• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160 
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 			  bool may_use_included)
163 {
164 	ASSERT(s_info);
165 	return s_info->bytes_used + s_info->bytes_reserved +
166 		s_info->bytes_pinned + s_info->bytes_readonly +
167 		s_info->bytes_zone_unusable +
168 		(may_use_included ? s_info->bytes_may_use : 0);
169 }
170 
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177 	struct list_head *head = &info->space_info;
178 	struct btrfs_space_info *found;
179 
180 	list_for_each_entry(found, head, list)
181 		found->full = 0;
182 }
183 
create_space_info(struct btrfs_fs_info * info,u64 flags)184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196 		INIT_LIST_HEAD(&space_info->block_groups[i]);
197 	init_rwsem(&space_info->groups_sem);
198 	spin_lock_init(&space_info->lock);
199 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201 	INIT_LIST_HEAD(&space_info->ro_bgs);
202 	INIT_LIST_HEAD(&space_info->tickets);
203 	INIT_LIST_HEAD(&space_info->priority_tickets);
204 	space_info->clamp = 1;
205 
206 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
207 	if (ret)
208 		return ret;
209 
210 	list_add(&space_info->list, &info->space_info);
211 	if (flags & BTRFS_BLOCK_GROUP_DATA)
212 		info->data_sinfo = space_info;
213 
214 	return ret;
215 }
216 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219 	struct btrfs_super_block *disk_super;
220 	u64 features;
221 	u64 flags;
222 	int mixed = 0;
223 	int ret;
224 
225 	disk_super = fs_info->super_copy;
226 	if (!btrfs_super_root(disk_super))
227 		return -EINVAL;
228 
229 	features = btrfs_super_incompat_flags(disk_super);
230 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231 		mixed = 1;
232 
233 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
234 	ret = create_space_info(fs_info, flags);
235 	if (ret)
236 		goto out;
237 
238 	if (mixed) {
239 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240 		ret = create_space_info(fs_info, flags);
241 	} else {
242 		flags = BTRFS_BLOCK_GROUP_METADATA;
243 		ret = create_space_info(fs_info, flags);
244 		if (ret)
245 			goto out;
246 
247 		flags = BTRFS_BLOCK_GROUP_DATA;
248 		ret = create_space_info(fs_info, flags);
249 	}
250 out:
251 	return ret;
252 }
253 
btrfs_update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,u64 bytes_zone_unusable,struct btrfs_space_info ** space_info)254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255 			     u64 total_bytes, u64 bytes_used,
256 			     u64 bytes_readonly, u64 bytes_zone_unusable,
257 			     struct btrfs_space_info **space_info)
258 {
259 	struct btrfs_space_info *found;
260 	int factor;
261 
262 	factor = btrfs_bg_type_to_factor(flags);
263 
264 	found = btrfs_find_space_info(info, flags);
265 	ASSERT(found);
266 	spin_lock(&found->lock);
267 	found->total_bytes += total_bytes;
268 	found->disk_total += total_bytes * factor;
269 	found->bytes_used += bytes_used;
270 	found->disk_used += bytes_used * factor;
271 	found->bytes_readonly += bytes_readonly;
272 	found->bytes_zone_unusable += bytes_zone_unusable;
273 	if (total_bytes > 0)
274 		found->full = 0;
275 	btrfs_try_granting_tickets(info, found);
276 	spin_unlock(&found->lock);
277 	*space_info = found;
278 }
279 
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281 					       u64 flags)
282 {
283 	struct list_head *head = &info->space_info;
284 	struct btrfs_space_info *found;
285 
286 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287 
288 	list_for_each_entry(found, head, list) {
289 		if (found->flags & flags)
290 			return found;
291 	}
292 	return NULL;
293 }
294 
calc_available_free_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296 			  struct btrfs_space_info *space_info,
297 			  enum btrfs_reserve_flush_enum flush)
298 {
299 	u64 profile;
300 	u64 avail;
301 	int factor;
302 
303 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304 		profile = btrfs_system_alloc_profile(fs_info);
305 	else
306 		profile = btrfs_metadata_alloc_profile(fs_info);
307 
308 	avail = atomic64_read(&fs_info->free_chunk_space);
309 
310 	/*
311 	 * If we have dup, raid1 or raid10 then only half of the free
312 	 * space is actually usable.  For raid56, the space info used
313 	 * doesn't include the parity drive, so we don't have to
314 	 * change the math
315 	 */
316 	factor = btrfs_bg_type_to_factor(profile);
317 	avail = div_u64(avail, factor);
318 
319 	/*
320 	 * If we aren't flushing all things, let us overcommit up to
321 	 * 1/2th of the space. If we can flush, don't let us overcommit
322 	 * too much, let it overcommit up to 1/8 of the space.
