• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32 
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 
btrfs_compress_type2str(enum btrfs_compression_type type)35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 	switch (type) {
38 	case BTRFS_COMPRESS_ZLIB:
39 	case BTRFS_COMPRESS_LZO:
40 	case BTRFS_COMPRESS_ZSTD:
41 	case BTRFS_COMPRESS_NONE:
42 		return btrfs_compress_types[type];
43 	default:
44 		break;
45 	}
46 
47 	return NULL;
48 }
49 
btrfs_compress_is_valid_type(const char * str,size_t len)50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 	int i;
53 
54 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 		size_t comp_len = strlen(btrfs_compress_types[i]);
56 
57 		if (len < comp_len)
58 			continue;
59 
60 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 			return true;
62 	}
63 	return false;
64 }
65 
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)66 static int compression_compress_pages(int type, struct list_head *ws,
67                struct address_space *mapping, u64 start, struct page **pages,
68                unsigned long *out_pages, unsigned long *total_in,
69                unsigned long *total_out)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 		return zlib_compress_pages(ws, mapping, start, pages,
74 				out_pages, total_in, total_out);
75 	case BTRFS_COMPRESS_LZO:
76 		return lzo_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_ZSTD:
79 		return zstd_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_NONE:
82 	default:
83 		/*
84 		 * This can happen when compression races with remount setting
85 		 * it to 'no compress', while caller doesn't call
86 		 * inode_need_compress() to check if we really need to
87 		 * compress.
88 		 *
89 		 * Not a big deal, just need to inform caller that we
90 		 * haven't allocated any pages yet.
91 		 */
92 		*out_pages = 0;
93 		return -E2BIG;
94 	}
95 }
96 
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)97 static int compression_decompress_bio(int type, struct list_head *ws,
98 		struct compressed_bio *cb)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_NONE:
105 	default:
106 		/*
107 		 * This can't happen, the type is validated several times
108 		 * before we get here.
109 		 */
110 		BUG();
111 	}
112 }
113 
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)114 static int compression_decompress(int type, struct list_head *ws,
115                unsigned char *data_in, struct page *dest_page,
116                unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 	switch (type) {
119 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 						start_byte, srclen, destlen);
121 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_NONE:
126 	default:
127 		/*
128 		 * This can't happen, the type is validated several times
129 		 * before we get here.
130 		 */
131 		BUG();
132 	}
133 }
134 
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136 
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 				      unsigned long disk_size)
139 {
140 	return sizeof(struct compressed_bio) +
141 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143 
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 				 u64 disk_start)
146 {
147 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 	const u32 csum_size = fs_info->csum_size;
150 	const u32 sectorsize = fs_info->sectorsize;
151 	struct page *page;
152 	unsigned int i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		u32 pg_offset;
165 		u32 bytes_left = PAGE_SIZE;
166 		page = cb->compressed_pages[i];
167 
168 		/* Determine the remaining bytes inside the page first */
169 		if (i == cb->nr_pages - 1)
170 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
171 
172 		/* Hash through the page sector by sector */
173 		for (pg_offset = 0; pg_offset < bytes_left;
174 		     pg_offset += sectorsize) {
175 			kaddr = kmap_atomic(page);
176 			crypto_shash_digest(shash, kaddr + pg_offset,
177 					    sectorsize, csum);
178 			kunmap_atomic(kaddr);
179 
180 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 				btrfs_print_data_csum_error(inode, disk_start,
182 						csum, cb_sum, cb->mirror_num);
183 				if (btrfs_io_bio(bio)->device)
184 					btrfs_dev_stat_inc_and_print(
185 						btrfs_io_bio(bio)->device,
186 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 				return -EIO;
188 			}
189 			cb_sum += csum_size;
190 			disk_start += sectorsize;
191 		}
192 	}
193 	return 0;
194 }
195 
196 /* when we finish reading compressed pages from the disk, we
197  * decompress them and then run the bio end_io routines on the
198  * decompressed pages (in the inode address space).
199  *
200  * This allows the checksumming and other IO error handling routines
201  * to work normally
202  *
203  * The compressed pages are freed here, and it must be run
204  * in process context
205  */
end_compressed_bio_read(struct bio * bio)206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 	struct compressed_bio *cb = bio->bi_private;
209 	struct inode *inode;
210 	struct page *page;
211 	unsigned int index;
212 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213 	int ret = 0;
214 
215 	if (bio->bi_status)
216 		cb->errors = 1;
217 
218 	/* if there are more bios still pending for this compressed
219 	 * extent, just exit
220 	 */
221 	if (!refcount_dec_and_test(&cb->pending_bios))
222 		goto out;
223 
224 	/*
225 	 * Record the correct mirror_num in cb->orig_bio so that
226 	 * read-repair can work properly.
227 	 */
228 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 	cb->mirror_num = mirror;
230 
231 	/*
232 	 * Some IO in this cb have failed, just skip checksum as there
233 	 * is no way it could be correct.
234 	 */
235 	if (cb->errors == 1)
236 		goto csum_failed;
237 
238 	inode = cb->inode;
239 	ret = check_compressed_csum(BTRFS_I(inode), bio,
240 				    bio->bi_iter.bi_sector << 9);
241 	if (ret)
242 		goto csum_failed;
243 
244 	/* ok, we're the last bio for this extent, lets start
245 	 * the decompression.
246 	 */
247 	ret = btrfs_decompress_bio(cb);
248 
249 csum_failed:
250 	if (ret)
251 		cb->errors = 1;
252 
253 	/* release the compressed pages */
254 	index = 0;
255 	for (index = 0; index < cb->nr_pages; index++) {
256 		page = cb->compressed_pages[index];
257 		page->mapping = NULL;
258 		put_page(page);
259 	}
260 
261 	/* do io completion on the original bio */
262 	if (cb->errors) {
263 		bio_io_error(cb->orig_bio);
264 	} else {
265 		struct bio_vec *bvec;
266 		struct bvec_iter_all iter_all;
267 
268 		/*
269 		 * we have verified the checksum already, set page
270 		 * checked so the end_io handlers know about it
271 		 */
272 		ASSERT(!bio_flagged(bio, BIO_CLONED));
273 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 			SetPageChecked(bvec->bv_page);
275 
276 		bio_endio(cb->orig_bio);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * Clear the writeback bits on all of the file
288  * pages for a compressed write
289  */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)290 static noinline void end_compressed_writeback(struct inode *inode,
291 					      const struct compressed_bio *cb)
292 {
293 	unsigned long index = cb->start >> PAGE_SHIFT;
294 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 	struct page *pages[16];
296 	unsigned long nr_pages = end_index - index + 1;
297 	int i;
298 	int ret;
299 
300 	if (cb->errors)
301 		mapping_set_error(inode->i_mapping, -EIO);
302 
303 	while (nr_pages > 0) {
304 		ret = find_get_pages_contig(inode->i_mapping, index,
305 				     min_t(unsigned long,
306 				     nr_pages, ARRAY_SIZE(pages)), pages);
307 		if (ret == 0) {
308 			nr_pages -= 1;
309 			index += 1;
310 			continue;
311 		}
312 		for (i = 0; i < ret; i++) {
313 			if (cb->errors)
314 				SetPageError(pages[i]);
315 			end_page_writeback(pages[i]);
316 			put_page(pages[i]);
317 		}
318 		nr_pages -= ret;
319 		index += ret;
320 	}
321 	/* the inode may be gone now */
322 }
323 
324 /*
325  * do the cleanup once all the compressed pages hit the disk.
