1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 struct btrfs_delayed_ref_node *node, u64 parent,
45 u64 root_objectid, u64 owner_objectid,
46 u64 owner_offset, int refs_to_drop,
47 struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 struct extent_buffer *leaf,
50 struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_delayed_ref_node *node,
57 struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 struct btrfs_key *key);
60
block_group_bits(struct btrfs_block_group * cache,u64 bits)61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 return (cache->flags & bits) == bits;
64 }
65
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 u64 start, u64 num_bytes)
68 {
69 u64 end = start + num_bytes - 1;
70 set_extent_bits(&fs_info->excluded_extents, start, end,
71 EXTENT_UPTODATE);
72 return 0;
73 }
74
btrfs_free_excluded_extents(struct btrfs_block_group * cache)75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 struct btrfs_fs_info *fs_info = cache->fs_info;
78 u64 start, end;
79
80 start = cache->start;
81 end = start + cache->length - 1;
82
83 clear_extent_bits(&fs_info->excluded_extents, start, end,
84 EXTENT_UPTODATE);
85 }
86
87 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 int ret;
91 struct btrfs_key key;
92 struct btrfs_path *path;
93
94 path = btrfs_alloc_path();
95 if (!path)
96 return -ENOMEM;
97
98 key.objectid = start;
99 key.offset = len;
100 key.type = BTRFS_EXTENT_ITEM_KEY;
101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
102 btrfs_free_path(path);
103 return ret;
104 }
105
106 /*
107 * helper function to lookup reference count and flags of a tree block.
108 *
109 * the head node for delayed ref is used to store the sum of all the
110 * reference count modifications queued up in the rbtree. the head
111 * node may also store the extent flags to set. This way you can check
112 * to see what the reference count and extent flags would be if all of
113 * the delayed refs are not processed.
114 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
116 struct btrfs_fs_info *fs_info, u64 bytenr,
117 u64 offset, int metadata, u64 *refs, u64 *flags)
118 {
119 struct btrfs_delayed_ref_head *head;
120 struct btrfs_delayed_ref_root *delayed_refs;
121 struct btrfs_path *path;
122 struct btrfs_extent_item *ei;
123 struct extent_buffer *leaf;
124 struct btrfs_key key;
125 u32 item_size;
126 u64 num_refs;
127 u64 extent_flags;
128 int ret;
129
130 /*
131 * If we don't have skinny metadata, don't bother doing anything
132 * different
133 */
134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
135 offset = fs_info->nodesize;
136 metadata = 0;
137 }
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 if (!trans) {
144 path->skip_locking = 1;
145 path->search_commit_root = 1;
146 }
147
148 search_again:
149 key.objectid = bytenr;
150 key.offset = offset;
151 if (metadata)
152 key.type = BTRFS_METADATA_ITEM_KEY;
153 else
154 key.type = BTRFS_EXTENT_ITEM_KEY;
155
156 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
157 if (ret < 0)
158 goto out_free;
159
160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
161 if (path->slots[0]) {
162 path->slots[0]--;
163 btrfs_item_key_to_cpu(path->nodes[0], &key,
164 path->slots[0]);
165 if (key.objectid == bytenr &&
166 key.type == BTRFS_EXTENT_ITEM_KEY &&
167 key.offset == fs_info->nodesize)
168 ret = 0;
169 }
170 }
171
172 if (ret == 0) {
173 leaf = path->nodes[0];
174 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
175 if (item_size >= sizeof(*ei)) {
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_extent_item);
178 num_refs = btrfs_extent_refs(leaf, ei);
179 extent_flags = btrfs_extent_flags(leaf, ei);
180 } else {
181 ret = -EINVAL;
182 btrfs_print_v0_err(fs_info);
183 if (trans)
184 btrfs_abort_transaction(trans, ret);
185 else
186 btrfs_handle_fs_error(fs_info, ret, NULL);
187
188 goto out_free;
189 }
190
191 BUG_ON(num_refs == 0);
192 } else {
193 num_refs = 0;
194 extent_flags = 0;
195 ret = 0;
196 }
197
198 if (!trans)
199 goto out;
200
201 delayed_refs = &trans->transaction->delayed_refs;
202 spin_lock(&delayed_refs->lock);
203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
204 if (head) {
205 if (!mutex_trylock(&head->mutex)) {
206 refcount_inc(&head->refs);
207 spin_unlock(&delayed_refs->lock);
208
209 btrfs_release_path(path);
210
211 /*
212 * Mutex was contended, block until it's released and try
213 * again
214 */
215 mutex_lock(&head->mutex);
216 mutex_unlock(&head->mutex);
217 btrfs_put_delayed_ref_head(head);
218 goto search_again;
219 }
220 spin_lock(&head->lock);
221 if (head->extent_op && head->extent_op->update_flags)
222 extent_flags |= head->extent_op->flags_to_set;
223 else
224 BUG_ON(num_refs == 0);
225
226 num_refs += head->ref_mod;
227 spin_unlock(&head->lock);
228 mutex_unlock(&head->mutex);
229 }
230 spin_unlock(&delayed_refs->lock);
231 out:
232 WARN_ON(num_refs == 0);
233 if (refs)
234 *refs = num_refs;
235 if (flags)
236 *flags = extent_flags;
237 out_free:
238 btrfs_free_path(path);
239 return ret;
240 }
241
242 /*
243 * Back reference rules. Back refs have three main goals:
244 *
245 * 1) differentiate between all holders of references to an extent so that
246 * when a reference is dropped we can make sure it was a valid reference
247 * before freeing the extent.
248 *
249 * 2) Provide enough information to quickly find the holders of an extent
250 * if we notice a given block is corrupted or bad.
251 *
252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
253 * maintenance. This is actually the same as #2, but with a slightly
254 * different use case.
255 *
256 * There are two kinds of back refs. The implicit back refs is optimized
257 * for pointers in non-shared tree blocks. For a given pointer in a block,
258 * back refs of this kind provide information about the block's owner tree
259 * and the pointer's key. These information allow us to find the block by
260 * b-tree searching. The full back refs is for pointers in tree blocks not
261 * referenced by their owner trees. The location of tree block is recorded
262 * in the back refs. Actually the full back refs is generic, and can be
263 * used in all cases the implicit back refs is used. The major shortcoming
264 * of the full back refs is its overhead. Every time a tree block gets
265 * COWed, we have to update back refs entry for all pointers in it.
266 *
267 * For a newly allocated tree block, we use implicit back refs for
268 * pointers in it. This means most tree related operations only involve
269 * implicit back refs. For a tree block created in old transaction, the
270 * only way to drop a reference to it is COW it. So we can detect the
271 * event that tree block loses its owner tree's reference and do the
272 * back refs conversion.
273 *
274 * When a tree block is COWed through a tree, there are four cases:
275 *
276 * The reference count of the block is one and the tree is the block's
277 * owner tree. Nothing to do in this case.
278 *
279 * The reference count of the block is one and the tree is not the
280 * block's owner tree. In this case, full back refs is used for pointers
281 * in the block. Remove these full back refs, add implicit back refs for
282 * every pointers in the new block.
283 *
284 * The reference count of the block is greater than one and the tree is
285 * the block's owner tree. In this case, implicit back refs is used for
286 * pointers in the block. Add full back refs for every pointers in the
287 * block, increase lower level extents' reference counts. The original
288 * implicit back refs are entailed to the new block.
289 *
290 * The reference count of the block is greater than one and the tree is
291 * not the block's owner tree. Add implicit back refs for every pointer in
292 * the new block, increase lower level extents' reference count.
293 *
294 * Back Reference Key composing:
295 *
296 * The key objectid corresponds to the first byte in the extent,
297 * The key type is used to differentiate between types of back refs.
298 * There are different meanings of the key offset for different types
299 * of back refs.
300 *
301 * File extents can be referenced by:
302 *
303 * - multiple snapshots, subvolumes, or different generations in one subvol
304 * - different files inside a single subvolume
305 * - different offsets inside a file (bookend extents in file.c)
306 *
307 * The extent ref structure for the implicit back refs has fields for:
308 *
309 * - Objectid of the subvolume root
310 * - objectid of the file holding the reference
311 * - original offset in the file
312 * - how many bookend extents
313 *
314 * The key offset for the implicit back refs is hash of the first
315 * three fields.
316 *
317 * The extent ref structure for the full back refs has field for:
318 *
319 * - number of pointers in the tree leaf
320 *
321 * The key offset for the implicit back refs is the first byte of
322 * the tree leaf
323 *
324 * When a file extent is allocated, The implicit back refs is used.
325 * the fields are filled in:
326 *
327 * (root_key.objectid, inode objectid, offset in file, 1)
328 *
329 * When a file extent is removed file truncation, we find the
330 * corresponding implicit back refs and check the following fields:
331 *
332 * (btrfs_header_owner(leaf), inode objectid, offset in file)
333 *
334 * Btree extents can be referenced by:
335 *
336 * - Different subvolumes
337 *
338 * Both the implicit back refs and the full back refs for tree blocks
339 * only consist of key. The key offset for the implicit back refs is
340 * objectid of block's owner tree. The key offset for the full back refs
341 * is the first byte of parent block.
342 *
343 * When implicit back refs is used, information about the lowest key and
344 * level of the tree block are required. These information are stored in
345 * tree block info structure.
346 */
347
348 /*
349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
352 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
354 struct btrfs_extent_inline_ref *iref,
355 enum btrfs_inline_ref_type is_data)
356 {
357 int type = btrfs_extent_inline_ref_type(eb, iref);
358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
359
360 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
361 type == BTRFS_SHARED_BLOCK_REF_KEY ||
362 type == BTRFS_SHARED_DATA_REF_KEY ||
363 type == BTRFS_EXTENT_DATA_REF_KEY) {
364 if (is_data == BTRFS_REF_TYPE_BLOCK) {
365 if (type == BTRFS_TREE_BLOCK_REF_KEY)
366 return type;
367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
368 ASSERT(eb->fs_info);
369 /*
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
372 */
373 if (offset &&
374 IS_ALIGNED(offset, eb->fs_info->sectorsize))
375 return type;
376 }
377 } else if (is_data == BTRFS_REF_TYPE_DATA) {
378 if (type == BTRFS_EXTENT_DATA_REF_KEY)
379 return type;
380 if (type == BTRFS_SHARED_DATA_REF_KEY) {
381 ASSERT(eb->fs_info);
382 /*
383 * Every shared one has parent tree block,
384 * which must be aligned to sector size.
385 */
386 if (offset &&
387 IS_ALIGNED(offset, eb->fs_info->sectorsize))
388 return type;
389 }
390 } else {
391 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
392 return type;
393 }
394 }
395
396 btrfs_print_leaf((struct extent_buffer *)eb);
397 btrfs_err(eb->fs_info,
398 "eb %llu iref 0x%lx invalid extent inline ref type %d",
399 eb->start, (unsigned long)iref, type);
400 WARN_ON(1);
401
402 return BTRFS_REF_TYPE_INVALID;
403 }
404
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
406 {
407 u32 high_crc = ~(u32)0;
408 u32 low_crc = ~(u32)0;
409 __le64 lenum;
410
411 lenum = cpu_to_le64(root_objectid);
412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
413 lenum = cpu_to_le64(owner);
414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 lenum = cpu_to_le64(offset);
416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
417
418 return ((u64)high_crc << 31) ^ (u64)low_crc;
419 }
420
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 struct btrfs_extent_data_ref *ref)
423 {
424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 btrfs_extent_data_ref_objectid(leaf, ref),
426 btrfs_extent_data_ref_offset(leaf, ref));
427 }
428
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 struct btrfs_extent_data_ref *ref,
431 u64 root_objectid, u64 owner, u64 offset)
432 {
433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 btrfs_extent_data_ref_offset(leaf, ref) != offset)
436 return 0;
437 return 1;
438 }
439
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 struct btrfs_path *path,
442 u64 bytenr, u64 parent,
443 u64 root_objectid,
444 u64 owner, u64 offset)
445 {
446 struct btrfs_root *root = trans->fs_info->extent_root;
447 struct btrfs_key key;
448 struct btrfs_extent_data_ref *ref;
449 struct extent_buffer *leaf;
450 u32 nritems;
451 int ret;
452 int recow;
453 int err = -ENOENT;
454
455 key.objectid = bytenr;
456 if (parent) {
457 key.type = BTRFS_SHARED_DATA_REF_KEY;
458 key.offset = parent;
459 } else {
460 key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 key.offset = hash_extent_data_ref(root_objectid,
462 owner, offset);
463 }
464 again:
465 recow = 0;
466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
467 if (ret < 0) {
468 err = ret;
469 goto fail;
470 }
471
472 if (parent) {
473 if (!ret)
474 return 0;
475 goto fail;
476 }
477
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
480 while (1) {
481 if (path->slots[0] >= nritems) {
482 ret = btrfs_next_leaf(root, path);
483 if (ret < 0)
484 err = ret;
485 if (ret)
486 goto fail;
487
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
490 recow = 1;
491 }
492
493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 if (key.objectid != bytenr ||
495 key.type != BTRFS_EXTENT_DATA_REF_KEY)
496 goto fail;
497
498 ref = btrfs_item_ptr(leaf, path->slots[0],
499 struct btrfs_extent_data_ref);
500
501 if (match_extent_data_ref(leaf, ref, root_objectid,
502 owner, offset)) {
503 if (recow) {
504 btrfs_release_path(path);
505 goto again;
506 }
507 err = 0;
508 break;
509 }
510 path->slots[0]++;
511 }
512 fail:
513 return err;
514 }
515
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 struct btrfs_path *path,
518 u64 bytenr, u64 parent,
519 u64 root_objectid, u64 owner,
520 u64 offset, int refs_to_add)
521 {
522 struct btrfs_root *root = trans->fs_info->extent_root;
523 struct btrfs_key key;
524 struct extent_buffer *leaf;
525 u32 size;
526 u32 num_refs;
527 int ret;
528
529 key.objectid = bytenr;
530 if (parent) {
531 key.type = BTRFS_SHARED_DATA_REF_KEY;
532 key.offset = parent;
533 size = sizeof(struct btrfs_shared_data_ref);
534 } else {
535 key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 key.offset = hash_extent_data_ref(root_objectid,
537 owner, offset);
538 size = sizeof(struct btrfs_extent_data_ref);
539 }
540
541 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 if (ret && ret != -EEXIST)
543 goto fail;
544
545 leaf = path->nodes[0];
546 if (parent) {
547 struct btrfs_shared_data_ref *ref;
548 ref = btrfs_item_ptr(leaf, path->slots[0],
549 struct btrfs_shared_data_ref);
550 if (ret == 0) {
551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
552 } else {
553 num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 num_refs += refs_to_add;
555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
556 }
557 } else {
558 struct btrfs_extent_data_ref *ref;
559 while (ret == -EEXIST) {
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (match_extent_data_ref(leaf, ref, root_objectid,
563 owner, offset))
564 break;
565 btrfs_release_path(path);
566 key.offset++;
567 ret = btrfs_insert_empty_item(trans, root, path, &key,
568 size);
569 if (ret && ret != -EEXIST)
570 goto fail;
571
572 leaf = path->nodes[0];
573 }
574 ref = btrfs_item_ptr(leaf, path->slots[0],
575 struct btrfs_extent_data_ref);
576 if (ret == 0) {
577 btrfs_set_extent_data_ref_root(leaf, ref,
578 root_objectid);
579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
582 } else {
583 num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 num_refs += refs_to_add;
585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
586 }
587 }
588 btrfs_mark_buffer_dirty(leaf);
589 ret = 0;
590 fail:
591 btrfs_release_path(path);
592 return ret;
593 }
594
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 struct btrfs_path *path,
597 int refs_to_drop, int *last_ref)
598 {
599 struct btrfs_key key;
600 struct btrfs_extent_data_ref *ref1 = NULL;
601 struct btrfs_shared_data_ref *ref2 = NULL;
602 struct extent_buffer *leaf;
603 u32 num_refs = 0;
604 int ret = 0;
605
606 leaf = path->nodes[0];
607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608
609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
610 ref1 = btrfs_item_ptr(leaf, path->slots[0],
611 struct btrfs_extent_data_ref);
612 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
614 ref2 = btrfs_item_ptr(leaf, path->slots[0],
615 struct btrfs_shared_data_ref);
616 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
618 btrfs_print_v0_err(trans->fs_info);
619 btrfs_abort_transaction(trans, -EINVAL);
620 return -EINVAL;
621 } else {
622 BUG();
623 }
624
625 BUG_ON(num_refs < refs_to_drop);
626 num_refs -= refs_to_drop;
627
628 if (num_refs == 0) {
629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
630 *last_ref = 1;
631 } else {
632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 btrfs_mark_buffer_dirty(leaf);
637 }
638 return ret;
639 }
640
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 struct btrfs_extent_inline_ref *iref)
643 {
644 struct btrfs_key key;
645 struct extent_buffer *leaf;
646 struct btrfs_extent_data_ref *ref1;
647 struct btrfs_shared_data_ref *ref2;
648 u32 num_refs = 0;
649 int type;
650
651 leaf = path->nodes[0];
652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
653
654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
655 if (iref) {
656 /*
657 * If type is invalid, we should have bailed out earlier than
658 * this call.
659 */
660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
661 ASSERT(type != BTRFS_REF_TYPE_INVALID);
662 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
664 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
665 } else {
666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
667 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
668 }
669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
670 ref1 = btrfs_item_ptr(leaf, path->slots[0],
671 struct btrfs_extent_data_ref);
672 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
674 ref2 = btrfs_item_ptr(leaf, path->slots[0],
675 struct btrfs_shared_data_ref);
676 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 } else {
678 WARN_ON(1);
679 }
680 return num_refs;
681 }
682
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
684 struct btrfs_path *path,
685 u64 bytenr, u64 parent,
686 u64 root_objectid)
687 {
688 struct btrfs_root *root = trans->fs_info->extent_root;
689 struct btrfs_key key;
690 int ret;
691
692 key.objectid = bytenr;
693 if (parent) {
694 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
695 key.offset = parent;
696 } else {
697 key.type = BTRFS_TREE_BLOCK_REF_KEY;
698 key.offset = root_objectid;
699 }
700
701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
702 if (ret > 0)
703 ret = -ENOENT;
704 return ret;
705 }
706
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
708 struct btrfs_path *path,
709 u64 bytenr, u64 parent,
710 u64 root_objectid)
711 {
712 struct btrfs_key key;
713 int ret;
714
715 key.objectid = bytenr;
716 if (parent) {
717 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
718 key.offset = parent;
719 } else {
720 key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 key.offset = root_objectid;
722 }
723
724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
725 path, &key, 0);
726 btrfs_release_path(path);
727 return ret;
728 }
729
extent_ref_type(u64 parent,u64 owner)730 static inline int extent_ref_type(u64 parent, u64 owner)
731 {
732 int type;
733 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
734 if (parent > 0)
735 type = BTRFS_SHARED_BLOCK_REF_KEY;
736 else
737 type = BTRFS_TREE_BLOCK_REF_KEY;
738 } else {
739 if (parent > 0)
740 type = BTRFS_SHARED_DATA_REF_KEY;
741 else
742 type = BTRFS_EXTENT_DATA_REF_KEY;
743 }
744 return type;
745 }
746
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)747 static int find_next_key(struct btrfs_path *path, int level,
748 struct btrfs_key *key)
749
750 {
751 for (; level < BTRFS_MAX_LEVEL; level++) {
752 if (!path->nodes[level])
753 break;
754 if (path->slots[level] + 1 >=
755 btrfs_header_nritems(path->nodes[level]))
756 continue;
757 if (level == 0)
758 btrfs_item_key_to_cpu(path->nodes[level], key,
759 path->slots[level] + 1);
760 else
761 btrfs_node_key_to_cpu(path->nodes[level], key,
762 path->slots[level] + 1);
763 return 0;
764 }
765 return 1;
766 }
767
768 /*
769 * look for inline back ref. if back ref is found, *ref_ret is set
770 * to the address of inline back ref, and 0 is returned.
771 *
772 * if back ref isn't found, *ref_ret is set to the address where it
773 * should be inserted, and -ENOENT is returned.
774 *
775 * if insert is true and there are too many inline back refs, the path
776 * points to the extent item, and -EAGAIN is returned.
777 *
778 * NOTE: inline back refs are ordered in the same way that back ref
779 * items in the tree are ordered.
780 */
781 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
783 struct btrfs_path *path,
784 struct btrfs_extent_inline_ref **ref_ret,
785 u64 bytenr, u64 num_bytes,
786 u64 parent, u64 root_objectid,
787 u64 owner, u64 offset, int insert)
788 {
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790 struct btrfs_root *root = fs_info->extent_root;
791 struct btrfs_key key;
792 struct extent_buffer *leaf;
793 struct btrfs_extent_item *ei;
794 struct btrfs_extent_inline_ref *iref;
795 u64 flags;
796 u64 item_size;
797 unsigned long ptr;
798 unsigned long end;
799 int extra_size;
800 int type;
801 int want;
802 int ret;
803 int err = 0;
804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
805 int needed;
806
807 key.objectid = bytenr;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 key.offset = num_bytes;
810
811 want = extent_ref_type(parent, owner);
812 if (insert) {
813 extra_size = btrfs_extent_inline_ref_size(want);
814 path->search_for_extension = 1;
815 path->keep_locks = 1;
816 } else
817 extra_size = -1;
818
819 /*
820 * Owner is our level, so we can just add one to get the level for the
821 * block we are interested in.
822 */
823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
824 key.type = BTRFS_METADATA_ITEM_KEY;
825 key.offset = owner;
826 }
827
828 again:
829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
830 if (ret < 0) {
831 err = ret;
832 goto out;
833 }
834
835 /*
836 * We may be a newly converted file system which still has the old fat
837 * extent entries for metadata, so try and see if we have one of those.
