *event,
1737 struct bpf_prog *prog,
1738 u64 bpf_cookie)
1739 {
1740 struct bpf_prog_array *old_array;
1741 struct bpf_prog_array *new_array;
1742 int ret = -EEXIST;
1743
1744 /*
1745 * Kprobe override only works if they are on the function entry,
1746 * and only if they are on the opt-in list.
1747 */
1748 if (prog->kprobe_override &&
1749 (!trace_kprobe_on_func_entry(event->tp_event) ||
1750 !trace_kprobe_error_injectable(event->tp_event)))
1751 return -EINVAL;
1752
1753 mutex_lock(&bpf_event_mutex);
1754
1755 if (event->prog)
1756 goto unlock;
1757
1758 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1759 if (old_array &&
1760 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1761 ret = -E2BIG;
1762 goto unlock;
1763 }
1764
1765 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1766 if (ret < 0)
1767 goto unlock;
1768
1769 /* set the new array to event->tp_event and set event->prog */
1770 event->prog = prog;
1771 event->bpf_cookie = bpf_cookie;
1772 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1773 bpf_prog_array_free(old_array);
1774
1775 unlock:
1776 mutex_unlock(&bpf_event_mutex);
1777 return ret;
1778 }
1779
perf_event_detach_bpf_prog(struct perf_event * event)1780 void perf_event_detach_bpf_prog(struct perf_event *event)
1781 {
1782 struct bpf_prog_array *old_array;
1783 struct bpf_prog_array *new_array;
1784 int ret;
1785
1786 mutex_lock(&bpf_event_mutex);
1787
1788 if (!event->prog)
1789 goto unlock;
1790
1791 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1792 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1793 if (ret == -ENOENT)
1794 goto unlock;
1795 if (ret < 0) {
1796 bpf_prog_array_delete_safe(old_array, event->prog);
1797 } else {
1798 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1799 bpf_prog_array_free(old_array);
1800 }
1801
1802 bpf_prog_put(event->prog);
1803 event->prog = NULL;
1804
1805 unlock:
1806 mutex_unlock(&bpf_event_mutex);
1807 }
1808
perf_event_query_prog_array(struct perf_event * event,void __user * info)1809 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1810 {
1811 struct perf_event_query_bpf __user *uquery = info;
1812 struct perf_event_query_bpf query = {};
1813 struct bpf_prog_array *progs;
1814 u32 *ids, prog_cnt, ids_len;
1815 int ret;
1816
1817 if (!perfmon_capable())
1818 return -EPERM;
1819 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1820 return -EINVAL;
1821 if (copy_from_user(&query, uquery, sizeof(query)))
1822 return -EFAULT;
1823
1824 ids_len = query.ids_len;
1825 if (ids_len > BPF_TRACE_MAX_PROGS)
1826 return -E2BIG;
1827 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1828 if (!ids)
1829 return -ENOMEM;
1830 /*
1831 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1832 * is required when user only wants to check for uquery->prog_cnt.
1833 * There is no need to check for it since the case is handled
1834 * gracefully in bpf_prog_array_copy_info.
1835 */
1836
1837 mutex_lock(&bpf_event_mutex);
1838 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1839 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1840 mutex_unlock(&bpf_event_mutex);
1841
1842 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1843 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1844 ret = -EFAULT;
1845
1846 kfree(ids);
1847 return ret;
1848 }
1849
1850 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1851 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1852
bpf_get_raw_tracepoint(const char * name)1853 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1854 {
1855 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1856
1857 for (; btp < __stop__bpf_raw_tp; btp++) {
1858 if (!strcmp(btp->tp->name, name))
1859 return btp;
1860 }
1861
1862 return bpf_get_raw_tracepoint_module(name);
1863 }
1864
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1865 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1866 {
1867 struct module *mod;
1868
1869 preempt_disable();
1870 mod = __module_address((unsigned long)btp);
1871 module_put(mod);
1872 preempt_enable();
1873 }
1874
1875 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1876 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1877 {
1878 cant_sleep();
1879 rcu_read_lock();
1880 (void) bpf_prog_run(prog, args);
1881 rcu_read_unlock();
1882 }
1883
1884 #define UNPACK(...) __VA_ARGS__
1885 #define REPEAT_1(FN, DL, X, ...) FN(X)
1886 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1887 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1888 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1889 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1890 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1891 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1892 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1893 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1894 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1895 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1896 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1897 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1898