326  * This will clear writeback on the file pages and free the compressed
327  * pages.
328  *
329  * This also calls the writeback end hooks for the file pages so that
330  * metadata and checksums can be updated in the file.
331  */
end_compressed_bio_write(struct bio * bio)332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 	struct compressed_bio *cb = bio->bi_private;
335 	struct inode *inode;
336 	struct page *page;
337 	unsigned int index;
338 
339 	if (bio->bi_status)
340 		cb->errors = 1;
341 
342 	/* if there are more bios still pending for this compressed
343 	 * extent, just exit
344 	 */
345 	if (!refcount_dec_and_test(&cb->pending_bios))
346 		goto out;
347 
348 	/* ok, we're the last bio for this extent, step one is to
349 	 * call back into the FS and do all the end_io operations
350 	 */
351 	inode = cb->inode;
352 	btrfs_record_physical_zoned(inode, cb->start, bio);
353 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354 			cb->start, cb->start + cb->len - 1,
355 			!cb->errors);
356 
357 	end_compressed_writeback(inode, cb);
358 	/* note, our inode could be gone now */
359 
360 	/*
361 	 * release the compressed pages, these came from alloc_page and
362 	 * are not attached to the inode at all
363 	 */
364 	index = 0;
365 	for (index = 0; index < cb->nr_pages; index++) {
366 		page = cb->compressed_pages[index];
367 		page->mapping = NULL;
368 		put_page(page);
369 	}
370 
371 	/* finally free the cb struct */
372 	kfree(cb->compressed_pages);
373 	kfree(cb);
374 out:
375 	bio_put(bio);
376 }
377 
378 /*
379  * worker function to build and submit bios for previously compressed pages.
380  * The corresponding pages in the inode should be marked for writeback
381  * and the compressed pages should have a reference on them for dropping
382  * when the IO is complete.
383  *
384  * This also checksums the file bytes and gets things ready for
385  * the end io hooks.
386  */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned int len,u64 disk_start,unsigned int compressed_len,struct page ** compressed_pages,unsigned int nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 				 unsigned int len, u64 disk_start,
389 				 unsigned int compressed_len,
390 				 struct page **compressed_pages,
391 				 unsigned int nr_pages,
392 				 unsigned int write_flags,
393 				 struct cgroup_subsys_state *blkcg_css)
394 {
395 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 	struct bio *bio = NULL;
397 	struct compressed_bio *cb;
398 	unsigned long bytes_left;
399 	int pg_index = 0;
400 	struct page *page;
401 	u64 first_byte = disk_start;
402 	blk_status_t ret;
403 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
405 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
406 
407 	WARN_ON(!PAGE_ALIGNED(start));
408 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409 	if (!cb)
410 		return BLK_STS_RESOURCE;
411 	refcount_set(&cb->pending_bios, 0);
412 	cb->errors = 0;
413 	cb->inode = &inode->vfs_inode;
414 	cb->start = start;
415 	cb->len = len;
416 	cb->mirror_num = 0;
417 	cb->compressed_pages = compressed_pages;
418 	cb->compressed_len = compressed_len;
419 	cb->orig_bio = NULL;
420 	cb->nr_pages = nr_pages;
421 
422 	bio = btrfs_bio_alloc(first_byte);
423 	bio->bi_opf = bio_op | write_flags;
424 	bio->bi_private = cb;
425 	bio->bi_end_io = end_compressed_bio_write;
426 
427 	if (use_append) {
428 		struct btrfs_device *device;
429 
430 		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
431 		if (IS_ERR(device)) {
432 			kfree(cb);
433 			bio_put(bio);
434 			return BLK_STS_NOTSUPP;
435 		}
436 
437 		bio_set_dev(bio, device->bdev);
438 	}
439 
440 	if (blkcg_css) {
441 		bio->bi_opf |= REQ_CGROUP_PUNT;
442 		kthread_associate_blkcg(blkcg_css);
443 	}
444 	refcount_set(&cb->pending_bios, 1);
445 
446 	/* create and submit bios for the compressed pages */
447 	bytes_left = compressed_len;
448 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449 		int submit = 0;
450 		int len = 0;
451 
452 		page = compressed_pages[pg_index];
453 		page->mapping = inode->vfs_inode.i_mapping;
454 		if (bio->bi_iter.bi_size)
455 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
456 							  0);
457 
458 		/*
459 		 * Page can only be added to bio if the current bio fits in
460 		 * stripe.
461 		 */
462 		if (!submit) {
463 			if (pg_index == 0 && use_append)
464 				len = bio_add_zone_append_page(bio, page,
465 							       PAGE_SIZE, 0);
466 			else
467 				len = bio_add_page(bio, page, PAGE_SIZE, 0);
468 		}
469 
470 		page->mapping = NULL;
471 		if (submit || len < PAGE_SIZE) {
472 			/*
473 			 * inc the count before we submit the bio so
474 			 * we know the end IO handler won't happen before
475 			 * we inc the count.  Otherwise, the cb might get
476 			 * freed before we're done setting it up
477 			 */
478 			refcount_inc(&cb->pending_bios);
479 			ret = btrfs_bio_wq_end_io(fs_info, bio,
480 						  BTRFS_WQ_ENDIO_DATA);
481 			BUG_ON(ret); /* -ENOMEM */
482 
483 			if (!skip_sum) {
484 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 				BUG_ON(ret); /* -ENOMEM */
486 			}
487 
488 			ret = btrfs_map_bio(fs_info, bio, 0);
489 			if (ret) {
490 				bio->bi_status = ret;
491 				bio_endio(bio);
492 			}
493 
494 			bio = btrfs_bio_alloc(first_byte);
495 			bio->bi_opf = bio_op | write_flags;
496 			bio->bi_private = cb;
497 			bio->bi_end_io = end_compressed_bio_write;
498 			if (blkcg_css)
499 				bio->bi_opf |= REQ_CGROUP_PUNT;
500 			/*
501 			 * Use bio_add_page() to ensure the bio has at least one
502 			 * page.
