• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	/* Select the highest-redundancy RAID level. */
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
83 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
85 		allowed = BTRFS_BLOCK_GROUP_RAID6;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
87 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
89 		allowed = BTRFS_BLOCK_GROUP_RAID5;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
91 		allowed = BTRFS_BLOCK_GROUP_RAID10;
92 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
93 		allowed = BTRFS_BLOCK_GROUP_RAID1;
94 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
95 		allowed = BTRFS_BLOCK_GROUP_DUP;
96 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
97 		allowed = BTRFS_BLOCK_GROUP_RAID0;
98 
99 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
100 
101 	return extended_to_chunk(flags | allowed);
102 }
103 
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)104 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
105 {
106 	unsigned seq;
107 	u64 flags;
108 
109 	do {
110 		flags = orig_flags;
111 		seq = read_seqbegin(&fs_info->profiles_lock);
112 
113 		if (flags & BTRFS_BLOCK_GROUP_DATA)
114 			flags |= fs_info->avail_data_alloc_bits;
115 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
116 			flags |= fs_info->avail_system_alloc_bits;
117 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
118 			flags |= fs_info->avail_metadata_alloc_bits;
119 	} while (read_seqretry(&fs_info->profiles_lock, seq));
120 
121 	return btrfs_reduce_alloc_profile(fs_info, flags);
122 }
123 
btrfs_get_block_group(struct btrfs_block_group * cache)124 void btrfs_get_block_group(struct btrfs_block_group *cache)
125 {
126 	refcount_inc(&cache->refs);
127 }
128 
btrfs_put_block_group(struct btrfs_block_group * cache)129 void btrfs_put_block_group(struct btrfs_block_group *cache)
130 {
131 	if (refcount_dec_and_test(&cache->refs)) {
132 		WARN_ON(cache->pinned > 0);
133 		/*
134 		 * If there was a failure to cleanup a log tree, very likely due
135 		 * to an IO failure on a writeback attempt of one or more of its
136 		 * extent buffers, we could not do proper (and cheap) unaccounting
137 		 * of their reserved space, so don't warn on reserved > 0 in that
138 		 * case.
139 		 */
140 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
141 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
142 			WARN_ON(cache->reserved > 0);
143 
144 		/*
145 		 * A block_group shouldn't be on the discard_list anymore.
146 		 * Remove the block_group from the discard_list to prevent us
147 		 * from causing a panic due to NULL pointer dereference.
148 		 */
149 		if (WARN_ON(!list_empty(&cache->discard_list)))
150 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
151 						  cache);
152 
153 		/*
154 		 * If not empty, someone is still holding mutex of
155 		 * full_stripe_lock, which can only be released by caller.
156 		 * And it will definitely cause use-after-free when caller
157 		 * tries to release full stripe lock.
158 		 *
159 		 * No better way to resolve, but only to warn.
160 		 */
161 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
162 		kfree(cache->free_space_ctl);
163 		kfree(cache);
164 	}
165 }
166 
167 /*
168  * This adds the block group to the fs_info rb tree for the block group cache
169  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)170 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
171 				       struct btrfs_block_group *block_group)
172 {
173 	struct rb_node **p;
174 	struct rb_node *parent = NULL;
175 	struct btrfs_block_group *cache;
176 
177 	ASSERT(block_group->length != 0);
178 
179 	spin_lock(&info->block_group_cache_lock);
180 	p = &info->block_group_cache_tree.rb_node;
181 
182 	while (*p) {
183 		parent = *p;
184 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
185 		if (block_group->start < cache->start) {
186 			p = &(*p)->rb_left;
187 		} else if (block_group->start > cache->start) {
188 			p = &(*p)->rb_right;
189 		} else {
190 			spin_unlock(&info->block_group_cache_lock);
191 			return -EEXIST;
192 		}
193 	}
194 
195 	rb_link_node(&block_group->cache_node, parent, p);
196 	rb_insert_color(&block_group->cache_node,
197 			&info->block_group_cache_tree);
198 
199 	if (info->first_logical_byte > block_group->start)
200 		info->first_logical_byte = block_group->start;
201 
202 	spin_unlock(&info->block_group_cache_lock);
203 
204 	return 0;
205 }
206 
207 /*
208  * This will return the block group at or after bytenr if contains is 0, else
209  * it will return the block group that contains the bytenr
210  */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)211 static struct btrfs_block_group *block_group_cache_tree_search(