323 	 */
324 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
325 		avail >>= 3;
326 	else
327 		avail >>= 1;
328 	return avail;
329 }
330 
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332 			 struct btrfs_space_info *space_info, u64 bytes,
333 			 enum btrfs_reserve_flush_enum flush)
334 {
335 	u64 avail;
336 	u64 used;
337 
338 	/* Don't overcommit when in mixed mode */
339 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340 		return 0;
341 
342 	used = btrfs_space_info_used(space_info, true);
343 	avail = calc_available_free_space(fs_info, space_info, flush);
344 
345 	if (used + bytes < space_info->total_bytes + avail)
346 		return 1;
347 	return 0;
348 }
349 
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)350 static void remove_ticket(struct btrfs_space_info *space_info,
351 			  struct reserve_ticket *ticket)
352 {
353 	if (!list_empty(&ticket->list)) {
354 		list_del_init(&ticket->list);
355 		ASSERT(space_info->reclaim_size >= ticket->bytes);
356 		space_info->reclaim_size -= ticket->bytes;
357 	}
358 }
359 
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365 				struct btrfs_space_info *space_info)
366 {
367 	struct list_head *head;
368 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369 
370 	lockdep_assert_held(&space_info->lock);
371 
372 	head = &space_info->priority_tickets;
373 again:
374 	while (!list_empty(head)) {
375 		struct reserve_ticket *ticket;
376 		u64 used = btrfs_space_info_used(space_info, true);
377 
378 		ticket = list_first_entry(head, struct reserve_ticket, list);
379 
380 		/* Check and see if our ticket can be satisfied now. */
381 		if ((used + ticket->bytes <= space_info->total_bytes) ||
382 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383 					 flush)) {
384 			btrfs_space_info_update_bytes_may_use(fs_info,
385 							      space_info,
386 							      ticket->bytes);
387 			remove_ticket(space_info, ticket);
388 			ticket->bytes = 0;
389 			space_info->tickets_id++;
390 			wake_up(&ticket->wait);
391 		} else {
392 			break;
393 		}
394 	}
395 
396 	if (head == &space_info->priority_tickets) {
397 		head = &space_info->tickets;
398 		flush = BTRFS_RESERVE_FLUSH_ALL;
399 		goto again;
400 	}
401 }
402 
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
404 do {									\
405 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
406 	spin_lock(&__rsv->lock);					\
407 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
408 		   __rsv->size, __rsv->reserved);			\
409 	spin_unlock(&__rsv->lock);					\
410 } while (0)
411 
__btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info)412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413 				    struct btrfs_space_info *info)
414 {
415 	lockdep_assert_held(&info->lock);
416 
417 	/* The free space could be negative in case of overcommit */
418 	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
419 		   info->flags,
420 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
421 		   info->full ? "" : "not ");
422 	btrfs_info(fs_info,
423 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
424 		info->total_bytes, info->bytes_used, info->bytes_pinned,
425 		info->bytes_reserved, info->bytes_may_use,
426 		info->bytes_readonly, info->bytes_zone_unusable);
427 
428 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
429 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
430 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
431 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
432 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
433 
434 }
435 
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)436 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
437 			   struct btrfs_space_info *info, u64 bytes,
438 			   int dump_block_groups)
439 {
440 	struct btrfs_block_group *cache;
441 	int index = 0;
442 
443 	spin_lock(&info->lock);
444 	__btrfs_dump_space_info(fs_info, info);
445 	spin_unlock(&info->lock);
446 
447 	if (!dump_block_groups)
448 		return;
449 
450 	down_read(&info->groups_sem);
451 again:
452 	list_for_each_entry(cache, &info->block_groups[index], list) {
453 		spin_lock(&cache->lock);
454 		btrfs_info(fs_info,
455 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
456 			cache->start, cache->length, cache->used, cache->pinned,
457 			cache->reserved, cache->zone_unusable,
458 			cache->ro ? "[readonly]" : "");
459 		spin_unlock(&cache->lock);
460 		btrfs_dump_free_space(cache, bytes);
461 	}
462 	if (++index < BTRFS_NR_RAID_TYPES)
463 		goto again;
464 	up_read(&info->groups_sem);
465 }
466 
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)467 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
468 					u64 to_reclaim)
469 {
470 	u64 bytes;
471 	u64 nr;
472 
473 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
474 	nr = div64_u64(to_reclaim, bytes);
475 	if (!nr)
476 		nr = 1;
477 	return nr;
478 }
479 
480 #define EXTENT_SIZE_PER_ITEM	SZ_256K
481 
482 /*
483  * shrink metadata reservation for delalloc
484  */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)485 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
486 			    struct btrfs_space_info *space_info,
487 			    u64 to_reclaim, bool wait_ordered,
488 			    bool for_preempt)
489 {
490 	struct btrfs_trans_handle *trans;
491 	u64 delalloc_bytes;
492 	u64 ordered_bytes;
493 	u64 items;
494 	long time_left;
495 	int loops;
496 
497 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
498 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
499 	if (delalloc_bytes == 0 && ordered_bytes == 0)
500 		return;
501 
502 	/* Calc the number of the pages we need flush for space reservation */
503 	if (to_reclaim == U64_MAX) {
504 		items = U64_MAX;
505 	} else {
506 		/*
507 		 * to_reclaim is set to however much metadata we need to
508 		 * reclaim, but reclaiming that much data doesn't really track
509 		 * exactly.  What we really want to do is reclaim full inode's
510 		 * worth of reservations, however that's not available to us
511 		 * here.  We will take a fraction of the delalloc bytes for our
512 		 * flushing loops and hope for the best.  Delalloc will expand
513 		 * the amount we write to cover an entire dirty extent, which
514 		 * will reclaim the metadata reservation for that range.  If
515 		 * it's not enough subsequent flush stages will be more
516 		 * aggressive.
517 		 */
518 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
519 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520 	}
521 
522 	trans = (struct btrfs_trans_handle *)current->journal_info;
523 
524 	/*
525 	 * If we are doing more ordered than delalloc we need to just wait on
526 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
527 	 * that likely won't give us the space back we need.
528 	 */
529 	if (ordered_bytes > delalloc_bytes && !for_preempt)
530 		wait_ordered = true;
531 
532 	loops = 0;
533 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
534 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
535 		long nr_pages = min_t(u64, temp, LONG_MAX);
536 		int async_pages;
537 
538 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539 
540 		/*
541 		 * We need to make sure any outstanding async pages are now
542 		 * processed before we continue.  This is because things like
543 		 * sync_inode() try to be smart and skip writing if the inode is
544 		 * marked clean.  We don't use filemap_fwrite for flushing
545 		 * because we want to control how many pages we write out at a
546 		 * time, thus this is the only safe way to make sure we've
547 		 * waited for outstanding compressed workers to have started
548 		 * their jobs and thus have ordered extents set up properly.
549 		 *
550 		 * This exists because we do not want to wait for each
551 		 * individual inode to finish its async work, we simply want to
552 		 * start the IO on everybody, and then come back here and wait
553 		 * for all of the async work to catch up.  Once we're done with
554 		 * that we know we'll have ordered extents for everything and we
555 		 * can decide if we wait for that or not.
556 		 *
557 		 * If we choose to replace this in the future, make absolutely
558 		 * sure that the proper waiting is being done in the async case,
559 		 * as there have been bugs in that area before.
560 		 */
561 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
562 		if (!async_pages)
563 			goto skip_async;
564 
565 		/*
566 		 * We don't want to wait forever, if we wrote less pages in this
567 		 * loop than we have outstanding, only wait for that number of
568 		 * pages, otherwise we can wait for all async pages to finish
569 		 * before continuing.