838 */
839 if (ret > 0 && skinny_metadata) {
840 skinny_metadata = false;
841 if (path->slots[0]) {
842 path->slots[0]--;
843 btrfs_item_key_to_cpu(path->nodes[0], &key,
844 path->slots[0]);
845 if (key.objectid == bytenr &&
846 key.type == BTRFS_EXTENT_ITEM_KEY &&
847 key.offset == num_bytes)
848 ret = 0;
849 }
850 if (ret) {
851 key.objectid = bytenr;
852 key.type = BTRFS_EXTENT_ITEM_KEY;
853 key.offset = num_bytes;
854 btrfs_release_path(path);
855 goto again;
856 }
857 }
858
859 if (ret && !insert) {
860 err = -ENOENT;
861 goto out;
862 } else if (WARN_ON(ret)) {
863 btrfs_print_leaf(path->nodes[0]);
864 btrfs_err(fs_info,
865 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
866 bytenr, num_bytes, parent, root_objectid, owner,
867 offset);
868 err = -EIO;
869 goto out;
870 }
871
872 leaf = path->nodes[0];
873 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
874 if (unlikely(item_size < sizeof(*ei))) {
875 err = -EINVAL;
876 btrfs_print_v0_err(fs_info);
877 btrfs_abort_transaction(trans, err);
878 goto out;
879 }
880
881 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
882 flags = btrfs_extent_flags(leaf, ei);
883
884 ptr = (unsigned long)(ei + 1);
885 end = (unsigned long)ei + item_size;
886
887 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
888 ptr += sizeof(struct btrfs_tree_block_info);
889 BUG_ON(ptr > end);
890 }
891
892 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
893 needed = BTRFS_REF_TYPE_DATA;
894 else
895 needed = BTRFS_REF_TYPE_BLOCK;
896
897 err = -ENOENT;
898 while (1) {
899 if (ptr >= end) {
900 WARN_ON(ptr > end);
901 break;
902 }
903 iref = (struct btrfs_extent_inline_ref *)ptr;
904 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
905 if (type == BTRFS_REF_TYPE_INVALID) {
906 err = -EUCLEAN;
907 goto out;
908 }
909
910 if (want < type)
911 break;
912 if (want > type) {
913 ptr += btrfs_extent_inline_ref_size(type);
914 continue;
915 }
916
917 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
918 struct btrfs_extent_data_ref *dref;
919 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
920 if (match_extent_data_ref(leaf, dref, root_objectid,
921 owner, offset)) {
922 err = 0;
923 break;
924 }
925 if (hash_extent_data_ref_item(leaf, dref) <
926 hash_extent_data_ref(root_objectid, owner, offset))
927 break;
928 } else {
929 u64 ref_offset;
930 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
931 if (parent > 0) {
932 if (parent == ref_offset) {
933 err = 0;
934 break;
935 }
936 if (ref_offset < parent)
937 break;
938 } else {
939 if (root_objectid == ref_offset) {
940 err = 0;
941 break;
942 }
943 if (ref_offset < root_objectid)
944 break;
945 }
946 }
947 ptr += btrfs_extent_inline_ref_size(type);
948 }
949 if (err == -ENOENT && insert) {
950 if (item_size + extra_size >=
951 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
952 err = -EAGAIN;
953 goto out;
954 }
955 /*
956 * To add new inline back ref, we have to make sure
957 * there is no corresponding back ref item.
958 * For simplicity, we just do not add new inline back
959 * ref if there is any kind of item for this block
960 */
961 if (find_next_key(path, 0, &key) == 0 &&
962 key.objectid == bytenr &&
963 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
964 err = -EAGAIN;
965 goto out;
966 }
967 }
968 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
969 out:
970 if (insert) {
971 path->keep_locks = 0;
972 path->search_for_extension = 0;
973 btrfs_unlock_up_safe(path, 1);
974 }
975 return err;
976 }
977
978 /*
979 * helper to add new inline back ref
980 */
981 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)982 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
983 struct btrfs_path *path,
984 struct btrfs_extent_inline_ref *iref,
985 u64 parent, u64 root_objectid,
986 u64 owner, u64 offset, int refs_to_add,
987 struct btrfs_delayed_extent_op *extent_op)
988 {
989 struct extent_buffer *leaf;
990 struct btrfs_extent_item *ei;
991 unsigned long ptr;
992 unsigned long end;
993 unsigned long item_offset;
994 u64 refs;
995 int size;
996 int type;
997
998 leaf = path->nodes[0];
999 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1000 item_offset = (unsigned long)iref - (unsigned long)ei;
1001
1002 type = extent_ref_type(parent, owner);
1003 size = btrfs_extent_inline_ref_size(type);
1004
1005 btrfs_extend_item(path, size);
1006
1007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 refs = btrfs_extent_refs(leaf, ei);
1009 refs += refs_to_add;
1010 btrfs_set_extent_refs(leaf, ei, refs);
1011 if (extent_op)
1012 __run_delayed_extent_op(extent_op, leaf, ei);
1013
1014 ptr = (unsigned long)ei + item_offset;
1015 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1016 if (ptr < end - size)
1017 memmove_extent_buffer(leaf, ptr + size, ptr,
1018 end - size - ptr);
1019
1020 iref = (struct btrfs_extent_inline_ref *)ptr;
1021 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1022 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1023 struct btrfs_extent_data_ref *dref;
1024 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1025 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1026 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1027 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1028 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1029 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1030 struct btrfs_shared_data_ref *sref;
1031 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1032 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1033 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1034 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1035 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1036 } else {
1037 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1038 }
1039 btrfs_mark_buffer_dirty(leaf);
1040 }
1041
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1042 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1043 struct btrfs_path *path,
1044 struct btrfs_extent_inline_ref **ref_ret,
1045 u64 bytenr, u64 num_bytes, u64 parent,
1046 u64 root_objectid, u64 owner, u64 offset)
1047 {
1048 int ret;
1049
1050 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1051 num_bytes, parent, root_objectid,
1052 owner, offset, 0);
1053 if (ret != -ENOENT)
1054 return ret;
1055
1056 btrfs_release_path(path);
1057 *ref_ret = NULL;
1058
1059 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1060 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1061 root_objectid);
1062 } else {
1063 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1064 root_objectid, owner, offset);
1065 }
1066 return ret;
1067 }
1068
1069 /*
1070 * helper to update/remove inline back ref
1071 */
1072 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1073 void update_inline_extent_backref(struct btrfs_path *path,
1074 struct btrfs_extent_inline_ref *iref,
1075 int refs_to_mod,
1076 struct btrfs_delayed_extent_op *extent_op,
1077 int *last_ref)
1078 {
1079 struct extent_buffer *leaf = path->nodes[0];
1080 struct btrfs_extent_item *ei;
1081 struct btrfs_extent_data_ref *dref = NULL;
1082 struct btrfs_shared_data_ref *sref = NULL;
1083 unsigned long ptr;
1084 unsigned long end;
1085 u32 item_size;
1086 int size;
1087 int type;
1088 u64 refs;
1089
1090 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1091 refs = btrfs_extent_refs(leaf, ei);
1092 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1093 refs += refs_to_mod;
1094 btrfs_set_extent_refs(leaf, ei, refs);
1095 if (extent_op)
1096 __run_delayed_extent_op(extent_op, leaf, ei);
1097
1098 /*
1099 * If type is invalid, we should have bailed out after
1100 * lookup_inline_extent_backref().
1101 */
1102 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1103 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1104
1105 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1106 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1107 refs = btrfs_extent_data_ref_count(leaf, dref);
1108 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1109 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1110 refs = btrfs_shared_data_ref_count(leaf, sref);
1111 } else {
1112 refs = 1;
1113 BUG_ON(refs_to_mod != -1);
1114 }
1115
1116 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1117 refs += refs_to_mod;
1118
1119 if (refs > 0) {
1120 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1121 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1122 else
1123 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1124 } else {
1125 *last_ref = 1;
1126 size = btrfs_extent_inline_ref_size(type);
1127 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1128 ptr = (unsigned long)iref;
1129 end = (unsigned long)ei + item_size;
1130 if (ptr + size < end)
1131 memmove_extent_buffer(leaf, ptr, ptr + size,
1132 end - ptr - size);
1133 item_size -= size;
1134 btrfs_truncate_item(path, item_size, 1);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 }
1138
1139 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1140 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1141 struct btrfs_path *path,
1142 u64 bytenr, u64 num_bytes, u64 parent,
1143 u64 root_objectid, u64 owner,
1144 u64 offset, int refs_to_add,
1145 struct btrfs_delayed_extent_op *extent_op)
1146 {
1147 struct btrfs_extent_inline_ref *iref;
1148 int ret;
1149
1150 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1151 num_bytes, parent, root_objectid,
1152 owner, offset, 1);
1153 if (ret == 0) {
1154 /*
1155 * We're adding refs to a tree block we already own, this
1156 * should not happen at all.
1157 */
1158 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1159 btrfs_crit(trans->fs_info,
1160 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1161 bytenr, num_bytes, root_objectid);
1162 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1163 WARN_ON(1);
1164 btrfs_crit(trans->fs_info,
1165 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1166 btrfs_print_leaf(path->nodes[0]);
1167 }
1168 return -EUCLEAN;
1169 }
1170 update_inline_extent_backref(path, iref, refs_to_add,
1171 extent_op, NULL);
1172 } else if (ret == -ENOENT) {
1173 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1174 root_objectid, owner, offset,
1175 refs_to_add, extent_op);
1176 ret = 0;
1177 }
1178 return ret;
1179 }
1180
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1181 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1182 struct btrfs_path *path,
1183 struct btrfs_extent_inline_ref *iref,
1184 int refs_to_drop, int is_data, int *last_ref)
1185 {
1186 int ret = 0;
1187
1188 BUG_ON(!is_data && refs_to_drop != 1);
1189 if (iref) {
1190 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1191 last_ref);
1192 } else if (is_data) {
1193 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1194 last_ref);
1195 } else {
1196 *last_ref = 1;
1197 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1198 }
1199 return ret;
1200 }
1201
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1202 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1203 u64 *discarded_bytes)
1204 {
1205 int j, ret = 0;
1206 u64 bytes_left, end;
1207 u64 aligned_start = ALIGN(start, 1 << 9);
1208
1209 /* Adjust the range to be aligned to 512B sectors if necessary. */
1210 if (start != aligned_start) {
1211 len -= aligned_start - start;
1212 len = round_down(len, 1 << 9);
1213 start = aligned_start;
1214 }
1215
1216 *discarded_bytes = 0;
1217
1218 if (!len)
1219 return 0;
1220
1221 end = start + len;
1222 bytes_left = len;
1223
1224 /* Skip any superblocks on this device. */
1225 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1226 u64 sb_start = btrfs_sb_offset(j);
1227 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1228 u64 size = sb_start - start;
1229
1230 if (!in_range(sb_start, start, bytes_left) &&
1231 !in_range(sb_end, start, bytes_left) &&
1232 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1233 continue;
1234
1235 /*
1236 * Superblock spans beginning of range. Adjust start and
1237 * try again.
1238 */
1239 if (sb_start <= start) {
1240 start += sb_end - start;
1241 if (start > end) {
1242 bytes_left = 0;
1243 break;
1244 }
1245 bytes_left = end - start;
1246 continue;
1247 }
1248
1249 if (size) {
1250 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1251 GFP_NOFS, 0);
1252 if (!ret)
1253 *discarded_bytes += size;
1254 else if (ret != -EOPNOTSUPP)
1255 return ret;
1256 }
1257
1258 start = sb_end;
1259 if (start > end) {
1260 bytes_left = 0;
1261 break;
1262 }
1263 bytes_left = end - start;
1264 }
1265
1266 if (bytes_left) {
1267 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1268 GFP_NOFS, 0);
1269 if (!ret)
1270 *discarded_bytes += bytes_left;
1271 }
1272 return ret;
1273 }
1274
do_discard_extent(struct btrfs_io_stripe * stripe,u64 * bytes)1275 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes)
1276 {
1277 struct btrfs_device *dev = stripe->dev;
1278 struct btrfs_fs_info *fs_info = dev->fs_info;
1279 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1280 u64 phys = stripe->physical;
1281 u64 len = stripe->length;
1282 u64 discarded = 0;
1283 int ret = 0;
1284
1285 /* Zone reset on a zoned filesystem */
1286 if (btrfs_can_zone_reset(dev, phys, len)) {
1287 u64 src_disc;
1288
1289 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1290 if (ret)
1291 goto out;
1292
1293 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1294 dev != dev_replace->srcdev)
1295 goto out;
1296
1297 src_disc = discarded;
1298
1299 /* Send to replace target as well */
1300 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1301 &discarded);
1302 discarded += src_disc;
1303 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1304 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1305 } else {
1306 ret = 0;
1307 *bytes = 0;
1308 }
1309
1310 out:
1311 *bytes = discarded;
1312 return ret;
1313 }
1314
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1315 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1316 u64 num_bytes, u64 *actual_bytes)
1317 {
1318 int ret = 0;
1319 u64 discarded_bytes = 0;
1320 u64 end = bytenr + num_bytes;
1321 u64 cur = bytenr;
1322 struct btrfs_io_context *bioc = NULL;
1323
1324 /*
1325 * Avoid races with device replace and make sure our bioc has devices
1326 * associated to its stripes that don't go away while we are discarding.
1327 */
1328 btrfs_bio_counter_inc_blocked(fs_info);
1329 while (cur < end) {
1330 struct btrfs_io_stripe *stripe;
1331 int i;
1332
1333 num_bytes = end - cur;
1334 /* Tell the block device(s) that the sectors can be discarded */
1335 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1336 &num_bytes, &bioc, 0);
1337 /*
1338 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1339 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1340 * thus we can't continue anyway.
1341 */
1342 if (ret < 0)
1343 goto out;
1344
1345 stripe = bioc->stripes;
1346 for (i = 0; i < bioc->num_stripes; i++, stripe++) {
1347 u64 bytes;
1348 struct btrfs_device *device = stripe->dev;
1349
1350 if (!device->bdev) {
1351 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1352 continue;
1353 }
1354
1355 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1356 continue;
1357
1358 ret = do_discard_extent(stripe, &bytes);
1359 if (!ret) {
1360 discarded_bytes += bytes;
1361 } else if (ret != -EOPNOTSUPP) {
1362 /*
1363 * Logic errors or -ENOMEM, or -EIO, but
1364 * unlikely to happen.
1365 *
1366 * And since there are two loops, explicitly
1367 * go to out to avoid confusion.
1368 */
1369 btrfs_put_bioc(bioc);
1370 goto out;
1371 }
1372
1373 /*
1374 * Just in case we get back EOPNOTSUPP for some reason,
1375 * just ignore the return value so we don't screw up
1376 * people calling discard_extent.
1377 */
1378 ret = 0;
1379 }
1380 btrfs_put_bioc(bioc);
1381 cur += num_bytes;
1382 }
1383 out:
1384 btrfs_bio_counter_dec(fs_info);
1385
1386 if (actual_bytes)
1387 *actual_bytes = discarded_bytes;
1388
1389
1390 if (ret == -EOPNOTSUPP)
1391 ret = 0;
1392 return ret;
1393 }
1394
1395 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1396 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1397 struct btrfs_ref *generic_ref)
1398 {
1399 struct btrfs_fs_info *fs_info = trans->fs_info;
1400 int ret;
1401
1402 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1403 generic_ref->action);
1404 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1405 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1406
1407 if (generic_ref->type == BTRFS_REF_METADATA)
1408 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1409 else
1410 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1411
1412 btrfs_ref_tree_mod(fs_info, generic_ref);
1413
1414 return ret;
1415 }
1416
1417 /*
1418 * __btrfs_inc_extent_ref - insert backreference for a given extent
1419 *
1420 * The counterpart is in __btrfs_free_extent(), with examples and more details
1421 * how it works.
1422 *
1423 * @trans: Handle of transaction
1424 *
1425 * @node: The delayed ref node used to get the bytenr/length for
1426 * extent whose references are incremented.
1427 *
1428 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1429 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1430 * bytenr of the parent block. Since new extents are always
1431 * created with indirect references, this will only be the case
1432 * when relocating a shared extent. In that case, root_objectid
1433 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1434 * be 0
1435 *
1436 * @root_objectid: The id of the root where this modification has originated,
1437 * this can be either one of the well-known metadata trees or
1438 * the subvolume id which references this extent.
1439 *
1440 * @owner: For data extents it is the inode number of the owning file.
1441 * For metadata extents this parameter holds the level in the
1442 * tree of the extent.
1443 *
1444 * @offset: For metadata extents the offset is ignored and is currently
1445 * always passed as 0. For data extents it is the fileoffset
1446 * this extent belongs to.
1447 *
1448 * @refs_to_add Number of references to add
1449 *
1450 * @extent_op Pointer to a structure, holding information necessary when
1451 * updating a tree block's flags
1452 *
1453 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1454 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455 struct btrfs_delayed_ref_node *node,
1456 u64 parent, u64 root_objectid,
1457 u64 owner, u64 offset, int refs_to_add,
1458 struct btrfs_delayed_extent_op *extent_op)
1459 {
1460 struct btrfs_path *path;
1461 struct extent_buffer *leaf;
1462 struct btrfs_extent_item *item;
1463 struct btrfs_key key;
1464 u64 bytenr = node->bytenr;
1465 u64 num_bytes = node->num_bytes;
1466 u64 refs;
1467 int ret;
1468
1469 path = btrfs_alloc_path();
1470 if (!path)
1471 return -ENOMEM;
1472
1473 /* this will setup the path even if it fails to insert the back ref */
1474 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1475 parent, root_objectid, owner,
1476 offset, refs_to_add, extent_op);
1477 if ((ret < 0 && ret != -EAGAIN) || !ret)
1478 goto out;
1479
1480 /*
1481 * Ok we had -EAGAIN which means we didn't have space to insert and
1482 * inline extent ref, so just update the reference count and add a
1483 * normal backref.
1484 */
1485 leaf = path->nodes[0];
1486 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1487 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1488 refs = btrfs_extent_refs(leaf, item);
1489 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1490 if (extent_op)
1491 __run_delayed_extent_op(extent_op, leaf, item);
1492
1493 btrfs_mark_buffer_dirty(leaf);
1494 btrfs_release_path(path);
1495
1496 /* now insert the actual backref */
1497 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1498 BUG_ON(refs_to_add != 1);
1499 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1500 root_objectid);
1501 } else {
1502 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1503 root_objectid, owner, offset,
1504 refs_to_add);
1505 }
1506 if (ret)
1507 btrfs_abort_transaction(trans, ret);
1508 out:
1509 btrfs_free_path(path);
1510 return ret;
1511 }
1512
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1513 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1514 struct btrfs_delayed_ref_node *node,
1515 struct btrfs_delayed_extent_op *extent_op,
1516 int insert_reserved)
1517 {
1518 int ret = 0;
1519 struct btrfs_delayed_data_ref *ref;
1520 struct btrfs_key ins;
1521 u64 parent = 0;
1522 u64 ref_root = 0;
1523 u64 flags = 0;
1524
1525 ins.objectid = node->bytenr;
1526 ins.offset = node->num_bytes;
1527 ins.type = BTRFS_EXTENT_ITEM_KEY;
1528
1529 ref = btrfs_delayed_node_to_data_ref(node);
1530 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1531
1532 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1533 parent = ref->parent;
1534 ref_root = ref->root;
1535
1536 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1537 if (extent_op)
1538 flags |= extent_op->flags_to_set;
1539 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1540 flags, ref->objectid,
1541 ref->offset, &ins,
1542 node->ref_mod);
1543 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1544 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1545 ref->objectid, ref->offset,
1546 node->ref_mod, extent_op);
1547 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1548 ret = __btrfs_free_extent(trans, node, parent,
1549 ref_root, ref->objectid,
1550 ref->offset, node->ref_mod,
1551 extent_op);
1552 } else {
1553 BUG();
1554 }
1555 return ret;
1556 }
1557
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1558 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1559 struct extent_buffer *leaf,
1560 struct btrfs_extent_item *ei)
1561 {
1562 u64 flags = btrfs_extent_flags(leaf, ei);
1563 if (extent_op->update_flags) {
1564 flags |= extent_op->flags_to_set;
1565 btrfs_set_extent_flags(leaf, ei, flags);
1566 }
1567
1568 if (extent_op->update_key) {
1569 struct btrfs_tree_block_info *bi;
1570 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1571 bi = (struct btrfs_tree_block_info *)(ei + 1);
1572 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1573 }
1574 }
1575
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1576 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1577 struct btrfs_delayed_ref_head *head,
1578 struct btrfs_delayed_extent_op *extent_op)
1579 {
1580 struct btrfs_fs_info *fs_info = trans->fs_info;
1581 struct btrfs_key key;
1582 struct btrfs_path *path;
1583 struct btrfs_extent_item *ei;
1584 struct extent_buffer *leaf;
1585 u32 item_size;
1586 int ret;
1587 int err = 0;
1588 int metadata = !extent_op->is_data;
1589
1590 if (TRANS_ABORTED(trans))
1591 return 0;
1592
1593 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1594 metadata = 0;
1595
1596 path = btrfs_alloc_path();
1597 if (!path)
1598 return -ENOMEM;
1599
1600 key.objectid = head->bytenr;
1601
1602 if (metadata) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = extent_op->level;
1605 } else {
1606 key.type = BTRFS_EXTENT_ITEM_KEY;
1607 key.offset = head->num_bytes;
1608 }
1609
1610 again:
1611 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1612 if (ret < 0) {
1613 err = ret;
1614 goto out;
1615 }
1616 if (ret > 0) {
1617 if (metadata) {
1618 if (path->slots[0] > 0) {
1619 path->slots[0]--;
1620 btrfs_item_key_to_cpu(path->nodes[0], &key,
1621 path->slots[0]);
1622 if (key.objectid == head->bytenr &&
1623 key.type == BTRFS_EXTENT_ITEM_KEY &&
1624 key.offset == head->num_bytes)
1625 ret = 0;
1626 }
1627 if (ret > 0) {
1628 btrfs_release_path(path);
1629 metadata = 0;
1630
1631 key.objectid = head->bytenr;
1632 key.offset = head->num_bytes;
1633 key.type = BTRFS_EXTENT_ITEM_KEY;
1634 goto again;
1635 }
1636 } else {
1637 err = -EIO;
1638 goto out;
1639 }
1640 }
1641
1642 leaf = path->nodes[0];
1643 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1644
1645 if (unlikely(item_size < sizeof(*ei))) {
1646 err = -EINVAL;
1647 btrfs_print_v0_err(fs_info);
1648 btrfs_abort_transaction(trans, err);
1649 goto out;
1650 }
1651
1652 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1653 __run_delayed_extent_op(extent_op, leaf, ei);
1654
1655 btrfs_mark_buffer_dirty(leaf);
1656 out:
1657 btrfs_free_path(path);
1658 return err;
1659 }
1660
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1661 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1662 struct btrfs_delayed_ref_node *node,
1663 struct btrfs_delayed_extent_op *extent_op,
1664 int insert_reserved)
1665 {
1666 int ret = 0;
1667 struct btrfs_delayed_tree_ref *ref;
1668 u64 parent = 0;
1669 u64 ref_root = 0;
1670
1671 ref = btrfs_delayed_node_to_tree_ref(node);
1672 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1673
1674 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1675 parent = ref->parent;
1676 ref_root = ref->root;
1677
1678 if (unlikely(node->ref_mod != 1)) {
1679 btrfs_err(trans->fs_info,
1680 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1681 node->bytenr, node->ref_mod, node->action, ref_root,
1682 parent);
1683 return -EUCLEAN;
1684 }
1685 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1686 BUG_ON(!extent_op || !extent_op->update_flags);
1687 ret = alloc_reserved_tree_block(trans, node, extent_op);
1688 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1689 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1690 ref->level, 0, 1, extent_op);
1691 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1692 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1693 ref->level, 0, 1, extent_op);
1694 } else {
1695 BUG();
1696 }
1697 return ret;
1698 }
1699
1700 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1701 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1702 struct btrfs_delayed_ref_node *node,
1703 struct btrfs_delayed_extent_op *extent_op,
1704 int insert_reserved)
1705 {
1706 int ret = 0;
1707
1708 if (TRANS_ABORTED(trans)) {
1709 if (insert_reserved)
1710 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1711 return 0;
1712 }
1713
1714 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1715 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1716 ret = run_delayed_tree_ref(trans, node, extent_op,
1717 insert_reserved);
1718 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1719 node->type == BTRFS_SHARED_DATA_REF_KEY)
1720 ret = run_delayed_data_ref(trans, node, extent_op,
1721 insert_reserved);
1722 else
1723 BUG();
1724 if (ret && insert_reserved)
1725 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1726 if (ret < 0)
1727 btrfs_err(trans->fs_info,
1728 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1729 node->bytenr, node->num_bytes, node->type,
1730 node->action, node->ref_mod, ret);
1731 return ret;
1732 }
1733
1734 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1735 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1736 {
1737 struct btrfs_delayed_ref_node *ref;
1738
1739 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1740 return NULL;
1741
1742 /*
1743 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1744 * This is to prevent a ref count from going down to zero, which deletes
1745 * the extent item from the extent tree, when there still are references
1746 * to add, which would fail because they would not find the extent item.
