1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/nospec.h>
36
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39
40 /* Registers */
41 #define BPF_R0 regs[BPF_REG_0]
42 #define BPF_R1 regs[BPF_REG_1]
43 #define BPF_R2 regs[BPF_REG_2]
44 #define BPF_R3 regs[BPF_REG_3]
45 #define BPF_R4 regs[BPF_REG_4]
46 #define BPF_R5 regs[BPF_REG_5]
47 #define BPF_R6 regs[BPF_REG_6]
48 #define BPF_R7 regs[BPF_REG_7]
49 #define BPF_R8 regs[BPF_REG_8]
50 #define BPF_R9 regs[BPF_REG_9]
51 #define BPF_R10 regs[BPF_REG_10]
52
53 /* Named registers */
54 #define DST regs[insn->dst_reg]
55 #define SRC regs[insn->src_reg]
56 #define FP regs[BPF_REG_FP]
57 #define AX regs[BPF_REG_AX]
58 #define ARG1 regs[BPF_REG_ARG1]
59 #define CTX regs[BPF_REG_CTX]
60 #define IMM insn->imm
61
62 /* No hurry in this branch
63 *
64 * Exported for the bpf jit load helper.
65 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 u8 *ptr = NULL;
69
70 if (k >= SKF_NET_OFF) {
71 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 } else if (k >= SKF_LL_OFF) {
73 if (unlikely(!skb_mac_header_was_set(skb)))
74 return NULL;
75 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
76 }
77 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
78 return ptr;
79
80 return NULL;
81 }
82
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)83 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
84 {
85 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
86 struct bpf_prog_aux *aux;
87 struct bpf_prog *fp;
88
89 size = round_up(size, PAGE_SIZE);
90 fp = __vmalloc(size, gfp_flags);
91 if (fp == NULL)
92 return NULL;
93
94 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
95 if (aux == NULL) {
96 vfree(fp);
97 return NULL;
98 }
99 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
100 if (!fp->active) {
101 vfree(fp);
102 kfree(aux);
103 return NULL;
104 }
105
106 fp->pages = size / PAGE_SIZE;
107 fp->aux = aux;
108 fp->aux->prog = fp;
109 fp->jit_requested = ebpf_jit_enabled();
110
111 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
112 mutex_init(&fp->aux->used_maps_mutex);
113 mutex_init(&fp->aux->dst_mutex);
114
115 return fp;
116 }
117
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)118 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
119 {
120 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
121 struct bpf_prog *prog;
122 int cpu;
123
124 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
125 if (!prog)
126 return NULL;
127
128 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
129 if (!prog->stats) {
130 free_percpu(prog->active);
131 kfree(prog->aux);
132 vfree(prog);
133 return NULL;
134 }
135
136 for_each_possible_cpu(cpu) {
137 struct bpf_prog_stats *pstats;
138
139 pstats = per_cpu_ptr(prog->stats, cpu);
140 u64_stats_init(&pstats->syncp);
141 }
142 return prog;
143 }
144 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
145
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)146 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
147 {
148 if (!prog->aux->nr_linfo || !prog->jit_requested)
149 return 0;
150
151 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
152 sizeof(*prog->aux->jited_linfo),
153 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
154 if (!prog->aux->jited_linfo)
155 return -ENOMEM;
156
157 return 0;
158 }
159
bpf_prog_jit_attempt_done(struct bpf_prog * prog)160 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
161 {
162 if (prog->aux->jited_linfo &&
163 (!prog->jited || !prog->aux->jited_linfo[0])) {
164 kvfree(prog->aux->jited_linfo);
165 prog->aux->jited_linfo = NULL;
166 }
167
168 kfree(prog->aux->kfunc_tab);
169 prog->aux->kfunc_tab = NULL;
170 }
171
172 /* The jit engine is responsible to provide an array
173 * for insn_off to the jited_off mapping (insn_to_jit_off).
174 *
175 * The idx to this array is the insn_off. Hence, the insn_off
176 * here is relative to the prog itself instead of the main prog.
177 * This array has one entry for each xlated bpf insn.
178 *
179 * jited_off is the byte off to the last byte of the jited insn.
180 *
181 * Hence, with
182 * insn_start:
183 * The first bpf insn off of the prog. The insn off
184 * here is relative to the main prog.
185 * e.g. if prog is a subprog, insn_start > 0
186 * linfo_idx:
187 * The prog's idx to prog->aux->linfo and jited_linfo
188 *
189 * jited_linfo[linfo_idx] = prog->bpf_func
190 *
191 * For i > linfo_idx,
192 *
193 * jited_linfo[i] = prog->bpf_func +
194 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
195 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)196 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
197 const u32 *insn_to_jit_off)
198 {
199 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
200 const struct bpf_line_info *linfo;
201 void **jited_linfo;
202
203 if (!prog->aux->jited_linfo)
204 /* Userspace did not provide linfo */
205 return;
206
207 linfo_idx = prog->aux->linfo_idx;
208 linfo = &prog->aux->linfo[linfo_idx];
209 insn_start = linfo[0].insn_off;
210 insn_end = insn_start + prog->len;
211
212 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
213 jited_linfo[0] = prog->bpf_func;
214
215 nr_linfo = prog->aux->nr_linfo - linfo_idx;
216
217 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
218 /* The verifier ensures that linfo[i].insn_off is
219 * strictly increasing
220 */
221 jited_linfo[i] = prog->bpf_func +
222 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
223 }
224
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)225 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
226 gfp_t gfp_extra_flags)
227 {
228 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
229 struct bpf_prog *fp;
230 u32 pages;
231
232 size = round_up(size, PAGE_SIZE);
233 pages = size / PAGE_SIZE;
234 if (pages <= fp_old->pages)
235 return fp_old;
236
237 fp = __vmalloc(size, gfp_flags);
238 if (fp) {
239 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
240 fp->pages = pages;
241 fp->aux->prog = fp;
242
243 /* We keep fp->aux from fp_old around in the new
244 * reallocated structure.
245 */
246 fp_old->aux = NULL;
247 fp_old->stats = NULL;
248 fp_old->active = NULL;
249 __bpf_prog_free(fp_old);
250 }
251
252 return fp;
253 }
254
__bpf_prog_free(struct bpf_prog * fp)255 void __bpf_prog_free(struct bpf_prog *fp)
256 {
257 if (fp->aux) {
258 mutex_destroy(&fp->aux->used_maps_mutex);
259 mutex_destroy(&fp->aux->dst_mutex);
260 kfree(fp->aux->poke_tab);
261 kfree(fp->aux);
262 }
263 free_percpu(fp->stats);
264 free_percpu(fp->active);
265 vfree(fp);
266 }
267
bpf_prog_calc_tag(struct bpf_prog * fp)268 int bpf_prog_calc_tag(struct bpf_prog *fp)
269 {
270 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
271 u32 raw_size = bpf_prog_tag_scratch_size(fp);
272 u32 digest[SHA1_DIGEST_WORDS];
273 u32 ws[SHA1_WORKSPACE_WORDS];
274 u32 i, bsize, psize, blocks;
275 struct bpf_insn *dst;
276 bool was_ld_map;
277 u8 *raw, *todo;
278 __be32 *result;
279 __be64 *bits;
280
281 raw = vmalloc(raw_size);
282 if (!raw)
283 return -ENOMEM;
284
285 sha1_init(digest);
286 memset(ws, 0, sizeof(ws));
287
288 /* We need to take out the map fd for the digest calculation
289 * since they are unstable from user space side.
290 */
291 dst = (void *)raw;
292 for (i = 0, was_ld_map = false; i < fp->len; i++) {
293 dst[i] = fp->insnsi[i];
294 if (!was_ld_map &&
295 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
296 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
297 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
298 was_ld_map = true;
299 dst[i].imm = 0;
300 } else if (was_ld_map &&
301 dst[i].code == 0 &&
302 dst[i].dst_reg == 0 &&
303 dst[i].src_reg == 0 &&
304 dst[i].off == 0) {
305 was_ld_map = false;
306 dst[i].imm = 0;
307 } else {
308 was_ld_map = false;
309 }
310 }
311
312 psize = bpf_prog_insn_size(fp);
313 memset(&raw[psize], 0, raw_size - psize);
314 raw[psize++] = 0x80;
315
316 bsize = round_up(psize, SHA1_BLOCK_SIZE);
317 blocks = bsize / SHA1_BLOCK_SIZE;
318 todo = raw;
319 if (bsize - psize >= sizeof(__be64)) {
320 bits = (__be64 *)(todo + bsize - sizeof(__be64));
321 } else {
322 bits = (__be64 *)(todo + bsize + bits_offset);
323 blocks++;
324 }
325 *bits = cpu_to_be64((psize - 1) << 3);
326
327 while (blocks--) {
328 sha1_transform(digest, todo, ws);
329 todo += SHA1_BLOCK_SIZE;
330 }
331
332 result = (__force __be32 *)digest;
333 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
334 result[i] = cpu_to_be32(digest[i]);
335 memcpy(fp->tag, result, sizeof(fp->tag));
336
337 vfree(raw);
338 return 0;
339 }
340
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)341 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
342 s32 end_new, s32 curr, const bool probe_pass)
343 {
344 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
345 s32 delta = end_new - end_old;
346 s64 imm = insn->imm;
347
348 if (curr < pos && curr + imm + 1 >= end_old)
349 imm += delta;
350 else if (curr >= end_new && curr + imm + 1 < end_new)
351 imm -= delta;
352 if (imm < imm_min || imm > imm_max)
353 return -ERANGE;
354 if (!probe_pass)
355 insn->imm = imm;
356 return 0;
357 }
358
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)359 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
360 s32 end_new, s32 curr, const bool probe_pass)
361 {
362 const s32 off_min = S16_MIN, off_max = S16_MAX;
363 s32 delta = end_new - end_old;
364 s32 off = insn->off;
365
366 if (curr < pos && curr + off + 1 >= end_old)
367 off += delta;
368 else if (curr >= end_new && curr + off + 1 < end_new)
369 off -= delta;
370 if (off < off_min || off > off_max)
371 return -ERANGE;
372 if (!probe_pass)
373 insn->off = off;
374 return 0;
375 }
376
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)377 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
378 s32 end_new, const bool probe_pass)
379 {
380 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
381 struct bpf_insn *insn = prog->insnsi;
382 int ret = 0;
383
384 for (i = 0; i < insn_cnt; i++, insn++) {
385 u8 code;
386
387 /* In the probing pass we still operate on the original,
388 * unpatched image in order to check overflows before we
389 * do any other adjustments. Therefore skip the patchlet.
