1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include <linux/fsverity.h>
36 #include "misc.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "volumes.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "free-space-cache.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56
57 struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60 };
61
62 struct btrfs_dio_data {
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
92
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97 /*
98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99 *
100 * ilock_flags can have the following bit set:
101 *
102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104 * return -EAGAIN
105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
106 */
btrfs_inode_lock(struct inode * inode,unsigned int ilock_flags)107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 {
109 if (ilock_flags & BTRFS_ILOCK_SHARED) {
110 if (ilock_flags & BTRFS_ILOCK_TRY) {
111 if (!inode_trylock_shared(inode))
112 return -EAGAIN;
113 else
114 return 0;
115 }
116 inode_lock_shared(inode);
117 } else {
118 if (ilock_flags & BTRFS_ILOCK_TRY) {
119 if (!inode_trylock(inode))
120 return -EAGAIN;
121 else
122 return 0;
123 }
124 inode_lock(inode);
125 }
126 if (ilock_flags & BTRFS_ILOCK_MMAP)
127 down_write(&BTRFS_I(inode)->i_mmap_lock);
128 return 0;
129 }
130
131 /*
132 * btrfs_inode_unlock - unock inode i_rwsem
133 *
134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
135 * to decide whether the lock acquired is shared or exclusive.
136 */
btrfs_inode_unlock(struct inode * inode,unsigned int ilock_flags)137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
138 {
139 if (ilock_flags & BTRFS_ILOCK_MMAP)
140 up_write(&BTRFS_I(inode)->i_mmap_lock);
141 if (ilock_flags & BTRFS_ILOCK_SHARED)
142 inode_unlock_shared(inode);
143 else
144 inode_unlock(inode);
145 }
146
147 /*
148 * Cleanup all submitted ordered extents in specified range to handle errors
149 * from the btrfs_run_delalloc_range() callback.
150 *
151 * NOTE: caller must ensure that when an error happens, it can not call
152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
154 * to be released, which we want to happen only when finishing the ordered
155 * extent (btrfs_finish_ordered_io()).
156 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
158 struct page *locked_page,
159 u64 offset, u64 bytes)
160 {
161 unsigned long index = offset >> PAGE_SHIFT;
162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
163 u64 page_start = page_offset(locked_page);
164 u64 page_end = page_start + PAGE_SIZE - 1;
165
166 struct page *page;
167
168 while (index <= end_index) {
169 /*
170 * For locked page, we will call end_extent_writepage() on it
171 * in run_delalloc_range() for the error handling. That
172 * end_extent_writepage() function will call
173 * btrfs_mark_ordered_io_finished() to clear page Ordered and
174 * run the ordered extent accounting.
175 *
176 * Here we can't just clear the Ordered bit, or
177 * btrfs_mark_ordered_io_finished() would skip the accounting
178 * for the page range, and the ordered extent will never finish.
179 */
180 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
181 index++;
182 continue;
183 }
184 page = find_get_page(inode->vfs_inode.i_mapping, index);
185 index++;
186 if (!page)
187 continue;
188
189 /*
190 * Here we just clear all Ordered bits for every page in the
191 * range, then __endio_write_update_ordered() will handle
192 * the ordered extent accounting for the range.
193 */
194 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
195 offset, bytes);
196 put_page(page);
197 }
198
199 /* The locked page covers the full range, nothing needs to be done */
200 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
201 return;
202 /*
203 * In case this page belongs to the delalloc range being instantiated
204 * then skip it, since the first page of a range is going to be
205 * properly cleaned up by the caller of run_delalloc_range
206 */
207 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
208 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
209 offset = page_offset(locked_page) + PAGE_SIZE;
210 }
211
212 return __endio_write_update_ordered(inode, offset, bytes, false);
213 }
214
215 static int btrfs_dirty_inode(struct inode *inode);
216
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)217 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
218 struct inode *inode, struct inode *dir,
219 const struct qstr *qstr)
220 {
221 int err;
222
223 err = btrfs_init_acl(trans, inode, dir);
224 if (!err)
225 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
226 return err;
227 }
228
229 /*
230 * this does all the hard work for inserting an inline extent into
231 * the btree. The caller should have done a btrfs_drop_extents so that
232 * no overlapping inline items exist in the btree
233 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,bool extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)234 static int insert_inline_extent(struct btrfs_trans_handle *trans,
235 struct btrfs_path *path, bool extent_inserted,
236 struct btrfs_root *root, struct inode *inode,
237 u64 start, size_t size, size_t compressed_size,
238 int compress_type,
239 struct page **compressed_pages)
240 {
241 struct extent_buffer *leaf;
242 struct page *page = NULL;
243 char *kaddr;
244 unsigned long ptr;
245 struct btrfs_file_extent_item *ei;
246 int ret;
247 size_t cur_size = size;
248 unsigned long offset;
249
250 ASSERT((compressed_size > 0 && compressed_pages) ||
251 (compressed_size == 0 && !compressed_pages));
252
253 if (compressed_size && compressed_pages)
254 cur_size = compressed_size;
255
256 if (!extent_inserted) {
257 struct btrfs_key key;
258 size_t datasize;
259
260 key.objectid = btrfs_ino(BTRFS_I(inode));
261 key.offset = start;
262 key.type = BTRFS_EXTENT_DATA_KEY;
263
264 datasize = btrfs_file_extent_calc_inline_size(cur_size);
265 ret = btrfs_insert_empty_item(trans, root, path, &key,
266 datasize);
267 if (ret)
268 goto fail;
269 }
270 leaf = path->nodes[0];
271 ei = btrfs_item_ptr(leaf, path->slots[0],
272 struct btrfs_file_extent_item);
273 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
274 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
275 btrfs_set_file_extent_encryption(leaf, ei, 0);
276 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
277 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
278 ptr = btrfs_file_extent_inline_start(ei);
279
280 if (compress_type != BTRFS_COMPRESS_NONE) {
281 struct page *cpage;
282 int i = 0;
283 while (compressed_size > 0) {
284 cpage = compressed_pages[i];
285 cur_size = min_t(unsigned long, compressed_size,
286 PAGE_SIZE);
287
288 kaddr = kmap_atomic(cpage);
289 write_extent_buffer(leaf, kaddr, ptr, cur_size);
290 kunmap_atomic(kaddr);
291
292 i++;
293 ptr += cur_size;
294 compressed_size -= cur_size;
295 }
296 btrfs_set_file_extent_compression(leaf, ei,
297 compress_type);
298 } else {
299 page = find_get_page(inode->i_mapping,
300 start >> PAGE_SHIFT);
301 btrfs_set_file_extent_compression(leaf, ei, 0);
302 kaddr = kmap_atomic(page);
303 offset = offset_in_page(start);
304 write_extent_buffer(leaf, kaddr + offset, ptr, size);
305 kunmap_atomic(kaddr);
306 put_page(page);
307 }
308 btrfs_mark_buffer_dirty(leaf);
309 btrfs_release_path(path);
310
311 /*
312 * We align size to sectorsize for inline extents just for simplicity
313 * sake.
314 */
315 size = ALIGN(size, root->fs_info->sectorsize);
316 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
317 if (ret)
318 goto fail;
319
320 /*
321 * we're an inline extent, so nobody can
322 * extend the file past i_size without locking
323 * a page we already have locked.
324 *
325 * We must do any isize and inode updates
326 * before we unlock the pages. Otherwise we
327 * could end up racing with unlink.
328 */
329 BTRFS_I(inode)->disk_i_size = inode->i_size;
330 fail:
331 return ret;
332 }
333
334
335 /*
336 * conditionally insert an inline extent into the file. This
337 * does the checks required to make sure the data is small enough
338 * to fit as an inline extent.
339 */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)340 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
341 u64 end, size_t compressed_size,
342 int compress_type,
343 struct page **compressed_pages)
344 {
345 struct btrfs_drop_extents_args drop_args = { 0 };
346 struct btrfs_root *root = inode->root;
347 struct btrfs_fs_info *fs_info = root->fs_info;
348 struct btrfs_trans_handle *trans;
349 u64 isize = i_size_read(&inode->vfs_inode);
350 u64 actual_end = min(end + 1, isize);
351 u64 inline_len = actual_end - start;
352 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
353 u64 data_len = inline_len;
354 int ret;
355 struct btrfs_path *path;
356
357 if (compressed_size)
358 data_len = compressed_size;
359
360 if (start > 0 ||
361 actual_end > fs_info->sectorsize ||
362 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
363 (!compressed_size &&
364 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
365 end + 1 < isize ||
366 data_len > fs_info->max_inline) {
367 return 1;
368 }
369
370 path = btrfs_alloc_path();
371 if (!path)
372 return -ENOMEM;
373
374 trans = btrfs_join_transaction(root);
375 if (IS_ERR(trans)) {
376 btrfs_free_path(path);
377 return PTR_ERR(trans);
378 }
379 trans->block_rsv = &inode->block_rsv;
380
381 drop_args.path = path;
382 drop_args.start = start;
383 drop_args.end = aligned_end;
384 drop_args.drop_cache = true;
385 drop_args.replace_extent = true;
386
387 if (compressed_size && compressed_pages)
388 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
389 compressed_size);
390 else
391 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
392 inline_len);
393
394 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
395 if (ret) {
396 btrfs_abort_transaction(trans, ret);
397 goto out;
398 }
399
400 if (isize > actual_end)
401 inline_len = min_t(u64, isize, actual_end);
402 ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
403 root, &inode->vfs_inode, start,
404 inline_len, compressed_size,
405 compress_type, compressed_pages);
406 if (ret && ret != -ENOSPC) {
407 btrfs_abort_transaction(trans, ret);
408 goto out;
409 } else if (ret == -ENOSPC) {
410 ret = 1;
411 goto out;
412 }
413
414 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
415 ret = btrfs_update_inode(trans, root, inode);
416 if (ret && ret != -ENOSPC) {
417 btrfs_abort_transaction(trans, ret);
418 goto out;
419 } else if (ret == -ENOSPC) {
420 ret = 1;
421 goto out;
422 }
423
424 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
425 out:
426 /*
427 * Don't forget to free the reserved space, as for inlined extent
428 * it won't count as data extent, free them directly here.
429 * And at reserve time, it's always aligned to page size, so
430 * just free one page here.
431 */
432 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
433 btrfs_free_path(path);
434 btrfs_end_transaction(trans);
435 return ret;
436 }
437
438 struct async_extent {
439 u64 start;
440 u64 ram_size;
441 u64 compressed_size;
442 struct page **pages;
443 unsigned long nr_pages;
444 int compress_type;
445 struct list_head list;
446 };
447
448 struct async_chunk {
449 struct inode *inode;
450 struct page *locked_page;
451 u64 start;
452 u64 end;
453 unsigned int write_flags;
454 struct list_head extents;
455 struct cgroup_subsys_state *blkcg_css;
456 struct btrfs_work work;
457 atomic_t *pending;
458 };
459
460 struct async_cow {
461 /* Number of chunks in flight; must be first in the structure */
462 atomic_t num_chunks;
463 struct async_chunk chunks[];
464 };
465
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)466 static noinline int add_async_extent(struct async_chunk *cow,
467 u64 start, u64 ram_size,
468 u64 compressed_size,
469 struct page **pages,
470 unsigned long nr_pages,
471 int compress_type)
472 {
473 struct async_extent *async_extent;
474
475 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
476 BUG_ON(!async_extent); /* -ENOMEM */
477 async_extent->start = start;
478 async_extent->ram_size = ram_size;
479 async_extent->compressed_size = compressed_size;
480 async_extent->pages = pages;
481 async_extent->nr_pages = nr_pages;
482 async_extent->compress_type = compress_type;
483 list_add_tail(&async_extent->list, &cow->extents);
484 return 0;
485 }
486
487 /*
488 * Check if the inode has flags compatible with compression
489 */
inode_can_compress(struct btrfs_inode * inode)490 static inline bool inode_can_compress(struct btrfs_inode *inode)
491 {
492 /* Subpage doesn't support compression yet */
493 if (inode->root->fs_info->sectorsize < PAGE_SIZE)
494 return false;
495 if (inode->flags & BTRFS_INODE_NODATACOW ||
496 inode->flags & BTRFS_INODE_NODATASUM)
497 return false;
498 return true;
499 }
500
501 /*
502 * Check if the inode needs to be submitted to compression, based on mount
503 * options, defragmentation, properties or heuristics.
504 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)505 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
506 u64 end)
507 {
508 struct btrfs_fs_info *fs_info = inode->root->fs_info;
509
510 if (!inode_can_compress(inode)) {
511 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
512 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
513 btrfs_ino(inode));
514 return 0;
515 }
516 /* force compress */
517 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
518 return 1;
519 /* defrag ioctl */
520 if (inode->defrag_compress)
521 return 1;
522 /* bad compression ratios */
523 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
524 return 0;
525 if (btrfs_test_opt(fs_info, COMPRESS) ||
526 inode->flags & BTRFS_INODE_COMPRESS ||
527 inode->prop_compress)
528 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
529 return 0;
530 }
531
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)532 static inline void inode_should_defrag(struct btrfs_inode *inode,
533 u64 start, u64 end, u64 num_bytes, u64 small_write)
534 {
535 /* If this is a small write inside eof, kick off a defrag */
536 if (num_bytes < small_write &&
537 (start > 0 || end + 1 < inode->disk_i_size))
538 btrfs_add_inode_defrag(NULL, inode);
539 }
540
541 /*
542 * we create compressed extents in two phases. The first
543 * phase compresses a range of pages that have already been
544 * locked (both pages and state bits are locked).
545 *
546 * This is done inside an ordered work queue, and the compression
547 * is spread across many cpus. The actual IO submission is step
548 * two, and the ordered work queue takes care of making sure that
549 * happens in the same order things were put onto the queue by
550 * writepages and friends.
551 *
552 * If this code finds it can't get good compression, it puts an
553 * entry onto the work queue to write the uncompressed bytes. This
554 * makes sure that both compressed inodes and uncompressed inodes
555 * are written in the same order that the flusher thread sent them
556 * down.
557 */
compress_file_range(struct async_chunk * async_chunk)558 static noinline int compress_file_range(struct async_chunk *async_chunk)
559 {
560 struct inode *inode = async_chunk->inode;
561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
562 u64 blocksize = fs_info->sectorsize;
563 u64 start = async_chunk->start;
564 u64 end = async_chunk->end;
565 u64 actual_end;
566 u64 i_size;
567 int ret = 0;
568 struct page **pages = NULL;
569 unsigned long nr_pages;
570 unsigned long total_compressed = 0;
571 unsigned long total_in = 0;
572 int i;
573 int will_compress;
574 int compress_type = fs_info->compress_type;
575 int compressed_extents = 0;
576 int redirty = 0;
577
578 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
579 SZ_16K);
580
581 /*
582 * We need to save i_size before now because it could change in between
583 * us evaluating the size and assigning it. This is because we lock and
584 * unlock the page in truncate and fallocate, and then modify the i_size
585 * later on.
586 *
587 * The barriers are to emulate READ_ONCE, remove that once i_size_read
588 * does that for us.
589 */
590 barrier();
591 i_size = i_size_read(inode);
592 barrier();
593 actual_end = min_t(u64, i_size, end + 1);
594 again:
595 will_compress = 0;
596 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
597 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
598 nr_pages = min_t(unsigned long, nr_pages,
599 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
600
601 /*
602 * we don't want to send crud past the end of i_size through
603 * compression, that's just a waste of CPU time. So, if the
604 * end of the file is before the start of our current
605 * requested range of bytes, we bail out to the uncompressed
606 * cleanup code that can deal with all of this.
607 *
608 * It isn't really the fastest way to fix things, but this is a
609 * very uncommon corner.
610 */
611 if (actual_end <= start)
612 goto cleanup_and_bail_uncompressed;
613
614 total_compressed = actual_end - start;
615
616 /*
617 * skip compression for a small file range(<=blocksize) that
618 * isn't an inline extent, since it doesn't save disk space at all.
619 */
620 if (total_compressed <= blocksize &&
621 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
622 goto cleanup_and_bail_uncompressed;
623
624 total_compressed = min_t(unsigned long, total_compressed,
625 BTRFS_MAX_UNCOMPRESSED);
626 total_in = 0;
627 ret = 0;
628
629 /*
630 * we do compression for mount -o compress and when the
631 * inode has not been flagged as nocompress. This flag can
632 * change at any time if we discover bad compression ratios.
633 */
634 if (inode_need_compress(BTRFS_I(inode), start, end)) {
635 WARN_ON(pages);
636 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
637 if (!pages) {
638 /* just bail out to the uncompressed code */
639 nr_pages = 0;
640 goto cont;
641 }
642
643 if (BTRFS_I(inode)->defrag_compress)
644 compress_type = BTRFS_I(inode)->defrag_compress;
645 else if (BTRFS_I(inode)->prop_compress)
646 compress_type = BTRFS_I(inode)->prop_compress;
647
648 /*
649 * we need to call clear_page_dirty_for_io on each
650 * page in the range. Otherwise applications with the file
651 * mmap'd can wander in and change the page contents while
652 * we are compressing them.
653 *
654 * If the compression fails for any reason, we set the pages
655 * dirty again later on.
656 *
657 * Note that the remaining part is redirtied, the start pointer
658 * has moved, the end is the original one.
659 */
660 if (!redirty) {
661 extent_range_clear_dirty_for_io(inode, start, end);
662 redirty = 1;
663 }
664
665 /* Compression level is applied here and only here */
666 ret = btrfs_compress_pages(
667 compress_type | (fs_info->compress_level << 4),
668 inode->i_mapping, start,
669 pages,
670 &nr_pages,
671 &total_in,
672 &total_compressed);
673
674 if (!ret) {
675 unsigned long offset = offset_in_page(total_compressed);
676 struct page *page = pages[nr_pages - 1];
677
678 /* zero the tail end of the last page, we might be
679 * sending it down to disk
680 */
681 if (offset)
682 memzero_page(page, offset, PAGE_SIZE - offset);
683 will_compress = 1;
684 }
685 }
686 cont:
687 /*
688 * Check cow_file_range() for why we don't even try to create inline
689 * extent for subpage case.
690 */
691 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
692 /* lets try to make an inline extent */
693 if (ret || total_in < actual_end) {
694 /* we didn't compress the entire range, try
695 * to make an uncompressed inline extent.
696 */
697 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
698 0, BTRFS_COMPRESS_NONE,
699 NULL);
700 } else {
701 /* try making a compressed inline extent */
702 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
703 total_compressed,
704 compress_type, pages);
705 }
706 if (ret <= 0) {
707 unsigned long clear_flags = EXTENT_DELALLOC |
708 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
709 EXTENT_DO_ACCOUNTING;
710 unsigned long page_error_op;
711
712 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
713
714 /*
715 * inline extent creation worked or returned error,
716 * we don't need to create any more async work items.
717 * Unlock and free up our temp pages.
718 *
719 * We use DO_ACCOUNTING here because we need the
720 * delalloc_release_metadata to be done _after_ we drop
721 * our outstanding extent for clearing delalloc for this
722 * range.
723 */
724 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
725 NULL,
726 clear_flags,
727 PAGE_UNLOCK |
728 PAGE_START_WRITEBACK |
729 page_error_op |
730 PAGE_END_WRITEBACK);
731
732 /*
733 * Ensure we only free the compressed pages if we have
734 * them allocated, as we can still reach here with
735 * inode_need_compress() == false.
736 */
737 if (pages) {
738 for (i = 0; i < nr_pages; i++) {
739 WARN_ON(pages[i]->mapping);
740 put_page(pages[i]);
741 }
742 kfree(pages);
743 }
744 return 0;
745 }
746 }
747
748 if (will_compress) {
749 /*
750 * we aren't doing an inline extent round the compressed size
751 * up to a block size boundary so the allocator does sane
752 * things
753 */
754 total_compressed = ALIGN(total_compressed, blocksize);
755
756 /*
757 * one last check to make sure the compression is really a
758 * win, compare the page count read with the blocks on disk,
759 * compression must free at least one sector size
760 */
761 total_in = ALIGN(total_in, PAGE_SIZE);
762 if (total_compressed + blocksize <= total_in) {
763 compressed_extents++;
764
765 /*
766 * The async work queues will take care of doing actual
767 * allocation on disk for these compressed pages, and
768 * will submit them to the elevator.
769 */
770 add_async_extent(async_chunk, start, total_in,
771 total_compressed, pages, nr_pages,
772 compress_type);
773
774 if (start + total_in < end) {
775 start += total_in;
776 pages = NULL;
777 cond_resched();
778 goto again;
779 }
780 return compressed_extents;
781 }
782 }
783 if (pages) {
784 /*
785 * the compression code ran but failed to make things smaller,
786 * free any pages it allocated and our page pointer array
787 */
788 for (i = 0; i < nr_pages; i++) {
789 WARN_ON(pages[i]->mapping);
790 put_page(pages[i]);
791 }
792 kfree(pages);
793 pages = NULL;
794 total_compressed = 0;
795 nr_pages = 0;
796
797 /* flag the file so we don't compress in the future */
798 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
799 !(BTRFS_I(inode)->prop_compress)) {
800 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
801 }
802 }
803 cleanup_and_bail_uncompressed:
804 /*
805 * No compression, but we still need to write the pages in the file
806 * we've been given so far. redirty the locked page if it corresponds
807 * to our extent and set things up for the async work queue to run
808 * cow_file_range to do the normal delalloc dance.
809 */
810 if (async_chunk->locked_page &&
811 (page_offset(async_chunk->locked_page) >= start &&
812 page_offset(async_chunk->locked_page)) <= end) {
813 __set_page_dirty_nobuffers(async_chunk->locked_page);
814 /* unlocked later on in the async handlers */
815 }
816
817 if (redirty)
818 extent_range_redirty_for_io(inode, start, end);
819 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
820 BTRFS_COMPRESS_NONE);
821 compressed_extents++;
822
823 return compressed_extents;
824 }
825
free_async_extent_pages(struct async_extent * async_extent)826 static void free_async_extent_pages(struct async_extent *async_extent)
827 {
828 int i;
829
830 if (!async_extent->pages)
831 return;
832
833 for (i = 0; i < async_extent->nr_pages; i++) {
834 WARN_ON(async_extent->pages[i]->mapping);
835 put_page(async_extent->pages[i]);
836 }
837 kfree(async_extent->pages);
838 async_extent->nr_pages = 0;
839 async_extent->pages = NULL;
840 }
841
842 /*
843 * phase two of compressed writeback. This is the ordered portion
844 * of the code, which only gets called in the order the work was
845 * queued. We walk all the async extents created by compress_file_range
846 * and send them down to the disk.
847 */
submit_compressed_extents(struct async_chunk * async_chunk)848 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
849 {
850 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
851 struct btrfs_fs_info *fs_info = inode->root->fs_info;
852 struct async_extent *async_extent;
853 u64 alloc_hint = 0;
854 struct btrfs_key ins;
855 struct extent_map *em;
856 struct btrfs_root *root = inode->root;
857 struct extent_io_tree *io_tree = &inode->io_tree;
858 int ret = 0;
859
860 again:
861 while (!list_empty(&async_chunk->extents)) {
862 async_extent = list_entry(async_chunk->extents.next,
863 struct async_extent, list);
864 list_del(&async_extent->list);
865
866 retry:
867 lock_extent(io_tree, async_extent->start,
868 async_extent->start + async_extent->ram_size - 1);
869 /* did the compression code fall back to uncompressed IO? */
870 if (!async_extent->pages) {
871 int page_started = 0;
872 unsigned long nr_written = 0;
873
874 /* allocate blocks */
875 ret = cow_file_range(inode, async_chunk->locked_page,
876 async_extent->start,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 &page_started, &nr_written, 0);
880
881 /* JDM XXX */
882
883 /*
884 * if page_started, cow_file_range inserted an
885 * inline extent and took care of all the unlocking
886 * and IO for us. Otherwise, we need to submit
887 * all those pages down to the drive.
888 */
889 if (!page_started && !ret)
890 extent_write_locked_range(&inode->vfs_inode,
891 async_extent->start,
892 async_extent->start +
893 async_extent->ram_size - 1,
894 WB_SYNC_ALL);
895 else if (ret && async_chunk->locked_page)
896 unlock_page(async_chunk->locked_page);
897 kfree(async_extent);
898 cond_resched();
899 continue;
900 }
901
902 ret = btrfs_reserve_extent(root, async_extent->ram_size,
903 async_extent->compressed_size,
904 async_extent->compressed_size,
905 0, alloc_hint, &ins, 1, 1);
906 if (ret) {
907 free_async_extent_pages(async_extent);
908
909 if (ret == -ENOSPC) {
910 unlock_extent(io_tree, async_extent->start,
911 async_extent->start +
912 async_extent->ram_size - 1);
913
914 /*
915 * we need to redirty the pages if we decide to
916 * fallback to uncompressed IO, otherwise we
917 * will not submit these pages down to lower
918 * layers.
919 */
920 extent_range_redirty_for_io(&inode->vfs_inode,
921 async_extent->start,
922 async_extent->start +
923 async_extent->ram_size - 1);
924
925 goto retry;
926 }
927 goto out_free;
928 }
929 /*
930 * here we're doing allocation and writeback of the
931 * compressed pages
932 */
933 em = create_io_em(inode, async_extent->start,
934 async_extent->ram_size, /* len */
935 async_extent->start, /* orig_start */
936 ins.objectid, /* block_start */
937 ins.offset, /* block_len */
938 ins.offset, /* orig_block_len */
939 async_extent->ram_size, /* ram_bytes */
940 async_extent->compress_type,
941 BTRFS_ORDERED_COMPRESSED);
942 if (IS_ERR(em))
943 /* ret value is not necessary due to void function */
944 goto out_free_reserve;
945 free_extent_map(em);
946
947 ret = btrfs_add_ordered_extent_compress(inode,
948 async_extent->start,
949 ins.objectid,
950 async_extent->ram_size,
951 ins.offset,
952 async_extent->compress_type);
953 if (ret) {
954 btrfs_drop_extent_cache(inode, async_extent->start,
955 async_extent->start +
956 async_extent->ram_size - 1, 0);
957 goto out_free_reserve;
958 }
959 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
960
961 /*
962 * clear dirty, set writeback and unlock the pages.
963 */
964 extent_clear_unlock_delalloc(inode, async_extent->start,
965 async_extent->start +
966 async_extent->ram_size - 1,
967 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
968 PAGE_UNLOCK | PAGE_START_WRITEBACK);
969 if (btrfs_submit_compressed_write(inode, async_extent->start,
970 async_extent->ram_size,
971 ins.objectid,
972 ins.offset, async_extent->pages,
973 async_extent->nr_pages,
974 async_chunk->write_flags,
975 async_chunk->blkcg_css)) {
976 struct page *p = async_extent->pages[0];
977 const u64 start = async_extent->start;
978 const u64 end = start + async_extent->ram_size - 1;
979
980 p->mapping = inode->vfs_inode.i_mapping;
981 btrfs_writepage_endio_finish_ordered(inode, p, start,
982 end, false);
983
984 p->mapping = NULL;
985 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
986 PAGE_END_WRITEBACK |
987 PAGE_SET_ERROR);
988 free_async_extent_pages(async_extent);
989 }
990 alloc_hint = ins.objectid + ins.offset;
991 kfree(async_extent);
992 cond_resched();
993 }
994 return;
995 out_free_reserve:
996 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
997 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
998 out_free:
999 extent_clear_unlock_delalloc(inode, async_extent->start,
1000 async_extent->start +
1001 async_extent->ram_size - 1,
1002 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1003 EXTENT_DELALLOC_NEW |
1004 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1005 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1006 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1007 free_async_extent_pages(async_extent);
1008 kfree(async_extent);
1009 goto again;
1010 }
1011
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1012 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1013 u64 num_bytes)
1014 {
1015 struct extent_map_tree *em_tree = &inode->extent_tree;
1016 struct extent_map *em;
1017 u64 alloc_hint = 0;
1018
1019 read_lock(&em_tree->lock);
1020 em = search_extent_mapping(em_tree, start, num_bytes);
1021 if (em) {
1022 /*
1023 * if block start isn't an actual block number then find the
1024 * first block in this inode and use that as a hint. If that
1025 * block is also bogus then just don't worry about it.
1026 */
1027 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1028 free_extent_map(em);
1029 em = search_extent_mapping(em_tree, 0, 0);
1030 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1031 alloc_hint = em->block_start;
1032 if (em)
1033 free_extent_map(em);
1034 } else {
1035 alloc_hint = em->block_start;
1036 free_extent_map(em);
1037 }
1038 }
1039 read_unlock(&em_tree->lock);
1040
1041 return alloc_hint;
1042 }
1043
1044 /*
1045 * when extent_io.c finds a delayed allocation range in the file,
1046 * the call backs end up in this code. The basic idea is to
1047 * allocate extents on disk for the range, and create ordered data structs
1048 * in ram to track those extents.
1049 *
1050 * locked_page is the page that writepage had locked already. We use
1051 * it to make sure we don't do extra locks or unlocks.
1052 *
1053 * *page_started is set to one if we unlock locked_page and do everything
1054 * required to start IO on it. It may be clean and already done with
1055 * IO when we return.
1056 *
1057 * When unlock == 1, we unlock the pages in successfully allocated regions.
1058 * When unlock == 0, we leave them locked for writing them out.
1059 *
1060 * However, we unlock all the pages except @locked_page in case of failure.
1061 *
1062 * In summary, page locking state will be as follow:
1063 *
1064 * - page_started == 1 (return value)
1065 * - All the pages are unlocked. IO is started.
1066 * - Note that this can happen only on success
1067 * - unlock == 1
1068 * - All the pages except @locked_page are unlocked in any case
1069 * - unlock == 0
1070 * - On success, all the pages are locked for writing out them
1071 * - On failure, all the pages except @locked_page are unlocked
1072 *
1073 * When a failure happens in the second or later iteration of the
1074 * while-loop, the ordered extents created in previous iterations are kept
1075 * intact. So, the caller must clean them up by calling
1076 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1077 * example.
1078 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)1079 static noinline int cow_file_range(struct btrfs_inode *inode,
1080 struct page *locked_page,
1081 u64 start, u64 end, int *page_started,
1082 unsigned long *nr_written, int unlock)
1083 {
1084 struct btrfs_root *root = inode->root;
1085 struct btrfs_fs_info *fs_info = root->fs_info;
1086 u64 alloc_hint = 0;
1087 u64 orig_start = start;
1088 u64 num_bytes;
1089 unsigned long ram_size;
1090 u64 cur_alloc_size = 0;
1091 u64 min_alloc_size;
1092 u64 blocksize = fs_info->sectorsize;
1093 struct btrfs_key ins;
1094 struct extent_map *em;
1095 unsigned clear_bits;
1096 unsigned long page_ops;
1097 bool extent_reserved = false;
1098 int ret = 0;
1099
1100 if (btrfs_is_free_space_inode(inode)) {
1101 ret = -EINVAL;
1102 goto out_unlock;
1103 }
1104
1105 num_bytes = ALIGN(end - start + 1, blocksize);
1106 num_bytes = max(blocksize, num_bytes);
1107 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1108
1109 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1110
1111 /*
1112 * Due to the page size limit, for subpage we can only trigger the
1113 * writeback for the dirty sectors of page, that means data writeback
1114 * is doing more writeback than what we want.
1115 *
1116 * This is especially unexpected for some call sites like fallocate,
1117 * where we only increase i_size after everything is done.
1118 * This means we can trigger inline extent even if we didn't want to.
1119 * So here we skip inline extent creation completely.
1120 */
1121 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1122 /* lets try to make an inline extent */
1123 ret = cow_file_range_inline(inode, start, end, 0,
1124 BTRFS_COMPRESS_NONE, NULL);
1125 if (ret == 0) {
1126 /*
1127 * We use DO_ACCOUNTING here because we need the
1128 * delalloc_release_metadata to be run _after_ we drop
1129 * our outstanding extent for clearing delalloc for this
1130 * range.
1131 */
1132 extent_clear_unlock_delalloc(inode, start, end,
1133 locked_page,
1134 EXTENT_LOCKED | EXTENT_DELALLOC |
1135 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1136 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1137 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1138 *nr_written = *nr_written +
1139 (end - start + PAGE_SIZE) / PAGE_SIZE;
1140 *page_started = 1;
1141 /*
1142 * locked_page is locked by the caller of
1143 * writepage_delalloc(), not locked by
1144 * __process_pages_contig().
1145 *
1146 * We can't let __process_pages_contig() to unlock it,
1147 * as it doesn't have any subpage::writers recorded.
1148 *
1149 * Here we manually unlock the page, since the caller
1150 * can't use page_started to determine if it's an
1151 * inline extent or a compressed extent.
1152 */
1153 unlock_page(locked_page);
1154 goto out;
1155 } else if (ret < 0) {
1156 goto out_unlock;
1157 }
1158 }
1159
1160 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1161 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1162
1163 /*
1164 * Relocation relies on the relocated extents to have exactly the same
1165 * size as the original extents. Normally writeback for relocation data
1166 * extents follows a NOCOW path because relocation preallocates the
1167 * extents. However, due to an operation such as scrub turning a block
1168 * group to RO mode, it may fallback to COW mode, so we must make sure
1169 * an extent allocated during COW has exactly the requested size and can
1170 * not be split into smaller extents, otherwise relocation breaks and
1171 * fails during the stage where it updates the bytenr of file extent
1172 * items.
1173 */
1174 if (btrfs_is_data_reloc_root(root))
1175 min_alloc_size = num_bytes;
1176 else
1177 min_alloc_size = fs_info->sectorsize;
1178
1179 while (num_bytes > 0) {
1180 cur_alloc_size = num_bytes;
1181 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1182 min_alloc_size, 0, alloc_hint,
1183 &ins, 1, 1);
1184 if (ret < 0)
1185 goto out_unlock;
1186 cur_alloc_size = ins.offset;
1187 extent_reserved = true;
1188
1189 ram_size = ins.offset;
1190 em = create_io_em(inode, start, ins.offset, /* len */
1191 start, /* orig_start */
1192 ins.objectid, /* block_start */
1193 ins.offset, /* block_len */
1194 ins.offset, /* orig_block_len */
1195 ram_size, /* ram_bytes */
1196 BTRFS_COMPRESS_NONE, /* compress_type */
1197 BTRFS_ORDERED_REGULAR /* type */);
1198 if (IS_ERR(em)) {
1199 ret = PTR_ERR(em);
1200 goto out_reserve;
1201 }
1202 free_extent_map(em);
1203
1204 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1205 ram_size, cur_alloc_size,
1206 BTRFS_ORDERED_REGULAR);
1207 if (ret)
1208 goto out_drop_extent_cache;
1209
1210 if (btrfs_is_data_reloc_root(root)) {
1211 ret = btrfs_reloc_clone_csums(inode, start,
1212 cur_alloc_size);
1213 /*
1214 * Only drop cache here, and process as normal.
1215 *
1216 * We must not allow extent_clear_unlock_delalloc()
1217 * at out_unlock label to free meta of this ordered
1218 * extent, as its meta should be freed by
1219 * btrfs_finish_ordered_io().
1220 *
1221 * So we must continue until @start is increased to
1222 * skip current ordered extent.
1223 */
1224 if (ret)
1225 btrfs_drop_extent_cache(inode, start,
1226 start + ram_size - 1, 0);
1227 }
1228
1229 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1230
1231 /*
1232 * We're not doing compressed IO, don't unlock the first page
1233 * (which the caller expects to stay locked), don't clear any
1234 * dirty bits and don't set any writeback bits
1235 *
1236 * Do set the Ordered (Private2) bit so we know this page was
1237 * properly setup for writepage.
1238 */
1239 page_ops = unlock ? PAGE_UNLOCK : 0;
1240 page_ops |= PAGE_SET_ORDERED;
1241
1242 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1243 locked_page,
1244 EXTENT_LOCKED | EXTENT_DELALLOC,
1245 page_ops);
1246 if (num_bytes < cur_alloc_size)
1247 num_bytes = 0;
1248 else
1249 num_bytes -= cur_alloc_size;
1250 alloc_hint = ins.objectid + ins.offset;
1251 start += cur_alloc_size;
1252 extent_reserved = false;
1253
1254 /*
1255 * btrfs_reloc_clone_csums() error, since start is increased
1256 * extent_clear_unlock_delalloc() at out_unlock label won't
1257 * free metadata of current ordered extent, we're OK to exit.
1258 */
1259 if (ret)
1260 goto out_unlock;
1261 }
1262 out:
1263 return ret;
1264
1265 out_drop_extent_cache:
1266 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1267 out_reserve:
1268 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1269 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1270 out_unlock:
1271 /*
1272 * Now, we have three regions to clean up:
1273 *
1274 * |-------(1)----|---(2)---|-------------(3)----------|
1275 * `- orig_start `- start `- start + cur_alloc_size `- end
1276 *
1277 * We process each region below.
1278 */
1279
1280 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1281 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1282 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1283
1284 /*
1285 * For the range (1). We have already instantiated the ordered extents
1286 * for this region. They are cleaned up by
1287 * btrfs_cleanup_ordered_extents() in e.g,
1288 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1289 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1290 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1291 * function.
1292 *
1293 * However, in case of unlock == 0, we still need to unlock the pages
1294 * (except @locked_page) to ensure all the pages are unlocked.
1295 */
1296 if (!unlock && orig_start < start)
1297 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1298 locked_page, 0, page_ops);
1299
1300 /*
1301 * For the range (2). If we reserved an extent for our delalloc range
1302 * (or a subrange) and failed to create the respective ordered extent,
1303 * then it means that when we reserved the extent we decremented the
1304 * extent's size from the data space_info's bytes_may_use counter and
1305 * incremented the space_info's bytes_reserved counter by the same
1306 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1307 * to decrement again the data space_info's bytes_may_use counter,
1308 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1309 */
1310 if (extent_reserved) {
1311 extent_clear_unlock_delalloc(inode, start,
1312 start + cur_alloc_size - 1,
1313 locked_page,
1314 clear_bits,
1315 page_ops);
1316 start += cur_alloc_size;
1317 if (start >= end)
1318 goto out;
1319 }
1320
1321 /*
1322 * For the range (3). We never touched the region. In addition to the
1323 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1324 * space_info's bytes_may_use counter, reserved in
1325 * btrfs_check_data_free_space().
1326 */
1327 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1328 clear_bits | EXTENT_CLEAR_DATA_RESV,
1329 page_ops);
1330 goto out;
1331 }
1332
1333 /*
1334 * work queue call back to started compression on a file and pages
1335 */
async_cow_start(struct btrfs_work * work)1336 static noinline void async_cow_start(struct btrfs_work *work)
1337 {
1338 struct async_chunk *async_chunk;
1339 int compressed_extents;
1340
1341 async_chunk = container_of(work, struct async_chunk, work);
1342
1343 compressed_extents = compress_file_range(async_chunk);
1344 if (compressed_extents == 0) {
1345 btrfs_add_delayed_iput(async_chunk->inode);
1346 async_chunk->inode = NULL;
1347 }
1348 }
1349
1350 /*
1351 * work queue call back to submit previously compressed pages
1352 */
async_cow_submit(struct btrfs_work * work)1353 static noinline void async_cow_submit(struct btrfs_work *work)
1354 {
1355 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1356 work);
1357 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1358 unsigned long nr_pages;
1359
1360 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1361 PAGE_SHIFT;
1362
1363 /*
1364 * ->inode could be NULL if async_chunk_start has failed to compress,
1365 * in which case we don't have anything to submit, yet we need to
1366 * always adjust ->async_delalloc_pages as its paired with the init
1367 * happening in cow_file_range_async
1368 */
1369 if (async_chunk->inode)
1370 submit_compressed_extents(async_chunk);
1371
1372 /* atomic_sub_return implies a barrier */
1373 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1374 5 * SZ_1M)
1375 cond_wake_up_nomb(&fs_info->async_submit_wait);
1376 }
1377
async_cow_free(struct btrfs_work * work)1378 static noinline void async_cow_free(struct btrfs_work *work)
1379 {
1380 struct async_chunk *async_chunk;
1381
1382 async_chunk = container_of(work, struct async_chunk, work);
1383 if (async_chunk->inode)
1384 btrfs_add_delayed_iput(async_chunk->inode);
1385 if (async_chunk->blkcg_css)
1386 css_put(async_chunk->blkcg_css);
1387 /*
1388 * Since the pointer to 'pending' is at the beginning of the array of
1389 * async_chunk's, freeing it ensures the whole array has been freed.
1390 */
1391 if (atomic_dec_and_test(async_chunk->pending))
1392 kvfree(async_chunk->pending);
1393 }
1394
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1395 static int cow_file_range_async(struct btrfs_inode *inode,
1396 struct writeback_control *wbc,
1397 struct page *locked_page,
1398 u64 start, u64 end, int *page_started,
1399 unsigned long *nr_written)
1400 {
1401 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1402 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1403 struct async_cow *ctx;
1404 struct async_chunk *async_chunk;
1405 unsigned long nr_pages;
1406 u64 cur_end;
1407 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1408 int i;
1409 bool should_compress;
1410 unsigned nofs_flag;
1411 const unsigned int write_flags = wbc_to_write_flags(wbc);
1412
1413 unlock_extent(&inode->io_tree, start, end);
1414
1415 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1416 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1417 num_chunks = 1;
1418 should_compress = false;
1419 } else {
1420 should_compress = true;
1421 }
1422
1423 nofs_flag = memalloc_nofs_save();
1424 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1425 memalloc_nofs_restore(nofs_flag);
1426
1427 if (!ctx) {
1428 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1429 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1430 EXTENT_DO_ACCOUNTING;
1431 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1432 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1433
1434 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1435 clear_bits, page_ops);
1436 return -ENOMEM;
1437 }
1438
1439 async_chunk = ctx->chunks;
1440 atomic_set(&ctx->num_chunks, num_chunks);
1441
1442 for (i = 0; i < num_chunks; i++) {
1443 if (should_compress)
1444 cur_end = min(end, start + SZ_512K - 1);
1445 else
1446 cur_end = end;
1447
1448 /*
1449 * igrab is called higher up in the call chain, take only the
1450 * lightweight reference for the callback lifetime
1451 */
1452 ihold(&inode->vfs_inode);
1453 async_chunk[i].pending = &ctx->num_chunks;
1454 async_chunk[i].inode = &inode->vfs_inode;
1455 async_chunk[i].start = start;
1456 async_chunk[i].end = cur_end;
1457 async_chunk[i].write_flags = write_flags;
1458 INIT_LIST_HEAD(&async_chunk[i].extents);
1459
1460 /*
1461 * The locked_page comes all the way from writepage and its
1462 * the original page we were actually given. As we spread
1463 * this large delalloc region across multiple async_chunk
1464 * structs, only the first struct needs a pointer to locked_page
1465 *
1466 * This way we don't need racey decisions about who is supposed
1467 * to unlock it.