1899 #define SARG(X) u64 arg##X
1900 #define COPY(X) args[X] = arg##X
1901
1902 #define __DL_COM (,)
1903 #define __DL_SEM (;)
1904
1905 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1906
1907 #define BPF_TRACE_DEFN_x(x) \
1908 void bpf_trace_run##x(struct bpf_prog *prog, \
1909 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1910 { \
1911 u64 args[x]; \
1912 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1913 __bpf_trace_run(prog, args); \
1914 } \
1915 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1916 BPF_TRACE_DEFN_x(1);
1917 BPF_TRACE_DEFN_x(2);
1918 BPF_TRACE_DEFN_x(3);
1919 BPF_TRACE_DEFN_x(4);
1920 BPF_TRACE_DEFN_x(5);
1921 BPF_TRACE_DEFN_x(6);
1922 BPF_TRACE_DEFN_x(7);
1923 BPF_TRACE_DEFN_x(8);
1924 BPF_TRACE_DEFN_x(9);
1925 BPF_TRACE_DEFN_x(10);
1926 BPF_TRACE_DEFN_x(11);
1927 BPF_TRACE_DEFN_x(12);
1928
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1929 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1930 {
1931 struct tracepoint *tp = btp->tp;
1932
1933 /*
1934 * check that program doesn't access arguments beyond what's
1935 * available in this tracepoint
1936 */
1937 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1938 return -EINVAL;
1939
1940 if (prog->aux->max_tp_access > btp->writable_size)
1941 return -EINVAL;
1942
1943 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1944 prog);
1945 }
1946
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1947 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1948 {
1949 return __bpf_probe_register(btp, prog);
1950 }
1951
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1952 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1953 {
1954 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1955 }
1956
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1957 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1958 u32 *fd_type, const char **buf,
1959 u64 *probe_offset, u64 *probe_addr)
1960 {
1961 bool is_tracepoint, is_syscall_tp;
1962 struct bpf_prog *prog;
1963 int flags, err = 0;
1964
1965 prog = event->prog;
1966 if (!prog)
1967 return -ENOENT;
1968
1969 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1970 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1971 return -EOPNOTSUPP;
1972
1973 *prog_id = prog->aux->id;
1974 flags = event->tp_event->flags;
1975 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1976 is_syscall_tp = is_syscall_trace_event(event->tp_event);
1977
1978 if (is_tracepoint || is_syscall_tp) {
1979 *buf = is_tracepoint ? event->tp_event->tp->name
1980 : event->tp_event->name;
1981 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1982 *probe_offset = 0x0;
1983 *probe_addr = 0x0;
1984 } else {
1985 /* kprobe/uprobe */
1986 err = -EOPNOTSUPP;
1987 #ifdef CONFIG_KPROBE_EVENTS
1988 if (flags & TRACE_EVENT_FL_KPROBE)
1989 err = bpf_get_kprobe_info(event, fd_type, buf,
1990 probe_offset, probe_addr,
1991 event->attr.type == PERF_TYPE_TRACEPOINT);
1992 #endif
1993 #ifdef CONFIG_UPROBE_EVENTS
1994 if (flags & TRACE_EVENT_FL_UPROBE)
1995 err = bpf_get_uprobe_info(event, fd_type, buf,
1996 probe_offset, probe_addr,
1997 event->attr.type == PERF_TYPE_TRACEPOINT);
1998 #endif
1999 }
2000
2001 return err;
2002 }
2003
send_signal_irq_work_init(void)2004 static int __init send_signal_irq_work_init(void)
2005 {
2006 int cpu;
2007 struct send_signal_irq_work *work;
2008
2009 for_each_possible_cpu(cpu) {
2010 work = per_cpu_ptr(&send_signal_work, cpu);
2011 init_irq_work(&work->irq_work, do_bpf_send_signal);
2012 }
2013 return 0;
2014 }
2015
2016 subsys_initcall(send_signal_irq_work_init);
2017
2018 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2019 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2020 void *module)
2021 {
2022 struct bpf_trace_module *btm, *tmp;
2023 struct module *mod = module;
2024 int ret = 0;
2025
2026 if (mod->num_bpf_raw_events == 0 ||
2027 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2028 goto out;
2029
2030 mutex_lock(&bpf_module_mutex);
2031
2032 switch (op) {
2033 case MODULE_STATE_COMING:
2034 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2035 if (btm) {
2036 btm->module = module;
2037 list_add(&btm->list, &bpf_trace_modules);
2038 } else {
2039 ret = -ENOMEM;
2040 }
2041 break;
2042 case MODULE_STATE_GOING:
2043 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2044 if (btm->module == module) {
2045 list_del(&btm->list);
2046 kfree(btm);
2047 break;
2048 }
2049 }
2050 break;
2051 }
2052
2053 mutex_unlock(&bpf_module_mutex);
2054
2055 out:
2056 return notifier_from_errno(ret);
2057 }
2058
2059 static struct notifier_block bpf_module_nb = {
2060 .notifier_call = bpf_event_notify,
2061 };
2062
bpf_event_init(void)2063 static int __init bpf_event_init(void)
2064 {
2065 register_module_notifier(&bpf_module_nb);
2066 return 0;
2067 }
2068
2069 fs_initcall(bpf_event_init);
2070 #endif /* CONFIG_MODULES */
2071