390 */
391 if (probe_pass && i == pos) {
392 i = end_new;
393 insn = prog->insnsi + end_old;
394 }
395 if (bpf_pseudo_func(insn)) {
396 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
397 end_new, i, probe_pass);
398 if (ret)
399 return ret;
400 continue;
401 }
402 code = insn->code;
403 if ((BPF_CLASS(code) != BPF_JMP &&
404 BPF_CLASS(code) != BPF_JMP32) ||
405 BPF_OP(code) == BPF_EXIT)
406 continue;
407 /* Adjust offset of jmps if we cross patch boundaries. */
408 if (BPF_OP(code) == BPF_CALL) {
409 if (insn->src_reg != BPF_PSEUDO_CALL)
410 continue;
411 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
412 end_new, i, probe_pass);
413 } else {
414 ret = bpf_adj_delta_to_off(insn, pos, end_old,
415 end_new, i, probe_pass);
416 }
417 if (ret)
418 break;
419 }
420
421 return ret;
422 }
423
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)424 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
425 {
426 struct bpf_line_info *linfo;
427 u32 i, nr_linfo;
428
429 nr_linfo = prog->aux->nr_linfo;
430 if (!nr_linfo || !delta)
431 return;
432
433 linfo = prog->aux->linfo;
434
435 for (i = 0; i < nr_linfo; i++)
436 if (off < linfo[i].insn_off)
437 break;
438
439 /* Push all off < linfo[i].insn_off by delta */
440 for (; i < nr_linfo; i++)
441 linfo[i].insn_off += delta;
442 }
443
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)444 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
445 const struct bpf_insn *patch, u32 len)
446 {
447 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
448 const u32 cnt_max = S16_MAX;
449 struct bpf_prog *prog_adj;
450 int err;
451
452 /* Since our patchlet doesn't expand the image, we're done. */
453 if (insn_delta == 0) {
454 memcpy(prog->insnsi + off, patch, sizeof(*patch));
455 return prog;
456 }
457
458 insn_adj_cnt = prog->len + insn_delta;
459
460 /* Reject anything that would potentially let the insn->off
461 * target overflow when we have excessive program expansions.
462 * We need to probe here before we do any reallocation where
463 * we afterwards may not fail anymore.
464 */
465 if (insn_adj_cnt > cnt_max &&
466 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
467 return ERR_PTR(err);
468
469 /* Several new instructions need to be inserted. Make room
470 * for them. Likely, there's no need for a new allocation as
471 * last page could have large enough tailroom.
472 */
473 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
474 GFP_USER);
475 if (!prog_adj)
476 return ERR_PTR(-ENOMEM);
477
478 prog_adj->len = insn_adj_cnt;
479
480 /* Patching happens in 3 steps:
481 *
482 * 1) Move over tail of insnsi from next instruction onwards,
483 * so we can patch the single target insn with one or more
484 * new ones (patching is always from 1 to n insns, n > 0).
485 * 2) Inject new instructions at the target location.
486 * 3) Adjust branch offsets if necessary.
487 */
488 insn_rest = insn_adj_cnt - off - len;
489
490 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
491 sizeof(*patch) * insn_rest);
492 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
493
494 /* We are guaranteed to not fail at this point, otherwise
495 * the ship has sailed to reverse to the original state. An
496 * overflow cannot happen at this point.
497 */
498 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
499
500 bpf_adj_linfo(prog_adj, off, insn_delta);
501
502 return prog_adj;
503 }
504
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)505 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
506 {
507 /* Branch offsets can't overflow when program is shrinking, no need
508 * to call bpf_adj_branches(..., true) here
509 */
510 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
511 sizeof(struct bpf_insn) * (prog->len - off - cnt));
512 prog->len -= cnt;
513
514 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
515 }
516
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)517 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
518 {
519 int i;
520
521 for (i = 0; i < fp->aux->func_cnt; i++)
522 bpf_prog_kallsyms_del(fp->aux->func[i]);
523 }
524
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)525 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
526 {
527 bpf_prog_kallsyms_del_subprogs(fp);
528 bpf_prog_kallsyms_del(fp);
529 }
530
531 #ifdef CONFIG_BPF_JIT
532 /* All BPF JIT sysctl knobs here. */
533 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
534 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
535 int bpf_jit_harden __read_mostly;
536 long bpf_jit_limit __read_mostly;
537 long bpf_jit_limit_max __read_mostly;
538
539 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)540 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
541 {
542 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
543 unsigned long addr = (unsigned long)hdr;
544
545 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
546
547 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
548 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
549 }
550
551 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)552 bpf_prog_ksym_set_name(struct bpf_prog *prog)
553 {
554 char *sym = prog->aux->ksym.name;
555 const char *end = sym + KSYM_NAME_LEN;
556 const struct btf_type *type;
557 const char *func_name;
558
559 BUILD_BUG_ON(sizeof("bpf_prog_") +
560 sizeof(prog->tag) * 2 +
561 /* name has been null terminated.
562 * We should need +1 for the '_' preceding
563 * the name. However, the null character
564 * is double counted between the name and the
565 * sizeof("bpf_prog_") above, so we omit
566 * the +1 here.
567 */
568 sizeof(prog->aux->name) > KSYM_NAME_LEN);
569
570 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
571 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
572
573 /* prog->aux->name will be ignored if full btf name is available */
574 if (prog->aux->func_info_cnt) {
575 type = btf_type_by_id(prog->aux->btf,
576 prog->aux->func_info[prog->aux->func_idx].type_id);
577 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
578 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
579 return;
580 }
581
582 if (prog->aux->name[0])
583 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
584 else
585 *sym = 0;
586 }
587
bpf_get_ksym_start(struct latch_tree_node * n)588 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
589 {
590 return container_of(n, struct bpf_ksym, tnode)->start;
591 }
592
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)593 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
594 struct latch_tree_node *b)
595 {
596 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
597 }
598
bpf_tree_comp(void * key,struct latch_tree_node * n)599 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
600 {
601 unsigned long val = (unsigned long)key;
602 const struct bpf_ksym *ksym;
603
604 ksym = container_of(n, struct bpf_ksym, tnode);
605
606 if (val < ksym->start)
607 return -1;
608 /* Ensure that we detect return addresses as part of the program, when
609 * the final instruction is a call for a program part of the stack
610 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
611 */
612 if (val > ksym->end)
613 return 1;
614
615 return 0;
616 }
617
618 static const struct latch_tree_ops bpf_tree_ops = {
619 .less = bpf_tree_less,
620 .comp = bpf_tree_comp,
621 };
622
623 static DEFINE_SPINLOCK(bpf_lock);
624 static LIST_HEAD(bpf_kallsyms);
625 static struct latch_tree_root bpf_tree __cacheline_aligned;
626
bpf_ksym_add(struct bpf_ksym * ksym)627 void bpf_ksym_add(struct bpf_ksym *ksym)
628 {
629 spin_lock_bh(&bpf_lock);
630 WARN_ON_ONCE(!list_empty(&ksym->lnode));
631 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
632 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
633 spin_unlock_bh(&bpf_lock);
634 }
635
__bpf_ksym_del(struct bpf_ksym * ksym)636 static void __bpf_ksym_del(struct bpf_ksym *ksym)
637 {
638 if (list_empty(&ksym->lnode))
639 return;
640
641 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
642 list_del_rcu(&ksym->lnode);
643 }
644
bpf_ksym_del(struct bpf_ksym * ksym)645 void bpf_ksym_del(struct bpf_ksym *ksym)
646 {
647 spin_lock_bh(&bpf_lock);
648 __bpf_ksym_del(ksym);
649 spin_unlock_bh(&bpf_lock);
650 }
651
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)652 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
653 {
654 return fp->jited && !bpf_prog_was_classic(fp);
655 }
656
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)657 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
658 {
659 return list_empty(&fp->aux->ksym.lnode) ||
660 fp->aux->ksym.lnode.prev == LIST_POISON2;
661 }
662
bpf_prog_kallsyms_add(struct bpf_prog * fp)663 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
664 {
665 if (!bpf_prog_kallsyms_candidate(fp) ||
666 !bpf_capable())
667 return;
668
669 bpf_prog_ksym_set_addr(fp);
670 bpf_prog_ksym_set_name(fp);
671 fp->aux->ksym.prog = true;
672
673 bpf_ksym_add(&fp->aux->ksym);
674 }
675
bpf_prog_kallsyms_del(struct bpf_prog * fp)676 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
677 {
678 if (!bpf_prog_kallsyms_candidate(fp))
679 return;
680
681 bpf_ksym_del(&fp->aux->ksym);
682 }
683
bpf_ksym_find(unsigned long addr)684 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
685 {
686 struct latch_tree_node *n;
687
688 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
689 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
690 }
691
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)692 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
693 unsigned long *off, char *sym)
694 {
695 struct bpf_ksym *ksym;
696 char *ret = NULL;
697
698 rcu_read_lock();
699 ksym = bpf_ksym_find(addr);
700 if (ksym) {
701 unsigned long symbol_start = ksym->start;
702 unsigned long symbol_end = ksym->end;
703
704 strncpy(sym, ksym->name, KSYM_NAME_LEN);
705
706 ret = sym;
707 if (size)
708 *size = symbol_end - symbol_start;
709 if (off)
710 *off = addr - symbol_start;
711 }
712 rcu_read_unlock();
713
714 return ret;
715 }
716
is_bpf_text_address(unsigned long addr)717 bool is_bpf_text_address(unsigned long addr)
718 {
719 bool ret;
720
721 rcu_read_lock();
722 ret = bpf_ksym_find(addr) != NULL;
723 rcu_read_unlock();
724
725 return ret;
726 }
727
bpf_prog_ksym_find(unsigned long addr)728 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
729 {
730 struct bpf_ksym *ksym = bpf_ksym_find(addr);
731
732 return ksym && ksym->prog ?