1747 */
1748 if (!list_empty(&head->ref_add_list))
1749 return list_first_entry(&head->ref_add_list,
1750 struct btrfs_delayed_ref_node, add_list);
1751
1752 ref = rb_entry(rb_first_cached(&head->ref_tree),
1753 struct btrfs_delayed_ref_node, ref_node);
1754 ASSERT(list_empty(&ref->add_list));
1755 return ref;
1756 }
1757
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1758 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1759 struct btrfs_delayed_ref_head *head)
1760 {
1761 spin_lock(&delayed_refs->lock);
1762 head->processing = 0;
1763 delayed_refs->num_heads_ready++;
1764 spin_unlock(&delayed_refs->lock);
1765 btrfs_delayed_ref_unlock(head);
1766 }
1767
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1768 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1769 struct btrfs_delayed_ref_head *head)
1770 {
1771 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1772
1773 if (!extent_op)
1774 return NULL;
1775
1776 if (head->must_insert_reserved) {
1777 head->extent_op = NULL;
1778 btrfs_free_delayed_extent_op(extent_op);
1779 return NULL;
1780 }
1781 return extent_op;
1782 }
1783
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1784 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1785 struct btrfs_delayed_ref_head *head)
1786 {
1787 struct btrfs_delayed_extent_op *extent_op;
1788 int ret;
1789
1790 extent_op = cleanup_extent_op(head);
1791 if (!extent_op)
1792 return 0;
1793 head->extent_op = NULL;
1794 spin_unlock(&head->lock);
1795 ret = run_delayed_extent_op(trans, head, extent_op);
1796 btrfs_free_delayed_extent_op(extent_op);
1797 return ret ? ret : 1;
1798 }
1799
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1800 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1801 struct btrfs_delayed_ref_root *delayed_refs,
1802 struct btrfs_delayed_ref_head *head)
1803 {
1804 int nr_items = 1; /* Dropping this ref head update. */
1805
1806 /*
1807 * We had csum deletions accounted for in our delayed refs rsv, we need
1808 * to drop the csum leaves for this update from our delayed_refs_rsv.
1809 */
1810 if (head->total_ref_mod < 0 && head->is_data) {
1811 spin_lock(&delayed_refs->lock);
1812 delayed_refs->pending_csums -= head->num_bytes;
1813 spin_unlock(&delayed_refs->lock);
1814 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1815 }
1816
1817 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1818 }
1819
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1820 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1821 struct btrfs_delayed_ref_head *head)
1822 {
1823
1824 struct btrfs_fs_info *fs_info = trans->fs_info;
1825 struct btrfs_delayed_ref_root *delayed_refs;
1826 int ret;
1827
1828 delayed_refs = &trans->transaction->delayed_refs;
1829
1830 ret = run_and_cleanup_extent_op(trans, head);
1831 if (ret < 0) {
1832 unselect_delayed_ref_head(delayed_refs, head);
1833 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1834 return ret;
1835 } else if (ret) {
1836 return ret;
1837 }
1838
1839 /*
1840 * Need to drop our head ref lock and re-acquire the delayed ref lock
1841 * and then re-check to make sure nobody got added.
1842 */
1843 spin_unlock(&head->lock);
1844 spin_lock(&delayed_refs->lock);
1845 spin_lock(&head->lock);
1846 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1847 spin_unlock(&head->lock);
1848 spin_unlock(&delayed_refs->lock);
1849 return 1;
1850 }
1851 btrfs_delete_ref_head(delayed_refs, head);
1852 spin_unlock(&head->lock);
1853 spin_unlock(&delayed_refs->lock);
1854
1855 if (head->must_insert_reserved) {
1856 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1857 if (head->is_data) {
1858 ret = btrfs_del_csums(trans, fs_info->csum_root,
1859 head->bytenr, head->num_bytes);
1860 }
1861 }
1862
1863 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1864
1865 trace_run_delayed_ref_head(fs_info, head, 0);
1866 btrfs_delayed_ref_unlock(head);
1867 btrfs_put_delayed_ref_head(head);
1868 return ret;
1869 }
1870
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1871 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1872 struct btrfs_trans_handle *trans)
1873 {
1874 struct btrfs_delayed_ref_root *delayed_refs =
1875 &trans->transaction->delayed_refs;
1876 struct btrfs_delayed_ref_head *head = NULL;
1877 int ret;
1878
1879 spin_lock(&delayed_refs->lock);
1880 head = btrfs_select_ref_head(delayed_refs);
1881 if (!head) {
1882 spin_unlock(&delayed_refs->lock);
1883 return head;
1884 }
1885
1886 /*
1887 * Grab the lock that says we are going to process all the refs for
1888 * this head
1889 */
1890 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1891 spin_unlock(&delayed_refs->lock);
1892
1893 /*
1894 * We may have dropped the spin lock to get the head mutex lock, and
1895 * that might have given someone else time to free the head. If that's
1896 * true, it has been removed from our list and we can move on.
1897 */
1898 if (ret == -EAGAIN)
1899 head = ERR_PTR(-EAGAIN);
1900
1901 return head;
1902 }
1903
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1904 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1905 struct btrfs_delayed_ref_head *locked_ref,
1906 unsigned long *run_refs)
1907 {
1908 struct btrfs_fs_info *fs_info = trans->fs_info;
1909 struct btrfs_delayed_ref_root *delayed_refs;
1910 struct btrfs_delayed_extent_op *extent_op;
1911 struct btrfs_delayed_ref_node *ref;
1912 int must_insert_reserved = 0;
1913 int ret;
1914
1915 delayed_refs = &trans->transaction->delayed_refs;
1916
1917 lockdep_assert_held(&locked_ref->mutex);
1918 lockdep_assert_held(&locked_ref->lock);
1919
1920 while ((ref = select_delayed_ref(locked_ref))) {
1921 if (ref->seq &&
1922 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1923 spin_unlock(&locked_ref->lock);
1924 unselect_delayed_ref_head(delayed_refs, locked_ref);
1925 return -EAGAIN;
1926 }
1927
1928 (*run_refs)++;
1929 ref->in_tree = 0;
1930 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1931 RB_CLEAR_NODE(&ref->ref_node);
1932 if (!list_empty(&ref->add_list))
1933 list_del(&ref->add_list);
1934 /*
1935 * When we play the delayed ref, also correct the ref_mod on
1936 * head
1937 */
1938 switch (ref->action) {
1939 case BTRFS_ADD_DELAYED_REF:
1940 case BTRFS_ADD_DELAYED_EXTENT:
1941 locked_ref->ref_mod -= ref->ref_mod;
1942 break;
1943 case BTRFS_DROP_DELAYED_REF:
1944 locked_ref->ref_mod += ref->ref_mod;
1945 break;
1946 default:
1947 WARN_ON(1);
1948 }
1949 atomic_dec(&delayed_refs->num_entries);
1950
1951 /*
1952 * Record the must_insert_reserved flag before we drop the
1953 * spin lock.
1954 */
1955 must_insert_reserved = locked_ref->must_insert_reserved;
1956 locked_ref->must_insert_reserved = 0;
1957
1958 extent_op = locked_ref->extent_op;
1959 locked_ref->extent_op = NULL;
1960 spin_unlock(&locked_ref->lock);
1961
1962 ret = run_one_delayed_ref(trans, ref, extent_op,
1963 must_insert_reserved);
1964
1965 btrfs_free_delayed_extent_op(extent_op);
1966 if (ret) {
1967 unselect_delayed_ref_head(delayed_refs, locked_ref);
1968 btrfs_put_delayed_ref(ref);
1969 return ret;
1970 }
1971
1972 btrfs_put_delayed_ref(ref);
1973 cond_resched();
1974
1975 spin_lock(&locked_ref->lock);
1976 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1977 }
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * Returns 0 on success or if called with an already aborted transaction.
1984 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1985 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1986 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1987 unsigned long nr)
1988 {
1989 struct btrfs_fs_info *fs_info = trans->fs_info;
1990 struct btrfs_delayed_ref_root *delayed_refs;
1991 struct btrfs_delayed_ref_head *locked_ref = NULL;
1992 ktime_t start = ktime_get();
1993 int ret;
1994 unsigned long count = 0;
1995 unsigned long actual_count = 0;
1996
1997 delayed_refs = &trans->transaction->delayed_refs;
1998 do {
1999 if (!locked_ref) {
2000 locked_ref = btrfs_obtain_ref_head(trans);
2001 if (IS_ERR_OR_NULL(locked_ref)) {
2002 if (PTR_ERR(locked_ref) == -EAGAIN) {
2003 continue;
2004 } else {
2005 break;
2006 }
2007 }
2008 count++;
2009 }
2010 /*
2011 * We need to try and merge add/drops of the same ref since we
2012 * can run into issues with relocate dropping the implicit ref
2013 * and then it being added back again before the drop can
2014 * finish. If we merged anything we need to re-loop so we can
2015 * get a good ref.
2016 * Or we can get node references of the same type that weren't
2017 * merged when created due to bumps in the tree mod seq, and
2018 * we need to merge them to prevent adding an inline extent
2019 * backref before dropping it (triggering a BUG_ON at
2020 * insert_inline_extent_backref()).
2021 */
2022 spin_lock(&locked_ref->lock);
2023 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2024
2025 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2026 &actual_count);
2027 if (ret < 0 && ret != -EAGAIN) {
2028 /*
2029 * Error, btrfs_run_delayed_refs_for_head already
2030 * unlocked everything so just bail out
2031 */
2032 return ret;
2033 } else if (!ret) {
2034 /*
2035 * Success, perform the usual cleanup of a processed
2036 * head
2037 */
2038 ret = cleanup_ref_head(trans, locked_ref);
2039 if (ret > 0 ) {
2040 /* We dropped our lock, we need to loop. */
2041 ret = 0;
2042 continue;
2043 } else if (ret) {
2044 return ret;
2045 }
2046 }
2047
2048 /*
2049 * Either success case or btrfs_run_delayed_refs_for_head
2050 * returned -EAGAIN, meaning we need to select another head
2051 */
2052
2053 locked_ref = NULL;
2054 cond_resched();
2055 } while ((nr != -1 && count < nr) || locked_ref);
2056
2057 /*
2058 * We don't want to include ref heads since we can have empty ref heads
2059 * and those will drastically skew our runtime down since we just do
2060 * accounting, no actual extent tree updates.
2061 */
2062 if (actual_count > 0) {
2063 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2064 u64 avg;
2065
2066 /*
2067 * We weigh the current average higher than our current runtime
2068 * to avoid large swings in the average.
2069 */
2070 spin_lock(&delayed_refs->lock);
2071 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2072 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2073 spin_unlock(&delayed_refs->lock);
2074 }
2075 return 0;
2076 }
2077
2078 #ifdef SCRAMBLE_DELAYED_REFS
2079 /*
2080 * Normally delayed refs get processed in ascending bytenr order. This
2081 * correlates in most cases to the order added. To expose dependencies on this
2082 * order, we start to process the tree in the middle instead of the beginning
2083 */
find_middle(struct rb_root * root)2084 static u64 find_middle(struct rb_root *root)
2085 {
2086 struct rb_node *n = root->rb_node;
2087 struct btrfs_delayed_ref_node *entry;
2088 int alt = 1;
2089 u64 middle;
2090 u64 first = 0, last = 0;
2091
2092 n = rb_first(root);
2093 if (n) {
2094 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095 first = entry->bytenr;
2096 }
2097 n = rb_last(root);
2098 if (n) {
2099 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 last = entry->bytenr;
2101 }
2102 n = root->rb_node;
2103
2104 while (n) {
2105 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2106 WARN_ON(!entry->in_tree);
2107
2108 middle = entry->bytenr;
2109
2110 if (alt)
2111 n = n->rb_left;
2112 else
2113 n = n->rb_right;
2114
2115 alt = 1 - alt;
2116 }
2117 return middle;
2118 }
2119 #endif
2120
2121 /*
2122 * this starts processing the delayed reference count updates and
2123 * extent insertions we have queued up so far. count can be
2124 * 0, which means to process everything in the tree at the start
2125 * of the run (but not newly added entries), or it can be some target
2126 * number you'd like to process.
2127 *
2128 * Returns 0 on success or if called with an aborted transaction
2129 * Returns <0 on error and aborts the transaction
2130 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2131 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2132 unsigned long count)
2133 {
2134 struct btrfs_fs_info *fs_info = trans->fs_info;
2135 struct rb_node *node;
2136 struct btrfs_delayed_ref_root *delayed_refs;
2137 struct btrfs_delayed_ref_head *head;
2138 int ret;
2139 int run_all = count == (unsigned long)-1;
2140
2141 /* We'll clean this up in btrfs_cleanup_transaction */
2142 if (TRANS_ABORTED(trans))
2143 return 0;
2144
2145 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2146 return 0;
2147
2148 delayed_refs = &trans->transaction->delayed_refs;
2149 if (count == 0)
2150 count = delayed_refs->num_heads_ready;
2151
2152 again:
2153 #ifdef SCRAMBLE_DELAYED_REFS
2154 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2155 #endif
2156 ret = __btrfs_run_delayed_refs(trans, count);
2157 if (ret < 0) {
2158 btrfs_abort_transaction(trans, ret);
2159 return ret;
2160 }
2161
2162 if (run_all) {
2163 btrfs_create_pending_block_groups(trans);
2164
2165 spin_lock(&delayed_refs->lock);
2166 node = rb_first_cached(&delayed_refs->href_root);
2167 if (!node) {
2168 spin_unlock(&delayed_refs->lock);
2169 goto out;
2170 }
2171 head = rb_entry(node, struct btrfs_delayed_ref_head,
2172 href_node);
2173 refcount_inc(&head->refs);
2174 spin_unlock(&delayed_refs->lock);
2175
2176 /* Mutex was contended, block until it's released and retry. */
2177 mutex_lock(&head->mutex);
2178 mutex_unlock(&head->mutex);
2179
2180 btrfs_put_delayed_ref_head(head);
2181 cond_resched();
2182 goto again;
2183 }
2184 out:
2185 return 0;
2186 }
2187
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level,int is_data)2188 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2189 struct extent_buffer *eb, u64 flags,
2190 int level, int is_data)
2191 {
2192 struct btrfs_delayed_extent_op *extent_op;
2193 int ret;
2194
2195 extent_op = btrfs_alloc_delayed_extent_op();
2196 if (!extent_op)
2197 return -ENOMEM;
2198
2199 extent_op->flags_to_set = flags;
2200 extent_op->update_flags = true;
2201 extent_op->update_key = false;
2202 extent_op->is_data = is_data ? true : false;
2203 extent_op->level = level;
2204
2205 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2206 if (ret)
2207 btrfs_free_delayed_extent_op(extent_op);
2208 return ret;
2209 }
2210
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2211 static noinline int check_delayed_ref(struct btrfs_root *root,
2212 struct btrfs_path *path,
2213 u64 objectid, u64 offset, u64 bytenr)
2214 {
2215 struct btrfs_delayed_ref_head *head;
2216 struct btrfs_delayed_ref_node *ref;
2217 struct btrfs_delayed_data_ref *data_ref;
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_transaction *cur_trans;
2220 struct rb_node *node;
2221 int ret = 0;
2222
2223 spin_lock(&root->fs_info->trans_lock);
2224 cur_trans = root->fs_info->running_transaction;
2225 if (cur_trans)
2226 refcount_inc(&cur_trans->use_count);
2227 spin_unlock(&root->fs_info->trans_lock);
2228 if (!cur_trans)
2229 return 0;
2230
2231 delayed_refs = &cur_trans->delayed_refs;
2232 spin_lock(&delayed_refs->lock);
2233 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2234 if (!head) {
2235 spin_unlock(&delayed_refs->lock);
2236 btrfs_put_transaction(cur_trans);
2237 return 0;
2238 }
2239
2240 if (!mutex_trylock(&head->mutex)) {
2241 refcount_inc(&head->refs);
2242 spin_unlock(&delayed_refs->lock);
2243
2244 btrfs_release_path(path);
2245
2246 /*
2247 * Mutex was contended, block until it's released and let
2248 * caller try again
2249 */
2250 mutex_lock(&head->mutex);
2251 mutex_unlock(&head->mutex);
2252 btrfs_put_delayed_ref_head(head);
2253 btrfs_put_transaction(cur_trans);
2254 return -EAGAIN;
2255 }
2256 spin_unlock(&delayed_refs->lock);
2257
2258 spin_lock(&head->lock);
2259 /*
2260 * XXX: We should replace this with a proper search function in the
2261 * future.
2262 */
2263 for (node = rb_first_cached(&head->ref_tree); node;
2264 node = rb_next(node)) {
2265 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2266 /* If it's a shared ref we know a cross reference exists */
2267 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2268 ret = 1;
2269 break;
2270 }
2271
2272 data_ref = btrfs_delayed_node_to_data_ref(ref);
2273
2274 /*
2275 * If our ref doesn't match the one we're currently looking at
2276 * then we have a cross reference.
2277 */
2278 if (data_ref->root != root->root_key.objectid ||
2279 data_ref->objectid != objectid ||
2280 data_ref->offset != offset) {
2281 ret = 1;
2282 break;
2283 }
2284 }
2285 spin_unlock(&head->lock);
2286 mutex_unlock(&head->mutex);
2287 btrfs_put_transaction(cur_trans);
2288 return ret;
2289 }
2290
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2291 static noinline int check_committed_ref(struct btrfs_root *root,
2292 struct btrfs_path *path,
2293 u64 objectid, u64 offset, u64 bytenr,
2294 bool strict)
2295 {
2296 struct btrfs_fs_info *fs_info = root->fs_info;
2297 struct btrfs_root *extent_root = fs_info->extent_root;
2298 struct extent_buffer *leaf;
2299 struct btrfs_extent_data_ref *ref;
2300 struct btrfs_extent_inline_ref *iref;
2301 struct btrfs_extent_item *ei;
2302 struct btrfs_key key;
2303 u32 item_size;
2304 int type;
2305 int ret;
2306
2307 key.objectid = bytenr;
2308 key.offset = (u64)-1;
2309 key.type = BTRFS_EXTENT_ITEM_KEY;
2310
2311 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2312 if (ret < 0)
2313 goto out;
2314 BUG_ON(ret == 0); /* Corruption */
2315
2316 ret = -ENOENT;
2317 if (path->slots[0] == 0)
2318 goto out;
2319
2320 path->slots[0]--;
2321 leaf = path->nodes[0];
2322 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2323
2324 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2325 goto out;
2326
2327 ret = 1;
2328 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2329 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2330
2331 /* If extent item has more than 1 inline ref then it's shared */
2332 if (item_size != sizeof(*ei) +
2333 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2334 goto out;
2335
2336 /*
2337 * If extent created before last snapshot => it's shared unless the
2338 * snapshot has been deleted. Use the heuristic if strict is false.