570 		 */
571 		if (async_pages > nr_pages)
572 			async_pages -= nr_pages;
573 		else
574 			async_pages = 0;
575 		wait_event(fs_info->async_submit_wait,
576 			   atomic_read(&fs_info->async_delalloc_pages) <=
577 			   async_pages);
578 skip_async:
579 		loops++;
580 		if (wait_ordered && !trans) {
581 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
582 		} else {
583 			time_left = schedule_timeout_killable(1);
584 			if (time_left)
585 				break;
586 		}
587 
588 		/*
589 		 * If we are for preemption we just want a one-shot of delalloc
590 		 * flushing so we can stop flushing if we decide we don't need
591 		 * to anymore.
592 		 */
593 		if (for_preempt)
594 			break;
595 
596 		spin_lock(&space_info->lock);
597 		if (list_empty(&space_info->tickets) &&
598 		    list_empty(&space_info->priority_tickets)) {
599 			spin_unlock(&space_info->lock);
600 			break;
601 		}
602 		spin_unlock(&space_info->lock);
603 
604 		delalloc_bytes = percpu_counter_sum_positive(
605 						&fs_info->delalloc_bytes);
606 		ordered_bytes = percpu_counter_sum_positive(
607 						&fs_info->ordered_bytes);
608 	}
609 }
610 
611 /*
612  * Try to flush some data based on policy set by @state. This is only advisory
613  * and may fail for various reasons. The caller is supposed to examine the
614  * state of @space_info to detect the outcome.
615  */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)616 static void flush_space(struct btrfs_fs_info *fs_info,
617 		       struct btrfs_space_info *space_info, u64 num_bytes,
618 		       enum btrfs_flush_state state, bool for_preempt)
619 {
620 	struct btrfs_root *root = fs_info->extent_root;
621 	struct btrfs_trans_handle *trans;
622 	int nr;
623 	int ret = 0;
624 
625 	switch (state) {
626 	case FLUSH_DELAYED_ITEMS_NR:
627 	case FLUSH_DELAYED_ITEMS:
628 		if (state == FLUSH_DELAYED_ITEMS_NR)
629 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
630 		else
631 			nr = -1;
632 
633 		trans = btrfs_join_transaction(root);
634 		if (IS_ERR(trans)) {
635 			ret = PTR_ERR(trans);
636 			break;
637 		}
638 		ret = btrfs_run_delayed_items_nr(trans, nr);
639 		btrfs_end_transaction(trans);
640 		break;
641 	case FLUSH_DELALLOC:
642 	case FLUSH_DELALLOC_WAIT:
643 	case FLUSH_DELALLOC_FULL:
644 		if (state == FLUSH_DELALLOC_FULL)
645 			num_bytes = U64_MAX;
646 		shrink_delalloc(fs_info, space_info, num_bytes,
647 				state != FLUSH_DELALLOC, for_preempt);
648 		break;
649 	case FLUSH_DELAYED_REFS_NR:
650 	case FLUSH_DELAYED_REFS:
651 		trans = btrfs_join_transaction(root);
652 		if (IS_ERR(trans)) {
653 			ret = PTR_ERR(trans);
654 			break;
655 		}
656 		if (state == FLUSH_DELAYED_REFS_NR)
657 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
658 		else
659 			nr = 0;
660 		btrfs_run_delayed_refs(trans, nr);
661 		btrfs_end_transaction(trans);
662 		break;
663 	case ALLOC_CHUNK:
664 	case ALLOC_CHUNK_FORCE:
665 		trans = btrfs_join_transaction(root);
666 		if (IS_ERR(trans)) {
667 			ret = PTR_ERR(trans);
668 			break;
669 		}
670 		ret = btrfs_chunk_alloc(trans,
671 				btrfs_get_alloc_profile(fs_info, space_info->flags),
672 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
673 					CHUNK_ALLOC_FORCE);
674 		btrfs_end_transaction(trans);
675 		if (ret > 0 || ret == -ENOSPC)
676 			ret = 0;
677 		break;
678 	case RUN_DELAYED_IPUTS:
679 		/*
680 		 * If we have pending delayed iputs then we could free up a
681 		 * bunch of pinned space, so make sure we run the iputs before
682 		 * we do our pinned bytes check below.
683 		 */
684 		btrfs_run_delayed_iputs(fs_info);
685 		btrfs_wait_on_delayed_iputs(fs_info);
686 		break;
687 	case COMMIT_TRANS:
688 		ASSERT(current->journal_info == NULL);
689 		trans = btrfs_join_transaction(root);
690 		if (IS_ERR(trans)) {
691 			ret = PTR_ERR(trans);
692 			break;
693 		}
694 		ret = btrfs_commit_transaction(trans);
695 		break;
696 	default:
697 		ret = -ENOSPC;
698 		break;
699 	}
700 
701 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
702 				ret, for_preempt);
703 	return;
704 }
705 
706 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)707 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
708 				 struct btrfs_space_info *space_info)
709 {
710 	u64 used;
711 	u64 avail;
712 	u64 to_reclaim = space_info->reclaim_size;
713 
714 	lockdep_assert_held(&space_info->lock);
715 
716 	avail = calc_available_free_space(fs_info, space_info,
717 					  BTRFS_RESERVE_FLUSH_ALL);
718 	used = btrfs_space_info_used(space_info, true);
719 
720 	/*
721 	 * We may be flushing because suddenly we have less space than we had
722 	 * before, and now we're well over-committed based on our current free
723 	 * space.  If that's the case add in our overage so we make sure to put
724 	 * appropriate pressure on the flushing state machine.
725 	 */
726 	if (space_info->total_bytes + avail < used)
727 		to_reclaim += used - (space_info->total_bytes + avail);
728 
729 	return to_reclaim;
730 }
731 
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)732 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
733 				    struct btrfs_space_info *space_info)
734 {
735 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
736 	u64 ordered, delalloc;
737 	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
738 	u64 used;
739 
740 	/* If we're just plain full then async reclaim just slows us down. */
741 	if ((space_info->bytes_used + space_info->bytes_reserved +
742 	     global_rsv_size) >= thresh)
743 		return false;
744 
745 	used = space_info->bytes_may_use + space_info->bytes_pinned;
746 
747 	/* The total flushable belongs to the global rsv, don't flush. */
748 	if (global_rsv_size >= used)
749 		return false;
750 
751 	/*
752 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
753 	 * that devoted to other reservations then there's no sense in flushing,
754 	 * we don't have a lot of things that need flushing.