1468 */
1469 if (locked_page) {
1470 /*
1471 * Depending on the compressibility, the pages might or
1472 * might not go through async. We want all of them to
1473 * be accounted against wbc once. Let's do it here
1474 * before the paths diverge. wbc accounting is used
1475 * only for foreign writeback detection and doesn't
1476 * need full accuracy. Just account the whole thing
1477 * against the first page.
1478 */
1479 wbc_account_cgroup_owner(wbc, locked_page,
1480 cur_end - start);
1481 async_chunk[i].locked_page = locked_page;
1482 locked_page = NULL;
1483 } else {
1484 async_chunk[i].locked_page = NULL;
1485 }
1486
1487 if (blkcg_css != blkcg_root_css) {
1488 css_get(blkcg_css);
1489 async_chunk[i].blkcg_css = blkcg_css;
1490 } else {
1491 async_chunk[i].blkcg_css = NULL;
1492 }
1493
1494 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1495 async_cow_submit, async_cow_free);
1496
1497 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1498 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1499
1500 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1501
1502 *nr_written += nr_pages;
1503 start = cur_end + 1;
1504 }
1505 *page_started = 1;
1506 return 0;
1507 }
1508
run_delalloc_zoned(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1509 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1510 struct page *locked_page, u64 start,
1511 u64 end, int *page_started,
1512 unsigned long *nr_written)
1513 {
1514 int ret;
1515
1516 ret = cow_file_range(inode, locked_page, start, end, page_started,
1517 nr_written, 0);
1518 if (ret)
1519 return ret;
1520
1521 if (*page_started)
1522 return 0;
1523
1524 __set_page_dirty_nobuffers(locked_page);
1525 account_page_redirty(locked_page);
1526 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1527 *page_started = 1;
1528
1529 return 0;
1530 }
1531
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1532 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1533 u64 bytenr, u64 num_bytes)
1534 {
1535 int ret;
1536 struct btrfs_ordered_sum *sums;
1537 LIST_HEAD(list);
1538
1539 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1540 bytenr + num_bytes - 1, &list, 0);
1541 if (ret == 0 && list_empty(&list))
1542 return 0;
1543
1544 while (!list_empty(&list)) {
1545 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1546 list_del(&sums->list);
1547 kfree(sums);
1548 }
1549 if (ret < 0)
1550 return ret;
1551 return 1;
1552 }
1553
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1554 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1555 const u64 start, const u64 end,
1556 int *page_started, unsigned long *nr_written)
1557 {
1558 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1559 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1560 const u64 range_bytes = end + 1 - start;
1561 struct extent_io_tree *io_tree = &inode->io_tree;
1562 u64 range_start = start;
1563 u64 count;
1564
1565 /*
1566 * If EXTENT_NORESERVE is set it means that when the buffered write was
1567 * made we had not enough available data space and therefore we did not
1568 * reserve data space for it, since we though we could do NOCOW for the
1569 * respective file range (either there is prealloc extent or the inode
1570 * has the NOCOW bit set).
1571 *
1572 * However when we need to fallback to COW mode (because for example the
1573 * block group for the corresponding extent was turned to RO mode by a
1574 * scrub or relocation) we need to do the following:
1575 *
1576 * 1) We increment the bytes_may_use counter of the data space info.
1577 * If COW succeeds, it allocates a new data extent and after doing
1578 * that it decrements the space info's bytes_may_use counter and
1579 * increments its bytes_reserved counter by the same amount (we do
1580 * this at btrfs_add_reserved_bytes()). So we need to increment the
1581 * bytes_may_use counter to compensate (when space is reserved at
1582 * buffered write time, the bytes_may_use counter is incremented);
1583 *
1584 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1585 * that if the COW path fails for any reason, it decrements (through
1586 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1587 * data space info, which we incremented in the step above.
1588 *
1589 * If we need to fallback to cow and the inode corresponds to a free
1590 * space cache inode or an inode of the data relocation tree, we must
1591 * also increment bytes_may_use of the data space_info for the same
1592 * reason. Space caches and relocated data extents always get a prealloc
1593 * extent for them, however scrub or balance may have set the block
1594 * group that contains that extent to RO mode and therefore force COW
1595 * when starting writeback.
1596 */
1597 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1598 EXTENT_NORESERVE, 0);
1599 if (count > 0 || is_space_ino || is_reloc_ino) {
1600 u64 bytes = count;
1601 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1602 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1603
1604 if (is_space_ino || is_reloc_ino)
1605 bytes = range_bytes;
1606
1607 spin_lock(&sinfo->lock);
1608 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1609 spin_unlock(&sinfo->lock);
1610
1611 if (count > 0)
1612 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1613 0, 0, NULL);
1614 }
1615
1616 return cow_file_range(inode, locked_page, start, end, page_started,
1617 nr_written, 1);
1618 }
1619
1620 /*
1621 * when nowcow writeback call back. This checks for snapshots or COW copies
1622 * of the extents that exist in the file, and COWs the file as required.
1623 *
1624 * If no cow copies or snapshots exist, we write directly to the existing
1625 * blocks on disk
1626 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1627 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1628 struct page *locked_page,
1629 const u64 start, const u64 end,
1630 int *page_started,
1631 unsigned long *nr_written)
1632 {
1633 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1634 struct btrfs_root *root = inode->root;
1635 struct btrfs_path *path;
1636 u64 cow_start = (u64)-1;
1637 u64 cur_offset = start;
1638 int ret;
1639 bool check_prev = true;
1640 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1641 u64 ino = btrfs_ino(inode);
1642 bool nocow = false;
1643 u64 disk_bytenr = 0;
1644 const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1645
1646 path = btrfs_alloc_path();
1647 if (!path) {
1648 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1649 EXTENT_LOCKED | EXTENT_DELALLOC |
1650 EXTENT_DO_ACCOUNTING |
1651 EXTENT_DEFRAG, PAGE_UNLOCK |
1652 PAGE_START_WRITEBACK |
1653 PAGE_END_WRITEBACK);
1654 return -ENOMEM;
1655 }
1656
1657 while (1) {
1658 struct btrfs_key found_key;
1659 struct btrfs_file_extent_item *fi;
1660 struct extent_buffer *leaf;
1661 u64 extent_end;
1662 u64 extent_offset;
1663 u64 num_bytes = 0;
1664 u64 disk_num_bytes;
1665 u64 ram_bytes;
1666 int extent_type;
1667
1668 nocow = false;
1669
1670 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1671 cur_offset, 0);
1672 if (ret < 0)
1673 goto error;
1674
1675 /*
1676 * If there is no extent for our range when doing the initial
1677 * search, then go back to the previous slot as it will be the
1678 * one containing the search offset
1679 */
1680 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1681 leaf = path->nodes[0];
1682 btrfs_item_key_to_cpu(leaf, &found_key,
1683 path->slots[0] - 1);
1684 if (found_key.objectid == ino &&
1685 found_key.type == BTRFS_EXTENT_DATA_KEY)
1686 path->slots[0]--;
1687 }
1688 check_prev = false;
1689 next_slot:
1690 /* Go to next leaf if we have exhausted the current one */
1691 leaf = path->nodes[0];
1692 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1693 ret = btrfs_next_leaf(root, path);
1694 if (ret < 0) {
1695 if (cow_start != (u64)-1)
1696 cur_offset = cow_start;
1697 goto error;
1698 }
1699 if (ret > 0)
1700 break;
1701 leaf = path->nodes[0];
1702 }
1703
1704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1705
1706 /* Didn't find anything for our INO */
1707 if (found_key.objectid > ino)
1708 break;
1709 /*
1710 * Keep searching until we find an EXTENT_ITEM or there are no
1711 * more extents for this inode
1712 */
1713 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1714 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1715 path->slots[0]++;
1716 goto next_slot;
1717 }
1718
1719 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1720 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1721 found_key.offset > end)
1722 break;
1723
1724 /*
1725 * If the found extent starts after requested offset, then
1726 * adjust extent_end to be right before this extent begins
1727 */
1728 if (found_key.offset > cur_offset) {
1729 extent_end = found_key.offset;
1730 extent_type = 0;
1731 goto out_check;
1732 }
1733
1734 /*
1735 * Found extent which begins before our range and potentially
1736 * intersect it
1737 */
1738 fi = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_file_extent_item);
1740 extent_type = btrfs_file_extent_type(leaf, fi);
1741
1742 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1743 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1744 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1745 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1746 extent_offset = btrfs_file_extent_offset(leaf, fi);
1747 extent_end = found_key.offset +
1748 btrfs_file_extent_num_bytes(leaf, fi);
1749 disk_num_bytes =
1750 btrfs_file_extent_disk_num_bytes(leaf, fi);
1751 /*
1752 * If the extent we got ends before our current offset,
1753 * skip to the next extent.
1754 */
1755 if (extent_end <= cur_offset) {
1756 path->slots[0]++;
1757 goto next_slot;
1758 }
1759 /* Skip holes */
1760 if (disk_bytenr == 0)
1761 goto out_check;
1762 /* Skip compressed/encrypted/encoded extents */
1763 if (btrfs_file_extent_compression(leaf, fi) ||
1764 btrfs_file_extent_encryption(leaf, fi) ||
1765 btrfs_file_extent_other_encoding(leaf, fi))
1766 goto out_check;
1767 /*
1768 * If extent is created before the last volume's snapshot
1769 * this implies the extent is shared, hence we can't do
1770 * nocow. This is the same check as in
1771 * btrfs_cross_ref_exist but without calling
1772 * btrfs_search_slot.
1773 */
1774 if (!freespace_inode &&
1775 btrfs_file_extent_generation(leaf, fi) <=
1776 btrfs_root_last_snapshot(&root->root_item))
1777 goto out_check;
1778 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1779 goto out_check;
1780
1781 /*
1782 * The following checks can be expensive, as they need to
1783 * take other locks and do btree or rbtree searches, so
1784 * release the path to avoid blocking other tasks for too
1785 * long.
1786 */
1787 btrfs_release_path(path);
1788
1789 ret = btrfs_cross_ref_exist(root, ino,
1790 found_key.offset -
1791 extent_offset, disk_bytenr, false);
1792 if (ret) {
1793 /*
1794 * ret could be -EIO if the above fails to read
1795 * metadata.
1796 */
1797 if (ret < 0) {
1798 if (cow_start != (u64)-1)
1799 cur_offset = cow_start;
1800 goto error;
1801 }
1802
1803 WARN_ON_ONCE(freespace_inode);
1804 goto out_check;
1805 }
1806 disk_bytenr += extent_offset;
1807 disk_bytenr += cur_offset - found_key.offset;
1808 num_bytes = min(end + 1, extent_end) - cur_offset;
1809 /*
1810 * If there are pending snapshots for this root, we
1811 * fall into common COW way
1812 */
1813 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1814 goto out_check;
1815 /*
1816 * force cow if csum exists in the range.
1817 * this ensure that csum for a given extent are
1818 * either valid or do not exist.
1819 */
1820 ret = csum_exist_in_range(fs_info, disk_bytenr,
1821 num_bytes);
1822 if (ret) {
1823 /*
1824 * ret could be -EIO if the above fails to read
1825 * metadata.
1826 */
1827 if (ret < 0) {
1828 if (cow_start != (u64)-1)
1829 cur_offset = cow_start;
1830 goto error;
1831 }
1832 WARN_ON_ONCE(freespace_inode);
1833 goto out_check;
1834 }
1835 /* If the extent's block group is RO, we must COW */
1836 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1837 goto out_check;
1838 nocow = true;
1839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1840 extent_end = found_key.offset + ram_bytes;
1841 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1842 /* Skip extents outside of our requested range */
1843 if (extent_end <= start) {
1844 path->slots[0]++;
1845 goto next_slot;
1846 }
1847 } else {
1848 /* If this triggers then we have a memory corruption */
1849 BUG();
1850 }
1851 out_check:
1852 /*
1853 * If nocow is false then record the beginning of the range
1854 * that needs to be COWed
1855 */
1856 if (!nocow) {
1857 if (cow_start == (u64)-1)
1858 cow_start = cur_offset;
1859 cur_offset = extent_end;
1860 if (cur_offset > end)
1861 break;
1862 if (!path->nodes[0])
1863 continue;
1864 path->slots[0]++;
1865 goto next_slot;
1866 }
1867
1868 /*
1869 * COW range from cow_start to found_key.offset - 1. As the key
1870 * will contain the beginning of the first extent that can be
1871 * NOCOW, following one which needs to be COW'ed
1872 */
1873 if (cow_start != (u64)-1) {
1874 ret = fallback_to_cow(inode, locked_page,
1875 cow_start, found_key.offset - 1,
1876 page_started, nr_written);
1877 if (ret)
1878 goto error;
1879 cow_start = (u64)-1;
1880 }
1881
1882 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1883 u64 orig_start = found_key.offset - extent_offset;
1884 struct extent_map *em;
1885
1886 em = create_io_em(inode, cur_offset, num_bytes,
1887 orig_start,
1888 disk_bytenr, /* block_start */
1889 num_bytes, /* block_len */
1890 disk_num_bytes, /* orig_block_len */
1891 ram_bytes, BTRFS_COMPRESS_NONE,
1892 BTRFS_ORDERED_PREALLOC);
1893 if (IS_ERR(em)) {
1894 ret = PTR_ERR(em);
1895 goto error;
1896 }
1897 free_extent_map(em);
1898 ret = btrfs_add_ordered_extent(inode, cur_offset,
1899 disk_bytenr, num_bytes,
1900 num_bytes,
1901 BTRFS_ORDERED_PREALLOC);
1902 if (ret) {
1903 btrfs_drop_extent_cache(inode, cur_offset,
1904 cur_offset + num_bytes - 1,
1905 0);
1906 goto error;
1907 }
1908 } else {
1909 ret = btrfs_add_ordered_extent(inode, cur_offset,
1910 disk_bytenr, num_bytes,
1911 num_bytes,
1912 BTRFS_ORDERED_NOCOW);
1913 if (ret)
1914 goto error;
1915 }
1916
1917 if (nocow)
1918 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1919 nocow = false;
1920
1921 if (btrfs_is_data_reloc_root(root))
1922 /*
1923 * Error handled later, as we must prevent
1924 * extent_clear_unlock_delalloc() in error handler
1925 * from freeing metadata of created ordered extent.
1926 */
1927 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1928 num_bytes);
1929
1930 extent_clear_unlock_delalloc(inode, cur_offset,
1931 cur_offset + num_bytes - 1,
1932 locked_page, EXTENT_LOCKED |
1933 EXTENT_DELALLOC |
1934 EXTENT_CLEAR_DATA_RESV,
1935 PAGE_UNLOCK | PAGE_SET_ORDERED);
1936
1937 cur_offset = extent_end;
1938
1939 /*
1940 * btrfs_reloc_clone_csums() error, now we're OK to call error
1941 * handler, as metadata for created ordered extent will only
1942 * be freed by btrfs_finish_ordered_io().
1943 */
1944 if (ret)
1945 goto error;
1946 if (cur_offset > end)
1947 break;
1948 }
1949 btrfs_release_path(path);
1950
1951 if (cur_offset <= end && cow_start == (u64)-1)
1952 cow_start = cur_offset;
1953
1954 if (cow_start != (u64)-1) {
1955 cur_offset = end;
1956 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1957 page_started, nr_written);
1958 if (ret)
1959 goto error;
1960 }
1961
1962 error:
1963 if (nocow)
1964 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1965
1966 if (ret && cur_offset < end)
1967 extent_clear_unlock_delalloc(inode, cur_offset, end,
1968 locked_page, EXTENT_LOCKED |
1969 EXTENT_DELALLOC | EXTENT_DEFRAG |
1970 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1971 PAGE_START_WRITEBACK |
1972 PAGE_END_WRITEBACK);
1973 btrfs_free_path(path);
1974 return ret;
1975 }
1976
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)1977 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1978 {
1979 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1980 if (inode->defrag_bytes &&
1981 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1982 0, NULL))
1983 return false;
1984 return true;
1985 }
1986 return false;
1987 }
1988
1989 /*
1990 * Function to process delayed allocation (create CoW) for ranges which are
1991 * being touched for the first time.
1992 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1993 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1994 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1995 struct writeback_control *wbc)
1996 {
1997 int ret;
1998 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1999
2000 if (should_nocow(inode, start, end)) {
2001 /*
2002 * Normally on a zoned device we're only doing COW writes, but
2003 * in case of relocation on a zoned filesystem we have taken
2004 * precaution, that we're only writing sequentially. It's safe
2005 * to use run_delalloc_nocow() here, like for regular
2006 * preallocated inodes.
2007 */
2008 ASSERT(!zoned ||
2009 (zoned && btrfs_is_data_reloc_root(inode->root)));
2010 ret = run_delalloc_nocow(inode, locked_page, start, end,
2011 page_started, nr_written);
2012 } else if (!inode_can_compress(inode) ||
2013 !inode_need_compress(inode, start, end)) {
2014 if (zoned)
2015 ret = run_delalloc_zoned(inode, locked_page, start, end,
2016 page_started, nr_written);
2017 else
2018 ret = cow_file_range(inode, locked_page, start, end,
2019 page_started, nr_written, 1);
2020 } else {
2021 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2022 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2023 page_started, nr_written);
2024 }
2025 ASSERT(ret <= 0);
2026 if (ret)
2027 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2028 end - start + 1);
2029 return ret;
2030 }
2031
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)2032 void btrfs_split_delalloc_extent(struct inode *inode,
2033 struct extent_state *orig, u64 split)
2034 {
2035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2036 u64 size;
2037
2038 /* not delalloc, ignore it */
2039 if (!(orig->state & EXTENT_DELALLOC))
2040 return;
2041
2042 size = orig->end - orig->start + 1;
2043 if (size > fs_info->max_extent_size) {
2044 u32 num_extents;
2045 u64 new_size;
2046
2047 /*
2048 * See the explanation in btrfs_merge_delalloc_extent, the same
2049 * applies here, just in reverse.
2050 */
2051 new_size = orig->end - split + 1;
2052 num_extents = count_max_extents(fs_info, new_size);
2053 new_size = split - orig->start;
2054 num_extents += count_max_extents(fs_info, new_size);
2055 if (count_max_extents(fs_info, size) >= num_extents)
2056 return;
2057 }
2058
2059 spin_lock(&BTRFS_I(inode)->lock);
2060 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2061 spin_unlock(&BTRFS_I(inode)->lock);
2062 }
2063
2064 /*
2065 * Handle merged delayed allocation extents so we can keep track of new extents
2066 * that are just merged onto old extents, such as when we are doing sequential
2067 * writes, so we can properly account for the metadata space we'll need.
2068 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)2069 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2070 struct extent_state *other)
2071 {
2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2073 u64 new_size, old_size;
2074 u32 num_extents;
2075
2076 /* not delalloc, ignore it */
2077 if (!(other->state & EXTENT_DELALLOC))
2078 return;
2079
2080 if (new->start > other->start)
2081 new_size = new->end - other->start + 1;
2082 else
2083 new_size = other->end - new->start + 1;
2084
2085 /* we're not bigger than the max, unreserve the space and go */
2086 if (new_size <= fs_info->max_extent_size) {
2087 spin_lock(&BTRFS_I(inode)->lock);
2088 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2089 spin_unlock(&BTRFS_I(inode)->lock);
2090 return;
2091 }
2092
2093 /*
2094 * We have to add up either side to figure out how many extents were
2095 * accounted for before we merged into one big extent. If the number of
2096 * extents we accounted for is <= the amount we need for the new range
2097 * then we can return, otherwise drop. Think of it like this
2098 *
2099 * [ 4k][MAX_SIZE]
2100 *
2101 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2102 * need 2 outstanding extents, on one side we have 1 and the other side
2103 * we have 1 so they are == and we can return. But in this case
2104 *
2105 * [MAX_SIZE+4k][MAX_SIZE+4k]
2106 *
2107 * Each range on their own accounts for 2 extents, but merged together
2108 * they are only 3 extents worth of accounting, so we need to drop in
2109 * this case.
2110 */
2111 old_size = other->end - other->start + 1;
2112 num_extents = count_max_extents(fs_info, old_size);
2113 old_size = new->end - new->start + 1;
2114 num_extents += count_max_extents(fs_info, old_size);
2115 if (count_max_extents(fs_info, new_size) >= num_extents)
2116 return;
2117
2118 spin_lock(&BTRFS_I(inode)->lock);
2119 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2120 spin_unlock(&BTRFS_I(inode)->lock);
2121 }
2122
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)2123 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2124 struct inode *inode)
2125 {
2126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2127
2128 spin_lock(&root->delalloc_lock);
2129 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2130 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2131 &root->delalloc_inodes);
2132 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2133 &BTRFS_I(inode)->runtime_flags);
2134 root->nr_delalloc_inodes++;
2135 if (root->nr_delalloc_inodes == 1) {
2136 spin_lock(&fs_info->delalloc_root_lock);
2137 BUG_ON(!list_empty(&root->delalloc_root));
2138 list_add_tail(&root->delalloc_root,
2139 &fs_info->delalloc_roots);
2140 spin_unlock(&fs_info->delalloc_root_lock);
2141 }
2142 }
2143 spin_unlock(&root->delalloc_lock);
2144 }
2145
2146
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2147 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2148 struct btrfs_inode *inode)
2149 {
2150 struct btrfs_fs_info *fs_info = root->fs_info;
2151
2152 if (!list_empty(&inode->delalloc_inodes)) {
2153 list_del_init(&inode->delalloc_inodes);
2154 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2155 &inode->runtime_flags);
2156 root->nr_delalloc_inodes--;
2157 if (!root->nr_delalloc_inodes) {
2158 ASSERT(list_empty(&root->delalloc_inodes));
2159 spin_lock(&fs_info->delalloc_root_lock);
2160 BUG_ON(list_empty(&root->delalloc_root));
2161 list_del_init(&root->delalloc_root);
2162 spin_unlock(&fs_info->delalloc_root_lock);
2163 }
2164 }
2165 }
2166
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2167 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2168 struct btrfs_inode *inode)
2169 {
2170 spin_lock(&root->delalloc_lock);
2171 __btrfs_del_delalloc_inode(root, inode);
2172 spin_unlock(&root->delalloc_lock);
2173 }
2174
2175 /*
2176 * Properly track delayed allocation bytes in the inode and to maintain the
2177 * list of inodes that have pending delalloc work to be done.
2178 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)2179 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2180 unsigned *bits)
2181 {
2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183
2184 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2185 WARN_ON(1);
2186 /*
2187 * set_bit and clear bit hooks normally require _irqsave/restore
2188 * but in this case, we are only testing for the DELALLOC
2189 * bit, which is only set or cleared with irqs on
2190 */
2191 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2192 struct btrfs_root *root = BTRFS_I(inode)->root;
2193 u64 len = state->end + 1 - state->start;
2194 u32 num_extents = count_max_extents(fs_info, len);
2195 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2196
2197 spin_lock(&BTRFS_I(inode)->lock);
2198 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2199 spin_unlock(&BTRFS_I(inode)->lock);
2200
2201 /* For sanity tests */
2202 if (btrfs_is_testing(fs_info))
2203 return;
2204
2205 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2206 fs_info->delalloc_batch);
2207 spin_lock(&BTRFS_I(inode)->lock);
2208 BTRFS_I(inode)->delalloc_bytes += len;
2209 if (*bits & EXTENT_DEFRAG)
2210 BTRFS_I(inode)->defrag_bytes += len;
2211 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2212 &BTRFS_I(inode)->runtime_flags))
2213 btrfs_add_delalloc_inodes(root, inode);
2214 spin_unlock(&BTRFS_I(inode)->lock);
2215 }
2216
2217 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2218 (*bits & EXTENT_DELALLOC_NEW)) {
2219 spin_lock(&BTRFS_I(inode)->lock);
2220 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2221 state->start;
2222 spin_unlock(&BTRFS_I(inode)->lock);
2223 }
2224 }
2225
2226 /*
2227 * Once a range is no longer delalloc this function ensures that proper
2228 * accounting happens.
2229 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2230 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2231 struct extent_state *state, unsigned *bits)
2232 {
2233 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2234 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2235 u64 len = state->end + 1 - state->start;
2236 u32 num_extents = count_max_extents(fs_info, len);
2237
2238 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2239 spin_lock(&inode->lock);
2240 inode->defrag_bytes -= len;
2241 spin_unlock(&inode->lock);
2242 }
2243
2244 /*
2245 * set_bit and clear bit hooks normally require _irqsave/restore
2246 * but in this case, we are only testing for the DELALLOC
2247 * bit, which is only set or cleared with irqs on
2248 */
2249 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2250 struct btrfs_root *root = inode->root;
2251 bool do_list = !btrfs_is_free_space_inode(inode);
2252
2253 spin_lock(&inode->lock);
2254 btrfs_mod_outstanding_extents(inode, -num_extents);
2255 spin_unlock(&inode->lock);
2256
2257 /*
2258 * We don't reserve metadata space for space cache inodes so we
2259 * don't need to call delalloc_release_metadata if there is an
2260 * error.
2261 */
2262 if (*bits & EXTENT_CLEAR_META_RESV &&
2263 root != fs_info->tree_root)
2264 btrfs_delalloc_release_metadata(inode, len, false);
2265
2266 /* For sanity tests. */
2267 if (btrfs_is_testing(fs_info))
2268 return;
2269
2270 if (!btrfs_is_data_reloc_root(root) &&
2271 do_list && !(state->state & EXTENT_NORESERVE) &&
2272 (*bits & EXTENT_CLEAR_DATA_RESV))
2273 btrfs_free_reserved_data_space_noquota(fs_info, len);
2274
2275 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2276 fs_info->delalloc_batch);
2277 spin_lock(&inode->lock);
2278 inode->delalloc_bytes -= len;
2279 if (do_list && inode->delalloc_bytes == 0 &&
2280 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2281 &inode->runtime_flags))
2282 btrfs_del_delalloc_inode(root, inode);
2283 spin_unlock(&inode->lock);
2284 }
2285
2286 if ((state->state & EXTENT_DELALLOC_NEW) &&
2287 (*bits & EXTENT_DELALLOC_NEW)) {
2288 spin_lock(&inode->lock);
2289 ASSERT(inode->new_delalloc_bytes >= len);
2290 inode->new_delalloc_bytes -= len;
2291 if (*bits & EXTENT_ADD_INODE_BYTES)
2292 inode_add_bytes(&inode->vfs_inode, len);
2293 spin_unlock(&inode->lock);
2294 }
2295 }
2296
2297 /*
2298 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2299 * in a chunk's stripe. This function ensures that bios do not span a
2300 * stripe/chunk
2301 *
2302 * @page - The page we are about to add to the bio
2303 * @size - size we want to add to the bio
2304 * @bio - bio we want to ensure is smaller than a stripe
2305 * @bio_flags - flags of the bio
2306 *
2307 * return 1 if page cannot be added to the bio
2308 * return 0 if page can be added to the bio
2309 * return error otherwise
2310 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2311 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2312 unsigned long bio_flags)
2313 {
2314 struct inode *inode = page->mapping->host;
2315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2316 u64 logical = bio->bi_iter.bi_sector << 9;
2317 u32 bio_len = bio->bi_iter.bi_size;
2318 struct extent_map *em;
2319 int ret = 0;
2320 struct btrfs_io_geometry geom;
2321
2322 if (bio_flags & EXTENT_BIO_COMPRESSED)
2323 return 0;
2324
2325 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
2326 if (IS_ERR(em))
2327 return PTR_ERR(em);
2328 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom);
2329 if (ret < 0)
2330 goto out;
2331
2332 if (geom.len < bio_len + size)
2333 ret = 1;
2334 out:
2335 free_extent_map(em);
2336 return ret;
2337 }
2338
2339 /*
2340 * in order to insert checksums into the metadata in large chunks,
2341 * we wait until bio submission time. All the pages in the bio are
2342 * checksummed and sums are attached onto the ordered extent record.
2343 *
2344 * At IO completion time the cums attached on the ordered extent record
2345 * are inserted into the btree
2346 */
btrfs_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)2347 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2348 u64 dio_file_offset)
2349 {
2350 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2351 }
2352
2353 /*
2354 * Split an extent_map at [start, start + len]
2355 *
2356 * This function is intended to be used only for extract_ordered_extent().
2357 */
split_zoned_em(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 post)2358 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2359 u64 pre, u64 post)
2360 {
2361 struct extent_map_tree *em_tree = &inode->extent_tree;
2362 struct extent_map *em;
2363 struct extent_map *split_pre = NULL;
2364 struct extent_map *split_mid = NULL;
2365 struct extent_map *split_post = NULL;
2366 int ret = 0;
2367 unsigned long flags;
2368
2369 /* Sanity check */
2370 if (pre == 0 && post == 0)
2371 return 0;
2372
2373 split_pre = alloc_extent_map();
2374 if (pre)
2375 split_mid = alloc_extent_map();
2376 if (post)
2377 split_post = alloc_extent_map();
2378 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2379 ret = -ENOMEM;
2380 goto out;
2381 }
2382
2383 ASSERT(pre + post < len);
2384
2385 lock_extent(&inode->io_tree, start, start + len - 1);
2386 write_lock(&em_tree->lock);
2387 em = lookup_extent_mapping(em_tree, start, len);
2388 if (!em) {
2389 ret = -EIO;
2390 goto out_unlock;
2391 }
2392
2393 ASSERT(em->len == len);
2394 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2395 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2396 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2397 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2398 ASSERT(!list_empty(&em->list));
2399
2400 flags = em->flags;
2401 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2402
2403 /* First, replace the em with a new extent_map starting from * em->start */
2404 split_pre->start = em->start;
2405 split_pre->len = (pre ? pre : em->len - post);
2406 split_pre->orig_start = split_pre->start;
2407 split_pre->block_start = em->block_start;
2408 split_pre->block_len = split_pre->len;
2409 split_pre->orig_block_len = split_pre->block_len;
2410 split_pre->ram_bytes = split_pre->len;
2411 split_pre->flags = flags;
2412 split_pre->compress_type = em->compress_type;
2413 split_pre->generation = em->generation;
2414
2415 replace_extent_mapping(em_tree, em, split_pre, 1);
2416
2417 /*
2418 * Now we only have an extent_map at:
2419 * [em->start, em->start + pre] if pre != 0
2420 * [em->start, em->start + em->len - post] if pre == 0
2421 */
2422
2423 if (pre) {
2424 /* Insert the middle extent_map */
2425 split_mid->start = em->start + pre;
2426 split_mid->len = em->len - pre - post;
2427 split_mid->orig_start = split_mid->start;
2428 split_mid->block_start = em->block_start + pre;
2429 split_mid->block_len = split_mid->len;
2430 split_mid->orig_block_len = split_mid->block_len;
2431 split_mid->ram_bytes = split_mid->len;
2432 split_mid->flags = flags;
2433 split_mid->compress_type = em->compress_type;
2434 split_mid->generation = em->generation;
2435 add_extent_mapping(em_tree, split_mid, 1);
2436 }
2437
2438 if (post) {
2439 split_post->start = em->start + em->len - post;
2440 split_post->len = post;
2441 split_post->orig_start = split_post->start;
2442 split_post->block_start = em->block_start + em->len - post;
2443 split_post->block_len = split_post->len;
2444 split_post->orig_block_len = split_post->block_len;
2445 split_post->ram_bytes = split_post->len;
2446 split_post->flags = flags;
2447 split_post->compress_type = em->compress_type;
2448 split_post->generation = em->generation;
2449 add_extent_mapping(em_tree, split_post, 1);
2450 }
2451
2452 /* Once for us */
2453 free_extent_map(em);
2454 /* Once for the tree */
2455 free_extent_map(em);
2456
2457 out_unlock:
2458 write_unlock(&em_tree->lock);
2459 unlock_extent(&inode->io_tree, start, start + len - 1);
2460 out:
2461 free_extent_map(split_pre);
2462 free_extent_map(split_mid);
2463 free_extent_map(split_post);
2464
2465 return ret;
2466 }
2467
extract_ordered_extent(struct btrfs_inode * inode,struct bio * bio,loff_t file_offset)2468 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2469 struct bio *bio, loff_t file_offset)
2470 {
2471 struct btrfs_ordered_extent *ordered;
2472 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2473 u64 file_len;
2474 u64 len = bio->bi_iter.bi_size;
2475 u64 end = start + len;
2476 u64 ordered_end;
2477 u64 pre, post;
2478 int ret = 0;
2479
2480 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2481 if (WARN_ON_ONCE(!ordered))
2482 return BLK_STS_IOERR;
2483
2484 /* No need to split */
2485 if (ordered->disk_num_bytes == len)
2486 goto out;
2487
2488 /* We cannot split once end_bio'd ordered extent */
2489 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2490 ret = -EINVAL;
2491 goto out;
2492 }
2493
2494 /* We cannot split a compressed ordered extent */
2495 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2496 ret = -EINVAL;
2497 goto out;
2498 }
2499
2500 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2501 /* bio must be in one ordered extent */
2502 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2503 ret = -EINVAL;
2504 goto out;
2505 }
2506
2507 /* Checksum list should be empty */
2508 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2509 ret = -EINVAL;
2510 goto out;
2511 }
2512
2513 file_len = ordered->num_bytes;
2514 pre = start - ordered->disk_bytenr;
2515 post = ordered_end - end;
2516
2517 ret = btrfs_split_ordered_extent(ordered, pre, post);
2518 if (ret)
2519 goto out;
2520 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2521
2522 out:
2523 btrfs_put_ordered_extent(ordered);
2524
2525 return errno_to_blk_status(ret);
2526 }
2527
2528 /*
2529 * extent_io.c submission hook. This does the right thing for csum calculation
2530 * on write, or reading the csums from the tree before a read.
2531 *
2532 * Rules about async/sync submit,
2533 * a) read: sync submit
2534 *
2535 * b) write without checksum: sync submit
2536 *
2537 * c) write with checksum:
2538 * c-1) if bio is issued by fsync: sync submit
2539 * (sync_writers != 0)
2540 *
2541 * c-2) if root is reloc root: sync submit
2542 * (only in case of buffered IO)
2543 *
2544 * c-3) otherwise: async submit
2545 */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2546 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2547 int mirror_num, unsigned long bio_flags)
2548
2549 {
2550 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2551 struct btrfs_root *root = BTRFS_I(inode)->root;
2552 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2553 blk_status_t ret = 0;
2554 int skip_sum;
2555 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2556
2557 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2558 !fs_info->csum_root;
2559
2560 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2561 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2562
2563 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2564 struct page *page = bio_first_bvec_all(bio)->bv_page;
2565 loff_t file_offset = page_offset(page);
2566
2567 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2568 if (ret)
2569 goto out;
2570 }
2571
2572 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2573 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2574 if (ret)
2575 goto out;
2576
2577 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2578 ret = btrfs_submit_compressed_read(inode, bio,
2579 mirror_num,
2580 bio_flags);
2581 goto out;
2582 } else {
2583 /*
2584 * Lookup bio sums does extra checks around whether we
2585 * need to csum or not, which is why we ignore skip_sum
2586 * here.
2587 */
2588 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2589 if (ret)
2590 goto out;
2591 }
2592 goto mapit;
2593 } else if (async && !skip_sum) {
2594 /* csum items have already been cloned */
2595 if (btrfs_is_data_reloc_root(root))
2596 goto mapit;
2597 /* we're doing a write, do the async checksumming */
2598 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2599 0, btrfs_submit_bio_start);
2600 goto out;
2601 } else if (!skip_sum) {
2602 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2603 if (ret)
2604 goto out;
2605 }
2606
2607 mapit:
2608 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2609
2610 out:
2611 if (ret) {
2612 bio->bi_status = ret;
2613 bio_endio(bio);
2614 }
2615 return ret;
2616 }
2617
2618 /*
2619 * given a list of ordered sums record them in the inode. This happens
2620 * at IO completion time based on sums calculated at bio submission time.
2621 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2622 static int add_pending_csums(struct btrfs_trans_handle *trans,
2623 struct list_head *list)
2624 {
2625 struct btrfs_ordered_sum *sum;
2626 int ret;
2627
2628 list_for_each_entry(sum, list, list) {
2629 trans->adding_csums = true;
2630 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2631 trans->adding_csums = false;
2632 if (ret)
2633 return ret;
2634 }
2635 return 0;
2636 }
2637
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2638 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2639 const u64 start,
2640 const u64 len,
2641 struct extent_state **cached_state)
2642 {
2643 u64 search_start = start;
2644 const u64 end = start + len - 1;
2645
2646 while (search_start < end) {
2647 const u64 search_len = end - search_start + 1;
2648 struct extent_map *em;
2649 u64 em_len;
2650 int ret = 0;
2651
2652 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2653 if (IS_ERR(em))
2654 return PTR_ERR(em);
2655
2656 if (em->block_start != EXTENT_MAP_HOLE)
2657 goto next;
2658
2659 em_len = em->len;
2660 if (em->start < search_start)
2661 em_len -= search_start - em->start;
2662 if (em_len > search_len)
2663 em_len = search_len;
2664
2665 ret = set_extent_bit(&inode->io_tree, search_start,
2666 search_start + em_len - 1,
2667 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2668 GFP_NOFS, NULL);
2669 next:
2670 search_start = extent_map_end(em);
2671 free_extent_map(em);
2672 if (ret)
2673 return ret;
2674 }
2675 return 0;
2676 }
2677
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2678 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2679 unsigned int extra_bits,
2680 struct extent_state **cached_state)
2681 {
2682 WARN_ON(PAGE_ALIGNED(end));
2683
2684 if (start >= i_size_read(&inode->vfs_inode) &&
2685 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2686 /*
2687 * There can't be any extents following eof in this case so just
2688 * set the delalloc new bit for the range directly.
2689 */
2690 extra_bits |= EXTENT_DELALLOC_NEW;
2691 } else {
2692 int ret;
2693
2694 ret = btrfs_find_new_delalloc_bytes(inode, start,
2695 end + 1 - start,
2696 cached_state);
2697 if (ret)
2698 return ret;
2699 }
2700
2701 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2702 cached_state);
2703 }
2704
2705 /* see btrfs_writepage_start_hook for details on why this is required */
2706 struct btrfs_writepage_fixup {
2707 struct page *page;
2708 struct inode *inode;
2709 struct btrfs_work work;
2710 };
2711
btrfs_writepage_fixup_worker(struct btrfs_work * work)2712 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2713 {
2714 struct btrfs_writepage_fixup *fixup;
2715 struct btrfs_ordered_extent *ordered;
2716 struct extent_state *cached_state = NULL;
2717 struct extent_changeset *data_reserved = NULL;
2718 struct page *page;
2719 struct btrfs_inode *inode;
2720 u64 page_start;
2721 u64 page_end;
2722 int ret = 0;
2723 bool free_delalloc_space = true;
2724
2725 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2726 page = fixup->page;
2727 inode = BTRFS_I(fixup->inode);
2728 page_start = page_offset(page);
2729 page_end = page_offset(page) + PAGE_SIZE - 1;
2730
2731 /*
2732 * This is similar to page_mkwrite, we need to reserve the space before
2733 * we take the page lock.
2734 */
2735 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2736 PAGE_SIZE);
2737 again:
2738 lock_page(page);
2739
2740 /*
2741 * Before we queued this fixup, we took a reference on the page.
2742 * page->mapping may go NULL, but it shouldn't be moved to a different
2743 * address space.
2744 */
2745 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2746 /*
2747 * Unfortunately this is a little tricky, either
2748 *
2749 * 1) We got here and our page had already been dealt with and
2750 * we reserved our space, thus ret == 0, so we need to just
2751 * drop our space reservation and bail. This can happen the
2752 * first time we come into the fixup worker, or could happen
2753 * while waiting for the ordered extent.
2754 * 2) Our page was already dealt with, but we happened to get an
2755 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2756 * this case we obviously don't have anything to release, but
2757 * because the page was already dealt with we don't want to
2758 * mark the page with an error, so make sure we're resetting
2759 * ret to 0. This is why we have this check _before_ the ret
2760 * check, because we do not want to have a surprise ENOSPC
2761 * when the page was already properly dealt with.
2762 */
2763 if (!ret) {
2764 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2765 btrfs_delalloc_release_space(inode, data_reserved,
2766 page_start, PAGE_SIZE,
2767 true);
2768 }
2769 ret = 0;
2770 goto out_page;
2771 }
2772
2773 /*
2774 * We can't mess with the page state unless it is locked, so now that
2775 * it is locked bail if we failed to make our space reservation.
2776 */
2777 if (ret)
2778 goto out_page;
2779
2780 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2781
2782 /* already ordered? We're done */
2783 if (PageOrdered(page))
2784 goto out_reserved;
2785
2786 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2787 if (ordered) {
2788 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2789 &cached_state);
2790 unlock_page(page);
2791 btrfs_start_ordered_extent(ordered, 1);
2792 btrfs_put_ordered_extent(ordered);
2793 goto again;
2794 }
2795
2796 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2797 &cached_state);
2798 if (ret)
2799 goto out_reserved;
2800
2801 /*
2802 * Everything went as planned, we're now the owner of a dirty page with
2803 * delayed allocation bits set and space reserved for our COW
2804 * destination.
2805 *
2806 * The page was dirty when we started, nothing should have cleaned it.
2807 */
2808 BUG_ON(!PageDirty(page));
2809 free_delalloc_space = false;
2810 out_reserved:
2811 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2812 if (free_delalloc_space)
2813 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2814 PAGE_SIZE, true);
2815 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2816 &cached_state);
2817 out_page:
2818 if (ret) {
2819 /*
2820 * We hit ENOSPC or other errors. Update the mapping and page
2821 * to reflect the errors and clean the page.
2822 */
2823 mapping_set_error(page->mapping, ret);
2824 end_extent_writepage(page, ret, page_start, page_end);
2825 clear_page_dirty_for_io(page);
2826 SetPageError(page);
2827 }
2828 ClearPageChecked(page);
2829 unlock_page(page);
2830 put_page(page);
2831 kfree(fixup);
2832 extent_changeset_free(data_reserved);
2833 /*
2834 * As a precaution, do a delayed iput in case it would be the last iput
2835 * that could need flushing space. Recursing back to fixup worker would
2836 * deadlock.
2837 */
2838 btrfs_add_delayed_iput(&inode->vfs_inode);
2839 }
2840
2841 /*
2842 * There are a few paths in the higher layers of the kernel that directly
2843 * set the page dirty bit without asking the filesystem if it is a
2844 * good idea. This causes problems because we want to make sure COW
2845 * properly happens and the data=ordered rules are followed.
2846 *
2847 * In our case any range that doesn't have the ORDERED bit set
2848 * hasn't been properly setup for IO. We kick off an async process
2849 * to fix it up. The async helper will wait for ordered extents, set
2850 * the delalloc bit and make it safe to write the page.
2851 */
btrfs_writepage_cow_fixup(struct page * page)2852 int btrfs_writepage_cow_fixup(struct page *page)
2853 {
2854 struct inode *inode = page->mapping->host;
2855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2856 struct btrfs_writepage_fixup *fixup;
2857
2858 /* This page has ordered extent covering it already */
2859 if (PageOrdered(page))
2860 return 0;
2861
2862 /*
2863 * PageChecked is set below when we create a fixup worker for this page,
2864 * don't try to create another one if we're already PageChecked()
2865 *
2866 * The extent_io writepage code will redirty the page if we send back
2867 * EAGAIN.