733 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
734 NULL;
735 }
736
search_bpf_extables(unsigned long addr)737 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
738 {
739 const struct exception_table_entry *e = NULL;
740 struct bpf_prog *prog;
741
742 rcu_read_lock();
743 prog = bpf_prog_ksym_find(addr);
744 if (!prog)
745 goto out;
746 if (!prog->aux->num_exentries)
747 goto out;
748
749 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
750 out:
751 rcu_read_unlock();
752 return e;
753 }
754
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)755 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
756 char *sym)
757 {
758 struct bpf_ksym *ksym;
759 unsigned int it = 0;
760 int ret = -ERANGE;
761
762 if (!bpf_jit_kallsyms_enabled())
763 return ret;
764
765 rcu_read_lock();
766 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
767 if (it++ != symnum)
768 continue;
769
770 strncpy(sym, ksym->name, KSYM_NAME_LEN);
771
772 *value = ksym->start;
773 *type = BPF_SYM_ELF_TYPE;
774
775 ret = 0;
776 break;
777 }
778 rcu_read_unlock();
779
780 return ret;
781 }
782
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)783 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
784 struct bpf_jit_poke_descriptor *poke)
785 {
786 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
787 static const u32 poke_tab_max = 1024;
788 u32 slot = prog->aux->size_poke_tab;
789 u32 size = slot + 1;
790
791 if (size > poke_tab_max)
792 return -ENOSPC;
793 if (poke->tailcall_target || poke->tailcall_target_stable ||
794 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
795 return -EINVAL;
796
797 switch (poke->reason) {
798 case BPF_POKE_REASON_TAIL_CALL:
799 if (!poke->tail_call.map)
800 return -EINVAL;
801 break;
802 default:
803 return -EINVAL;
804 }
805
806 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
807 if (!tab)
808 return -ENOMEM;
809
810 memcpy(&tab[slot], poke, sizeof(*poke));
811 prog->aux->size_poke_tab = size;
812 prog->aux->poke_tab = tab;
813
814 return slot;
815 }
816
817 static atomic_long_t bpf_jit_current;
818
819 /* Can be overridden by an arch's JIT compiler if it has a custom,
820 * dedicated BPF backend memory area, or if neither of the two
821 * below apply.
822 */
bpf_jit_alloc_exec_limit(void)823 u64 __weak bpf_jit_alloc_exec_limit(void)
824 {
825 #if defined(MODULES_VADDR)
826 return MODULES_END - MODULES_VADDR;
827 #else
828 return VMALLOC_END - VMALLOC_START;
829 #endif
830 }
831
bpf_jit_charge_init(void)832 static int __init bpf_jit_charge_init(void)
833 {
834 /* Only used as heuristic here to derive limit. */
835 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
836 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
837 PAGE_SIZE), LONG_MAX);
838 return 0;
839 }
840 pure_initcall(bpf_jit_charge_init);
841
bpf_jit_charge_modmem(u32 pages)842 int bpf_jit_charge_modmem(u32 pages)
843 {
844 if (atomic_long_add_return(pages, &bpf_jit_current) >
845 (bpf_jit_limit >> PAGE_SHIFT)) {
846 if (!bpf_capable()) {
847 atomic_long_sub(pages, &bpf_jit_current);
848 return -EPERM;
849 }
850 }
851
852 return 0;
853 }
854
bpf_jit_uncharge_modmem(u32 pages)855 void bpf_jit_uncharge_modmem(u32 pages)
856 {
857 atomic_long_sub(pages, &bpf_jit_current);
858 }
859
bpf_jit_alloc_exec(unsigned long size)860 void *__weak bpf_jit_alloc_exec(unsigned long size)
861 {
862 return module_alloc(size);
863 }
864
bpf_jit_free_exec(void * addr)865 void __weak bpf_jit_free_exec(void *addr)
866 {
867 module_memfree(addr);
868 }
869
870 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)871 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
872 unsigned int alignment,
873 bpf_jit_fill_hole_t bpf_fill_ill_insns)
874 {
875 struct bpf_binary_header *hdr;
876 u32 size, hole, start, pages;
877
878 WARN_ON_ONCE(!is_power_of_2(alignment) ||
879 alignment > BPF_IMAGE_ALIGNMENT);
880
881 /* Most of BPF filters are really small, but if some of them
882 * fill a page, allow at least 128 extra bytes to insert a
883 * random section of illegal instructions.
884 */
885 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
886 pages = size / PAGE_SIZE;
887
888 if (bpf_jit_charge_modmem(pages))
889 return NULL;
890 hdr = bpf_jit_alloc_exec(size);
891 if (!hdr) {
892 bpf_jit_uncharge_modmem(pages);
893 return NULL;
894 }
895
896 /* Fill space with illegal/arch-dep instructions. */
897 bpf_fill_ill_insns(hdr, size);
898
899 hdr->pages = pages;
900 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
901 PAGE_SIZE - sizeof(*hdr));
902 start = (get_random_int() % hole) & ~(alignment - 1);
903
904 /* Leave a random number of instructions before BPF code. */
905 *image_ptr = &hdr->image[start];
906
907 return hdr;
908 }
909
bpf_jit_binary_free(struct bpf_binary_header * hdr)910 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
911 {
912 u32 pages = hdr->pages;
913
914 bpf_jit_free_exec(hdr);
915 bpf_jit_uncharge_modmem(pages);
916 }
917
918 /* This symbol is only overridden by archs that have different
919 * requirements than the usual eBPF JITs, f.e. when they only
920 * implement cBPF JIT, do not set images read-only, etc.
921 */
bpf_jit_free(struct bpf_prog * fp)922 void __weak bpf_jit_free(struct bpf_prog *fp)
923 {
924 if (fp->jited) {
925 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
926
927 bpf_jit_binary_free(hdr);
928
929 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
930 }
931
932 bpf_prog_unlock_free(fp);
933 }
934
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)935 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
936 const struct bpf_insn *insn, bool extra_pass,
937 u64 *func_addr, bool *func_addr_fixed)
938 {
939 s16 off = insn->off;
940 s32 imm = insn->imm;
941 u8 *addr;
942
943 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
944 if (!*func_addr_fixed) {
945 /* Place-holder address till the last pass has collected
946 * all addresses for JITed subprograms in which case we
947 * can pick them up from prog->aux.
948 */
949 if (!extra_pass)
950 addr = NULL;
951 else if (prog->aux->func &&
952 off >= 0 && off < prog->aux->func_cnt)
953 addr = (u8 *)prog->aux->func[off]->bpf_func;
954 else
955 return -EINVAL;
956 } else {
957 /* Address of a BPF helper call. Since part of the core
958 * kernel, it's always at a fixed location. __bpf_call_base
959 * and the helper with imm relative to it are both in core
960 * kernel.
961 */
962 addr = (u8 *)__bpf_call_base + imm;
963 }
964
965 *func_addr = (unsigned long)addr;
966 return 0;
967 }
968
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)969 static int bpf_jit_blind_insn(const struct bpf_insn *from,
970 const struct bpf_insn *aux,
971 struct bpf_insn *to_buff,
972 bool emit_zext)
973 {
974 struct bpf_insn *to = to_buff;
975 u32 imm_rnd = get_random_int();
976 s16 off;
977
978 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
979 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
980
981 /* Constraints on AX register:
982 *
983 * AX register is inaccessible from user space. It is mapped in
984 * all JITs, and used here for constant blinding rewrites. It is
985 * typically "stateless" meaning its contents are only valid within
986 * the executed instruction, but not across several instructions.
987 * There are a few exceptions however which are further detailed
988 * below.
989 *
990 * Constant blinding is only used by JITs, not in the interpreter.
991 * The interpreter uses AX in some occasions as a local temporary
992 * register e.g. in DIV or MOD instructions.
993 *
994 * In restricted circumstances, the verifier can also use the AX
995 * register for rewrites as long as they do not interfere with
996 * the above cases!