2339 */
2340 if (!strict &&
2341 (btrfs_extent_generation(leaf, ei) <=
2342 btrfs_root_last_snapshot(&root->root_item)))
2343 goto out;
2344
2345 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2346
2347 /* If this extent has SHARED_DATA_REF then it's shared */
2348 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2349 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2350 goto out;
2351
2352 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2353 if (btrfs_extent_refs(leaf, ei) !=
2354 btrfs_extent_data_ref_count(leaf, ref) ||
2355 btrfs_extent_data_ref_root(leaf, ref) !=
2356 root->root_key.objectid ||
2357 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2358 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2359 goto out;
2360
2361 ret = 0;
2362 out:
2363 return ret;
2364 }
2365
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict)2366 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2367 u64 bytenr, bool strict)
2368 {
2369 struct btrfs_path *path;
2370 int ret;
2371
2372 path = btrfs_alloc_path();
2373 if (!path)
2374 return -ENOMEM;
2375
2376 do {
2377 ret = check_committed_ref(root, path, objectid,
2378 offset, bytenr, strict);
2379 if (ret && ret != -ENOENT)
2380 goto out;
2381
2382 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2383 } while (ret == -EAGAIN);
2384
2385 out:
2386 btrfs_free_path(path);
2387 if (btrfs_is_data_reloc_root(root))
2388 WARN_ON(ret > 0);
2389 return ret;
2390 }
2391
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2392 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2393 struct btrfs_root *root,
2394 struct extent_buffer *buf,
2395 int full_backref, int inc)
2396 {
2397 struct btrfs_fs_info *fs_info = root->fs_info;
2398 u64 bytenr;
2399 u64 num_bytes;
2400 u64 parent;
2401 u64 ref_root;
2402 u32 nritems;
2403 struct btrfs_key key;
2404 struct btrfs_file_extent_item *fi;
2405 struct btrfs_ref generic_ref = { 0 };
2406 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2407 int i;
2408 int action;
2409 int level;
2410 int ret = 0;
2411
2412 if (btrfs_is_testing(fs_info))
2413 return 0;
2414
2415 ref_root = btrfs_header_owner(buf);
2416 nritems = btrfs_header_nritems(buf);
2417 level = btrfs_header_level(buf);
2418
2419 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2420 return 0;
2421
2422 if (full_backref)
2423 parent = buf->start;
2424 else
2425 parent = 0;
2426 if (inc)
2427 action = BTRFS_ADD_DELAYED_REF;
2428 else
2429 action = BTRFS_DROP_DELAYED_REF;
2430
2431 for (i = 0; i < nritems; i++) {
2432 if (level == 0) {
2433 btrfs_item_key_to_cpu(buf, &key, i);
2434 if (key.type != BTRFS_EXTENT_DATA_KEY)
2435 continue;
2436 fi = btrfs_item_ptr(buf, i,
2437 struct btrfs_file_extent_item);
2438 if (btrfs_file_extent_type(buf, fi) ==
2439 BTRFS_FILE_EXTENT_INLINE)
2440 continue;
2441 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2442 if (bytenr == 0)
2443 continue;
2444
2445 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2446 key.offset -= btrfs_file_extent_offset(buf, fi);
2447 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2448 num_bytes, parent);
2449 generic_ref.real_root = root->root_key.objectid;
2450 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2451 key.offset, root->root_key.objectid,
2452 for_reloc);
2453 generic_ref.skip_qgroup = for_reloc;
2454 if (inc)
2455 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2456 else
2457 ret = btrfs_free_extent(trans, &generic_ref);
2458 if (ret)
2459 goto fail;
2460 } else {
2461 bytenr = btrfs_node_blockptr(buf, i);
2462 num_bytes = fs_info->nodesize;
2463 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2464 num_bytes, parent);
2465 generic_ref.real_root = root->root_key.objectid;
2466 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2467 root->root_key.objectid, for_reloc);
2468 generic_ref.skip_qgroup = for_reloc;
2469 if (inc)
2470 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2471 else
2472 ret = btrfs_free_extent(trans, &generic_ref);
2473 if (ret)
2474 goto fail;
2475 }
2476 }
2477 return 0;
2478 fail:
2479 return ret;
2480 }
2481
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2482 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2483 struct extent_buffer *buf, int full_backref)
2484 {
2485 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2486 }
2487
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2488 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2489 struct extent_buffer *buf, int full_backref)
2490 {
2491 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2492 }
2493
get_alloc_profile_by_root(struct btrfs_root * root,int data)2494 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2495 {
2496 struct btrfs_fs_info *fs_info = root->fs_info;
2497 u64 flags;
2498 u64 ret;
2499
2500 if (data)
2501 flags = BTRFS_BLOCK_GROUP_DATA;
2502 else if (root == fs_info->chunk_root)
2503 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2504 else
2505 flags = BTRFS_BLOCK_GROUP_METADATA;
2506
2507 ret = btrfs_get_alloc_profile(fs_info, flags);
2508 return ret;
2509 }
2510
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2511 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2512 {
2513 struct btrfs_block_group *cache;
2514 u64 bytenr;
2515
2516 spin_lock(&fs_info->block_group_cache_lock);
2517 bytenr = fs_info->first_logical_byte;
2518 spin_unlock(&fs_info->block_group_cache_lock);
2519
2520 if (bytenr < (u64)-1)
2521 return bytenr;
2522
2523 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2524 if (!cache)
2525 return 0;
2526
2527 bytenr = cache->start;
2528 btrfs_put_block_group(cache);
2529
2530 return bytenr;
2531 }
2532
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2533 static int pin_down_extent(struct btrfs_trans_handle *trans,
2534 struct btrfs_block_group *cache,
2535 u64 bytenr, u64 num_bytes, int reserved)
2536 {
2537 struct btrfs_fs_info *fs_info = cache->fs_info;
2538
2539 spin_lock(&cache->space_info->lock);
2540 spin_lock(&cache->lock);
2541 cache->pinned += num_bytes;
2542 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2543 num_bytes);
2544 if (reserved) {
2545 cache->reserved -= num_bytes;
2546 cache->space_info->bytes_reserved -= num_bytes;
2547 }
2548 spin_unlock(&cache->lock);
2549 spin_unlock(&cache->space_info->lock);
2550
2551 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2552 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2553 return 0;
2554 }
2555
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2556 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2557 u64 bytenr, u64 num_bytes, int reserved)
2558 {
2559 struct btrfs_block_group *cache;
2560
2561 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2562 BUG_ON(!cache); /* Logic error */
2563
2564 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2565
2566 btrfs_put_block_group(cache);
2567 return 0;
2568 }
2569
2570 /*
2571 * this function must be called within transaction
2572 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2573 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2574 u64 bytenr, u64 num_bytes)
2575 {
2576 struct btrfs_block_group *cache;
2577 int ret;
2578
2579 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2580 if (!cache)
2581 return -EINVAL;
2582
2583 /*
2584 * Fully cache the free space first so that our pin removes the free space
2585 * from the cache.
2586 */
2587 ret = btrfs_cache_block_group(cache, true);
2588 if (ret)
2589 goto out;
2590
2591 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2592
2593 /* remove us from the free space cache (if we're there at all) */
2594 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2595 out:
2596 btrfs_put_block_group(cache);
2597 return ret;
2598 }
2599
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2600 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2601 u64 start, u64 num_bytes)
2602 {
2603 int ret;
2604 struct btrfs_block_group *block_group;
2605
2606 block_group = btrfs_lookup_block_group(fs_info, start);
2607 if (!block_group)
2608 return -EINVAL;
2609
2610 ret = btrfs_cache_block_group(block_group, true);
2611 if (ret)
2612 goto out;
2613
2614 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2615 out:
2616 btrfs_put_block_group(block_group);
2617 return ret;
2618 }
2619
btrfs_exclude_logged_extents(struct extent_buffer * eb)2620 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2621 {
2622 struct btrfs_fs_info *fs_info = eb->fs_info;
2623 struct btrfs_file_extent_item *item;
2624 struct btrfs_key key;
2625 int found_type;
2626 int i;
2627 int ret = 0;
2628
2629 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2630 return 0;
2631
2632 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2633 btrfs_item_key_to_cpu(eb, &key, i);
2634 if (key.type != BTRFS_EXTENT_DATA_KEY)
2635 continue;
2636 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2637 found_type = btrfs_file_extent_type(eb, item);
2638 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2639 continue;
2640 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2641 continue;
2642 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2643 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2644 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2645 if (ret)
2646 break;
2647 }
2648
2649 return ret;
2650 }
2651
2652 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2653 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2654 {
2655 atomic_inc(&bg->reservations);
2656 }
2657
2658 /*
2659 * Returns the free cluster for the given space info and sets empty_cluster to
2660 * what it should be based on the mount options.
2661 */
2662 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2663 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2664 struct btrfs_space_info *space_info, u64 *empty_cluster)
2665 {
2666 struct btrfs_free_cluster *ret = NULL;
2667
2668 *empty_cluster = 0;
2669 if (btrfs_mixed_space_info(space_info))
2670 return ret;
2671
2672 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2673 ret = &fs_info->meta_alloc_cluster;
2674 if (btrfs_test_opt(fs_info, SSD))
2675 *empty_cluster = SZ_2M;
2676 else
2677 *empty_cluster = SZ_64K;
2678 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2679 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2680 *empty_cluster = SZ_2M;
2681 ret = &fs_info->data_alloc_cluster;
2682 }
2683
2684 return ret;
2685 }
2686
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2687 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2688 u64 start, u64 end,
2689 const bool return_free_space)
2690 {
2691 struct btrfs_block_group *cache = NULL;
2692 struct btrfs_space_info *space_info;
2693 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2694 struct btrfs_free_cluster *cluster = NULL;
2695 u64 len;
2696 u64 total_unpinned = 0;
2697 u64 empty_cluster = 0;
2698 bool readonly;
2699
2700 while (start <= end) {
2701 readonly = false;
2702 if (!cache ||
2703 start >= cache->start + cache->length) {
2704 if (cache)
2705 btrfs_put_block_group(cache);
2706 total_unpinned = 0;
2707 cache = btrfs_lookup_block_group(fs_info, start);
2708 BUG_ON(!cache); /* Logic error */
2709
2710 cluster = fetch_cluster_info(fs_info,
2711 cache->space_info,
2712 &empty_cluster);
2713 empty_cluster <<= 1;
2714 }
2715
2716 len = cache->start + cache->length - start;
2717 len = min(len, end + 1 - start);
2718
2719 down_read(&fs_info->commit_root_sem);
2720 if (start < cache->last_byte_to_unpin && return_free_space) {
2721 u64 add_len = min(len, cache->last_byte_to_unpin - start);
2722
2723 btrfs_add_free_space(cache, start, add_len);
2724 }
2725 up_read(&fs_info->commit_root_sem);
2726
2727 start += len;
2728 total_unpinned += len;
2729 space_info = cache->space_info;
2730
2731 /*
2732 * If this space cluster has been marked as fragmented and we've
2733 * unpinned enough in this block group to potentially allow a
2734 * cluster to be created inside of it go ahead and clear the
2735 * fragmented check.
2736 */
2737 if (cluster && cluster->fragmented &&
2738 total_unpinned > empty_cluster) {
2739 spin_lock(&cluster->lock);
2740 cluster->fragmented = 0;
2741 spin_unlock(&cluster->lock);
2742 }
2743
2744 spin_lock(&space_info->lock);
2745 spin_lock(&cache->lock);
2746 cache->pinned -= len;
2747 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2748 space_info->max_extent_size = 0;
2749 if (cache->ro) {
2750 space_info->bytes_readonly += len;
2751 readonly = true;
2752 } else if (btrfs_is_zoned(fs_info)) {
2753 /* Need reset before reusing in a zoned block group */
2754 space_info->bytes_zone_unusable += len;
2755 readonly = true;
2756 }
2757 spin_unlock(&cache->lock);
2758 if (!readonly && return_free_space &&
2759 global_rsv->space_info == space_info) {
2760 u64 to_add = len;
2761
2762 spin_lock(&global_rsv->lock);
2763 if (!global_rsv->full) {
2764 to_add = min(len, global_rsv->size -
2765 global_rsv->reserved);
2766 global_rsv->reserved += to_add;
2767 btrfs_space_info_update_bytes_may_use(fs_info,
2768 space_info, to_add);
2769 if (global_rsv->reserved >= global_rsv->size)
2770 global_rsv->full = 1;
2771 len -= to_add;
2772 }
2773 spin_unlock(&global_rsv->lock);
2774 }
2775 /* Add to any tickets we may have */
2776 if (!readonly && return_free_space && len)
2777 btrfs_try_granting_tickets(fs_info, space_info);
2778 spin_unlock(&space_info->lock);
2779 }
2780
2781 if (cache)
2782 btrfs_put_block_group(cache);
2783 return 0;
2784 }
2785
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2787 {
2788 struct btrfs_fs_info *fs_info = trans->fs_info;
2789 struct btrfs_block_group *block_group, *tmp;
2790 struct list_head *deleted_bgs;
2791 struct extent_io_tree *unpin;
2792 u64 start;
2793 u64 end;
2794 int ret;
2795
2796 unpin = &trans->transaction->pinned_extents;
2797
2798 while (!TRANS_ABORTED(trans)) {
2799 struct extent_state *cached_state = NULL;
2800
2801 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2802 ret = find_first_extent_bit(unpin, 0, &start, &end,
2803 EXTENT_DIRTY, &cached_state);
2804 if (ret) {
2805 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2806 break;
2807 }
2808
2809 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2810 ret = btrfs_discard_extent(fs_info, start,
2811 end + 1 - start, NULL);
2812
2813 clear_extent_dirty(unpin, start, end, &cached_state);
2814 unpin_extent_range(fs_info, start, end, true);
2815 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2816 free_extent_state(cached_state);
2817 cond_resched();
2818 }
2819
2820 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2821 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2822 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2823 }
2824
2825 /*
2826 * Transaction is finished. We don't need the lock anymore. We
2827 * do need to clean up the block groups in case of a transaction
2828 * abort.
2829 */
2830 deleted_bgs = &trans->transaction->deleted_bgs;
2831 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2832 u64 trimmed = 0;
2833
2834 ret = -EROFS;
2835 if (!TRANS_ABORTED(trans))
2836 ret = btrfs_discard_extent(fs_info,
2837 block_group->start,
2838 block_group->length,
2839 &trimmed);
2840
2841 list_del_init(&block_group->bg_list);
2842 btrfs_unfreeze_block_group(block_group);
2843 btrfs_put_block_group(block_group);
2844
2845 if (ret) {
2846 const char *errstr = btrfs_decode_error(ret);
2847 btrfs_warn(fs_info,
2848 "discard failed while removing blockgroup: errno=%d %s",
2849 ret, errstr);
2850 }
2851 }
2852
2853 return 0;
2854 }
2855
2856 /*
2857 * Drop one or more refs of @node.
2858 *
2859 * 1. Locate the extent refs.
2860 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2861 * Locate it, then reduce the refs number or remove the ref line completely.
2862 *
2863 * 2. Update the refs count in EXTENT/METADATA_ITEM
2864 *
2865 * Inline backref case:
2866 *
2867 * in extent tree we have:
2868 *
2869 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2870 * refs 2 gen 6 flags DATA
2871 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2872 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2873 *
2874 * This function gets called with:
2875 *
2876 * node->bytenr = 13631488
2877 * node->num_bytes = 1048576
2878 * root_objectid = FS_TREE
2879 * owner_objectid = 257
2880 * owner_offset = 0
2881 * refs_to_drop = 1
2882 *
2883 * Then we should get some like:
2884 *
2885 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2886 * refs 1 gen 6 flags DATA
2887 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2888 *
2889 * Keyed backref case:
2890 *
2891 * in extent tree we have:
2892 *
2893 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2894 * refs 754 gen 6 flags DATA
2895 * [...]
2896 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2897 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2898 *
2899 * This function get called with:
2900 *
2901 * node->bytenr = 13631488
2902 * node->num_bytes = 1048576
2903 * root_objectid = FS_TREE
2904 * owner_objectid = 866
2905 * owner_offset = 0
2906 * refs_to_drop = 1
2907 *
2908 * Then we should get some like:
2909 *
2910 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2911 * refs 753 gen 6 flags DATA
2912 *
2913 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2914 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2915 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2916 struct btrfs_delayed_ref_node *node, u64 parent,
2917 u64 root_objectid, u64 owner_objectid,
2918 u64 owner_offset, int refs_to_drop,
2919 struct btrfs_delayed_extent_op *extent_op)
2920 {
2921 struct btrfs_fs_info *info = trans->fs_info;
2922 struct btrfs_key key;
2923 struct btrfs_path *path;
2924 struct btrfs_root *extent_root = info->extent_root;
2925 struct extent_buffer *leaf;
2926 struct btrfs_extent_item *ei;
2927 struct btrfs_extent_inline_ref *iref;
2928 int ret;
2929 int is_data;
2930 int extent_slot = 0;
2931 int found_extent = 0;
2932 int num_to_del = 1;
2933 u32 item_size;
2934 u64 refs;
2935 u64 bytenr = node->bytenr;
2936 u64 num_bytes = node->num_bytes;
2937 int last_ref = 0;
2938 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2939
2940 path = btrfs_alloc_path();
2941 if (!path)
2942 return -ENOMEM;
2943
2944 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2945
2946 if (!is_data && refs_to_drop != 1) {
2947 btrfs_crit(info,
2948 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2949 node->bytenr, refs_to_drop);
2950 ret = -EINVAL;
2951 btrfs_abort_transaction(trans, ret);
2952 goto out;
2953 }
2954
2955 if (is_data)
2956 skinny_metadata = false;
2957
2958 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2959 parent, root_objectid, owner_objectid,
2960 owner_offset);
2961 if (ret == 0) {
2962 /*
2963 * Either the inline backref or the SHARED_DATA_REF/
2964 * SHARED_BLOCK_REF is found
2965 *
2966 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2967 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2968 */
2969 extent_slot = path->slots[0];
2970 while (extent_slot >= 0) {
2971 btrfs_item_key_to_cpu(path->nodes[0], &key,
2972 extent_slot);
2973 if (key.objectid != bytenr)
2974 break;
2975 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2976 key.offset == num_bytes) {
2977 found_extent = 1;
2978 break;
2979 }
2980 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2981 key.offset == owner_objectid) {
2982 found_extent = 1;
2983 break;
2984 }
2985
2986 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
2987 if (path->slots[0] - extent_slot > 5)
2988 break;
2989 extent_slot--;
2990 }
2991
2992 if (!found_extent) {
2993 if (iref) {
2994 btrfs_crit(info,
2995 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
2996 btrfs_abort_transaction(trans, -EUCLEAN);
2997 goto err_dump;
2998 }
2999 /* Must be SHARED_* item, remove the backref first */
3000 ret = remove_extent_backref(trans, path, NULL,
3001 refs_to_drop,
3002 is_data, &last_ref);
3003 if (ret) {
3004 btrfs_abort_transaction(trans, ret);
3005 goto out;
3006 }
3007 btrfs_release_path(path);
3008
3009 /* Slow path to locate EXTENT/METADATA_ITEM */
3010 key.objectid = bytenr;
3011 key.type = BTRFS_EXTENT_ITEM_KEY;
3012 key.offset = num_bytes;
3013
3014 if (!is_data && skinny_metadata) {
3015 key.type = BTRFS_METADATA_ITEM_KEY;
3016 key.offset = owner_objectid;
3017 }
3018
3019 ret = btrfs_search_slot(trans, extent_root,
3020 &key, path, -1, 1);
3021 if (ret > 0 && skinny_metadata && path->slots[0]) {
3022 /*
3023 * Couldn't find our skinny metadata item,
3024 * see if we have ye olde extent item.
3025 */
3026 path->slots[0]--;
3027 btrfs_item_key_to_cpu(path->nodes[0], &key,
3028 path->slots[0]);
3029 if (key.objectid == bytenr &&
3030 key.type == BTRFS_EXTENT_ITEM_KEY &&
3031 key.offset == num_bytes)
3032 ret = 0;
3033 }
3034
3035 if (ret > 0 && skinny_metadata) {
3036 skinny_metadata = false;
3037 key.objectid = bytenr;
3038 key.type = BTRFS_EXTENT_ITEM_KEY;
3039 key.offset = num_bytes;
3040 btrfs_release_path(path);
3041 ret = btrfs_search_slot(trans, extent_root,
3042 &key, path, -1, 1);
3043 }
3044
3045 if (ret) {
3046 btrfs_err(info,
3047 "umm, got %d back from search, was looking for %llu",
3048 ret, bytenr);
3049 if (ret > 0)
3050 btrfs_print_leaf(path->nodes[0]);
3051 }
3052 if (ret < 0) {
3053 btrfs_abort_transaction(trans, ret);
3054 goto out;
3055 }
3056 extent_slot = path->slots[0];
3057 }
3058 } else if (WARN_ON(ret == -ENOENT)) {
3059 btrfs_print_leaf(path->nodes[0]);
3060 btrfs_err(info,
3061 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3062 bytenr, parent, root_objectid, owner_objectid,
3063 owner_offset);
3064 btrfs_abort_transaction(trans, ret);
3065 goto out;
3066 } else {
3067 btrfs_abort_transaction(trans, ret);
3068 goto out;
3069 }
3070
3071 leaf = path->nodes[0];
3072 item_size = btrfs_item_size_nr(leaf, extent_slot);
3073 if (unlikely(item_size < sizeof(*ei))) {
3074 ret = -EINVAL;
3075 btrfs_print_v0_err(info);
3076 btrfs_abort_transaction(trans, ret);
3077 goto out;
3078 }
3079 ei = btrfs_item_ptr(leaf, extent_slot,
3080 struct btrfs_extent_item);
3081 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3082 key.type == BTRFS_EXTENT_ITEM_KEY) {
3083 struct btrfs_tree_block_info *bi;
3084 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3085 btrfs_crit(info,
3086 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3087 key.objectid, key.type, key.offset,
3088 owner_objectid, item_size,
3089 sizeof(*ei) + sizeof(*bi));
3090 btrfs_abort_transaction(trans, -EUCLEAN);
3091 goto err_dump;
3092 }
3093 bi = (struct btrfs_tree_block_info *)(ei + 1);
3094 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3095 }
3096
3097 refs = btrfs_extent_refs(leaf, ei);
3098 if (refs < refs_to_drop) {
3099 btrfs_crit(info,
3100 "trying to drop %d refs but we only have %llu for bytenr %llu",
3101 refs_to_drop, refs, bytenr);
3102 btrfs_abort_transaction(trans, -EUCLEAN);
3103 goto err_dump;
3104 }
3105 refs -= refs_to_drop;
3106
3107 if (refs > 0) {
3108 if (extent_op)
3109 __run_delayed_extent_op(extent_op, leaf, ei);
3110 /*
3111 * In the case of inline back ref, reference count will
3112 * be updated by remove_extent_backref
3113 */
3114 if (iref) {
3115 if (!found_extent) {
3116 btrfs_crit(info,
3117 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3118 btrfs_abort_transaction(trans, -EUCLEAN);
3119 goto err_dump;
3120 }
3121 } else {
3122 btrfs_set_extent_refs(leaf, ei, refs);
3123 btrfs_mark_buffer_dirty(leaf);
3124 }
3125 if (found_extent) {
3126 ret = remove_extent_backref(trans, path, iref,
3127 refs_to_drop, is_data,
3128 &last_ref);
3129 if (ret) {
3130 btrfs_abort_transaction(trans, ret);
3131 goto out;
3132 }
3133 }
3134 } else {
3135 /* In this branch refs == 1 */
3136 if (found_extent) {
3137 if (is_data && refs_to_drop !=
3138 extent_data_ref_count(path, iref)) {
3139 btrfs_crit(info,
3140 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3141 extent_data_ref_count(path, iref),
3142 refs_to_drop);
3143 btrfs_abort_transaction(trans, -EUCLEAN);
3144 goto err_dump;
3145 }
3146 if (iref) {
3147 if (path->slots[0] != extent_slot) {
3148 btrfs_crit(info,
3149 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3150 key.objectid, key.type,
3151 key.offset);
3152 btrfs_abort_transaction(trans, -EUCLEAN);
3153 goto err_dump;
3154 }
3155 } else {
3156 /*
3157 * No inline ref, we must be at SHARED_* item,
3158 * And it's single ref, it must be:
3159 * | extent_slot ||extent_slot + 1|
3160 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3161 */
3162 if (path->slots[0] != extent_slot + 1) {
3163 btrfs_crit(info,
3164 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3165 btrfs_abort_transaction(trans, -EUCLEAN);
3166 goto err_dump;
3167 }
3168 path->slots[0] = extent_slot;
3169 num_to_del = 2;
3170 }
3171 }
3172
3173 last_ref = 1;
3174 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3175 num_to_del);
3176 if (ret) {
3177 btrfs_abort_transaction(trans, ret);
3178 goto out;
3179 }
3180 btrfs_release_path(path);
3181
3182 if (is_data) {
3183 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3184 num_bytes);
3185 if (ret) {
3186 btrfs_abort_transaction(trans, ret);
3187 goto out;
3188 }
3189 }
3190
3191 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3192 if (ret) {
3193 btrfs_abort_transaction(trans, ret);
3194 goto out;
3195 }
3196
3197 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3198 if (ret) {
3199 btrfs_abort_transaction(trans, ret);
3200 goto out;
3201 }
3202 }
3203 btrfs_release_path(path);
3204
3205 out:
3206 btrfs_free_path(path);
3207 return ret;
3208 err_dump:
3209 /*
3210 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3211 * dump for debug build.