2868 */
2869 if (PageChecked(page))
2870 return -EAGAIN;
2871
2872 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2873 if (!fixup)
2874 return -EAGAIN;
2875
2876 /*
2877 * We are already holding a reference to this inode from
2878 * write_cache_pages. We need to hold it because the space reservation
2879 * takes place outside of the page lock, and we can't trust
2880 * page->mapping outside of the page lock.
2881 */
2882 ihold(inode);
2883 SetPageChecked(page);
2884 get_page(page);
2885 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2886 fixup->page = page;
2887 fixup->inode = inode;
2888 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2889
2890 return -EAGAIN;
2891 }
2892
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2893 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2894 struct btrfs_inode *inode, u64 file_pos,
2895 struct btrfs_file_extent_item *stack_fi,
2896 const bool update_inode_bytes,
2897 u64 qgroup_reserved)
2898 {
2899 struct btrfs_root *root = inode->root;
2900 const u64 sectorsize = root->fs_info->sectorsize;
2901 struct btrfs_path *path;
2902 struct extent_buffer *leaf;
2903 struct btrfs_key ins;
2904 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2905 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2906 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2907 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2908 struct btrfs_drop_extents_args drop_args = { 0 };
2909 int ret;
2910
2911 path = btrfs_alloc_path();
2912 if (!path)
2913 return -ENOMEM;
2914
2915 /*
2916 * we may be replacing one extent in the tree with another.
2917 * The new extent is pinned in the extent map, and we don't want
2918 * to drop it from the cache until it is completely in the btree.
2919 *
2920 * So, tell btrfs_drop_extents to leave this extent in the cache.
2921 * the caller is expected to unpin it and allow it to be merged
2922 * with the others.
2923 */
2924 drop_args.path = path;
2925 drop_args.start = file_pos;
2926 drop_args.end = file_pos + num_bytes;
2927 drop_args.replace_extent = true;
2928 drop_args.extent_item_size = sizeof(*stack_fi);
2929 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2930 if (ret)
2931 goto out;
2932
2933 if (!drop_args.extent_inserted) {
2934 ins.objectid = btrfs_ino(inode);
2935 ins.offset = file_pos;
2936 ins.type = BTRFS_EXTENT_DATA_KEY;
2937
2938 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2939 sizeof(*stack_fi));
2940 if (ret)
2941 goto out;
2942 }
2943 leaf = path->nodes[0];
2944 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2945 write_extent_buffer(leaf, stack_fi,
2946 btrfs_item_ptr_offset(leaf, path->slots[0]),
2947 sizeof(struct btrfs_file_extent_item));
2948
2949 btrfs_mark_buffer_dirty(leaf);
2950 btrfs_release_path(path);
2951
2952 /*
2953 * If we dropped an inline extent here, we know the range where it is
2954 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2955 * number of bytes only for that range containing the inline extent.
2956 * The remaining of the range will be processed when clearning the
2957 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2958 */
2959 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2960 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2961
2962 inline_size = drop_args.bytes_found - inline_size;
2963 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2964 drop_args.bytes_found -= inline_size;
2965 num_bytes -= sectorsize;
2966 }
2967
2968 if (update_inode_bytes)
2969 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2970
2971 ins.objectid = disk_bytenr;
2972 ins.offset = disk_num_bytes;
2973 ins.type = BTRFS_EXTENT_ITEM_KEY;
2974
2975 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2976 if (ret)
2977 goto out;
2978
2979 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2980 file_pos, qgroup_reserved, &ins);
2981 out:
2982 btrfs_free_path(path);
2983
2984 return ret;
2985 }
2986
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2987 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2988 u64 start, u64 len)
2989 {
2990 struct btrfs_block_group *cache;
2991
2992 cache = btrfs_lookup_block_group(fs_info, start);
2993 ASSERT(cache);
2994
2995 spin_lock(&cache->lock);
2996 cache->delalloc_bytes -= len;
2997 spin_unlock(&cache->lock);
2998
2999 btrfs_put_block_group(cache);
3000 }
3001
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3002 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3003 struct btrfs_ordered_extent *oe)
3004 {
3005 struct btrfs_file_extent_item stack_fi;
3006 u64 logical_len;
3007 bool update_inode_bytes;
3008
3009 memset(&stack_fi, 0, sizeof(stack_fi));
3010 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3011 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3012 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3013 oe->disk_num_bytes);
3014 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3015 logical_len = oe->truncated_len;
3016 else
3017 logical_len = oe->num_bytes;
3018 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
3019 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
3020 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3021 /* Encryption and other encoding is reserved and all 0 */
3022
3023 /*
3024 * For delalloc, when completing an ordered extent we update the inode's
3025 * bytes when clearing the range in the inode's io tree, so pass false
3026 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3027 * except if the ordered extent was truncated.
3028 */
3029 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3030 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3031
3032 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3033 oe->file_offset, &stack_fi,
3034 update_inode_bytes, oe->qgroup_rsv);
3035 }
3036
3037 /*
3038 * As ordered data IO finishes, this gets called so we can finish
3039 * an ordered extent if the range of bytes in the file it covers are
3040 * fully written.
3041 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3042 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3043 {
3044 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3045 struct btrfs_root *root = inode->root;
3046 struct btrfs_fs_info *fs_info = root->fs_info;
3047 struct btrfs_trans_handle *trans = NULL;
3048 struct extent_io_tree *io_tree = &inode->io_tree;
3049 struct extent_state *cached_state = NULL;
3050 u64 start, end;
3051 int compress_type = 0;
3052 int ret = 0;
3053 u64 logical_len = ordered_extent->num_bytes;
3054 bool freespace_inode;
3055 bool truncated = false;
3056 bool clear_reserved_extent = true;
3057 unsigned int clear_bits = EXTENT_DEFRAG;
3058
3059 start = ordered_extent->file_offset;
3060 end = start + ordered_extent->num_bytes - 1;
3061
3062 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3063 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3064 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3065 clear_bits |= EXTENT_DELALLOC_NEW;
3066
3067 freespace_inode = btrfs_is_free_space_inode(inode);
3068
3069 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3070 ret = -EIO;
3071 goto out;
3072 }
3073
3074 if (ordered_extent->bdev)
3075 btrfs_rewrite_logical_zoned(ordered_extent);
3076
3077 btrfs_free_io_failure_record(inode, start, end);
3078
3079 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3080 truncated = true;
3081 logical_len = ordered_extent->truncated_len;
3082 /* Truncated the entire extent, don't bother adding */
3083 if (!logical_len)
3084 goto out;
3085 }
3086
3087 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3088 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3089
3090 btrfs_inode_safe_disk_i_size_write(inode, 0);
3091 if (freespace_inode)
3092 trans = btrfs_join_transaction_spacecache(root);
3093 else
3094 trans = btrfs_join_transaction(root);
3095 if (IS_ERR(trans)) {
3096 ret = PTR_ERR(trans);
3097 trans = NULL;
3098 goto out;
3099 }
3100 trans->block_rsv = &inode->block_rsv;
3101 ret = btrfs_update_inode_fallback(trans, root, inode);
3102 if (ret) /* -ENOMEM or corruption */
3103 btrfs_abort_transaction(trans, ret);
3104 goto out;
3105 }
3106
3107 clear_bits |= EXTENT_LOCKED;
3108 lock_extent_bits(io_tree, start, end, &cached_state);
3109
3110 if (freespace_inode)
3111 trans = btrfs_join_transaction_spacecache(root);
3112 else
3113 trans = btrfs_join_transaction(root);
3114 if (IS_ERR(trans)) {
3115 ret = PTR_ERR(trans);
3116 trans = NULL;
3117 goto out;
3118 }
3119
3120 trans->block_rsv = &inode->block_rsv;
3121
3122 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3123 compress_type = ordered_extent->compress_type;
3124 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3125 BUG_ON(compress_type);
3126 ret = btrfs_mark_extent_written(trans, inode,
3127 ordered_extent->file_offset,
3128 ordered_extent->file_offset +
3129 logical_len);
3130 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3131 ordered_extent->disk_num_bytes);
3132 } else {
3133 BUG_ON(root == fs_info->tree_root);
3134 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3135 if (!ret) {
3136 clear_reserved_extent = false;
3137 btrfs_release_delalloc_bytes(fs_info,
3138 ordered_extent->disk_bytenr,
3139 ordered_extent->disk_num_bytes);
3140 }
3141 }
3142 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3143 ordered_extent->num_bytes, trans->transid);
3144 if (ret < 0) {
3145 btrfs_abort_transaction(trans, ret);
3146 goto out;
3147 }
3148
3149 ret = add_pending_csums(trans, &ordered_extent->list);
3150 if (ret) {
3151 btrfs_abort_transaction(trans, ret);
3152 goto out;
3153 }
3154
3155 /*
3156 * If this is a new delalloc range, clear its new delalloc flag to
3157 * update the inode's number of bytes. This needs to be done first
3158 * before updating the inode item.
3159 */
3160 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3161 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3162 clear_extent_bit(&inode->io_tree, start, end,
3163 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3164 0, 0, &cached_state);
3165
3166 btrfs_inode_safe_disk_i_size_write(inode, 0);
3167 ret = btrfs_update_inode_fallback(trans, root, inode);
3168 if (ret) { /* -ENOMEM or corruption */
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172 ret = 0;
3173 out:
3174 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3175 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3176 &cached_state);
3177
3178 if (trans)
3179 btrfs_end_transaction(trans);
3180
3181 if (ret || truncated) {
3182 u64 unwritten_start = start;
3183
3184 /*
3185 * If we failed to finish this ordered extent for any reason we
3186 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3187 * extent, and mark the inode with the error if it wasn't
3188 * already set. Any error during writeback would have already
3189 * set the mapping error, so we need to set it if we're the ones
3190 * marking this ordered extent as failed.
3191 */
3192 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3193 &ordered_extent->flags))
3194 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3195
3196 if (truncated)
3197 unwritten_start += logical_len;
3198 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3199
3200 /* Drop the cache for the part of the extent we didn't write. */
3201 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3202
3203 /*
3204 * If the ordered extent had an IOERR or something else went
3205 * wrong we need to return the space for this ordered extent
3206 * back to the allocator. We only free the extent in the
3207 * truncated case if we didn't write out the extent at all.
3208 *
3209 * If we made it past insert_reserved_file_extent before we
3210 * errored out then we don't need to do this as the accounting
3211 * has already been done.
3212 */
3213 if ((ret || !logical_len) &&
3214 clear_reserved_extent &&
3215 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3216 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3217 /*
3218 * Discard the range before returning it back to the
3219 * free space pool
3220 */
3221 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3222 btrfs_discard_extent(fs_info,
3223 ordered_extent->disk_bytenr,
3224 ordered_extent->disk_num_bytes,
3225 NULL);
3226 btrfs_free_reserved_extent(fs_info,
3227 ordered_extent->disk_bytenr,
3228 ordered_extent->disk_num_bytes, 1);
3229 /*
3230 * Actually free the qgroup rsv which was released when
3231 * the ordered extent was created.
3232 */
3233 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3234 ordered_extent->qgroup_rsv,
3235 BTRFS_QGROUP_RSV_DATA);
3236 }
3237 }
3238
3239 /*
3240 * This needs to be done to make sure anybody waiting knows we are done
3241 * updating everything for this ordered extent.
3242 */
3243 btrfs_remove_ordered_extent(inode, ordered_extent);
3244
3245 /* once for us */
3246 btrfs_put_ordered_extent(ordered_extent);
3247 /* once for the tree */
3248 btrfs_put_ordered_extent(ordered_extent);
3249
3250 return ret;
3251 }
3252
finish_ordered_fn(struct btrfs_work * work)3253 static void finish_ordered_fn(struct btrfs_work *work)
3254 {
3255 struct btrfs_ordered_extent *ordered_extent;
3256 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3257 btrfs_finish_ordered_io(ordered_extent);
3258 }
3259
btrfs_writepage_endio_finish_ordered(struct btrfs_inode * inode,struct page * page,u64 start,u64 end,bool uptodate)3260 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3261 struct page *page, u64 start,
3262 u64 end, bool uptodate)
3263 {
3264 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3265
3266 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3267 finish_ordered_fn, uptodate);
3268 }
3269
3270 /*
3271 * check_data_csum - verify checksum of one sector of uncompressed data
3272 * @inode: inode
3273 * @io_bio: btrfs_io_bio which contains the csum
3274 * @bio_offset: offset to the beginning of the bio (in bytes)
3275 * @page: page where is the data to be verified
3276 * @pgoff: offset inside the page
3277 * @start: logical offset in the file
3278 *
3279 * The length of such check is always one sector size.
3280 */
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,u32 bio_offset,struct page * page,u32 pgoff,u64 start)3281 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3282 u32 bio_offset, struct page *page, u32 pgoff,
3283 u64 start)
3284 {
3285 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3286 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3287 char *kaddr;
3288 u32 len = fs_info->sectorsize;
3289 const u32 csum_size = fs_info->csum_size;
3290 unsigned int offset_sectors;
3291 u8 *csum_expected;
3292 u8 csum[BTRFS_CSUM_SIZE];
3293
3294 ASSERT(pgoff + len <= PAGE_SIZE);
3295
3296 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3297 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3298
3299 kaddr = kmap_atomic(page);
3300 shash->tfm = fs_info->csum_shash;
3301
3302 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3303
3304 if (memcmp(csum, csum_expected, csum_size))
3305 goto zeroit;
3306
3307 kunmap_atomic(kaddr);
3308 return 0;
3309 zeroit:
3310 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3311 io_bio->mirror_num);
3312 if (io_bio->device)
3313 btrfs_dev_stat_inc_and_print(io_bio->device,
3314 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3315 memset(kaddr + pgoff, 1, len);
3316 flush_dcache_page(page);
3317 kunmap_atomic(kaddr);
3318 return -EIO;
3319 }
3320
3321 /*
3322 * When reads are done, we need to check csums to verify the data is correct.
3323 * if there's a match, we allow the bio to finish. If not, the code in
3324 * extent_io.c will try to find good copies for us.
3325 *
3326 * @bio_offset: offset to the beginning of the bio (in bytes)
3327 * @start: file offset of the range start
3328 * @end: file offset of the range end (inclusive)
3329 *
3330 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3331 * csum match.
3332 */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u32 bio_offset,struct page * page,u64 start,u64 end)3333 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3334 struct page *page, u64 start, u64 end)
3335 {
3336 struct inode *inode = page->mapping->host;
3337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3338 struct btrfs_root *root = BTRFS_I(inode)->root;
3339 const u32 sectorsize = root->fs_info->sectorsize;
3340 u32 pg_off;
3341 unsigned int result = 0;
3342
3343 if (PageChecked(page)) {
3344 ClearPageChecked(page);
3345 return 0;
3346 }
3347
3348 /*
3349 * For subpage case, above PageChecked is not safe as it's not subpage
3350 * compatible.
3351 * But for now only cow fixup and compressed read utilize PageChecked
3352 * flag, while in this context we can easily use io_bio->csum to
3353 * determine if we really need to do csum verification.
3354 *
3355 * So for now, just exit if io_bio->csum is NULL, as it means it's
3356 * compressed read, and its compressed data csum has already been
3357 * verified.
3358 */
3359 if (io_bio->csum == NULL)
3360 return 0;
3361
3362 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3363 return 0;
3364
3365 if (!root->fs_info->csum_root)
3366 return 0;
3367
3368 ASSERT(page_offset(page) <= start &&
3369 end <= page_offset(page) + PAGE_SIZE - 1);
3370 for (pg_off = offset_in_page(start);
3371 pg_off < offset_in_page(end);
3372 pg_off += sectorsize, bio_offset += sectorsize) {
3373 u64 file_offset = pg_off + page_offset(page);
3374 int ret;
3375
3376 if (btrfs_is_data_reloc_root(root) &&
3377 test_range_bit(io_tree, file_offset,
3378 file_offset + sectorsize - 1,
3379 EXTENT_NODATASUM, 1, NULL)) {
3380 /* Skip the range without csum for data reloc inode */
3381 clear_extent_bits(io_tree, file_offset,
3382 file_offset + sectorsize - 1,
3383 EXTENT_NODATASUM);
3384 continue;
3385 }
3386 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3387 page_offset(page) + pg_off);
3388 if (ret < 0) {
3389 const int nr_bit = (pg_off - offset_in_page(start)) >>
3390 root->fs_info->sectorsize_bits;
3391
3392 result |= (1U << nr_bit);
3393 }
3394 }
3395 return result;
3396 }
3397
3398 /*
3399 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3400 *
3401 * @inode: The inode we want to perform iput on
3402 *
3403 * This function uses the generic vfs_inode::i_count to track whether we should
3404 * just decrement it (in case it's > 1) or if this is the last iput then link
3405 * the inode to the delayed iput machinery. Delayed iputs are processed at
3406 * transaction commit time/superblock commit/cleaner kthread.
3407 */
btrfs_add_delayed_iput(struct inode * inode)3408 void btrfs_add_delayed_iput(struct inode *inode)
3409 {
3410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3411 struct btrfs_inode *binode = BTRFS_I(inode);
3412
3413 if (atomic_add_unless(&inode->i_count, -1, 1))
3414 return;
3415
3416 atomic_inc(&fs_info->nr_delayed_iputs);
3417 spin_lock(&fs_info->delayed_iput_lock);
3418 ASSERT(list_empty(&binode->delayed_iput));
3419 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3420 spin_unlock(&fs_info->delayed_iput_lock);
3421 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3422 wake_up_process(fs_info->cleaner_kthread);
3423 }
3424
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3425 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3426 struct btrfs_inode *inode)
3427 {
3428 list_del_init(&inode->delayed_iput);
3429 spin_unlock(&fs_info->delayed_iput_lock);
3430 iput(&inode->vfs_inode);
3431 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3432 wake_up(&fs_info->delayed_iputs_wait);
3433 spin_lock(&fs_info->delayed_iput_lock);
3434 }
3435
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3436 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3437 struct btrfs_inode *inode)
3438 {
3439 if (!list_empty(&inode->delayed_iput)) {
3440 spin_lock(&fs_info->delayed_iput_lock);
3441 if (!list_empty(&inode->delayed_iput))
3442 run_delayed_iput_locked(fs_info, inode);
3443 spin_unlock(&fs_info->delayed_iput_lock);
3444 }
3445 }
3446
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3447 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3448 {
3449
3450 spin_lock(&fs_info->delayed_iput_lock);
3451 while (!list_empty(&fs_info->delayed_iputs)) {
3452 struct btrfs_inode *inode;
3453
3454 inode = list_first_entry(&fs_info->delayed_iputs,
3455 struct btrfs_inode, delayed_iput);
3456 run_delayed_iput_locked(fs_info, inode);
3457 cond_resched_lock(&fs_info->delayed_iput_lock);
3458 }
3459 spin_unlock(&fs_info->delayed_iput_lock);
3460 }
3461
3462 /**
3463 * Wait for flushing all delayed iputs
3464 *
3465 * @fs_info: the filesystem
3466 *
3467 * This will wait on any delayed iputs that are currently running with KILLABLE
3468 * set. Once they are all done running we will return, unless we are killed in
3469 * which case we return EINTR. This helps in user operations like fallocate etc
3470 * that might get blocked on the iputs.
3471 *
3472 * Return EINTR if we were killed, 0 if nothing's pending
3473 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3474 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3475 {
3476 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3477 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3478 if (ret)
3479 return -EINTR;
3480 return 0;
3481 }
3482
3483 /*
3484 * This creates an orphan entry for the given inode in case something goes wrong
3485 * in the middle of an unlink.
3486 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3487 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3488 struct btrfs_inode *inode)
3489 {
3490 int ret;
3491
3492 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3493 if (ret && ret != -EEXIST) {
3494 btrfs_abort_transaction(trans, ret);
3495 return ret;
3496 }
3497
3498 return 0;
3499 }
3500
3501 /*
3502 * We have done the delete so we can go ahead and remove the orphan item for
3503 * this particular inode.
3504 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3505 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3506 struct btrfs_inode *inode)
3507 {
3508 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3509 }
3510
3511 /*
3512 * this cleans up any orphans that may be left on the list from the last use
3513 * of this root.
3514 */
btrfs_orphan_cleanup(struct btrfs_root * root)3515 int btrfs_orphan_cleanup(struct btrfs_root *root)
3516 {
3517 struct btrfs_fs_info *fs_info = root->fs_info;
3518 struct btrfs_path *path;
3519 struct extent_buffer *leaf;
3520 struct btrfs_key key, found_key;
3521 struct btrfs_trans_handle *trans;
3522 struct inode *inode;
3523 u64 last_objectid = 0;
3524 int ret = 0, nr_unlink = 0;
3525
3526 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3527 return 0;
3528
3529 path = btrfs_alloc_path();
3530 if (!path) {
3531 ret = -ENOMEM;
3532 goto out;
3533 }
3534 path->reada = READA_BACK;
3535
3536 key.objectid = BTRFS_ORPHAN_OBJECTID;
3537 key.type = BTRFS_ORPHAN_ITEM_KEY;
3538 key.offset = (u64)-1;
3539
3540 while (1) {
3541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3542 if (ret < 0)
3543 goto out;
3544
3545 /*
3546 * if ret == 0 means we found what we were searching for, which
3547 * is weird, but possible, so only screw with path if we didn't
3548 * find the key and see if we have stuff that matches
3549 */
3550 if (ret > 0) {
3551 ret = 0;
3552 if (path->slots[0] == 0)
3553 break;
3554 path->slots[0]--;
3555 }
3556
3557 /* pull out the item */
3558 leaf = path->nodes[0];
3559 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3560
3561 /* make sure the item matches what we want */
3562 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3563 break;
3564 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3565 break;
3566
3567 /* release the path since we're done with it */
3568 btrfs_release_path(path);
3569
3570 /*
3571 * this is where we are basically btrfs_lookup, without the
3572 * crossing root thing. we store the inode number in the
3573 * offset of the orphan item.
3574 */
3575
3576 if (found_key.offset == last_objectid) {
3577 btrfs_err(fs_info,
3578 "Error removing orphan entry, stopping orphan cleanup");
3579 ret = -EINVAL;
3580 goto out;
3581 }
3582
3583 last_objectid = found_key.offset;
3584
3585 found_key.objectid = found_key.offset;
3586 found_key.type = BTRFS_INODE_ITEM_KEY;
3587 found_key.offset = 0;
3588 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3589 ret = PTR_ERR_OR_ZERO(inode);
3590 if (ret && ret != -ENOENT)
3591 goto out;
3592
3593 if (ret == -ENOENT && root == fs_info->tree_root) {
3594 struct btrfs_root *dead_root;
3595 int is_dead_root = 0;
3596
3597 /*
3598 * This is an orphan in the tree root. Currently these
3599 * could come from 2 sources:
3600 * a) a root (snapshot/subvolume) deletion in progress
3601 * b) a free space cache inode
3602 * We need to distinguish those two, as the orphan item
3603 * for a root must not get deleted before the deletion
3604 * of the snapshot/subvolume's tree completes.
3605 *
3606 * btrfs_find_orphan_roots() ran before us, which has
3607 * found all deleted roots and loaded them into
3608 * fs_info->fs_roots_radix. So here we can find if an
3609 * orphan item corresponds to a deleted root by looking
3610 * up the root from that radix tree.
3611 */
3612
3613 spin_lock(&fs_info->fs_roots_radix_lock);
3614 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3615 (unsigned long)found_key.objectid);
3616 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3617 is_dead_root = 1;
3618 spin_unlock(&fs_info->fs_roots_radix_lock);
3619
3620 if (is_dead_root) {
3621 /* prevent this orphan from being found again */
3622 key.offset = found_key.objectid - 1;
3623 continue;
3624 }
3625
3626 }
3627
3628 /*
3629 * If we have an inode with links, there are a couple of
3630 * possibilities:
3631 *
3632 * 1. We were halfway through creating fsverity metadata for the
3633 * file. In that case, the orphan item represents incomplete
3634 * fsverity metadata which must be cleaned up with
3635 * btrfs_drop_verity_items and deleting the orphan item.
3636
3637 * 2. Old kernels (before v3.12) used to create an
3638 * orphan item for truncate indicating that there were possibly
3639 * extent items past i_size that needed to be deleted. In v3.12,
3640 * truncate was changed to update i_size in sync with the extent
3641 * items, but the (useless) orphan item was still created. Since
3642 * v4.18, we don't create the orphan item for truncate at all.
3643 *
3644 * So, this item could mean that we need to do a truncate, but
3645 * only if this filesystem was last used on a pre-v3.12 kernel
3646 * and was not cleanly unmounted. The odds of that are quite
3647 * slim, and it's a pain to do the truncate now, so just delete
3648 * the orphan item.
3649 *
3650 * It's also possible that this orphan item was supposed to be
3651 * deleted but wasn't. The inode number may have been reused,
3652 * but either way, we can delete the orphan item.
3653 */
3654 if (ret == -ENOENT || inode->i_nlink) {
3655 if (!ret) {
3656 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3657 iput(inode);
3658 if (ret)
3659 goto out;
3660 }
3661 trans = btrfs_start_transaction(root, 1);
3662 if (IS_ERR(trans)) {
3663 ret = PTR_ERR(trans);
3664 goto out;
3665 }
3666 btrfs_debug(fs_info, "auto deleting %Lu",
3667 found_key.objectid);
3668 ret = btrfs_del_orphan_item(trans, root,
3669 found_key.objectid);
3670 btrfs_end_transaction(trans);
3671 if (ret)
3672 goto out;
3673 continue;
3674 }
3675
3676 nr_unlink++;
3677
3678 /* this will do delete_inode and everything for us */
3679 iput(inode);
3680 }
3681 /* release the path since we're done with it */
3682 btrfs_release_path(path);
3683
3684 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3685
3686 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3687 trans = btrfs_join_transaction(root);
3688 if (!IS_ERR(trans))
3689 btrfs_end_transaction(trans);
3690 }
3691
3692 if (nr_unlink)
3693 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3694
3695 out:
3696 if (ret)
3697 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3698 btrfs_free_path(path);
3699 return ret;
3700 }
3701
3702 /*
3703 * very simple check to peek ahead in the leaf looking for xattrs. If we
3704 * don't find any xattrs, we know there can't be any acls.
3705 *
3706 * slot is the slot the inode is in, objectid is the objectid of the inode
3707 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3708 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3709 int slot, u64 objectid,
3710 int *first_xattr_slot)
3711 {
3712 u32 nritems = btrfs_header_nritems(leaf);
3713 struct btrfs_key found_key;
3714 static u64 xattr_access = 0;
3715 static u64 xattr_default = 0;
3716 int scanned = 0;
3717
3718 if (!xattr_access) {
3719 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3720 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3721 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3722 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3723 }
3724
3725 slot++;
3726 *first_xattr_slot = -1;
3727 while (slot < nritems) {
3728 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3729
3730 /* we found a different objectid, there must not be acls */
3731 if (found_key.objectid != objectid)
3732 return 0;
3733
3734 /* we found an xattr, assume we've got an acl */
3735 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3736 if (*first_xattr_slot == -1)
3737 *first_xattr_slot = slot;
3738 if (found_key.offset == xattr_access ||
3739 found_key.offset == xattr_default)
3740 return 1;
3741 }
3742
3743 /*
3744 * we found a key greater than an xattr key, there can't
3745 * be any acls later on
3746 */
3747 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3748 return 0;
3749
3750 slot++;
3751 scanned++;
3752
3753 /*
3754 * it goes inode, inode backrefs, xattrs, extents,
3755 * so if there are a ton of hard links to an inode there can
3756 * be a lot of backrefs. Don't waste time searching too hard,
3757 * this is just an optimization
3758 */
3759 if (scanned >= 8)
3760 break;
3761 }
3762 /* we hit the end of the leaf before we found an xattr or
3763 * something larger than an xattr. We have to assume the inode
3764 * has acls
3765 */
3766 if (*first_xattr_slot == -1)
3767 *first_xattr_slot = slot;
3768 return 1;
3769 }
3770
3771 /*
3772 * read an inode from the btree into the in-memory inode
3773 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3774 static int btrfs_read_locked_inode(struct inode *inode,
3775 struct btrfs_path *in_path)
3776 {
3777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3778 struct btrfs_path *path = in_path;
3779 struct extent_buffer *leaf;
3780 struct btrfs_inode_item *inode_item;
3781 struct btrfs_root *root = BTRFS_I(inode)->root;
3782 struct btrfs_key location;
3783 unsigned long ptr;
3784 int maybe_acls;
3785 u32 rdev;
3786 int ret;
3787 bool filled = false;
3788 int first_xattr_slot;
3789
3790 ret = btrfs_fill_inode(inode, &rdev);
3791 if (!ret)
3792 filled = true;
3793
3794 if (!path) {
3795 path = btrfs_alloc_path();
3796 if (!path)
3797 return -ENOMEM;
3798 }
3799
3800 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3801
3802 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3803 if (ret) {
3804 if (path != in_path)
3805 btrfs_free_path(path);
3806 return ret;
3807 }
3808
3809 leaf = path->nodes[0];
3810
3811 if (filled)
3812 goto cache_index;
3813
3814 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3815 struct btrfs_inode_item);
3816 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3817 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3818 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3819 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3820 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3821 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3822 round_up(i_size_read(inode), fs_info->sectorsize));
3823
3824 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3825 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3826
3827 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3828 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3829
3830 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3831 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3832
3833 BTRFS_I(inode)->i_otime.tv_sec =
3834 btrfs_timespec_sec(leaf, &inode_item->otime);
3835 BTRFS_I(inode)->i_otime.tv_nsec =
3836 btrfs_timespec_nsec(leaf, &inode_item->otime);
3837
3838 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3839 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3840 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3841
3842 inode_set_iversion_queried(inode,
3843 btrfs_inode_sequence(leaf, inode_item));
3844 inode->i_generation = BTRFS_I(inode)->generation;
3845 inode->i_rdev = 0;
3846 rdev = btrfs_inode_rdev(leaf, inode_item);
3847
3848 BTRFS_I(inode)->index_cnt = (u64)-1;
3849 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3850 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3851
3852 cache_index:
3853 /*
3854 * If we were modified in the current generation and evicted from memory
3855 * and then re-read we need to do a full sync since we don't have any
3856 * idea about which extents were modified before we were evicted from
3857 * cache.
3858 *
3859 * This is required for both inode re-read from disk and delayed inode
3860 * in delayed_nodes_tree.
3861 */
3862 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3863 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3864 &BTRFS_I(inode)->runtime_flags);
3865
3866 /*
3867 * We don't persist the id of the transaction where an unlink operation
3868 * against the inode was last made. So here we assume the inode might
3869 * have been evicted, and therefore the exact value of last_unlink_trans
3870 * lost, and set it to last_trans to avoid metadata inconsistencies
3871 * between the inode and its parent if the inode is fsync'ed and the log
3872 * replayed. For example, in the scenario:
3873 *
3874 * touch mydir/foo
3875 * ln mydir/foo mydir/bar
3876 * sync
3877 * unlink mydir/bar
3878 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3879 * xfs_io -c fsync mydir/foo
3880 * <power failure>
3881 * mount fs, triggers fsync log replay
3882 *
3883 * We must make sure that when we fsync our inode foo we also log its
3884 * parent inode, otherwise after log replay the parent still has the
3885 * dentry with the "bar" name but our inode foo has a link count of 1
3886 * and doesn't have an inode ref with the name "bar" anymore.
3887 *
3888 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3889 * but it guarantees correctness at the expense of occasional full
3890 * transaction commits on fsync if our inode is a directory, or if our
3891 * inode is not a directory, logging its parent unnecessarily.
3892 */
3893 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3894
3895 /*
3896 * Same logic as for last_unlink_trans. We don't persist the generation
3897 * of the last transaction where this inode was used for a reflink
3898 * operation, so after eviction and reloading the inode we must be
3899 * pessimistic and assume the last transaction that modified the inode.
3900 */
3901 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3902
3903 path->slots[0]++;
3904 if (inode->i_nlink != 1 ||
3905 path->slots[0] >= btrfs_header_nritems(leaf))
3906 goto cache_acl;
3907
3908 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3909 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3910 goto cache_acl;
3911
3912 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3913 if (location.type == BTRFS_INODE_REF_KEY) {
3914 struct btrfs_inode_ref *ref;
3915
3916 ref = (struct btrfs_inode_ref *)ptr;
3917 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3918 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3919 struct btrfs_inode_extref *extref;
3920
3921 extref = (struct btrfs_inode_extref *)ptr;
3922 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3923 extref);
3924 }
3925 cache_acl:
3926 /*
3927 * try to precache a NULL acl entry for files that don't have
3928 * any xattrs or acls
3929 */
3930 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3931 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3932 if (first_xattr_slot != -1) {
3933 path->slots[0] = first_xattr_slot;
3934 ret = btrfs_load_inode_props(inode, path);
3935 if (ret)
3936 btrfs_err(fs_info,
3937 "error loading props for ino %llu (root %llu): %d",
3938 btrfs_ino(BTRFS_I(inode)),
3939 root->root_key.objectid, ret);
3940 }
3941 if (path != in_path)
3942 btrfs_free_path(path);
3943
3944 if (!maybe_acls)
3945 cache_no_acl(inode);
3946
3947 switch (inode->i_mode & S_IFMT) {
3948 case S_IFREG:
3949 inode->i_mapping->a_ops = &btrfs_aops;
3950 inode->i_fop = &btrfs_file_operations;
3951 inode->i_op = &btrfs_file_inode_operations;
3952 break;
3953 case S_IFDIR:
3954 inode->i_fop = &btrfs_dir_file_operations;
3955 inode->i_op = &btrfs_dir_inode_operations;
3956 break;
3957 case S_IFLNK:
3958 inode->i_op = &btrfs_symlink_inode_operations;
3959 inode_nohighmem(inode);
3960 inode->i_mapping->a_ops = &btrfs_aops;
3961 break;
3962 default:
3963 inode->i_op = &btrfs_special_inode_operations;
3964 init_special_inode(inode, inode->i_mode, rdev);
3965 break;
3966 }
3967
3968 btrfs_sync_inode_flags_to_i_flags(inode);
3969 return 0;
3970 }
3971
3972 /*
3973 * given a leaf and an inode, copy the inode fields into the leaf
3974 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3975 static void fill_inode_item(struct btrfs_trans_handle *trans,
3976 struct extent_buffer *leaf,
3977 struct btrfs_inode_item *item,
3978 struct inode *inode)
3979 {
3980 struct btrfs_map_token token;
3981 u64 flags;
3982
3983 btrfs_init_map_token(&token, leaf);
3984
3985 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3986 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3987 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3988 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3989 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3990
3991 btrfs_set_token_timespec_sec(&token, &item->atime,
3992 inode->i_atime.tv_sec);
3993 btrfs_set_token_timespec_nsec(&token, &item->atime,
3994 inode->i_atime.tv_nsec);
3995
3996 btrfs_set_token_timespec_sec(&token, &item->mtime,
3997 inode->i_mtime.tv_sec);
3998 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3999 inode->i_mtime.tv_nsec);
4000
4001 btrfs_set_token_timespec_sec(&token, &item->ctime,
4002 inode->i_ctime.tv_sec);
4003 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4004 inode->i_ctime.tv_nsec);
4005
4006 btrfs_set_token_timespec_sec(&token, &item->otime,
4007 BTRFS_I(inode)->i_otime.tv_sec);
4008 btrfs_set_token_timespec_nsec(&token, &item->otime,
4009 BTRFS_I(inode)->i_otime.tv_nsec);
4010
4011 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4012 btrfs_set_token_inode_generation(&token, item,
4013 BTRFS_I(inode)->generation);
4014 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4015 btrfs_set_token_inode_transid(&token, item, trans->transid);
4016 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4017 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4018 BTRFS_I(inode)->ro_flags);
4019 btrfs_set_token_inode_flags(&token, item, flags);
4020 btrfs_set_token_inode_block_group(&token, item, 0);
4021 }
4022
4023 /*
4024 * copy everything in the in-memory inode into the btree.
4025 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4026 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4027 struct btrfs_root *root,
4028 struct btrfs_inode *inode)
4029 {
4030 struct btrfs_inode_item *inode_item;
4031 struct btrfs_path *path;
4032 struct extent_buffer *leaf;
4033 int ret;
4034
4035 path = btrfs_alloc_path();
4036 if (!path)
4037 return -ENOMEM;
4038
4039 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4040 if (ret) {
4041 if (ret > 0)
4042 ret = -ENOENT;
4043 goto failed;
4044 }
4045
4046 leaf = path->nodes[0];
4047 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4048 struct btrfs_inode_item);
4049
4050 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4051 btrfs_mark_buffer_dirty(leaf);
4052 btrfs_set_inode_last_trans(trans, inode);
4053 ret = 0;
4054 failed:
4055 btrfs_free_path(path);
4056 return ret;
4057 }
4058
4059 /*
4060 * copy everything in the in-memory inode into the btree.
4061 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4062 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4063 struct btrfs_root *root,
4064 struct btrfs_inode *inode)
4065 {
4066 struct btrfs_fs_info *fs_info = root->fs_info;
4067 int ret;
4068
4069 /*
4070 * If the inode is a free space inode, we can deadlock during commit
4071 * if we put it into the delayed code.
4072 *
4073 * The data relocation inode should also be directly updated
4074 * without delay
4075 */
4076 if (!btrfs_is_free_space_inode(inode)
4077 && !btrfs_is_data_reloc_root(root)
4078 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4079 btrfs_update_root_times(trans, root);
4080
4081 ret = btrfs_delayed_update_inode(trans, root, inode);
4082 if (!ret)
4083 btrfs_set_inode_last_trans(trans, inode);
4084 return ret;
4085 }
4086
4087 return btrfs_update_inode_item(trans, root, inode);
4088 }
4089
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4090 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4091 struct btrfs_root *root, struct btrfs_inode *inode)
4092 {
4093 int ret;
4094
4095 ret = btrfs_update_inode(trans, root, inode);
4096 if (ret == -ENOSPC)
4097 return btrfs_update_inode_item(trans, root, inode);
4098 return ret;
4099 }
4100
4101 /*
4102 * unlink helper that gets used here in inode.c and in the tree logging
4103 * recovery code. It remove a link in a directory with a given name, and
4104 * also drops the back refs in the inode to the directory
4105 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4106 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4107 struct btrfs_inode *dir,
4108 struct btrfs_inode *inode,
4109 const char *name, int name_len)
4110 {
4111 struct btrfs_root *root = dir->root;
4112 struct btrfs_fs_info *fs_info = root->fs_info;
4113 struct btrfs_path *path;
4114 int ret = 0;
4115 struct btrfs_dir_item *di;
4116 u64 index;
4117 u64 ino = btrfs_ino(inode);
4118 u64 dir_ino = btrfs_ino(dir);
4119
4120 path = btrfs_alloc_path();
4121 if (!path) {
4122 ret = -ENOMEM;
4123 goto out;
4124 }
4125
4126 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4127 name, name_len, -1);
4128 if (IS_ERR_OR_NULL(di)) {
4129 ret = di ? PTR_ERR(di) : -ENOENT;
4130 goto err;
4131 }
4132 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4133 if (ret)
4134 goto err;
4135 btrfs_release_path(path);
4136
4137 /*
4138 * If we don't have dir index, we have to get it by looking up
4139 * the inode ref, since we get the inode ref, remove it directly,
4140 * it is unnecessary to do delayed deletion.
4141 *
4142 * But if we have dir index, needn't search inode ref to get it.
4143 * Since the inode ref is close to the inode item, it is better
4144 * that we delay to delete it, and just do this deletion when
4145 * we update the inode item.
4146 */
4147 if (inode->dir_index) {
4148 ret = btrfs_delayed_delete_inode_ref(inode);
4149 if (!ret) {
4150 index = inode->dir_index;
4151 goto skip_backref;
4152 }
4153 }
4154
4155 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4156 dir_ino, &index);
4157 if (ret) {
4158 btrfs_info(fs_info,
4159 "failed to delete reference to %.*s, inode %llu parent %llu",
4160 name_len, name, ino, dir_ino);
4161 btrfs_abort_transaction(trans, ret);
4162 goto err;
4163 }
4164 skip_backref:
4165 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4166 if (ret) {
4167 btrfs_abort_transaction(trans, ret);
4168 goto err;
4169 }
4170
4171 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4172 dir_ino);
4173 if (ret != 0 && ret != -ENOENT) {
4174 btrfs_abort_transaction(trans, ret);
4175 goto err;
4176 }
4177
4178 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4179 index);
4180 if (ret == -ENOENT)
4181 ret = 0;
4182 else if (ret)
4183 btrfs_abort_transaction(trans, ret);
4184
4185 /*
4186 * If we have a pending delayed iput we could end up with the final iput
4187 * being run in btrfs-cleaner context. If we have enough of these built
4188 * up we can end up burning a lot of time in btrfs-cleaner without any
4189 * way to throttle the unlinks. Since we're currently holding a ref on
4190 * the inode we can run the delayed iput here without any issues as the
4191 * final iput won't be done until after we drop the ref we're currently
4192 * holding.
4193 */
4194 btrfs_run_delayed_iput(fs_info, inode);
4195 err:
4196 btrfs_free_path(path);
4197 if (ret)
4198 goto out;
4199
4200 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4201 inode_inc_iversion(&inode->vfs_inode);
4202 inode_inc_iversion(&dir->vfs_inode);
4203 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4204 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4205 ret = btrfs_update_inode(trans, root, dir);
4206 out:
4207 return ret;
4208 }
4209
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4210 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4211 struct btrfs_inode *dir, struct btrfs_inode *inode,
4212 const char *name, int name_len)
4213 {
4214 int ret;
4215 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len);
4216 if (!ret) {
4217 drop_nlink(&inode->vfs_inode);
4218 ret = btrfs_update_inode(trans, inode->root, inode);
4219 }
4220 return ret;
4221 }
4222
4223 /*
4224 * helper to start transaction for unlink and rmdir.
4225 *
4226 * unlink and rmdir are special in btrfs, they do not always free space, so
4227 * if we cannot make our reservations the normal way try and see if there is
4228 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4229 * allow the unlink to occur.