997 */
998 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
999 goto out;
1000
1001 if (from->imm == 0 &&
1002 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1003 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1004 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1005 goto out;
1006 }
1007
1008 switch (from->code) {
1009 case BPF_ALU | BPF_ADD | BPF_K:
1010 case BPF_ALU | BPF_SUB | BPF_K:
1011 case BPF_ALU | BPF_AND | BPF_K:
1012 case BPF_ALU | BPF_OR | BPF_K:
1013 case BPF_ALU | BPF_XOR | BPF_K:
1014 case BPF_ALU | BPF_MUL | BPF_K:
1015 case BPF_ALU | BPF_MOV | BPF_K:
1016 case BPF_ALU | BPF_DIV | BPF_K:
1017 case BPF_ALU | BPF_MOD | BPF_K:
1018 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1019 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1020 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1021 break;
1022
1023 case BPF_ALU64 | BPF_ADD | BPF_K:
1024 case BPF_ALU64 | BPF_SUB | BPF_K:
1025 case BPF_ALU64 | BPF_AND | BPF_K:
1026 case BPF_ALU64 | BPF_OR | BPF_K:
1027 case BPF_ALU64 | BPF_XOR | BPF_K:
1028 case BPF_ALU64 | BPF_MUL | BPF_K:
1029 case BPF_ALU64 | BPF_MOV | BPF_K:
1030 case BPF_ALU64 | BPF_DIV | BPF_K:
1031 case BPF_ALU64 | BPF_MOD | BPF_K:
1032 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1033 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1034 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1035 break;
1036
1037 case BPF_JMP | BPF_JEQ | BPF_K:
1038 case BPF_JMP | BPF_JNE | BPF_K:
1039 case BPF_JMP | BPF_JGT | BPF_K:
1040 case BPF_JMP | BPF_JLT | BPF_K:
1041 case BPF_JMP | BPF_JGE | BPF_K:
1042 case BPF_JMP | BPF_JLE | BPF_K:
1043 case BPF_JMP | BPF_JSGT | BPF_K:
1044 case BPF_JMP | BPF_JSLT | BPF_K:
1045 case BPF_JMP | BPF_JSGE | BPF_K:
1046 case BPF_JMP | BPF_JSLE | BPF_K:
1047 case BPF_JMP | BPF_JSET | BPF_K:
1048 /* Accommodate for extra offset in case of a backjump. */
1049 off = from->off;
1050 if (off < 0)
1051 off -= 2;
1052 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1053 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1054 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1055 break;
1056
1057 case BPF_JMP32 | BPF_JEQ | BPF_K:
1058 case BPF_JMP32 | BPF_JNE | BPF_K:
1059 case BPF_JMP32 | BPF_JGT | BPF_K:
1060 case BPF_JMP32 | BPF_JLT | BPF_K:
1061 case BPF_JMP32 | BPF_JGE | BPF_K:
1062 case BPF_JMP32 | BPF_JLE | BPF_K:
1063 case BPF_JMP32 | BPF_JSGT | BPF_K:
1064 case BPF_JMP32 | BPF_JSLT | BPF_K:
1065 case BPF_JMP32 | BPF_JSGE | BPF_K:
1066 case BPF_JMP32 | BPF_JSLE | BPF_K:
1067 case BPF_JMP32 | BPF_JSET | BPF_K:
1068 /* Accommodate for extra offset in case of a backjump. */
1069 off = from->off;
1070 if (off < 0)
1071 off -= 2;
1072 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1073 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1074 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1075 off);
1076 break;
1077
1078 case BPF_LD | BPF_IMM | BPF_DW:
1079 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1080 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1081 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1082 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1083 break;
1084 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1085 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1086 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1087 if (emit_zext)
1088 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1089 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1090 break;
1091
1092 case BPF_ST | BPF_MEM | BPF_DW:
1093 case BPF_ST | BPF_MEM | BPF_W:
1094 case BPF_ST | BPF_MEM | BPF_H:
1095 case BPF_ST | BPF_MEM | BPF_B:
1096 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1097 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1098 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1099 break;
1100 }
1101 out:
1102 return to - to_buff;
1103 }
1104
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1105 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1106 gfp_t gfp_extra_flags)
1107 {
1108 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1109 struct bpf_prog *fp;
1110
1111 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1112 if (fp != NULL) {
1113 /* aux->prog still points to the fp_other one, so
1114 * when promoting the clone to the real program,
1115 * this still needs to be adapted.
1116 */
1117 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1118 }
1119
1120 return fp;
1121 }
1122
bpf_prog_clone_free(struct bpf_prog * fp)1123 static void bpf_prog_clone_free(struct bpf_prog *fp)
1124 {
1125 /* aux was stolen by the other clone, so we cannot free
1126 * it from this path! It will be freed eventually by the
1127 * other program on release.
1128 *
1129 * At this point, we don't need a deferred release since
1130 * clone is guaranteed to not be locked.
1131 */
1132 fp->aux = NULL;
1133 fp->stats = NULL;
1134 fp->active = NULL;
1135 __bpf_prog_free(fp);
1136 }
1137
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1138 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1139 {
1140 /* We have to repoint aux->prog to self, as we don't
1141 * know whether fp here is the clone or the original.
1142 */
1143 fp->aux->prog = fp;
1144 bpf_prog_clone_free(fp_other);
1145 }
1146
bpf_jit_blind_constants(struct bpf_prog * prog)1147 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1148 {
1149 struct bpf_insn insn_buff[16], aux[2];
1150 struct bpf_prog *clone, *tmp;
1151 int insn_delta, insn_cnt;
1152 struct bpf_insn *insn;
1153 int i, rewritten;
1154
1155 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1156 return prog;
1157
1158 clone = bpf_prog_clone_create(prog, GFP_USER);
1159 if (!clone)
1160 return ERR_PTR(-ENOMEM);
1161
1162 insn_cnt = clone->len;
1163 insn = clone->insnsi;
1164
1165 for (i = 0; i < insn_cnt; i++, insn++) {
1166 /* We temporarily need to hold the original ld64 insn
1167 * so that we can still access the first part in the
1168 * second blinding run.
1169 */
1170 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1171 insn[1].code == 0)
1172 memcpy(aux, insn, sizeof(aux));
1173
1174 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1175 clone->aux->verifier_zext);
1176 if (!rewritten)
1177 continue;
1178
1179 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1180 if (IS_ERR(tmp)) {
1181 /* Patching may have repointed aux->prog during
1182 * realloc from the original one, so we need to
1183 * fix it up here on error.
1184 */
1185 bpf_jit_prog_release_other(prog, clone);
1186 return tmp;
1187 }
1188
1189 clone = tmp;
1190 insn_delta = rewritten - 1;
1191
1192 /* Walk new program and skip insns we just inserted. */
1193 insn = clone->insnsi + i + insn_delta;
1194 insn_cnt += insn_delta;
1195 i += insn_delta;
1196 }
1197
1198 clone->blinded = 1;
1199 return clone;
1200 }
1201 #endif /* CONFIG_BPF_JIT */
1202
1203 /* Base function for offset calculation. Needs to go into .text section,
1204 * therefore keeping it non-static as well; will also be used by JITs
1205 * anyway later on, so do not let the compiler omit it. This also needs
1206 * to go into kallsyms for correlation from e.g. bpftool, so naming
1207 * must not change.