755 	 */
756 	if (used - global_rsv_size <= SZ_128M)
757 		return false;
758 
759 	/*
760 	 * We have tickets queued, bail so we don't compete with the async
761 	 * flushers.
762 	 */
763 	if (space_info->reclaim_size)
764 		return false;
765 
766 	/*
767 	 * If we have over half of the free space occupied by reservations or
768 	 * pinned then we want to start flushing.
769 	 *
770 	 * We do not do the traditional thing here, which is to say
771 	 *
772 	 *   if (used >= ((total_bytes + avail) / 2))
773 	 *     return 1;
774 	 *
775 	 * because this doesn't quite work how we want.  If we had more than 50%
776 	 * of the space_info used by bytes_used and we had 0 available we'd just
777 	 * constantly run the background flusher.  Instead we want it to kick in
778 	 * if our reclaimable space exceeds our clamped free space.
779 	 *
780 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
781 	 * the following:
782 	 *
783 	 * Amount of RAM        Minimum threshold       Maximum threshold
784 	 *
785 	 *        256GiB                     1GiB                  128GiB
786 	 *        128GiB                   512MiB                   64GiB
787 	 *         64GiB                   256MiB                   32GiB
788 	 *         32GiB                   128MiB                   16GiB
789 	 *         16GiB                    64MiB                    8GiB
790 	 *
791 	 * These are the range our thresholds will fall in, corresponding to how
792 	 * much delalloc we need for the background flusher to kick in.
793 	 */
794 
795 	thresh = calc_available_free_space(fs_info, space_info,
796 					   BTRFS_RESERVE_FLUSH_ALL);
797 	used = space_info->bytes_used + space_info->bytes_reserved +
798 	       space_info->bytes_readonly + global_rsv_size;
799 	if (used < space_info->total_bytes)
800 		thresh += space_info->total_bytes - used;
801 	thresh >>= space_info->clamp;
802 
803 	used = space_info->bytes_pinned;
804 
805 	/*
806 	 * If we have more ordered bytes than delalloc bytes then we're either
807 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
808 	 * around.  Preemptive flushing is only useful in that it can free up
809 	 * space before tickets need to wait for things to finish.  In the case
810 	 * of ordered extents, preemptively waiting on ordered extents gets us
811 	 * nothing, if our reservations are tied up in ordered extents we'll
812 	 * simply have to slow down writers by forcing them to wait on ordered
813 	 * extents.
814 	 *
815 	 * In the case that ordered is larger than delalloc, only include the
816 	 * block reserves that we would actually be able to directly reclaim
817 	 * from.  In this case if we're heavy on metadata operations this will
818 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
819 	 * of heavy DIO or ordered reservations, preemptive flushing will just
820 	 * waste time and cause us to slow down.
821 	 *
822 	 * We want to make sure we truly are maxed out on ordered however, so
823 	 * cut ordered in half, and if it's still higher than delalloc then we
824 	 * can keep flushing.  This is to avoid the case where we start
825 	 * flushing, and now delalloc == ordered and we stop preemptively
826 	 * flushing when we could still have several gigs of delalloc to flush.
827 	 */
828 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
829 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
830 	if (ordered >= delalloc)
831 		used += fs_info->delayed_refs_rsv.reserved +
832 			fs_info->delayed_block_rsv.reserved;
833 	else
834 		used += space_info->bytes_may_use - global_rsv_size;
835 
836 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
837 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
838 }
839 
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)840 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
841 				  struct btrfs_space_info *space_info,
842 				  struct reserve_ticket *ticket)
843 {
844 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
845 	u64 min_bytes;
846 
847 	if (global_rsv->space_info != space_info)
848 		return false;
849 
850 	spin_lock(&global_rsv->lock);
851 	min_bytes = div_factor(global_rsv->size, 1);
852 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
853 		spin_unlock(&global_rsv->lock);
854 		return false;
855 	}
856 	global_rsv->reserved -= ticket->bytes;
857 	remove_ticket(space_info, ticket);
858 	ticket->bytes = 0;
859 	wake_up(&ticket->wait);
860 	space_info->tickets_id++;
861 	if (global_rsv->reserved < global_rsv->size)
862 		global_rsv->full = 0;
863 	spin_unlock(&global_rsv->lock);
864 
865 	return true;
866 }
867 
868 /*
869  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
870  * @fs_info - fs_info for this fs
871  * @space_info - the space info we were flushing
872  *
873  * We call this when we've exhausted our flushing ability and haven't made
874  * progress in satisfying tickets.  The reservation code handles tickets in
875  * order, so if there is a large ticket first and then smaller ones we could
876  * very well satisfy the smaller tickets.  This will attempt to wake up any
877  * tickets in the list to catch this case.
878  *
879  * This function returns true if it was able to make progress by clearing out
880  * other tickets, or if it stumbles across a ticket that was smaller than the
881  * first ticket.
882  */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)883 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
884 				   struct btrfs_space_info *space_info)
885 {
886 	struct reserve_ticket *ticket;
887 	u64 tickets_id = space_info->tickets_id;
888 
889 	trace_btrfs_fail_all_tickets(fs_info, space_info);
890 
891 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
892 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
893 		__btrfs_dump_space_info(fs_info, space_info);
894 	}
895 
896 	while (!list_empty(&space_info->tickets) &&
897 	       tickets_id == space_info->tickets_id) {
898 		ticket = list_first_entry(&space_info->tickets,
899 					  struct reserve_ticket, list);
900 
901 		if (ticket->steal &&
902 		    steal_from_global_rsv(fs_info, space_info, ticket))
903 			return true;
904 
905 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
906 			btrfs_info(fs_info, "failing ticket with %llu bytes",
907 				   ticket->bytes);
908 
909 		remove_ticket(space_info, ticket);
910 		ticket->error = -ENOSPC;
911 		wake_up(&ticket->wait);
912 
913 		/*
914 		 * We're just throwing tickets away, so more flushing may not
915 		 * trip over btrfs_try_granting_tickets, so we need to call it
916 		 * here to see if we can make progress with the next ticket in
917 		 * the list.