4230 */
__unlink_start_trans(struct inode * dir)4231 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4232 {
4233 struct btrfs_root *root = BTRFS_I(dir)->root;
4234
4235 /*
4236 * 1 for the possible orphan item
4237 * 1 for the dir item
4238 * 1 for the dir index
4239 * 1 for the inode ref
4240 * 1 for the inode
4241 */
4242 return btrfs_start_transaction_fallback_global_rsv(root, 5);
4243 }
4244
btrfs_unlink(struct inode * dir,struct dentry * dentry)4245 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4246 {
4247 struct btrfs_trans_handle *trans;
4248 struct inode *inode = d_inode(dentry);
4249 int ret;
4250
4251 trans = __unlink_start_trans(dir);
4252 if (IS_ERR(trans))
4253 return PTR_ERR(trans);
4254
4255 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4256 0);
4257
4258 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4259 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4260 dentry->d_name.len);
4261 if (ret)
4262 goto out;
4263
4264 if (inode->i_nlink == 0) {
4265 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4266 if (ret)
4267 goto out;
4268 }
4269
4270 out:
4271 btrfs_end_transaction(trans);
4272 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4273 return ret;
4274 }
4275
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4276 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4277 struct inode *dir, struct dentry *dentry)
4278 {
4279 struct btrfs_root *root = BTRFS_I(dir)->root;
4280 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4281 struct btrfs_path *path;
4282 struct extent_buffer *leaf;
4283 struct btrfs_dir_item *di;
4284 struct btrfs_key key;
4285 const char *name = dentry->d_name.name;
4286 int name_len = dentry->d_name.len;
4287 u64 index;
4288 int ret;
4289 u64 objectid;
4290 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4291
4292 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4293 objectid = inode->root->root_key.objectid;
4294 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4295 objectid = inode->location.objectid;
4296 } else {
4297 WARN_ON(1);
4298 return -EINVAL;
4299 }
4300
4301 path = btrfs_alloc_path();
4302 if (!path)
4303 return -ENOMEM;
4304
4305 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4306 name, name_len, -1);
4307 if (IS_ERR_OR_NULL(di)) {
4308 ret = di ? PTR_ERR(di) : -ENOENT;
4309 goto out;
4310 }
4311
4312 leaf = path->nodes[0];
4313 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4314 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4315 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4316 if (ret) {
4317 btrfs_abort_transaction(trans, ret);
4318 goto out;
4319 }
4320 btrfs_release_path(path);
4321
4322 /*
4323 * This is a placeholder inode for a subvolume we didn't have a
4324 * reference to at the time of the snapshot creation. In the meantime
4325 * we could have renamed the real subvol link into our snapshot, so
4326 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4327 * Instead simply lookup the dir_index_item for this entry so we can
4328 * remove it. Otherwise we know we have a ref to the root and we can
4329 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4330 */
4331 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4332 di = btrfs_search_dir_index_item(root, path, dir_ino,
4333 name, name_len);
4334 if (IS_ERR_OR_NULL(di)) {
4335 if (!di)
4336 ret = -ENOENT;
4337 else
4338 ret = PTR_ERR(di);
4339 btrfs_abort_transaction(trans, ret);
4340 goto out;
4341 }
4342
4343 leaf = path->nodes[0];
4344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4345 index = key.offset;
4346 btrfs_release_path(path);
4347 } else {
4348 ret = btrfs_del_root_ref(trans, objectid,
4349 root->root_key.objectid, dir_ino,
4350 &index, name, name_len);
4351 if (ret) {
4352 btrfs_abort_transaction(trans, ret);
4353 goto out;
4354 }
4355 }
4356
4357 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4358 if (ret) {
4359 btrfs_abort_transaction(trans, ret);
4360 goto out;
4361 }
4362
4363 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4364 inode_inc_iversion(dir);
4365 dir->i_mtime = dir->i_ctime = current_time(dir);
4366 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4367 if (ret)
4368 btrfs_abort_transaction(trans, ret);
4369 out:
4370 btrfs_free_path(path);
4371 return ret;
4372 }
4373
4374 /*
4375 * Helper to check if the subvolume references other subvolumes or if it's
4376 * default.
4377 */
may_destroy_subvol(struct btrfs_root * root)4378 static noinline int may_destroy_subvol(struct btrfs_root *root)
4379 {
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 struct btrfs_path *path;
4382 struct btrfs_dir_item *di;
4383 struct btrfs_key key;
4384 u64 dir_id;
4385 int ret;
4386
4387 path = btrfs_alloc_path();
4388 if (!path)
4389 return -ENOMEM;
4390
4391 /* Make sure this root isn't set as the default subvol */
4392 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4393 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4394 dir_id, "default", 7, 0);
4395 if (di && !IS_ERR(di)) {
4396 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4397 if (key.objectid == root->root_key.objectid) {
4398 ret = -EPERM;
4399 btrfs_err(fs_info,
4400 "deleting default subvolume %llu is not allowed",
4401 key.objectid);
4402 goto out;
4403 }
4404 btrfs_release_path(path);
4405 }
4406
4407 key.objectid = root->root_key.objectid;
4408 key.type = BTRFS_ROOT_REF_KEY;
4409 key.offset = (u64)-1;
4410
4411 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4412 if (ret < 0)
4413 goto out;
4414 BUG_ON(ret == 0);
4415
4416 ret = 0;
4417 if (path->slots[0] > 0) {
4418 path->slots[0]--;
4419 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4420 if (key.objectid == root->root_key.objectid &&
4421 key.type == BTRFS_ROOT_REF_KEY)
4422 ret = -ENOTEMPTY;
4423 }
4424 out:
4425 btrfs_free_path(path);
4426 return ret;
4427 }
4428
4429 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4430 static void btrfs_prune_dentries(struct btrfs_root *root)
4431 {
4432 struct btrfs_fs_info *fs_info = root->fs_info;
4433 struct rb_node *node;
4434 struct rb_node *prev;
4435 struct btrfs_inode *entry;
4436 struct inode *inode;
4437 u64 objectid = 0;
4438
4439 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4440 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4441
4442 spin_lock(&root->inode_lock);
4443 again:
4444 node = root->inode_tree.rb_node;
4445 prev = NULL;
4446 while (node) {
4447 prev = node;
4448 entry = rb_entry(node, struct btrfs_inode, rb_node);
4449
4450 if (objectid < btrfs_ino(entry))
4451 node = node->rb_left;
4452 else if (objectid > btrfs_ino(entry))
4453 node = node->rb_right;
4454 else
4455 break;
4456 }
4457 if (!node) {
4458 while (prev) {
4459 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4460 if (objectid <= btrfs_ino(entry)) {
4461 node = prev;
4462 break;
4463 }
4464 prev = rb_next(prev);
4465 }
4466 }
4467 while (node) {
4468 entry = rb_entry(node, struct btrfs_inode, rb_node);
4469 objectid = btrfs_ino(entry) + 1;
4470 inode = igrab(&entry->vfs_inode);
4471 if (inode) {
4472 spin_unlock(&root->inode_lock);
4473 if (atomic_read(&inode->i_count) > 1)
4474 d_prune_aliases(inode);
4475 /*
4476 * btrfs_drop_inode will have it removed from the inode
4477 * cache when its usage count hits zero.
4478 */
4479 iput(inode);
4480 cond_resched();
4481 spin_lock(&root->inode_lock);
4482 goto again;
4483 }
4484
4485 if (cond_resched_lock(&root->inode_lock))
4486 goto again;
4487
4488 node = rb_next(node);
4489 }
4490 spin_unlock(&root->inode_lock);
4491 }
4492
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4493 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4494 {
4495 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4496 struct btrfs_root *root = BTRFS_I(dir)->root;
4497 struct inode *inode = d_inode(dentry);
4498 struct btrfs_root *dest = BTRFS_I(inode)->root;
4499 struct btrfs_trans_handle *trans;
4500 struct btrfs_block_rsv block_rsv;
4501 u64 root_flags;
4502 int ret;
4503
4504 down_write(&fs_info->subvol_sem);
4505
4506 /*
4507 * Don't allow to delete a subvolume with send in progress. This is
4508 * inside the inode lock so the error handling that has to drop the bit
4509 * again is not run concurrently.
4510 */
4511 spin_lock(&dest->root_item_lock);
4512 if (dest->send_in_progress) {
4513 spin_unlock(&dest->root_item_lock);
4514 btrfs_warn(fs_info,
4515 "attempt to delete subvolume %llu during send",
4516 dest->root_key.objectid);
4517 ret = -EPERM;
4518 goto out_up_write;
4519 }
4520 if (atomic_read(&dest->nr_swapfiles)) {
4521 spin_unlock(&dest->root_item_lock);
4522 btrfs_warn(fs_info,
4523 "attempt to delete subvolume %llu with active swapfile",
4524 root->root_key.objectid);
4525 ret = -EPERM;
4526 goto out_up_write;
4527 }
4528 root_flags = btrfs_root_flags(&dest->root_item);
4529 btrfs_set_root_flags(&dest->root_item,
4530 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4531 spin_unlock(&dest->root_item_lock);
4532
4533 ret = may_destroy_subvol(dest);
4534 if (ret)
4535 goto out_undead;
4536
4537 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4538 /*
4539 * One for dir inode,
4540 * two for dir entries,
4541 * two for root ref/backref.
4542 */
4543 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4544 if (ret)
4545 goto out_undead;
4546
4547 trans = btrfs_start_transaction(root, 0);
4548 if (IS_ERR(trans)) {
4549 ret = PTR_ERR(trans);
4550 goto out_release;
4551 }
4552 trans->block_rsv = &block_rsv;
4553 trans->bytes_reserved = block_rsv.size;
4554
4555 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4556
4557 ret = btrfs_unlink_subvol(trans, dir, dentry);
4558 if (ret) {
4559 btrfs_abort_transaction(trans, ret);
4560 goto out_end_trans;
4561 }
4562
4563 ret = btrfs_record_root_in_trans(trans, dest);
4564 if (ret) {
4565 btrfs_abort_transaction(trans, ret);
4566 goto out_end_trans;
4567 }
4568
4569 memset(&dest->root_item.drop_progress, 0,
4570 sizeof(dest->root_item.drop_progress));
4571 btrfs_set_root_drop_level(&dest->root_item, 0);
4572 btrfs_set_root_refs(&dest->root_item, 0);
4573
4574 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4575 ret = btrfs_insert_orphan_item(trans,
4576 fs_info->tree_root,
4577 dest->root_key.objectid);
4578 if (ret) {
4579 btrfs_abort_transaction(trans, ret);
4580 goto out_end_trans;
4581 }
4582 }
4583
4584 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4585 BTRFS_UUID_KEY_SUBVOL,
4586 dest->root_key.objectid);
4587 if (ret && ret != -ENOENT) {
4588 btrfs_abort_transaction(trans, ret);
4589 goto out_end_trans;
4590 }
4591 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4592 ret = btrfs_uuid_tree_remove(trans,
4593 dest->root_item.received_uuid,
4594 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4595 dest->root_key.objectid);
4596 if (ret && ret != -ENOENT) {
4597 btrfs_abort_transaction(trans, ret);
4598 goto out_end_trans;
4599 }
4600 }
4601
4602 free_anon_bdev(dest->anon_dev);
4603 dest->anon_dev = 0;
4604 out_end_trans:
4605 trans->block_rsv = NULL;
4606 trans->bytes_reserved = 0;
4607 ret = btrfs_end_transaction(trans);
4608 inode->i_flags |= S_DEAD;
4609 out_release:
4610 btrfs_subvolume_release_metadata(root, &block_rsv);
4611 out_undead:
4612 if (ret) {
4613 spin_lock(&dest->root_item_lock);
4614 root_flags = btrfs_root_flags(&dest->root_item);
4615 btrfs_set_root_flags(&dest->root_item,
4616 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4617 spin_unlock(&dest->root_item_lock);
4618 }
4619 out_up_write:
4620 up_write(&fs_info->subvol_sem);
4621 if (!ret) {
4622 d_invalidate(dentry);
4623 btrfs_prune_dentries(dest);
4624 ASSERT(dest->send_in_progress == 0);
4625 }
4626
4627 return ret;
4628 }
4629
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4630 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4631 {
4632 struct inode *inode = d_inode(dentry);
4633 int err = 0;
4634 struct btrfs_trans_handle *trans;
4635 u64 last_unlink_trans;
4636
4637 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4638 return -ENOTEMPTY;
4639 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4640 return btrfs_delete_subvolume(dir, dentry);
4641
4642 trans = __unlink_start_trans(dir);
4643 if (IS_ERR(trans))
4644 return PTR_ERR(trans);
4645
4646 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4647 err = btrfs_unlink_subvol(trans, dir, dentry);
4648 goto out;
4649 }
4650
4651 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4652 if (err)
4653 goto out;
4654
4655 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4656
4657 /* now the directory is empty */
4658 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4659 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4660 dentry->d_name.len);
4661 if (!err) {
4662 btrfs_i_size_write(BTRFS_I(inode), 0);
4663 /*
4664 * Propagate the last_unlink_trans value of the deleted dir to
4665 * its parent directory. This is to prevent an unrecoverable
4666 * log tree in the case we do something like this:
4667 * 1) create dir foo
4668 * 2) create snapshot under dir foo
4669 * 3) delete the snapshot
4670 * 4) rmdir foo
4671 * 5) mkdir foo
4672 * 6) fsync foo or some file inside foo
4673 */
4674 if (last_unlink_trans >= trans->transid)
4675 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4676 }
4677 out:
4678 btrfs_end_transaction(trans);
4679 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4680
4681 return err;
4682 }
4683
4684 /*
4685 * Return this if we need to call truncate_block for the last bit of the
4686 * truncate.
4687 */
4688 #define NEED_TRUNCATE_BLOCK 1
4689
4690 /*
4691 * Remove inode items from a given root.
4692 *
4693 * @trans: A transaction handle.
4694 * @root: The root from which to remove items.
4695 * @inode: The inode whose items we want to remove.
4696 * @new_size: The new i_size for the inode. This is only applicable when
4697 * @min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise.
4698 * @min_type: The minimum key type to remove. All keys with a type
4699 * greater than this value are removed and all keys with
4700 * this type are removed only if their offset is >= @new_size.
4701 * @extents_found: Output parameter that will contain the number of file
4702 * extent items that were removed or adjusted to the new
4703 * inode i_size. The caller is responsible for initializing
4704 * the counter. Also, it can be NULL if the caller does not
4705 * need this counter.
4706 *
4707 * Remove all keys associated with the inode from the given root that have a key
4708 * with a type greater than or equals to @min_type. When @min_type has a value of
4709 * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value
4710 * greater than or equals to @new_size. If a file extent item that starts before
4711 * @new_size and ends after it is found, its length is adjusted.
4712 *
4713 * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is
4714 * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block.
4715 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,u64 new_size,u32 min_type,u64 * extents_found)4716 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4717 struct btrfs_root *root,
4718 struct btrfs_inode *inode,
4719 u64 new_size, u32 min_type,
4720 u64 *extents_found)
4721 {
4722 struct btrfs_fs_info *fs_info = root->fs_info;
4723 struct btrfs_path *path;
4724 struct extent_buffer *leaf;
4725 struct btrfs_file_extent_item *fi;
4726 struct btrfs_key key;
4727 struct btrfs_key found_key;
4728 u64 extent_start = 0;
4729 u64 extent_num_bytes = 0;
4730 u64 extent_offset = 0;
4731 u64 item_end = 0;
4732 u64 last_size = new_size;
4733 u32 found_type = (u8)-1;
4734 int found_extent;
4735 int del_item;
4736 int pending_del_nr = 0;
4737 int pending_del_slot = 0;
4738 int extent_type = -1;
4739 int ret;
4740 u64 ino = btrfs_ino(inode);
4741 u64 bytes_deleted = 0;
4742 bool be_nice = false;
4743 bool should_throttle = false;
4744 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4745 struct extent_state *cached_state = NULL;
4746
4747 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4748
4749 /*
4750 * For non-free space inodes and non-shareable roots, we want to back
4751 * off from time to time. This means all inodes in subvolume roots,
4752 * reloc roots, and data reloc roots.
4753 */
4754 if (!btrfs_is_free_space_inode(inode) &&
4755 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4756 be_nice = true;
4757
4758 path = btrfs_alloc_path();
4759 if (!path)
4760 return -ENOMEM;
4761 path->reada = READA_BACK;
4762
4763 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4764 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4765 &cached_state);
4766
4767 /*
4768 * We want to drop from the next block forward in case this
4769 * new size is not block aligned since we will be keeping the
4770 * last block of the extent just the way it is.
4771 */
4772 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4773 fs_info->sectorsize),
4774 (u64)-1, 0);
4775 }
4776
4777 /*
4778 * This function is also used to drop the items in the log tree before
4779 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4780 * it is used to drop the logged items. So we shouldn't kill the delayed
4781 * items.
4782 */
4783 if (min_type == 0 && root == inode->root)
4784 btrfs_kill_delayed_inode_items(inode);
4785
4786 key.objectid = ino;
4787 key.offset = (u64)-1;
4788 key.type = (u8)-1;
4789
4790 search_again:
4791 /*
4792 * with a 16K leaf size and 128MB extents, you can actually queue
4793 * up a huge file in a single leaf. Most of the time that
4794 * bytes_deleted is > 0, it will be huge by the time we get here
4795 */
4796 if (be_nice && bytes_deleted > SZ_32M &&
4797 btrfs_should_end_transaction(trans)) {
4798 ret = -EAGAIN;
4799 goto out;
4800 }
4801
4802 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4803 if (ret < 0)
4804 goto out;
4805
4806 if (ret > 0) {
4807 ret = 0;
4808 /* there are no items in the tree for us to truncate, we're
4809 * done
4810 */
4811 if (path->slots[0] == 0)
4812 goto out;
4813 path->slots[0]--;
4814 }
4815
4816 while (1) {
4817 u64 clear_start = 0, clear_len = 0;
4818
4819 fi = NULL;
4820 leaf = path->nodes[0];
4821 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4822 found_type = found_key.type;
4823
4824 if (found_key.objectid != ino)
4825 break;
4826
4827 if (found_type < min_type)
4828 break;
4829
4830 item_end = found_key.offset;
4831 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4832 fi = btrfs_item_ptr(leaf, path->slots[0],
4833 struct btrfs_file_extent_item);
4834 extent_type = btrfs_file_extent_type(leaf, fi);
4835 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4836 item_end +=
4837 btrfs_file_extent_num_bytes(leaf, fi);
4838
4839 trace_btrfs_truncate_show_fi_regular(
4840 inode, leaf, fi, found_key.offset);
4841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4842 item_end += btrfs_file_extent_ram_bytes(leaf,
4843 fi);
4844
4845 trace_btrfs_truncate_show_fi_inline(
4846 inode, leaf, fi, path->slots[0],
4847 found_key.offset);
4848 }
4849 item_end--;
4850 }
4851 if (found_type > min_type) {
4852 del_item = 1;
4853 } else {
4854 if (item_end < new_size)
4855 break;
4856 if (found_key.offset >= new_size)
4857 del_item = 1;
4858 else
4859 del_item = 0;
4860 }
4861 found_extent = 0;
4862 /* FIXME, shrink the extent if the ref count is only 1 */
4863 if (found_type != BTRFS_EXTENT_DATA_KEY)
4864 goto delete;
4865
4866 if (extents_found != NULL)
4867 (*extents_found)++;
4868
4869 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4870 u64 num_dec;
4871
4872 clear_start = found_key.offset;
4873 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4874 if (!del_item) {
4875 u64 orig_num_bytes =
4876 btrfs_file_extent_num_bytes(leaf, fi);
4877 extent_num_bytes = ALIGN(new_size -
4878 found_key.offset,
4879 fs_info->sectorsize);
4880 clear_start = ALIGN(new_size, fs_info->sectorsize);
4881 btrfs_set_file_extent_num_bytes(leaf, fi,
4882 extent_num_bytes);
4883 num_dec = (orig_num_bytes -
4884 extent_num_bytes);
4885 if (test_bit(BTRFS_ROOT_SHAREABLE,
4886 &root->state) &&
4887 extent_start != 0)
4888 inode_sub_bytes(&inode->vfs_inode,
4889 num_dec);
4890 btrfs_mark_buffer_dirty(leaf);
4891 } else {
4892 extent_num_bytes =
4893 btrfs_file_extent_disk_num_bytes(leaf,
4894 fi);
4895 extent_offset = found_key.offset -
4896 btrfs_file_extent_offset(leaf, fi);
4897
4898 /* FIXME blocksize != 4096 */
4899 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4900 if (extent_start != 0) {
4901 found_extent = 1;
4902 if (test_bit(BTRFS_ROOT_SHAREABLE,
4903 &root->state))
4904 inode_sub_bytes(&inode->vfs_inode,
4905 num_dec);
4906 }
4907 }
4908 clear_len = num_dec;
4909 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4910 /*
4911 * we can't truncate inline items that have had
4912 * special encodings
4913 */
4914 if (!del_item &&
4915 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4916 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4917 btrfs_file_extent_compression(leaf, fi) == 0) {
4918 u32 size = (u32)(new_size - found_key.offset);
4919
4920 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4921 size = btrfs_file_extent_calc_inline_size(size);
4922 btrfs_truncate_item(path, size, 1);
4923 } else if (!del_item) {
4924 /*
4925 * We have to bail so the last_size is set to
4926 * just before this extent.
4927 */
4928 ret = NEED_TRUNCATE_BLOCK;
4929 break;
4930 } else {
4931 /*
4932 * Inline extents are special, we just treat
4933 * them as a full sector worth in the file
4934 * extent tree just for simplicity sake.
4935 */
4936 clear_len = fs_info->sectorsize;
4937 }
4938
4939 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4940 inode_sub_bytes(&inode->vfs_inode,
4941 item_end + 1 - new_size);
4942 }
4943 delete:
4944 /*
4945 * We use btrfs_truncate_inode_items() to clean up log trees for
4946 * multiple fsyncs, and in this case we don't want to clear the
4947 * file extent range because it's just the log.
4948 */
4949 if (root == inode->root) {
4950 ret = btrfs_inode_clear_file_extent_range(inode,
4951 clear_start, clear_len);
4952 if (ret) {
4953 btrfs_abort_transaction(trans, ret);
4954 break;
4955 }
4956 }
4957
4958 if (del_item)
4959 last_size = found_key.offset;
4960 else
4961 last_size = new_size;
4962 if (del_item) {
4963 if (!pending_del_nr) {
4964 /* no pending yet, add ourselves */
4965 pending_del_slot = path->slots[0];
4966 pending_del_nr = 1;
4967 } else if (pending_del_nr &&
4968 path->slots[0] + 1 == pending_del_slot) {
4969 /* hop on the pending chunk */
4970 pending_del_nr++;
4971 pending_del_slot = path->slots[0];
4972 } else {
4973 BUG();
4974 }
4975 } else {
4976 break;
4977 }
4978 should_throttle = false;
4979
4980 if (found_extent &&
4981 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4982 struct btrfs_ref ref = { 0 };
4983
4984 bytes_deleted += extent_num_bytes;
4985
4986 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4987 extent_start, extent_num_bytes, 0);
4988 ref.real_root = root->root_key.objectid;
4989 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4990 ino, extent_offset,
4991 root->root_key.objectid, false);
4992 ret = btrfs_free_extent(trans, &ref);
4993 if (ret) {
4994 btrfs_abort_transaction(trans, ret);
4995 break;
4996 }
4997 if (be_nice) {
4998 if (btrfs_should_throttle_delayed_refs(trans))
4999 should_throttle = true;
5000 }
5001 }
5002
5003 if (found_type == BTRFS_INODE_ITEM_KEY)
5004 break;
5005
5006 if (path->slots[0] == 0 ||
5007 path->slots[0] != pending_del_slot ||
5008 should_throttle) {
5009 if (pending_del_nr) {
5010 ret = btrfs_del_items(trans, root, path,
5011 pending_del_slot,
5012 pending_del_nr);
5013 if (ret) {
5014 btrfs_abort_transaction(trans, ret);
5015 break;
5016 }
5017 pending_del_nr = 0;
5018 }
5019 btrfs_release_path(path);
5020
5021 /*
5022 * We can generate a lot of delayed refs, so we need to
5023 * throttle every once and a while and make sure we're
5024 * adding enough space to keep up with the work we are
5025 * generating. Since we hold a transaction here we
5026 * can't flush, and we don't want to FLUSH_LIMIT because
5027 * we could have generated too many delayed refs to
5028 * actually allocate, so just bail if we're short and
5029 * let the normal reservation dance happen higher up.
5030 */
5031 if (should_throttle) {
5032 ret = btrfs_delayed_refs_rsv_refill(fs_info,
5033 BTRFS_RESERVE_NO_FLUSH);
5034 if (ret) {
5035 ret = -EAGAIN;
5036 break;
5037 }
5038 }
5039 goto search_again;
5040 } else {
5041 path->slots[0]--;
5042 }
5043 }
5044 out:
5045 if (ret >= 0 && pending_del_nr) {
5046 int err;
5047
5048 err = btrfs_del_items(trans, root, path, pending_del_slot,
5049 pending_del_nr);
5050 if (err) {
5051 btrfs_abort_transaction(trans, err);
5052 ret = err;
5053 }
5054 }
5055 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5056 ASSERT(last_size >= new_size);
5057 if (!ret && last_size > new_size)
5058 last_size = new_size;
5059 btrfs_inode_safe_disk_i_size_write(inode, last_size);
5060 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
5061 &cached_state);
5062 }
5063
5064 btrfs_free_path(path);
5065 return ret;
5066 }
5067
5068 /*
5069 * btrfs_truncate_block - read, zero a chunk and write a block
5070 * @inode - inode that we're zeroing
5071 * @from - the offset to start zeroing
5072 * @len - the length to zero, 0 to zero the entire range respective to the
5073 * offset
5074 * @front - zero up to the offset instead of from the offset on
5075 *
5076 * This will find the block for the "from" offset and cow the block and zero the
5077 * part we want to zero. This is used with truncate and hole punching.
5078 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)5079 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
5080 int front)
5081 {
5082 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5083 struct address_space *mapping = inode->vfs_inode.i_mapping;
5084 struct extent_io_tree *io_tree = &inode->io_tree;
5085 struct btrfs_ordered_extent *ordered;
5086 struct extent_state *cached_state = NULL;
5087 struct extent_changeset *data_reserved = NULL;
5088 bool only_release_metadata = false;
5089 u32 blocksize = fs_info->sectorsize;
5090 pgoff_t index = from >> PAGE_SHIFT;
5091 unsigned offset = from & (blocksize - 1);
5092 struct page *page;
5093 gfp_t mask = btrfs_alloc_write_mask(mapping);
5094 size_t write_bytes = blocksize;
5095 int ret = 0;
5096 u64 block_start;
5097 u64 block_end;
5098
5099 if (IS_ALIGNED(offset, blocksize) &&
5100 (!len || IS_ALIGNED(len, blocksize)))
5101 goto out;
5102
5103 block_start = round_down(from, blocksize);
5104 block_end = block_start + blocksize - 1;
5105
5106 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5107 blocksize);
5108 if (ret < 0) {
5109 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
5110 /* For nocow case, no need to reserve data space */
5111 only_release_metadata = true;
5112 } else {
5113 goto out;
5114 }
5115 }
5116 ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
5117 if (ret < 0) {
5118 if (!only_release_metadata)
5119 btrfs_free_reserved_data_space(inode, data_reserved,
5120 block_start, blocksize);
5121 goto out;
5122 }
5123 again:
5124 page = find_or_create_page(mapping, index, mask);
5125 if (!page) {
5126 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5127 blocksize, true);
5128 btrfs_delalloc_release_extents(inode, blocksize);
5129 ret = -ENOMEM;
5130 goto out;
5131 }
5132 ret = set_page_extent_mapped(page);
5133 if (ret < 0)
5134 goto out_unlock;
5135
5136 if (!PageUptodate(page)) {
5137 ret = btrfs_readpage(NULL, page);
5138 lock_page(page);
5139 if (page->mapping != mapping) {
5140 unlock_page(page);
5141 put_page(page);
5142 goto again;
5143 }
5144 if (!PageUptodate(page)) {
5145 ret = -EIO;
5146 goto out_unlock;
5147 }
5148 }
5149 wait_on_page_writeback(page);
5150
5151 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5152
5153 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5154 if (ordered) {
5155 unlock_extent_cached(io_tree, block_start, block_end,
5156 &cached_state);
5157 unlock_page(page);
5158 put_page(page);
5159 btrfs_start_ordered_extent(ordered, 1);
5160 btrfs_put_ordered_extent(ordered);
5161 goto again;
5162 }
5163
5164 clear_extent_bit(&inode->io_tree, block_start, block_end,
5165 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5166 0, 0, &cached_state);
5167
5168 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5169 &cached_state);
5170 if (ret) {
5171 unlock_extent_cached(io_tree, block_start, block_end,
5172 &cached_state);
5173 goto out_unlock;
5174 }
5175
5176 if (offset != blocksize) {
5177 if (!len)
5178 len = blocksize - offset;
5179 if (front)
5180 memzero_page(page, (block_start - page_offset(page)),
5181 offset);
5182 else
5183 memzero_page(page, (block_start - page_offset(page)) + offset,
5184 len);
5185 flush_dcache_page(page);
5186 }
5187 ClearPageChecked(page);
5188 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5189 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5190
5191 if (only_release_metadata)
5192 set_extent_bit(&inode->io_tree, block_start, block_end,
5193 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
5194
5195 out_unlock:
5196 if (ret) {
5197 if (only_release_metadata)
5198 btrfs_delalloc_release_metadata(inode, blocksize, true);
5199 else
5200 btrfs_delalloc_release_space(inode, data_reserved,
5201 block_start, blocksize, true);
5202 }
5203 btrfs_delalloc_release_extents(inode, blocksize);
5204 unlock_page(page);
5205 put_page(page);
5206 out:
5207 if (only_release_metadata)
5208 btrfs_check_nocow_unlock(inode);
5209 extent_changeset_free(data_reserved);
5210 return ret;
5211 }
5212
maybe_insert_hole(struct btrfs_root * root,struct btrfs_inode * inode,u64 offset,u64 len)5213 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5214 u64 offset, u64 len)
5215 {
5216 struct btrfs_fs_info *fs_info = root->fs_info;
5217 struct btrfs_trans_handle *trans;
5218 struct btrfs_drop_extents_args drop_args = { 0 };
5219 int ret;
5220
5221 /*
5222 * If NO_HOLES is enabled, we don't need to do anything.
5223 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5224 * or btrfs_update_inode() will be called, which guarantee that the next
5225 * fsync will know this inode was changed and needs to be logged.
5226 */
5227 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5228 return 0;
5229
5230 /*
5231 * 1 - for the one we're dropping
5232 * 1 - for the one we're adding
5233 * 1 - for updating the inode.
5234 */
5235 trans = btrfs_start_transaction(root, 3);
5236 if (IS_ERR(trans))
5237 return PTR_ERR(trans);
5238
5239 drop_args.start = offset;
5240 drop_args.end = offset + len;
5241 drop_args.drop_cache = true;
5242
5243 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5244 if (ret) {
5245 btrfs_abort_transaction(trans, ret);
5246 btrfs_end_transaction(trans);
5247 return ret;
5248 }
5249
5250 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5251 offset, 0, 0, len, 0, len, 0, 0, 0);
5252 if (ret) {
5253 btrfs_abort_transaction(trans, ret);
5254 } else {
5255 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5256 btrfs_update_inode(trans, root, inode);
5257 }
5258 btrfs_end_transaction(trans);
5259 return ret;
5260 }
5261
5262 /*
5263 * This function puts in dummy file extents for the area we're creating a hole
5264 * for. So if we are truncating this file to a larger size we need to insert
5265 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5266 * the range between oldsize and size
5267 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5268 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5269 {
5270 struct btrfs_root *root = inode->root;
5271 struct btrfs_fs_info *fs_info = root->fs_info;
5272 struct extent_io_tree *io_tree = &inode->io_tree;
5273 struct extent_map *em = NULL;
5274 struct extent_state *cached_state = NULL;
5275 struct extent_map_tree *em_tree = &inode->extent_tree;
5276 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5277 u64 block_end = ALIGN(size, fs_info->sectorsize);
5278 u64 last_byte;
5279 u64 cur_offset;
5280 u64 hole_size;
5281 int err = 0;
5282
5283 /*
5284 * If our size started in the middle of a block we need to zero out the
5285 * rest of the block before we expand the i_size, otherwise we could
5286 * expose stale data.
5287 */
5288 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5289 if (err)
5290 return err;
5291
5292 if (size <= hole_start)
5293 return 0;
5294
5295 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5296 &cached_state);
5297 cur_offset = hole_start;
5298 while (1) {
5299 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5300 block_end - cur_offset);
5301 if (IS_ERR(em)) {
5302 err = PTR_ERR(em);
5303 em = NULL;
5304 break;
5305 }
5306 last_byte = min(extent_map_end(em), block_end);
5307 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5308 hole_size = last_byte - cur_offset;
5309
5310 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5311 struct extent_map *hole_em;
5312
5313 err = maybe_insert_hole(root, inode, cur_offset,
5314 hole_size);
5315 if (err)
5316 break;
5317
5318 err = btrfs_inode_set_file_extent_range(inode,
5319 cur_offset, hole_size);
5320 if (err)
5321 break;
5322
5323 btrfs_drop_extent_cache(inode, cur_offset,
5324 cur_offset + hole_size - 1, 0);
5325 hole_em = alloc_extent_map();
5326 if (!hole_em) {
5327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5328 &inode->runtime_flags);
5329 goto next;
5330 }
5331 hole_em->start = cur_offset;
5332 hole_em->len = hole_size;
5333 hole_em->orig_start = cur_offset;
5334
5335 hole_em->block_start = EXTENT_MAP_HOLE;
5336 hole_em->block_len = 0;
5337 hole_em->orig_block_len = 0;
5338 hole_em->ram_bytes = hole_size;
5339 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5340 hole_em->generation = fs_info->generation;
5341
5342 while (1) {
5343 write_lock(&em_tree->lock);
5344 err = add_extent_mapping(em_tree, hole_em, 1);
5345 write_unlock(&em_tree->lock);
5346 if (err != -EEXIST)
5347 break;
5348 btrfs_drop_extent_cache(inode, cur_offset,
5349 cur_offset +
5350 hole_size - 1, 0);
5351 }
5352 free_extent_map(hole_em);
5353 } else {
5354 err = btrfs_inode_set_file_extent_range(inode,
5355 cur_offset, hole_size);
5356 if (err)
5357 break;
5358 }
5359 next:
5360 free_extent_map(em);
5361 em = NULL;
5362 cur_offset = last_byte;
5363 if (cur_offset >= block_end)
5364 break;
5365 }
5366 free_extent_map(em);
5367 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5368 return err;
5369 }
5370
btrfs_setsize(struct inode * inode,struct iattr * attr)5371 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5372 {
5373 struct btrfs_root *root = BTRFS_I(inode)->root;
5374 struct btrfs_trans_handle *trans;
5375 loff_t oldsize = i_size_read(inode);
5376 loff_t newsize = attr->ia_size;
5377 int mask = attr->ia_valid;
5378 int ret;
5379
5380 /*
5381 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5382 * special case where we need to update the times despite not having
5383 * these flags set. For all other operations the VFS set these flags
5384 * explicitly if it wants a timestamp update.
5385 */
5386 if (newsize != oldsize) {
5387 inode_inc_iversion(inode);
5388 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5389 inode->i_ctime = inode->i_mtime =
5390 current_time(inode);
5391 }
5392
5393 if (newsize > oldsize) {
5394 /*
5395 * Don't do an expanding truncate while snapshotting is ongoing.
5396 * This is to ensure the snapshot captures a fully consistent
5397 * state of this file - if the snapshot captures this expanding
5398 * truncation, it must capture all writes that happened before
5399 * this truncation.
5400 */
5401 btrfs_drew_write_lock(&root->snapshot_lock);
5402 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5403 if (ret) {
5404 btrfs_drew_write_unlock(&root->snapshot_lock);
5405 return ret;
5406 }
5407
5408 trans = btrfs_start_transaction(root, 1);
5409 if (IS_ERR(trans)) {
5410 btrfs_drew_write_unlock(&root->snapshot_lock);
5411 return PTR_ERR(trans);
5412 }
5413
5414 i_size_write(inode, newsize);
5415 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5416 pagecache_isize_extended(inode, oldsize, newsize);
5417 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5418 btrfs_drew_write_unlock(&root->snapshot_lock);
5419 btrfs_end_transaction(trans);
5420 } else {
5421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5422
5423 if (btrfs_is_zoned(fs_info)) {
5424 ret = btrfs_wait_ordered_range(inode,
5425 ALIGN(newsize, fs_info->sectorsize),
5426 (u64)-1);
5427 if (ret)
5428 return ret;
5429 }
5430
5431 /*
5432 * We're truncating a file that used to have good data down to
5433 * zero. Make sure any new writes to the file get on disk
5434 * on close.
5435 */
5436 if (newsize == 0)
5437 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5438 &BTRFS_I(inode)->runtime_flags);
5439
5440 truncate_setsize(inode, newsize);
5441
5442 inode_dio_wait(inode);
5443
5444 ret = btrfs_truncate(inode, newsize == oldsize);
5445 if (ret && inode->i_nlink) {
5446 int err;
5447
5448 /*
5449 * Truncate failed, so fix up the in-memory size. We
5450 * adjusted disk_i_size down as we removed extents, so
5451 * wait for disk_i_size to be stable and then update the
5452 * in-memory size to match.
5453 */
5454 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5455 if (err)
5456 return err;
5457 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5458 }
5459 }
5460
5461 return ret;
5462 }
5463
btrfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5464 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5465 struct iattr *attr)
5466 {
5467 struct inode *inode = d_inode(dentry);
5468 struct btrfs_root *root = BTRFS_I(inode)->root;
5469 int err;
5470
5471 if (btrfs_root_readonly(root))
5472 return -EROFS;
5473
5474 err = setattr_prepare(mnt_userns, dentry, attr);
5475 if (err)
5476 return err;
5477
5478 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5479 err = btrfs_setsize(inode, attr);
5480 if (err)
5481 return err;
5482 }
5483
5484 if (attr->ia_valid) {
5485 setattr_copy(mnt_userns, inode, attr);
5486 inode_inc_iversion(inode);
5487 err = btrfs_dirty_inode(inode);
5488
5489 if (!err && attr->ia_valid & ATTR_MODE)
5490 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5491 }
5492
5493 return err;
5494 }
5495
5496 /*
5497 * While truncating the inode pages during eviction, we get the VFS calling
5498 * btrfs_invalidatepage() against each page of the inode. This is slow because
5499 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5500 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5501 * extent_state structures over and over, wasting lots of time.
5502 *
5503 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5504 * those expensive operations on a per page basis and do only the ordered io
5505 * finishing, while we release here the extent_map and extent_state structures,
5506 * without the excessive merging and splitting.
5507 */
evict_inode_truncate_pages(struct inode * inode)5508 static void evict_inode_truncate_pages(struct inode *inode)
5509 {
5510 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5511 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5512 struct rb_node *node;
5513
5514 ASSERT(inode->i_state & I_FREEING);
5515 truncate_inode_pages_final(&inode->i_data);
5516
5517 write_lock(&map_tree->lock);
5518 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5519 struct extent_map *em;
5520
5521 node = rb_first_cached(&map_tree->map);
5522 em = rb_entry(node, struct extent_map, rb_node);
5523 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5524 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5525 remove_extent_mapping(map_tree, em);
5526 free_extent_map(em);
5527 if (need_resched()) {
5528 write_unlock(&map_tree->lock);
5529 cond_resched();
5530 write_lock(&map_tree->lock);
5531 }
5532 }
5533 write_unlock(&map_tree->lock);
5534
5535 /*
5536 * Keep looping until we have no more ranges in the io tree.
5537 * We can have ongoing bios started by readahead that have
5538 * their endio callback (extent_io.c:end_bio_extent_readpage)
5539 * still in progress (unlocked the pages in the bio but did not yet
5540 * unlocked the ranges in the io tree). Therefore this means some
5541 * ranges can still be locked and eviction started because before
5542 * submitting those bios, which are executed by a separate task (work
5543 * queue kthread), inode references (inode->i_count) were not taken
5544 * (which would be dropped in the end io callback of each bio).
5545 * Therefore here we effectively end up waiting for those bios and
5546 * anyone else holding locked ranges without having bumped the inode's
5547 * reference count - if we don't do it, when they access the inode's
5548 * io_tree to unlock a range it may be too late, leading to an
5549 * use-after-free issue.
5550 */
5551 spin_lock(&io_tree->lock);
5552 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5553 struct extent_state *state;
5554 struct extent_state *cached_state = NULL;
5555 u64 start;
5556 u64 end;
5557 unsigned state_flags;
5558
5559 node = rb_first(&io_tree->state);
5560 state = rb_entry(node, struct extent_state, rb_node);
5561 start = state->start;
5562 end = state->end;
5563 state_flags = state->state;
5564 spin_unlock(&io_tree->lock);
5565
5566 lock_extent_bits(io_tree, start, end, &cached_state);
5567
5568 /*
5569 * If still has DELALLOC flag, the extent didn't reach disk,
5570 * and its reserved space won't be freed by delayed_ref.
5571 * So we need to free its reserved space here.
5572 * (Refer to comment in btrfs_invalidatepage, case 2)
5573 *
5574 * Note, end is the bytenr of last byte, so we need + 1 here.
5575 */
5576 if (state_flags & EXTENT_DELALLOC)
5577 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5578 end - start + 1);
5579
5580 clear_extent_bit(io_tree, start, end,
5581 EXTENT_LOCKED | EXTENT_DELALLOC |
5582 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5583 &cached_state);
5584
5585 cond_resched();
5586 spin_lock(&io_tree->lock);
5587 }
5588 spin_unlock(&io_tree->lock);
5589 }
5590
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5591 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5592 struct btrfs_block_rsv *rsv)
5593 {
5594 struct btrfs_fs_info *fs_info = root->fs_info;
5595 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5596 struct btrfs_trans_handle *trans;
5597 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5598 int ret;
5599
5600 /*
5601 * Eviction should be taking place at some place safe because of our
5602 * delayed iputs. However the normal flushing code will run delayed
5603 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5604 *
5605 * We reserve the delayed_refs_extra here again because we can't use
5606 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5607 * above. We reserve our extra bit here because we generate a ton of
5608 * delayed refs activity by truncating.
5609 *
5610 * If we cannot make our reservation we'll attempt to steal from the
5611 * global reserve, because we really want to be able to free up space.
5612 */
5613 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5614 BTRFS_RESERVE_FLUSH_EVICT);
5615 if (ret) {
5616 /*
5617 * Try to steal from the global reserve if there is space for
5618 * it.