212 		struct btrfs_fs_info *info, u64 bytenr, int contains)
213 {
214 	struct btrfs_block_group *cache, *ret = NULL;
215 	struct rb_node *n;
216 	u64 end, start;
217 
218 	spin_lock(&info->block_group_cache_lock);
219 	n = info->block_group_cache_tree.rb_node;
220 
221 	while (n) {
222 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
223 		end = cache->start + cache->length - 1;
224 		start = cache->start;
225 
226 		if (bytenr < start) {
227 			if (!contains && (!ret || start < ret->start))
228 				ret = cache;
229 			n = n->rb_left;
230 		} else if (bytenr > start) {
231 			if (contains && bytenr <= end) {
232 				ret = cache;
233 				break;
234 			}
235 			n = n->rb_right;
236 		} else {
237 			ret = cache;
238 			break;
239 		}
240 	}
241 	if (ret) {
242 		btrfs_get_block_group(ret);
243 		if (bytenr == 0 && info->first_logical_byte > ret->start)
244 			info->first_logical_byte = ret->start;
245 	}
246 	spin_unlock(&info->block_group_cache_lock);
247 
248 	return ret;
249 }
250 
251 /*
252  * Return the block group that starts at or after bytenr
253  */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)254 struct btrfs_block_group *btrfs_lookup_first_block_group(
255 		struct btrfs_fs_info *info, u64 bytenr)
256 {
257 	return block_group_cache_tree_search(info, bytenr, 0);
258 }
259 
260 /*
261  * Return the block group that contains the given bytenr
262  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)263 struct btrfs_block_group *btrfs_lookup_block_group(
264 		struct btrfs_fs_info *info, u64 bytenr)
265 {
266 	return block_group_cache_tree_search(info, bytenr, 1);
267 }
268 
btrfs_next_block_group(struct btrfs_block_group * cache)269 struct btrfs_block_group *btrfs_next_block_group(
270 		struct btrfs_block_group *cache)
271 {
272 	struct btrfs_fs_info *fs_info = cache->fs_info;
273 	struct rb_node *node;
274 
275 	spin_lock(&fs_info->block_group_cache_lock);
276 
277 	/* If our block group was removed, we need a full search. */
278 	if (RB_EMPTY_NODE(&cache->cache_node)) {
279 		const u64 next_bytenr = cache->start + cache->length;
280 
281 		spin_unlock(&fs_info->block_group_cache_lock);
282 		btrfs_put_block_group(cache);
283 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
284 	}
285 	node = rb_next(&cache->cache_node);
286 	btrfs_put_block_group(cache);
287 	if (node) {
288 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
289 		btrfs_get_block_group(cache);
290 	} else
291 		cache = NULL;
292 	spin_unlock(&fs_info->block_group_cache_lock);
293 	return cache;
294 }
295 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)296 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
297 {
298 	struct btrfs_block_group *bg;
299 	bool ret = true;
300 
301 	bg = btrfs_lookup_block_group(fs_info, bytenr);
302 	if (!bg)
303 		return false;
304 
305 	spin_lock(&bg->lock);
306 	if (bg->ro)
307 		ret = false;
308 	else
309 		atomic_inc(&bg->nocow_writers);
310 	spin_unlock(&bg->lock);
311 
312 	/* No put on block group, done by btrfs_dec_nocow_writers */
313 	if (!ret)
314 		btrfs_put_block_group(bg);
315 
316 	return ret;
317 }
318 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)319 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
320 {
321 	struct btrfs_block_group *bg;
322 
323 	bg = btrfs_lookup_block_group(fs_info, bytenr);
324 	ASSERT(bg);
325 	if (atomic_dec_and_test(&bg->nocow_writers))
326 		wake_up_var(&bg->nocow_writers);
327 	/*
328 	 * Once for our lookup and once for the lookup done by a previous call
329 	 * to btrfs_inc_nocow_writers()
330 	 */
331 	btrfs_put_block_group(bg);
332 	btrfs_put_block_group(bg);
333 }
334 
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)335 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
336 {
337 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
338 }
339 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)340 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
341 					const u64 start)
342 {
343 	struct btrfs_block_group *bg;
344 
345 	bg = btrfs_lookup_block_group(fs_info, start);
346 	ASSERT(bg);
347 	if (atomic_dec_and_test(&bg->reservations))
348 		wake_up_var(&bg->reservations);
349 	btrfs_put_block_group(bg);
350 }
351 
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)352 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
353 {
354 	struct btrfs_space_info *space_info = bg->space_info;
355 
356 	ASSERT(bg->ro);
357 
358 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
359 		return;
360 
361 	/*
362 	 * Our block group is read only but before we set it to read only,
363 	 * some task might have had allocated an extent from it already, but it
364 	 * has not yet created a respective ordered extent (and added it to a
365 	 * root's list of ordered extents).