503 			 */
504 			bio_add_page(bio, page, PAGE_SIZE, 0);
505 		}
506 		if (bytes_left < PAGE_SIZE) {
507 			btrfs_info(fs_info,
508 					"bytes left %lu compress len %u nr %u",
509 			       bytes_left, cb->compressed_len, cb->nr_pages);
510 		}
511 		bytes_left -= PAGE_SIZE;
512 		first_byte += PAGE_SIZE;
513 		cond_resched();
514 	}
515 
516 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
517 	BUG_ON(ret); /* -ENOMEM */
518 
519 	if (!skip_sum) {
520 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
521 		BUG_ON(ret); /* -ENOMEM */
522 	}
523 
524 	ret = btrfs_map_bio(fs_info, bio, 0);
525 	if (ret) {
526 		bio->bi_status = ret;
527 		bio_endio(bio);
528 	}
529 
530 	if (blkcg_css)
531 		kthread_associate_blkcg(NULL);
532 
533 	return 0;
534 }
535 
bio_end_offset(struct bio * bio)536 static u64 bio_end_offset(struct bio *bio)
537 {
538 	struct bio_vec *last = bio_last_bvec_all(bio);
539 
540 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
541 }
542 
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)543 static noinline int add_ra_bio_pages(struct inode *inode,
544 				     u64 compressed_end,
545 				     struct compressed_bio *cb)
546 {
547 	unsigned long end_index;
548 	unsigned long pg_index;
549 	u64 last_offset;
550 	u64 isize = i_size_read(inode);
551 	int ret;
552 	struct page *page;
553 	struct extent_map *em;
554 	struct address_space *mapping = inode->i_mapping;
555 	struct extent_map_tree *em_tree;
556 	struct extent_io_tree *tree;
557 	u64 end;
558 	int misses = 0;
559 
560 	last_offset = bio_end_offset(cb->orig_bio);
561 	em_tree = &BTRFS_I(inode)->extent_tree;
562 	tree = &BTRFS_I(inode)->io_tree;
563 
564 	if (isize == 0)
565 		return 0;
566 
567 	/*
568 	 * For current subpage support, we only support 64K page size,
569 	 * which means maximum compressed extent size (128K) is just 2x page
570 	 * size.
571 	 * This makes readahead less effective, so here disable readahead for
572 	 * subpage for now, until full compressed write is supported.
573 	 */
574 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
575 		return 0;
576 
577 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
578 
579 	while (last_offset < compressed_end) {
580 		pg_index = last_offset >> PAGE_SHIFT;
581 
582 		if (pg_index > end_index)
583 			break;
584 
585 		page = xa_load(&mapping->i_pages, pg_index);
586 		if (page && !xa_is_value(page)) {
587 			misses++;
588 			if (misses > 4)
589 				break;
590 			goto next;
591 		}
592 
593 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
594 								 ~__GFP_FS));
595 		if (!page)
596 			break;
597 
598 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
599 			put_page(page);
600 			goto next;
601 		}
602 
603 		/*
604 		 * at this point, we have a locked page in the page cache
605 		 * for these bytes in the file.  But, we have to make
606 		 * sure they map to this compressed extent on disk.
607 		 */
608 		ret = set_page_extent_mapped(page);
609 		if (ret < 0) {
610 			unlock_page(page);
611 			put_page(page);
612 			break;
613 		}
614 
615 		end = last_offset + PAGE_SIZE - 1;
616 		lock_extent(tree, last_offset, end);
617 		read_lock(&em_tree->lock);
618 		em = lookup_extent_mapping(em_tree, last_offset,
619 					   PAGE_SIZE);
620 		read_unlock(&em_tree->lock);
621 
622 		if (!em || last_offset < em->start ||
623 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
624 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
625 			free_extent_map(em);
626 			unlock_extent(tree, last_offset, end);
627 			unlock_page(page);
628 			put_page(page);
629 			break;
630 		}
631 		free_extent_map(em);
632 
633 		if (page->index == end_index) {
634 			size_t zero_offset = offset_in_page(isize);
635 
636 			if (zero_offset) {
637 				int zeros;
638 				zeros = PAGE_SIZE - zero_offset;
639 				memzero_page(page, zero_offset, zeros);
640 				flush_dcache_page(page);
641 			}
642 		}
643 
644 		ret = bio_add_page(cb->orig_bio, page,
645 				   PAGE_SIZE, 0);
646 
647 		if (ret == PAGE_SIZE) {
648 			put_page(page);
649 		} else {
650 			unlock_extent(tree, last_offset, end);
651 			unlock_page(page);
652 			put_page(page);
653 			break;
654 		}
655 next:
656 		last_offset += PAGE_SIZE;
657 	}
658 	return 0;
659 }
660 
661 /*
662  * for a compressed read, the bio we get passed has all the inode pages
663  * in it.  We don't actually do IO on those pages but allocate new ones
664  * to hold the compressed pages on disk.
665  *
666  * bio->bi_iter.bi_sector points to the compressed extent on disk
667  * bio->bi_io_vec points to all of the inode pages
668  *
669  * After the compressed pages are read, we copy the bytes into the
670  * bio we were passed and then call the bio end_io calls
671  */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)672 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
673 				 int mirror_num, unsigned long bio_flags)
674 {
675 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
676 	struct extent_map_tree *em_tree;
677 	struct compressed_bio *cb;
678 	unsigned int compressed_len;
679 	unsigned int nr_pages;
680 	unsigned int pg_index;
681 	struct page *page;
682 	struct bio *comp_bio;
683 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
684 	u64 file_offset;
685 	u64 em_len;
686 	u64 em_start;
687 	struct extent_map *em;
688 	blk_status_t ret = BLK_STS_RESOURCE;
689 	int faili = 0;
690 	u8 *sums;
691 
692 	em_tree = &BTRFS_I(inode)->extent_tree;
693 
694 	file_offset = bio_first_bvec_all(bio)->bv_offset +
695 		      page_offset(bio_first_page_all(bio));
696 
697 	/* we need the actual starting offset of this extent in the file */
698 	read_lock(&em_tree->lock);
699 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
700 	read_unlock(&em_tree->lock);
701 	if (!em)
702 		return BLK_STS_IOERR;
703 
704 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
705 	compressed_len = em->block_len;
706 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
707 	if (!cb)
708 		goto out;
709 
710 	refcount_set(&cb->pending_bios, 0);
711 	cb->errors = 0;
712 	cb->inode = inode;
713 	cb->mirror_num = mirror_num;
714 	sums = cb->sums;
715 
716 	cb->start = em->orig_start;
717 	em_len = em->len;
718 	em_start = em->start;
719 
720 	free_extent_map(em);
721 	em = NULL;
722 
723 	cb->len = bio->bi_iter.bi_size;
724 	cb->compressed_len = compressed_len;
725 	cb->compress_type = extent_compress_type(bio_flags);
726 	cb->orig_bio = bio;
727 
728 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
729 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
730 				       GFP_NOFS);
731 	if (!cb->compressed_pages)
732 		goto fail1;
733 
734 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
735 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
736 		if (!cb->compressed_pages[pg_index]) {
737 			faili = pg_index - 1;
738 			ret = BLK_STS_RESOURCE;
739 			goto fail2;
740 		}
741 	}
742 	faili = nr_pages - 1;
743 	cb->nr_pages = nr_pages;
744 
745 	add_ra_bio_pages(inode, em_start + em_len, cb);
746 
747 	/* include any pages we added in add_ra-bio_pages */
748 	cb->len = bio->bi_iter.bi_size;
749 
750 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
751 	comp_bio->bi_opf = REQ_OP_READ;
752 	comp_bio->bi_private = cb;
753 	comp_bio->bi_end_io = end_compressed_bio_read;
754 	refcount_set(&cb->pending_bios, 1);
755 
756 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
757 		u32 pg_len = PAGE_SIZE;
758 		int submit = 0;
759 
760 		/*
761 		 * To handle subpage case, we need to make sure the bio only
762 		 * covers the range we need.