5619 */
5620 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5621 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5622 btrfs_warn(fs_info,
5623 "could not allocate space for delete; will truncate on mount");
5624 return ERR_PTR(-ENOSPC);
5625 }
5626 delayed_refs_extra = 0;
5627 }
5628
5629 trans = btrfs_join_transaction(root);
5630 if (IS_ERR(trans))
5631 return trans;
5632
5633 if (delayed_refs_extra) {
5634 trans->block_rsv = &fs_info->trans_block_rsv;
5635 trans->bytes_reserved = delayed_refs_extra;
5636 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5637 delayed_refs_extra, 1);
5638 }
5639 return trans;
5640 }
5641
btrfs_evict_inode(struct inode * inode)5642 void btrfs_evict_inode(struct inode *inode)
5643 {
5644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5645 struct btrfs_trans_handle *trans;
5646 struct btrfs_root *root = BTRFS_I(inode)->root;
5647 struct btrfs_block_rsv *rsv;
5648 int ret;
5649
5650 trace_btrfs_inode_evict(inode);
5651
5652 if (!root) {
5653 fsverity_cleanup_inode(inode);
5654 clear_inode(inode);
5655 return;
5656 }
5657
5658 evict_inode_truncate_pages(inode);
5659
5660 if (inode->i_nlink &&
5661 ((btrfs_root_refs(&root->root_item) != 0 &&
5662 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5663 btrfs_is_free_space_inode(BTRFS_I(inode))))
5664 goto no_delete;
5665
5666 if (is_bad_inode(inode))
5667 goto no_delete;
5668
5669 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5670
5671 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5672 goto no_delete;
5673
5674 if (inode->i_nlink > 0) {
5675 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5676 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5677 goto no_delete;
5678 }
5679
5680 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5681 if (ret)
5682 goto no_delete;
5683
5684 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5685 if (!rsv)
5686 goto no_delete;
5687 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5688 rsv->failfast = 1;
5689
5690 btrfs_i_size_write(BTRFS_I(inode), 0);
5691
5692 while (1) {
5693 trans = evict_refill_and_join(root, rsv);
5694 if (IS_ERR(trans))
5695 goto free_rsv;
5696
5697 trans->block_rsv = rsv;
5698
5699 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5700 0, 0, NULL);
5701 trans->block_rsv = &fs_info->trans_block_rsv;
5702 btrfs_end_transaction(trans);
5703 btrfs_btree_balance_dirty(fs_info);
5704 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5705 goto free_rsv;
5706 else if (!ret)
5707 break;
5708 }
5709
5710 /*
5711 * Errors here aren't a big deal, it just means we leave orphan items in
5712 * the tree. They will be cleaned up on the next mount. If the inode
5713 * number gets reused, cleanup deletes the orphan item without doing
5714 * anything, and unlink reuses the existing orphan item.
5715 *
5716 * If it turns out that we are dropping too many of these, we might want
5717 * to add a mechanism for retrying these after a commit.
5718 */
5719 trans = evict_refill_and_join(root, rsv);
5720 if (!IS_ERR(trans)) {
5721 trans->block_rsv = rsv;
5722 btrfs_orphan_del(trans, BTRFS_I(inode));
5723 trans->block_rsv = &fs_info->trans_block_rsv;
5724 btrfs_end_transaction(trans);
5725 }
5726
5727 free_rsv:
5728 btrfs_free_block_rsv(fs_info, rsv);
5729 no_delete:
5730 /*
5731 * If we didn't successfully delete, the orphan item will still be in
5732 * the tree and we'll retry on the next mount. Again, we might also want
5733 * to retry these periodically in the future.
5734 */
5735 btrfs_remove_delayed_node(BTRFS_I(inode));
5736 fsverity_cleanup_inode(inode);
5737 clear_inode(inode);
5738 }
5739
5740 /*
5741 * Return the key found in the dir entry in the location pointer, fill @type
5742 * with BTRFS_FT_*, and return 0.
5743 *
5744 * If no dir entries were found, returns -ENOENT.
5745 * If found a corrupted location in dir entry, returns -EUCLEAN.
5746 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5747 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5748 struct btrfs_key *location, u8 *type)
5749 {
5750 const char *name = dentry->d_name.name;
5751 int namelen = dentry->d_name.len;
5752 struct btrfs_dir_item *di;
5753 struct btrfs_path *path;
5754 struct btrfs_root *root = BTRFS_I(dir)->root;
5755 int ret = 0;
5756
5757 path = btrfs_alloc_path();
5758 if (!path)
5759 return -ENOMEM;
5760
5761 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5762 name, namelen, 0);
5763 if (IS_ERR_OR_NULL(di)) {
5764 ret = di ? PTR_ERR(di) : -ENOENT;
5765 goto out;
5766 }
5767
5768 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5769 if (location->type != BTRFS_INODE_ITEM_KEY &&
5770 location->type != BTRFS_ROOT_ITEM_KEY) {
5771 ret = -EUCLEAN;
5772 btrfs_warn(root->fs_info,
5773 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5774 __func__, name, btrfs_ino(BTRFS_I(dir)),
5775 location->objectid, location->type, location->offset);
5776 }
5777 if (!ret)
5778 *type = btrfs_dir_type(path->nodes[0], di);
5779 out:
5780 btrfs_free_path(path);
5781 return ret;
5782 }
5783
5784 /*
5785 * when we hit a tree root in a directory, the btrfs part of the inode
5786 * needs to be changed to reflect the root directory of the tree root. This
5787 * is kind of like crossing a mount point.
5788 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5789 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5790 struct inode *dir,
5791 struct dentry *dentry,
5792 struct btrfs_key *location,
5793 struct btrfs_root **sub_root)
5794 {
5795 struct btrfs_path *path;
5796 struct btrfs_root *new_root;
5797 struct btrfs_root_ref *ref;
5798 struct extent_buffer *leaf;
5799 struct btrfs_key key;
5800 int ret;
5801 int err = 0;
5802
5803 path = btrfs_alloc_path();
5804 if (!path) {
5805 err = -ENOMEM;
5806 goto out;
5807 }
5808
5809 err = -ENOENT;
5810 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5811 key.type = BTRFS_ROOT_REF_KEY;
5812 key.offset = location->objectid;
5813
5814 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5815 if (ret) {
5816 if (ret < 0)
5817 err = ret;
5818 goto out;
5819 }
5820
5821 leaf = path->nodes[0];
5822 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5823 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5824 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5825 goto out;
5826
5827 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5828 (unsigned long)(ref + 1),
5829 dentry->d_name.len);
5830 if (ret)
5831 goto out;
5832
5833 btrfs_release_path(path);
5834
5835 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5836 if (IS_ERR(new_root)) {
5837 err = PTR_ERR(new_root);
5838 goto out;
5839 }
5840
5841 *sub_root = new_root;
5842 location->objectid = btrfs_root_dirid(&new_root->root_item);
5843 location->type = BTRFS_INODE_ITEM_KEY;
5844 location->offset = 0;
5845 err = 0;
5846 out:
5847 btrfs_free_path(path);
5848 return err;
5849 }
5850
inode_tree_add(struct inode * inode)5851 static void inode_tree_add(struct inode *inode)
5852 {
5853 struct btrfs_root *root = BTRFS_I(inode)->root;
5854 struct btrfs_inode *entry;
5855 struct rb_node **p;
5856 struct rb_node *parent;
5857 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5858 u64 ino = btrfs_ino(BTRFS_I(inode));
5859
5860 if (inode_unhashed(inode))
5861 return;
5862 parent = NULL;
5863 spin_lock(&root->inode_lock);
5864 p = &root->inode_tree.rb_node;
5865 while (*p) {
5866 parent = *p;
5867 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5868
5869 if (ino < btrfs_ino(entry))
5870 p = &parent->rb_left;
5871 else if (ino > btrfs_ino(entry))
5872 p = &parent->rb_right;
5873 else {
5874 WARN_ON(!(entry->vfs_inode.i_state &
5875 (I_WILL_FREE | I_FREEING)));
5876 rb_replace_node(parent, new, &root->inode_tree);
5877 RB_CLEAR_NODE(parent);
5878 spin_unlock(&root->inode_lock);
5879 return;
5880 }
5881 }
5882 rb_link_node(new, parent, p);
5883 rb_insert_color(new, &root->inode_tree);
5884 spin_unlock(&root->inode_lock);
5885 }
5886
inode_tree_del(struct btrfs_inode * inode)5887 static void inode_tree_del(struct btrfs_inode *inode)
5888 {
5889 struct btrfs_root *root = inode->root;
5890 int empty = 0;
5891
5892 spin_lock(&root->inode_lock);
5893 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5894 rb_erase(&inode->rb_node, &root->inode_tree);
5895 RB_CLEAR_NODE(&inode->rb_node);
5896 empty = RB_EMPTY_ROOT(&root->inode_tree);
5897 }
5898 spin_unlock(&root->inode_lock);
5899
5900 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5901 spin_lock(&root->inode_lock);
5902 empty = RB_EMPTY_ROOT(&root->inode_tree);
5903 spin_unlock(&root->inode_lock);
5904 if (empty)
5905 btrfs_add_dead_root(root);
5906 }
5907 }
5908
5909
btrfs_init_locked_inode(struct inode * inode,void * p)5910 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5911 {
5912 struct btrfs_iget_args *args = p;
5913
5914 inode->i_ino = args->ino;
5915 BTRFS_I(inode)->location.objectid = args->ino;
5916 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5917 BTRFS_I(inode)->location.offset = 0;
5918 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5919 BUG_ON(args->root && !BTRFS_I(inode)->root);
5920 return 0;
5921 }
5922
btrfs_find_actor(struct inode * inode,void * opaque)5923 static int btrfs_find_actor(struct inode *inode, void *opaque)
5924 {
5925 struct btrfs_iget_args *args = opaque;
5926
5927 return args->ino == BTRFS_I(inode)->location.objectid &&
5928 args->root == BTRFS_I(inode)->root;
5929 }
5930
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5931 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5932 struct btrfs_root *root)
5933 {
5934 struct inode *inode;
5935 struct btrfs_iget_args args;
5936 unsigned long hashval = btrfs_inode_hash(ino, root);
5937
5938 args.ino = ino;
5939 args.root = root;
5940
5941 inode = iget5_locked(s, hashval, btrfs_find_actor,
5942 btrfs_init_locked_inode,
5943 (void *)&args);
5944 return inode;
5945 }
5946
5947 /*
5948 * Get an inode object given its inode number and corresponding root.
5949 * Path can be preallocated to prevent recursing back to iget through
5950 * allocator. NULL is also valid but may require an additional allocation
5951 * later.
5952 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5953 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5954 struct btrfs_root *root, struct btrfs_path *path)
5955 {
5956 struct inode *inode;
5957
5958 inode = btrfs_iget_locked(s, ino, root);
5959 if (!inode)
5960 return ERR_PTR(-ENOMEM);
5961
5962 if (inode->i_state & I_NEW) {
5963 int ret;
5964
5965 ret = btrfs_read_locked_inode(inode, path);
5966 if (!ret) {
5967 inode_tree_add(inode);
5968 unlock_new_inode(inode);
5969 } else {
5970 iget_failed(inode);
5971 /*
5972 * ret > 0 can come from btrfs_search_slot called by
5973 * btrfs_read_locked_inode, this means the inode item
5974 * was not found.
5975 */
5976 if (ret > 0)
5977 ret = -ENOENT;
5978 inode = ERR_PTR(ret);
5979 }
5980 }
5981
5982 return inode;
5983 }
5984
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5985 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5986 {
5987 return btrfs_iget_path(s, ino, root, NULL);
5988 }
5989
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5990 static struct inode *new_simple_dir(struct super_block *s,
5991 struct btrfs_key *key,
5992 struct btrfs_root *root)
5993 {
5994 struct inode *inode = new_inode(s);
5995
5996 if (!inode)
5997 return ERR_PTR(-ENOMEM);
5998
5999 BTRFS_I(inode)->root = btrfs_grab_root(root);
6000 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
6001 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
6002
6003 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6004 /*
6005 * We only need lookup, the rest is read-only and there's no inode
6006 * associated with the dentry
6007 */
6008 inode->i_op = &simple_dir_inode_operations;
6009 inode->i_opflags &= ~IOP_XATTR;
6010 inode->i_fop = &simple_dir_operations;
6011 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
6012 inode->i_mtime = current_time(inode);
6013 inode->i_atime = inode->i_mtime;
6014 inode->i_ctime = inode->i_mtime;
6015 BTRFS_I(inode)->i_otime = inode->i_mtime;
6016
6017 return inode;
6018 }
6019
btrfs_inode_type(struct inode * inode)6020 static inline u8 btrfs_inode_type(struct inode *inode)
6021 {
6022 /*
6023 * Compile-time asserts that generic FT_* types still match
6024 * BTRFS_FT_* types
6025 */
6026 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
6027 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
6028 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
6029 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
6030 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
6031 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
6032 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
6033 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
6034
6035 return fs_umode_to_ftype(inode->i_mode);
6036 }
6037
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)6038 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
6039 {
6040 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6041 struct inode *inode;
6042 struct btrfs_root *root = BTRFS_I(dir)->root;
6043 struct btrfs_root *sub_root = root;
6044 struct btrfs_key location;
6045 u8 di_type = 0;
6046 int ret = 0;
6047
6048 if (dentry->d_name.len > BTRFS_NAME_LEN)
6049 return ERR_PTR(-ENAMETOOLONG);
6050
6051 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
6052 if (ret < 0)
6053 return ERR_PTR(ret);
6054
6055 if (location.type == BTRFS_INODE_ITEM_KEY) {
6056 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6057 if (IS_ERR(inode))
6058 return inode;
6059
6060 /* Do extra check against inode mode with di_type */
6061 if (btrfs_inode_type(inode) != di_type) {
6062 btrfs_crit(fs_info,
6063 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
6064 inode->i_mode, btrfs_inode_type(inode),
6065 di_type);
6066 iput(inode);
6067 return ERR_PTR(-EUCLEAN);
6068 }
6069 return inode;
6070 }
6071
6072 ret = fixup_tree_root_location(fs_info, dir, dentry,
6073 &location, &sub_root);
6074 if (ret < 0) {
6075 if (ret != -ENOENT)
6076 inode = ERR_PTR(ret);
6077 else
6078 inode = new_simple_dir(dir->i_sb, &location, sub_root);
6079 } else {
6080 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
6081 }
6082 if (root != sub_root)
6083 btrfs_put_root(sub_root);
6084
6085 if (!IS_ERR(inode) && root != sub_root) {
6086 down_read(&fs_info->cleanup_work_sem);
6087 if (!sb_rdonly(inode->i_sb))
6088 ret = btrfs_orphan_cleanup(sub_root);
6089 up_read(&fs_info->cleanup_work_sem);
6090 if (ret) {
6091 iput(inode);
6092 inode = ERR_PTR(ret);
6093 }
6094 }
6095
6096 return inode;
6097 }
6098
btrfs_dentry_delete(const struct dentry * dentry)6099 static int btrfs_dentry_delete(const struct dentry *dentry)
6100 {
6101 struct btrfs_root *root;
6102 struct inode *inode = d_inode(dentry);
6103
6104 if (!inode && !IS_ROOT(dentry))
6105 inode = d_inode(dentry->d_parent);
6106
6107 if (inode) {
6108 root = BTRFS_I(inode)->root;
6109 if (btrfs_root_refs(&root->root_item) == 0)
6110 return 1;
6111
6112 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6113 return 1;
6114 }
6115 return 0;
6116 }
6117
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6118 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6119 unsigned int flags)
6120 {
6121 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6122
6123 if (inode == ERR_PTR(-ENOENT))
6124 inode = NULL;
6125 return d_splice_alias(inode, dentry);
6126 }
6127
6128 /*
6129 * Find the highest existing sequence number in a directory and then set the
6130 * in-memory index_cnt variable to the first free sequence number.
6131 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6132 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6133 {
6134 struct btrfs_root *root = inode->root;
6135 struct btrfs_key key, found_key;
6136 struct btrfs_path *path;
6137 struct extent_buffer *leaf;
6138 int ret;
6139
6140 key.objectid = btrfs_ino(inode);
6141 key.type = BTRFS_DIR_INDEX_KEY;
6142 key.offset = (u64)-1;
6143
6144 path = btrfs_alloc_path();
6145 if (!path)
6146 return -ENOMEM;
6147
6148 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6149 if (ret < 0)
6150 goto out;
6151 /* FIXME: we should be able to handle this */
6152 if (ret == 0)
6153 goto out;
6154 ret = 0;
6155
6156 if (path->slots[0] == 0) {
6157 inode->index_cnt = BTRFS_DIR_START_INDEX;
6158 goto out;
6159 }
6160
6161 path->slots[0]--;
6162
6163 leaf = path->nodes[0];
6164 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6165
6166 if (found_key.objectid != btrfs_ino(inode) ||
6167 found_key.type != BTRFS_DIR_INDEX_KEY) {
6168 inode->index_cnt = BTRFS_DIR_START_INDEX;
6169 goto out;
6170 }
6171
6172 inode->index_cnt = found_key.offset + 1;
6173 out:
6174 btrfs_free_path(path);
6175 return ret;
6176 }
6177
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6178 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6179 {
6180 int ret = 0;
6181
6182 btrfs_inode_lock(&dir->vfs_inode, 0);
6183 if (dir->index_cnt == (u64)-1) {
6184 ret = btrfs_inode_delayed_dir_index_count(dir);
6185 if (ret) {
6186 ret = btrfs_set_inode_index_count(dir);
6187 if (ret)
6188 goto out;
6189 }
6190 }
6191
6192 /* index_cnt is the index number of next new entry, so decrement it. */
6193 *index = dir->index_cnt - 1;
6194 out:
6195 btrfs_inode_unlock(&dir->vfs_inode, 0);
6196
6197 return ret;
6198 }
6199
6200 /*
6201 * All this infrastructure exists because dir_emit can fault, and we are holding
6202 * the tree lock when doing readdir. For now just allocate a buffer and copy
6203 * our information into that, and then dir_emit from the buffer. This is
6204 * similar to what NFS does, only we don't keep the buffer around in pagecache
6205 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6206 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6207 * tree lock.
6208 */
btrfs_opendir(struct inode * inode,struct file * file)6209 static int btrfs_opendir(struct inode *inode, struct file *file)
6210 {
6211 struct btrfs_file_private *private;
6212 u64 last_index;
6213 int ret;
6214
6215 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6216 if (ret)
6217 return ret;
6218
6219 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6220 if (!private)
6221 return -ENOMEM;
6222 private->last_index = last_index;
6223 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6224 if (!private->filldir_buf) {
6225 kfree(private);
6226 return -ENOMEM;
6227 }
6228 file->private_data = private;
6229 return 0;
6230 }
6231
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6232 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6233 {
6234 struct btrfs_file_private *private = file->private_data;
6235 int ret;
6236
6237 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6238 &private->last_index);
6239 if (ret)
6240 return ret;
6241
6242 return generic_file_llseek(file, offset, whence);
6243 }
6244
6245 struct dir_entry {
6246 u64 ino;
6247 u64 offset;
6248 unsigned type;
6249 int name_len;
6250 };
6251
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6252 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6253 {
6254 while (entries--) {
6255 struct dir_entry *entry = addr;
6256 char *name = (char *)(entry + 1);
6257
6258 ctx->pos = get_unaligned(&entry->offset);
6259 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6260 get_unaligned(&entry->ino),
6261 get_unaligned(&entry->type)))
6262 return 1;
6263 addr += sizeof(struct dir_entry) +
6264 get_unaligned(&entry->name_len);
6265 ctx->pos++;
6266 }
6267 return 0;
6268 }
6269
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6270 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6271 {
6272 struct inode *inode = file_inode(file);
6273 struct btrfs_root *root = BTRFS_I(inode)->root;
6274 struct btrfs_file_private *private = file->private_data;
6275 struct btrfs_dir_item *di;
6276 struct btrfs_key key;
6277 struct btrfs_key found_key;
6278 struct btrfs_path *path;
6279 void *addr;
6280 struct list_head ins_list;
6281 struct list_head del_list;
6282 int ret;
6283 struct extent_buffer *leaf;
6284 int slot;
6285 char *name_ptr;
6286 int name_len;
6287 int entries = 0;
6288 int total_len = 0;
6289 bool put = false;
6290 struct btrfs_key location;
6291
6292 if (!dir_emit_dots(file, ctx))
6293 return 0;
6294
6295 path = btrfs_alloc_path();
6296 if (!path)
6297 return -ENOMEM;
6298
6299 addr = private->filldir_buf;
6300 path->reada = READA_FORWARD;
6301
6302 INIT_LIST_HEAD(&ins_list);
6303 INIT_LIST_HEAD(&del_list);
6304 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
6305 &ins_list, &del_list);
6306
6307 again:
6308 key.type = BTRFS_DIR_INDEX_KEY;
6309 key.offset = ctx->pos;
6310 key.objectid = btrfs_ino(BTRFS_I(inode));
6311
6312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6313 if (ret < 0)
6314 goto err;
6315
6316 while (1) {
6317 struct dir_entry *entry;
6318
6319 leaf = path->nodes[0];
6320 slot = path->slots[0];
6321 if (slot >= btrfs_header_nritems(leaf)) {
6322 ret = btrfs_next_leaf(root, path);
6323 if (ret < 0)
6324 goto err;
6325 else if (ret > 0)
6326 break;
6327 continue;
6328 }
6329
6330 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6331
6332 if (found_key.objectid != key.objectid)
6333 break;
6334 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6335 break;
6336 if (found_key.offset < ctx->pos)
6337 goto next;
6338 if (found_key.offset > private->last_index)
6339 break;
6340 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6341 goto next;
6342 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6343 name_len = btrfs_dir_name_len(leaf, di);
6344 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6345 PAGE_SIZE) {
6346 btrfs_release_path(path);
6347 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6348 if (ret)
6349 goto nopos;
6350 addr = private->filldir_buf;
6351 entries = 0;
6352 total_len = 0;
6353 goto again;
6354 }
6355
6356 entry = addr;
6357 put_unaligned(name_len, &entry->name_len);
6358 name_ptr = (char *)(entry + 1);
6359 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6360 name_len);
6361 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6362 &entry->type);
6363 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6364 put_unaligned(location.objectid, &entry->ino);
6365 put_unaligned(found_key.offset, &entry->offset);
6366 entries++;
6367 addr += sizeof(struct dir_entry) + name_len;
6368 total_len += sizeof(struct dir_entry) + name_len;
6369 next:
6370 path->slots[0]++;
6371 }
6372 btrfs_release_path(path);
6373
6374 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6375 if (ret)
6376 goto nopos;
6377
6378 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6379 if (ret)
6380 goto nopos;
6381
6382 /*
6383 * Stop new entries from being returned after we return the last
6384 * entry.
6385 *
6386 * New directory entries are assigned a strictly increasing
6387 * offset. This means that new entries created during readdir
6388 * are *guaranteed* to be seen in the future by that readdir.
6389 * This has broken buggy programs which operate on names as
6390 * they're returned by readdir. Until we re-use freed offsets
6391 * we have this hack to stop new entries from being returned
6392 * under the assumption that they'll never reach this huge
6393 * offset.
6394 *
6395 * This is being careful not to overflow 32bit loff_t unless the
6396 * last entry requires it because doing so has broken 32bit apps
6397 * in the past.
6398 */
6399 if (ctx->pos >= INT_MAX)
6400 ctx->pos = LLONG_MAX;
6401 else
6402 ctx->pos = INT_MAX;
6403 nopos:
6404 ret = 0;
6405 err:
6406 if (put)
6407 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6408 btrfs_free_path(path);
6409 return ret;
6410 }
6411
6412 /*
6413 * This is somewhat expensive, updating the tree every time the
6414 * inode changes. But, it is most likely to find the inode in cache.
6415 * FIXME, needs more benchmarking...there are no reasons other than performance
6416 * to keep or drop this code.
6417 */
btrfs_dirty_inode(struct inode * inode)6418 static int btrfs_dirty_inode(struct inode *inode)
6419 {
6420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6421 struct btrfs_root *root = BTRFS_I(inode)->root;
6422 struct btrfs_trans_handle *trans;
6423 int ret;
6424
6425 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6426 return 0;
6427
6428 trans = btrfs_join_transaction(root);
6429 if (IS_ERR(trans))
6430 return PTR_ERR(trans);
6431
6432 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6433 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6434 /* whoops, lets try again with the full transaction */
6435 btrfs_end_transaction(trans);
6436 trans = btrfs_start_transaction(root, 1);
6437 if (IS_ERR(trans))
6438 return PTR_ERR(trans);
6439
6440 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6441 }
6442 btrfs_end_transaction(trans);
6443 if (BTRFS_I(inode)->delayed_node)
6444 btrfs_balance_delayed_items(fs_info);
6445
6446 return ret;
6447 }
6448
6449 /*
6450 * This is a copy of file_update_time. We need this so we can return error on
6451 * ENOSPC for updating the inode in the case of file write and mmap writes.
6452 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6453 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6454 int flags)
6455 {
6456 struct btrfs_root *root = BTRFS_I(inode)->root;
6457 bool dirty = flags & ~S_VERSION;
6458
6459 if (btrfs_root_readonly(root))
6460 return -EROFS;
6461
6462 if (flags & S_VERSION)
6463 dirty |= inode_maybe_inc_iversion(inode, dirty);
6464 if (flags & S_CTIME)
6465 inode->i_ctime = *now;
6466 if (flags & S_MTIME)
6467 inode->i_mtime = *now;
6468 if (flags & S_ATIME)
6469 inode->i_atime = *now;
6470 return dirty ? btrfs_dirty_inode(inode) : 0;
6471 }
6472
6473 /*
6474 * helper to find a free sequence number in a given directory. This current
6475 * code is very simple, later versions will do smarter things in the btree
6476 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6477 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6478 {
6479 int ret = 0;
6480
6481 if (dir->index_cnt == (u64)-1) {
6482 ret = btrfs_inode_delayed_dir_index_count(dir);
6483 if (ret) {
6484 ret = btrfs_set_inode_index_count(dir);
6485 if (ret)
6486 return ret;
6487 }
6488 }
6489
6490 *index = dir->index_cnt;
6491 dir->index_cnt++;
6492
6493 return ret;
6494 }
6495
btrfs_insert_inode_locked(struct inode * inode)6496 static int btrfs_insert_inode_locked(struct inode *inode)
6497 {
6498 struct btrfs_iget_args args;
6499
6500 args.ino = BTRFS_I(inode)->location.objectid;
6501 args.root = BTRFS_I(inode)->root;
6502
6503 return insert_inode_locked4(inode,
6504 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6505 btrfs_find_actor, &args);
6506 }
6507
6508 /*
6509 * Inherit flags from the parent inode.
6510 *
6511 * Currently only the compression flags and the cow flags are inherited.
6512 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6513 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6514 {
6515 unsigned int flags;
6516
6517 if (!dir)
6518 return;
6519
6520 flags = BTRFS_I(dir)->flags;
6521
6522 if (flags & BTRFS_INODE_NOCOMPRESS) {
6523 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6524 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6525 } else if (flags & BTRFS_INODE_COMPRESS) {
6526 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6527 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6528 }
6529
6530 if (flags & BTRFS_INODE_NODATACOW) {
6531 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6532 if (S_ISREG(inode->i_mode))
6533 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6534 }
6535
6536 btrfs_sync_inode_flags_to_i_flags(inode);
6537 }
6538
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct user_namespace * mnt_userns,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6539 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6540 struct btrfs_root *root,
6541 struct user_namespace *mnt_userns,
6542 struct inode *dir,
6543 const char *name, int name_len,
6544 u64 ref_objectid, u64 objectid,
6545 umode_t mode, u64 *index)
6546 {
6547 struct btrfs_fs_info *fs_info = root->fs_info;
6548 struct inode *inode;
6549 struct btrfs_inode_item *inode_item;
6550 struct btrfs_key *location;
6551 struct btrfs_path *path;
6552 struct btrfs_inode_ref *ref;
6553 struct btrfs_key key[2];
6554 u32 sizes[2];
6555 int nitems = name ? 2 : 1;
6556 unsigned long ptr;
6557 unsigned int nofs_flag;
6558 int ret;
6559
6560 path = btrfs_alloc_path();
6561 if (!path)
6562 return ERR_PTR(-ENOMEM);
6563
6564 nofs_flag = memalloc_nofs_save();
6565 inode = new_inode(fs_info->sb);
6566 memalloc_nofs_restore(nofs_flag);
6567 if (!inode) {
6568 btrfs_free_path(path);
6569 return ERR_PTR(-ENOMEM);
6570 }
6571
6572 /*
6573 * O_TMPFILE, set link count to 0, so that after this point,
6574 * we fill in an inode item with the correct link count.
6575 */
6576 if (!name)
6577 set_nlink(inode, 0);
6578
6579 /*
6580 * we have to initialize this early, so we can reclaim the inode
6581 * number if we fail afterwards in this function.
6582 */
6583 inode->i_ino = objectid;
6584
6585 if (dir && name) {
6586 trace_btrfs_inode_request(dir);
6587
6588 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6589 if (ret) {
6590 btrfs_free_path(path);
6591 iput(inode);
6592 return ERR_PTR(ret);
6593 }
6594 } else if (dir) {
6595 *index = 0;
6596 }
6597 /*
6598 * index_cnt is ignored for everything but a dir,
6599 * btrfs_set_inode_index_count has an explanation for the magic
6600 * number
6601 */
6602 BTRFS_I(inode)->index_cnt = 2;
6603 BTRFS_I(inode)->dir_index = *index;
6604 BTRFS_I(inode)->root = btrfs_grab_root(root);
6605 BTRFS_I(inode)->generation = trans->transid;
6606 inode->i_generation = BTRFS_I(inode)->generation;
6607
6608 /*
6609 * We could have gotten an inode number from somebody who was fsynced
6610 * and then removed in this same transaction, so let's just set full
6611 * sync since it will be a full sync anyway and this will blow away the
6612 * old info in the log.
6613 */
6614 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6615
6616 key[0].objectid = objectid;
6617 key[0].type = BTRFS_INODE_ITEM_KEY;
6618 key[0].offset = 0;
6619
6620 sizes[0] = sizeof(struct btrfs_inode_item);
6621
6622 if (name) {
6623 /*
6624 * Start new inodes with an inode_ref. This is slightly more
6625 * efficient for small numbers of hard links since they will
6626 * be packed into one item. Extended refs will kick in if we
6627 * add more hard links than can fit in the ref item.
6628 */
6629 key[1].objectid = objectid;
6630 key[1].type = BTRFS_INODE_REF_KEY;
6631 key[1].offset = ref_objectid;
6632
6633 sizes[1] = name_len + sizeof(*ref);
6634 }
6635
6636 location = &BTRFS_I(inode)->location;
6637 location->objectid = objectid;
6638 location->offset = 0;
6639 location->type = BTRFS_INODE_ITEM_KEY;
6640
6641 ret = btrfs_insert_inode_locked(inode);
6642 if (ret < 0) {
6643 iput(inode);
6644 goto fail;
6645 }
6646
6647 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6648 if (ret != 0)
6649 goto fail_unlock;
6650
6651 inode_init_owner(mnt_userns, inode, dir, mode);
6652 inode_set_bytes(inode, 0);
6653
6654 inode->i_mtime = current_time(inode);
6655 inode->i_atime = inode->i_mtime;
6656 inode->i_ctime = inode->i_mtime;
6657 BTRFS_I(inode)->i_otime = inode->i_mtime;
6658
6659 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6660 struct btrfs_inode_item);
6661 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6662 sizeof(*inode_item));
6663 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6664
6665 if (name) {
6666 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6667 struct btrfs_inode_ref);
6668 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6669 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6670 ptr = (unsigned long)(ref + 1);
6671 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6672 }
6673
6674 btrfs_mark_buffer_dirty(path->nodes[0]);
6675 btrfs_free_path(path);
6676
6677 btrfs_inherit_iflags(inode, dir);
6678
6679 if (S_ISREG(mode)) {
6680 if (btrfs_test_opt(fs_info, NODATASUM))
6681 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6682 if (btrfs_test_opt(fs_info, NODATACOW))
6683 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6684 BTRFS_INODE_NODATASUM;
6685 }
6686
6687 inode_tree_add(inode);
6688
6689 trace_btrfs_inode_new(inode);
6690 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6691
6692 btrfs_update_root_times(trans, root);
6693
6694 ret = btrfs_inode_inherit_props(trans, inode, dir);
6695 if (ret)
6696 btrfs_err(fs_info,
6697 "error inheriting props for ino %llu (root %llu): %d",
6698 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6699
6700 return inode;
6701
6702 fail_unlock:
6703 discard_new_inode(inode);
6704 fail:
6705 if (dir && name)
6706 BTRFS_I(dir)->index_cnt--;
6707 btrfs_free_path(path);
6708 return ERR_PTR(ret);
6709 }
6710
6711 /*
6712 * utility function to add 'inode' into 'parent_inode' with
6713 * a give name and a given sequence number.
6714 * if 'add_backref' is true, also insert a backref from the
6715 * inode to the parent directory.
6716 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6717 int btrfs_add_link(struct btrfs_trans_handle *trans,
6718 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6719 const char *name, int name_len, int add_backref, u64 index)
6720 {
6721 int ret = 0;
6722 struct btrfs_key key;
6723 struct btrfs_root *root = parent_inode->root;
6724 u64 ino = btrfs_ino(inode);
6725 u64 parent_ino = btrfs_ino(parent_inode);
6726
6727 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6728 memcpy(&key, &inode->root->root_key, sizeof(key));
6729 } else {
6730 key.objectid = ino;
6731 key.type = BTRFS_INODE_ITEM_KEY;
6732 key.offset = 0;
6733 }
6734
6735 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6736 ret = btrfs_add_root_ref(trans, key.objectid,
6737 root->root_key.objectid, parent_ino,
6738 index, name, name_len);
6739 } else if (add_backref) {
6740 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6741 parent_ino, index);
6742 }
6743
6744 /* Nothing to clean up yet */
6745 if (ret)
6746 return ret;
6747
6748 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6749 btrfs_inode_type(&inode->vfs_inode), index);
6750 if (ret == -EEXIST || ret == -EOVERFLOW)
6751 goto fail_dir_item;
6752 else if (ret) {
6753 btrfs_abort_transaction(trans, ret);
6754 return ret;
6755 }
6756
6757 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6758 name_len * 2);
6759 inode_inc_iversion(&parent_inode->vfs_inode);
6760 /*
6761 * If we are replaying a log tree, we do not want to update the mtime
6762 * and ctime of the parent directory with the current time, since the
6763 * log replay procedure is responsible for setting them to their correct
6764 * values (the ones it had when the fsync was done).
6765 */
6766 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6767 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6768
6769 parent_inode->vfs_inode.i_mtime = now;
6770 parent_inode->vfs_inode.i_ctime = now;
6771 }
6772 ret = btrfs_update_inode(trans, root, parent_inode);
6773 if (ret)
6774 btrfs_abort_transaction(trans, ret);
6775 return ret;
6776
6777 fail_dir_item:
6778 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6779 u64 local_index;
6780 int err;
6781 err = btrfs_del_root_ref(trans, key.objectid,
6782 root->root_key.objectid, parent_ino,
6783 &local_index, name, name_len);
6784 if (err)
6785 btrfs_abort_transaction(trans, err);
6786 } else if (add_backref) {
6787 u64 local_index;
6788 int err;
6789
6790 err = btrfs_del_inode_ref(trans, root, name, name_len,
6791 ino, parent_ino, &local_index);
6792 if (err)
6793 btrfs_abort_transaction(trans, err);
6794 }
6795
6796 /* Return the original error code */
6797 return ret;
6798 }
6799
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6800 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6801 struct btrfs_inode *dir, struct dentry *dentry,
6802 struct btrfs_inode *inode, int backref, u64 index)
6803 {
6804 int err = btrfs_add_link(trans, dir, inode,
6805 dentry->d_name.name, dentry->d_name.len,
6806 backref, index);
6807 if (err > 0)
6808 err = -EEXIST;
6809 return err;
6810 }
6811
btrfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6812 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6813 struct dentry *dentry, umode_t mode, dev_t rdev)
6814 {
6815 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6816 struct btrfs_trans_handle *trans;
6817 struct btrfs_root *root = BTRFS_I(dir)->root;
6818 struct inode *inode = NULL;
6819 int err;
6820 u64 objectid;
6821 u64 index = 0;
6822
6823 /*
6824 * 2 for inode item and ref
6825 * 2 for dir items
6826 * 1 for xattr if selinux is on
6827 */
6828 trans = btrfs_start_transaction(root, 5);
6829 if (IS_ERR(trans))
6830 return PTR_ERR(trans);
6831
6832 err = btrfs_get_free_objectid(root, &objectid);
6833 if (err)
6834 goto out_unlock;
6835
6836 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6837 dentry->d_name.name, dentry->d_name.len,
6838 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6839 if (IS_ERR(inode)) {
6840 err = PTR_ERR(inode);
6841 inode = NULL;
6842 goto out_unlock;
6843 }
6844
6845 /*
6846 * If the active LSM wants to access the inode during
6847 * d_instantiate it needs these. Smack checks to see
6848 * if the filesystem supports xattrs by looking at the
6849 * ops vector.
6850 */
6851 inode->i_op = &btrfs_special_inode_operations;
6852 init_special_inode(inode, inode->i_mode, rdev);
6853
6854 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6855 if (err)
6856 goto out_unlock;
6857
6858 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6859 0, index);
6860 if (err)
6861 goto out_unlock;
6862
6863 btrfs_update_inode(trans, root, BTRFS_I(inode));
6864 d_instantiate_new(dentry, inode);
6865
6866 out_unlock:
6867 btrfs_end_transaction(trans);
6868 btrfs_btree_balance_dirty(fs_info);
6869 if (err && inode) {
6870 inode_dec_link_count(inode);
6871 discard_new_inode(inode);
6872 }
6873 return err;
6874 }
6875
btrfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6876 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6877 struct dentry *dentry, umode_t mode, bool excl)
6878 {
6879 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6880 struct btrfs_trans_handle *trans;
6881 struct btrfs_root *root = BTRFS_I(dir)->root;
6882 struct inode *inode = NULL;
6883 int err;
6884 u64 objectid;
6885 u64 index = 0;
6886
6887 /*
6888 * 2 for inode item and ref
6889 * 2 for dir items
6890 * 1 for xattr if selinux is on
6891 */
6892 trans = btrfs_start_transaction(root, 5);
6893 if (IS_ERR(trans))
6894 return PTR_ERR(trans);
6895
6896 err = btrfs_get_free_objectid(root, &objectid);
6897 if (err)
6898 goto out_unlock;
6899
6900 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6901 dentry->d_name.name, dentry->d_name.len,
6902 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6903 if (IS_ERR(inode)) {
6904 err = PTR_ERR(inode);
6905 inode = NULL;
6906 goto out_unlock;
6907 }
6908 /*
6909 * If the active LSM wants to access the inode during
6910 * d_instantiate it needs these. Smack checks to see
6911 * if the filesystem supports xattrs by looking at the
6912 * ops vector.
6913 */
6914 inode->i_fop = &btrfs_file_operations;
6915 inode->i_op = &btrfs_file_inode_operations;
6916 inode->i_mapping->a_ops = &btrfs_aops;
6917
6918 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6919 if (err)
6920 goto out_unlock;
6921
6922 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6923 if (err)
6924 goto out_unlock;
6925
6926 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6927 0, index);
6928 if (err)
6929 goto out_unlock;
6930
6931 d_instantiate_new(dentry, inode);
6932
6933 out_unlock:
6934 btrfs_end_transaction(trans);
6935 if (err && inode) {
6936 inode_dec_link_count(inode);
6937 discard_new_inode(inode);
6938 }
6939 btrfs_btree_balance_dirty(fs_info);
6940 return err;
6941 }
6942
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6943 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6944 struct dentry *dentry)
6945 {
6946 struct btrfs_trans_handle *trans = NULL;
6947 struct btrfs_root *root = BTRFS_I(dir)->root;
6948 struct inode *inode = d_inode(old_dentry);
6949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6950 u64 index;
6951 int err;
6952 int drop_inode = 0;
6953
6954 /* do not allow sys_link's with other subvols of the same device */
6955 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6956 return -EXDEV;
6957
6958 if (inode->i_nlink >= BTRFS_LINK_MAX)
6959 return -EMLINK;
6960
6961 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6962 if (err)
6963 goto fail;
6964
6965 /*
6966 * 2 items for inode and inode ref
6967 * 2 items for dir items
6968 * 1 item for parent inode
6969 * 1 item for orphan item deletion if O_TMPFILE
6970 */
6971 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6972 if (IS_ERR(trans)) {
6973 err = PTR_ERR(trans);
6974 trans = NULL;
6975 goto fail;
6976 }
6977
6978 /* There are several dir indexes for this inode, clear the cache. */
6979 BTRFS_I(inode)->dir_index = 0ULL;
6980 inc_nlink(inode);
6981 inode_inc_iversion(inode);
6982 inode->i_ctime = current_time(inode);
6983 ihold(inode);
6984 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6985
6986 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6987 1, index);
6988
6989 if (err) {
6990 drop_inode = 1;
6991 } else {
6992 struct dentry *parent = dentry->d_parent;
6993
6994 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6995 if (err)
6996 goto fail;
6997 if (inode->i_nlink == 1) {
6998 /*
6999 * If new hard link count is 1, it's a file created
7000 * with open(2) O_TMPFILE flag.
7001 */
7002 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7003 if (err)
7004 goto fail;
7005 }
7006 d_instantiate(dentry, inode);
7007 btrfs_log_new_name(trans, old_dentry, NULL, parent);
7008 }
7009
7010 fail:
7011 if (trans)
7012 btrfs_end_transaction(trans);
7013 if (drop_inode) {
7014 inode_dec_link_count(inode);
7015 iput(inode);
7016 }
7017 btrfs_btree_balance_dirty(fs_info);
7018 return err;
7019 }
7020
btrfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)7021 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
7022 struct dentry *dentry, umode_t mode)
7023 {
7024 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
7025 struct inode *inode = NULL;
7026 struct btrfs_trans_handle *trans;
7027 struct btrfs_root *root = BTRFS_I(dir)->root;
7028 int err = 0;
7029 u64 objectid = 0;
7030 u64 index = 0;
7031
7032 /*
7033 * 2 items for inode and ref
7034 * 2 items for dir items
7035 * 1 for xattr if selinux is on
7036 */
7037 trans = btrfs_start_transaction(root, 5);
7038 if (IS_ERR(trans))
7039 return PTR_ERR(trans);
7040
7041 err = btrfs_get_free_objectid(root, &objectid);
7042 if (err)
7043 goto out_fail;
7044
7045 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
7046 dentry->d_name.name, dentry->d_name.len,
7047 btrfs_ino(BTRFS_I(dir)), objectid,
7048 S_IFDIR | mode, &index);
7049 if (IS_ERR(inode)) {
7050 err = PTR_ERR(inode);
7051 inode = NULL;
7052 goto out_fail;
7053 }
7054
7055 /* these must be set before we unlock the inode */
7056 inode->i_op = &btrfs_dir_inode_operations;
7057 inode->i_fop = &btrfs_dir_file_operations;
7058
7059 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7060 if (err)
7061 goto out_fail;
7062
7063 btrfs_i_size_write(BTRFS_I(inode), 0);
7064 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
7065 if (err)
7066 goto out_fail;
7067
7068 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
7069 dentry->d_name.name,
7070 dentry->d_name.len, 0, index);
7071 if (err)
7072 goto out_fail;
7073
7074 d_instantiate_new(dentry, inode);
7075
7076 out_fail:
7077 btrfs_end_transaction(trans);
7078 if (err && inode) {
7079 inode_dec_link_count(inode);
7080 discard_new_inode(inode);
7081 }
7082 btrfs_btree_balance_dirty(fs_info);
7083 return err;
7084 }
7085
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)7086 static noinline int uncompress_inline(struct btrfs_path *path,
7087 struct page *page,
7088 size_t pg_offset, u64 extent_offset,
7089 struct btrfs_file_extent_item *item)
7090 {
7091 int ret;
7092 struct extent_buffer *leaf = path->nodes[0];
7093 char *tmp;
7094 size_t max_size;
7095 unsigned long inline_size;
7096 unsigned long ptr;
7097 int compress_type;
7098
7099 WARN_ON(pg_offset != 0);
7100 compress_type = btrfs_file_extent_compression(leaf, item);
7101 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7102 inline_size = btrfs_file_extent_inline_item_len(leaf,
7103 btrfs_item_nr(path->slots[0]));
7104 tmp = kmalloc(inline_size, GFP_NOFS);
7105 if (!tmp)
7106 return -ENOMEM;
7107 ptr = btrfs_file_extent_inline_start(item);
7108
7109 read_extent_buffer(leaf, tmp, ptr, inline_size);
7110
7111 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
7112 ret = btrfs_decompress(compress_type, tmp, page,
7113 extent_offset, inline_size, max_size);
7114
7115 /*
7116 * decompression code contains a memset to fill in any space between the end
7117 * of the uncompressed data and the end of max_size in case the decompressed
7118 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7119 * the end of an inline extent and the beginning of the next block, so we
7120 * cover that region here.