918 		 */
919 		btrfs_try_granting_tickets(fs_info, space_info);
920 	}
921 	return (tickets_id != space_info->tickets_id);
922 }
923 
924 /*
925  * This is for normal flushers, we can wait all goddamned day if we want to.  We
926  * will loop and continuously try to flush as long as we are making progress.
927  * We count progress as clearing off tickets each time we have to loop.
928  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)929 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
930 {
931 	struct btrfs_fs_info *fs_info;
932 	struct btrfs_space_info *space_info;
933 	u64 to_reclaim;
934 	enum btrfs_flush_state flush_state;
935 	int commit_cycles = 0;
936 	u64 last_tickets_id;
937 
938 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
939 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
940 
941 	spin_lock(&space_info->lock);
942 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
943 	if (!to_reclaim) {
944 		space_info->flush = 0;
945 		spin_unlock(&space_info->lock);
946 		return;
947 	}
948 	last_tickets_id = space_info->tickets_id;
949 	spin_unlock(&space_info->lock);
950 
951 	flush_state = FLUSH_DELAYED_ITEMS_NR;
952 	do {
953 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
954 		spin_lock(&space_info->lock);
955 		if (list_empty(&space_info->tickets)) {
956 			space_info->flush = 0;
957 			spin_unlock(&space_info->lock);
958 			return;
959 		}
960 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
961 							      space_info);
962 		if (last_tickets_id == space_info->tickets_id) {
963 			flush_state++;
964 		} else {
965 			last_tickets_id = space_info->tickets_id;
966 			flush_state = FLUSH_DELAYED_ITEMS_NR;
967 			if (commit_cycles)
968 				commit_cycles--;
969 		}
970 
971 		/*
972 		 * We do not want to empty the system of delalloc unless we're
973 		 * under heavy pressure, so allow one trip through the flushing
974 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
975 		 */
976 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
977 			flush_state++;
978 
979 		/*
980 		 * We don't want to force a chunk allocation until we've tried
981 		 * pretty hard to reclaim space.  Think of the case where we
982 		 * freed up a bunch of space and so have a lot of pinned space
983 		 * to reclaim.  We would rather use that than possibly create a
984 		 * underutilized metadata chunk.  So if this is our first run
985 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
986 		 * commit the transaction.  If nothing has changed the next go
987 		 * around then we can force a chunk allocation.
988 		 */
989 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
990 			flush_state++;
991 
992 		if (flush_state > COMMIT_TRANS) {
993 			commit_cycles++;
994 			if (commit_cycles > 2) {
995 				if (maybe_fail_all_tickets(fs_info, space_info)) {
996 					flush_state = FLUSH_DELAYED_ITEMS_NR;
997 					commit_cycles--;
998 				} else {
999 					space_info->flush = 0;
1000 				}
1001 			} else {
1002 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1003 			}
1004 		}
1005 		spin_unlock(&space_info->lock);
1006 	} while (flush_state <= COMMIT_TRANS);
1007 }
1008 
1009 /*
1010  * This handles pre-flushing of metadata space before we get to the point that
1011  * we need to start blocking threads on tickets.  The logic here is different
1012  * from the other flush paths because it doesn't rely on tickets to tell us how
1013  * much we need to flush, instead it attempts to keep us below the 80% full
1014  * watermark of space by flushing whichever reservation pool is currently the
1015  * largest.
1016  */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1017 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1018 {
1019 	struct btrfs_fs_info *fs_info;
1020 	struct btrfs_space_info *space_info;
1021 	struct btrfs_block_rsv *delayed_block_rsv;
1022 	struct btrfs_block_rsv *delayed_refs_rsv;
1023 	struct btrfs_block_rsv *global_rsv;
1024 	struct btrfs_block_rsv *trans_rsv;
1025 	int loops = 0;
1026 
1027 	fs_info = container_of(work, struct btrfs_fs_info,
1028 			       preempt_reclaim_work);
1029 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1030 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1031 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1032 	global_rsv = &fs_info->global_block_rsv;
1033 	trans_rsv = &fs_info->trans_block_rsv;
1034 
1035 	spin_lock(&space_info->lock);
1036 	while (need_preemptive_reclaim(fs_info, space_info)) {
1037 		enum btrfs_flush_state flush;
1038 		u64 delalloc_size = 0;
1039 		u64 to_reclaim, block_rsv_size;
1040 		u64 global_rsv_size = global_rsv->reserved;
1041 
1042 		loops++;
1043 
1044 		/*
1045 		 * We don't have a precise counter for the metadata being
1046 		 * reserved for delalloc, so we'll approximate it by subtracting
1047 		 * out the block rsv's space from the bytes_may_use.  If that
1048 		 * amount is higher than the individual reserves, then we can
1049 		 * assume it's tied up in delalloc reservations.
1050 		 */
1051 		block_rsv_size = global_rsv_size +
1052 			delayed_block_rsv->reserved +
1053 			delayed_refs_rsv->reserved +
1054 			trans_rsv->reserved;
1055 		if (block_rsv_size < space_info->bytes_may_use)
1056 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1057 
1058 		/*
1059 		 * We don't want to include the global_rsv in our calculation,
1060 		 * because that's space we can't touch.  Subtract it from the
1061 		 * block_rsv_size for the next checks.
1062 		 */
1063 		block_rsv_size -= global_rsv_size;
1064 
1065 		/*
1066 		 * We really want to avoid flushing delalloc too much, as it
1067 		 * could result in poor allocation patterns, so only flush it if
1068 		 * it's larger than the rest of the pools combined.