1208 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1209 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1210 {
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(__bpf_call_base);
1214
1215 /* All UAPI available opcodes. */
1216 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1217 /* 32 bit ALU operations. */ \
1218 /* Register based. */ \
1219 INSN_3(ALU, ADD, X), \
1220 INSN_3(ALU, SUB, X), \
1221 INSN_3(ALU, AND, X), \
1222 INSN_3(ALU, OR, X), \
1223 INSN_3(ALU, LSH, X), \
1224 INSN_3(ALU, RSH, X), \
1225 INSN_3(ALU, XOR, X), \
1226 INSN_3(ALU, MUL, X), \
1227 INSN_3(ALU, MOV, X), \
1228 INSN_3(ALU, ARSH, X), \
1229 INSN_3(ALU, DIV, X), \
1230 INSN_3(ALU, MOD, X), \
1231 INSN_2(ALU, NEG), \
1232 INSN_3(ALU, END, TO_BE), \
1233 INSN_3(ALU, END, TO_LE), \
1234 /* Immediate based. */ \
1235 INSN_3(ALU, ADD, K), \
1236 INSN_3(ALU, SUB, K), \
1237 INSN_3(ALU, AND, K), \
1238 INSN_3(ALU, OR, K), \
1239 INSN_3(ALU, LSH, K), \
1240 INSN_3(ALU, RSH, K), \
1241 INSN_3(ALU, XOR, K), \
1242 INSN_3(ALU, MUL, K), \
1243 INSN_3(ALU, MOV, K), \
1244 INSN_3(ALU, ARSH, K), \
1245 INSN_3(ALU, DIV, K), \
1246 INSN_3(ALU, MOD, K), \
1247 /* 64 bit ALU operations. */ \
1248 /* Register based. */ \
1249 INSN_3(ALU64, ADD, X), \
1250 INSN_3(ALU64, SUB, X), \
1251 INSN_3(ALU64, AND, X), \
1252 INSN_3(ALU64, OR, X), \
1253 INSN_3(ALU64, LSH, X), \
1254 INSN_3(ALU64, RSH, X), \
1255 INSN_3(ALU64, XOR, X), \
1256 INSN_3(ALU64, MUL, X), \
1257 INSN_3(ALU64, MOV, X), \
1258 INSN_3(ALU64, ARSH, X), \
1259 INSN_3(ALU64, DIV, X), \
1260 INSN_3(ALU64, MOD, X), \
1261 INSN_2(ALU64, NEG), \
1262 /* Immediate based. */ \
1263 INSN_3(ALU64, ADD, K), \
1264 INSN_3(ALU64, SUB, K), \
1265 INSN_3(ALU64, AND, K), \
1266 INSN_3(ALU64, OR, K), \
1267 INSN_3(ALU64, LSH, K), \
1268 INSN_3(ALU64, RSH, K), \
1269 INSN_3(ALU64, XOR, K), \
1270 INSN_3(ALU64, MUL, K), \
1271 INSN_3(ALU64, MOV, K), \
1272 INSN_3(ALU64, ARSH, K), \
1273 INSN_3(ALU64, DIV, K), \
1274 INSN_3(ALU64, MOD, K), \
1275 /* Call instruction. */ \
1276 INSN_2(JMP, CALL), \
1277 /* Exit instruction. */ \
1278 INSN_2(JMP, EXIT), \
1279 /* 32-bit Jump instructions. */ \
1280 /* Register based. */ \
1281 INSN_3(JMP32, JEQ, X), \
1282 INSN_3(JMP32, JNE, X), \
1283 INSN_3(JMP32, JGT, X), \
1284 INSN_3(JMP32, JLT, X), \
1285 INSN_3(JMP32, JGE, X), \
1286 INSN_3(JMP32, JLE, X), \
1287 INSN_3(JMP32, JSGT, X), \
1288 INSN_3(JMP32, JSLT, X), \
1289 INSN_3(JMP32, JSGE, X), \
1290 INSN_3(JMP32, JSLE, X), \
1291 INSN_3(JMP32, JSET, X), \
1292 /* Immediate based. */ \
1293 INSN_3(JMP32, JEQ, K), \
1294 INSN_3(JMP32, JNE, K), \
1295 INSN_3(JMP32, JGT, K), \
1296 INSN_3(JMP32, JLT, K), \
1297 INSN_3(JMP32, JGE, K), \
1298 INSN_3(JMP32, JLE, K), \
1299 INSN_3(JMP32, JSGT, K), \
1300 INSN_3(JMP32, JSLT, K), \
1301 INSN_3(JMP32, JSGE, K), \
1302 INSN_3(JMP32, JSLE, K), \
1303 INSN_3(JMP32, JSET, K), \
1304 /* Jump instructions. */ \
1305 /* Register based. */ \
1306 INSN_3(JMP, JEQ, X), \
1307 INSN_3(JMP, JNE, X), \
1308 INSN_3(JMP, JGT, X), \
1309 INSN_3(JMP, JLT, X), \
1310 INSN_3(JMP, JGE, X), \
1311 INSN_3(JMP, JLE, X), \
1312 INSN_3(JMP, JSGT, X), \
1313 INSN_3(JMP, JSLT, X), \
1314 INSN_3(JMP, JSGE, X), \
1315 INSN_3(JMP, JSLE, X), \
1316 INSN_3(JMP, JSET, X), \
1317 /* Immediate based. */ \
1318 INSN_3(JMP, JEQ, K), \
1319 INSN_3(JMP, JNE, K), \
1320 INSN_3(JMP, JGT, K), \
1321 INSN_3(JMP, JLT, K), \
1322 INSN_3(JMP, JGE, K), \
1323 INSN_3(JMP, JLE, K), \
1324 INSN_3(JMP, JSGT, K), \
1325 INSN_3(JMP, JSLT, K), \
1326 INSN_3(JMP, JSGE, K), \
1327 INSN_3(JMP, JSLE, K), \
1328 INSN_3(JMP, JSET, K), \
1329 INSN_2(JMP, JA), \
1330 /* Store instructions. */ \
1331 /* Register based. */ \
1332 INSN_3(STX, MEM, B), \
1333 INSN_3(STX, MEM, H), \
1334 INSN_3(STX, MEM, W), \
1335 INSN_3(STX, MEM, DW), \
1336 INSN_3(STX, ATOMIC, W), \
1337 INSN_3(STX, ATOMIC, DW), \
1338 /* Immediate based. */ \
1339 INSN_3(ST, MEM, B), \
1340 INSN_3(ST, MEM, H), \
1341 INSN_3(ST, MEM, W), \
1342 INSN_3(ST, MEM, DW), \
1343 /* Load instructions. */ \
1344 /* Register based. */ \
1345 INSN_3(LDX, MEM, B), \
1346 INSN_3(LDX, MEM, H), \
1347 INSN_3(LDX, MEM, W), \
1348 INSN_3(LDX, MEM, DW), \
1349 /* Immediate based. */ \
1350 INSN_3(LD, IMM, DW)
1351
bpf_opcode_in_insntable(u8 code)1352 bool bpf_opcode_in_insntable(u8 code)
1353 {
1354 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1355 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1356 static const bool public_insntable[256] = {
1357 [0 ... 255] = false,
1358 /* Now overwrite non-defaults ... */
1359 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1360 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1361 [BPF_LD | BPF_ABS | BPF_B] = true,
1362 [BPF_LD | BPF_ABS | BPF_H] = true,
1363 [BPF_LD | BPF_ABS | BPF_W] = true,
1364 [BPF_LD | BPF_IND | BPF_B] = true,
1365 [BPF_LD | BPF_IND | BPF_H] = true,
1366 [BPF_LD | BPF_IND | BPF_W] = true,
1367 };
1368 #undef BPF_INSN_3_TBL
1369 #undef BPF_INSN_2_TBL
1370 return public_insntable[code];
1371 }
1372
1373 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1374 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1375 {
1376 memset(dst, 0, size);
1377 return -EFAULT;
1378 }
1379
1380 /**
1381 * ___bpf_prog_run - run eBPF program on a given context
1382 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1383 * @insn: is the array of eBPF instructions
1384 *
1385 * Decode and execute eBPF instructions.
1386 *
1387 * Return: whatever value is in %BPF_R0 at program exit
1388 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1389 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1390 {
1391 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1392 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1393 static const void * const jumptable[256] __annotate_jump_table = {
1394 [0 ... 255] = &&default_label,
1395 /* Now overwrite non-defaults ... */
1396 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1397 /* Non-UAPI available opcodes. */
1398 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1399 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1400 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1401 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1402 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1403 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1404 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1405 };
1406 #undef BPF_INSN_3_LBL
1407 #undef BPF_INSN_2_LBL
1408 u32 tail_call_cnt = 0;
1409
1410 #define CONT ({ insn++; goto select_insn; })
1411 #define CONT_JMP ({ insn++; goto select_insn; })
1412
1413 select_insn:
1414 goto *jumptable[insn->code];
1415
1416 /* Explicitly mask the register-based shift amounts with 63 or 31
1417 * to avoid undefined behavior. Normally this won't affect the
1418 * generated code, for example, in case of native 64 bit archs such
1419 * as x86-64 or arm64, the compiler is optimizing the AND away for
1420 * the interpreter. In case of JITs, each of the JIT backends compiles
1421 * the BPF shift operations to machine instructions which produce
1422 * implementation-defined results in such a case; the resulting
1423 * contents of the register may be arbitrary, but program behaviour
1424 * as a whole remains defined. In other words, in case of JIT backends,
1425 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1426 */
1427 /* ALU (shifts) */
1428 #define SHT(OPCODE, OP) \
1429 ALU64_##OPCODE##_X: \
1430 DST = DST OP (SRC & 63); \
1431 CONT; \
1432 ALU_##OPCODE##_X: \
1433 DST = (u32) DST OP ((u32) SRC & 31); \
1434 CONT; \
1435 ALU64_##OPCODE##_K: \
1436 DST = DST OP IMM; \
1437 CONT; \
1438 ALU_##OPCODE##_K: \
1439 DST = (u32) DST OP (u32) IMM; \
1440 CONT;
1441 /* ALU (rest) */
1442 #define ALU(OPCODE, OP) \
1443 ALU64_##OPCODE##_X: \
1444 DST = DST OP SRC; \
1445 CONT; \
1446 ALU_##OPCODE##_X: \
1447 DST = (u32) DST OP (u32) SRC; \
1448 CONT; \
1449 ALU64_##OPCODE##_K: \
1450 DST = DST OP IMM; \
1451 CONT; \
1452 ALU_##OPCODE##_K: \
1453 DST = (u32) DST OP (u32) IMM; \
1454 CONT;
1455 ALU(ADD, +)
1456 ALU(SUB, -)
1457 ALU(AND, &)
1458 ALU(OR, |)
1459 ALU(XOR, ^)
1460 ALU(MUL, *)
1461 SHT(LSH, <<)
1462 SHT(RSH, >>)
1463 #undef SHT
1464 #undef ALU
1465 ALU_NEG:
1466 DST = (u32) -DST;
1467 CONT;
1468 ALU64_NEG:
1469 DST = -DST;
1470 CONT;
1471 ALU_MOV_X:
1472 DST = (u32) SRC;
1473 CONT;
1474 ALU_MOV_K:
1475 DST = (u32) IMM;
1476 CONT;
1477 ALU64_MOV_X:
1478 DST = SRC;
1479 CONT;
1480 ALU64_MOV_K:
1481 DST = IMM;
1482 CONT;
1483 LD_IMM_DW:
1484 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1485 insn++;
1486 CONT;
1487 ALU_ARSH_X:
1488 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1489 CONT;
1490 ALU_ARSH_K:
1491 DST = (u64) (u32) (((s32) DST) >> IMM);
1492 CONT;
1493 ALU64_ARSH_X:
1494 (*(s64 *) &DST) >>= (SRC & 63);
1495 CONT;
1496 ALU64_ARSH_K:
1497 (*(s64 *) &DST) >>= IMM;
1498 CONT;
1499 ALU64_MOD_X:
1500 div64_u64_rem(DST, SRC, &AX);
1501 DST = AX;
1502 CONT;
1503 ALU_MOD_X:
1504 AX = (u32) DST;
1505 DST = do_div(AX, (u32) SRC);
1506 CONT;
1507 ALU64_MOD_K:
1508 div64_u64_rem(DST, IMM, &AX);
1509 DST = AX;
1510 CONT;
1511 ALU_MOD_K:
1512 AX = (u32) DST;
1513 DST = do_div(AX, (u32) IMM);
1514 CONT;
1515 ALU64_DIV_X:
1516 DST = div64_u64(DST, SRC);
1517 CONT;
1518 ALU_DIV_X:
1519 AX = (u32) DST;
1520 do_div(AX, (u32) SRC);
1521 DST = (u32) AX;
1522 CONT;
1523 ALU64_DIV_K:
1524 DST = div64_u64(DST, IMM);
1525 CONT;
1526 ALU_DIV_K:
1527 AX = (u32) DST;
1528 do_div(AX, (u32) IMM);
1529 DST = (u32) AX;
1530 CONT;
1531 ALU_END_TO_BE:
1532 switch (IMM) {
1533 case 16:
1534 DST = (__force u16) cpu_to_be16(DST);
1535 break;
1536 case 32:
1537 DST = (__force u32) cpu_to_be32(DST);
1538 break;
1539 case 64:
1540 DST = (__force u64) cpu_to_be64(DST);
1541 break;
1542 }
1543 CONT;
1544 ALU_END_TO_LE:
1545 switch (IMM) {
1546 case 16:
1547 DST = (__force u16) cpu_to_le16(DST);
1548 break;
1549 case 32:
1550 DST = (__force u32) cpu_to_le32(DST);
1551 break;
1552 case 64:
1553 DST = (__force u64) cpu_to_le64(DST);
1554 break;
1555 }
1556 CONT;
1557
1558 /* CALL */
1559 JMP_CALL:
1560 /* Function call scratches BPF_R1-BPF_R5 registers,
1561 * preserves BPF_R6-BPF_R9, and stores return value
1562 * into BPF_R0.