3212 */
3213 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3214 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3215 path->slots[0], extent_slot);
3216 btrfs_print_leaf(path->nodes[0]);
3217 }
3218
3219 btrfs_free_path(path);
3220 return -EUCLEAN;
3221 }
3222
3223 /*
3224 * when we free an block, it is possible (and likely) that we free the last
3225 * delayed ref for that extent as well. This searches the delayed ref tree for
3226 * a given extent, and if there are no other delayed refs to be processed, it
3227 * removes it from the tree.
3228 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3229 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3230 u64 bytenr)
3231 {
3232 struct btrfs_delayed_ref_head *head;
3233 struct btrfs_delayed_ref_root *delayed_refs;
3234 int ret = 0;
3235
3236 delayed_refs = &trans->transaction->delayed_refs;
3237 spin_lock(&delayed_refs->lock);
3238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3239 if (!head)
3240 goto out_delayed_unlock;
3241
3242 spin_lock(&head->lock);
3243 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3244 goto out;
3245
3246 if (cleanup_extent_op(head) != NULL)
3247 goto out;
3248
3249 /*
3250 * waiting for the lock here would deadlock. If someone else has it
3251 * locked they are already in the process of dropping it anyway
3252 */
3253 if (!mutex_trylock(&head->mutex))
3254 goto out;
3255
3256 btrfs_delete_ref_head(delayed_refs, head);
3257 head->processing = 0;
3258
3259 spin_unlock(&head->lock);
3260 spin_unlock(&delayed_refs->lock);
3261
3262 BUG_ON(head->extent_op);
3263 if (head->must_insert_reserved)
3264 ret = 1;
3265
3266 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3267 mutex_unlock(&head->mutex);
3268 btrfs_put_delayed_ref_head(head);
3269 return ret;
3270 out:
3271 spin_unlock(&head->lock);
3272
3273 out_delayed_unlock:
3274 spin_unlock(&delayed_refs->lock);
3275 return 0;
3276 }
3277
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3278 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3279 u64 root_id,
3280 struct extent_buffer *buf,
3281 u64 parent, int last_ref)
3282 {
3283 struct btrfs_fs_info *fs_info = trans->fs_info;
3284 struct btrfs_ref generic_ref = { 0 };
3285 int ret;
3286
3287 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3288 buf->start, buf->len, parent);
3289 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3290 root_id, 0, false);
3291
3292 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3293 btrfs_ref_tree_mod(fs_info, &generic_ref);
3294 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3295 BUG_ON(ret); /* -ENOMEM */
3296 }
3297
3298 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3299 struct btrfs_block_group *cache;
3300 bool must_pin = false;
3301
3302 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3303 ret = check_ref_cleanup(trans, buf->start);
3304 if (!ret) {
3305 btrfs_redirty_list_add(trans->transaction, buf);
3306 goto out;
3307 }
3308 }
3309
3310 cache = btrfs_lookup_block_group(fs_info, buf->start);
3311
3312 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3313 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3314 btrfs_put_block_group(cache);
3315 goto out;
3316 }
3317
3318 /*
3319 * If there are tree mod log users we may have recorded mod log
3320 * operations for this node. If we re-allocate this node we
3321 * could replay operations on this node that happened when it
3322 * existed in a completely different root. For example if it
3323 * was part of root A, then was reallocated to root B, and we
3324 * are doing a btrfs_old_search_slot(root b), we could replay
3325 * operations that happened when the block was part of root A,
3326 * giving us an inconsistent view of the btree.
3327 *
3328 * We are safe from races here because at this point no other
3329 * node or root points to this extent buffer, so if after this
3330 * check a new tree mod log user joins we will not have an
3331 * existing log of operations on this node that we have to
3332 * contend with.
3333 */
3334 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3335 must_pin = true;
3336
3337 if (must_pin || btrfs_is_zoned(fs_info)) {
3338 btrfs_redirty_list_add(trans->transaction, buf);
3339 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3340 btrfs_put_block_group(cache);
3341 goto out;
3342 }
3343
3344 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3345
3346 btrfs_add_free_space(cache, buf->start, buf->len);
3347 btrfs_free_reserved_bytes(cache, buf->len, 0);
3348 btrfs_put_block_group(cache);
3349 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3350 }
3351 out:
3352 if (last_ref) {
3353 /*
3354 * Deleting the buffer, clear the corrupt flag since it doesn't
3355 * matter anymore.
3356 */
3357 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3358 }
3359 }
3360
3361 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3362 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3363 {
3364 struct btrfs_fs_info *fs_info = trans->fs_info;
3365 int ret;
3366
3367 if (btrfs_is_testing(fs_info))
3368 return 0;
3369
3370 /*
3371 * tree log blocks never actually go into the extent allocation
3372 * tree, just update pinning info and exit early.
3373 */
3374 if ((ref->type == BTRFS_REF_METADATA &&
3375 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3376 (ref->type == BTRFS_REF_DATA &&
3377 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3378 /* unlocks the pinned mutex */
3379 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3380 ret = 0;
3381 } else if (ref->type == BTRFS_REF_METADATA) {
3382 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3383 } else {
3384 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3385 }
3386
3387 if (!((ref->type == BTRFS_REF_METADATA &&
3388 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3389 (ref->type == BTRFS_REF_DATA &&
3390 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3391 btrfs_ref_tree_mod(fs_info, ref);
3392
3393 return ret;
3394 }
3395
3396 enum btrfs_loop_type {
3397 LOOP_CACHING_NOWAIT,
3398 LOOP_CACHING_WAIT,
3399 LOOP_ALLOC_CHUNK,
3400 LOOP_NO_EMPTY_SIZE,
3401 };
3402
3403 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3404 btrfs_lock_block_group(struct btrfs_block_group *cache,
3405 int delalloc)
3406 {
3407 if (delalloc)
3408 down_read(&cache->data_rwsem);
3409 }
3410
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3411 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3412 int delalloc)
3413 {
3414 btrfs_get_block_group(cache);
3415 if (delalloc)
3416 down_read(&cache->data_rwsem);
3417 }
3418
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3419 static struct btrfs_block_group *btrfs_lock_cluster(
3420 struct btrfs_block_group *block_group,
3421 struct btrfs_free_cluster *cluster,
3422 int delalloc)
3423 __acquires(&cluster->refill_lock)
3424 {
3425 struct btrfs_block_group *used_bg = NULL;
3426
3427 spin_lock(&cluster->refill_lock);
3428 while (1) {
3429 used_bg = cluster->block_group;
3430 if (!used_bg)
3431 return NULL;
3432
3433 if (used_bg == block_group)
3434 return used_bg;
3435
3436 btrfs_get_block_group(used_bg);
3437
3438 if (!delalloc)
3439 return used_bg;
3440
3441 if (down_read_trylock(&used_bg->data_rwsem))
3442 return used_bg;
3443
3444 spin_unlock(&cluster->refill_lock);
3445
3446 /* We should only have one-level nested. */
3447 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3448
3449 spin_lock(&cluster->refill_lock);
3450 if (used_bg == cluster->block_group)
3451 return used_bg;
3452
3453 up_read(&used_bg->data_rwsem);
3454 btrfs_put_block_group(used_bg);
3455 }
3456 }
3457
3458 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3459 btrfs_release_block_group(struct btrfs_block_group *cache,
3460 int delalloc)
3461 {
3462 if (delalloc)
3463 up_read(&cache->data_rwsem);
3464 btrfs_put_block_group(cache);
3465 }
3466
3467 enum btrfs_extent_allocation_policy {
3468 BTRFS_EXTENT_ALLOC_CLUSTERED,
3469 BTRFS_EXTENT_ALLOC_ZONED,
3470 };
3471
3472 /*
3473 * Structure used internally for find_free_extent() function. Wraps needed
3474 * parameters.
3475 */
3476 struct find_free_extent_ctl {
3477 /* Basic allocation info */
3478 u64 num_bytes;
3479 u64 empty_size;
3480 u64 flags;
3481 int delalloc;
3482
3483 /* Where to start the search inside the bg */
3484 u64 search_start;
3485
3486 /* For clustered allocation */
3487 u64 empty_cluster;
3488 struct btrfs_free_cluster *last_ptr;
3489 bool use_cluster;
3490
3491 bool have_caching_bg;
3492 bool orig_have_caching_bg;
3493
3494 /* Allocation is called for tree-log */
3495 bool for_treelog;
3496
3497 /* Allocation is called for data relocation */
3498 bool for_data_reloc;
3499
3500 /* RAID index, converted from flags */
3501 int index;
3502
3503 /*
3504 * Current loop number, check find_free_extent_update_loop() for details
3505 */
3506 int loop;
3507
3508 /*
3509 * Whether we're refilling a cluster, if true we need to re-search
3510 * current block group but don't try to refill the cluster again.
3511 */
3512 bool retry_clustered;
3513
3514 /*
3515 * Whether we're updating free space cache, if true we need to re-search
3516 * current block group but don't try updating free space cache again.
3517 */
3518 bool retry_unclustered;
3519
3520 /* If current block group is cached */
3521 int cached;
3522
3523 /* Max contiguous hole found */
3524 u64 max_extent_size;
3525
3526 /* Total free space from free space cache, not always contiguous */
3527 u64 total_free_space;
3528
3529 /* Found result */
3530 u64 found_offset;
3531
3532 /* Hint where to start looking for an empty space */
3533 u64 hint_byte;
3534
3535 /* Allocation policy */
3536 enum btrfs_extent_allocation_policy policy;
3537 };
3538
3539
3540 /*
3541 * Helper function for find_free_extent().
3542 *
3543 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3544 * Return -EAGAIN to inform caller that we need to re-search this block group
3545 * Return >0 to inform caller that we find nothing
3546 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3547 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3548 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3549 struct find_free_extent_ctl *ffe_ctl,
3550 struct btrfs_block_group **cluster_bg_ret)
3551 {
3552 struct btrfs_block_group *cluster_bg;
3553 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3554 u64 aligned_cluster;
3555 u64 offset;
3556 int ret;
3557
3558 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3559 if (!cluster_bg)
3560 goto refill_cluster;
3561 if (cluster_bg != bg && (cluster_bg->ro ||
3562 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3563 goto release_cluster;
3564
3565 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3566 ffe_ctl->num_bytes, cluster_bg->start,
3567 &ffe_ctl->max_extent_size);
3568 if (offset) {
3569 /* We have a block, we're done */
3570 spin_unlock(&last_ptr->refill_lock);
3571 trace_btrfs_reserve_extent_cluster(cluster_bg,
3572 ffe_ctl->search_start, ffe_ctl->num_bytes);
3573 *cluster_bg_ret = cluster_bg;
3574 ffe_ctl->found_offset = offset;
3575 return 0;
3576 }
3577 WARN_ON(last_ptr->block_group != cluster_bg);
3578
3579 release_cluster:
3580 /*
3581 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3582 * lets just skip it and let the allocator find whatever block it can
3583 * find. If we reach this point, we will have tried the cluster
3584 * allocator plenty of times and not have found anything, so we are
3585 * likely way too fragmented for the clustering stuff to find anything.
3586 *
3587 * However, if the cluster is taken from the current block group,
3588 * release the cluster first, so that we stand a better chance of
3589 * succeeding in the unclustered allocation.
3590 */
3591 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3592 spin_unlock(&last_ptr->refill_lock);
3593 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3594 return -ENOENT;
3595 }
3596
3597 /* This cluster didn't work out, free it and start over */
3598 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3599
3600 if (cluster_bg != bg)
3601 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3602
3603 refill_cluster:
3604 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3605 spin_unlock(&last_ptr->refill_lock);
3606 return -ENOENT;
3607 }
3608
3609 aligned_cluster = max_t(u64,
3610 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3611 bg->full_stripe_len);
3612 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3613 ffe_ctl->num_bytes, aligned_cluster);
3614 if (ret == 0) {
3615 /* Now pull our allocation out of this cluster */
3616 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3617 ffe_ctl->num_bytes, ffe_ctl->search_start,
3618 &ffe_ctl->max_extent_size);
3619 if (offset) {
3620 /* We found one, proceed */
3621 spin_unlock(&last_ptr->refill_lock);
3622 trace_btrfs_reserve_extent_cluster(bg,
3623 ffe_ctl->search_start,
3624 ffe_ctl->num_bytes);
3625 ffe_ctl->found_offset = offset;
3626 return 0;
3627 }
3628 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3629 !ffe_ctl->retry_clustered) {
3630 spin_unlock(&last_ptr->refill_lock);
3631
3632 ffe_ctl->retry_clustered = true;
3633 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3634 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3635 return -EAGAIN;
3636 }
3637 /*
3638 * At this point we either didn't find a cluster or we weren't able to
3639 * allocate a block from our cluster. Free the cluster we've been
3640 * trying to use, and go to the next block group.
3641 */
3642 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3643 spin_unlock(&last_ptr->refill_lock);
3644 return 1;
3645 }
3646
3647 /*
3648 * Return >0 to inform caller that we find nothing
3649 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3650 * Return -EAGAIN to inform caller that we need to re-search this block group
3651 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3652 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3653 struct find_free_extent_ctl *ffe_ctl)
3654 {
3655 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3656 u64 offset;
3657
3658 /*
3659 * We are doing an unclustered allocation, set the fragmented flag so
3660 * we don't bother trying to setup a cluster again until we get more
3661 * space.
3662 */
3663 if (unlikely(last_ptr)) {
3664 spin_lock(&last_ptr->lock);
3665 last_ptr->fragmented = 1;
3666 spin_unlock(&last_ptr->lock);
3667 }
3668 if (ffe_ctl->cached) {
3669 struct btrfs_free_space_ctl *free_space_ctl;
3670
3671 free_space_ctl = bg->free_space_ctl;
3672 spin_lock(&free_space_ctl->tree_lock);
3673 if (free_space_ctl->free_space <
3674 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3675 ffe_ctl->empty_size) {
3676 ffe_ctl->total_free_space = max_t(u64,
3677 ffe_ctl->total_free_space,
3678 free_space_ctl->free_space);
3679 spin_unlock(&free_space_ctl->tree_lock);
3680 return 1;
3681 }
3682 spin_unlock(&free_space_ctl->tree_lock);
3683 }
3684
3685 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3686 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3687 &ffe_ctl->max_extent_size);
3688
3689 /*
3690 * If we didn't find a chunk, and we haven't failed on this block group
3691 * before, and this block group is in the middle of caching and we are
3692 * ok with waiting, then go ahead and wait for progress to be made, and
3693 * set @retry_unclustered to true.
3694 *
3695 * If @retry_unclustered is true then we've already waited on this
3696 * block group once and should move on to the next block group.
3697 */
3698 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3699 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3700 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3701 ffe_ctl->empty_size);
3702 ffe_ctl->retry_unclustered = true;
3703 return -EAGAIN;
3704 } else if (!offset) {
3705 return 1;
3706 }
3707 ffe_ctl->found_offset = offset;
3708 return 0;
3709 }
3710
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3711 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3712 struct find_free_extent_ctl *ffe_ctl,
3713 struct btrfs_block_group **bg_ret)
3714 {
3715 int ret;
3716
3717 /* We want to try and use the cluster allocator, so lets look there */
3718 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3719 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3720 if (ret >= 0 || ret == -EAGAIN)
3721 return ret;
3722 /* ret == -ENOENT case falls through */
3723 }
3724
3725 return find_free_extent_unclustered(block_group, ffe_ctl);
3726 }
3727
3728 /*
3729 * Tree-log block group locking
3730 * ============================
3731 *
3732 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3733 * indicates the starting address of a block group, which is reserved only
3734 * for tree-log metadata.
3735 *
3736 * Lock nesting
3737 * ============
3738 *
3739 * space_info::lock
3740 * block_group::lock
3741 * fs_info::treelog_bg_lock
3742 */
3743
3744 /*
3745 * Simple allocator for sequential-only block group. It only allows sequential
3746 * allocation. No need to play with trees. This function also reserves the
3747 * bytes as in btrfs_add_reserved_bytes.
3748 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3749 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3750 struct find_free_extent_ctl *ffe_ctl,
3751 struct btrfs_block_group **bg_ret)
3752 {
3753 struct btrfs_fs_info *fs_info = block_group->fs_info;
3754 struct btrfs_space_info *space_info = block_group->space_info;
3755 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3756 u64 start = block_group->start;
3757 u64 num_bytes = ffe_ctl->num_bytes;
3758 u64 avail;
3759 u64 bytenr = block_group->start;
3760 u64 log_bytenr;
3761 u64 data_reloc_bytenr;
3762 int ret = 0;
3763 bool skip;
3764
3765 ASSERT(btrfs_is_zoned(block_group->fs_info));
3766
3767 /*
3768 * Do not allow non-tree-log blocks in the dedicated tree-log block
3769 * group, and vice versa.
3770 */
3771 spin_lock(&fs_info->treelog_bg_lock);
3772 log_bytenr = fs_info->treelog_bg;
3773 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3774 (!ffe_ctl->for_treelog && bytenr == log_bytenr));
3775 spin_unlock(&fs_info->treelog_bg_lock);
3776 if (skip)
3777 return 1;
3778
3779 /*
3780 * Do not allow non-relocation blocks in the dedicated relocation block
3781 * group, and vice versa.
3782 */
3783 spin_lock(&fs_info->relocation_bg_lock);
3784 data_reloc_bytenr = fs_info->data_reloc_bg;
3785 if (data_reloc_bytenr &&
3786 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3787 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3788 skip = true;
3789 spin_unlock(&fs_info->relocation_bg_lock);
3790 if (skip)
3791 return 1;
3792
3793 spin_lock(&space_info->lock);
3794 spin_lock(&block_group->lock);
3795 spin_lock(&fs_info->treelog_bg_lock);
3796 spin_lock(&fs_info->relocation_bg_lock);
3797
3798 ASSERT(!ffe_ctl->for_treelog ||
3799 block_group->start == fs_info->treelog_bg ||
3800 fs_info->treelog_bg == 0);
3801 ASSERT(!ffe_ctl->for_data_reloc ||
3802 block_group->start == fs_info->data_reloc_bg ||
3803 fs_info->data_reloc_bg == 0);
3804
3805 if (block_group->ro || block_group->zoned_data_reloc_ongoing) {
3806 ret = 1;
3807 goto out;
3808 }
3809
3810 /*
3811 * Do not allow currently using block group to be tree-log dedicated
3812 * block group.
3813 */
3814 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3815 (block_group->used || block_group->reserved)) {
3816 ret = 1;
3817 goto out;
3818 }
3819
3820 /*
3821 * Do not allow currently used block group to be the data relocation
3822 * dedicated block group.
3823 */
3824 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3825 (block_group->used || block_group->reserved)) {
3826 ret = 1;
3827 goto out;
3828 }
3829
3830 avail = block_group->length - block_group->alloc_offset;
3831 if (avail < num_bytes) {
3832 if (ffe_ctl->max_extent_size < avail) {
3833 /*
3834 * With sequential allocator, free space is always
3835 * contiguous
3836 */
3837 ffe_ctl->max_extent_size = avail;
3838 ffe_ctl->total_free_space = avail;
3839 }
3840 ret = 1;
3841 goto out;
3842 }
3843
3844 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3845 fs_info->treelog_bg = block_group->start;
3846
3847 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3848 fs_info->data_reloc_bg = block_group->start;
3849
3850 ffe_ctl->found_offset = start + block_group->alloc_offset;
3851 block_group->alloc_offset += num_bytes;
3852 spin_lock(&ctl->tree_lock);
3853 ctl->free_space -= num_bytes;
3854 spin_unlock(&ctl->tree_lock);
3855
3856 /*
3857 * We do not check if found_offset is aligned to stripesize. The
3858 * address is anyway rewritten when using zone append writing.
3859 */
3860
3861 ffe_ctl->search_start = ffe_ctl->found_offset;
3862
3863 out:
3864 if (ret && ffe_ctl->for_treelog)
3865 fs_info->treelog_bg = 0;
3866 if (ret && ffe_ctl->for_data_reloc &&
3867 fs_info->data_reloc_bg == block_group->start) {
3868 /*
3869 * Do not allow further allocations from this block group.
3870 * Compared to increasing the ->ro, setting the
3871 * ->zoned_data_reloc_ongoing flag still allows nocow
3872 * writers to come in. See btrfs_inc_nocow_writers().
3873 *
3874 * We need to disable an allocation to avoid an allocation of
3875 * regular (non-relocation data) extent. With mix of relocation
3876 * extents and regular extents, we can dispatch WRITE commands
3877 * (for relocation extents) and ZONE APPEND commands (for
3878 * regular extents) at the same time to the same zone, which
3879 * easily break the write pointer.
3880 */
3881 block_group->zoned_data_reloc_ongoing = 1;
3882 fs_info->data_reloc_bg = 0;
3883 }
3884 spin_unlock(&fs_info->relocation_bg_lock);
3885 spin_unlock(&fs_info->treelog_bg_lock);
3886 spin_unlock(&block_group->lock);
3887 spin_unlock(&space_info->lock);
3888 return ret;
3889 }
3890
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3891 static int do_allocation(struct btrfs_block_group *block_group,
3892 struct find_free_extent_ctl *ffe_ctl,
3893 struct btrfs_block_group **bg_ret)
3894 {
3895 switch (ffe_ctl->policy) {
3896 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3897 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3898 case BTRFS_EXTENT_ALLOC_ZONED:
3899 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3900 default:
3901 BUG();
3902 }
3903 }
3904
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3905 static void release_block_group(struct btrfs_block_group *block_group,
3906 struct find_free_extent_ctl *ffe_ctl,
3907 int delalloc)
3908 {
3909 switch (ffe_ctl->policy) {
3910 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3911 ffe_ctl->retry_clustered = false;
3912 ffe_ctl->retry_unclustered = false;
3913 break;
3914 case BTRFS_EXTENT_ALLOC_ZONED:
3915 /* Nothing to do */
3916 break;
3917 default:
3918 BUG();
3919 }
3920
3921 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3922 ffe_ctl->index);
3923 btrfs_release_block_group(block_group, delalloc);
3924 }
3925
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3926 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3927 struct btrfs_key *ins)
3928 {
3929 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3930
3931 if (!ffe_ctl->use_cluster && last_ptr) {
3932 spin_lock(&last_ptr->lock);
3933 last_ptr->window_start = ins->objectid;
3934 spin_unlock(&last_ptr->lock);
3935 }
3936 }
3937
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3938 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3939 struct btrfs_key *ins)
3940 {
3941 switch (ffe_ctl->policy) {
3942 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3943 found_extent_clustered(ffe_ctl, ins);
3944 break;
3945 case BTRFS_EXTENT_ALLOC_ZONED:
3946 /* Nothing to do */
3947 break;
3948 default:
3949 BUG();
3950 }
3951 }
3952
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)3953 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3954 {
3955 switch (ffe_ctl->policy) {
3956 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3957 /*
3958 * If we can't allocate a new chunk we've already looped through
3959 * at least once, move on to the NO_EMPTY_SIZE case.