1069 		 */
1070 		if (delalloc_size > block_rsv_size) {
1071 			to_reclaim = delalloc_size;
1072 			flush = FLUSH_DELALLOC;
1073 		} else if (space_info->bytes_pinned >
1074 			   (delayed_block_rsv->reserved +
1075 			    delayed_refs_rsv->reserved)) {
1076 			to_reclaim = space_info->bytes_pinned;
1077 			flush = COMMIT_TRANS;
1078 		} else if (delayed_block_rsv->reserved >
1079 			   delayed_refs_rsv->reserved) {
1080 			to_reclaim = delayed_block_rsv->reserved;
1081 			flush = FLUSH_DELAYED_ITEMS_NR;
1082 		} else {
1083 			to_reclaim = delayed_refs_rsv->reserved;
1084 			flush = FLUSH_DELAYED_REFS_NR;
1085 		}
1086 
1087 		spin_unlock(&space_info->lock);
1088 
1089 		/*
1090 		 * We don't want to reclaim everything, just a portion, so scale
1091 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1092 		 * reclaim 1 items worth.
1093 		 */
1094 		to_reclaim >>= 2;
1095 		if (!to_reclaim)
1096 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1097 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1098 		cond_resched();
1099 		spin_lock(&space_info->lock);
1100 	}
1101 
1102 	/* We only went through once, back off our clamping. */
1103 	if (loops == 1 && !space_info->reclaim_size)
1104 		space_info->clamp = max(1, space_info->clamp - 1);
1105 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1106 	spin_unlock(&space_info->lock);
1107 }
1108 
1109 /*
1110  * FLUSH_DELALLOC_WAIT:
1111  *   Space is freed from flushing delalloc in one of two ways.
1112  *
1113  *   1) compression is on and we allocate less space than we reserved
1114  *   2) we are overwriting existing space
1115  *
1116  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1117  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1118  *   length to ->bytes_reserved, and subtracts the reserved space from
1119  *   ->bytes_may_use.
1120  *
1121  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1122  *   extent in the range we are overwriting, which creates a delayed ref for
1123  *   that freed extent.  This however is not reclaimed until the transaction
1124  *   commits, thus the next stages.
1125  *
1126  * RUN_DELAYED_IPUTS
1127  *   If we are freeing inodes, we want to make sure all delayed iputs have
1128  *   completed, because they could have been on an inode with i_nlink == 0, and
1129  *   thus have been truncated and freed up space.  But again this space is not
1130  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1131  *   run and then the transaction must be committed.
1132  *
1133  * COMMIT_TRANS
1134  *   This is where we reclaim all of the pinned space generated by running the
1135  *   iputs
1136  *
1137  * ALLOC_CHUNK_FORCE
1138  *   For data we start with alloc chunk force, however we could have been full
1139  *   before, and then the transaction commit could have freed new block groups,
1140  *   so if we now have space to allocate do the force chunk allocation.
1141  */
1142 static const enum btrfs_flush_state data_flush_states[] = {
1143 	FLUSH_DELALLOC_FULL,
1144 	RUN_DELAYED_IPUTS,
1145 	COMMIT_TRANS,
1146 	ALLOC_CHUNK_FORCE,
1147 };
1148 
btrfs_async_reclaim_data_space(struct work_struct * work)1149 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1150 {
1151 	struct btrfs_fs_info *fs_info;
1152 	struct btrfs_space_info *space_info;
1153 	u64 last_tickets_id;
1154 	enum btrfs_flush_state flush_state = 0;
1155 
1156 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1157 	space_info = fs_info->data_sinfo;
1158 
1159 	spin_lock(&space_info->lock);
1160 	if (list_empty(&space_info->tickets)) {
1161 		space_info->flush = 0;
1162 		spin_unlock(&space_info->lock);
1163 		return;
1164 	}
1165 	last_tickets_id = space_info->tickets_id;
1166 	spin_unlock(&space_info->lock);
1167 
1168 	while (!space_info->full) {
1169 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1170 		spin_lock(&space_info->lock);
1171 		if (list_empty(&space_info->tickets)) {
1172 			space_info->flush = 0;
1173 			spin_unlock(&space_info->lock);
1174 			return;
1175 		}
1176 		last_tickets_id = space_info->tickets_id;
1177 		spin_unlock(&space_info->lock);
1178 	}
1179 
1180 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1181 		flush_space(fs_info, space_info, U64_MAX,
1182 			    data_flush_states[flush_state], false);
1183 		spin_lock(&space_info->lock);
1184 		if (list_empty(&space_info->tickets)) {
1185 			space_info->flush = 0;
1186 			spin_unlock(&space_info->lock);
1187 			return;
1188 		}
1189 
1190 		if (last_tickets_id == space_info->tickets_id) {
1191 			flush_state++;
1192 		} else {
1193 			last_tickets_id = space_info->tickets_id;
1194 			flush_state = 0;
1195 		}
1196 
1197 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1198 			if (space_info->full) {
1199 				if (maybe_fail_all_tickets(fs_info, space_info))
1200 					flush_state = 0;
1201 				else
1202 					space_info->flush = 0;
1203 			} else {
1204 				flush_state = 0;
1205 			}
1206 		}
1207 		spin_unlock(&space_info->lock);
1208 	}
1209 }
1210 
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1211 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1212 {
1213 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1214 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1215 	INIT_WORK(&fs_info->preempt_reclaim_work,
1216 		  btrfs_preempt_reclaim_metadata_space);
1217 }
1218 
1219 static const enum btrfs_flush_state priority_flush_states[] = {
1220 	FLUSH_DELAYED_ITEMS_NR,
1221 	FLUSH_DELAYED_ITEMS,
1222 	ALLOC_CHUNK,
1223 };
1224 
1225 static const enum btrfs_flush_state evict_flush_states[] = {
1226 	FLUSH_DELAYED_ITEMS_NR,
1227 	FLUSH_DELAYED_ITEMS,
1228 	FLUSH_DELAYED_REFS_NR,
1229 	FLUSH_DELAYED_REFS,
1230 	FLUSH_DELALLOC,
1231 	FLUSH_DELALLOC_WAIT,
1232 	FLUSH_DELALLOC_FULL,
1233 	ALLOC_CHUNK,
1234 	COMMIT_TRANS,
1235 };
1236 
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1237 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1238 				struct btrfs_space_info *space_info,
1239 				struct reserve_ticket *ticket,
1240 				const enum btrfs_flush_state *states,
1241 				int states_nr)
1242 {
1243 	u64 to_reclaim;
1244 	int flush_state;
1245 
1246 	spin_lock(&space_info->lock);
1247 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1248 	if (!to_reclaim) {
1249 		spin_unlock(&space_info->lock);
1250 		return;
1251 	}
1252 	spin_unlock(&space_info->lock);
1253 
1254 	flush_state = 0;
1255 	do {
1256 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1257 			    false);
1258 		flush_state++;
1259 		spin_lock(&space_info->lock);
1260 		if (ticket->bytes == 0) {
1261 			spin_unlock(&space_info->lock);
1262 			return;
1263 		}
1264 		spin_unlock(&space_info->lock);
1265 	} while (flush_state < states_nr);
1266 }
1267 
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1268 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1269 					struct btrfs_space_info *space_info,
1270 					struct reserve_ticket *ticket)
1271 {
1272 	while (!space_info->full) {
1273 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1274 		spin_lock(&space_info->lock);
1275 		if (ticket->bytes == 0) {
1276 			spin_unlock(&space_info->lock);
1277 			return;
1278 		}
1279 		spin_unlock(&space_info->lock);
1280 	}
1281 }
1282 
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1283 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1284 				struct btrfs_space_info *space_info,
1285 				struct reserve_ticket *ticket)
1286 
1287 {
1288 	DEFINE_WAIT(wait);
1289 	int ret = 0;
1290 
1291 	spin_lock(&space_info->lock);
1292 	while (ticket->bytes > 0 && ticket->error == 0) {
1293 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1294 		if (ret) {
1295 			/*
1296 			 * Delete us from the list. After we unlock the space
1297 			 * info, we don't want the async reclaim job to reserve
1298 			 * space for this ticket. If that would happen, then the
1299 			 * ticket's task would not known that space was reserved
1300 			 * despite getting an error, resulting in a space leak
1301 			 * (bytes_may_use counter of our space_info).