366 	 * Therefore wait for any task currently allocating extents, since the
367 	 * block group's reservations counter is incremented while a read lock
368 	 * on the groups' semaphore is held and decremented after releasing
369 	 * the read access on that semaphore and creating the ordered extent.
370 	 */
371 	down_write(&space_info->groups_sem);
372 	up_write(&space_info->groups_sem);
373 
374 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
375 }
376 
btrfs_get_caching_control(struct btrfs_block_group * cache)377 struct btrfs_caching_control *btrfs_get_caching_control(
378 		struct btrfs_block_group *cache)
379 {
380 	struct btrfs_caching_control *ctl;
381 
382 	spin_lock(&cache->lock);
383 	if (!cache->caching_ctl) {
384 		spin_unlock(&cache->lock);
385 		return NULL;
386 	}
387 
388 	ctl = cache->caching_ctl;
389 	refcount_inc(&ctl->count);
390 	spin_unlock(&cache->lock);
391 	return ctl;
392 }
393 
btrfs_put_caching_control(struct btrfs_caching_control * ctl)394 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
395 {
396 	if (refcount_dec_and_test(&ctl->count))
397 		kfree(ctl);
398 }
399 
400 /*
401  * When we wait for progress in the block group caching, its because our
402  * allocation attempt failed at least once.  So, we must sleep and let some
403  * progress happen before we try again.
404  *
405  * This function will sleep at least once waiting for new free space to show
406  * up, and then it will check the block group free space numbers for our min
407  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
408  * a free extent of a given size, but this is a good start.
409  *
410  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
411  * any of the information in this block group.
412  */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)413 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
414 					   u64 num_bytes)
415 {
416 	struct btrfs_caching_control *caching_ctl;
417 
418 	caching_ctl = btrfs_get_caching_control(cache);
419 	if (!caching_ctl)
420 		return;
421 
422 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
423 		   (cache->free_space_ctl->free_space >= num_bytes));
424 
425 	btrfs_put_caching_control(caching_ctl);
426 }
427 
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)428 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
429 				       struct btrfs_caching_control *caching_ctl)
430 {
431 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
432 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
433 }
434 
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)435 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
436 {
437 	struct btrfs_caching_control *caching_ctl;
438 	int ret;
439 
440 	caching_ctl = btrfs_get_caching_control(cache);
441 	if (!caching_ctl)
442 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
443 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
444 	btrfs_put_caching_control(caching_ctl);
445 	return ret;
446 }
447 
448 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)449 static void fragment_free_space(struct btrfs_block_group *block_group)
450 {
451 	struct btrfs_fs_info *fs_info = block_group->fs_info;
452 	u64 start = block_group->start;
453 	u64 len = block_group->length;
454 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
455 		fs_info->nodesize : fs_info->sectorsize;
456 	u64 step = chunk << 1;
457 
458 	while (len > chunk) {
459 		btrfs_remove_free_space(block_group, start, chunk);
460 		start += step;
461 		if (len < step)
462 			len = 0;
463 		else
464 			len -= step;
465 	}
466 }
467 #endif
468 
469 /*
470  * This is only called by btrfs_cache_block_group, since we could have freed
471  * extents we need to check the pinned_extents for any extents that can't be
472  * used yet since their free space will be released as soon as the transaction
473  * commits.
474  */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)475 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
476 {
477 	struct btrfs_fs_info *info = block_group->fs_info;
478 	u64 extent_start, extent_end, size, total_added = 0;
479 	int ret;
480 
481 	while (start < end) {
482 		ret = find_first_extent_bit(&info->excluded_extents, start,
483 					    &extent_start, &extent_end,
484 					    EXTENT_DIRTY | EXTENT_UPTODATE,
485 					    NULL);
486 		if (ret)
487 			break;
488 
489 		if (extent_start <= start) {
490 			start = extent_end + 1;
491 		} else if (extent_start > start && extent_start < end) {
492 			size = extent_start - start;
493 			total_added += size;
494 			ret = btrfs_add_free_space_async_trimmed(block_group,
495 								 start, size);
496 			BUG_ON(ret); /* -ENOMEM or logic error */
497 			start = extent_end + 1;
498 		} else {
499 			break;
500 		}
501 	}
502 
503 	if (start < end) {
504 		size = end - start;
505 		total_added += size;
506 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
507 							 size);
508 		BUG_ON(ret); /* -ENOMEM or logic error */
509 	}
510 
511 	return total_added;
512 }
513 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)514 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
515 {
516 	struct btrfs_block_group *block_group = caching_ctl->block_group;
517 	struct btrfs_fs_info *fs_info = block_group->fs_info;
518 	struct btrfs_root *extent_root = fs_info->extent_root;
519 	struct btrfs_path *path;
520 	struct extent_buffer *leaf;
521 	struct btrfs_key key;
522 	u64 total_found = 0;
523 	u64 last = 0;
524 	u32 nritems;
525 	int ret;
526 	bool wakeup = true;
527 
528 	path = btrfs_alloc_path();
529 	if (!path)
530 		return -ENOMEM;
531 
532 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
533 
534 #ifdef CONFIG_BTRFS_DEBUG
535 	/*
536 	 * If we're fragmenting we don't want to make anybody think we can
537 	 * allocate from this block group until we've had a chance to fragment
538 	 * the free space.