7121 */
7122
7123 if (max_size + pg_offset < PAGE_SIZE)
7124 memzero_page(page, pg_offset + max_size,
7125 PAGE_SIZE - max_size - pg_offset);
7126 kfree(tmp);
7127 return ret;
7128 }
7129
7130 /**
7131 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
7132 * @inode: file to search in
7133 * @page: page to read extent data into if the extent is inline
7134 * @pg_offset: offset into @page to copy to
7135 * @start: file offset
7136 * @len: length of range starting at @start
7137 *
7138 * This returns the first &struct extent_map which overlaps with the given
7139 * range, reading it from the B-tree and caching it if necessary. Note that
7140 * there may be more extents which overlap the given range after the returned
7141 * extent_map.
7142 *
7143 * If @page is not NULL and the extent is inline, this also reads the extent
7144 * data directly into the page and marks the extent up to date in the io_tree.
7145 *
7146 * Return: ERR_PTR on error, non-NULL extent_map on success.
7147 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)7148 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7149 struct page *page, size_t pg_offset,
7150 u64 start, u64 len)
7151 {
7152 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7153 int ret = 0;
7154 u64 extent_start = 0;
7155 u64 extent_end = 0;
7156 u64 objectid = btrfs_ino(inode);
7157 int extent_type = -1;
7158 struct btrfs_path *path = NULL;
7159 struct btrfs_root *root = inode->root;
7160 struct btrfs_file_extent_item *item;
7161 struct extent_buffer *leaf;
7162 struct btrfs_key found_key;
7163 struct extent_map *em = NULL;
7164 struct extent_map_tree *em_tree = &inode->extent_tree;
7165 struct extent_io_tree *io_tree = &inode->io_tree;
7166
7167 read_lock(&em_tree->lock);
7168 em = lookup_extent_mapping(em_tree, start, len);
7169 read_unlock(&em_tree->lock);
7170
7171 if (em) {
7172 if (em->start > start || em->start + em->len <= start)
7173 free_extent_map(em);
7174 else if (em->block_start == EXTENT_MAP_INLINE && page)
7175 free_extent_map(em);
7176 else
7177 goto out;
7178 }
7179 em = alloc_extent_map();
7180 if (!em) {
7181 ret = -ENOMEM;
7182 goto out;
7183 }
7184 em->start = EXTENT_MAP_HOLE;
7185 em->orig_start = EXTENT_MAP_HOLE;
7186 em->len = (u64)-1;
7187 em->block_len = (u64)-1;
7188
7189 path = btrfs_alloc_path();
7190 if (!path) {
7191 ret = -ENOMEM;
7192 goto out;
7193 }
7194
7195 /* Chances are we'll be called again, so go ahead and do readahead */
7196 path->reada = READA_FORWARD;
7197
7198 /*
7199 * The same explanation in load_free_space_cache applies here as well,
7200 * we only read when we're loading the free space cache, and at that
7201 * point the commit_root has everything we need.
7202 */
7203 if (btrfs_is_free_space_inode(inode)) {
7204 path->search_commit_root = 1;
7205 path->skip_locking = 1;
7206 }
7207
7208 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7209 if (ret < 0) {
7210 goto out;
7211 } else if (ret > 0) {
7212 if (path->slots[0] == 0)
7213 goto not_found;
7214 path->slots[0]--;
7215 ret = 0;
7216 }
7217
7218 leaf = path->nodes[0];
7219 item = btrfs_item_ptr(leaf, path->slots[0],
7220 struct btrfs_file_extent_item);
7221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7222 if (found_key.objectid != objectid ||
7223 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7224 /*
7225 * If we backup past the first extent we want to move forward
7226 * and see if there is an extent in front of us, otherwise we'll
7227 * say there is a hole for our whole search range which can
7228 * cause problems.
7229 */
7230 extent_end = start;
7231 goto next;
7232 }
7233
7234 extent_type = btrfs_file_extent_type(leaf, item);
7235 extent_start = found_key.offset;
7236 extent_end = btrfs_file_extent_end(path);
7237 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7238 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7239 /* Only regular file could have regular/prealloc extent */
7240 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7241 ret = -EUCLEAN;
7242 btrfs_crit(fs_info,
7243 "regular/prealloc extent found for non-regular inode %llu",
7244 btrfs_ino(inode));
7245 goto out;
7246 }
7247 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7248 extent_start);
7249 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7250 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7251 path->slots[0],
7252 extent_start);
7253 }
7254 next:
7255 if (start >= extent_end) {
7256 path->slots[0]++;
7257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7258 ret = btrfs_next_leaf(root, path);
7259 if (ret < 0)
7260 goto out;
7261 else if (ret > 0)
7262 goto not_found;
7263
7264 leaf = path->nodes[0];
7265 }
7266 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7267 if (found_key.objectid != objectid ||
7268 found_key.type != BTRFS_EXTENT_DATA_KEY)
7269 goto not_found;
7270 if (start + len <= found_key.offset)
7271 goto not_found;
7272 if (start > found_key.offset)
7273 goto next;
7274
7275 /* New extent overlaps with existing one */
7276 em->start = start;
7277 em->orig_start = start;
7278 em->len = found_key.offset - start;
7279 em->block_start = EXTENT_MAP_HOLE;
7280 goto insert;
7281 }
7282
7283 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7284
7285 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7286 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7287 goto insert;
7288 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7289 unsigned long ptr;
7290 char *map;
7291 size_t size;
7292 size_t extent_offset;
7293 size_t copy_size;
7294
7295 if (!page)
7296 goto out;
7297
7298 size = btrfs_file_extent_ram_bytes(leaf, item);
7299 extent_offset = page_offset(page) + pg_offset - extent_start;
7300 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7301 size - extent_offset);
7302 em->start = extent_start + extent_offset;
7303 em->len = ALIGN(copy_size, fs_info->sectorsize);
7304 em->orig_block_len = em->len;
7305 em->orig_start = em->start;
7306 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7307
7308 if (!PageUptodate(page)) {
7309 if (btrfs_file_extent_compression(leaf, item) !=
7310 BTRFS_COMPRESS_NONE) {
7311 ret = uncompress_inline(path, page, pg_offset,
7312 extent_offset, item);
7313 if (ret)
7314 goto out;
7315 } else {
7316 map = kmap_local_page(page);
7317 read_extent_buffer(leaf, map + pg_offset, ptr,
7318 copy_size);
7319 if (pg_offset + copy_size < PAGE_SIZE) {
7320 memset(map + pg_offset + copy_size, 0,
7321 PAGE_SIZE - pg_offset -
7322 copy_size);
7323 }
7324 kunmap_local(map);
7325 }
7326 flush_dcache_page(page);
7327 }
7328 set_extent_uptodate(io_tree, em->start,
7329 extent_map_end(em) - 1, NULL, GFP_NOFS);
7330 goto insert;
7331 }
7332 not_found:
7333 em->start = start;
7334 em->orig_start = start;
7335 em->len = len;
7336 em->block_start = EXTENT_MAP_HOLE;
7337 insert:
7338 ret = 0;
7339 btrfs_release_path(path);
7340 if (em->start > start || extent_map_end(em) <= start) {
7341 btrfs_err(fs_info,
7342 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7343 em->start, em->len, start, len);
7344 ret = -EIO;
7345 goto out;
7346 }
7347
7348 write_lock(&em_tree->lock);
7349 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7350 write_unlock(&em_tree->lock);
7351 out:
7352 btrfs_free_path(path);
7353
7354 trace_btrfs_get_extent(root, inode, em);
7355
7356 if (ret) {
7357 free_extent_map(em);
7358 return ERR_PTR(ret);
7359 }
7360 return em;
7361 }
7362
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7363 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7364 u64 start, u64 len)
7365 {
7366 struct extent_map *em;
7367 struct extent_map *hole_em = NULL;
7368 u64 delalloc_start = start;
7369 u64 end;
7370 u64 delalloc_len;
7371 u64 delalloc_end;
7372 int err = 0;
7373
7374 em = btrfs_get_extent(inode, NULL, 0, start, len);
7375 if (IS_ERR(em))
7376 return em;
7377 /*
7378 * If our em maps to:
7379 * - a hole or
7380 * - a pre-alloc extent,
7381 * there might actually be delalloc bytes behind it.
7382 */
7383 if (em->block_start != EXTENT_MAP_HOLE &&
7384 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7385 return em;
7386 else
7387 hole_em = em;
7388
7389 /* check to see if we've wrapped (len == -1 or similar) */
7390 end = start + len;
7391 if (end < start)
7392 end = (u64)-1;
7393 else
7394 end -= 1;
7395
7396 em = NULL;
7397
7398 /* ok, we didn't find anything, lets look for delalloc */
7399 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7400 end, len, EXTENT_DELALLOC, 1);
7401 delalloc_end = delalloc_start + delalloc_len;
7402 if (delalloc_end < delalloc_start)
7403 delalloc_end = (u64)-1;
7404
7405 /*
7406 * We didn't find anything useful, return the original results from
7407 * get_extent()
7408 */
7409 if (delalloc_start > end || delalloc_end <= start) {
7410 em = hole_em;
7411 hole_em = NULL;
7412 goto out;
7413 }
7414
7415 /*
7416 * Adjust the delalloc_start to make sure it doesn't go backwards from
7417 * the start they passed in
7418 */
7419 delalloc_start = max(start, delalloc_start);
7420 delalloc_len = delalloc_end - delalloc_start;
7421
7422 if (delalloc_len > 0) {
7423 u64 hole_start;
7424 u64 hole_len;
7425 const u64 hole_end = extent_map_end(hole_em);
7426
7427 em = alloc_extent_map();
7428 if (!em) {
7429 err = -ENOMEM;
7430 goto out;
7431 }
7432
7433 ASSERT(hole_em);
7434 /*
7435 * When btrfs_get_extent can't find anything it returns one
7436 * huge hole
7437 *
7438 * Make sure what it found really fits our range, and adjust to
7439 * make sure it is based on the start from the caller
7440 */
7441 if (hole_end <= start || hole_em->start > end) {
7442 free_extent_map(hole_em);
7443 hole_em = NULL;
7444 } else {
7445 hole_start = max(hole_em->start, start);
7446 hole_len = hole_end - hole_start;
7447 }
7448
7449 if (hole_em && delalloc_start > hole_start) {
7450 /*
7451 * Our hole starts before our delalloc, so we have to
7452 * return just the parts of the hole that go until the
7453 * delalloc starts
7454 */
7455 em->len = min(hole_len, delalloc_start - hole_start);
7456 em->start = hole_start;
7457 em->orig_start = hole_start;
7458 /*
7459 * Don't adjust block start at all, it is fixed at
7460 * EXTENT_MAP_HOLE
7461 */
7462 em->block_start = hole_em->block_start;
7463 em->block_len = hole_len;
7464 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7465 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7466 } else {
7467 /*
7468 * Hole is out of passed range or it starts after
7469 * delalloc range
7470 */
7471 em->start = delalloc_start;
7472 em->len = delalloc_len;
7473 em->orig_start = delalloc_start;
7474 em->block_start = EXTENT_MAP_DELALLOC;
7475 em->block_len = delalloc_len;
7476 }
7477 } else {
7478 return hole_em;
7479 }
7480 out:
7481
7482 free_extent_map(hole_em);
7483 if (err) {
7484 free_extent_map(em);
7485 return ERR_PTR(err);
7486 }
7487 return em;
7488 }
7489
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7490 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7491 const u64 start,
7492 const u64 len,
7493 const u64 orig_start,
7494 const u64 block_start,
7495 const u64 block_len,
7496 const u64 orig_block_len,
7497 const u64 ram_bytes,
7498 const int type)
7499 {
7500 struct extent_map *em = NULL;
7501 int ret;
7502
7503 if (type != BTRFS_ORDERED_NOCOW) {
7504 em = create_io_em(inode, start, len, orig_start, block_start,
7505 block_len, orig_block_len, ram_bytes,
7506 BTRFS_COMPRESS_NONE, /* compress_type */
7507 type);
7508 if (IS_ERR(em))
7509 goto out;
7510 }
7511 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7512 block_len, type);
7513 if (ret) {
7514 if (em) {
7515 free_extent_map(em);
7516 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7517 }
7518 em = ERR_PTR(ret);
7519 }
7520 out:
7521
7522 return em;
7523 }
7524
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)7525 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7526 u64 start, u64 len)
7527 {
7528 struct btrfs_root *root = inode->root;
7529 struct btrfs_fs_info *fs_info = root->fs_info;
7530 struct extent_map *em;
7531 struct btrfs_key ins;
7532 u64 alloc_hint;
7533 int ret;
7534
7535 alloc_hint = get_extent_allocation_hint(inode, start, len);
7536 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7537 0, alloc_hint, &ins, 1, 1);
7538 if (ret)
7539 return ERR_PTR(ret);
7540
7541 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7542 ins.objectid, ins.offset, ins.offset,
7543 ins.offset, BTRFS_ORDERED_REGULAR);
7544 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7545 if (IS_ERR(em))
7546 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7547 1);
7548
7549 return em;
7550 }
7551
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7552 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7553 {
7554 struct btrfs_block_group *block_group;
7555 bool readonly = false;
7556
7557 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7558 if (!block_group || block_group->ro)
7559 readonly = true;
7560 if (block_group)
7561 btrfs_put_block_group(block_group);
7562 return readonly;
7563 }
7564
7565 /*
7566 * Check if we can do nocow write into the range [@offset, @offset + @len)
7567 *
7568 * @offset: File offset
7569 * @len: The length to write, will be updated to the nocow writeable
7570 * range
7571 * @orig_start: (optional) Return the original file offset of the file extent
7572 * @orig_len: (optional) Return the original on-disk length of the file extent
7573 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7574 * @strict: if true, omit optimizations that might force us into unnecessary
7575 * cow. e.g., don't trust generation number.
7576 *
7577 * Return:
7578 * >0 and update @len if we can do nocow write
7579 * 0 if we can't do nocow write
7580 * <0 if error happened
7581 *
7582 * NOTE: This only checks the file extents, caller is responsible to wait for
7583 * any ordered extents.
7584 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7585 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7586 u64 *orig_start, u64 *orig_block_len,
7587 u64 *ram_bytes, bool strict)
7588 {
7589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7590 struct btrfs_path *path;
7591 int ret;
7592 struct extent_buffer *leaf;
7593 struct btrfs_root *root = BTRFS_I(inode)->root;
7594 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7595 struct btrfs_file_extent_item *fi;
7596 struct btrfs_key key;
7597 u64 disk_bytenr;
7598 u64 backref_offset;
7599 u64 extent_end;
7600 u64 num_bytes;
7601 int slot;
7602 int found_type;
7603 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7604
7605 path = btrfs_alloc_path();
7606 if (!path)
7607 return -ENOMEM;
7608
7609 ret = btrfs_lookup_file_extent(NULL, root, path,
7610 btrfs_ino(BTRFS_I(inode)), offset, 0);
7611 if (ret < 0)
7612 goto out;
7613
7614 slot = path->slots[0];
7615 if (ret == 1) {
7616 if (slot == 0) {
7617 /* can't find the item, must cow */
7618 ret = 0;
7619 goto out;
7620 }
7621 slot--;
7622 }
7623 ret = 0;
7624 leaf = path->nodes[0];
7625 btrfs_item_key_to_cpu(leaf, &key, slot);
7626 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7627 key.type != BTRFS_EXTENT_DATA_KEY) {
7628 /* not our file or wrong item type, must cow */
7629 goto out;
7630 }
7631
7632 if (key.offset > offset) {
7633 /* Wrong offset, must cow */
7634 goto out;
7635 }
7636
7637 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7638 found_type = btrfs_file_extent_type(leaf, fi);
7639 if (found_type != BTRFS_FILE_EXTENT_REG &&
7640 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7641 /* not a regular extent, must cow */
7642 goto out;
7643 }
7644
7645 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7646 goto out;
7647
7648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7649 if (extent_end <= offset)
7650 goto out;
7651
7652 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7653 if (disk_bytenr == 0)
7654 goto out;
7655
7656 if (btrfs_file_extent_compression(leaf, fi) ||
7657 btrfs_file_extent_encryption(leaf, fi) ||
7658 btrfs_file_extent_other_encoding(leaf, fi))
7659 goto out;
7660
7661 /*
7662 * Do the same check as in btrfs_cross_ref_exist but without the
7663 * unnecessary search.
7664 */
7665 if (!strict &&
7666 (btrfs_file_extent_generation(leaf, fi) <=
7667 btrfs_root_last_snapshot(&root->root_item)))
7668 goto out;
7669
7670 backref_offset = btrfs_file_extent_offset(leaf, fi);
7671
7672 if (orig_start) {
7673 *orig_start = key.offset - backref_offset;
7674 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7675 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7676 }
7677
7678 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7679 goto out;
7680
7681 num_bytes = min(offset + *len, extent_end) - offset;
7682 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7683 u64 range_end;
7684
7685 range_end = round_up(offset + num_bytes,
7686 root->fs_info->sectorsize) - 1;
7687 ret = test_range_bit(io_tree, offset, range_end,
7688 EXTENT_DELALLOC, 0, NULL);
7689 if (ret) {
7690 ret = -EAGAIN;
7691 goto out;
7692 }
7693 }
7694
7695 btrfs_release_path(path);
7696
7697 /*
7698 * look for other files referencing this extent, if we
7699 * find any we must cow
7700 */
7701
7702 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7703 key.offset - backref_offset, disk_bytenr,
7704 strict);
7705 if (ret) {
7706 ret = 0;
7707 goto out;
7708 }
7709
7710 /*
7711 * adjust disk_bytenr and num_bytes to cover just the bytes
7712 * in this extent we are about to write. If there
7713 * are any csums in that range we have to cow in order
7714 * to keep the csums correct
7715 */
7716 disk_bytenr += backref_offset;
7717 disk_bytenr += offset - key.offset;
7718 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7719 goto out;
7720 /*
7721 * all of the above have passed, it is safe to overwrite this extent
7722 * without cow
7723 */
7724 *len = num_bytes;
7725 ret = 1;
7726 out:
7727 btrfs_free_path(path);
7728 return ret;
7729 }
7730
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7731 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7732 struct extent_state **cached_state, bool writing)
7733 {
7734 struct btrfs_ordered_extent *ordered;
7735 int ret = 0;
7736
7737 while (1) {
7738 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7739 cached_state);
7740 /*
7741 * We're concerned with the entire range that we're going to be
7742 * doing DIO to, so we need to make sure there's no ordered
7743 * extents in this range.
7744 */
7745 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7746 lockend - lockstart + 1);
7747
7748 /*
7749 * We need to make sure there are no buffered pages in this
7750 * range either, we could have raced between the invalidate in
7751 * generic_file_direct_write and locking the extent. The
7752 * invalidate needs to happen so that reads after a write do not
7753 * get stale data.
7754 */
7755 if (!ordered &&
7756 (!writing || !filemap_range_has_page(inode->i_mapping,
7757 lockstart, lockend)))
7758 break;
7759
7760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7761 cached_state);
7762
7763 if (ordered) {
7764 /*
7765 * If we are doing a DIO read and the ordered extent we
7766 * found is for a buffered write, we can not wait for it
7767 * to complete and retry, because if we do so we can
7768 * deadlock with concurrent buffered writes on page
7769 * locks. This happens only if our DIO read covers more
7770 * than one extent map, if at this point has already
7771 * created an ordered extent for a previous extent map
7772 * and locked its range in the inode's io tree, and a
7773 * concurrent write against that previous extent map's
7774 * range and this range started (we unlock the ranges
7775 * in the io tree only when the bios complete and
7776 * buffered writes always lock pages before attempting
7777 * to lock range in the io tree).
7778 */
7779 if (writing ||
7780 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7781 btrfs_start_ordered_extent(ordered, 1);
7782 else
7783 ret = -ENOTBLK;
7784 btrfs_put_ordered_extent(ordered);
7785 } else {
7786 /*
7787 * We could trigger writeback for this range (and wait
7788 * for it to complete) and then invalidate the pages for
7789 * this range (through invalidate_inode_pages2_range()),
7790 * but that can lead us to a deadlock with a concurrent
7791 * call to readahead (a buffered read or a defrag call
7792 * triggered a readahead) on a page lock due to an
7793 * ordered dio extent we created before but did not have
7794 * yet a corresponding bio submitted (whence it can not
7795 * complete), which makes readahead wait for that
7796 * ordered extent to complete while holding a lock on
7797 * that page.
7798 */
7799 ret = -ENOTBLK;
7800 }
7801
7802 if (ret)
7803 break;
7804
7805 cond_resched();
7806 }
7807
7808 return ret;
7809 }
7810
7811 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7812 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7813 u64 len, u64 orig_start, u64 block_start,
7814 u64 block_len, u64 orig_block_len,
7815 u64 ram_bytes, int compress_type,
7816 int type)
7817 {
7818 struct extent_map_tree *em_tree;
7819 struct extent_map *em;
7820 int ret;
7821
7822 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7823 type == BTRFS_ORDERED_COMPRESSED ||
7824 type == BTRFS_ORDERED_NOCOW ||
7825 type == BTRFS_ORDERED_REGULAR);
7826
7827 em_tree = &inode->extent_tree;
7828 em = alloc_extent_map();
7829 if (!em)
7830 return ERR_PTR(-ENOMEM);
7831
7832 em->start = start;
7833 em->orig_start = orig_start;
7834 em->len = len;
7835 em->block_len = block_len;
7836 em->block_start = block_start;
7837 em->orig_block_len = orig_block_len;
7838 em->ram_bytes = ram_bytes;
7839 em->generation = -1;
7840 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7841 if (type == BTRFS_ORDERED_PREALLOC) {
7842 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7843 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7844 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7845 em->compress_type = compress_type;
7846 }
7847
7848 do {
7849 btrfs_drop_extent_cache(inode, em->start,
7850 em->start + em->len - 1, 0);
7851 write_lock(&em_tree->lock);
7852 ret = add_extent_mapping(em_tree, em, 1);
7853 write_unlock(&em_tree->lock);
7854 /*
7855 * The caller has taken lock_extent(), who could race with us
7856 * to add em?
7857 */
7858 } while (ret == -EEXIST);
7859
7860 if (ret) {
7861 free_extent_map(em);
7862 return ERR_PTR(ret);
7863 }
7864
7865 /* em got 2 refs now, callers needs to do free_extent_map once. */
7866 return em;
7867 }
7868
7869
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7870 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7871 struct inode *inode,
7872 struct btrfs_dio_data *dio_data,
7873 u64 start, u64 len)
7874 {
7875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7876 struct extent_map *em = *map;
7877 int type;
7878 u64 block_start, orig_start, orig_block_len, ram_bytes;
7879 bool can_nocow = false;
7880 bool space_reserved = false;
7881 u64 prev_len;
7882 int ret = 0;
7883
7884 /*
7885 * We don't allocate a new extent in the following cases
7886 *
7887 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7888 * existing extent.
7889 * 2) The extent is marked as PREALLOC. We're good to go here and can
7890 * just use the extent.
7891 *
7892 */
7893 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7894 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7895 em->block_start != EXTENT_MAP_HOLE)) {
7896 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7897 type = BTRFS_ORDERED_PREALLOC;
7898 else
7899 type = BTRFS_ORDERED_NOCOW;
7900 len = min(len, em->len - (start - em->start));
7901 block_start = em->block_start + (start - em->start);
7902
7903 if (can_nocow_extent(inode, start, &len, &orig_start,
7904 &orig_block_len, &ram_bytes, false) == 1 &&
7905 btrfs_inc_nocow_writers(fs_info, block_start))
7906 can_nocow = true;
7907 }
7908
7909 prev_len = len;
7910 if (can_nocow) {
7911 struct extent_map *em2;
7912
7913 /* We can NOCOW, so only need to reserve metadata space. */
7914 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
7915 if (ret < 0) {
7916 /* Our caller expects us to free the input extent map. */
7917 free_extent_map(em);
7918 *map = NULL;
7919 btrfs_dec_nocow_writers(fs_info, block_start);
7920 goto out;
7921 }
7922 space_reserved = true;
7923
7924 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7925 orig_start, block_start,
7926 len, orig_block_len,
7927 ram_bytes, type);
7928 btrfs_dec_nocow_writers(fs_info, block_start);
7929 if (type == BTRFS_ORDERED_PREALLOC) {
7930 free_extent_map(em);
7931 *map = em = em2;
7932 }
7933
7934 if (IS_ERR(em2)) {
7935 ret = PTR_ERR(em2);
7936 goto out;
7937 }
7938 } else {
7939 /* Our caller expects us to free the input extent map. */
7940 free_extent_map(em);
7941 *map = NULL;
7942
7943 /* We have to COW, so need to reserve metadata and data space. */
7944 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7945 &dio_data->data_reserved,
7946 start, len);
7947 if (ret < 0)
7948 goto out;
7949 space_reserved = true;
7950
7951 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7952 if (IS_ERR(em)) {
7953 ret = PTR_ERR(em);
7954 goto out;
7955 }
7956 *map = em;
7957 len = min(len, em->len - (start - em->start));
7958 if (len < prev_len)
7959 btrfs_delalloc_release_space(BTRFS_I(inode),
7960 dio_data->data_reserved,
7961 start + len, prev_len - len,
7962 true);
7963 }
7964
7965 /*
7966 * We have created our ordered extent, so we can now release our reservation
7967 * for an outstanding extent.
7968 */
7969 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7970
7971 /*
7972 * Need to update the i_size under the extent lock so buffered
7973 * readers will get the updated i_size when we unlock.
7974 */
7975 if (start + len > i_size_read(inode))
7976 i_size_write(inode, start + len);
7977 out:
7978 if (ret && space_reserved) {
7979 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7980 if (can_nocow) {
7981 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7982 } else {
7983 btrfs_delalloc_release_space(BTRFS_I(inode),
7984 dio_data->data_reserved,
7985 start, len, true);
7986 extent_changeset_free(dio_data->data_reserved);
7987 dio_data->data_reserved = NULL;
7988 }
7989 }
7990 return ret;
7991 }
7992
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7993 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7994 loff_t length, unsigned int flags, struct iomap *iomap,
7995 struct iomap *srcmap)
7996 {
7997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7998 struct extent_map *em;
7999 struct extent_state *cached_state = NULL;
8000 struct btrfs_dio_data *dio_data = NULL;
8001 u64 lockstart, lockend;
8002 const bool write = !!(flags & IOMAP_WRITE);
8003 int ret = 0;
8004 u64 len = length;
8005 bool unlock_extents = false;
8006
8007 if (!write)
8008 len = min_t(u64, len, fs_info->sectorsize);
8009
8010 lockstart = start;
8011 lockend = start + len - 1;
8012
8013 /*
8014 * The generic stuff only does filemap_write_and_wait_range, which
8015 * isn't enough if we've written compressed pages to this area, so we
8016 * need to flush the dirty pages again to make absolutely sure that any
8017 * outstanding dirty pages are on disk.
8018 */
8019 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8020 &BTRFS_I(inode)->runtime_flags)) {
8021 ret = filemap_fdatawrite_range(inode->i_mapping, start,
8022 start + length - 1);
8023 if (ret)
8024 return ret;
8025 }
8026
8027 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
8028 if (!dio_data)
8029 return -ENOMEM;
8030
8031 iomap->private = dio_data;
8032
8033
8034 /*
8035 * If this errors out it's because we couldn't invalidate pagecache for
8036 * this range and we need to fallback to buffered.
8037 */
8038 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
8039 ret = -ENOTBLK;
8040 goto err;
8041 }
8042
8043 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
8044 if (IS_ERR(em)) {
8045 ret = PTR_ERR(em);
8046 goto unlock_err;
8047 }
8048
8049 /*
8050 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
8051 * io. INLINE is special, and we could probably kludge it in here, but
8052 * it's still buffered so for safety lets just fall back to the generic
8053 * buffered path.
8054 *
8055 * For COMPRESSED we _have_ to read the entire extent in so we can
8056 * decompress it, so there will be buffering required no matter what we
8057 * do, so go ahead and fallback to buffered.
8058 *
8059 * We return -ENOTBLK because that's what makes DIO go ahead and go back
8060 * to buffered IO. Don't blame me, this is the price we pay for using
8061 * the generic code.
8062 */
8063 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
8064 em->block_start == EXTENT_MAP_INLINE) {
8065 free_extent_map(em);
8066 /*
8067 * If we are in a NOWAIT context, return -EAGAIN in order to
8068 * fallback to buffered IO. This is not only because we can
8069 * block with buffered IO (no support for NOWAIT semantics at
8070 * the moment) but also to avoid returning short reads to user
8071 * space - this happens if we were able to read some data from
8072 * previous non-compressed extents and then when we fallback to
8073 * buffered IO, at btrfs_file_read_iter() by calling
8074 * filemap_read(), we fail to fault in pages for the read buffer,
8075 * in which case filemap_read() returns a short read (the number
8076 * of bytes previously read is > 0, so it does not return -EFAULT).
8077 */
8078 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
8079 goto unlock_err;
8080 }
8081
8082 len = min(len, em->len - (start - em->start));
8083
8084 /*
8085 * If we have a NOWAIT request and the range contains multiple extents
8086 * (or a mix of extents and holes), then we return -EAGAIN to make the
8087 * caller fallback to a context where it can do a blocking (without
8088 * NOWAIT) request. This way we avoid doing partial IO and returning
8089 * success to the caller, which is not optimal for writes and for reads
8090 * it can result in unexpected behaviour for an application.
8091 *
8092 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
8093 * iomap_dio_rw(), we can end up returning less data then what the caller
8094 * asked for, resulting in an unexpected, and incorrect, short read.
8095 * That is, the caller asked to read N bytes and we return less than that,
8096 * which is wrong unless we are crossing EOF. This happens if we get a
8097 * page fault error when trying to fault in pages for the buffer that is
8098 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
8099 * have previously submitted bios for other extents in the range, in
8100 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
8101 * those bios have completed by the time we get the page fault error,
8102 * which we return back to our caller - we should only return EIOCBQUEUED
8103 * after we have submitted bios for all the extents in the range.
8104 */
8105 if ((flags & IOMAP_NOWAIT) && len < length) {
8106 free_extent_map(em);
8107 ret = -EAGAIN;
8108 goto unlock_err;
8109 }
8110
8111 if (write) {
8112 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
8113 start, len);
8114 if (ret < 0)
8115 goto unlock_err;
8116 unlock_extents = true;
8117 /* Recalc len in case the new em is smaller than requested */
8118 len = min(len, em->len - (start - em->start));
8119 } else {
8120 /*
8121 * We need to unlock only the end area that we aren't using.
8122 * The rest is going to be unlocked by the endio routine.
8123 */
8124 lockstart = start + len;
8125 if (lockstart < lockend)
8126 unlock_extents = true;
8127 }
8128
8129 if (unlock_extents)
8130 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
8131 lockstart, lockend, &cached_state);
8132 else
8133 free_extent_state(cached_state);
8134
8135 /*
8136 * Translate extent map information to iomap.
8137 * We trim the extents (and move the addr) even though iomap code does
8138 * that, since we have locked only the parts we are performing I/O in.
8139 */
8140 if ((em->block_start == EXTENT_MAP_HOLE) ||
8141 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
8142 iomap->addr = IOMAP_NULL_ADDR;
8143 iomap->type = IOMAP_HOLE;
8144 } else {
8145 iomap->addr = em->block_start + (start - em->start);
8146 iomap->type = IOMAP_MAPPED;
8147 }
8148 iomap->offset = start;
8149 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
8150 iomap->length = len;
8151
8152 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
8153 iomap->flags |= IOMAP_F_ZONE_APPEND;
8154
8155 free_extent_map(em);
8156
8157 return 0;
8158
8159 unlock_err:
8160 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8161 &cached_state);
8162 err:
8163 kfree(dio_data);
8164
8165 return ret;
8166 }
8167
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)8168 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
8169 ssize_t written, unsigned int flags, struct iomap *iomap)
8170 {
8171 int ret = 0;
8172 struct btrfs_dio_data *dio_data = iomap->private;
8173 size_t submitted = dio_data->submitted;
8174 const bool write = !!(flags & IOMAP_WRITE);
8175
8176 if (!write && (iomap->type == IOMAP_HOLE)) {
8177 /* If reading from a hole, unlock and return */
8178 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
8179 goto out;
8180 }
8181
8182 if (submitted < length) {
8183 pos += submitted;
8184 length -= submitted;
8185 if (write)
8186 __endio_write_update_ordered(BTRFS_I(inode), pos,
8187 length, false);
8188 else
8189 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
8190 pos + length - 1);
8191 ret = -ENOTBLK;
8192 }
8193
8194 if (write)
8195 extent_changeset_free(dio_data->data_reserved);
8196 out:
8197 kfree(dio_data);
8198 iomap->private = NULL;
8199
8200 return ret;
8201 }
8202
btrfs_dio_private_put(struct btrfs_dio_private * dip)8203 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8204 {
8205 /*
8206 * This implies a barrier so that stores to dio_bio->bi_status before
8207 * this and loads of dio_bio->bi_status after this are fully ordered.
8208 */
8209 if (!refcount_dec_and_test(&dip->refs))
8210 return;
8211
8212 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
8213 __endio_write_update_ordered(BTRFS_I(dip->inode),
8214 dip->logical_offset,
8215 dip->bytes,
8216 !dip->dio_bio->bi_status);
8217 } else {
8218 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
8219 dip->logical_offset,
8220 dip->logical_offset + dip->bytes - 1);
8221 }
8222
8223 bio_endio(dip->dio_bio);
8224 kfree(dip);
8225 }
8226
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)8227 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
8228 int mirror_num,
8229 unsigned long bio_flags)
8230 {
8231 struct btrfs_dio_private *dip = bio->bi_private;
8232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8233 blk_status_t ret;
8234
8235 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8236
8237 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8238 if (ret)
8239 return ret;
8240
8241 refcount_inc(&dip->refs);
8242 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8243 if (ret)
8244 refcount_dec(&dip->refs);
8245 return ret;
8246 }
8247
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)8248 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
8249 struct btrfs_io_bio *io_bio,
8250 const bool uptodate)
8251 {
8252 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8253 const u32 sectorsize = fs_info->sectorsize;
8254 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8255 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8256 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8257 struct bio_vec bvec;
8258 struct bvec_iter iter;
8259 u64 start = io_bio->logical;
8260 u32 bio_offset = 0;
8261 blk_status_t err = BLK_STS_OK;
8262
8263 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
8264 unsigned int i, nr_sectors, pgoff;
8265
8266 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8267 pgoff = bvec.bv_offset;
8268 for (i = 0; i < nr_sectors; i++) {
8269 ASSERT(pgoff < PAGE_SIZE);
8270 if (uptodate &&
8271 (!csum || !check_data_csum(inode, io_bio,
8272 bio_offset, bvec.bv_page,
8273 pgoff, start))) {
8274 clean_io_failure(fs_info, failure_tree, io_tree,
8275 start, bvec.bv_page,
8276 btrfs_ino(BTRFS_I(inode)),
8277 pgoff);
8278 } else {
8279 int ret;
8280
8281 ASSERT((start - io_bio->logical) < UINT_MAX);
8282 ret = btrfs_repair_one_sector(inode,
8283 &io_bio->bio,
8284 start - io_bio->logical,
8285 bvec.bv_page, pgoff,
8286 start, io_bio->mirror_num,
8287 submit_dio_repair_bio);
8288 if (ret)
8289 err = errno_to_blk_status(ret);
8290 }
8291 start += sectorsize;
8292 ASSERT(bio_offset + sectorsize > bio_offset);
8293 bio_offset += sectorsize;
8294 pgoff += sectorsize;
8295 }
8296 }
8297 return err;
8298 }
8299
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8300 static void __endio_write_update_ordered(struct btrfs_inode *inode,
8301 const u64 offset, const u64 bytes,
8302 const bool uptodate)
8303 {
8304 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8305 finish_ordered_fn, uptodate);
8306 }
8307
btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,u64 dio_file_offset)8308 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8309 struct bio *bio,
8310 u64 dio_file_offset)
8311 {
8312 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8313 }
8314
btrfs_end_dio_bio(struct bio * bio)8315 static void btrfs_end_dio_bio(struct bio *bio)
8316 {
8317 struct btrfs_dio_private *dip = bio->bi_private;
8318 blk_status_t err = bio->bi_status;
8319
8320 if (err)
8321 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8322 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8323 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8324 bio->bi_opf, bio->bi_iter.bi_sector,
8325 bio->bi_iter.bi_size, err);
8326
8327 if (bio_op(bio) == REQ_OP_READ) {
8328 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8329 !err);
8330 }
8331
8332 if (err)
8333 dip->dio_bio->bi_status = err;
8334
8335 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8336
8337 bio_put(bio);
8338 btrfs_dio_private_put(dip);
8339 }
8340
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8341 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8342 struct inode *inode, u64 file_offset, int async_submit)
8343 {
8344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8345 struct btrfs_dio_private *dip = bio->bi_private;
8346 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8347 blk_status_t ret;
8348
8349 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8350 if (async_submit)
8351 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8352
8353 if (!write) {
8354 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8355 if (ret)
8356 goto err;
8357 }
8358
8359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8360 goto map;
8361
8362 if (write && async_submit) {
8363 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8364 btrfs_submit_bio_start_direct_io);
8365 goto err;
8366 } else if (write) {
8367 /*
8368 * If we aren't doing async submit, calculate the csum of the
8369 * bio now.
8370 */
8371 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8372 if (ret)
8373 goto err;
8374 } else {
8375 u64 csum_offset;
8376
8377 csum_offset = file_offset - dip->logical_offset;
8378 csum_offset >>= fs_info->sectorsize_bits;
8379 csum_offset *= fs_info->csum_size;
8380 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8381 }
8382 map:
8383 ret = btrfs_map_bio(fs_info, bio, 0);
8384 err:
8385 return ret;
8386 }
8387
8388 /*
8389 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8390 * or ordered extents whether or not we submit any bios.
8391 */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8392 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8393 struct inode *inode,
8394 loff_t file_offset)
8395 {
8396 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8397 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8398 size_t dip_size;
8399 struct btrfs_dio_private *dip;
8400
8401 dip_size = sizeof(*dip);
8402 if (!write && csum) {
8403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8404 size_t nblocks;
8405
8406 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8407 dip_size += fs_info->csum_size * nblocks;
8408 }
8409
8410 dip = kzalloc(dip_size, GFP_NOFS);
8411 if (!dip)
8412 return NULL;
8413
8414 dip->inode = inode;
8415 dip->logical_offset = file_offset;
8416 dip->bytes = dio_bio->bi_iter.bi_size;
8417 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8418 dip->dio_bio = dio_bio;
8419 refcount_set(&dip->refs, 1);
8420 return dip;
8421 }
8422
btrfs_submit_direct(const struct iomap_iter * iter,struct bio * dio_bio,loff_t file_offset)8423 static blk_qc_t btrfs_submit_direct(const struct iomap_iter *iter,
8424 struct bio *dio_bio, loff_t file_offset)
8425 {
8426 struct inode *inode = iter->inode;
8427 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8429 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8430 BTRFS_BLOCK_GROUP_RAID56_MASK);
8431 struct btrfs_dio_private *dip;
8432 struct bio *bio;
8433 u64 start_sector;
8434 int async_submit = 0;
8435 u64 submit_len;
8436 u64 clone_offset = 0;
8437 u64 clone_len;
8438 u64 logical;
8439 int ret;
8440 blk_status_t status;
8441 struct btrfs_io_geometry geom;
8442 struct btrfs_dio_data *dio_data = iter->iomap.private;
8443 struct extent_map *em = NULL;
8444
8445 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8446 if (!dip) {
8447 if (!write) {
8448 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8449 file_offset + dio_bio->bi_iter.bi_size - 1);
8450 }
8451 dio_bio->bi_status = BLK_STS_RESOURCE;
8452 bio_endio(dio_bio);
8453 return BLK_QC_T_NONE;
8454 }
8455
8456 if (!write) {
8457 /*
8458 * Load the csums up front to reduce csum tree searches and
8459 * contention when submitting bios.
8460 *
8461 * If we have csums disabled this will do nothing.
8462 */
8463 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8464 if (status != BLK_STS_OK)
8465 goto out_err;
8466 }
8467
8468 start_sector = dio_bio->bi_iter.bi_sector;
8469 submit_len = dio_bio->bi_iter.bi_size;
8470
8471 do {
8472 logical = start_sector << 9;
8473 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8474 if (IS_ERR(em)) {
8475 status = errno_to_blk_status(PTR_ERR(em));
8476 em = NULL;
8477 goto out_err_em;
8478 }
8479 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8480 logical, &geom);
8481 if (ret) {
8482 status = errno_to_blk_status(ret);
8483 goto out_err_em;
8484 }
8485
8486 clone_len = min(submit_len, geom.len);
8487 ASSERT(clone_len <= UINT_MAX);
8488
8489 /*
8490 * This will never fail as it's passing GPF_NOFS and
8491 * the allocation is backed by btrfs_bioset.
8492 */
8493 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8494 bio->bi_private = dip;
8495 bio->bi_end_io = btrfs_end_dio_bio;
8496 btrfs_io_bio(bio)->logical = file_offset;
8497
8498 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8499 status = extract_ordered_extent(BTRFS_I(inode), bio,
8500 file_offset);
8501 if (status) {
8502 bio_put(bio);
8503 goto out_err;
8504 }
8505 }
8506
8507 ASSERT(submit_len >= clone_len);
8508 submit_len -= clone_len;
8509
8510 /*
8511 * Increase the count before we submit the bio so we know
8512 * the end IO handler won't happen before we increase the
8513 * count. Otherwise, the dip might get freed before we're
8514 * done setting it up.