3960 */
3961 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3962 return 0;
3963 case BTRFS_EXTENT_ALLOC_ZONED:
3964 /* Give up here */
3965 return -ENOSPC;
3966 default:
3967 BUG();
3968 }
3969 }
3970
3971 /*
3972 * Return >0 means caller needs to re-search for free extent
3973 * Return 0 means we have the needed free extent.
3974 * Return <0 means we failed to locate any free extent.
3975 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3976 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3977 struct btrfs_key *ins,
3978 struct find_free_extent_ctl *ffe_ctl,
3979 bool full_search)
3980 {
3981 struct btrfs_root *root = fs_info->extent_root;
3982 int ret;
3983
3984 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3985 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3986 ffe_ctl->orig_have_caching_bg = true;
3987
3988 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3989 ffe_ctl->have_caching_bg)
3990 return 1;
3991
3992 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3993 return 1;
3994
3995 if (ins->objectid) {
3996 found_extent(ffe_ctl, ins);
3997 return 0;
3998 }
3999
4000 /*
4001 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4002 * caching kthreads as we move along
4003 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4004 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4005 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4006 * again
4007 */
4008 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4009 ffe_ctl->index = 0;
4010 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4011 /*
4012 * We want to skip the LOOP_CACHING_WAIT step if we
4013 * don't have any uncached bgs and we've already done a
4014 * full search through.
4015 */
4016 if (ffe_ctl->orig_have_caching_bg || !full_search)
4017 ffe_ctl->loop = LOOP_CACHING_WAIT;
4018 else
4019 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4020 } else {
4021 ffe_ctl->loop++;
4022 }
4023
4024 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4025 struct btrfs_trans_handle *trans;
4026 int exist = 0;
4027
4028 trans = current->journal_info;
4029 if (trans)
4030 exist = 1;
4031 else
4032 trans = btrfs_join_transaction(root);
4033
4034 if (IS_ERR(trans)) {
4035 ret = PTR_ERR(trans);
4036 return ret;
4037 }
4038
4039 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4040 CHUNK_ALLOC_FORCE);
4041
4042 /* Do not bail out on ENOSPC since we can do more. */
4043 if (ret == -ENOSPC)
4044 ret = chunk_allocation_failed(ffe_ctl);
4045 else if (ret < 0)
4046 btrfs_abort_transaction(trans, ret);
4047 else
4048 ret = 0;
4049 if (!exist)
4050 btrfs_end_transaction(trans);
4051 if (ret)
4052 return ret;
4053 }
4054
4055 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4056 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4057 return -ENOSPC;
4058
4059 /*
4060 * Don't loop again if we already have no empty_size and
4061 * no empty_cluster.
4062 */
4063 if (ffe_ctl->empty_size == 0 &&
4064 ffe_ctl->empty_cluster == 0)
4065 return -ENOSPC;
4066 ffe_ctl->empty_size = 0;
4067 ffe_ctl->empty_cluster = 0;
4068 }
4069 return 1;
4070 }
4071 return -ENOSPC;
4072 }
4073
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4074 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4075 struct find_free_extent_ctl *ffe_ctl,
4076 struct btrfs_space_info *space_info,
4077 struct btrfs_key *ins)
4078 {
4079 /*
4080 * If our free space is heavily fragmented we may not be able to make
4081 * big contiguous allocations, so instead of doing the expensive search
4082 * for free space, simply return ENOSPC with our max_extent_size so we
4083 * can go ahead and search for a more manageable chunk.
4084 *
4085 * If our max_extent_size is large enough for our allocation simply
4086 * disable clustering since we will likely not be able to find enough
4087 * space to create a cluster and induce latency trying.
4088 */
4089 if (space_info->max_extent_size) {
4090 spin_lock(&space_info->lock);
4091 if (space_info->max_extent_size &&
4092 ffe_ctl->num_bytes > space_info->max_extent_size) {
4093 ins->offset = space_info->max_extent_size;
4094 spin_unlock(&space_info->lock);
4095 return -ENOSPC;
4096 } else if (space_info->max_extent_size) {
4097 ffe_ctl->use_cluster = false;
4098 }
4099 spin_unlock(&space_info->lock);
4100 }
4101
4102 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4103 &ffe_ctl->empty_cluster);
4104 if (ffe_ctl->last_ptr) {
4105 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4106
4107 spin_lock(&last_ptr->lock);
4108 if (last_ptr->block_group)
4109 ffe_ctl->hint_byte = last_ptr->window_start;
4110 if (last_ptr->fragmented) {
4111 /*
4112 * We still set window_start so we can keep track of the
4113 * last place we found an allocation to try and save
4114 * some time.
4115 */
4116 ffe_ctl->hint_byte = last_ptr->window_start;
4117 ffe_ctl->use_cluster = false;
4118 }
4119 spin_unlock(&last_ptr->lock);
4120 }
4121
4122 return 0;
4123 }
4124
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4125 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4126 struct find_free_extent_ctl *ffe_ctl,
4127 struct btrfs_space_info *space_info,
4128 struct btrfs_key *ins)
4129 {
4130 switch (ffe_ctl->policy) {
4131 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4132 return prepare_allocation_clustered(fs_info, ffe_ctl,
4133 space_info, ins);
4134 case BTRFS_EXTENT_ALLOC_ZONED:
4135 if (ffe_ctl->for_treelog) {
4136 spin_lock(&fs_info->treelog_bg_lock);
4137 if (fs_info->treelog_bg)
4138 ffe_ctl->hint_byte = fs_info->treelog_bg;
4139 spin_unlock(&fs_info->treelog_bg_lock);
4140 }
4141 if (ffe_ctl->for_data_reloc) {
4142 spin_lock(&fs_info->relocation_bg_lock);
4143 if (fs_info->data_reloc_bg)
4144 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4145 spin_unlock(&fs_info->relocation_bg_lock);
4146 }
4147 return 0;
4148 default:
4149 BUG();
4150 }
4151 }
4152
4153 /*
4154 * walks the btree of allocated extents and find a hole of a given size.
4155 * The key ins is changed to record the hole:
4156 * ins->objectid == start position
4157 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4158 * ins->offset == the size of the hole.
4159 * Any available blocks before search_start are skipped.
4160 *
4161 * If there is no suitable free space, we will record the max size of
4162 * the free space extent currently.
4163 *
4164 * The overall logic and call chain:
4165 *
4166 * find_free_extent()
4167 * |- Iterate through all block groups
4168 * | |- Get a valid block group
4169 * | |- Try to do clustered allocation in that block group
4170 * | |- Try to do unclustered allocation in that block group
4171 * | |- Check if the result is valid
4172 * | | |- If valid, then exit
4173 * | |- Jump to next block group
4174 * |
4175 * |- Push harder to find free extents
4176 * |- If not found, re-iterate all block groups
4177 */
find_free_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte_orig,struct btrfs_key * ins,u64 flags,int delalloc)4178 static noinline int find_free_extent(struct btrfs_root *root,
4179 u64 ram_bytes, u64 num_bytes, u64 empty_size,
4180 u64 hint_byte_orig, struct btrfs_key *ins,
4181 u64 flags, int delalloc)
4182 {
4183 struct btrfs_fs_info *fs_info = root->fs_info;
4184 int ret = 0;
4185 int cache_block_group_error = 0;
4186 struct btrfs_block_group *block_group = NULL;
4187 struct find_free_extent_ctl ffe_ctl = {0};
4188 struct btrfs_space_info *space_info;
4189 bool full_search = false;
4190 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4191 bool for_data_reloc = (btrfs_is_data_reloc_root(root) &&
4192 flags & BTRFS_BLOCK_GROUP_DATA);
4193
4194 WARN_ON(num_bytes < fs_info->sectorsize);
4195
4196 ffe_ctl.num_bytes = num_bytes;
4197 ffe_ctl.empty_size = empty_size;
4198 ffe_ctl.flags = flags;
4199 ffe_ctl.search_start = 0;
4200 ffe_ctl.delalloc = delalloc;
4201 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4202 ffe_ctl.have_caching_bg = false;
4203 ffe_ctl.orig_have_caching_bg = false;
4204 ffe_ctl.found_offset = 0;
4205 ffe_ctl.hint_byte = hint_byte_orig;
4206 ffe_ctl.for_treelog = for_treelog;
4207 ffe_ctl.for_data_reloc = for_data_reloc;
4208 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4209
4210 /* For clustered allocation */
4211 ffe_ctl.retry_clustered = false;
4212 ffe_ctl.retry_unclustered = false;
4213 ffe_ctl.last_ptr = NULL;
4214 ffe_ctl.use_cluster = true;
4215
4216 if (btrfs_is_zoned(fs_info))
4217 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED;
4218
4219 ins->type = BTRFS_EXTENT_ITEM_KEY;
4220 ins->objectid = 0;
4221 ins->offset = 0;
4222
4223 trace_find_free_extent(root, num_bytes, empty_size, flags);
4224
4225 space_info = btrfs_find_space_info(fs_info, flags);
4226 if (!space_info) {
4227 btrfs_err(fs_info, "No space info for %llu", flags);
4228 return -ENOSPC;
4229 }
4230
4231 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4232 if (ret < 0)
4233 return ret;
4234
4235 ffe_ctl.search_start = max(ffe_ctl.search_start,
4236 first_logical_byte(fs_info, 0));
4237 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4238 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4239 block_group = btrfs_lookup_block_group(fs_info,
4240 ffe_ctl.search_start);
4241 /*
4242 * we don't want to use the block group if it doesn't match our
4243 * allocation bits, or if its not cached.
4244 *
4245 * However if we are re-searching with an ideal block group
4246 * picked out then we don't care that the block group is cached.
4247 */
4248 if (block_group && block_group_bits(block_group, flags) &&
4249 block_group->cached != BTRFS_CACHE_NO) {
4250 down_read(&space_info->groups_sem);
4251 if (list_empty(&block_group->list) ||
4252 block_group->ro) {
4253 /*
4254 * someone is removing this block group,
4255 * we can't jump into the have_block_group
4256 * target because our list pointers are not
4257 * valid
4258 */
4259 btrfs_put_block_group(block_group);
4260 up_read(&space_info->groups_sem);
4261 } else {
4262 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4263 block_group->flags);
4264 btrfs_lock_block_group(block_group, delalloc);
4265 goto have_block_group;
4266 }
4267 } else if (block_group) {
4268 btrfs_put_block_group(block_group);
4269 }
4270 }
4271 search:
4272 ffe_ctl.have_caching_bg = false;
4273 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4274 ffe_ctl.index == 0)
4275 full_search = true;
4276 down_read(&space_info->groups_sem);
4277 list_for_each_entry(block_group,
4278 &space_info->block_groups[ffe_ctl.index], list) {
4279 struct btrfs_block_group *bg_ret;
4280
4281 /* If the block group is read-only, we can skip it entirely. */
4282 if (unlikely(block_group->ro)) {
4283 if (for_treelog)
4284 btrfs_clear_treelog_bg(block_group);
4285 if (ffe_ctl.for_data_reloc)
4286 btrfs_clear_data_reloc_bg(block_group);
4287 continue;
4288 }
4289
4290 btrfs_grab_block_group(block_group, delalloc);
4291 ffe_ctl.search_start = block_group->start;
4292
4293 /*
4294 * this can happen if we end up cycling through all the
4295 * raid types, but we want to make sure we only allocate
4296 * for the proper type.
4297 */
4298 if (!block_group_bits(block_group, flags)) {
4299 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4300 BTRFS_BLOCK_GROUP_RAID1_MASK |
4301 BTRFS_BLOCK_GROUP_RAID56_MASK |
4302 BTRFS_BLOCK_GROUP_RAID10;
4303
4304 /*
4305 * if they asked for extra copies and this block group
4306 * doesn't provide them, bail. This does allow us to
4307 * fill raid0 from raid1.
4308 */
4309 if ((flags & extra) && !(block_group->flags & extra))
4310 goto loop;
4311
4312 /*
4313 * This block group has different flags than we want.
4314 * It's possible that we have MIXED_GROUP flag but no
4315 * block group is mixed. Just skip such block group.
4316 */
4317 btrfs_release_block_group(block_group, delalloc);
4318 continue;
4319 }
4320
4321 have_block_group:
4322 ffe_ctl.cached = btrfs_block_group_done(block_group);
4323 if (unlikely(!ffe_ctl.cached)) {
4324 ffe_ctl.have_caching_bg = true;
4325 ret = btrfs_cache_block_group(block_group, false);
4326
4327 /*
4328 * If we get ENOMEM here or something else we want to
4329 * try other block groups, because it may not be fatal.
4330 * However if we can't find anything else we need to
4331 * save our return here so that we return the actual
4332 * error that caused problems, not ENOSPC.
4333 */
4334 if (ret < 0) {
4335 if (!cache_block_group_error)
4336 cache_block_group_error = ret;
4337 ret = 0;
4338 goto loop;
4339 }
4340 ret = 0;
4341 }
4342
4343 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4344 if (!cache_block_group_error)
4345 cache_block_group_error = -EIO;
4346 goto loop;
4347 }
4348
4349 bg_ret = NULL;
4350 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4351 if (ret == 0) {
4352 if (bg_ret && bg_ret != block_group) {
4353 btrfs_release_block_group(block_group, delalloc);
4354 block_group = bg_ret;
4355 }
4356 } else if (ret == -EAGAIN) {
4357 goto have_block_group;
4358 } else if (ret > 0) {
4359 goto loop;
4360 }
4361
4362 /* Checks */
4363 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4364 fs_info->stripesize);
4365
4366 /* move on to the next group */
4367 if (ffe_ctl.search_start + num_bytes >
4368 block_group->start + block_group->length) {
4369 btrfs_add_free_space_unused(block_group,
4370 ffe_ctl.found_offset, num_bytes);
4371 goto loop;
4372 }
4373
4374 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4375 btrfs_add_free_space_unused(block_group,
4376 ffe_ctl.found_offset,
4377 ffe_ctl.search_start - ffe_ctl.found_offset);
4378
4379 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4380 num_bytes, delalloc);
4381 if (ret == -EAGAIN) {
4382 btrfs_add_free_space_unused(block_group,
4383 ffe_ctl.found_offset, num_bytes);
4384 goto loop;
4385 }
4386 btrfs_inc_block_group_reservations(block_group);
4387
4388 /* we are all good, lets return */
4389 ins->objectid = ffe_ctl.search_start;
4390 ins->offset = num_bytes;
4391
4392 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4393 num_bytes);
4394 btrfs_release_block_group(block_group, delalloc);
4395 break;
4396 loop:
4397 release_block_group(block_group, &ffe_ctl, delalloc);
4398 cond_resched();
4399 }
4400 up_read(&space_info->groups_sem);
4401
4402 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4403 if (ret > 0)
4404 goto search;
4405
4406 if (ret == -ENOSPC && !cache_block_group_error) {
4407 /*
4408 * Use ffe_ctl->total_free_space as fallback if we can't find
4409 * any contiguous hole.
4410 */
4411 if (!ffe_ctl.max_extent_size)
4412 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4413 spin_lock(&space_info->lock);
4414 space_info->max_extent_size = ffe_ctl.max_extent_size;
4415 spin_unlock(&space_info->lock);
4416 ins->offset = ffe_ctl.max_extent_size;
4417 } else if (ret == -ENOSPC) {
4418 ret = cache_block_group_error;
4419 }
4420 return ret;
4421 }
4422
4423 /*
4424 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4425 * hole that is at least as big as @num_bytes.
4426 *
4427 * @root - The root that will contain this extent
4428 *
4429 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4430 * is used for accounting purposes. This value differs
4431 * from @num_bytes only in the case of compressed extents.
4432 *
4433 * @num_bytes - Number of bytes to allocate on-disk.
4434 *
4435 * @min_alloc_size - Indicates the minimum amount of space that the
4436 * allocator should try to satisfy. In some cases
4437 * @num_bytes may be larger than what is required and if
4438 * the filesystem is fragmented then allocation fails.
4439 * However, the presence of @min_alloc_size gives a
4440 * chance to try and satisfy the smaller allocation.
4441 *
4442 * @empty_size - A hint that you plan on doing more COW. This is the
4443 * size in bytes the allocator should try to find free
4444 * next to the block it returns. This is just a hint and
4445 * may be ignored by the allocator.
4446 *
4447 * @hint_byte - Hint to the allocator to start searching above the byte
4448 * address passed. It might be ignored.
4449 *
4450 * @ins - This key is modified to record the found hole. It will
4451 * have the following values:
4452 * ins->objectid == start position
4453 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4454 * ins->offset == the size of the hole.
4455 *
4456 * @is_data - Boolean flag indicating whether an extent is
4457 * allocated for data (true) or metadata (false)
4458 *
4459 * @delalloc - Boolean flag indicating whether this allocation is for
4460 * delalloc or not. If 'true' data_rwsem of block groups
4461 * is going to be acquired.
4462 *
4463 *
4464 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4465 * case -ENOSPC is returned then @ins->offset will contain the size of the
4466 * largest available hole the allocator managed to find.
4467 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4468 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4469 u64 num_bytes, u64 min_alloc_size,
4470 u64 empty_size, u64 hint_byte,
4471 struct btrfs_key *ins, int is_data, int delalloc)
4472 {
4473 struct btrfs_fs_info *fs_info = root->fs_info;
4474 bool final_tried = num_bytes == min_alloc_size;
4475 u64 flags;
4476 int ret;
4477 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4478 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4479
4480 flags = get_alloc_profile_by_root(root, is_data);
4481 again:
4482 WARN_ON(num_bytes < fs_info->sectorsize);
4483 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4484 hint_byte, ins, flags, delalloc);
4485 if (!ret && !is_data) {
4486 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4487 } else if (ret == -ENOSPC) {
4488 if (!final_tried && ins->offset) {
4489 num_bytes = min(num_bytes >> 1, ins->offset);
4490 num_bytes = round_down(num_bytes,
4491 fs_info->sectorsize);
4492 num_bytes = max(num_bytes, min_alloc_size);
4493 ram_bytes = num_bytes;
4494 if (num_bytes == min_alloc_size)
4495 final_tried = true;
4496 goto again;
4497 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4498 struct btrfs_space_info *sinfo;
4499
4500 sinfo = btrfs_find_space_info(fs_info, flags);
4501 btrfs_err(fs_info,
4502 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4503 flags, num_bytes, for_treelog, for_data_reloc);
4504 if (sinfo)
4505 btrfs_dump_space_info(fs_info, sinfo,
4506 num_bytes, 1);
4507 }
4508 }
4509
4510 return ret;
4511 }
4512
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4513 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4514 u64 start, u64 len, int delalloc)
4515 {
4516 struct btrfs_block_group *cache;
4517
4518 cache = btrfs_lookup_block_group(fs_info, start);
4519 if (!cache) {
4520 btrfs_err(fs_info, "Unable to find block group for %llu",
4521 start);
4522 return -ENOSPC;
4523 }
4524
4525 btrfs_add_free_space(cache, start, len);
4526 btrfs_free_reserved_bytes(cache, len, delalloc);
4527 trace_btrfs_reserved_extent_free(fs_info, start, len);
4528
4529 btrfs_put_block_group(cache);
4530 return 0;
4531 }
4532
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4533 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4534 u64 len)
4535 {
4536 struct btrfs_block_group *cache;
4537 int ret = 0;
4538
4539 cache = btrfs_lookup_block_group(trans->fs_info, start);
4540 if (!cache) {
4541 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4542 start);
4543 return -ENOSPC;
4544 }
4545
4546 ret = pin_down_extent(trans, cache, start, len, 1);
4547 btrfs_put_block_group(cache);
4548 return ret;
4549 }
4550
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4551 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4552 u64 parent, u64 root_objectid,
4553 u64 flags, u64 owner, u64 offset,
4554 struct btrfs_key *ins, int ref_mod)
4555 {
4556 struct btrfs_fs_info *fs_info = trans->fs_info;
4557 int ret;
4558 struct btrfs_extent_item *extent_item;
4559 struct btrfs_extent_inline_ref *iref;
4560 struct btrfs_path *path;
4561 struct extent_buffer *leaf;
4562 int type;
4563 u32 size;
4564
4565 if (parent > 0)
4566 type = BTRFS_SHARED_DATA_REF_KEY;
4567 else
4568 type = BTRFS_EXTENT_DATA_REF_KEY;
4569
4570 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4571
4572 path = btrfs_alloc_path();
4573 if (!path)
4574 return -ENOMEM;
4575
4576 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4577 ins, size);
4578 if (ret) {
4579 btrfs_free_path(path);
4580 return ret;
4581 }
4582
4583 leaf = path->nodes[0];
4584 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4585 struct btrfs_extent_item);
4586 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4587 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4588 btrfs_set_extent_flags(leaf, extent_item,
4589 flags | BTRFS_EXTENT_FLAG_DATA);
4590
4591 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4592 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4593 if (parent > 0) {
4594 struct btrfs_shared_data_ref *ref;
4595 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4596 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4597 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4598 } else {
4599 struct btrfs_extent_data_ref *ref;
4600 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4601 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4602 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4603 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4604 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4605 }
4606
4607 btrfs_mark_buffer_dirty(path->nodes[0]);
4608 btrfs_free_path(path);
4609
4610 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4611 if (ret)
4612 return ret;
4613
4614 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4615 if (ret) { /* -ENOENT, logic error */
4616 btrfs_err(fs_info, "update block group failed for %llu %llu",
4617 ins->objectid, ins->offset);
4618 BUG();
4619 }
4620 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4621 return ret;
4622 }
4623
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4624 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4625 struct btrfs_delayed_ref_node *node,
4626 struct btrfs_delayed_extent_op *extent_op)
4627 {
4628 struct btrfs_fs_info *fs_info = trans->fs_info;
4629 int ret;
4630 struct btrfs_extent_item *extent_item;
4631 struct btrfs_key extent_key;
4632 struct btrfs_tree_block_info *block_info;
4633 struct btrfs_extent_inline_ref *iref;
4634 struct btrfs_path *path;
4635 struct extent_buffer *leaf;
4636 struct btrfs_delayed_tree_ref *ref;
4637 u32 size = sizeof(*extent_item) + sizeof(*iref);
4638 u64 num_bytes;
4639 u64 flags = extent_op->flags_to_set;
4640 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4641
4642 ref = btrfs_delayed_node_to_tree_ref(node);
4643
4644 extent_key.objectid = node->bytenr;
4645 if (skinny_metadata) {
4646 extent_key.offset = ref->level;
4647 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4648 num_bytes = fs_info->nodesize;
4649 } else {
4650 extent_key.offset = node->num_bytes;
4651 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4652 size += sizeof(*block_info);
4653 num_bytes = node->num_bytes;
4654 }
4655
4656 path = btrfs_alloc_path();
4657 if (!path)
4658 return -ENOMEM;
4659
4660 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4661 &extent_key, size);
4662 if (ret) {
4663 btrfs_free_path(path);
4664 return ret;
4665 }
4666
4667 leaf = path->nodes[0];
4668 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4669 struct btrfs_extent_item);
4670 btrfs_set_extent_refs(leaf, extent_item, 1);
4671 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4672 btrfs_set_extent_flags(leaf, extent_item,
4673 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4674
4675 if (skinny_metadata) {
4676 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4677 } else {
4678 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4679 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4680 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4681 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4682 }
4683
4684 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4685 btrfs_set_extent_inline_ref_type(leaf, iref,
4686 BTRFS_SHARED_BLOCK_REF_KEY);
4687 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4688 } else {
4689 btrfs_set_extent_inline_ref_type(leaf, iref,
4690 BTRFS_TREE_BLOCK_REF_KEY);
4691 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4692 }
4693
4694 btrfs_mark_buffer_dirty(leaf);
4695 btrfs_free_path(path);
4696
4697 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4698 num_bytes);
4699 if (ret)
4700 return ret;
4701
4702 ret = btrfs_update_block_group(trans, extent_key.objectid,
4703 fs_info->nodesize, 1);
4704 if (ret) { /* -ENOENT, logic error */
4705 btrfs_err(fs_info, "update block group failed for %llu %llu",
4706 extent_key.objectid, extent_key.offset);
4707 BUG();
4708 }
4709
4710 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4711 fs_info->nodesize);
4712 return ret;
4713 }
4714
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4715 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4716 struct btrfs_root *root, u64 owner,
4717 u64 offset, u64 ram_bytes,
4718 struct btrfs_key *ins)
4719 {
4720 struct btrfs_ref generic_ref = { 0 };
4721
4722 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4723
4724 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4725 ins->objectid, ins->offset, 0);
4726 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4727 offset, 0, false);
4728 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4729
4730 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4731 }
4732
4733 /*
4734 * this is used by the tree logging recovery code. It records that
4735 * an extent has been allocated and makes sure to clear the free
4736 * space cache bits as well
4737 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4738 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4739 u64 root_objectid, u64 owner, u64 offset,
4740 struct btrfs_key *ins)
4741 {
4742 struct btrfs_fs_info *fs_info = trans->fs_info;
4743 int ret;
4744 struct btrfs_block_group *block_group;
4745 struct btrfs_space_info *space_info;
4746
4747 /*
4748 * Mixed block groups will exclude before processing the log so we only
4749 * need to do the exclude dance if this fs isn't mixed.