539 	 */
540 	if (btrfs_should_fragment_free_space(block_group))
541 		wakeup = false;
542 #endif
543 	/*
544 	 * We don't want to deadlock with somebody trying to allocate a new
545 	 * extent for the extent root while also trying to search the extent
546 	 * root to add free space.  So we skip locking and search the commit
547 	 * root, since its read-only
548 	 */
549 	path->skip_locking = 1;
550 	path->search_commit_root = 1;
551 	path->reada = READA_FORWARD;
552 
553 	key.objectid = last;
554 	key.offset = 0;
555 	key.type = BTRFS_EXTENT_ITEM_KEY;
556 
557 next:
558 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
559 	if (ret < 0)
560 		goto out;
561 
562 	leaf = path->nodes[0];
563 	nritems = btrfs_header_nritems(leaf);
564 
565 	while (1) {
566 		if (btrfs_fs_closing(fs_info) > 1) {
567 			last = (u64)-1;
568 			break;
569 		}
570 
571 		if (path->slots[0] < nritems) {
572 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
573 		} else {
574 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
575 			if (ret)
576 				break;
577 
578 			if (need_resched() ||
579 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
580 				if (wakeup)
581 					caching_ctl->progress = last;
582 				btrfs_release_path(path);
583 				up_read(&fs_info->commit_root_sem);
584 				mutex_unlock(&caching_ctl->mutex);
585 				cond_resched();
586 				mutex_lock(&caching_ctl->mutex);
587 				down_read(&fs_info->commit_root_sem);
588 				goto next;
589 			}
590 
591 			ret = btrfs_next_leaf(extent_root, path);
592 			if (ret < 0)
593 				goto out;
594 			if (ret)
595 				break;
596 			leaf = path->nodes[0];
597 			nritems = btrfs_header_nritems(leaf);
598 			continue;
599 		}
600 
601 		if (key.objectid < last) {
602 			key.objectid = last;
603 			key.offset = 0;
604 			key.type = BTRFS_EXTENT_ITEM_KEY;
605 
606 			if (wakeup)
607 				caching_ctl->progress = last;
608 			btrfs_release_path(path);
609 			goto next;
610 		}
611 
612 		if (key.objectid < block_group->start) {
613 			path->slots[0]++;
614 			continue;
615 		}
616 
617 		if (key.objectid >= block_group->start + block_group->length)
618 			break;
619 
620 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
621 		    key.type == BTRFS_METADATA_ITEM_KEY) {
622 			total_found += add_new_free_space(block_group, last,
623 							  key.objectid);
624 			if (key.type == BTRFS_METADATA_ITEM_KEY)
625 				last = key.objectid +
626 					fs_info->nodesize;
627 			else
628 				last = key.objectid + key.offset;
629 
630 			if (total_found > CACHING_CTL_WAKE_UP) {
631 				total_found = 0;
632 				if (wakeup)
633 					wake_up(&caching_ctl->wait);
634 			}
635 		}
636 		path->slots[0]++;
637 	}
638 	ret = 0;
639 
640 	total_found += add_new_free_space(block_group, last,
641 				block_group->start + block_group->length);
642 	caching_ctl->progress = (u64)-1;
643 
644 out:
645 	btrfs_free_path(path);
646 	return ret;
647 }
648 
caching_thread(struct btrfs_work * work)649 static noinline void caching_thread(struct btrfs_work *work)
650 {
651 	struct btrfs_block_group *block_group;
652 	struct btrfs_fs_info *fs_info;
653 	struct btrfs_caching_control *caching_ctl;
654 	int ret;
655 
656 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
657 	block_group = caching_ctl->block_group;
658 	fs_info = block_group->fs_info;
659 
660 	mutex_lock(&caching_ctl->mutex);
661 	down_read(&fs_info->commit_root_sem);
662 
663 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
664 		ret = load_free_space_cache(block_group);
665 		if (ret == 1) {
666 			ret = 0;
667 			goto done;
668 		}
669 
670 		/*
671 		 * We failed to load the space cache, set ourselves to
672 		 * CACHE_STARTED and carry on.