763 		 *
764 		 * If we're at the last page, truncate the length to only cover
765 		 * the remaining part.
766 		 */
767 		if (pg_index == nr_pages - 1)
768 			pg_len = min_t(u32, PAGE_SIZE,
769 					compressed_len - pg_index * PAGE_SIZE);
770 
771 		page = cb->compressed_pages[pg_index];
772 		page->mapping = inode->i_mapping;
773 		page->index = em_start >> PAGE_SHIFT;
774 
775 		if (comp_bio->bi_iter.bi_size)
776 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
777 							  comp_bio, 0);
778 
779 		page->mapping = NULL;
780 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
781 			unsigned int nr_sectors;
782 
783 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
784 						  BTRFS_WQ_ENDIO_DATA);
785 			BUG_ON(ret); /* -ENOMEM */
786 
787 			/*
788 			 * inc the count before we submit the bio so
789 			 * we know the end IO handler won't happen before
790 			 * we inc the count.  Otherwise, the cb might get
791 			 * freed before we're done setting it up
792 			 */
793 			refcount_inc(&cb->pending_bios);
794 
795 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
796 			BUG_ON(ret); /* -ENOMEM */
797 
798 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
799 						  fs_info->sectorsize);
800 			sums += fs_info->csum_size * nr_sectors;
801 
802 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
803 			if (ret) {
804 				comp_bio->bi_status = ret;
805 				bio_endio(comp_bio);
806 			}
807 
808 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
809 			comp_bio->bi_opf = REQ_OP_READ;
810 			comp_bio->bi_private = cb;
811 			comp_bio->bi_end_io = end_compressed_bio_read;
812 
813 			bio_add_page(comp_bio, page, pg_len, 0);
814 		}
815 		cur_disk_byte += pg_len;
816 	}
817 
818 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
819 	BUG_ON(ret); /* -ENOMEM */
820 
821 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
822 	BUG_ON(ret); /* -ENOMEM */
823 
824 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
825 	if (ret) {
826 		comp_bio->bi_status = ret;
827 		bio_endio(comp_bio);
828 	}
829 
830 	return 0;
831 
832 fail2:
833 	while (faili >= 0) {
834 		__free_page(cb->compressed_pages[faili]);
835 		faili--;
836 	}
837 
838 	kfree(cb->compressed_pages);
839 fail1:
840 	kfree(cb);
841 out:
842 	free_extent_map(em);
843 	return ret;
844 }
845 
846 /*
847  * Heuristic uses systematic sampling to collect data from the input data
848  * range, the logic can be tuned by the following constants:
849  *
850  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
851  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
852  */
853 #define SAMPLING_READ_SIZE	(16)
854 #define SAMPLING_INTERVAL	(256)
855 
856 /*
857  * For statistical analysis of the input data we consider bytes that form a
858  * Galois Field of 256 objects. Each object has an attribute count, ie. how
859  * many times the object appeared in the sample.
860  */
861 #define BUCKET_SIZE		(256)
862 
863 /*
864  * The size of the sample is based on a statistical sampling rule of thumb.
865  * The common way is to perform sampling tests as long as the number of
866  * elements in each cell is at least 5.
867  *
868  * Instead of 5, we choose 32 to obtain more accurate results.
869  * If the data contain the maximum number of symbols, which is 256, we obtain a
870  * sample size bound by 8192.
871  *
872  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
873  * from up to 512 locations.
874  */
875 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
876 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
877 
878 struct bucket_item {
879 	u32 count;
880 };
881 
882 struct heuristic_ws {
883 	/* Partial copy of input data */
884 	u8 *sample;
885 	u32 sample_size;
886 	/* Buckets store counters for each byte value */
887 	struct bucket_item *bucket;
888 	/* Sorting buffer */
889 	struct bucket_item *bucket_b;
890 	struct list_head list;
891 };
892 
893 static struct workspace_manager heuristic_wsm;
894 
free_heuristic_ws(struct list_head * ws)895 static void free_heuristic_ws(struct list_head *ws)
896 {
897 	struct heuristic_ws *workspace;
898 
899 	workspace = list_entry(ws, struct heuristic_ws, list);
900 
901 	kvfree(workspace->sample);
902 	kfree(workspace->bucket);
903 	kfree(workspace->bucket_b);
904 	kfree(workspace);
905 }
906 
alloc_heuristic_ws(unsigned int level)907 static struct list_head *alloc_heuristic_ws(unsigned int level)
908 {
909 	struct heuristic_ws *ws;
910 
911 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
912 	if (!ws)
913 		return ERR_PTR(-ENOMEM);
914 
915 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
916 	if (!ws->sample)
917 		goto fail;
918 
919 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
920 	if (!ws->bucket)
921 		goto fail;
922 
923 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
924 	if (!ws->bucket_b)
925 		goto fail;
926 
927 	INIT_LIST_HEAD(&ws->list);
928 	return &ws->list;
929 fail:
930 	free_heuristic_ws(&ws->list);
931 	return ERR_PTR(-ENOMEM);
932 }
933 
934 const struct btrfs_compress_op btrfs_heuristic_compress = {
935 	.workspace_manager = &heuristic_wsm,
936 };
937 
938 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
939 	/* The heuristic is represented as compression type 0 */
940 	&btrfs_heuristic_compress,
941 	&btrfs_zlib_compress,
942 	&btrfs_lzo_compress,
943 	&btrfs_zstd_compress,
944 };
945 
alloc_workspace(int type,unsigned int level)946 static struct list_head *alloc_workspace(int type, unsigned int level)
947 {
948 	switch (type) {
949 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
950 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
951 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
952 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
953 	default:
954 		/*
955 		 * This can't happen, the type is validated several times
956 		 * before we get here.