4750 */
4751 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4752 ret = __exclude_logged_extent(fs_info, ins->objectid,
4753 ins->offset);
4754 if (ret)
4755 return ret;
4756 }
4757
4758 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4759 if (!block_group)
4760 return -EINVAL;
4761
4762 space_info = block_group->space_info;
4763 spin_lock(&space_info->lock);
4764 spin_lock(&block_group->lock);
4765 space_info->bytes_reserved += ins->offset;
4766 block_group->reserved += ins->offset;
4767 spin_unlock(&block_group->lock);
4768 spin_unlock(&space_info->lock);
4769
4770 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4771 offset, ins, 1);
4772 if (ret)
4773 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4774 btrfs_put_block_group(block_group);
4775 return ret;
4776 }
4777
4778 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4779 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4780 u64 bytenr, int level, u64 owner,
4781 enum btrfs_lock_nesting nest)
4782 {
4783 struct btrfs_fs_info *fs_info = root->fs_info;
4784 struct extent_buffer *buf;
4785 u64 lockdep_owner = owner;
4786
4787 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4788 if (IS_ERR(buf))
4789 return buf;
4790
4791 /*
4792 * Extra safety check in case the extent tree is corrupted and extent
4793 * allocator chooses to use a tree block which is already used and
4794 * locked.
4795 */
4796 if (buf->lock_owner == current->pid) {
4797 btrfs_err_rl(fs_info,
4798 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4799 buf->start, btrfs_header_owner(buf), current->pid);
4800 free_extent_buffer(buf);
4801 return ERR_PTR(-EUCLEAN);
4802 }
4803
4804 /*
4805 * The reloc trees are just snapshots, so we need them to appear to be
4806 * just like any other fs tree WRT lockdep.
4807 *
4808 * The exception however is in replace_path() in relocation, where we
4809 * hold the lock on the original fs root and then search for the reloc
4810 * root. At that point we need to make sure any reloc root buffers are
4811 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4812 * lockdep happy.
4813 */
4814 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4815 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4816 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4817
4818 /* btrfs_clean_tree_block() accesses generation field. */
4819 btrfs_set_header_generation(buf, trans->transid);
4820
4821 /*
4822 * This needs to stay, because we could allocate a freed block from an
4823 * old tree into a new tree, so we need to make sure this new block is
4824 * set to the appropriate level and owner.
4825 */
4826 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4827
4828 __btrfs_tree_lock(buf, nest);
4829 btrfs_clean_tree_block(buf);
4830 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4831 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4832
4833 set_extent_buffer_uptodate(buf);
4834
4835 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4836 btrfs_set_header_level(buf, level);
4837 btrfs_set_header_bytenr(buf, buf->start);
4838 btrfs_set_header_generation(buf, trans->transid);
4839 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4840 btrfs_set_header_owner(buf, owner);
4841 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4842 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4843 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4844 buf->log_index = root->log_transid % 2;
4845 /*
4846 * we allow two log transactions at a time, use different
4847 * EXTENT bit to differentiate dirty pages.
4848 */
4849 if (buf->log_index == 0)
4850 set_extent_dirty(&root->dirty_log_pages, buf->start,
4851 buf->start + buf->len - 1, GFP_NOFS);
4852 else
4853 set_extent_new(&root->dirty_log_pages, buf->start,
4854 buf->start + buf->len - 1);
4855 } else {
4856 buf->log_index = -1;
4857 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4858 buf->start + buf->len - 1, GFP_NOFS);
4859 }
4860 /* this returns a buffer locked for blocking */
4861 return buf;
4862 }
4863
4864 /*
4865 * finds a free extent and does all the dirty work required for allocation
4866 * returns the tree buffer or an ERR_PTR on error.
4867 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4868 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4869 struct btrfs_root *root,
4870 u64 parent, u64 root_objectid,
4871 const struct btrfs_disk_key *key,
4872 int level, u64 hint,
4873 u64 empty_size,
4874 enum btrfs_lock_nesting nest)
4875 {
4876 struct btrfs_fs_info *fs_info = root->fs_info;
4877 struct btrfs_key ins;
4878 struct btrfs_block_rsv *block_rsv;
4879 struct extent_buffer *buf;
4880 struct btrfs_delayed_extent_op *extent_op;
4881 struct btrfs_ref generic_ref = { 0 };
4882 u64 flags = 0;
4883 int ret;
4884 u32 blocksize = fs_info->nodesize;
4885 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4886
4887 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4888 if (btrfs_is_testing(fs_info)) {
4889 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4890 level, root_objectid, nest);
4891 if (!IS_ERR(buf))
4892 root->alloc_bytenr += blocksize;
4893 return buf;
4894 }
4895 #endif
4896
4897 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4898 if (IS_ERR(block_rsv))
4899 return ERR_CAST(block_rsv);
4900
4901 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4902 empty_size, hint, &ins, 0, 0);
4903 if (ret)
4904 goto out_unuse;
4905
4906 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4907 root_objectid, nest);
4908 if (IS_ERR(buf)) {
4909 ret = PTR_ERR(buf);
4910 goto out_free_reserved;
4911 }
4912
4913 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4914 if (parent == 0)
4915 parent = ins.objectid;
4916 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4917 } else
4918 BUG_ON(parent > 0);
4919
4920 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4921 extent_op = btrfs_alloc_delayed_extent_op();
4922 if (!extent_op) {
4923 ret = -ENOMEM;
4924 goto out_free_buf;
4925 }
4926 if (key)
4927 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4928 else
4929 memset(&extent_op->key, 0, sizeof(extent_op->key));
4930 extent_op->flags_to_set = flags;
4931 extent_op->update_key = skinny_metadata ? false : true;
4932 extent_op->update_flags = true;
4933 extent_op->is_data = false;
4934 extent_op->level = level;
4935
4936 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4937 ins.objectid, ins.offset, parent);
4938 generic_ref.real_root = root->root_key.objectid;
4939 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4940 root->root_key.objectid, false);
4941 btrfs_ref_tree_mod(fs_info, &generic_ref);
4942 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4943 if (ret)
4944 goto out_free_delayed;
4945 }
4946 return buf;
4947
4948 out_free_delayed:
4949 btrfs_free_delayed_extent_op(extent_op);
4950 out_free_buf:
4951 btrfs_tree_unlock(buf);
4952 free_extent_buffer(buf);
4953 out_free_reserved:
4954 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4955 out_unuse:
4956 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4957 return ERR_PTR(ret);
4958 }
4959
4960 struct walk_control {
4961 u64 refs[BTRFS_MAX_LEVEL];
4962 u64 flags[BTRFS_MAX_LEVEL];
4963 struct btrfs_key update_progress;
4964 struct btrfs_key drop_progress;
4965 int drop_level;
4966 int stage;
4967 int level;
4968 int shared_level;
4969 int update_ref;
4970 int keep_locks;
4971 int reada_slot;
4972 int reada_count;
4973 int restarted;
4974 };
4975
4976 #define DROP_REFERENCE 1
4977 #define UPDATE_BACKREF 2
4978
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4979 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4980 struct btrfs_root *root,
4981 struct walk_control *wc,
4982 struct btrfs_path *path)
4983 {
4984 struct btrfs_fs_info *fs_info = root->fs_info;
4985 u64 bytenr;
4986 u64 generation;
4987 u64 refs;
4988 u64 flags;
4989 u32 nritems;
4990 struct btrfs_key key;
4991 struct extent_buffer *eb;
4992 int ret;
4993 int slot;
4994 int nread = 0;
4995
4996 if (path->slots[wc->level] < wc->reada_slot) {
4997 wc->reada_count = wc->reada_count * 2 / 3;
4998 wc->reada_count = max(wc->reada_count, 2);
4999 } else {
5000 wc->reada_count = wc->reada_count * 3 / 2;
5001 wc->reada_count = min_t(int, wc->reada_count,
5002 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5003 }
5004
5005 eb = path->nodes[wc->level];
5006 nritems = btrfs_header_nritems(eb);
5007
5008 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5009 if (nread >= wc->reada_count)
5010 break;
5011
5012 cond_resched();
5013 bytenr = btrfs_node_blockptr(eb, slot);
5014 generation = btrfs_node_ptr_generation(eb, slot);
5015
5016 if (slot == path->slots[wc->level])
5017 goto reada;
5018
5019 if (wc->stage == UPDATE_BACKREF &&
5020 generation <= root->root_key.offset)
5021 continue;
5022
5023 /* We don't lock the tree block, it's OK to be racy here */
5024 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5025 wc->level - 1, 1, &refs,
5026 &flags);
5027 /* We don't care about errors in readahead. */
5028 if (ret < 0)
5029 continue;
5030 BUG_ON(refs == 0);
5031
5032 if (wc->stage == DROP_REFERENCE) {
5033 if (refs == 1)
5034 goto reada;
5035
5036 if (wc->level == 1 &&
5037 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5038 continue;
5039 if (!wc->update_ref ||
5040 generation <= root->root_key.offset)
5041 continue;
5042 btrfs_node_key_to_cpu(eb, &key, slot);
5043 ret = btrfs_comp_cpu_keys(&key,
5044 &wc->update_progress);
5045 if (ret < 0)
5046 continue;
5047 } else {
5048 if (wc->level == 1 &&
5049 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5050 continue;
5051 }
5052 reada:
5053 btrfs_readahead_node_child(eb, slot);
5054 nread++;
5055 }
5056 wc->reada_slot = slot;
5057 }
5058
5059 /*
5060 * helper to process tree block while walking down the tree.
5061 *
5062 * when wc->stage == UPDATE_BACKREF, this function updates
5063 * back refs for pointers in the block.
5064 *
5065 * NOTE: return value 1 means we should stop walking down.
5066 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5067 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5068 struct btrfs_root *root,
5069 struct btrfs_path *path,
5070 struct walk_control *wc, int lookup_info)
5071 {
5072 struct btrfs_fs_info *fs_info = root->fs_info;
5073 int level = wc->level;
5074 struct extent_buffer *eb = path->nodes[level];
5075 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5076 int ret;
5077
5078 if (wc->stage == UPDATE_BACKREF &&
5079 btrfs_header_owner(eb) != root->root_key.objectid)
5080 return 1;
5081
5082 /*
5083 * when reference count of tree block is 1, it won't increase
5084 * again. once full backref flag is set, we never clear it.
5085 */
5086 if (lookup_info &&
5087 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5088 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5089 BUG_ON(!path->locks[level]);
5090 ret = btrfs_lookup_extent_info(trans, fs_info,
5091 eb->start, level, 1,
5092 &wc->refs[level],
5093 &wc->flags[level]);
5094 BUG_ON(ret == -ENOMEM);
5095 if (ret)
5096 return ret;
5097 BUG_ON(wc->refs[level] == 0);
5098 }
5099
5100 if (wc->stage == DROP_REFERENCE) {
5101 if (wc->refs[level] > 1)
5102 return 1;
5103
5104 if (path->locks[level] && !wc->keep_locks) {
5105 btrfs_tree_unlock_rw(eb, path->locks[level]);
5106 path->locks[level] = 0;
5107 }
5108 return 0;
5109 }
5110
5111 /* wc->stage == UPDATE_BACKREF */
5112 if (!(wc->flags[level] & flag)) {
5113 BUG_ON(!path->locks[level]);
5114 ret = btrfs_inc_ref(trans, root, eb, 1);
5115 BUG_ON(ret); /* -ENOMEM */
5116 ret = btrfs_dec_ref(trans, root, eb, 0);
5117 BUG_ON(ret); /* -ENOMEM */
5118 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5119 btrfs_header_level(eb), 0);
5120 BUG_ON(ret); /* -ENOMEM */
5121 wc->flags[level] |= flag;
5122 }
5123
5124 /*
5125 * the block is shared by multiple trees, so it's not good to
5126 * keep the tree lock
5127 */
5128 if (path->locks[level] && level > 0) {
5129 btrfs_tree_unlock_rw(eb, path->locks[level]);
5130 path->locks[level] = 0;
5131 }
5132 return 0;
5133 }
5134
5135 /*
5136 * This is used to verify a ref exists for this root to deal with a bug where we
5137 * would have a drop_progress key that hadn't been updated properly.
5138 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5139 static int check_ref_exists(struct btrfs_trans_handle *trans,
5140 struct btrfs_root *root, u64 bytenr, u64 parent,
5141 int level)
5142 {
5143 struct btrfs_path *path;
5144 struct btrfs_extent_inline_ref *iref;
5145 int ret;
5146
5147 path = btrfs_alloc_path();
5148 if (!path)
5149 return -ENOMEM;
5150
5151 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5152 root->fs_info->nodesize, parent,
5153 root->root_key.objectid, level, 0);
5154 btrfs_free_path(path);
5155 if (ret == -ENOENT)
5156 return 0;
5157 if (ret < 0)
5158 return ret;
5159 return 1;
5160 }
5161
5162 /*
5163 * helper to process tree block pointer.
5164 *
5165 * when wc->stage == DROP_REFERENCE, this function checks
5166 * reference count of the block pointed to. if the block
5167 * is shared and we need update back refs for the subtree
5168 * rooted at the block, this function changes wc->stage to
5169 * UPDATE_BACKREF. if the block is shared and there is no
5170 * need to update back, this function drops the reference
5171 * to the block.
5172 *
5173 * NOTE: return value 1 means we should stop walking down.
5174 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5175 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5176 struct btrfs_root *root,
5177 struct btrfs_path *path,
5178 struct walk_control *wc, int *lookup_info)
5179 {
5180 struct btrfs_fs_info *fs_info = root->fs_info;
5181 u64 bytenr;
5182 u64 generation;
5183 u64 parent;
5184 struct btrfs_key key;
5185 struct btrfs_key first_key;
5186 struct btrfs_ref ref = { 0 };
5187 struct extent_buffer *next;
5188 int level = wc->level;
5189 int reada = 0;
5190 int ret = 0;
5191 bool need_account = false;
5192
5193 generation = btrfs_node_ptr_generation(path->nodes[level],
5194 path->slots[level]);
5195 /*
5196 * if the lower level block was created before the snapshot
5197 * was created, we know there is no need to update back refs
5198 * for the subtree
5199 */
5200 if (wc->stage == UPDATE_BACKREF &&
5201 generation <= root->root_key.offset) {
5202 *lookup_info = 1;
5203 return 1;
5204 }
5205
5206 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5207 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5208 path->slots[level]);
5209
5210 next = find_extent_buffer(fs_info, bytenr);
5211 if (!next) {
5212 next = btrfs_find_create_tree_block(fs_info, bytenr,
5213 root->root_key.objectid, level - 1);
5214 if (IS_ERR(next))
5215 return PTR_ERR(next);
5216 reada = 1;
5217 }
5218 btrfs_tree_lock(next);
5219
5220 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5221 &wc->refs[level - 1],
5222 &wc->flags[level - 1]);
5223 if (ret < 0)
5224 goto out_unlock;
5225
5226 if (unlikely(wc->refs[level - 1] == 0)) {
5227 btrfs_err(fs_info, "Missing references.");
5228 ret = -EIO;
5229 goto out_unlock;
5230 }
5231 *lookup_info = 0;
5232
5233 if (wc->stage == DROP_REFERENCE) {
5234 if (wc->refs[level - 1] > 1) {
5235 need_account = true;
5236 if (level == 1 &&
5237 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5238 goto skip;
5239
5240 if (!wc->update_ref ||
5241 generation <= root->root_key.offset)
5242 goto skip;
5243
5244 btrfs_node_key_to_cpu(path->nodes[level], &key,
5245 path->slots[level]);
5246 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5247 if (ret < 0)
5248 goto skip;
5249
5250 wc->stage = UPDATE_BACKREF;
5251 wc->shared_level = level - 1;
5252 }
5253 } else {
5254 if (level == 1 &&
5255 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5256 goto skip;
5257 }
5258
5259 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5260 btrfs_tree_unlock(next);
5261 free_extent_buffer(next);
5262 next = NULL;
5263 *lookup_info = 1;
5264 }
5265
5266 if (!next) {
5267 if (reada && level == 1)
5268 reada_walk_down(trans, root, wc, path);
5269 next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5270 generation, level - 1, &first_key);
5271 if (IS_ERR(next)) {
5272 return PTR_ERR(next);
5273 } else if (!extent_buffer_uptodate(next)) {
5274 free_extent_buffer(next);
5275 return -EIO;
5276 }
5277 btrfs_tree_lock(next);
5278 }
5279
5280 level--;
5281 ASSERT(level == btrfs_header_level(next));
5282 if (level != btrfs_header_level(next)) {
5283 btrfs_err(root->fs_info, "mismatched level");
5284 ret = -EIO;
5285 goto out_unlock;
5286 }
5287 path->nodes[level] = next;
5288 path->slots[level] = 0;
5289 path->locks[level] = BTRFS_WRITE_LOCK;
5290 wc->level = level;
5291 if (wc->level == 1)
5292 wc->reada_slot = 0;
5293 return 0;
5294 skip:
5295 wc->refs[level - 1] = 0;
5296 wc->flags[level - 1] = 0;
5297 if (wc->stage == DROP_REFERENCE) {
5298 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5299 parent = path->nodes[level]->start;
5300 } else {
5301 ASSERT(root->root_key.objectid ==
5302 btrfs_header_owner(path->nodes[level]));
5303 if (root->root_key.objectid !=
5304 btrfs_header_owner(path->nodes[level])) {
5305 btrfs_err(root->fs_info,
5306 "mismatched block owner");
5307 ret = -EIO;
5308 goto out_unlock;
5309 }
5310 parent = 0;
5311 }
5312
5313 /*
5314 * If we had a drop_progress we need to verify the refs are set
5315 * as expected. If we find our ref then we know that from here
5316 * on out everything should be correct, and we can clear the
5317 * ->restarted flag.
5318 */
5319 if (wc->restarted) {
5320 ret = check_ref_exists(trans, root, bytenr, parent,
5321 level - 1);
5322 if (ret < 0)
5323 goto out_unlock;
5324 if (ret == 0)
5325 goto no_delete;
5326 ret = 0;
5327 wc->restarted = 0;
5328 }
5329
5330 /*
5331 * Reloc tree doesn't contribute to qgroup numbers, and we have
5332 * already accounted them at merge time (replace_path),
5333 * thus we could skip expensive subtree trace here.
5334 */
5335 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5336 need_account) {
5337 ret = btrfs_qgroup_trace_subtree(trans, next,
5338 generation, level - 1);
5339 if (ret) {
5340 btrfs_err_rl(fs_info,
5341 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5342 ret);
5343 }
5344 }
5345
5346 /*
5347 * We need to update the next key in our walk control so we can
5348 * update the drop_progress key accordingly. We don't care if
5349 * find_next_key doesn't find a key because that means we're at
5350 * the end and are going to clean up now.
5351 */
5352 wc->drop_level = level;
5353 find_next_key(path, level, &wc->drop_progress);
5354
5355 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5356 fs_info->nodesize, parent);
5357 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5358 0, false);
5359 ret = btrfs_free_extent(trans, &ref);
5360 if (ret)
5361 goto out_unlock;
5362 }
5363 no_delete:
5364 *lookup_info = 1;
5365 ret = 1;
5366
5367 out_unlock:
5368 btrfs_tree_unlock(next);
5369 free_extent_buffer(next);
5370
5371 return ret;
5372 }
5373
5374 /*
5375 * helper to process tree block while walking up the tree.
5376 *
5377 * when wc->stage == DROP_REFERENCE, this function drops
5378 * reference count on the block.