8515 *
8516 * We transfer the initial reference to the last bio, so we
8517 * don't need to increment the reference count for the last one.
8518 */
8519 if (submit_len > 0) {
8520 refcount_inc(&dip->refs);
8521 /*
8522 * If we are submitting more than one bio, submit them
8523 * all asynchronously. The exception is RAID 5 or 6, as
8524 * asynchronous checksums make it difficult to collect
8525 * full stripe writes.
8526 */
8527 if (!raid56)
8528 async_submit = 1;
8529 }
8530
8531 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8532 async_submit);
8533 if (status) {
8534 bio_put(bio);
8535 if (submit_len > 0)
8536 refcount_dec(&dip->refs);
8537 goto out_err_em;
8538 }
8539
8540 dio_data->submitted += clone_len;
8541 clone_offset += clone_len;
8542 start_sector += clone_len >> 9;
8543 file_offset += clone_len;
8544
8545 free_extent_map(em);
8546 } while (submit_len > 0);
8547 return BLK_QC_T_NONE;
8548
8549 out_err_em:
8550 free_extent_map(em);
8551 out_err:
8552 dip->dio_bio->bi_status = status;
8553 btrfs_dio_private_put(dip);
8554
8555 return BLK_QC_T_NONE;
8556 }
8557
8558 const struct iomap_ops btrfs_dio_iomap_ops = {
8559 .iomap_begin = btrfs_dio_iomap_begin,
8560 .iomap_end = btrfs_dio_iomap_end,
8561 };
8562
8563 const struct iomap_dio_ops btrfs_dio_ops = {
8564 .submit_io = btrfs_submit_direct,
8565 };
8566
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8567 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8568 u64 start, u64 len)
8569 {
8570 int ret;
8571
8572 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8573 if (ret)
8574 return ret;
8575
8576 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8577 }
8578
btrfs_readpage(struct file * file,struct page * page)8579 int btrfs_readpage(struct file *file, struct page *page)
8580 {
8581 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8582 u64 start = page_offset(page);
8583 u64 end = start + PAGE_SIZE - 1;
8584 struct btrfs_bio_ctrl bio_ctrl = { 0 };
8585 int ret;
8586
8587 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8588
8589 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8590 if (bio_ctrl.bio)
8591 ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8592 return ret;
8593 }
8594
btrfs_writepage(struct page * page,struct writeback_control * wbc)8595 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8596 {
8597 struct inode *inode = page->mapping->host;
8598 int ret;
8599
8600 if (current->flags & PF_MEMALLOC) {
8601 redirty_page_for_writepage(wbc, page);
8602 unlock_page(page);
8603 return 0;
8604 }
8605
8606 /*
8607 * If we are under memory pressure we will call this directly from the
8608 * VM, we need to make sure we have the inode referenced for the ordered
8609 * extent. If not just return like we didn't do anything.
8610 */
8611 if (!igrab(inode)) {
8612 redirty_page_for_writepage(wbc, page);
8613 return AOP_WRITEPAGE_ACTIVATE;
8614 }
8615 ret = extent_write_full_page(page, wbc);
8616 btrfs_add_delayed_iput(inode);
8617 return ret;
8618 }
8619
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8620 static int btrfs_writepages(struct address_space *mapping,
8621 struct writeback_control *wbc)
8622 {
8623 return extent_writepages(mapping, wbc);
8624 }
8625
btrfs_readahead(struct readahead_control * rac)8626 static void btrfs_readahead(struct readahead_control *rac)
8627 {
8628 extent_readahead(rac);
8629 }
8630
8631 /*
8632 * For releasepage() and invalidatepage() we have a race window where
8633 * end_page_writeback() is called but the subpage spinlock is not yet released.
8634 * If we continue to release/invalidate the page, we could cause use-after-free
8635 * for subpage spinlock. So this function is to spin and wait for subpage
8636 * spinlock.
8637 */
wait_subpage_spinlock(struct page * page)8638 static void wait_subpage_spinlock(struct page *page)
8639 {
8640 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8641 struct btrfs_subpage *subpage;
8642
8643 if (fs_info->sectorsize == PAGE_SIZE)
8644 return;
8645
8646 ASSERT(PagePrivate(page) && page->private);
8647 subpage = (struct btrfs_subpage *)page->private;
8648
8649 /*
8650 * This may look insane as we just acquire the spinlock and release it,
8651 * without doing anything. But we just want to make sure no one is
8652 * still holding the subpage spinlock.
8653 * And since the page is not dirty nor writeback, and we have page
8654 * locked, the only possible way to hold a spinlock is from the endio
8655 * function to clear page writeback.
8656 *
8657 * Here we just acquire the spinlock so that all existing callers
8658 * should exit and we're safe to release/invalidate the page.
8659 */
8660 spin_lock_irq(&subpage->lock);
8661 spin_unlock_irq(&subpage->lock);
8662 }
8663
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8664 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8665 {
8666 int ret = try_release_extent_mapping(page, gfp_flags);
8667
8668 if (ret == 1) {
8669 wait_subpage_spinlock(page);
8670 clear_page_extent_mapped(page);
8671 }
8672 return ret;
8673 }
8674
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8675 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8676 {
8677 if (PageWriteback(page) || PageDirty(page))
8678 return 0;
8679 return __btrfs_releasepage(page, gfp_flags);
8680 }
8681
8682 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8683 static int btrfs_migratepage(struct address_space *mapping,
8684 struct page *newpage, struct page *page,
8685 enum migrate_mode mode)
8686 {
8687 int ret;
8688
8689 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8690 if (ret != MIGRATEPAGE_SUCCESS)
8691 return ret;
8692
8693 if (page_has_private(page))
8694 attach_page_private(newpage, detach_page_private(page));
8695
8696 if (PageOrdered(page)) {
8697 ClearPageOrdered(page);
8698 SetPageOrdered(newpage);
8699 }
8700
8701 if (mode != MIGRATE_SYNC_NO_COPY)
8702 migrate_page_copy(newpage, page);
8703 else
8704 migrate_page_states(newpage, page);
8705 return MIGRATEPAGE_SUCCESS;
8706 }
8707 #endif
8708
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8709 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8710 unsigned int length)
8711 {
8712 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8713 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8714 struct extent_io_tree *tree = &inode->io_tree;
8715 struct extent_state *cached_state = NULL;
8716 u64 page_start = page_offset(page);
8717 u64 page_end = page_start + PAGE_SIZE - 1;
8718 u64 cur;
8719 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8720
8721 /*
8722 * We have page locked so no new ordered extent can be created on this
8723 * page, nor bio can be submitted for this page.
8724 *
8725 * But already submitted bio can still be finished on this page.
8726 * Furthermore, endio function won't skip page which has Ordered
8727 * (Private2) already cleared, so it's possible for endio and
8728 * invalidatepage to do the same ordered extent accounting twice
8729 * on one page.
8730 *
8731 * So here we wait for any submitted bios to finish, so that we won't
8732 * do double ordered extent accounting on the same page.
8733 */
8734 wait_on_page_writeback(page);
8735 wait_subpage_spinlock(page);
8736
8737 /*
8738 * For subpage case, we have call sites like
8739 * btrfs_punch_hole_lock_range() which passes range not aligned to
8740 * sectorsize.
8741 * If the range doesn't cover the full page, we don't need to and
8742 * shouldn't clear page extent mapped, as page->private can still
8743 * record subpage dirty bits for other part of the range.
8744 *
8745 * For cases that can invalidate the full even the range doesn't
8746 * cover the full page, like invalidating the last page, we're
8747 * still safe to wait for ordered extent to finish.
8748 */
8749 if (!(offset == 0 && length == PAGE_SIZE)) {
8750 btrfs_releasepage(page, GFP_NOFS);
8751 return;
8752 }
8753
8754 if (!inode_evicting)
8755 lock_extent_bits(tree, page_start, page_end, &cached_state);
8756
8757 cur = page_start;
8758 while (cur < page_end) {
8759 struct btrfs_ordered_extent *ordered;
8760 bool delete_states;
8761 u64 range_end;
8762 u32 range_len;
8763
8764 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8765 page_end + 1 - cur);
8766 if (!ordered) {
8767 range_end = page_end;
8768 /*
8769 * No ordered extent covering this range, we are safe
8770 * to delete all extent states in the range.
8771 */
8772 delete_states = true;
8773 goto next;
8774 }
8775 if (ordered->file_offset > cur) {
8776 /*
8777 * There is a range between [cur, oe->file_offset) not
8778 * covered by any ordered extent.
8779 * We are safe to delete all extent states, and handle
8780 * the ordered extent in the next iteration.
8781 */
8782 range_end = ordered->file_offset - 1;
8783 delete_states = true;
8784 goto next;
8785 }
8786
8787 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8788 page_end);
8789 ASSERT(range_end + 1 - cur < U32_MAX);
8790 range_len = range_end + 1 - cur;
8791 if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8792 /*
8793 * If Ordered (Private2) is cleared, it means endio has
8794 * already been executed for the range.
8795 * We can't delete the extent states as
8796 * btrfs_finish_ordered_io() may still use some of them.
8797 */
8798 delete_states = false;
8799 goto next;
8800 }
8801 btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8802
8803 /*
8804 * IO on this page will never be started, so we need to account
8805 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8806 * here, must leave that up for the ordered extent completion.
8807 *
8808 * This will also unlock the range for incoming
8809 * btrfs_finish_ordered_io().
8810 */
8811 if (!inode_evicting)
8812 clear_extent_bit(tree, cur, range_end,
8813 EXTENT_DELALLOC |
8814 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8815 EXTENT_DEFRAG, 1, 0, &cached_state);
8816
8817 spin_lock_irq(&inode->ordered_tree.lock);
8818 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8819 ordered->truncated_len = min(ordered->truncated_len,
8820 cur - ordered->file_offset);
8821 spin_unlock_irq(&inode->ordered_tree.lock);
8822
8823 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8824 cur, range_end + 1 - cur)) {
8825 btrfs_finish_ordered_io(ordered);
8826 /*
8827 * The ordered extent has finished, now we're again
8828 * safe to delete all extent states of the range.
8829 */
8830 delete_states = true;
8831 } else {
8832 /*
8833 * btrfs_finish_ordered_io() will get executed by endio
8834 * of other pages, thus we can't delete extent states
8835 * anymore
8836 */
8837 delete_states = false;
8838 }
8839 next:
8840 if (ordered)
8841 btrfs_put_ordered_extent(ordered);
8842 /*
8843 * Qgroup reserved space handler
8844 * Sector(s) here will be either:
8845 *
8846 * 1) Already written to disk or bio already finished
8847 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8848 * Qgroup will be handled by its qgroup_record then.
8849 * btrfs_qgroup_free_data() call will do nothing here.
8850 *
8851 * 2) Not written to disk yet
8852 * Then btrfs_qgroup_free_data() call will clear the
8853 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8854 * reserved data space.
8855 * Since the IO will never happen for this page.
8856 */
8857 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8858 if (!inode_evicting) {
8859 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8860 EXTENT_DELALLOC | EXTENT_UPTODATE |
8861 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8862 delete_states, &cached_state);
8863 }
8864 cur = range_end + 1;
8865 }
8866 /*
8867 * We have iterated through all ordered extents of the page, the page
8868 * should not have Ordered (Private2) anymore, or the above iteration
8869 * did something wrong.
8870 */
8871 ASSERT(!PageOrdered(page));
8872 if (!inode_evicting)
8873 __btrfs_releasepage(page, GFP_NOFS);
8874 ClearPageChecked(page);
8875 clear_page_extent_mapped(page);
8876 }
8877
8878 /*
8879 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8880 * called from a page fault handler when a page is first dirtied. Hence we must
8881 * be careful to check for EOF conditions here. We set the page up correctly
8882 * for a written page which means we get ENOSPC checking when writing into
8883 * holes and correct delalloc and unwritten extent mapping on filesystems that
8884 * support these features.
8885 *
8886 * We are not allowed to take the i_mutex here so we have to play games to
8887 * protect against truncate races as the page could now be beyond EOF. Because
8888 * truncate_setsize() writes the inode size before removing pages, once we have
8889 * the page lock we can determine safely if the page is beyond EOF. If it is not
8890 * beyond EOF, then the page is guaranteed safe against truncation until we
8891 * unlock the page.
8892 */
btrfs_page_mkwrite(struct vm_fault * vmf)8893 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8894 {
8895 struct page *page = vmf->page;
8896 struct inode *inode = file_inode(vmf->vma->vm_file);
8897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8899 struct btrfs_ordered_extent *ordered;
8900 struct extent_state *cached_state = NULL;
8901 struct extent_changeset *data_reserved = NULL;
8902 unsigned long zero_start;
8903 loff_t size;
8904 vm_fault_t ret;
8905 int ret2;
8906 int reserved = 0;
8907 u64 reserved_space;
8908 u64 page_start;
8909 u64 page_end;
8910 u64 end;
8911
8912 reserved_space = PAGE_SIZE;
8913
8914 sb_start_pagefault(inode->i_sb);
8915 page_start = page_offset(page);
8916 page_end = page_start + PAGE_SIZE - 1;
8917 end = page_end;
8918
8919 /*
8920 * Reserving delalloc space after obtaining the page lock can lead to
8921 * deadlock. For example, if a dirty page is locked by this function
8922 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8923 * dirty page write out, then the btrfs_writepage() function could
8924 * end up waiting indefinitely to get a lock on the page currently
8925 * being processed by btrfs_page_mkwrite() function.
8926 */
8927 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8928 page_start, reserved_space);
8929 if (!ret2) {
8930 ret2 = file_update_time(vmf->vma->vm_file);
8931 reserved = 1;
8932 }
8933 if (ret2) {
8934 ret = vmf_error(ret2);
8935 if (reserved)
8936 goto out;
8937 goto out_noreserve;
8938 }
8939
8940 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8941 again:
8942 down_read(&BTRFS_I(inode)->i_mmap_lock);
8943 lock_page(page);
8944 size = i_size_read(inode);
8945
8946 if ((page->mapping != inode->i_mapping) ||
8947 (page_start >= size)) {
8948 /* page got truncated out from underneath us */
8949 goto out_unlock;
8950 }
8951 wait_on_page_writeback(page);
8952
8953 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8954 ret2 = set_page_extent_mapped(page);
8955 if (ret2 < 0) {
8956 ret = vmf_error(ret2);
8957 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8958 goto out_unlock;
8959 }
8960
8961 /*
8962 * we can't set the delalloc bits if there are pending ordered
8963 * extents. Drop our locks and wait for them to finish
8964 */
8965 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8966 PAGE_SIZE);
8967 if (ordered) {
8968 unlock_extent_cached(io_tree, page_start, page_end,
8969 &cached_state);
8970 unlock_page(page);
8971 up_read(&BTRFS_I(inode)->i_mmap_lock);
8972 btrfs_start_ordered_extent(ordered, 1);
8973 btrfs_put_ordered_extent(ordered);
8974 goto again;
8975 }
8976
8977 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8978 reserved_space = round_up(size - page_start,
8979 fs_info->sectorsize);
8980 if (reserved_space < PAGE_SIZE) {
8981 end = page_start + reserved_space - 1;
8982 btrfs_delalloc_release_space(BTRFS_I(inode),
8983 data_reserved, page_start,
8984 PAGE_SIZE - reserved_space, true);
8985 }
8986 }
8987
8988 /*
8989 * page_mkwrite gets called when the page is firstly dirtied after it's
8990 * faulted in, but write(2) could also dirty a page and set delalloc
8991 * bits, thus in this case for space account reason, we still need to
8992 * clear any delalloc bits within this page range since we have to
8993 * reserve data&meta space before lock_page() (see above comments).
8994 */
8995 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8996 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8997 EXTENT_DEFRAG, 0, 0, &cached_state);
8998
8999 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
9000 &cached_state);
9001 if (ret2) {
9002 unlock_extent_cached(io_tree, page_start, page_end,
9003 &cached_state);
9004 ret = VM_FAULT_SIGBUS;
9005 goto out_unlock;
9006 }
9007
9008 /* page is wholly or partially inside EOF */
9009 if (page_start + PAGE_SIZE > size)
9010 zero_start = offset_in_page(size);
9011 else
9012 zero_start = PAGE_SIZE;
9013
9014 if (zero_start != PAGE_SIZE) {
9015 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
9016 flush_dcache_page(page);
9017 }
9018 ClearPageChecked(page);
9019 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
9020 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
9021
9022 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
9023
9024 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9025 up_read(&BTRFS_I(inode)->i_mmap_lock);
9026
9027 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9028 sb_end_pagefault(inode->i_sb);
9029 extent_changeset_free(data_reserved);
9030 return VM_FAULT_LOCKED;
9031
9032 out_unlock:
9033 unlock_page(page);
9034 up_read(&BTRFS_I(inode)->i_mmap_lock);
9035 out:
9036 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9037 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
9038 reserved_space, (ret != 0));
9039 out_noreserve:
9040 sb_end_pagefault(inode->i_sb);
9041 extent_changeset_free(data_reserved);
9042 return ret;
9043 }
9044
btrfs_truncate(struct inode * inode,bool skip_writeback)9045 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9046 {
9047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9048 struct btrfs_root *root = BTRFS_I(inode)->root;
9049 struct btrfs_block_rsv *rsv;
9050 int ret;
9051 struct btrfs_trans_handle *trans;
9052 u64 mask = fs_info->sectorsize - 1;
9053 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9054 u64 extents_found = 0;
9055
9056 if (!skip_writeback) {
9057 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9058 (u64)-1);
9059 if (ret)
9060 return ret;
9061 }
9062
9063 /*
9064 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9065 * things going on here:
9066 *
9067 * 1) We need to reserve space to update our inode.
9068 *
9069 * 2) We need to have something to cache all the space that is going to
9070 * be free'd up by the truncate operation, but also have some slack
9071 * space reserved in case it uses space during the truncate (thank you
9072 * very much snapshotting).
9073 *
9074 * And we need these to be separate. The fact is we can use a lot of
9075 * space doing the truncate, and we have no earthly idea how much space
9076 * we will use, so we need the truncate reservation to be separate so it
9077 * doesn't end up using space reserved for updating the inode. We also
9078 * need to be able to stop the transaction and start a new one, which
9079 * means we need to be able to update the inode several times, and we
9080 * have no idea of knowing how many times that will be, so we can't just
9081 * reserve 1 item for the entirety of the operation, so that has to be
9082 * done separately as well.
9083 *
9084 * So that leaves us with
9085 *
9086 * 1) rsv - for the truncate reservation, which we will steal from the
9087 * transaction reservation.
9088 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9089 * updating the inode.
9090 */
9091 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9092 if (!rsv)
9093 return -ENOMEM;
9094 rsv->size = min_size;
9095 rsv->failfast = 1;
9096
9097 /*
9098 * 1 for the truncate slack space
9099 * 1 for updating the inode.
9100 */
9101 trans = btrfs_start_transaction(root, 2);
9102 if (IS_ERR(trans)) {
9103 ret = PTR_ERR(trans);
9104 goto out;
9105 }
9106
9107 /* Migrate the slack space for the truncate to our reserve */
9108 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9109 min_size, false);
9110 BUG_ON(ret);
9111
9112 trans->block_rsv = rsv;
9113
9114 while (1) {
9115 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
9116 inode->i_size,
9117 BTRFS_EXTENT_DATA_KEY,
9118 &extents_found);
9119 trans->block_rsv = &fs_info->trans_block_rsv;
9120 if (ret != -ENOSPC && ret != -EAGAIN)
9121 break;
9122
9123 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9124 if (ret)
9125 break;
9126
9127 btrfs_end_transaction(trans);
9128 btrfs_btree_balance_dirty(fs_info);
9129
9130 trans = btrfs_start_transaction(root, 2);
9131 if (IS_ERR(trans)) {
9132 ret = PTR_ERR(trans);
9133 trans = NULL;
9134 break;
9135 }
9136
9137 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
9138 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9139 rsv, min_size, false);
9140 BUG_ON(ret); /* shouldn't happen */
9141 trans->block_rsv = rsv;
9142 }
9143
9144 /*
9145 * We can't call btrfs_truncate_block inside a trans handle as we could
9146 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9147 * we've truncated everything except the last little bit, and can do
9148 * btrfs_truncate_block and then update the disk_i_size.
9149 */
9150 if (ret == NEED_TRUNCATE_BLOCK) {
9151 btrfs_end_transaction(trans);
9152 btrfs_btree_balance_dirty(fs_info);
9153
9154 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
9155 if (ret)
9156 goto out;
9157 trans = btrfs_start_transaction(root, 1);
9158 if (IS_ERR(trans)) {
9159 ret = PTR_ERR(trans);
9160 goto out;
9161 }
9162 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9163 }
9164
9165 if (trans) {
9166 int ret2;
9167
9168 trans->block_rsv = &fs_info->trans_block_rsv;
9169 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
9170 if (ret2 && !ret)
9171 ret = ret2;
9172
9173 ret2 = btrfs_end_transaction(trans);
9174 if (ret2 && !ret)
9175 ret = ret2;
9176 btrfs_btree_balance_dirty(fs_info);
9177 }
9178 out:
9179 btrfs_free_block_rsv(fs_info, rsv);
9180 /*
9181 * So if we truncate and then write and fsync we normally would just
9182 * write the extents that changed, which is a problem if we need to
9183 * first truncate that entire inode. So set this flag so we write out
9184 * all of the extents in the inode to the sync log so we're completely
9185 * safe.
9186 *
9187 * If no extents were dropped or trimmed we don't need to force the next
9188 * fsync to truncate all the inode's items from the log and re-log them
9189 * all. This means the truncate operation did not change the file size,
9190 * or changed it to a smaller size but there was only an implicit hole
9191 * between the old i_size and the new i_size, and there were no prealloc
9192 * extents beyond i_size to drop.
9193 */
9194 if (extents_found > 0)
9195 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9196
9197 return ret;
9198 }
9199
9200 /*
9201 * create a new subvolume directory/inode (helper for the ioctl).
9202 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,struct user_namespace * mnt_userns)9203 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9204 struct btrfs_root *new_root,
9205 struct btrfs_root *parent_root,
9206 struct user_namespace *mnt_userns)
9207 {
9208 struct inode *inode;
9209 int err;
9210 u64 index = 0;
9211 u64 ino;
9212
9213 err = btrfs_get_free_objectid(new_root, &ino);
9214 if (err < 0)
9215 return err;
9216
9217 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
9218 ino, ino,
9219 S_IFDIR | (~current_umask() & S_IRWXUGO),
9220 &index);
9221 if (IS_ERR(inode))
9222 return PTR_ERR(inode);
9223 inode->i_op = &btrfs_dir_inode_operations;
9224 inode->i_fop = &btrfs_dir_file_operations;
9225
9226 set_nlink(inode, 1);
9227 btrfs_i_size_write(BTRFS_I(inode), 0);
9228 unlock_new_inode(inode);
9229
9230 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9231 if (err)
9232 btrfs_err(new_root->fs_info,
9233 "error inheriting subvolume %llu properties: %d",
9234 new_root->root_key.objectid, err);
9235
9236 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
9237
9238 iput(inode);
9239 return err;
9240 }
9241
btrfs_alloc_inode(struct super_block * sb)9242 struct inode *btrfs_alloc_inode(struct super_block *sb)
9243 {
9244 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9245 struct btrfs_inode *ei;
9246 struct inode *inode;
9247
9248 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9249 if (!ei)
9250 return NULL;
9251
9252 ei->root = NULL;
9253 ei->generation = 0;
9254 ei->last_trans = 0;
9255 ei->last_sub_trans = 0;
9256 ei->logged_trans = 0;
9257 ei->delalloc_bytes = 0;
9258 ei->new_delalloc_bytes = 0;
9259 ei->defrag_bytes = 0;
9260 ei->disk_i_size = 0;
9261 ei->flags = 0;
9262 ei->ro_flags = 0;
9263 ei->csum_bytes = 0;
9264 ei->index_cnt = (u64)-1;
9265 ei->dir_index = 0;
9266 ei->last_unlink_trans = 0;
9267 ei->last_reflink_trans = 0;
9268 ei->last_log_commit = 0;
9269
9270 spin_lock_init(&ei->lock);
9271 ei->outstanding_extents = 0;
9272 if (sb->s_magic != BTRFS_TEST_MAGIC)
9273 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9274 BTRFS_BLOCK_RSV_DELALLOC);
9275 ei->runtime_flags = 0;
9276 ei->prop_compress = BTRFS_COMPRESS_NONE;
9277 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9278
9279 ei->delayed_node = NULL;
9280
9281 ei->i_otime.tv_sec = 0;
9282 ei->i_otime.tv_nsec = 0;
9283
9284 inode = &ei->vfs_inode;
9285 extent_map_tree_init(&ei->extent_tree);
9286 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9287 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9288 IO_TREE_INODE_IO_FAILURE, inode);
9289 extent_io_tree_init(fs_info, &ei->file_extent_tree,
9290 IO_TREE_INODE_FILE_EXTENT, inode);
9291 ei->io_tree.track_uptodate = true;
9292 ei->io_failure_tree.track_uptodate = true;
9293 atomic_set(&ei->sync_writers, 0);
9294 mutex_init(&ei->log_mutex);
9295 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9296 INIT_LIST_HEAD(&ei->delalloc_inodes);
9297 INIT_LIST_HEAD(&ei->delayed_iput);
9298 RB_CLEAR_NODE(&ei->rb_node);
9299 init_rwsem(&ei->i_mmap_lock);
9300
9301 return inode;
9302 }
9303
9304 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9305 void btrfs_test_destroy_inode(struct inode *inode)
9306 {
9307 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9308 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9309 }
9310 #endif
9311
btrfs_free_inode(struct inode * inode)9312 void btrfs_free_inode(struct inode *inode)
9313 {
9314 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9315 }
9316
btrfs_destroy_inode(struct inode * vfs_inode)9317 void btrfs_destroy_inode(struct inode *vfs_inode)
9318 {
9319 struct btrfs_ordered_extent *ordered;
9320 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9321 struct btrfs_root *root = inode->root;
9322
9323 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9324 WARN_ON(vfs_inode->i_data.nrpages);
9325 WARN_ON(inode->block_rsv.reserved);
9326 WARN_ON(inode->block_rsv.size);
9327 WARN_ON(inode->outstanding_extents);
9328 WARN_ON(inode->delalloc_bytes);
9329 WARN_ON(inode->new_delalloc_bytes);
9330 WARN_ON(inode->csum_bytes);
9331 WARN_ON(inode->defrag_bytes);
9332
9333 /*
9334 * This can happen where we create an inode, but somebody else also
9335 * created the same inode and we need to destroy the one we already
9336 * created.
9337 */
9338 if (!root)
9339 return;
9340
9341 while (1) {
9342 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9343 if (!ordered)
9344 break;
9345 else {
9346 btrfs_err(root->fs_info,
9347 "found ordered extent %llu %llu on inode cleanup",
9348 ordered->file_offset, ordered->num_bytes);
9349 btrfs_remove_ordered_extent(inode, ordered);
9350 btrfs_put_ordered_extent(ordered);
9351 btrfs_put_ordered_extent(ordered);
9352 }
9353 }
9354 btrfs_qgroup_check_reserved_leak(inode);
9355 inode_tree_del(inode);
9356 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9357 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9358 btrfs_put_root(inode->root);
9359 }
9360
btrfs_drop_inode(struct inode * inode)9361 int btrfs_drop_inode(struct inode *inode)
9362 {
9363 struct btrfs_root *root = BTRFS_I(inode)->root;
9364
9365 if (root == NULL)
9366 return 1;
9367
9368 /* the snap/subvol tree is on deleting */
9369 if (btrfs_root_refs(&root->root_item) == 0)
9370 return 1;
9371 else
9372 return generic_drop_inode(inode);
9373 }
9374
init_once(void * foo)9375 static void init_once(void *foo)
9376 {
9377 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9378
9379 inode_init_once(&ei->vfs_inode);
9380 }
9381
btrfs_destroy_cachep(void)9382 void __cold btrfs_destroy_cachep(void)
9383 {
9384 /*
9385 * Make sure all delayed rcu free inodes are flushed before we
9386 * destroy cache.
9387 */
9388 rcu_barrier();
9389 kmem_cache_destroy(btrfs_inode_cachep);
9390 kmem_cache_destroy(btrfs_trans_handle_cachep);
9391 kmem_cache_destroy(btrfs_path_cachep);
9392 kmem_cache_destroy(btrfs_free_space_cachep);
9393 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9394 }
9395
btrfs_init_cachep(void)9396 int __init btrfs_init_cachep(void)
9397 {
9398 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9399 sizeof(struct btrfs_inode), 0,
9400 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9401 init_once);
9402 if (!btrfs_inode_cachep)
9403 goto fail;
9404
9405 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9406 sizeof(struct btrfs_trans_handle), 0,
9407 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9408 if (!btrfs_trans_handle_cachep)
9409 goto fail;
9410
9411 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9412 sizeof(struct btrfs_path), 0,
9413 SLAB_MEM_SPREAD, NULL);
9414 if (!btrfs_path_cachep)
9415 goto fail;
9416
9417 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9418 sizeof(struct btrfs_free_space), 0,
9419 SLAB_MEM_SPREAD, NULL);
9420 if (!btrfs_free_space_cachep)
9421 goto fail;
9422
9423 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9424 PAGE_SIZE, PAGE_SIZE,
9425 SLAB_MEM_SPREAD, NULL);
9426 if (!btrfs_free_space_bitmap_cachep)
9427 goto fail;
9428
9429 return 0;
9430 fail:
9431 btrfs_destroy_cachep();
9432 return -ENOMEM;
9433 }
9434
btrfs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9435 static int btrfs_getattr(struct user_namespace *mnt_userns,
9436 const struct path *path, struct kstat *stat,
9437 u32 request_mask, unsigned int flags)
9438 {
9439 u64 delalloc_bytes;
9440 u64 inode_bytes;
9441 struct inode *inode = d_inode(path->dentry);
9442 u32 blocksize = inode->i_sb->s_blocksize;
9443 u32 bi_flags = BTRFS_I(inode)->flags;
9444 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9445
9446 stat->result_mask |= STATX_BTIME;
9447 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9448 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9449 if (bi_flags & BTRFS_INODE_APPEND)
9450 stat->attributes |= STATX_ATTR_APPEND;
9451 if (bi_flags & BTRFS_INODE_COMPRESS)
9452 stat->attributes |= STATX_ATTR_COMPRESSED;
9453 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9454 stat->attributes |= STATX_ATTR_IMMUTABLE;
9455 if (bi_flags & BTRFS_INODE_NODUMP)
9456 stat->attributes |= STATX_ATTR_NODUMP;
9457 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9458 stat->attributes |= STATX_ATTR_VERITY;
9459
9460 stat->attributes_mask |= (STATX_ATTR_APPEND |
9461 STATX_ATTR_COMPRESSED |
9462 STATX_ATTR_IMMUTABLE |
9463 STATX_ATTR_NODUMP);
9464
9465 generic_fillattr(mnt_userns, inode, stat);
9466 stat->dev = BTRFS_I(inode)->root->anon_dev;
9467
9468 spin_lock(&BTRFS_I(inode)->lock);
9469 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9470 inode_bytes = inode_get_bytes(inode);
9471 spin_unlock(&BTRFS_I(inode)->lock);
9472 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9473 ALIGN(delalloc_bytes, blocksize)) >> 9;
9474 return 0;
9475 }
9476
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9477 static int btrfs_rename_exchange(struct inode *old_dir,
9478 struct dentry *old_dentry,
9479 struct inode *new_dir,
9480 struct dentry *new_dentry)
9481 {
9482 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9483 struct btrfs_trans_handle *trans;
9484 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9485 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9486 struct inode *new_inode = new_dentry->d_inode;
9487 struct inode *old_inode = old_dentry->d_inode;
9488 struct timespec64 ctime = current_time(old_inode);
9489 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9490 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9491 u64 old_idx = 0;
9492 u64 new_idx = 0;
9493 int ret;
9494 int ret2;
9495 bool root_log_pinned = false;
9496 bool dest_log_pinned = false;
9497 bool need_abort = false;
9498
9499 /*
9500 * For non-subvolumes allow exchange only within one subvolume, in the
9501 * same inode namespace. Two subvolumes (represented as directory) can
9502 * be exchanged as they're a logical link and have a fixed inode number.
9503 */
9504 if (root != dest &&
9505 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9506 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9507 return -EXDEV;
9508
9509 /* close the race window with snapshot create/destroy ioctl */
9510 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9511 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9512 down_read(&fs_info->subvol_sem);
9513
9514 /*
9515 * We want to reserve the absolute worst case amount of items. So if
9516 * both inodes are subvols and we need to unlink them then that would
9517 * require 4 item modifications, but if they are both normal inodes it
9518 * would require 5 item modifications, so we'll assume their normal
9519 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9520 * should cover the worst case number of items we'll modify.
9521 */
9522 trans = btrfs_start_transaction(root, 12);
9523 if (IS_ERR(trans)) {
9524 ret = PTR_ERR(trans);
9525 goto out_notrans;
9526 }
9527
9528 if (dest != root) {
9529 ret = btrfs_record_root_in_trans(trans, dest);
9530 if (ret)
9531 goto out_fail;
9532 }
9533
9534 /*
9535 * We need to find a free sequence number both in the source and
9536 * in the destination directory for the exchange.
9537 */
9538 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9539 if (ret)
9540 goto out_fail;
9541 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9542 if (ret)
9543 goto out_fail;
9544
9545 BTRFS_I(old_inode)->dir_index = 0ULL;
9546 BTRFS_I(new_inode)->dir_index = 0ULL;
9547
9548 /* Reference for the source. */
9549 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9550 /* force full log commit if subvolume involved. */
9551 btrfs_set_log_full_commit(trans);
9552 } else {
9553 ret = btrfs_insert_inode_ref(trans, dest,
9554 new_dentry->d_name.name,
9555 new_dentry->d_name.len,
9556 old_ino,
9557 btrfs_ino(BTRFS_I(new_dir)),
9558 old_idx);
9559 if (ret)
9560 goto out_fail;
9561 need_abort = true;
9562 }
9563
9564 /* And now for the dest. */
9565 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9566 /* force full log commit if subvolume involved. */
9567 btrfs_set_log_full_commit(trans);
9568 } else {
9569 ret = btrfs_insert_inode_ref(trans, root,
9570 old_dentry->d_name.name,
9571 old_dentry->d_name.len,
9572 new_ino,
9573 btrfs_ino(BTRFS_I(old_dir)),
9574 new_idx);
9575 if (ret) {
9576 if (need_abort)
9577 btrfs_abort_transaction(trans, ret);
9578 goto out_fail;
9579 }
9580 }
9581
9582 /* Update inode version and ctime/mtime. */
9583 inode_inc_iversion(old_dir);
9584 inode_inc_iversion(new_dir);
9585 inode_inc_iversion(old_inode);
9586 inode_inc_iversion(new_inode);
9587 old_dir->i_ctime = old_dir->i_mtime = ctime;
9588 new_dir->i_ctime = new_dir->i_mtime = ctime;
9589 old_inode->i_ctime = ctime;
9590 new_inode->i_ctime = ctime;
9591
9592 if (old_dentry->d_parent != new_dentry->d_parent) {
9593 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9594 BTRFS_I(old_inode), 1);
9595 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9596 BTRFS_I(new_inode), 1);
9597 }
9598
9599 /*
9600 * Now pin the logs of the roots. We do it to ensure that no other task
9601 * can sync the logs while we are in progress with the rename, because
9602 * that could result in an inconsistency in case any of the inodes that
9603 * are part of this rename operation were logged before.
9604 *
9605 * We pin the logs even if at this precise moment none of the inodes was
9606 * logged before. This is because right after we checked for that, some
9607 * other task fsyncing some other inode not involved with this rename
9608 * operation could log that one of our inodes exists.
9609 *
9610 * We don't need to pin the logs before the above calls to
9611 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9612 */
9613 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9614 btrfs_pin_log_trans(root);
9615 root_log_pinned = true;
9616 }
9617 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9618 btrfs_pin_log_trans(dest);
9619 dest_log_pinned = true;
9620 }
9621
9622 /* src is a subvolume */
9623 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9624 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9625 } else { /* src is an inode */
9626 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9627 BTRFS_I(old_dentry->d_inode),
9628 old_dentry->d_name.name,
9629 old_dentry->d_name.len);
9630 if (!ret)
9631 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9632 }
9633 if (ret) {
9634 btrfs_abort_transaction(trans, ret);
9635 goto out_fail;
9636 }
9637
9638 /* dest is a subvolume */
9639 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9640 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9641 } else { /* dest is an inode */
9642 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9643 BTRFS_I(new_dentry->d_inode),
9644 new_dentry->d_name.name,
9645 new_dentry->d_name.len);
9646 if (!ret)
9647 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9648 }
9649 if (ret) {
9650 btrfs_abort_transaction(trans, ret);
9651 goto out_fail;
9652 }
9653
9654 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9655 new_dentry->d_name.name,
9656 new_dentry->d_name.len, 0, old_idx);
9657 if (ret) {
9658 btrfs_abort_transaction(trans, ret);
9659 goto out_fail;
9660 }
9661
9662 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9663 old_dentry->d_name.name,
9664 old_dentry->d_name.len, 0, new_idx);
9665 if (ret) {
9666 btrfs_abort_transaction(trans, ret);
9667 goto out_fail;
9668 }
9669
9670 if (old_inode->i_nlink == 1)
9671 BTRFS_I(old_inode)->dir_index = old_idx;
9672 if (new_inode->i_nlink == 1)
9673 BTRFS_I(new_inode)->dir_index = new_idx;
9674
9675 if (root_log_pinned) {
9676 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9677 new_dentry->d_parent);
9678 btrfs_end_log_trans(root);
9679 root_log_pinned = false;
9680 }
9681 if (dest_log_pinned) {
9682 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9683 old_dentry->d_parent);
9684 btrfs_end_log_trans(dest);
9685 dest_log_pinned = false;
9686 }
9687 out_fail:
9688 /*
9689 * If we have pinned a log and an error happened, we unpin tasks
9690 * trying to sync the log and force them to fallback to a transaction
9691 * commit if the log currently contains any of the inodes involved in
9692 * this rename operation (to ensure we do not persist a log with an
9693 * inconsistent state for any of these inodes or leading to any
9694 * inconsistencies when replayed). If the transaction was aborted, the
9695 * abortion reason is propagated to userspace when attempting to commit
9696 * the transaction. If the log does not contain any of these inodes, we
9697 * allow the tasks to sync it.
9698 */
9699 if (ret && (root_log_pinned || dest_log_pinned)) {
9700 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9701 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9702 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9703 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
9704 btrfs_set_log_full_commit(trans);
9705
9706 if (root_log_pinned) {
9707 btrfs_end_log_trans(root);
9708 root_log_pinned = false;
9709 }
9710 if (dest_log_pinned) {
9711 btrfs_end_log_trans(dest);
9712 dest_log_pinned = false;
9713 }
9714 }
9715 ret2 = btrfs_end_transaction(trans);
9716 ret = ret ? ret : ret2;
9717 out_notrans:
9718 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9719 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9720 up_read(&fs_info->subvol_sem);
9721
9722 return ret;
9723 }
9724
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry)9725 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9726 struct btrfs_root *root,
9727 struct user_namespace *mnt_userns,
9728 struct inode *dir,
9729 struct dentry *dentry)
9730 {
9731 int ret;
9732 struct inode *inode;
9733 u64 objectid;
9734 u64 index;
9735
9736 ret = btrfs_get_free_objectid(root, &objectid);
9737 if (ret)
9738 return ret;
9739
9740 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9741 dentry->d_name.name,
9742 dentry->d_name.len,
9743 btrfs_ino(BTRFS_I(dir)),
9744 objectid,
9745 S_IFCHR | WHITEOUT_MODE,
9746 &index);
9747
9748 if (IS_ERR(inode)) {
9749 ret = PTR_ERR(inode);
9750 return ret;
9751 }
9752
9753 inode->i_op = &btrfs_special_inode_operations;
9754 init_special_inode(inode, inode->i_mode,
9755 WHITEOUT_DEV);
9756
9757 ret = btrfs_init_inode_security(trans, inode, dir,
9758 &dentry->d_name);
9759 if (ret)
9760 goto out;
9761
9762 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9763 BTRFS_I(inode), 0, index);
9764 if (ret)
9765 goto out;
9766
9767 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9768 out:
9769 unlock_new_inode(inode);
9770 if (ret)
9771 inode_dec_link_count(inode);
9772 iput(inode);
9773
9774 return ret;
9775 }
9776
btrfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9777 static int btrfs_rename(struct user_namespace *mnt_userns,
9778 struct inode *old_dir, struct dentry *old_dentry,
9779 struct inode *new_dir, struct dentry *new_dentry,
9780 unsigned int flags)
9781 {
9782 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9783 struct btrfs_trans_handle *trans;
9784 unsigned int trans_num_items;
9785 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9786 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9787 struct inode *new_inode = d_inode(new_dentry);
9788 struct inode *old_inode = d_inode(old_dentry);
9789 u64 index = 0;
9790 int ret;
9791 int ret2;
9792 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9793 bool log_pinned = false;
9794
9795 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9796 return -EPERM;
9797
9798 /* we only allow rename subvolume link between subvolumes */
9799 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9800 return -EXDEV;
9801
9802 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9803 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9804 return -ENOTEMPTY;
9805
9806 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9807 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9808 return -ENOTEMPTY;
9809
9810
9811 /* check for collisions, even if the name isn't there */
9812 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9813 new_dentry->d_name.name,
9814 new_dentry->d_name.len);
9815
9816 if (ret) {
9817 if (ret == -EEXIST) {
9818 /* we shouldn't get
9819 * eexist without a new_inode */
9820 if (WARN_ON(!new_inode)) {
9821 return ret;
9822 }
9823 } else {
9824 /* maybe -EOVERFLOW */
9825 return ret;
9826 }
9827 }
9828 ret = 0;
9829
9830 /*
9831 * we're using rename to replace one file with another. Start IO on it
9832 * now so we don't add too much work to the end of the transaction
9833 */
9834 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9835 filemap_flush(old_inode->i_mapping);
9836
9837 /* close the racy window with snapshot create/destroy ioctl */
9838 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9839 down_read(&fs_info->subvol_sem);
9840 /*
9841 * We want to reserve the absolute worst case amount of items. So if
9842 * both inodes are subvols and we need to unlink them then that would
9843 * require 4 item modifications, but if they are both normal inodes it
9844 * would require 5 item modifications, so we'll assume they are normal
9845 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9846 * should cover the worst case number of items we'll modify.
9847 * If our rename has the whiteout flag, we need more 5 units for the
9848 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9849 * when selinux is enabled).