1563 */
1564 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1565 BPF_R4, BPF_R5);
1566 CONT;
1567
1568 JMP_CALL_ARGS:
1569 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1570 BPF_R3, BPF_R4,
1571 BPF_R5,
1572 insn + insn->off + 1);
1573 CONT;
1574
1575 JMP_TAIL_CALL: {
1576 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1577 struct bpf_array *array = container_of(map, struct bpf_array, map);
1578 struct bpf_prog *prog;
1579 u32 index = BPF_R3;
1580
1581 if (unlikely(index >= array->map.max_entries))
1582 goto out;
1583 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1584 goto out;
1585
1586 tail_call_cnt++;
1587
1588 prog = READ_ONCE(array->ptrs[index]);
1589 if (!prog)
1590 goto out;
1591
1592 /* ARG1 at this point is guaranteed to point to CTX from
1593 * the verifier side due to the fact that the tail call is
1594 * handled like a helper, that is, bpf_tail_call_proto,
1595 * where arg1_type is ARG_PTR_TO_CTX.
1596 */
1597 insn = prog->insnsi;
1598 goto select_insn;
1599 out:
1600 CONT;
1601 }
1602 JMP_JA:
1603 insn += insn->off;
1604 CONT;
1605 JMP_EXIT:
1606 return BPF_R0;
1607 /* JMP */
1608 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1609 JMP_##OPCODE##_X: \
1610 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1611 insn += insn->off; \
1612 CONT_JMP; \
1613 } \
1614 CONT; \
1615 JMP32_##OPCODE##_X: \
1616 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1617 insn += insn->off; \
1618 CONT_JMP; \
1619 } \
1620 CONT; \
1621 JMP_##OPCODE##_K: \
1622 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1623 insn += insn->off; \
1624 CONT_JMP; \
1625 } \
1626 CONT; \
1627 JMP32_##OPCODE##_K: \
1628 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1629 insn += insn->off; \
1630 CONT_JMP; \
1631 } \
1632 CONT;
1633 COND_JMP(u, JEQ, ==)
1634 COND_JMP(u, JNE, !=)
1635 COND_JMP(u, JGT, >)
1636 COND_JMP(u, JLT, <)
1637 COND_JMP(u, JGE, >=)
1638 COND_JMP(u, JLE, <=)
1639 COND_JMP(u, JSET, &)
1640 COND_JMP(s, JSGT, >)
1641 COND_JMP(s, JSLT, <)
1642 COND_JMP(s, JSGE, >=)
1643 COND_JMP(s, JSLE, <=)
1644 #undef COND_JMP
1645 /* ST, STX and LDX*/
1646 ST_NOSPEC:
1647 /* Speculation barrier for mitigating Speculative Store Bypass.
1648 * In case of arm64, we rely on the firmware mitigation as
1649 * controlled via the ssbd kernel parameter. Whenever the
1650 * mitigation is enabled, it works for all of the kernel code
1651 * with no need to provide any additional instructions here.
1652 * In case of x86, we use 'lfence' insn for mitigation. We
1653 * reuse preexisting logic from Spectre v1 mitigation that
1654 * happens to produce the required code on x86 for v4 as well.
1655 */
1656 barrier_nospec();
1657 CONT;
1658 #define LDST(SIZEOP, SIZE) \
1659 STX_MEM_##SIZEOP: \
1660 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1661 CONT; \
1662 ST_MEM_##SIZEOP: \
1663 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1664 CONT; \
1665 LDX_MEM_##SIZEOP: \
1666 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1667 CONT; \
1668 LDX_PROBE_MEM_##SIZEOP: \
1669 bpf_probe_read_kernel(&DST, sizeof(SIZE), \
1670 (const void *)(long) (SRC + insn->off)); \
1671 DST = *((SIZE *)&DST); \
1672 CONT;
1673
1674 LDST(B, u8)
1675 LDST(H, u16)
1676 LDST(W, u32)
1677 LDST(DW, u64)
1678 #undef LDST
1679
1680 #define ATOMIC_ALU_OP(BOP, KOP) \
1681 case BOP: \
1682 if (BPF_SIZE(insn->code) == BPF_W) \
1683 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1684 (DST + insn->off)); \
1685 else \
1686 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1687 (DST + insn->off)); \
1688 break; \
1689 case BOP | BPF_FETCH: \
1690 if (BPF_SIZE(insn->code) == BPF_W) \
1691 SRC = (u32) atomic_fetch_##KOP( \
1692 (u32) SRC, \
1693 (atomic_t *)(unsigned long) (DST + insn->off)); \
1694 else \
1695 SRC = (u64) atomic64_fetch_##KOP( \
1696 (u64) SRC, \
1697 (atomic64_t *)(unsigned long) (DST + insn->off)); \
1698 break;
1699
1700 STX_ATOMIC_DW:
1701 STX_ATOMIC_W:
1702 switch (IMM) {
1703 ATOMIC_ALU_OP(BPF_ADD, add)
1704 ATOMIC_ALU_OP(BPF_AND, and)
1705 ATOMIC_ALU_OP(BPF_OR, or)
1706 ATOMIC_ALU_OP(BPF_XOR, xor)
1707 #undef ATOMIC_ALU_OP
1708
1709 case BPF_XCHG:
1710 if (BPF_SIZE(insn->code) == BPF_W)
1711 SRC = (u32) atomic_xchg(
1712 (atomic_t *)(unsigned long) (DST + insn->off),
1713 (u32) SRC);
1714 else
1715 SRC = (u64) atomic64_xchg(
1716 (atomic64_t *)(unsigned long) (DST + insn->off),
1717 (u64) SRC);
1718 break;
1719 case BPF_CMPXCHG:
1720 if (BPF_SIZE(insn->code) == BPF_W)
1721 BPF_R0 = (u32) atomic_cmpxchg(
1722 (atomic_t *)(unsigned long) (DST + insn->off),
1723 (u32) BPF_R0, (u32) SRC);
1724 else
1725 BPF_R0 = (u64) atomic64_cmpxchg(
1726 (atomic64_t *)(unsigned long) (DST + insn->off),
1727 (u64) BPF_R0, (u64) SRC);
1728 break;
1729
1730 default:
1731 goto default_label;
1732 }
1733 CONT;
1734
1735 default_label:
1736 /* If we ever reach this, we have a bug somewhere. Die hard here
1737 * instead of just returning 0; we could be somewhere in a subprog,
1738 * so execution could continue otherwise which we do /not/ want.
1739 *
1740 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1741 */
1742 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1743 insn->code, insn->imm);
1744 BUG_ON(1);
1745 return 0;
1746 }
1747
1748 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1749 #define DEFINE_BPF_PROG_RUN(stack_size) \
1750 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1751 { \
1752 u64 stack[stack_size / sizeof(u64)]; \
1753 u64 regs[MAX_BPF_EXT_REG]; \
1754 \
1755 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1756 ARG1 = (u64) (unsigned long) ctx; \
1757 return ___bpf_prog_run(regs, insn); \
1758 }
1759
1760 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1761 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1762 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1763 const struct bpf_insn *insn) \
1764 { \
1765 u64 stack[stack_size / sizeof(u64)]; \
1766 u64 regs[MAX_BPF_EXT_REG]; \
1767 \
1768 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1769 BPF_R1 = r1; \
1770 BPF_R2 = r2; \
1771 BPF_R3 = r3; \
1772 BPF_R4 = r4; \
1773 BPF_R5 = r5; \
1774 return ___bpf_prog_run(regs, insn); \
1775 }
1776
1777 #define EVAL1(FN, X) FN(X)
1778 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1779 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1780 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1781 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1782 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1783
1784 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1785 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1786 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1787
1788 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1789 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1790 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1791
1792 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1793
1794 static unsigned int (*interpreters[])(const void *ctx,
1795 const struct bpf_insn *insn) = {
1796 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1797 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1798 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1799 };
1800 #undef PROG_NAME_LIST
1801 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1802 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1803 const struct bpf_insn *insn) = {
1804 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1805 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1806 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1807 };
1808 #undef PROG_NAME_LIST
1809
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1810 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1811 {
1812 stack_depth = max_t(u32, stack_depth, 1);
1813 insn->off = (s16) insn->imm;
1814 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1815 __bpf_call_base_args;
1816 insn->code = BPF_JMP | BPF_CALL_ARGS;
1817 }
1818
1819 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1820 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1821 const struct bpf_insn *insn)
1822 {
1823 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1824 * is not working properly, so warn about it!