5379 *
5380 * when wc->stage == UPDATE_BACKREF, this function changes
5381 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5382 * to UPDATE_BACKREF previously while processing the block.
5383 *
5384 * NOTE: return value 1 means we should stop walking up.
5385 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5386 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5387 struct btrfs_root *root,
5388 struct btrfs_path *path,
5389 struct walk_control *wc)
5390 {
5391 struct btrfs_fs_info *fs_info = root->fs_info;
5392 int ret;
5393 int level = wc->level;
5394 struct extent_buffer *eb = path->nodes[level];
5395 u64 parent = 0;
5396
5397 if (wc->stage == UPDATE_BACKREF) {
5398 BUG_ON(wc->shared_level < level);
5399 if (level < wc->shared_level)
5400 goto out;
5401
5402 ret = find_next_key(path, level + 1, &wc->update_progress);
5403 if (ret > 0)
5404 wc->update_ref = 0;
5405
5406 wc->stage = DROP_REFERENCE;
5407 wc->shared_level = -1;
5408 path->slots[level] = 0;
5409
5410 /*
5411 * check reference count again if the block isn't locked.
5412 * we should start walking down the tree again if reference
5413 * count is one.
5414 */
5415 if (!path->locks[level]) {
5416 BUG_ON(level == 0);
5417 btrfs_tree_lock(eb);
5418 path->locks[level] = BTRFS_WRITE_LOCK;
5419
5420 ret = btrfs_lookup_extent_info(trans, fs_info,
5421 eb->start, level, 1,
5422 &wc->refs[level],
5423 &wc->flags[level]);
5424 if (ret < 0) {
5425 btrfs_tree_unlock_rw(eb, path->locks[level]);
5426 path->locks[level] = 0;
5427 return ret;
5428 }
5429 BUG_ON(wc->refs[level] == 0);
5430 if (wc->refs[level] == 1) {
5431 btrfs_tree_unlock_rw(eb, path->locks[level]);
5432 path->locks[level] = 0;
5433 return 1;
5434 }
5435 }
5436 }
5437
5438 /* wc->stage == DROP_REFERENCE */
5439 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5440
5441 if (wc->refs[level] == 1) {
5442 if (level == 0) {
5443 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5444 ret = btrfs_dec_ref(trans, root, eb, 1);
5445 else
5446 ret = btrfs_dec_ref(trans, root, eb, 0);
5447 BUG_ON(ret); /* -ENOMEM */
5448 if (is_fstree(root->root_key.objectid)) {
5449 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5450 if (ret) {
5451 btrfs_err_rl(fs_info,
5452 "error %d accounting leaf items, quota is out of sync, rescan required",
5453 ret);
5454 }
5455 }
5456 }
5457 /* make block locked assertion in btrfs_clean_tree_block happy */
5458 if (!path->locks[level] &&
5459 btrfs_header_generation(eb) == trans->transid) {
5460 btrfs_tree_lock(eb);
5461 path->locks[level] = BTRFS_WRITE_LOCK;
5462 }
5463 btrfs_clean_tree_block(eb);
5464 }
5465
5466 if (eb == root->node) {
5467 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5468 parent = eb->start;
5469 else if (root->root_key.objectid != btrfs_header_owner(eb))
5470 goto owner_mismatch;
5471 } else {
5472 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5473 parent = path->nodes[level + 1]->start;
5474 else if (root->root_key.objectid !=
5475 btrfs_header_owner(path->nodes[level + 1]))
5476 goto owner_mismatch;
5477 }
5478
5479 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5480 wc->refs[level] == 1);
5481 out:
5482 wc->refs[level] = 0;
5483 wc->flags[level] = 0;
5484 return 0;
5485
5486 owner_mismatch:
5487 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5488 btrfs_header_owner(eb), root->root_key.objectid);
5489 return -EUCLEAN;
5490 }
5491
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5492 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5493 struct btrfs_root *root,
5494 struct btrfs_path *path,
5495 struct walk_control *wc)
5496 {
5497 int level = wc->level;
5498 int lookup_info = 1;
5499 int ret;
5500
5501 while (level >= 0) {
5502 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5503 if (ret > 0)
5504 break;
5505
5506 if (level == 0)
5507 break;
5508
5509 if (path->slots[level] >=
5510 btrfs_header_nritems(path->nodes[level]))
5511 break;
5512
5513 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5514 if (ret > 0) {
5515 path->slots[level]++;
5516 continue;
5517 } else if (ret < 0)
5518 return ret;
5519 level = wc->level;
5520 }
5521 return 0;
5522 }
5523
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5524 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5525 struct btrfs_root *root,
5526 struct btrfs_path *path,
5527 struct walk_control *wc, int max_level)
5528 {
5529 int level = wc->level;
5530 int ret;
5531
5532 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5533 while (level < max_level && path->nodes[level]) {
5534 wc->level = level;
5535 if (path->slots[level] + 1 <
5536 btrfs_header_nritems(path->nodes[level])) {
5537 path->slots[level]++;
5538 return 0;
5539 } else {
5540 ret = walk_up_proc(trans, root, path, wc);
5541 if (ret > 0)
5542 return 0;
5543 if (ret < 0)
5544 return ret;
5545
5546 if (path->locks[level]) {
5547 btrfs_tree_unlock_rw(path->nodes[level],
5548 path->locks[level]);
5549 path->locks[level] = 0;
5550 }
5551 free_extent_buffer(path->nodes[level]);
5552 path->nodes[level] = NULL;
5553 level++;
5554 }
5555 }
5556 return 1;
5557 }
5558
5559 /*
5560 * drop a subvolume tree.
5561 *
5562 * this function traverses the tree freeing any blocks that only
5563 * referenced by the tree.
5564 *
5565 * when a shared tree block is found. this function decreases its
5566 * reference count by one. if update_ref is true, this function
5567 * also make sure backrefs for the shared block and all lower level
5568 * blocks are properly updated.
5569 *
5570 * If called with for_reloc == 0, may exit early with -EAGAIN
5571 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5572 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5573 {
5574 struct btrfs_fs_info *fs_info = root->fs_info;
5575 struct btrfs_path *path;
5576 struct btrfs_trans_handle *trans;
5577 struct btrfs_root *tree_root = fs_info->tree_root;
5578 struct btrfs_root_item *root_item = &root->root_item;
5579 struct walk_control *wc;
5580 struct btrfs_key key;
5581 int err = 0;
5582 int ret;
5583 int level;
5584 bool root_dropped = false;
5585 bool unfinished_drop = false;
5586
5587 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5588
5589 path = btrfs_alloc_path();
5590 if (!path) {
5591 err = -ENOMEM;
5592 goto out;
5593 }
5594
5595 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5596 if (!wc) {
5597 btrfs_free_path(path);
5598 err = -ENOMEM;
5599 goto out;
5600 }
5601
5602 /*
5603 * Use join to avoid potential EINTR from transaction start. See
5604 * wait_reserve_ticket and the whole reservation callchain.
5605 */
5606 if (for_reloc)
5607 trans = btrfs_join_transaction(tree_root);
5608 else
5609 trans = btrfs_start_transaction(tree_root, 0);
5610 if (IS_ERR(trans)) {
5611 err = PTR_ERR(trans);
5612 goto out_free;
5613 }
5614
5615 err = btrfs_run_delayed_items(trans);
5616 if (err)
5617 goto out_end_trans;
5618
5619 /*
5620 * This will help us catch people modifying the fs tree while we're
5621 * dropping it. It is unsafe to mess with the fs tree while it's being
5622 * dropped as we unlock the root node and parent nodes as we walk down
5623 * the tree, assuming nothing will change. If something does change
5624 * then we'll have stale information and drop references to blocks we've
5625 * already dropped.
5626 */
5627 set_bit(BTRFS_ROOT_DELETING, &root->state);
5628 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5629
5630 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5631 level = btrfs_header_level(root->node);
5632 path->nodes[level] = btrfs_lock_root_node(root);
5633 path->slots[level] = 0;
5634 path->locks[level] = BTRFS_WRITE_LOCK;
5635 memset(&wc->update_progress, 0,
5636 sizeof(wc->update_progress));
5637 } else {
5638 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5639 memcpy(&wc->update_progress, &key,
5640 sizeof(wc->update_progress));
5641
5642 level = btrfs_root_drop_level(root_item);
5643 BUG_ON(level == 0);
5644 path->lowest_level = level;
5645 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5646 path->lowest_level = 0;
5647 if (ret < 0) {
5648 err = ret;
5649 goto out_end_trans;
5650 }
5651 WARN_ON(ret > 0);
5652
5653 /*
5654 * unlock our path, this is safe because only this
5655 * function is allowed to delete this snapshot
5656 */
5657 btrfs_unlock_up_safe(path, 0);
5658
5659 level = btrfs_header_level(root->node);
5660 while (1) {
5661 btrfs_tree_lock(path->nodes[level]);
5662 path->locks[level] = BTRFS_WRITE_LOCK;
5663
5664 ret = btrfs_lookup_extent_info(trans, fs_info,
5665 path->nodes[level]->start,
5666 level, 1, &wc->refs[level],
5667 &wc->flags[level]);
5668 if (ret < 0) {
5669 err = ret;
5670 goto out_end_trans;
5671 }
5672 BUG_ON(wc->refs[level] == 0);
5673
5674 if (level == btrfs_root_drop_level(root_item))
5675 break;
5676
5677 btrfs_tree_unlock(path->nodes[level]);
5678 path->locks[level] = 0;
5679 WARN_ON(wc->refs[level] != 1);
5680 level--;
5681 }
5682 }
5683
5684 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5685 wc->level = level;
5686 wc->shared_level = -1;
5687 wc->stage = DROP_REFERENCE;
5688 wc->update_ref = update_ref;
5689 wc->keep_locks = 0;
5690 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5691
5692 while (1) {
5693
5694 ret = walk_down_tree(trans, root, path, wc);
5695 if (ret < 0) {
5696 err = ret;
5697 break;
5698 }
5699
5700 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5701 if (ret < 0) {
5702 err = ret;
5703 break;
5704 }
5705
5706 if (ret > 0) {
5707 BUG_ON(wc->stage != DROP_REFERENCE);
5708 break;
5709 }
5710
5711 if (wc->stage == DROP_REFERENCE) {
5712 wc->drop_level = wc->level;
5713 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5714 &wc->drop_progress,
5715 path->slots[wc->drop_level]);
5716 }
5717 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5718 &wc->drop_progress);
5719 btrfs_set_root_drop_level(root_item, wc->drop_level);
5720
5721 BUG_ON(wc->level == 0);
5722 if (btrfs_should_end_transaction(trans) ||
5723 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5724 ret = btrfs_update_root(trans, tree_root,
5725 &root->root_key,
5726 root_item);
5727 if (ret) {
5728 btrfs_abort_transaction(trans, ret);
5729 err = ret;
5730 goto out_end_trans;
5731 }
5732
5733 btrfs_end_transaction_throttle(trans);
5734 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5735 btrfs_debug(fs_info,
5736 "drop snapshot early exit");
5737 err = -EAGAIN;
5738 goto out_free;
5739 }
5740
5741 /*
5742 * Use join to avoid potential EINTR from transaction
5743 * start. See wait_reserve_ticket and the whole
5744 * reservation callchain.
5745 */
5746 if (for_reloc)
5747 trans = btrfs_join_transaction(tree_root);
5748 else
5749 trans = btrfs_start_transaction(tree_root, 0);
5750 if (IS_ERR(trans)) {
5751 err = PTR_ERR(trans);
5752 goto out_free;
5753 }
5754 }
5755 }
5756 btrfs_release_path(path);
5757 if (err)
5758 goto out_end_trans;
5759
5760 ret = btrfs_del_root(trans, &root->root_key);
5761 if (ret) {
5762 btrfs_abort_transaction(trans, ret);
5763 err = ret;
5764 goto out_end_trans;
5765 }
5766
5767 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5768 ret = btrfs_find_root(tree_root, &root->root_key, path,
5769 NULL, NULL);
5770 if (ret < 0) {
5771 btrfs_abort_transaction(trans, ret);
5772 err = ret;
5773 goto out_end_trans;
5774 } else if (ret > 0) {
5775 /* if we fail to delete the orphan item this time
5776 * around, it'll get picked up the next time.
5777 *
5778 * The most common failure here is just -ENOENT.
5779 */
5780 btrfs_del_orphan_item(trans, tree_root,
5781 root->root_key.objectid);
5782 }
5783 }
5784
5785 /*
5786 * This subvolume is going to be completely dropped, and won't be
5787 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5788 * commit transaction time. So free it here manually.
5789 */
5790 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5791 btrfs_qgroup_free_meta_all_pertrans(root);
5792
5793 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5794 btrfs_add_dropped_root(trans, root);
5795 else
5796 btrfs_put_root(root);
5797 root_dropped = true;
5798 out_end_trans:
5799 btrfs_end_transaction_throttle(trans);
5800 out_free:
5801 kfree(wc);
5802 btrfs_free_path(path);
5803 out:
5804 /*
5805 * We were an unfinished drop root, check to see if there are any
5806 * pending, and if not clear and wake up any waiters.
5807 */
5808 if (!err && unfinished_drop)
5809 btrfs_maybe_wake_unfinished_drop(fs_info);
5810
5811 /*
5812 * So if we need to stop dropping the snapshot for whatever reason we
5813 * need to make sure to add it back to the dead root list so that we
5814 * keep trying to do the work later. This also cleans up roots if we
5815 * don't have it in the radix (like when we recover after a power fail
5816 * or unmount) so we don't leak memory.
5817 */
5818 if (!for_reloc && !root_dropped)
5819 btrfs_add_dead_root(root);
5820 return err;
5821 }
5822
5823 /*
5824 * drop subtree rooted at tree block 'node'.
5825 *
5826 * NOTE: this function will unlock and release tree block 'node'
5827 * only used by relocation code
5828 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5829 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5830 struct btrfs_root *root,
5831 struct extent_buffer *node,
5832 struct extent_buffer *parent)
5833 {
5834 struct btrfs_fs_info *fs_info = root->fs_info;
5835 struct btrfs_path *path;
5836 struct walk_control *wc;
5837 int level;
5838 int parent_level;
5839 int ret = 0;
5840 int wret;
5841
5842 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5843
5844 path = btrfs_alloc_path();
5845 if (!path)
5846 return -ENOMEM;
5847
5848 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5849 if (!wc) {
5850 btrfs_free_path(path);
5851 return -ENOMEM;
5852 }
5853
5854 btrfs_assert_tree_locked(parent);
5855 parent_level = btrfs_header_level(parent);
5856 atomic_inc(&parent->refs);
5857 path->nodes[parent_level] = parent;
5858 path->slots[parent_level] = btrfs_header_nritems(parent);
5859
5860 btrfs_assert_tree_locked(node);
5861 level = btrfs_header_level(node);
5862 path->nodes[level] = node;
5863 path->slots[level] = 0;
5864 path->locks[level] = BTRFS_WRITE_LOCK;
5865
5866 wc->refs[parent_level] = 1;
5867 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5868 wc->level = level;
5869 wc->shared_level = -1;
5870 wc->stage = DROP_REFERENCE;
5871 wc->update_ref = 0;
5872 wc->keep_locks = 1;
5873 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5874
5875 while (1) {
5876 wret = walk_down_tree(trans, root, path, wc);
5877 if (wret < 0) {
5878 ret = wret;
5879 break;
5880 }
5881
5882 wret = walk_up_tree(trans, root, path, wc, parent_level);
5883 if (wret < 0)
5884 ret = wret;
5885 if (wret != 0)
5886 break;
5887 }
5888
5889 kfree(wc);
5890 btrfs_free_path(path);
5891 return ret;
5892 }
5893
5894 /*
5895 * helper to account the unused space of all the readonly block group in the
5896 * space_info. takes mirrors into account.
5897 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5898 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5899 {
5900 struct btrfs_block_group *block_group;
5901 u64 free_bytes = 0;
5902 int factor;
5903
5904 /* It's df, we don't care if it's racy */
5905 if (list_empty(&sinfo->ro_bgs))
5906 return 0;
5907
5908 spin_lock(&sinfo->lock);
5909 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5910 spin_lock(&block_group->lock);
5911
5912 if (!block_group->ro) {
5913 spin_unlock(&block_group->lock);
5914 continue;
5915 }
5916
5917 factor = btrfs_bg_type_to_factor(block_group->flags);
5918 free_bytes += (block_group->length -
5919 block_group->used) * factor;
5920
5921 spin_unlock(&block_group->lock);
5922 }
5923 spin_unlock(&sinfo->lock);
5924
5925 return free_bytes;
5926 }
5927
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5928 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5929 u64 start, u64 end)
5930 {
5931 return unpin_extent_range(fs_info, start, end, false);
5932 }
5933
5934 /*
5935 * It used to be that old block groups would be left around forever.
5936 * Iterating over them would be enough to trim unused space. Since we
5937 * now automatically remove them, we also need to iterate over unallocated
5938 * space.
5939 *
5940 * We don't want a transaction for this since the discard may take a
5941 * substantial amount of time. We don't require that a transaction be
5942 * running, but we do need to take a running transaction into account
5943 * to ensure that we're not discarding chunks that were released or
5944 * allocated in the current transaction.
5945 *
5946 * Holding the chunks lock will prevent other threads from allocating
5947 * or releasing chunks, but it won't prevent a running transaction
5948 * from committing and releasing the memory that the pending chunks
5949 * list head uses. For that, we need to take a reference to the
5950 * transaction and hold the commit root sem. We only need to hold
5951 * it while performing the free space search since we have already
5952 * held back allocations.
5953 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5954 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5955 {
5956 u64 start = SZ_1M, len = 0, end = 0;
5957 int ret;
5958
5959 *trimmed = 0;
5960
5961 /* Discard not supported = nothing to do. */
5962 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5963 return 0;
5964
5965 /* Not writable = nothing to do. */
5966 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5967 return 0;
5968
5969 /* No free space = nothing to do. */
5970 if (device->total_bytes <= device->bytes_used)
5971 return 0;
5972
5973 ret = 0;
5974
5975 while (1) {
5976 struct btrfs_fs_info *fs_info = device->fs_info;
5977 u64 bytes;
5978
5979 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5980 if (ret)
5981 break;
5982
5983 find_first_clear_extent_bit(&device->alloc_state, start,
5984 &start, &end,
5985 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5986
5987 /* Check if there are any CHUNK_* bits left */
5988 if (start > device->total_bytes) {
5989 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5990 btrfs_warn_in_rcu(fs_info,
5991 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5992 start, end - start + 1,
5993 rcu_str_deref(device->name),
5994 device->total_bytes);
5995 mutex_unlock(&fs_info->chunk_mutex);
5996 ret = 0;
5997 break;
5998 }
5999
6000 /* Ensure we skip the reserved area in the first 1M */
6001 start = max_t(u64, start, SZ_1M);
6002
6003 /*
6004 * If find_first_clear_extent_bit find a range that spans the
6005 * end of the device it will set end to -1, in this case it's up
6006 * to the caller to trim the value to the size of the device.
6007 */
6008 end = min(end, device->total_bytes - 1);
6009
6010 len = end - start + 1;
6011
6012 /* We didn't find any extents */
6013 if (!len) {
6014 mutex_unlock(&fs_info->chunk_mutex);
6015 ret = 0;
6016 break;
6017 }
6018
6019 ret = btrfs_issue_discard(device->bdev, start, len,
6020 &bytes);
6021 if (!ret)
6022 set_extent_bits(&device->alloc_state, start,
6023 start + bytes - 1,
6024 CHUNK_TRIMMED);
6025 mutex_unlock(&fs_info->chunk_mutex);
6026
6027 if (ret)
6028 break;
6029
6030 start += len;
6031 *trimmed += bytes;
6032
6033 if (fatal_signal_pending(current)) {
6034 ret = -ERESTARTSYS;
6035 break;
6036 }
6037
6038 cond_resched();
6039 }
6040
6041 return ret;
6042 }
6043
6044 /*
6045 * Trim the whole filesystem by:
6046 * 1) trimming the free space in each block group
6047 * 2) trimming the unallocated space on each device
6048 *
6049 * This will also continue trimming even if a block group or device encounters
6050 * an error. The return value will be the last error, or 0 if nothing bad
6051 * happens.
6052 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6053 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6054 {
6055 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6056 struct btrfs_block_group *cache = NULL;
6057 struct btrfs_device *device;
6058 u64 group_trimmed;
6059 u64 range_end = U64_MAX;
6060 u64 start;
6061 u64 end;
6062 u64 trimmed = 0;
6063 u64 bg_failed = 0;
6064 u64 dev_failed = 0;
6065 int bg_ret = 0;
6066 int dev_ret = 0;
6067 int ret = 0;
6068
6069 /*
6070 * Check range overflow if range->len is set.
6071 * The default range->len is U64_MAX.
6072 */
6073 if (range->len != U64_MAX &&
6074 check_add_overflow(range->start, range->len, &range_end))
6075 return -EINVAL;
6076
6077 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6078 for (; cache; cache = btrfs_next_block_group(cache)) {
6079 if (cache->start >= range_end) {
6080 btrfs_put_block_group(cache);
6081 break;
6082 }
6083
6084 start = max(range->start, cache->start);
6085 end = min(range_end, cache->start + cache->length);
6086
6087 if (end - start >= range->minlen) {
6088 if (!btrfs_block_group_done(cache)) {
6089 ret = btrfs_cache_block_group(cache, true);
6090 if (ret) {
6091 bg_failed++;
6092 bg_ret = ret;
6093 continue;
6094 }
6095 }
6096 ret = btrfs_trim_block_group(cache,
6097 &group_trimmed,
6098 start,
6099 end,
6100 range->minlen);
6101
6102 trimmed += group_trimmed;
6103 if (ret) {
6104 bg_failed++;
6105 bg_ret = ret;
6106 continue;
6107 }
6108 }
6109 }
6110
6111 if (bg_failed)
6112 btrfs_warn(fs_info,
6113 "failed to trim %llu block group(s), last error %d",
6114 bg_failed, bg_ret);
6115
6116 mutex_lock(&fs_devices->device_list_mutex);
6117 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6119 continue;
6120
6121 ret = btrfs_trim_free_extents(device, &group_trimmed);
6122 if (ret) {
6123 dev_failed++;
6124 dev_ret = ret;
6125 break;
6126 }
6127
6128 trimmed += group_trimmed;
6129 }
6130 mutex_unlock(&fs_devices->device_list_mutex);
6131
6132 if (dev_failed)
6133 btrfs_warn(fs_info,
6134 "failed to trim %llu device(s), last error %d",
6135 dev_failed, dev_ret);
6136 range->len = trimmed;
6137 if (bg_ret)
6138 return bg_ret;
6139 return dev_ret;
6140 }
6141