957 		 */
958 		BUG();
959 	}
960 }
961 
free_workspace(int type,struct list_head * ws)962 static void free_workspace(int type, struct list_head *ws)
963 {
964 	switch (type) {
965 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
966 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
967 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
968 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
969 	default:
970 		/*
971 		 * This can't happen, the type is validated several times
972 		 * before we get here.
973 		 */
974 		BUG();
975 	}
976 }
977 
btrfs_init_workspace_manager(int type)978 static void btrfs_init_workspace_manager(int type)
979 {
980 	struct workspace_manager *wsm;
981 	struct list_head *workspace;
982 
983 	wsm = btrfs_compress_op[type]->workspace_manager;
984 	INIT_LIST_HEAD(&wsm->idle_ws);
985 	spin_lock_init(&wsm->ws_lock);
986 	atomic_set(&wsm->total_ws, 0);
987 	init_waitqueue_head(&wsm->ws_wait);
988 
989 	/*
990 	 * Preallocate one workspace for each compression type so we can
991 	 * guarantee forward progress in the worst case
992 	 */
993 	workspace = alloc_workspace(type, 0);
994 	if (IS_ERR(workspace)) {
995 		pr_warn(
996 	"BTRFS: cannot preallocate compression workspace, will try later\n");
997 	} else {
998 		atomic_set(&wsm->total_ws, 1);
999 		wsm->free_ws = 1;
1000 		list_add(workspace, &wsm->idle_ws);
1001 	}
1002 }
1003 
btrfs_cleanup_workspace_manager(int type)1004 static void btrfs_cleanup_workspace_manager(int type)
1005 {
1006 	struct workspace_manager *wsman;
1007 	struct list_head *ws;
1008 
1009 	wsman = btrfs_compress_op[type]->workspace_manager;
1010 	while (!list_empty(&wsman->idle_ws)) {
1011 		ws = wsman->idle_ws.next;
1012 		list_del(ws);
1013 		free_workspace(type, ws);
1014 		atomic_dec(&wsman->total_ws);
1015 	}
1016 }
1017 
1018 /*
1019  * This finds an available workspace or allocates a new one.
1020  * If it's not possible to allocate a new one, waits until there's one.
1021  * Preallocation makes a forward progress guarantees and we do not return
1022  * errors.
1023  */
btrfs_get_workspace(int type,unsigned int level)1024 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1025 {
1026 	struct workspace_manager *wsm;
1027 	struct list_head *workspace;
1028 	int cpus = num_online_cpus();
1029 	unsigned nofs_flag;
1030 	struct list_head *idle_ws;
1031 	spinlock_t *ws_lock;
1032 	atomic_t *total_ws;
1033 	wait_queue_head_t *ws_wait;
1034 	int *free_ws;
1035 
1036 	wsm = btrfs_compress_op[type]->workspace_manager;
1037 	idle_ws	 = &wsm->idle_ws;
1038 	ws_lock	 = &wsm->ws_lock;
1039 	total_ws = &wsm->total_ws;
1040 	ws_wait	 = &wsm->ws_wait;
1041 	free_ws	 = &wsm->free_ws;
1042 
1043 again:
1044 	spin_lock(ws_lock);
1045 	if (!list_empty(idle_ws)) {
1046 		workspace = idle_ws->next;
1047 		list_del(workspace);
1048 		(*free_ws)--;
1049 		spin_unlock(ws_lock);
1050 		return workspace;
1051 
1052 	}
1053 	if (atomic_read(total_ws) > cpus) {
1054 		DEFINE_WAIT(wait);
1055 
1056 		spin_unlock(ws_lock);
1057 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1058 		if (atomic_read(total_ws) > cpus && !*free_ws)
1059 			schedule();
1060 		finish_wait(ws_wait, &wait);
1061 		goto again;
1062 	}
1063 	atomic_inc(total_ws);
1064 	spin_unlock(ws_lock);
1065 
1066 	/*
1067 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1068 	 * to turn it off here because we might get called from the restricted
1069 	 * context of btrfs_compress_bio/btrfs_compress_pages
1070 	 */
1071 	nofs_flag = memalloc_nofs_save();
1072 	workspace = alloc_workspace(type, level);
1073 	memalloc_nofs_restore(nofs_flag);
1074 
1075 	if (IS_ERR(workspace)) {
1076 		atomic_dec(total_ws);
1077 		wake_up(ws_wait);
1078 
1079 		/*
1080 		 * Do not return the error but go back to waiting. There's a
1081 		 * workspace preallocated for each type and the compression
1082 		 * time is bounded so we get to a workspace eventually. This
1083 		 * makes our caller's life easier.
1084 		 *
1085 		 * To prevent silent and low-probability deadlocks (when the
1086 		 * initial preallocation fails), check if there are any
1087 		 * workspaces at all.
1088 		 */
1089 		if (atomic_read(total_ws) == 0) {
1090 			static DEFINE_RATELIMIT_STATE(_rs,
1091 					/* once per minute */ 60 * HZ,
1092 					/* no burst */ 1);
1093 
1094 			if (__ratelimit(&_rs)) {
1095 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1096 			}
1097 		}
1098 		goto again;
1099 	}
1100 	return workspace;
1101 }
1102 
get_workspace(int type,int level)1103 static struct list_head *get_workspace(int type, int level)
1104 {
1105 	switch (type) {
1106 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1107 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1108 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1109 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1110 	default:
1111 		/*
1112 		 * This can't happen, the type is validated several times
1113 		 * before we get here.
1114 		 */
1115 		BUG();
1116 	}
1117 }
1118 
1119 /*
1120  * put a workspace struct back on the list or free it if we have enough
1121  * idle ones sitting around
1122  */
btrfs_put_workspace(int type,struct list_head * ws)1123 void btrfs_put_workspace(int type, struct list_head *ws)
1124 {
1125 	struct workspace_manager *wsm;
1126 	struct list_head *idle_ws;
1127 	spinlock_t *ws_lock;
1128 	atomic_t *total_ws;
1129 	wait_queue_head_t *ws_wait;
1130 	int *free_ws;
1131 
1132 	wsm = btrfs_compress_op[type]->workspace_manager;
1133 	idle_ws	 = &wsm->idle_ws;
1134 	ws_lock	 = &wsm->ws_lock;
1135 	total_ws = &wsm->total_ws;
1136 	ws_wait	 = &wsm->ws_wait;
1137 	free_ws	 = &wsm->free_ws;
1138 
1139 	spin_lock(ws_lock);
1140 	if (*free_ws <= num_online_cpus()) {
1141 		list_add(ws, idle_ws);
1142 		(*free_ws)++;
1143 		spin_unlock(ws_lock);
1144 		goto wake;
1145 	}
1146 	spin_unlock(ws_lock);
1147 
1148 	free_workspace(type, ws);
1149 	atomic_dec(total_ws);
1150 wake:
1151 	cond_wake_up(ws_wait);
1152 }
1153 
put_workspace(int type,struct list_head * ws)1154 static void put_workspace(int type, struct list_head *ws)
1155 {
1156 	switch (type) {
1157 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1158 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1159 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1160 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1161 	default:
1162 		/*
1163 		 * This can't happen, the type is validated several times
1164 		 * before we get here.