1302 			 */
1303 			remove_ticket(space_info, ticket);
1304 			ticket->error = -EINTR;
1305 			break;
1306 		}
1307 		spin_unlock(&space_info->lock);
1308 
1309 		schedule();
1310 
1311 		finish_wait(&ticket->wait, &wait);
1312 		spin_lock(&space_info->lock);
1313 	}
1314 	spin_unlock(&space_info->lock);
1315 }
1316 
1317 /**
1318  * Do the appropriate flushing and waiting for a ticket
1319  *
1320  * @fs_info:    the filesystem
1321  * @space_info: space info for the reservation
1322  * @ticket:     ticket for the reservation
1323  * @start_ns:   timestamp when the reservation started
1324  * @orig_bytes: amount of bytes originally reserved
1325  * @flush:      how much we can flush
1326  *
1327  * This does the work of figuring out how to flush for the ticket, waiting for
1328  * the reservation, and returning the appropriate error if there is one.
1329  */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1330 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1331 				 struct btrfs_space_info *space_info,
1332 				 struct reserve_ticket *ticket,
1333 				 u64 start_ns, u64 orig_bytes,
1334 				 enum btrfs_reserve_flush_enum flush)
1335 {
1336 	int ret;
1337 
1338 	switch (flush) {
1339 	case BTRFS_RESERVE_FLUSH_DATA:
1340 	case BTRFS_RESERVE_FLUSH_ALL:
1341 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1342 		wait_reserve_ticket(fs_info, space_info, ticket);
1343 		break;
1344 	case BTRFS_RESERVE_FLUSH_LIMIT:
1345 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1346 						priority_flush_states,
1347 						ARRAY_SIZE(priority_flush_states));
1348 		break;
1349 	case BTRFS_RESERVE_FLUSH_EVICT:
1350 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1351 						evict_flush_states,
1352 						ARRAY_SIZE(evict_flush_states));
1353 		break;
1354 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1355 		priority_reclaim_data_space(fs_info, space_info, ticket);
1356 		break;
1357 	default:
1358 		ASSERT(0);
1359 		break;
1360 	}
1361 
1362 	spin_lock(&space_info->lock);
1363 	ret = ticket->error;
1364 	if (ticket->bytes || ticket->error) {
1365 		/*
1366 		 * We were a priority ticket, so we need to delete ourselves
1367 		 * from the list.  Because we could have other priority tickets
1368 		 * behind us that require less space, run
1369 		 * btrfs_try_granting_tickets() to see if their reservations can
1370 		 * now be made.
1371 		 */
1372 		if (!list_empty(&ticket->list)) {
1373 			remove_ticket(space_info, ticket);
1374 			btrfs_try_granting_tickets(fs_info, space_info);
1375 		}
1376 
1377 		if (!ret)
1378 			ret = -ENOSPC;
1379 	}
1380 	spin_unlock(&space_info->lock);
1381 	ASSERT(list_empty(&ticket->list));
1382 	/*
1383 	 * Check that we can't have an error set if the reservation succeeded,
1384 	 * as that would confuse tasks and lead them to error out without
1385 	 * releasing reserved space (if an error happens the expectation is that
1386 	 * space wasn't reserved at all).
1387 	 */
1388 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1389 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1390 				   start_ns, flush, ticket->error);
1391 	return ret;
1392 }
1393 
1394 /*
1395  * This returns true if this flush state will go through the ordinary flushing
1396  * code.
1397  */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1398 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1399 {
1400 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1401 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1402 }
1403 
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1404 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1405 				       struct btrfs_space_info *space_info)
1406 {
1407 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1408 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1409 
1410 	/*
1411 	 * If we're heavy on ordered operations then clamping won't help us.  We
1412 	 * need to clamp specifically to keep up with dirty'ing buffered
1413 	 * writers, because there's not a 1:1 correlation of writing delalloc
1414 	 * and freeing space, like there is with flushing delayed refs or
1415 	 * delayed nodes.  If we're already more ordered than delalloc then
1416 	 * we're keeping up, otherwise we aren't and should probably clamp.
1417 	 */
1418 	if (ordered < delalloc)
1419 		space_info->clamp = min(space_info->clamp + 1, 8);
1420 }
1421 
1422 /**
1423  * Try to reserve bytes from the block_rsv's space
1424  *
1425  * @fs_info:    the filesystem
1426  * @space_info: space info we want to allocate from
1427  * @orig_bytes: number of bytes we want
1428  * @flush:      whether or not we can flush to make our reservation
1429  *
1430  * This will reserve orig_bytes number of bytes from the space info associated
1431  * with the block_rsv.  If there is not enough space it will make an attempt to
1432  * flush out space to make room.  It will do this by flushing delalloc if
1433  * possible or committing the transaction.  If flush is 0 then no attempts to
1434  * regain reservations will be made and this will fail if there is not enough
1435  * space already.