673 		 */
674 		spin_lock(&block_group->lock);
675 		block_group->cached = BTRFS_CACHE_STARTED;
676 		spin_unlock(&block_group->lock);
677 		wake_up(&caching_ctl->wait);
678 	}
679 
680 	/*
681 	 * If we are in the transaction that populated the free space tree we
682 	 * can't actually cache from the free space tree as our commit root and
683 	 * real root are the same, so we could change the contents of the blocks
684 	 * while caching.  Instead do the slow caching in this case, and after
685 	 * the transaction has committed we will be safe.
686 	 */
687 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
688 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
689 		ret = load_free_space_tree(caching_ctl);
690 	else
691 		ret = load_extent_tree_free(caching_ctl);
692 done:
693 	spin_lock(&block_group->lock);
694 	block_group->caching_ctl = NULL;
695 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
696 	spin_unlock(&block_group->lock);
697 
698 #ifdef CONFIG_BTRFS_DEBUG
699 	if (btrfs_should_fragment_free_space(block_group)) {
700 		u64 bytes_used;
701 
702 		spin_lock(&block_group->space_info->lock);
703 		spin_lock(&block_group->lock);
704 		bytes_used = block_group->length - block_group->used;
705 		block_group->space_info->bytes_used += bytes_used >> 1;
706 		spin_unlock(&block_group->lock);
707 		spin_unlock(&block_group->space_info->lock);
708 		fragment_free_space(block_group);
709 	}
710 #endif
711 
712 	caching_ctl->progress = (u64)-1;
713 
714 	up_read(&fs_info->commit_root_sem);
715 	btrfs_free_excluded_extents(block_group);
716 	mutex_unlock(&caching_ctl->mutex);
717 
718 	wake_up(&caching_ctl->wait);
719 
720 	btrfs_put_caching_control(caching_ctl);
721 	btrfs_put_block_group(block_group);
722 }
723 
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)724 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
725 {
726 	struct btrfs_fs_info *fs_info = cache->fs_info;
727 	struct btrfs_caching_control *caching_ctl = NULL;
728 	int ret = 0;
729 
730 	/* Allocator for zoned filesystems does not use the cache at all */
731 	if (btrfs_is_zoned(fs_info))
732 		return 0;
733 
734 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
735 	if (!caching_ctl)
736 		return -ENOMEM;
737 
738 	INIT_LIST_HEAD(&caching_ctl->list);
739 	mutex_init(&caching_ctl->mutex);
740 	init_waitqueue_head(&caching_ctl->wait);
741 	caching_ctl->block_group = cache;
742 	caching_ctl->progress = cache->start;
743 	refcount_set(&caching_ctl->count, 2);
744 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
745 
746 	spin_lock(&cache->lock);
747 	if (cache->cached != BTRFS_CACHE_NO) {
748 		kfree(caching_ctl);
749 
750 		caching_ctl = cache->caching_ctl;
751 		if (caching_ctl)
752 			refcount_inc(&caching_ctl->count);
753 		spin_unlock(&cache->lock);
754 		goto out;
755 	}
756 	WARN_ON(cache->caching_ctl);
757 	cache->caching_ctl = caching_ctl;
758 	cache->cached = BTRFS_CACHE_STARTED;
759 	cache->has_caching_ctl = 1;
760 	spin_unlock(&cache->lock);
761 
762 	spin_lock(&fs_info->block_group_cache_lock);
763 	refcount_inc(&caching_ctl->count);
764 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
765 	spin_unlock(&fs_info->block_group_cache_lock);
766 
767 	btrfs_get_block_group(cache);
768 
769 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
770 out:
771 	if (wait && caching_ctl)
772 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
773 	if (caching_ctl)
774 		btrfs_put_caching_control(caching_ctl);
775 
776 	return ret;
777 }
778 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)779 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
780 {
781 	u64 extra_flags = chunk_to_extended(flags) &
782 				BTRFS_EXTENDED_PROFILE_MASK;
783 
784 	write_seqlock(&fs_info->profiles_lock);
785 	if (flags & BTRFS_BLOCK_GROUP_DATA)
786 		fs_info->avail_data_alloc_bits &= ~extra_flags;
787 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
788 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
789 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
790 		fs_info->avail_system_alloc_bits &= ~extra_flags;
791 	write_sequnlock(&fs_info->profiles_lock);
792 }
793 
794 /*
795  * Clear incompat bits for the following feature(s):
796  *
797  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
798  *            in the whole filesystem
799  *