9850 */
9851 trans_num_items = 11;
9852 if (flags & RENAME_WHITEOUT)
9853 trans_num_items += 5;
9854 trans = btrfs_start_transaction(root, trans_num_items);
9855 if (IS_ERR(trans)) {
9856 ret = PTR_ERR(trans);
9857 goto out_notrans;
9858 }
9859
9860 if (dest != root) {
9861 ret = btrfs_record_root_in_trans(trans, dest);
9862 if (ret)
9863 goto out_fail;
9864 }
9865
9866 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9867 if (ret)
9868 goto out_fail;
9869
9870 BTRFS_I(old_inode)->dir_index = 0ULL;
9871 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9872 /* force full log commit if subvolume involved. */
9873 btrfs_set_log_full_commit(trans);
9874 } else {
9875 ret = btrfs_insert_inode_ref(trans, dest,
9876 new_dentry->d_name.name,
9877 new_dentry->d_name.len,
9878 old_ino,
9879 btrfs_ino(BTRFS_I(new_dir)), index);
9880 if (ret)
9881 goto out_fail;
9882 }
9883
9884 inode_inc_iversion(old_dir);
9885 inode_inc_iversion(new_dir);
9886 inode_inc_iversion(old_inode);
9887 old_dir->i_ctime = old_dir->i_mtime =
9888 new_dir->i_ctime = new_dir->i_mtime =
9889 old_inode->i_ctime = current_time(old_dir);
9890
9891 if (old_dentry->d_parent != new_dentry->d_parent)
9892 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9893 BTRFS_I(old_inode), 1);
9894
9895 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9896 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9897 } else {
9898 /*
9899 * Now pin the log. We do it to ensure that no other task can
9900 * sync the log while we are in progress with the rename, as
9901 * that could result in an inconsistency in case any of the
9902 * inodes that are part of this rename operation were logged
9903 * before.
9904 *
9905 * We pin the log even if at this precise moment none of the
9906 * inodes was logged before. This is because right after we
9907 * checked for that, some other task fsyncing some other inode
9908 * not involved with this rename operation could log that one of
9909 * our inodes exists.
9910 *
9911 * We don't need to pin the logs before the above call to
9912 * btrfs_insert_inode_ref(), since that does not need to change
9913 * a log.
9914 */
9915 btrfs_pin_log_trans(root);
9916 log_pinned = true;
9917 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9918 BTRFS_I(d_inode(old_dentry)),
9919 old_dentry->d_name.name,
9920 old_dentry->d_name.len);
9921 if (!ret)
9922 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9923 }
9924 if (ret) {
9925 btrfs_abort_transaction(trans, ret);
9926 goto out_fail;
9927 }
9928
9929 if (new_inode) {
9930 inode_inc_iversion(new_inode);
9931 new_inode->i_ctime = current_time(new_inode);
9932 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9933 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9934 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9935 BUG_ON(new_inode->i_nlink == 0);
9936 } else {
9937 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9938 BTRFS_I(d_inode(new_dentry)),
9939 new_dentry->d_name.name,
9940 new_dentry->d_name.len);
9941 }
9942 if (!ret && new_inode->i_nlink == 0)
9943 ret = btrfs_orphan_add(trans,
9944 BTRFS_I(d_inode(new_dentry)));
9945 if (ret) {
9946 btrfs_abort_transaction(trans, ret);
9947 goto out_fail;
9948 }
9949 }
9950
9951 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9952 new_dentry->d_name.name,
9953 new_dentry->d_name.len, 0, index);
9954 if (ret) {
9955 btrfs_abort_transaction(trans, ret);
9956 goto out_fail;
9957 }
9958
9959 if (old_inode->i_nlink == 1)
9960 BTRFS_I(old_inode)->dir_index = index;
9961
9962 if (log_pinned) {
9963 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9964 new_dentry->d_parent);
9965 btrfs_end_log_trans(root);
9966 log_pinned = false;
9967 }
9968
9969 if (flags & RENAME_WHITEOUT) {
9970 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9971 old_dir, old_dentry);
9972
9973 if (ret) {
9974 btrfs_abort_transaction(trans, ret);
9975 goto out_fail;
9976 }
9977 }
9978 out_fail:
9979 /*
9980 * If we have pinned the log and an error happened, we unpin tasks
9981 * trying to sync the log and force them to fallback to a transaction
9982 * commit if the log currently contains any of the inodes involved in
9983 * this rename operation (to ensure we do not persist a log with an
9984 * inconsistent state for any of these inodes or leading to any
9985 * inconsistencies when replayed). If the transaction was aborted, the
9986 * abortion reason is propagated to userspace when attempting to commit
9987 * the transaction. If the log does not contain any of these inodes, we
9988 * allow the tasks to sync it.
9989 */
9990 if (ret && log_pinned) {
9991 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9992 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9993 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9994 (new_inode &&
9995 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9996 btrfs_set_log_full_commit(trans);
9997
9998 btrfs_end_log_trans(root);
9999 log_pinned = false;
10000 }
10001 ret2 = btrfs_end_transaction(trans);
10002 ret = ret ? ret : ret2;
10003 out_notrans:
10004 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10005 up_read(&fs_info->subvol_sem);
10006
10007 return ret;
10008 }
10009
btrfs_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10010 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
10011 struct dentry *old_dentry, struct inode *new_dir,
10012 struct dentry *new_dentry, unsigned int flags)
10013 {
10014 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10015 return -EINVAL;
10016
10017 if (flags & RENAME_EXCHANGE)
10018 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10019 new_dentry);
10020
10021 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
10022 new_dentry, flags);
10023 }
10024
10025 struct btrfs_delalloc_work {
10026 struct inode *inode;
10027 struct completion completion;
10028 struct list_head list;
10029 struct btrfs_work work;
10030 };
10031
btrfs_run_delalloc_work(struct btrfs_work * work)10032 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10033 {
10034 struct btrfs_delalloc_work *delalloc_work;
10035 struct inode *inode;
10036
10037 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10038 work);
10039 inode = delalloc_work->inode;
10040 filemap_flush(inode->i_mapping);
10041 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10042 &BTRFS_I(inode)->runtime_flags))
10043 filemap_flush(inode->i_mapping);
10044
10045 iput(inode);
10046 complete(&delalloc_work->completion);
10047 }
10048
btrfs_alloc_delalloc_work(struct inode * inode)10049 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10050 {
10051 struct btrfs_delalloc_work *work;
10052
10053 work = kmalloc(sizeof(*work), GFP_NOFS);
10054 if (!work)
10055 return NULL;
10056
10057 init_completion(&work->completion);
10058 INIT_LIST_HEAD(&work->list);
10059 work->inode = inode;
10060 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10061
10062 return work;
10063 }
10064
10065 /*
10066 * some fairly slow code that needs optimization. This walks the list
10067 * of all the inodes with pending delalloc and forces them to disk.
10068 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)10069 static int start_delalloc_inodes(struct btrfs_root *root,
10070 struct writeback_control *wbc, bool snapshot,
10071 bool in_reclaim_context)
10072 {
10073 struct btrfs_inode *binode;
10074 struct inode *inode;
10075 struct btrfs_delalloc_work *work, *next;
10076 struct list_head works;
10077 struct list_head splice;
10078 int ret = 0;
10079 bool full_flush = wbc->nr_to_write == LONG_MAX;
10080
10081 INIT_LIST_HEAD(&works);
10082 INIT_LIST_HEAD(&splice);
10083
10084 mutex_lock(&root->delalloc_mutex);
10085 spin_lock(&root->delalloc_lock);
10086 list_splice_init(&root->delalloc_inodes, &splice);
10087 while (!list_empty(&splice)) {
10088 binode = list_entry(splice.next, struct btrfs_inode,
10089 delalloc_inodes);
10090
10091 list_move_tail(&binode->delalloc_inodes,
10092 &root->delalloc_inodes);
10093
10094 if (in_reclaim_context &&
10095 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
10096 continue;
10097
10098 inode = igrab(&binode->vfs_inode);
10099 if (!inode) {
10100 cond_resched_lock(&root->delalloc_lock);
10101 continue;
10102 }
10103 spin_unlock(&root->delalloc_lock);
10104
10105 if (snapshot)
10106 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10107 &binode->runtime_flags);
10108 if (full_flush) {
10109 work = btrfs_alloc_delalloc_work(inode);
10110 if (!work) {
10111 iput(inode);
10112 ret = -ENOMEM;
10113 goto out;
10114 }
10115 list_add_tail(&work->list, &works);
10116 btrfs_queue_work(root->fs_info->flush_workers,
10117 &work->work);
10118 } else {
10119 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
10120 btrfs_add_delayed_iput(inode);
10121 if (ret || wbc->nr_to_write <= 0)
10122 goto out;
10123 }
10124 cond_resched();
10125 spin_lock(&root->delalloc_lock);
10126 }
10127 spin_unlock(&root->delalloc_lock);
10128
10129 out:
10130 list_for_each_entry_safe(work, next, &works, list) {
10131 list_del_init(&work->list);
10132 wait_for_completion(&work->completion);
10133 kfree(work);
10134 }
10135
10136 if (!list_empty(&splice)) {
10137 spin_lock(&root->delalloc_lock);
10138 list_splice_tail(&splice, &root->delalloc_inodes);
10139 spin_unlock(&root->delalloc_lock);
10140 }
10141 mutex_unlock(&root->delalloc_mutex);
10142 return ret;
10143 }
10144
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)10145 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
10146 {
10147 struct writeback_control wbc = {
10148 .nr_to_write = LONG_MAX,
10149 .sync_mode = WB_SYNC_NONE,
10150 .range_start = 0,
10151 .range_end = LLONG_MAX,
10152 };
10153 struct btrfs_fs_info *fs_info = root->fs_info;
10154
10155 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10156 return -EROFS;
10157
10158 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
10159 }
10160
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)10161 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
10162 bool in_reclaim_context)
10163 {
10164 struct writeback_control wbc = {
10165 .nr_to_write = nr,
10166 .sync_mode = WB_SYNC_NONE,
10167 .range_start = 0,
10168 .range_end = LLONG_MAX,
10169 };
10170 struct btrfs_root *root;
10171 struct list_head splice;
10172 int ret;
10173
10174 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10175 return -EROFS;
10176
10177 INIT_LIST_HEAD(&splice);
10178
10179 mutex_lock(&fs_info->delalloc_root_mutex);
10180 spin_lock(&fs_info->delalloc_root_lock);
10181 list_splice_init(&fs_info->delalloc_roots, &splice);
10182 while (!list_empty(&splice)) {
10183 /*
10184 * Reset nr_to_write here so we know that we're doing a full
10185 * flush.
10186 */
10187 if (nr == LONG_MAX)
10188 wbc.nr_to_write = LONG_MAX;
10189
10190 root = list_first_entry(&splice, struct btrfs_root,
10191 delalloc_root);
10192 root = btrfs_grab_root(root);
10193 BUG_ON(!root);
10194 list_move_tail(&root->delalloc_root,
10195 &fs_info->delalloc_roots);
10196 spin_unlock(&fs_info->delalloc_root_lock);
10197
10198 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
10199 btrfs_put_root(root);
10200 if (ret < 0 || wbc.nr_to_write <= 0)
10201 goto out;
10202 spin_lock(&fs_info->delalloc_root_lock);
10203 }
10204 spin_unlock(&fs_info->delalloc_root_lock);
10205
10206 ret = 0;
10207 out:
10208 if (!list_empty(&splice)) {
10209 spin_lock(&fs_info->delalloc_root_lock);
10210 list_splice_tail(&splice, &fs_info->delalloc_roots);
10211 spin_unlock(&fs_info->delalloc_root_lock);
10212 }
10213 mutex_unlock(&fs_info->delalloc_root_mutex);
10214 return ret;
10215 }
10216
btrfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)10217 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
10218 struct dentry *dentry, const char *symname)
10219 {
10220 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10221 struct btrfs_trans_handle *trans;
10222 struct btrfs_root *root = BTRFS_I(dir)->root;
10223 struct btrfs_path *path;
10224 struct btrfs_key key;
10225 struct inode *inode = NULL;
10226 int err;
10227 u64 objectid;
10228 u64 index = 0;
10229 int name_len;
10230 int datasize;
10231 unsigned long ptr;
10232 struct btrfs_file_extent_item *ei;
10233 struct extent_buffer *leaf;
10234
10235 name_len = strlen(symname);
10236 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10237 return -ENAMETOOLONG;
10238
10239 /*
10240 * 2 items for inode item and ref
10241 * 2 items for dir items
10242 * 1 item for updating parent inode item
10243 * 1 item for the inline extent item
10244 * 1 item for xattr if selinux is on
10245 */
10246 trans = btrfs_start_transaction(root, 7);
10247 if (IS_ERR(trans))
10248 return PTR_ERR(trans);
10249
10250 err = btrfs_get_free_objectid(root, &objectid);
10251 if (err)
10252 goto out_unlock;
10253
10254 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
10255 dentry->d_name.name, dentry->d_name.len,
10256 btrfs_ino(BTRFS_I(dir)), objectid,
10257 S_IFLNK | S_IRWXUGO, &index);
10258 if (IS_ERR(inode)) {
10259 err = PTR_ERR(inode);
10260 inode = NULL;
10261 goto out_unlock;
10262 }
10263
10264 /*
10265 * If the active LSM wants to access the inode during
10266 * d_instantiate it needs these. Smack checks to see
10267 * if the filesystem supports xattrs by looking at the
10268 * ops vector.
10269 */
10270 inode->i_fop = &btrfs_file_operations;
10271 inode->i_op = &btrfs_file_inode_operations;
10272 inode->i_mapping->a_ops = &btrfs_aops;
10273
10274 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10275 if (err)
10276 goto out_unlock;
10277
10278 path = btrfs_alloc_path();
10279 if (!path) {
10280 err = -ENOMEM;
10281 goto out_unlock;
10282 }
10283 key.objectid = btrfs_ino(BTRFS_I(inode));
10284 key.offset = 0;
10285 key.type = BTRFS_EXTENT_DATA_KEY;
10286 datasize = btrfs_file_extent_calc_inline_size(name_len);
10287 err = btrfs_insert_empty_item(trans, root, path, &key,
10288 datasize);
10289 if (err) {
10290 btrfs_free_path(path);
10291 goto out_unlock;
10292 }
10293 leaf = path->nodes[0];
10294 ei = btrfs_item_ptr(leaf, path->slots[0],
10295 struct btrfs_file_extent_item);
10296 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10297 btrfs_set_file_extent_type(leaf, ei,
10298 BTRFS_FILE_EXTENT_INLINE);
10299 btrfs_set_file_extent_encryption(leaf, ei, 0);
10300 btrfs_set_file_extent_compression(leaf, ei, 0);
10301 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10302 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10303
10304 ptr = btrfs_file_extent_inline_start(ei);
10305 write_extent_buffer(leaf, symname, ptr, name_len);
10306 btrfs_mark_buffer_dirty(leaf);
10307 btrfs_free_path(path);
10308
10309 inode->i_op = &btrfs_symlink_inode_operations;
10310 inode_nohighmem(inode);
10311 inode_set_bytes(inode, name_len);
10312 btrfs_i_size_write(BTRFS_I(inode), name_len);
10313 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
10314 /*
10315 * Last step, add directory indexes for our symlink inode. This is the
10316 * last step to avoid extra cleanup of these indexes if an error happens
10317 * elsewhere above.
10318 */
10319 if (!err)
10320 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10321 BTRFS_I(inode), 0, index);
10322 if (err)
10323 goto out_unlock;
10324
10325 d_instantiate_new(dentry, inode);
10326
10327 out_unlock:
10328 btrfs_end_transaction(trans);
10329 if (err && inode) {
10330 inode_dec_link_count(inode);
10331 discard_new_inode(inode);
10332 }
10333 btrfs_btree_balance_dirty(fs_info);
10334 return err;
10335 }
10336
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)10337 static struct btrfs_trans_handle *insert_prealloc_file_extent(
10338 struct btrfs_trans_handle *trans_in,
10339 struct btrfs_inode *inode,
10340 struct btrfs_key *ins,
10341 u64 file_offset)
10342 {
10343 struct btrfs_file_extent_item stack_fi;
10344 struct btrfs_replace_extent_info extent_info;
10345 struct btrfs_trans_handle *trans = trans_in;
10346 struct btrfs_path *path;
10347 u64 start = ins->objectid;
10348 u64 len = ins->offset;
10349 int qgroup_released;
10350 int ret;
10351
10352 memset(&stack_fi, 0, sizeof(stack_fi));
10353
10354 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
10355 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
10356 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
10357 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
10358 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10359 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10360 /* Encryption and other encoding is reserved and all 0 */
10361
10362 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10363 if (qgroup_released < 0)
10364 return ERR_PTR(qgroup_released);
10365
10366 if (trans) {
10367 ret = insert_reserved_file_extent(trans, inode,
10368 file_offset, &stack_fi,
10369 true, qgroup_released);
10370 if (ret)
10371 goto free_qgroup;
10372 return trans;
10373 }
10374
10375 extent_info.disk_offset = start;
10376 extent_info.disk_len = len;
10377 extent_info.data_offset = 0;
10378 extent_info.data_len = len;
10379 extent_info.file_offset = file_offset;
10380 extent_info.extent_buf = (char *)&stack_fi;
10381 extent_info.is_new_extent = true;
10382 extent_info.qgroup_reserved = qgroup_released;
10383 extent_info.insertions = 0;
10384
10385 path = btrfs_alloc_path();
10386 if (!path) {
10387 ret = -ENOMEM;
10388 goto free_qgroup;
10389 }
10390
10391 ret = btrfs_replace_file_extents(inode, path, file_offset,
10392 file_offset + len - 1, &extent_info,
10393 &trans);
10394 btrfs_free_path(path);
10395 if (ret)
10396 goto free_qgroup;
10397 return trans;
10398
10399 free_qgroup:
10400 /*
10401 * We have released qgroup data range at the beginning of the function,
10402 * and normally qgroup_released bytes will be freed when committing
10403 * transaction.
10404 * But if we error out early, we have to free what we have released
10405 * or we leak qgroup data reservation.
10406 */
10407 btrfs_qgroup_free_refroot(inode->root->fs_info,
10408 inode->root->root_key.objectid, qgroup_released,
10409 BTRFS_QGROUP_RSV_DATA);
10410 return ERR_PTR(ret);
10411 }
10412
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10413 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10414 u64 start, u64 num_bytes, u64 min_size,
10415 loff_t actual_len, u64 *alloc_hint,
10416 struct btrfs_trans_handle *trans)
10417 {
10418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10419 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10420 struct extent_map *em;
10421 struct btrfs_root *root = BTRFS_I(inode)->root;
10422 struct btrfs_key ins;
10423 u64 cur_offset = start;
10424 u64 clear_offset = start;
10425 u64 i_size;
10426 u64 cur_bytes;
10427 u64 last_alloc = (u64)-1;
10428 int ret = 0;
10429 bool own_trans = true;
10430 u64 end = start + num_bytes - 1;
10431
10432 if (trans)
10433 own_trans = false;
10434 while (num_bytes > 0) {
10435 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10436 cur_bytes = max(cur_bytes, min_size);
10437 /*
10438 * If we are severely fragmented we could end up with really
10439 * small allocations, so if the allocator is returning small
10440 * chunks lets make its job easier by only searching for those
10441 * sized chunks.
10442 */
10443 cur_bytes = min(cur_bytes, last_alloc);
10444 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10445 min_size, 0, *alloc_hint, &ins, 1, 0);
10446 if (ret)
10447 break;
10448
10449 /*
10450 * We've reserved this space, and thus converted it from
10451 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10452 * from here on out we will only need to clear our reservation
10453 * for the remaining unreserved area, so advance our
10454 * clear_offset by our extent size.
10455 */
10456 clear_offset += ins.offset;
10457
10458 last_alloc = ins.offset;
10459 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10460 &ins, cur_offset);
10461 /*
10462 * Now that we inserted the prealloc extent we can finally
10463 * decrement the number of reservations in the block group.
10464 * If we did it before, we could race with relocation and have
10465 * relocation miss the reserved extent, making it fail later.
10466 */
10467 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10468 if (IS_ERR(trans)) {
10469 ret = PTR_ERR(trans);
10470 btrfs_free_reserved_extent(fs_info, ins.objectid,
10471 ins.offset, 0);
10472 break;
10473 }
10474
10475 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10476 cur_offset + ins.offset -1, 0);
10477
10478 em = alloc_extent_map();
10479 if (!em) {
10480 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10481 &BTRFS_I(inode)->runtime_flags);
10482 goto next;
10483 }
10484
10485 em->start = cur_offset;
10486 em->orig_start = cur_offset;
10487 em->len = ins.offset;
10488 em->block_start = ins.objectid;
10489 em->block_len = ins.offset;
10490 em->orig_block_len = ins.offset;
10491 em->ram_bytes = ins.offset;
10492 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10493 em->generation = trans->transid;
10494
10495 while (1) {
10496 write_lock(&em_tree->lock);
10497 ret = add_extent_mapping(em_tree, em, 1);
10498 write_unlock(&em_tree->lock);
10499 if (ret != -EEXIST)
10500 break;
10501 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10502 cur_offset + ins.offset - 1,
10503 0);
10504 }
10505 free_extent_map(em);
10506 next:
10507 num_bytes -= ins.offset;
10508 cur_offset += ins.offset;
10509 *alloc_hint = ins.objectid + ins.offset;
10510
10511 inode_inc_iversion(inode);
10512 inode->i_ctime = current_time(inode);
10513 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10514 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10515 (actual_len > inode->i_size) &&
10516 (cur_offset > inode->i_size)) {
10517 if (cur_offset > actual_len)
10518 i_size = actual_len;
10519 else
10520 i_size = cur_offset;
10521 i_size_write(inode, i_size);
10522 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10523 }
10524
10525 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10526
10527 if (ret) {
10528 btrfs_abort_transaction(trans, ret);
10529 if (own_trans)
10530 btrfs_end_transaction(trans);
10531 break;
10532 }
10533
10534 if (own_trans) {
10535 btrfs_end_transaction(trans);
10536 trans = NULL;
10537 }
10538 }
10539 if (clear_offset < end)
10540 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10541 end - clear_offset + 1);
10542 return ret;
10543 }
10544
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10545 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10546 u64 start, u64 num_bytes, u64 min_size,
10547 loff_t actual_len, u64 *alloc_hint)
10548 {
10549 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10550 min_size, actual_len, alloc_hint,
10551 NULL);
10552 }
10553
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10554 int btrfs_prealloc_file_range_trans(struct inode *inode,
10555 struct btrfs_trans_handle *trans, int mode,
10556 u64 start, u64 num_bytes, u64 min_size,
10557 loff_t actual_len, u64 *alloc_hint)
10558 {
10559 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10560 min_size, actual_len, alloc_hint, trans);
10561 }
10562
btrfs_set_page_dirty(struct page * page)10563 static int btrfs_set_page_dirty(struct page *page)
10564 {
10565 return __set_page_dirty_nobuffers(page);
10566 }
10567
btrfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)10568 static int btrfs_permission(struct user_namespace *mnt_userns,
10569 struct inode *inode, int mask)
10570 {
10571 struct btrfs_root *root = BTRFS_I(inode)->root;
10572 umode_t mode = inode->i_mode;
10573
10574 if (mask & MAY_WRITE &&
10575 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10576 if (btrfs_root_readonly(root))
10577 return -EROFS;
10578 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10579 return -EACCES;
10580 }
10581 return generic_permission(mnt_userns, inode, mask);
10582 }
10583
btrfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)10584 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10585 struct dentry *dentry, umode_t mode)
10586 {
10587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10588 struct btrfs_trans_handle *trans;
10589 struct btrfs_root *root = BTRFS_I(dir)->root;
10590 struct inode *inode = NULL;
10591 u64 objectid;
10592 u64 index;
10593 int ret = 0;
10594
10595 /*
10596 * 5 units required for adding orphan entry
10597 */
10598 trans = btrfs_start_transaction(root, 5);
10599 if (IS_ERR(trans))
10600 return PTR_ERR(trans);
10601
10602 ret = btrfs_get_free_objectid(root, &objectid);
10603 if (ret)
10604 goto out;
10605
10606 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10607 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10608 if (IS_ERR(inode)) {
10609 ret = PTR_ERR(inode);
10610 inode = NULL;
10611 goto out;
10612 }
10613
10614 inode->i_fop = &btrfs_file_operations;
10615 inode->i_op = &btrfs_file_inode_operations;
10616
10617 inode->i_mapping->a_ops = &btrfs_aops;
10618
10619 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10620 if (ret)
10621 goto out;
10622
10623 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10624 if (ret)
10625 goto out;
10626 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10627 if (ret)
10628 goto out;
10629
10630 /*
10631 * We set number of links to 0 in btrfs_new_inode(), and here we set
10632 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10633 * through:
10634 *
10635 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10636 */
10637 set_nlink(inode, 1);
10638 d_tmpfile(dentry, inode);
10639 unlock_new_inode(inode);
10640 mark_inode_dirty(inode);
10641 out:
10642 btrfs_end_transaction(trans);
10643 if (ret && inode)
10644 discard_new_inode(inode);
10645 btrfs_btree_balance_dirty(fs_info);
10646 return ret;
10647 }
10648
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)10649 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10650 {
10651 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10652 unsigned long index = start >> PAGE_SHIFT;
10653 unsigned long end_index = end >> PAGE_SHIFT;
10654 struct page *page;
10655 u32 len;
10656
10657 ASSERT(end + 1 - start <= U32_MAX);
10658 len = end + 1 - start;
10659 while (index <= end_index) {
10660 page = find_get_page(inode->vfs_inode.i_mapping, index);
10661 ASSERT(page); /* Pages should be in the extent_io_tree */
10662
10663 btrfs_page_set_writeback(fs_info, page, start, len);
10664 put_page(page);
10665 index++;
10666 }
10667 }
10668
10669 #ifdef CONFIG_SWAP
10670 /*
10671 * Add an entry indicating a block group or device which is pinned by a
10672 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10673 * negative errno on failure.
10674 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10675 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10676 bool is_block_group)
10677 {
10678 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10679 struct btrfs_swapfile_pin *sp, *entry;
10680 struct rb_node **p;
10681 struct rb_node *parent = NULL;
10682
10683 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10684 if (!sp)
10685 return -ENOMEM;
10686 sp->ptr = ptr;
10687 sp->inode = inode;
10688 sp->is_block_group = is_block_group;
10689 sp->bg_extent_count = 1;
10690
10691 spin_lock(&fs_info->swapfile_pins_lock);
10692 p = &fs_info->swapfile_pins.rb_node;
10693 while (*p) {
10694 parent = *p;
10695 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10696 if (sp->ptr < entry->ptr ||
10697 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10698 p = &(*p)->rb_left;
10699 } else if (sp->ptr > entry->ptr ||
10700 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10701 p = &(*p)->rb_right;
10702 } else {
10703 if (is_block_group)
10704 entry->bg_extent_count++;
10705 spin_unlock(&fs_info->swapfile_pins_lock);
10706 kfree(sp);
10707 return 1;
10708 }
10709 }
10710 rb_link_node(&sp->node, parent, p);
10711 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10712 spin_unlock(&fs_info->swapfile_pins_lock);
10713 return 0;
10714 }
10715
10716 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10717 static void btrfs_free_swapfile_pins(struct inode *inode)
10718 {
10719 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10720 struct btrfs_swapfile_pin *sp;
10721 struct rb_node *node, *next;
10722
10723 spin_lock(&fs_info->swapfile_pins_lock);
10724 node = rb_first(&fs_info->swapfile_pins);
10725 while (node) {
10726 next = rb_next(node);
10727 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10728 if (sp->inode == inode) {
10729 rb_erase(&sp->node, &fs_info->swapfile_pins);
10730 if (sp->is_block_group) {
10731 btrfs_dec_block_group_swap_extents(sp->ptr,
10732 sp->bg_extent_count);
10733 btrfs_put_block_group(sp->ptr);
10734 }
10735 kfree(sp);
10736 }
10737 node = next;
10738 }
10739 spin_unlock(&fs_info->swapfile_pins_lock);
10740 }
10741
10742 struct btrfs_swap_info {
10743 u64 start;
10744 u64 block_start;
10745 u64 block_len;
10746 u64 lowest_ppage;
10747 u64 highest_ppage;
10748 unsigned long nr_pages;
10749 int nr_extents;
10750 };
10751
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10752 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10753 struct btrfs_swap_info *bsi)
10754 {
10755 unsigned long nr_pages;
10756 unsigned long max_pages;
10757 u64 first_ppage, first_ppage_reported, next_ppage;
10758 int ret;
10759
10760 /*
10761 * Our swapfile may have had its size extended after the swap header was
10762 * written. In that case activating the swapfile should not go beyond
10763 * the max size set in the swap header.
10764 */
10765 if (bsi->nr_pages >= sis->max)
10766 return 0;
10767
10768 max_pages = sis->max - bsi->nr_pages;
10769 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10770 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10771 PAGE_SIZE) >> PAGE_SHIFT;
10772
10773 if (first_ppage >= next_ppage)
10774 return 0;
10775 nr_pages = next_ppage - first_ppage;
10776 nr_pages = min(nr_pages, max_pages);
10777
10778 first_ppage_reported = first_ppage;
10779 if (bsi->start == 0)
10780 first_ppage_reported++;
10781 if (bsi->lowest_ppage > first_ppage_reported)
10782 bsi->lowest_ppage = first_ppage_reported;
10783 if (bsi->highest_ppage < (next_ppage - 1))
10784 bsi->highest_ppage = next_ppage - 1;
10785
10786 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10787 if (ret < 0)
10788 return ret;
10789 bsi->nr_extents += ret;
10790 bsi->nr_pages += nr_pages;
10791 return 0;
10792 }
10793
btrfs_swap_deactivate(struct file * file)10794 static void btrfs_swap_deactivate(struct file *file)
10795 {
10796 struct inode *inode = file_inode(file);
10797
10798 btrfs_free_swapfile_pins(inode);
10799 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10800 }
10801
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10802 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10803 sector_t *span)
10804 {
10805 struct inode *inode = file_inode(file);
10806 struct btrfs_root *root = BTRFS_I(inode)->root;
10807 struct btrfs_fs_info *fs_info = root->fs_info;
10808 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10809 struct extent_state *cached_state = NULL;
10810 struct extent_map *em = NULL;
10811 struct btrfs_device *device = NULL;
10812 struct btrfs_swap_info bsi = {
10813 .lowest_ppage = (sector_t)-1ULL,
10814 };
10815 int ret = 0;
10816 u64 isize;
10817 u64 start;
10818
10819 /*
10820 * If the swap file was just created, make sure delalloc is done. If the
10821 * file changes again after this, the user is doing something stupid and
10822 * we don't really care.
10823 */
10824 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10825 if (ret)
10826 return ret;
10827
10828 /*
10829 * The inode is locked, so these flags won't change after we check them.
10830 */
10831 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10832 btrfs_warn(fs_info, "swapfile must not be compressed");
10833 return -EINVAL;
10834 }
10835 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10836 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10837 return -EINVAL;
10838 }
10839 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10840 btrfs_warn(fs_info, "swapfile must not be checksummed");
10841 return -EINVAL;
10842 }
10843
10844 /*
10845 * Balance or device remove/replace/resize can move stuff around from
10846 * under us. The exclop protection makes sure they aren't running/won't
10847 * run concurrently while we are mapping the swap extents, and
10848 * fs_info->swapfile_pins prevents them from running while the swap
10849 * file is active and moving the extents. Note that this also prevents
10850 * a concurrent device add which isn't actually necessary, but it's not
10851 * really worth the trouble to allow it.
10852 */
10853 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10854 btrfs_warn(fs_info,
10855 "cannot activate swapfile while exclusive operation is running");
10856 return -EBUSY;
10857 }
10858
10859 /*
10860 * Prevent snapshot creation while we are activating the swap file.
10861 * We do not want to race with snapshot creation. If snapshot creation
10862 * already started before we bumped nr_swapfiles from 0 to 1 and
10863 * completes before the first write into the swap file after it is
10864 * activated, than that write would fallback to COW.
10865 */
10866 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10867 btrfs_exclop_finish(fs_info);
10868 btrfs_warn(fs_info,
10869 "cannot activate swapfile because snapshot creation is in progress");
10870 return -EINVAL;
10871 }
10872 /*
10873 * Snapshots can create extents which require COW even if NODATACOW is
10874 * set. We use this counter to prevent snapshots. We must increment it
10875 * before walking the extents because we don't want a concurrent
10876 * snapshot to run after we've already checked the extents.
10877 *
10878 * It is possible that subvolume is marked for deletion but still not
10879 * removed yet. To prevent this race, we check the root status before
10880 * activating the swapfile.
10881 */
10882 spin_lock(&root->root_item_lock);
10883 if (btrfs_root_dead(root)) {
10884 spin_unlock(&root->root_item_lock);
10885
10886 btrfs_exclop_finish(fs_info);
10887 btrfs_warn(fs_info,
10888 "cannot activate swapfile because subvolume %llu is being deleted",
10889 root->root_key.objectid);
10890 return -EPERM;
10891 }
10892 atomic_inc(&root->nr_swapfiles);
10893 spin_unlock(&root->root_item_lock);
10894
10895 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10896
10897 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10898 start = 0;
10899 while (start < isize) {
10900 u64 logical_block_start, physical_block_start;
10901 struct btrfs_block_group *bg;
10902 u64 len = isize - start;
10903
10904 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10905 if (IS_ERR(em)) {
10906 ret = PTR_ERR(em);
10907 goto out;
10908 }
10909
10910 if (em->block_start == EXTENT_MAP_HOLE) {
10911 btrfs_warn(fs_info, "swapfile must not have holes");
10912 ret = -EINVAL;
10913 goto out;
10914 }
10915 if (em->block_start == EXTENT_MAP_INLINE) {
10916 /*
10917 * It's unlikely we'll ever actually find ourselves
10918 * here, as a file small enough to fit inline won't be
10919 * big enough to store more than the swap header, but in
10920 * case something changes in the future, let's catch it
10921 * here rather than later.
10922 */
10923 btrfs_warn(fs_info, "swapfile must not be inline");
10924 ret = -EINVAL;
10925 goto out;
10926 }
10927 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10928 btrfs_warn(fs_info, "swapfile must not be compressed");
10929 ret = -EINVAL;
10930 goto out;
10931 }
10932
10933 logical_block_start = em->block_start + (start - em->start);
10934 len = min(len, em->len - (start - em->start));
10935 free_extent_map(em);
10936 em = NULL;
10937
10938 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10939 if (ret < 0) {
10940 goto out;
10941 } else if (ret) {
10942 ret = 0;
10943 } else {
10944 btrfs_warn(fs_info,
10945 "swapfile must not be copy-on-write");
10946 ret = -EINVAL;
10947 goto out;
10948 }
10949
10950 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10951 if (IS_ERR(em)) {
10952 ret = PTR_ERR(em);
10953 goto out;
10954 }
10955
10956 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10957 btrfs_warn(fs_info,
10958 "swapfile must have single data profile");
10959 ret = -EINVAL;
10960 goto out;
10961 }
10962
10963 if (device == NULL) {
10964 device = em->map_lookup->stripes[0].dev;
10965 ret = btrfs_add_swapfile_pin(inode, device, false);
10966 if (ret == 1)
10967 ret = 0;
10968 else if (ret)
10969 goto out;
10970 } else if (device != em->map_lookup->stripes[0].dev) {
10971 btrfs_warn(fs_info, "swapfile must be on one device");
10972 ret = -EINVAL;
10973 goto out;
10974 }
10975
10976 physical_block_start = (em->map_lookup->stripes[0].physical +
10977 (logical_block_start - em->start));
10978 len = min(len, em->len - (logical_block_start - em->start));
10979 free_extent_map(em);
10980 em = NULL;
10981
10982 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10983 if (!bg) {
10984 btrfs_warn(fs_info,
10985 "could not find block group containing swapfile");
10986 ret = -EINVAL;
10987 goto out;
10988 }
10989
10990 if (!btrfs_inc_block_group_swap_extents(bg)) {
10991 btrfs_warn(fs_info,
10992 "block group for swapfile at %llu is read-only%s",
10993 bg->start,
10994 atomic_read(&fs_info->scrubs_running) ?
10995 " (scrub running)" : "");
10996 btrfs_put_block_group(bg);
10997 ret = -EINVAL;
10998 goto out;
10999 }
11000
11001 ret = btrfs_add_swapfile_pin(inode, bg, true);
11002 if (ret) {
11003 btrfs_put_block_group(bg);
11004 if (ret == 1)
11005 ret = 0;
11006 else
11007 goto out;
11008 }
11009
11010 if (bsi.block_len &&
11011 bsi.block_start + bsi.block_len == physical_block_start) {
11012 bsi.block_len += len;
11013 } else {
11014 if (bsi.block_len) {
11015 ret = btrfs_add_swap_extent(sis, &bsi);
11016 if (ret)
11017 goto out;
11018 }
11019 bsi.start = start;
11020 bsi.block_start = physical_block_start;
11021 bsi.block_len = len;
11022 }
11023
11024 start += len;
11025 }
11026
11027 if (bsi.block_len)
11028 ret = btrfs_add_swap_extent(sis, &bsi);
11029
11030 out:
11031 if (!IS_ERR_OR_NULL(em))
11032 free_extent_map(em);
11033
11034 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11035
11036 if (ret)
11037 btrfs_swap_deactivate(file);
11038
11039 btrfs_drew_write_unlock(&root->snapshot_lock);
11040
11041 btrfs_exclop_finish(fs_info);
11042
11043 if (ret)
11044 return ret;
11045
11046 if (device)
11047 sis->bdev = device->bdev;
11048 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11049 sis->max = bsi.nr_pages;
11050 sis->pages = bsi.nr_pages - 1;
11051 sis->highest_bit = bsi.nr_pages - 1;
11052 return bsi.nr_extents;
11053 }
11054 #else
btrfs_swap_deactivate(struct file * file)11055 static void btrfs_swap_deactivate(struct file *file)
11056 {
11057 }
11058
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11059 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11060 sector_t *span)
11061 {
11062 return -EOPNOTSUPP;
11063 }
11064 #endif
11065
11066 /*
11067 * Update the number of bytes used in the VFS' inode. When we replace extents in
11068 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11069 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11070 * always get a correct value.
11071 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)11072 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11073 const u64 add_bytes,
11074 const u64 del_bytes)
11075 {
11076 if (add_bytes == del_bytes)
11077 return;
11078
11079 spin_lock(&inode->lock);
11080 if (del_bytes > 0)
11081 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11082 if (add_bytes > 0)
11083 inode_add_bytes(&inode->vfs_inode, add_bytes);
11084 spin_unlock(&inode->lock);
11085 }
11086
11087 static const struct inode_operations btrfs_dir_inode_operations = {
11088 .getattr = btrfs_getattr,
11089 .lookup = btrfs_lookup,
11090 .create = btrfs_create,
11091 .unlink = btrfs_unlink,
11092 .link = btrfs_link,
11093 .mkdir = btrfs_mkdir,
11094 .rmdir = btrfs_rmdir,
11095 .rename = btrfs_rename2,
11096 .symlink = btrfs_symlink,
11097 .setattr = btrfs_setattr,
11098 .mknod = btrfs_mknod,
11099 .listxattr = btrfs_listxattr,
11100 .permission = btrfs_permission,
11101 .get_acl = btrfs_get_acl,
11102 .set_acl = btrfs_set_acl,
11103 .update_time = btrfs_update_time,
11104 .tmpfile = btrfs_tmpfile,
11105 .fileattr_get = btrfs_fileattr_get,
11106 .fileattr_set = btrfs_fileattr_set,
11107 };
11108
11109 static const struct file_operations btrfs_dir_file_operations = {
11110 .llseek = btrfs_dir_llseek,
11111 .read = generic_read_dir,
11112 .iterate_shared = btrfs_real_readdir,
11113 .open = btrfs_opendir,
11114 .unlocked_ioctl = btrfs_ioctl,
11115 #ifdef CONFIG_COMPAT
11116 .compat_ioctl = btrfs_compat_ioctl,
11117 #endif
11118 .release = btrfs_release_file,
11119 .fsync = btrfs_sync_file,
11120 };
11121
11122 /*
11123 * btrfs doesn't support the bmap operation because swapfiles
11124 * use bmap to make a mapping of extents in the file. They assume
11125 * these extents won't change over the life of the file and they
11126 * use the bmap result to do IO directly to the drive.
11127 *
11128 * the btrfs bmap call would return logical addresses that aren't
11129 * suitable for IO and they also will change frequently as COW
11130 * operations happen. So, swapfile + btrfs == corruption.
11131 *
11132 * For now we're avoiding this by dropping bmap.
11133 */
11134 static const struct address_space_operations btrfs_aops = {
11135 .readpage = btrfs_readpage,
11136 .writepage = btrfs_writepage,
11137 .writepages = btrfs_writepages,
11138 .readahead = btrfs_readahead,
11139 .direct_IO = noop_direct_IO,
11140 .invalidatepage = btrfs_invalidatepage,
11141 .releasepage = btrfs_releasepage,
11142 #ifdef CONFIG_MIGRATION
11143 .migratepage = btrfs_migratepage,
11144 #endif
11145 .set_page_dirty = btrfs_set_page_dirty,
11146 .error_remove_page = generic_error_remove_page,
11147 .swap_activate = btrfs_swap_activate,
11148 .swap_deactivate = btrfs_swap_deactivate,
11149 };
11150
11151 static const struct inode_operations btrfs_file_inode_operations = {
11152 .getattr = btrfs_getattr,
11153 .setattr = btrfs_setattr,
11154 .listxattr = btrfs_listxattr,
11155 .permission = btrfs_permission,
11156 .fiemap = btrfs_fiemap,
11157 .get_acl = btrfs_get_acl,
11158 .set_acl = btrfs_set_acl,
11159 .update_time = btrfs_update_time,
11160 .fileattr_get = btrfs_fileattr_get,
11161 .fileattr_set = btrfs_fileattr_set,
11162 };
11163 static const struct inode_operations btrfs_special_inode_operations = {
11164 .getattr = btrfs_getattr,
11165 .setattr = btrfs_setattr,
11166 .permission = btrfs_permission,
11167 .listxattr = btrfs_listxattr,
11168 .get_acl = btrfs_get_acl,
11169 .set_acl = btrfs_set_acl,
11170 .update_time = btrfs_update_time,
11171 };
11172 static const struct inode_operations btrfs_symlink_inode_operations = {
11173 .get_link = page_get_link,
11174 .getattr = btrfs_getattr,
11175 .setattr = btrfs_setattr,
11176 .permission = btrfs_permission,
11177 .listxattr = btrfs_listxattr,
11178 .update_time = btrfs_update_time,
11179 };
11180
11181 const struct dentry_operations btrfs_dentry_operations = {
11182 .d_delete = btrfs_dentry_delete,
11183 };
11184