1436  */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1437 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1438 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1439 			   enum btrfs_reserve_flush_enum flush)
1440 {
1441 	struct work_struct *async_work;
1442 	struct reserve_ticket ticket;
1443 	u64 start_ns = 0;
1444 	u64 used;
1445 	int ret = 0;
1446 	bool pending_tickets;
1447 
1448 	ASSERT(orig_bytes);
1449 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1450 
1451 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1452 		async_work = &fs_info->async_data_reclaim_work;
1453 	else
1454 		async_work = &fs_info->async_reclaim_work;
1455 
1456 	spin_lock(&space_info->lock);
1457 	ret = -ENOSPC;
1458 	used = btrfs_space_info_used(space_info, true);
1459 
1460 	/*
1461 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1462 	 * generally handle ENOSPC in a different way, so treat them the same as
1463 	 * normal flushers when it comes to skipping pending tickets.
1464 	 */
1465 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1466 		pending_tickets = !list_empty(&space_info->tickets) ||
1467 			!list_empty(&space_info->priority_tickets);
1468 	else
1469 		pending_tickets = !list_empty(&space_info->priority_tickets);
1470 
1471 	/*
1472 	 * Carry on if we have enough space (short-circuit) OR call
1473 	 * can_overcommit() to ensure we can overcommit to continue.
1474 	 */
1475 	if (!pending_tickets &&
1476 	    ((used + orig_bytes <= space_info->total_bytes) ||
1477 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1478 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1479 						      orig_bytes);
1480 		ret = 0;
1481 	}
1482 
1483 	/*
1484 	 * If we couldn't make a reservation then setup our reservation ticket
1485 	 * and kick the async worker if it's not already running.
1486 	 *
1487 	 * If we are a priority flusher then we just need to add our ticket to
1488 	 * the list and we will do our own flushing further down.
1489 	 */
1490 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1491 		ticket.bytes = orig_bytes;
1492 		ticket.error = 0;
1493 		space_info->reclaim_size += ticket.bytes;
1494 		init_waitqueue_head(&ticket.wait);
1495 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1496 		if (trace_btrfs_reserve_ticket_enabled())
1497 			start_ns = ktime_get_ns();
1498 
1499 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1500 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1501 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1502 			list_add_tail(&ticket.list, &space_info->tickets);
1503 			if (!space_info->flush) {
1504 				/*
1505 				 * We were forced to add a reserve ticket, so
1506 				 * our preemptive flushing is unable to keep
1507 				 * up.  Clamp down on the threshold for the
1508 				 * preemptive flushing in order to keep up with
1509 				 * the workload.
1510 				 */
1511 				maybe_clamp_preempt(fs_info, space_info);
1512 
1513 				space_info->flush = 1;
1514 				trace_btrfs_trigger_flush(fs_info,
1515 							  space_info->flags,
1516 							  orig_bytes, flush,
1517 							  "enospc");
1518 				queue_work(system_unbound_wq, async_work);
1519 			}
1520 		} else {
1521 			list_add_tail(&ticket.list,
1522 				      &space_info->priority_tickets);
1523 		}
1524 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1525 		used += orig_bytes;
1526 		/*
1527 		 * We will do the space reservation dance during log replay,
1528 		 * which means we won't have fs_info->fs_root set, so don't do
1529 		 * the async reclaim as we will panic.
1530 		 */
1531 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1532 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1533 		    need_preemptive_reclaim(fs_info, space_info)) {
1534 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1535 						  orig_bytes, flush, "preempt");
1536 			queue_work(system_unbound_wq,
1537 				   &fs_info->preempt_reclaim_work);
1538 		}
1539 	}
1540 	spin_unlock(&space_info->lock);
1541 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1542 		return ret;
1543 
1544 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1545 				     orig_bytes, flush);
1546 }
1547 
1548 /**
1549  * Trye to reserve metadata bytes from the block_rsv's space
1550  *
1551  * @root:       the root we're allocating for
1552  * @block_rsv:  block_rsv we're allocating for
1553  * @orig_bytes: number of bytes we want
1554  * @flush:      whether or not we can flush to make our reservation
1555  *
1556  * This will reserve orig_bytes number of bytes from the space info associated
1557  * with the block_rsv.  If there is not enough space it will make an attempt to
1558  * flush out space to make room.  It will do this by flushing delalloc if
1559  * possible or committing the transaction.  If flush is 0 then no attempts to
1560  * regain reservations will be made and this will fail if there is not enough
1561  * space already.
1562  */
btrfs_reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1563 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1564 				 struct btrfs_block_rsv *block_rsv,
1565 				 u64 orig_bytes,
1566 				 enum btrfs_reserve_flush_enum flush)
1567 {
1568 	struct btrfs_fs_info *fs_info = root->fs_info;
1569 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1570 	int ret;
1571 
1572 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1573 	if (ret == -ENOSPC &&
1574 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1575 		if (block_rsv != global_rsv &&
1576 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1577 			ret = 0;
1578 	}
1579 	if (ret == -ENOSPC) {
1580 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1581 					      block_rsv->space_info->flags,
1582 					      orig_bytes, 1);
1583 
1584 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1585 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1586 					      orig_bytes, 0);
1587 	}
1588 	return ret;
1589 }
1590 
1591 /**
1592  * Try to reserve data bytes for an allocation
1593  *
1594  * @fs_info: the filesystem
1595  * @bytes:   number of bytes we need
1596  * @flush:   how we are allowed to flush
1597  *
1598  * This will reserve bytes from the data space info.  If there is not enough
1599  * space then we will attempt to flush space as specified by flush.
1600  */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1601 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1602 			     enum btrfs_reserve_flush_enum flush)
1603 {
1604 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1605 	int ret;
1606 
1607 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1608 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1609 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1610 
1611 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1612 	if (ret == -ENOSPC) {
1613 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1614 					      data_sinfo->flags, bytes, 1);
1615 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1616 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1617 	}
1618 	return ret;
1619 }
1620