800  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
801  */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)802 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
803 {
804 	bool found_raid56 = false;
805 	bool found_raid1c34 = false;
806 
807 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
808 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
810 		struct list_head *head = &fs_info->space_info;
811 		struct btrfs_space_info *sinfo;
812 
813 		list_for_each_entry_rcu(sinfo, head, list) {
814 			down_read(&sinfo->groups_sem);
815 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
816 				found_raid56 = true;
817 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
818 				found_raid56 = true;
819 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
820 				found_raid1c34 = true;
821 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
822 				found_raid1c34 = true;
823 			up_read(&sinfo->groups_sem);
824 		}
825 		if (!found_raid56)
826 			btrfs_clear_fs_incompat(fs_info, RAID56);
827 		if (!found_raid1c34)
828 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
829 	}
830 }
831 
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)832 static int remove_block_group_item(struct btrfs_trans_handle *trans,
833 				   struct btrfs_path *path,
834 				   struct btrfs_block_group *block_group)
835 {
836 	struct btrfs_fs_info *fs_info = trans->fs_info;
837 	struct btrfs_root *root;
838 	struct btrfs_key key;
839 	int ret;
840 
841 	root = fs_info->extent_root;
842 	key.objectid = block_group->start;
843 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
844 	key.offset = block_group->length;
845 
846 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
847 	if (ret > 0)
848 		ret = -ENOENT;
849 	if (ret < 0)
850 		return ret;
851 
852 	ret = btrfs_del_item(trans, root, path);
853 	return ret;
854 }
855 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)856 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
857 			     u64 group_start, struct extent_map *em)
858 {
859 	struct btrfs_fs_info *fs_info = trans->fs_info;
860 	struct btrfs_path *path;
861 	struct btrfs_block_group *block_group;
862 	struct btrfs_free_cluster *cluster;
863 	struct inode *inode;
864 	struct kobject *kobj = NULL;
865 	int ret;
866 	int index;
867 	int factor;
868 	struct btrfs_caching_control *caching_ctl = NULL;
869 	bool remove_em;
870 	bool remove_rsv = false;
871 
872 	block_group = btrfs_lookup_block_group(fs_info, group_start);
873 	BUG_ON(!block_group);
874 	BUG_ON(!block_group->ro);
875 
876 	trace_btrfs_remove_block_group(block_group);
877 	/*
878 	 * Free the reserved super bytes from this block group before
879 	 * remove it.
880 	 */
881 	btrfs_free_excluded_extents(block_group);
882 	btrfs_free_ref_tree_range(fs_info, block_group->start,
883 				  block_group->length);
884 
885 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
886 	factor = btrfs_bg_type_to_factor(block_group->flags);
887 
888 	/* make sure this block group isn't part of an allocation cluster */
889 	cluster = &fs_info->data_alloc_cluster;
890 	spin_lock(&cluster->refill_lock);
891 	btrfs_return_cluster_to_free_space(block_group, cluster);
892 	spin_unlock(&cluster->refill_lock);
893 
894 	/*
895 	 * make sure this block group isn't part of a metadata
896 	 * allocation cluster
897 	 */
898 	cluster = &fs_info->meta_alloc_cluster;
899 	spin_lock(&cluster->refill_lock);
900 	btrfs_return_cluster_to_free_space(block_group, cluster);
901 	spin_unlock(&cluster->refill_lock);
902 
903 	btrfs_clear_treelog_bg(block_group);
904 	btrfs_clear_data_reloc_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->swap_extents) {
1166 		ret = -ETXTBSY;
1167 		goto out;
1168 	}
1169 
1170 	if (cache->ro) {
1171 		cache->ro++;
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	num_bytes = cache->length - cache->reserved - cache->pinned -
1177 		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 
1179 	/*
1180 	 * Data never overcommits, even in mixed mode, so do just the straight
1181 	 * check of left over space in how much we have allocated.
1182 	 */
1183 	if (force) {
1184 		ret = 0;
1185 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187 
1188 		/*
1189 		 * Here we make sure if we mark this bg RO, we still have enough
1190 		 * free space as buffer.