1165 		 */
1166 		BUG();
1167 	}
1168 }
1169 
1170 /*
1171  * Adjust @level according to the limits of the compression algorithm or
1172  * fallback to default
1173  */
btrfs_compress_set_level(int type,unsigned level)1174 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1175 {
1176 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1177 
1178 	if (level == 0)
1179 		level = ops->default_level;
1180 	else
1181 		level = min(level, ops->max_level);
1182 
1183 	return level;
1184 }
1185 
1186 /*
1187  * Given an address space and start and length, compress the bytes into @pages
1188  * that are allocated on demand.
1189  *
1190  * @type_level is encoded algorithm and level, where level 0 means whatever
1191  * default the algorithm chooses and is opaque here;
1192  * - compression algo are 0-3
1193  * - the level are bits 4-7
1194  *
1195  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1196  * and returns number of actually allocated pages
1197  *
1198  * @total_in is used to return the number of bytes actually read.  It
1199  * may be smaller than the input length if we had to exit early because we
1200  * ran out of room in the pages array or because we cross the
1201  * max_out threshold.
1202  *
1203  * @total_out is an in/out parameter, must be set to the input length and will
1204  * be also used to return the total number of compressed bytes
1205  */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1206 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1207 			 u64 start, struct page **pages,
1208 			 unsigned long *out_pages,
1209 			 unsigned long *total_in,
1210 			 unsigned long *total_out)
1211 {
1212 	int type = btrfs_compress_type(type_level);
1213 	int level = btrfs_compress_level(type_level);
1214 	struct list_head *workspace;
1215 	int ret;
1216 
1217 	level = btrfs_compress_set_level(type, level);
1218 	workspace = get_workspace(type, level);
1219 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1220 					 out_pages, total_in, total_out);
1221 	put_workspace(type, workspace);
1222 	return ret;
1223 }
1224 
btrfs_decompress_bio(struct compressed_bio * cb)1225 static int btrfs_decompress_bio(struct compressed_bio *cb)
1226 {
1227 	struct list_head *workspace;
1228 	int ret;
1229 	int type = cb->compress_type;
1230 
1231 	workspace = get_workspace(type, 0);
1232 	ret = compression_decompress_bio(type, workspace, cb);
1233 	put_workspace(type, workspace);
1234 
1235 	return ret;
1236 }
1237 
1238 /*
1239  * a less complex decompression routine.  Our compressed data fits in a
1240  * single page, and we want to read a single page out of it.
1241  * start_byte tells us the offset into the compressed data we're interested in
1242  */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1243 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1244 		     unsigned long start_byte, size_t srclen, size_t destlen)
1245 {
1246 	struct list_head *workspace;
1247 	int ret;
1248 
1249 	workspace = get_workspace(type, 0);
1250 	ret = compression_decompress(type, workspace, data_in, dest_page,
1251 				     start_byte, srclen, destlen);
1252 	put_workspace(type, workspace);
1253 
1254 	return ret;
1255 }
1256 
btrfs_init_compress(void)1257 void __init btrfs_init_compress(void)
1258 {
1259 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1260 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1261 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1262 	zstd_init_workspace_manager();
1263 }
1264 
btrfs_exit_compress(void)1265 void __cold btrfs_exit_compress(void)
1266 {
1267 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1268 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1269 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1270 	zstd_cleanup_workspace_manager();
1271 }
1272 
1273 /*
1274  * Copy decompressed data from working buffer to pages.
1275  *
1276  * @buf:		The decompressed data buffer
1277  * @buf_len:		The decompressed data length
1278  * @decompressed:	Number of bytes that are already decompressed inside the
1279  * 			compressed extent
1280  * @cb:			The compressed extent descriptor
1281  * @orig_bio:		The original bio that the caller wants to read for
1282  *
1283  * An easier to understand graph is like below:
1284  *
1285  * 		|<- orig_bio ->|     |<- orig_bio->|
1286  * 	|<-------      full decompressed extent      ----->|
1287  * 	|<-----------    @cb range   ---->|
1288  * 	|			|<-- @buf_len -->|
1289  * 	|<--- @decompressed --->|
1290  *
1291  * Note that, @cb can be a subpage of the full decompressed extent, but
1292  * @cb->start always has the same as the orig_file_offset value of the full
1293  * decompressed extent.
1294  *
1295  * When reading compressed extent, we have to read the full compressed extent,
1296  * while @orig_bio may only want part of the range.
1297  * Thus this function will ensure only data covered by @orig_bio will be copied
1298  * to.
1299  *
1300  * Return 0 if we have copied all needed contents for @orig_bio.
1301  * Return >0 if we need continue decompress.
1302  */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1303 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1304 			      struct compressed_bio *cb, u32 decompressed)
1305 {
1306 	struct bio *orig_bio = cb->orig_bio;
1307 	/* Offset inside the full decompressed extent */
1308 	u32 cur_offset;
1309 
1310 	cur_offset = decompressed;
1311 	/* The main loop to do the copy */
1312 	while (cur_offset < decompressed + buf_len) {
1313 		struct bio_vec bvec;
1314 		size_t copy_len;
1315 		u32 copy_start;
1316 		/* Offset inside the full decompressed extent */
1317 		u32 bvec_offset;
1318 
1319 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1320 		/*
1321 		 * cb->start may underflow, but subtracting that value can still
1322 		 * give us correct offset inside the full decompressed extent.
1323 		 */
1324 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1325 
1326 		/* Haven't reached the bvec range, exit */
1327 		if (decompressed + buf_len <= bvec_offset)
1328 			return 1;
1329 
1330 		copy_start = max(cur_offset, bvec_offset);
1331 		copy_len = min(bvec_offset + bvec.bv_len,
1332 			       decompressed + buf_len) - copy_start;
1333 		ASSERT(copy_len);
1334 
1335 		/*
1336 		 * Extra range check to ensure we didn't go beyond
1337 		 * @buf + @buf_len.