1825 */
1826 WARN_ON_ONCE(1);
1827 return 0;
1828 }
1829 #endif
1830
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1831 bool bpf_prog_array_compatible(struct bpf_array *array,
1832 const struct bpf_prog *fp)
1833 {
1834 bool ret;
1835
1836 if (fp->kprobe_override)
1837 return false;
1838
1839 spin_lock(&array->aux->owner.lock);
1840
1841 if (!array->aux->owner.type) {
1842 /* There's no owner yet where we could check for
1843 * compatibility.
1844 */
1845 array->aux->owner.type = fp->type;
1846 array->aux->owner.jited = fp->jited;
1847 ret = true;
1848 } else {
1849 ret = array->aux->owner.type == fp->type &&
1850 array->aux->owner.jited == fp->jited;
1851 }
1852 spin_unlock(&array->aux->owner.lock);
1853 return ret;
1854 }
1855
bpf_check_tail_call(const struct bpf_prog * fp)1856 static int bpf_check_tail_call(const struct bpf_prog *fp)
1857 {
1858 struct bpf_prog_aux *aux = fp->aux;
1859 int i, ret = 0;
1860
1861 mutex_lock(&aux->used_maps_mutex);
1862 for (i = 0; i < aux->used_map_cnt; i++) {
1863 struct bpf_map *map = aux->used_maps[i];
1864 struct bpf_array *array;
1865
1866 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1867 continue;
1868
1869 array = container_of(map, struct bpf_array, map);
1870 if (!bpf_prog_array_compatible(array, fp)) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874 }
1875
1876 out:
1877 mutex_unlock(&aux->used_maps_mutex);
1878 return ret;
1879 }
1880
bpf_prog_select_func(struct bpf_prog * fp)1881 static void bpf_prog_select_func(struct bpf_prog *fp)
1882 {
1883 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1884 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1885
1886 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1887 #else
1888 fp->bpf_func = __bpf_prog_ret0_warn;
1889 #endif
1890 }
1891
1892 /**
1893 * bpf_prog_select_runtime - select exec runtime for BPF program
1894 * @fp: bpf_prog populated with internal BPF program
1895 * @err: pointer to error variable
1896 *
1897 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1898 * The BPF program will be executed via bpf_prog_run() function.
1899 *
1900 * Return: the &fp argument along with &err set to 0 for success or
1901 * a negative errno code on failure
1902 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1903 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1904 {
1905 /* In case of BPF to BPF calls, verifier did all the prep
1906 * work with regards to JITing, etc.
1907 */
1908 bool jit_needed = false;
1909
1910 if (fp->bpf_func)
1911 goto finalize;
1912
1913 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1914 bpf_prog_has_kfunc_call(fp))
1915 jit_needed = true;
1916
1917 bpf_prog_select_func(fp);
1918
1919 /* eBPF JITs can rewrite the program in case constant
1920 * blinding is active. However, in case of error during
1921 * blinding, bpf_int_jit_compile() must always return a
1922 * valid program, which in this case would simply not
1923 * be JITed, but falls back to the interpreter.
1924 */
1925 if (!bpf_prog_is_dev_bound(fp->aux)) {
1926 *err = bpf_prog_alloc_jited_linfo(fp);
1927 if (*err)
1928 return fp;
1929
1930 fp = bpf_int_jit_compile(fp);
1931 bpf_prog_jit_attempt_done(fp);
1932 if (!fp->jited && jit_needed) {
1933 *err = -ENOTSUPP;
1934 return fp;
1935 }
1936 } else {
1937 *err = bpf_prog_offload_compile(fp);
1938 if (*err)
1939 return fp;
1940 }
1941
1942 finalize:
1943 bpf_prog_lock_ro(fp);
1944
1945 /* The tail call compatibility check can only be done at
1946 * this late stage as we need to determine, if we deal
1947 * with JITed or non JITed program concatenations and not
1948 * all eBPF JITs might immediately support all features.
1949 */
1950 *err = bpf_check_tail_call(fp);
1951
1952 return fp;
1953 }
1954 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1955
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1956 static unsigned int __bpf_prog_ret1(const void *ctx,
1957 const struct bpf_insn *insn)
1958 {
1959 return 1;
1960 }
1961
1962 static struct bpf_prog_dummy {
1963 struct bpf_prog prog;
1964 } dummy_bpf_prog = {
1965 .prog = {
1966 .bpf_func = __bpf_prog_ret1,
1967 },
1968 };
1969
1970 /* to avoid allocating empty bpf_prog_array for cgroups that
1971 * don't have bpf program attached use one global 'empty_prog_array'
1972 * It will not be modified the caller of bpf_prog_array_alloc()
1973 * (since caller requested prog_cnt == 0)
1974 * that pointer should be 'freed' by bpf_prog_array_free()
1975 */
1976 static struct {
1977 struct bpf_prog_array hdr;
1978 struct bpf_prog *null_prog;
1979 } empty_prog_array = {
1980 .null_prog = NULL,
1981 };
1982
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1983 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1984 {
1985 if (prog_cnt)
1986 return kzalloc(sizeof(struct bpf_prog_array) +
1987 sizeof(struct bpf_prog_array_item) *
1988 (prog_cnt + 1),
1989 flags);
1990
1991 return &empty_prog_array.hdr;
1992 }
1993
bpf_prog_array_free(struct bpf_prog_array * progs)1994 void bpf_prog_array_free(struct bpf_prog_array *progs)
1995 {
1996 if (!progs || progs == &empty_prog_array.hdr)
1997 return;
1998 kfree_rcu(progs, rcu);
1999 }
2000
bpf_prog_array_length(struct bpf_prog_array * array)2001 int bpf_prog_array_length(struct bpf_prog_array *array)
2002 {
2003 struct bpf_prog_array_item *item;
2004 u32 cnt = 0;
2005
2006 for (item = array->items; item->prog; item++)
2007 if (item->prog != &dummy_bpf_prog.prog)
2008 cnt++;
2009 return cnt;
2010 }
2011
bpf_prog_array_is_empty(struct bpf_prog_array * array)2012 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2013 {
2014 struct bpf_prog_array_item *item;
2015
2016 for (item = array->items; item->prog; item++)
2017 if (item->prog != &dummy_bpf_prog.prog)
2018 return false;
2019 return true;
2020 }
2021
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2022 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2023 u32 *prog_ids,
2024 u32 request_cnt)
2025 {
2026 struct bpf_prog_array_item *item;
2027 int i = 0;
2028
2029 for (item = array->items; item->prog; item++) {
2030 if (item->prog == &dummy_bpf_prog.prog)
2031 continue;
2032 prog_ids[i] = item->prog->aux->id;
2033 if (++i == request_cnt) {
2034 item++;
2035 break;
2036 }
2037 }
2038
2039 return !!(item->prog);
2040 }
2041
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2042 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2043 __u32 __user *prog_ids, u32 cnt)
2044 {
2045 unsigned long err = 0;
2046 bool nospc;
2047 u32 *ids;
2048
2049 /* users of this function are doing:
2050 * cnt = bpf_prog_array_length();
2051 * if (cnt > 0)
2052 * bpf_prog_array_copy_to_user(..., cnt);
2053 * so below kcalloc doesn't need extra cnt > 0 check.
2054 */
2055 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2056 if (!ids)
2057 return -ENOMEM;
2058 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2059 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2060 kfree(ids);
2061 if (err)
2062 return -EFAULT;
2063 if (nospc)
2064 return -ENOSPC;
2065 return 0;
2066 }
2067
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2068 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2069 struct bpf_prog *old_prog)
2070 {
2071 struct bpf_prog_array_item *item;
2072
2073 for (item = array->items; item->prog; item++)
2074 if (item->prog == old_prog) {
2075 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2076 break;
2077 }
2078 }
2079
2080 /**
2081 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2082 * index into the program array with
2083 * a dummy no-op program.
2084 * @array: a bpf_prog_array
2085 * @index: the index of the program to replace
2086 *
2087 * Skips over dummy programs, by not counting them, when calculating
2088 * the position of the program to replace.
2089 *
2090 * Return:
2091 * * 0 - Success
2092 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2093 * * -ENOENT - Index out of range
2094 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2095 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2096 {
2097 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2098 }
2099
2100 /**
2101 * bpf_prog_array_update_at() - Updates the program at the given index
2102 * into the program array.
2103 * @array: a bpf_prog_array
2104 * @index: the index of the program to update
2105 * @prog: the program to insert into the array
2106 *
2107 * Skips over dummy programs, by not counting them, when calculating
2108 * the position of the program to update.