1191 		 */
1192 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 			ret = 0;
1194 	} else {
1195 		/*
1196 		 * We overcommit metadata, so we need to do the
1197 		 * btrfs_can_overcommit check here, and we need to pass in
1198 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 		 * leeway to allow us to mark this block group as read only.
1200 		 */
1201 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 					 BTRFS_RESERVE_NO_FLUSH))
1203 			ret = 0;
1204 	}
1205 
1206 	if (!ret) {
1207 		sinfo->bytes_readonly += num_bytes;
1208 		if (btrfs_is_zoned(cache->fs_info)) {
1209 			/* Migrate zone_unusable bytes to readonly */
1210 			sinfo->bytes_readonly += cache->zone_unusable;
1211 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 			cache->zone_unusable = 0;
1213 		}
1214 		cache->ro++;
1215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 	}
1217 out:
1218 	spin_unlock(&cache->lock);
1219 	spin_unlock(&sinfo->lock);
1220 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 		btrfs_info(cache->fs_info,
1222 			"unable to make block group %llu ro", cache->start);
1223 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 	}
1225 	return ret;
1226 }
1227 
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_block_group *bg)
1230 {
1231 	struct btrfs_fs_info *fs_info = bg->fs_info;
1232 	struct btrfs_transaction *prev_trans = NULL;
1233 	const u64 start = bg->start;
1234 	const u64 end = start + bg->length - 1;
1235 	int ret;
1236 
1237 	spin_lock(&fs_info->trans_lock);
1238 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 		prev_trans = list_last_entry(&trans->transaction->list,
1240 					     struct btrfs_transaction, list);
1241 		refcount_inc(&prev_trans->use_count);
1242 	}
1243 	spin_unlock(&fs_info->trans_lock);
1244 
1245 	/*
1246 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 	 * task might be running finish_extent_commit() for the previous
1249 	 * transaction N - 1, and have seen a range belonging to the block
1250 	 * group in pinned_extents before we were able to clear the whole block
1251 	 * group range from pinned_extents. This means that task can lookup for
1252 	 * the block group after we unpinned it from pinned_extents and removed
1253 	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 	 */
1255 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 	if (prev_trans) {
1257 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 					EXTENT_DIRTY);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 				EXTENT_DIRTY);
1265 out:
1266 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 	if (prev_trans)
1268 		btrfs_put_transaction(prev_trans);
1269 
1270 	return ret == 0;
1271 }
1272 
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_block_group *block_group;
1280 	struct btrfs_space_info *space_info;
1281 	struct btrfs_trans_handle *trans;
1282 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 	int ret = 0;
1284 
1285 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 		return;
1287 
1288 	/*
1289 	 * Long running balances can keep us blocked here for eternity, so
1290 	 * simply skip deletion if we're unable to get the mutex.
1291 	 */
1292 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 		return;
1294 
1295 	spin_lock(&fs_info->unused_bgs_lock);
1296 	while (!list_empty(&fs_info->unused_bgs)) {
1297 		int trimming;
1298 
1299 		block_group = list_first_entry(&fs_info->unused_bgs,
1300 					       struct btrfs_block_group,
1301 					       bg_list);
1302 		list_del_init(&block_group->bg_list);
1303 
1304 		space_info = block_group->space_info;
1305 
1306 		if (ret || btrfs_mixed_space_info(space_info)) {
1307 			btrfs_put_block_group(block_group);
1308 			continue;
1309 		}
1310 		spin_unlock(&fs_info->unused_bgs_lock);
1311 
1312 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313 
1314 		/* Don't want to race with allocators so take the groups_sem */
1315 		down_write(&space_info->groups_sem);
1316 
1317 		/*
1318 		 * Async discard moves the final block group discard to be prior
1319 		 * to the unused_bgs code path.  Therefore, if it's not fully
1320 		 * trimmed, punt it back to the async discard lists.
1321 		 */
1322 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 		    !btrfs_is_free_space_trimmed(block_group)) {
1324 			trace_btrfs_skip_unused_block_group(block_group);
1325 			up_write(&space_info->groups_sem);
1326 			/* Requeue if we failed because of async discard */
1327 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 						 block_group);
1329 			goto next;
1330 		}
1331 
1332 		spin_lock(&block_group->lock);
1333 		if (block_group->reserved || block_group->pinned ||
1334 		    block_group->used || block_group->ro ||
1335 		    list_is_singular(&block_group->list)) {
1336 			/*
1337 			 * We want to bail if we made new allocations or have
1338 			 * outstanding allocations in this block group.  We do
1339 			 * the ro check in case balance is currently acting on
1340 			 * this block group.