1338 		 */
1339 		ASSERT(copy_start - decompressed < buf_len);
1340 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1341 			       buf + copy_start - decompressed, copy_len);
1342 		flush_dcache_page(bvec.bv_page);
1343 		cur_offset += copy_len;
1344 
1345 		bio_advance(orig_bio, copy_len);
1346 		/* Finished the bio */
1347 		if (!orig_bio->bi_iter.bi_size)
1348 			return 0;
1349 	}
1350 	return 1;
1351 }
1352 
1353 /*
1354  * Shannon Entropy calculation
1355  *
1356  * Pure byte distribution analysis fails to determine compressibility of data.
1357  * Try calculating entropy to estimate the average minimum number of bits
1358  * needed to encode the sampled data.
1359  *
1360  * For convenience, return the percentage of needed bits, instead of amount of
1361  * bits directly.
1362  *
1363  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1364  *			    and can be compressible with high probability
1365  *
1366  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1367  *
1368  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1369  */
1370 #define ENTROPY_LVL_ACEPTABLE		(65)
1371 #define ENTROPY_LVL_HIGH		(80)
1372 
1373 /*
1374  * For increasead precision in shannon_entropy calculation,
1375  * let's do pow(n, M) to save more digits after comma:
1376  *
1377  * - maximum int bit length is 64
1378  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1379  * - 13 * 4 = 52 < 64		-> M = 4
1380  *
1381  * So use pow(n, 4).
1382  */
ilog2_w(u64 n)1383 static inline u32 ilog2_w(u64 n)
1384 {
1385 	return ilog2(n * n * n * n);
1386 }
1387 
shannon_entropy(struct heuristic_ws * ws)1388 static u32 shannon_entropy(struct heuristic_ws *ws)
1389 {
1390 	const u32 entropy_max = 8 * ilog2_w(2);
1391 	u32 entropy_sum = 0;
1392 	u32 p, p_base, sz_base;
1393 	u32 i;
1394 
1395 	sz_base = ilog2_w(ws->sample_size);
1396 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1397 		p = ws->bucket[i].count;
1398 		p_base = ilog2_w(p);
1399 		entropy_sum += p * (sz_base - p_base);
1400 	}
1401 
1402 	entropy_sum /= ws->sample_size;
1403 	return entropy_sum * 100 / entropy_max;
1404 }
1405 
1406 #define RADIX_BASE		4U
1407 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1408 
get4bits(u64 num,int shift)1409 static u8 get4bits(u64 num, int shift) {
1410 	u8 low4bits;
1411 
1412 	num >>= shift;
1413 	/* Reverse order */
1414 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1415 	return low4bits;
1416 }
1417 
1418 /*
1419  * Use 4 bits as radix base
1420  * Use 16 u32 counters for calculating new position in buf array
1421  *
1422  * @array     - array that will be sorted
1423  * @array_buf - buffer array to store sorting results
1424  *              must be equal in size to @array
1425  * @num       - array size
1426  */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1427 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1428 		       int num)
1429 {
1430 	u64 max_num;
1431 	u64 buf_num;
1432 	u32 counters[COUNTERS_SIZE];
1433 	u32 new_addr;
1434 	u32 addr;
1435 	int bitlen;
1436 	int shift;
1437 	int i;
1438 
1439 	/*
1440 	 * Try avoid useless loop iterations for small numbers stored in big
1441 	 * counters.  Example: 48 33 4 ... in 64bit array
1442 	 */
1443 	max_num = array[0].count;
1444 	for (i = 1; i < num; i++) {
1445 		buf_num = array[i].count;
1446 		if (buf_num > max_num)
1447 			max_num = buf_num;
1448 	}
1449 
1450 	buf_num = ilog2(max_num);
1451 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1452 
1453 	shift = 0;
1454 	while (shift < bitlen) {
1455 		memset(counters, 0, sizeof(counters));
1456 
1457 		for (i = 0; i < num; i++) {
1458 			buf_num = array[i].count;
1459 			addr = get4bits(buf_num, shift);
1460 			counters[addr]++;
1461 		}
1462 
1463 		for (i = 1; i < COUNTERS_SIZE; i++)
1464 			counters[i] += counters[i - 1];
1465 
1466 		for (i = num - 1; i >= 0; i--) {
1467 			buf_num = array[i].count;
1468 			addr = get4bits(buf_num, shift);
1469 			counters[addr]--;
1470 			new_addr = counters[addr];
1471 			array_buf[new_addr] = array[i];
1472 		}
1473 
1474 		shift += RADIX_BASE;
1475 
1476 		/*
1477 		 * Normal radix expects to move data from a temporary array, to
1478 		 * the main one.  But that requires some CPU time. Avoid that
1479 		 * by doing another sort iteration to original array instead of
1480 		 * memcpy()
1481 		 */
1482 		memset(counters, 0, sizeof(counters));
1483 
1484 		for (i = 0; i < num; i ++) {
1485 			buf_num = array_buf[i].count;
1486 			addr = get4bits(buf_num, shift);
1487 			counters[addr]++;
1488 		}
1489 
1490 		for (i = 1; i < COUNTERS_SIZE; i++)
1491 			counters[i] += counters[i - 1];
1492 
1493 		for (i = num - 1; i >= 0; i--) {
1494 			buf_num = array_buf[i].count;
1495 			addr = get4bits(buf_num, shift);
1496 			counters[addr]--;
1497 			new_addr = counters[addr];
1498 			array[new_addr] = array_buf[i];
1499 		}
1500 
1501 		shift += RADIX_BASE;
1502 	}
1503 }
1504 
1505 /*
1506  * Size of the core byte set - how many bytes cover 90% of the sample
1507  *
1508  * There are several types of structured binary data that use nearly all byte
1509  * values. The distribution can be uniform and counts in all buckets will be
1510  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1511  *
1512  * Other possibility is normal (Gaussian) distribution, where the data could
1513  * be potentially compressible, but we have to take a few more steps to decide
1514  * how much.
1515  *
1516  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1517  *                       compression algo can easy fix that
1518  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1519  *                       probability is not compressible
1520  */
1521 #define BYTE_CORE_SET_LOW		(64)
1522 #define BYTE_CORE_SET_HIGH		(200)
1523 
byte_core_set_size(struct heuristic_ws * ws)1524 static int byte_core_set_size(struct heuristic_ws *ws)
1525 {
1526 	u32 i;
1527 	u32 coreset_sum = 0;
1528 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1529 	struct bucket_item *bucket = ws->bucket;
1530 
1531 	/* Sort in reverse order */
1532 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1533 
1534 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1535 		coreset_sum += bucket[i].count;
1536 
1537 	if (coreset_sum > core_set_threshold)
1538 		return i;
1539 
1540 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1541 		coreset_sum += bucket[i].count;
1542 		if (coreset_sum > core_set_threshold)
1543 			break;
1544 	}
1545 
1546 	return i;
1547 }
1548 
1549 /*
1550  * Count byte values in buckets.