2109 *
2110 * Return:
2111 * * 0 - Success
2112 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2113 * * -ENOENT - Index out of range
2114 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2115 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2116 struct bpf_prog *prog)
2117 {
2118 struct bpf_prog_array_item *item;
2119
2120 if (unlikely(index < 0))
2121 return -EINVAL;
2122
2123 for (item = array->items; item->prog; item++) {
2124 if (item->prog == &dummy_bpf_prog.prog)
2125 continue;
2126 if (!index) {
2127 WRITE_ONCE(item->prog, prog);
2128 return 0;
2129 }
2130 index--;
2131 }
2132 return -ENOENT;
2133 }
2134
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2135 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2136 struct bpf_prog *exclude_prog,
2137 struct bpf_prog *include_prog,
2138 u64 bpf_cookie,
2139 struct bpf_prog_array **new_array)
2140 {
2141 int new_prog_cnt, carry_prog_cnt = 0;
2142 struct bpf_prog_array_item *existing, *new;
2143 struct bpf_prog_array *array;
2144 bool found_exclude = false;
2145
2146 /* Figure out how many existing progs we need to carry over to
2147 * the new array.
2148 */
2149 if (old_array) {
2150 existing = old_array->items;
2151 for (; existing->prog; existing++) {
2152 if (existing->prog == exclude_prog) {
2153 found_exclude = true;
2154 continue;
2155 }
2156 if (existing->prog != &dummy_bpf_prog.prog)
2157 carry_prog_cnt++;
2158 if (existing->prog == include_prog)
2159 return -EEXIST;
2160 }
2161 }
2162
2163 if (exclude_prog && !found_exclude)
2164 return -ENOENT;
2165
2166 /* How many progs (not NULL) will be in the new array? */
2167 new_prog_cnt = carry_prog_cnt;
2168 if (include_prog)
2169 new_prog_cnt += 1;
2170
2171 /* Do we have any prog (not NULL) in the new array? */
2172 if (!new_prog_cnt) {
2173 *new_array = NULL;
2174 return 0;
2175 }
2176
2177 /* +1 as the end of prog_array is marked with NULL */
2178 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2179 if (!array)
2180 return -ENOMEM;
2181 new = array->items;
2182
2183 /* Fill in the new prog array */
2184 if (carry_prog_cnt) {
2185 existing = old_array->items;
2186 for (; existing->prog; existing++) {
2187 if (existing->prog == exclude_prog ||
2188 existing->prog == &dummy_bpf_prog.prog)
2189 continue;
2190
2191 new->prog = existing->prog;
2192 new->bpf_cookie = existing->bpf_cookie;
2193 new++;
2194 }
2195 }
2196 if (include_prog) {
2197 new->prog = include_prog;
2198 new->bpf_cookie = bpf_cookie;
2199 new++;
2200 }
2201 new->prog = NULL;
2202 *new_array = array;
2203 return 0;
2204 }
2205
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2206 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2207 u32 *prog_ids, u32 request_cnt,
2208 u32 *prog_cnt)
2209 {
2210 u32 cnt = 0;
2211
2212 if (array)
2213 cnt = bpf_prog_array_length(array);
2214
2215 *prog_cnt = cnt;
2216
2217 /* return early if user requested only program count or nothing to copy */
2218 if (!request_cnt || !cnt)
2219 return 0;
2220
2221 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2222 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2223 : 0;
2224 }
2225
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2226 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2227 struct bpf_map **used_maps, u32 len)
2228 {
2229 struct bpf_map *map;
2230 u32 i;
2231
2232 for (i = 0; i < len; i++) {
2233 map = used_maps[i];
2234 if (map->ops->map_poke_untrack)
2235 map->ops->map_poke_untrack(map, aux);
2236 bpf_map_put(map);
2237 }
2238 }
2239
bpf_free_used_maps(struct bpf_prog_aux * aux)2240 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2241 {
2242 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2243 kfree(aux->used_maps);
2244 }
2245
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2246 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2247 struct btf_mod_pair *used_btfs, u32 len)
2248 {
2249 #ifdef CONFIG_BPF_SYSCALL
2250 struct btf_mod_pair *btf_mod;
2251 u32 i;
2252
2253 for (i = 0; i < len; i++) {
2254 btf_mod = &used_btfs[i];
2255 if (btf_mod->module)
2256 module_put(btf_mod->module);
2257 btf_put(btf_mod->btf);
2258 }
2259 #endif
2260 }
2261
bpf_free_used_btfs(struct bpf_prog_aux * aux)2262 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2263 {
2264 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2265 kfree(aux->used_btfs);
2266 }
2267
bpf_prog_free_deferred(struct work_struct * work)2268 static void bpf_prog_free_deferred(struct work_struct *work)
2269 {
2270 struct bpf_prog_aux *aux;
2271 int i;
2272
2273 aux = container_of(work, struct bpf_prog_aux, work);
2274 bpf_free_used_maps(aux);
2275 bpf_free_used_btfs(aux);
2276 if (bpf_prog_is_dev_bound(aux))
2277 bpf_prog_offload_destroy(aux->prog);
2278 #ifdef CONFIG_PERF_EVENTS
2279 if (aux->prog->has_callchain_buf)
2280 put_callchain_buffers();
2281 #endif
2282 if (aux->dst_trampoline)
2283 bpf_trampoline_put(aux->dst_trampoline);
2284 for (i = 0; i < aux->func_cnt; i++) {
2285 /* We can just unlink the subprog poke descriptor table as
2286 * it was originally linked to the main program and is also
2287 * released along with it.
2288 */
2289 aux->func[i]->aux->poke_tab = NULL;
2290 bpf_jit_free(aux->func[i]);
2291 }
2292 if (aux->func_cnt) {
2293 kfree(aux->func);
2294 bpf_prog_unlock_free(aux->prog);
2295 } else {
2296 bpf_jit_free(aux->prog);
2297 }
2298 }
2299
2300 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2301 void bpf_prog_free(struct bpf_prog *fp)
2302 {
2303 struct bpf_prog_aux *aux = fp->aux;
2304
2305 if (aux->dst_prog)
2306 bpf_prog_put(aux->dst_prog);
2307 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2308 schedule_work(&aux->work);
2309 }
2310 EXPORT_SYMBOL_GPL(bpf_prog_free);
2311
2312 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2313 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2314
bpf_user_rnd_init_once(void)2315 void bpf_user_rnd_init_once(void)
2316 {
2317 prandom_init_once(&bpf_user_rnd_state);
2318 }
2319
BPF_CALL_0(bpf_user_rnd_u32)2320 BPF_CALL_0(bpf_user_rnd_u32)
2321 {
2322 /* Should someone ever have the rather unwise idea to use some
2323 * of the registers passed into this function, then note that
2324 * this function is called from native eBPF and classic-to-eBPF
2325 * transformations. Register assignments from both sides are
2326 * different, f.e. classic always sets fn(ctx, A, X) here.
2327 */
2328 struct rnd_state *state;
2329 u32 res;
2330
2331 state = &get_cpu_var(bpf_user_rnd_state);
2332 res = prandom_u32_state(state);
2333 put_cpu_var(bpf_user_rnd_state);
2334
2335 return res;
2336 }
2337
BPF_CALL_0(bpf_get_raw_cpu_id)2338 BPF_CALL_0(bpf_get_raw_cpu_id)
2339 {
2340 return raw_smp_processor_id();
2341 }
2342
2343 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2344 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2345 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2346 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2347 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2348 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2349 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2350 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2351 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2352 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2353
2354 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2355 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2356 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2357 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2358 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2359 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2360
2361 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2362 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2363 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2364 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2365 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2366 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2367 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2368 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2369 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2370
bpf_get_trace_printk_proto(void)2371 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2372 {
2373 return NULL;
2374 }
2375
2376 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2377 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2378 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2379 {
2380 return -ENOTSUPP;
2381 }
2382 EXPORT_SYMBOL_GPL(bpf_event_output);
2383
2384 /* Always built-in helper functions. */
2385 const struct bpf_func_proto bpf_tail_call_proto = {
2386 .func = NULL,
2387 .gpl_only = false,
2388 .ret_type = RET_VOID,
2389 .arg1_type = ARG_PTR_TO_CTX,
2390 .arg2_type = ARG_CONST_MAP_PTR,
2391 .arg3_type = ARG_ANYTHING,
2392 };
2393
2394 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2395 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2396 * eBPF and implicitly also cBPF can get JITed!
2397 */
bpf_int_jit_compile(struct bpf_prog * prog)2398 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2399 {
2400 return prog;
2401 }
2402
2403 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2404 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2405 */
bpf_jit_compile(struct bpf_prog * prog)2406 void __weak bpf_jit_compile(struct bpf_prog *prog)
2407 {
2408 }
2409
bpf_helper_changes_pkt_data(void * func)2410 bool __weak bpf_helper_changes_pkt_data(void *func)
2411 {
2412 return false;
2413 }
2414
2415 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2416 * analysis code and wants explicit zero extension inserted by verifier.
2417 * Otherwise, return FALSE.
2418 *
2419 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2420 * you don't override this. JITs that don't want these extra insns can detect
2421 * them using insn_is_zext.
2422 */
bpf_jit_needs_zext(void)2423 bool __weak bpf_jit_needs_zext(void)
2424 {
2425 return false;
2426 }
2427
bpf_jit_supports_kfunc_call(void)2428 bool __weak bpf_jit_supports_kfunc_call(void)
2429 {
2430 return false;
2431 }
2432
2433 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2434 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2435 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2436 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2437 int len)
2438 {
2439 return -EFAULT;
2440 }
2441
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2442 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2443 void *addr1, void *addr2)
2444 {
2445 return -ENOTSUPP;
2446 }
2447
2448 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2449 EXPORT_SYMBOL(bpf_stats_enabled_key);
2450
2451 /* All definitions of tracepoints related to BPF. */
2452 #define CREATE_TRACE_POINTS
2453 #include <linux/bpf_trace.h>
2454
2455 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2456 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2457