1551  * This heuristic can detect textual data (configs, xml, json, html, etc).
1552  * Because in most text-like data byte set is restricted to limited number of
1553  * possible characters, and that restriction in most cases makes data easy to
1554  * compress.
1555  *
1556  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1557  *	less - compressible
1558  *	more - need additional analysis
1559  */
1560 #define BYTE_SET_THRESHOLD		(64)
1561 
byte_set_size(const struct heuristic_ws * ws)1562 static u32 byte_set_size(const struct heuristic_ws *ws)
1563 {
1564 	u32 i;
1565 	u32 byte_set_size = 0;
1566 
1567 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1568 		if (ws->bucket[i].count > 0)
1569 			byte_set_size++;
1570 	}
1571 
1572 	/*
1573 	 * Continue collecting count of byte values in buckets.  If the byte
1574 	 * set size is bigger then the threshold, it's pointless to continue,
1575 	 * the detection technique would fail for this type of data.
1576 	 */
1577 	for (; i < BUCKET_SIZE; i++) {
1578 		if (ws->bucket[i].count > 0) {
1579 			byte_set_size++;
1580 			if (byte_set_size > BYTE_SET_THRESHOLD)
1581 				return byte_set_size;
1582 		}
1583 	}
1584 
1585 	return byte_set_size;
1586 }
1587 
sample_repeated_patterns(struct heuristic_ws * ws)1588 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1589 {
1590 	const u32 half_of_sample = ws->sample_size / 2;
1591 	const u8 *data = ws->sample;
1592 
1593 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1594 }
1595 
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1596 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1597 				     struct heuristic_ws *ws)
1598 {
1599 	struct page *page;
1600 	u64 index, index_end;
1601 	u32 i, curr_sample_pos;
1602 	u8 *in_data;
1603 
1604 	/*
1605 	 * Compression handles the input data by chunks of 128KiB
1606 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1607 	 *
1608 	 * We do the same for the heuristic and loop over the whole range.
1609 	 *
1610 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1611 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1612 	 */
1613 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1614 		end = start + BTRFS_MAX_UNCOMPRESSED;
1615 
1616 	index = start >> PAGE_SHIFT;
1617 	index_end = end >> PAGE_SHIFT;
1618 
1619 	/* Don't miss unaligned end */
1620 	if (!IS_ALIGNED(end, PAGE_SIZE))
1621 		index_end++;
1622 
1623 	curr_sample_pos = 0;
1624 	while (index < index_end) {
1625 		page = find_get_page(inode->i_mapping, index);
1626 		in_data = kmap_local_page(page);
1627 		/* Handle case where the start is not aligned to PAGE_SIZE */
1628 		i = start % PAGE_SIZE;
1629 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1630 			/* Don't sample any garbage from the last page */
1631 			if (start > end - SAMPLING_READ_SIZE)
1632 				break;
1633 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1634 					SAMPLING_READ_SIZE);
1635 			i += SAMPLING_INTERVAL;
1636 			start += SAMPLING_INTERVAL;
1637 			curr_sample_pos += SAMPLING_READ_SIZE;
1638 		}
1639 		kunmap_local(in_data);
1640 		put_page(page);
1641 
1642 		index++;
1643 	}
1644 
1645 	ws->sample_size = curr_sample_pos;
1646 }
1647 
1648 /*
1649  * Compression heuristic.
1650  *
1651  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1652  * quickly (compared to direct compression) detect data characteristics
1653  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1654  * data.
1655  *
1656  * The following types of analysis can be performed:
1657  * - detect mostly zero data
1658  * - detect data with low "byte set" size (text, etc)
1659  * - detect data with low/high "core byte" set
1660  *
1661  * Return non-zero if the compression should be done, 0 otherwise.
1662  */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1663 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1664 {
1665 	struct list_head *ws_list = get_workspace(0, 0);
1666 	struct heuristic_ws *ws;
1667 	u32 i;
1668 	u8 byte;
1669 	int ret = 0;
1670 
1671 	ws = list_entry(ws_list, struct heuristic_ws, list);
1672 
1673 	heuristic_collect_sample(inode, start, end, ws);
1674 
1675 	if (sample_repeated_patterns(ws)) {
1676 		ret = 1;
1677 		goto out;
1678 	}
1679 
1680 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1681 
1682 	for (i = 0; i < ws->sample_size; i++) {
1683 		byte = ws->sample[i];
1684 		ws->bucket[byte].count++;
1685 	}
1686 
1687 	i = byte_set_size(ws);
1688 	if (i < BYTE_SET_THRESHOLD) {
1689 		ret = 2;
1690 		goto out;
1691 	}
1692 
1693 	i = byte_core_set_size(ws);
1694 	if (i <= BYTE_CORE_SET_LOW) {
1695 		ret = 3;
1696 		goto out;
1697 	}
1698 
1699 	if (i >= BYTE_CORE_SET_HIGH) {
1700 		ret = 0;
1701 		goto out;
1702 	}
1703 
1704 	i = shannon_entropy(ws);
1705 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1706 		ret = 4;
1707 		goto out;
1708 	}
1709 
1710 	/*
1711 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1712 	 * needed to give green light to compression.
1713 	 *
1714 	 * For now just assume that compression at that level is not worth the
1715 	 * resources because:
1716 	 *
1717 	 * 1. it is possible to defrag the data later
1718 	 *
1719 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1720 	 * values, every bucket has counter at level ~54. The heuristic would
1721 	 * be confused. This can happen when data have some internal repeated
1722 	 * patterns like "abbacbbc...". This can be detected by analyzing
1723 	 * pairs of bytes, which is too costly.
1724 	 */
1725 	if (i < ENTROPY_LVL_HIGH) {
1726 		ret = 5;
1727 		goto out;
1728 	} else {
1729 		ret = 0;
1730 		goto out;
1731 	}
1732 
1733 out:
1734 	put_workspace(0, ws_list);
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1740  * level, unrecognized string will set the default level
1741  */
btrfs_compress_str2level(unsigned int type,const char * str)1742 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1743 {
1744 	unsigned int level = 0;
1745 	int ret;
1746 
1747 	if (!type)
1748 		return 0;
1749 
1750 	if (str[0] == ':') {
1751 		ret = kstrtouint(str + 1, 10, &level);
1752 		if (ret)
1753 			level = 0;
1754 	}
1755 
1756 	level = btrfs_compress_set_level(type, level);
1757 
1758 	return level;
1759 }
1760