1341 			 */
1342 			trace_btrfs_skip_unused_block_group(block_group);
1343 			spin_unlock(&block_group->lock);
1344 			up_write(&space_info->groups_sem);
1345 			goto next;
1346 		}
1347 		spin_unlock(&block_group->lock);
1348 
1349 		/* We don't want to force the issue, only flip if it's ok. */
1350 		ret = inc_block_group_ro(block_group, 0);
1351 		up_write(&space_info->groups_sem);
1352 		if (ret < 0) {
1353 			ret = 0;
1354 			goto next;
1355 		}
1356 
1357 		/*
1358 		 * Want to do this before we do anything else so we can recover
1359 		 * properly if we fail to join the transaction.
1360 		 */
1361 		trans = btrfs_start_trans_remove_block_group(fs_info,
1362 						     block_group->start);
1363 		if (IS_ERR(trans)) {
1364 			btrfs_dec_block_group_ro(block_group);
1365 			ret = PTR_ERR(trans);
1366 			goto next;
1367 		}
1368 
1369 		/*
1370 		 * We could have pending pinned extents for this block group,
1371 		 * just delete them, we don't care about them anymore.
1372 		 */
1373 		if (!clean_pinned_extents(trans, block_group)) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			goto end_trans;
1376 		}
1377 
1378 		/*
1379 		 * At this point, the block_group is read only and should fail
1380 		 * new allocations.  However, btrfs_finish_extent_commit() can
1381 		 * cause this block_group to be placed back on the discard
1382 		 * lists because now the block_group isn't fully discarded.
1383 		 * Bail here and try again later after discarding everything.
1384 		 */
1385 		spin_lock(&fs_info->discard_ctl.lock);
1386 		if (!list_empty(&block_group->discard_list)) {
1387 			spin_unlock(&fs_info->discard_ctl.lock);
1388 			btrfs_dec_block_group_ro(block_group);
1389 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 						 block_group);
1391 			goto end_trans;
1392 		}
1393 		spin_unlock(&fs_info->discard_ctl.lock);
1394 
1395 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396 		spin_lock(&space_info->lock);
1397 		spin_lock(&block_group->lock);
1398 
1399 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 						     -block_group->pinned);
1401 		space_info->bytes_readonly += block_group->pinned;
1402 		block_group->pinned = 0;
1403 
1404 		spin_unlock(&block_group->lock);
1405 		spin_unlock(&space_info->lock);
1406 
1407 		/*
1408 		 * The normal path here is an unused block group is passed here,
1409 		 * then trimming is handled in the transaction commit path.
1410 		 * Async discard interposes before this to do the trimming
1411 		 * before coming down the unused block group path as trimming
1412 		 * will no longer be done later in the transaction commit path.
1413 		 */
1414 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 			goto flip_async;
1416 
1417 		/*
1418 		 * DISCARD can flip during remount. On zoned filesystems, we
1419 		 * need to reset sequential-required zones.
1420 		 */
1421 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 				btrfs_is_zoned(fs_info);
1423 
1424 		/* Implicit trim during transaction commit. */
1425 		if (trimming)
1426 			btrfs_freeze_block_group(block_group);
1427 
1428 		/*
1429 		 * Btrfs_remove_chunk will abort the transaction if things go
1430 		 * horribly wrong.
1431 		 */
1432 		ret = btrfs_remove_chunk(trans, block_group->start);
1433 
1434 		if (ret) {
1435 			if (trimming)
1436 				btrfs_unfreeze_block_group(block_group);
1437 			goto end_trans;
1438 		}
1439 
1440 		/*
1441 		 * If we're not mounted with -odiscard, we can just forget
1442 		 * about this block group. Otherwise we'll need to wait
1443 		 * until transaction commit to do the actual discard.
1444 		 */
1445 		if (trimming) {
1446 			spin_lock(&fs_info->unused_bgs_lock);
1447 			/*
1448 			 * A concurrent scrub might have added us to the list
1449 			 * fs_info->unused_bgs, so use a list_move operation
1450 			 * to add the block group to the deleted_bgs list.
1451 			 */
1452 			list_move(&block_group->bg_list,
1453 				  &trans->transaction->deleted_bgs);
1454 			spin_unlock(&fs_info->unused_bgs_lock);
1455 			btrfs_get_block_group(block_group);
1456 		}
1457 end_trans:
1458 		btrfs_end_transaction(trans);
1459 next:
1460 		btrfs_put_block_group(block_group);
1461 		spin_lock(&fs_info->unused_bgs_lock);
1462 	}
1463 	spin_unlock(&fs_info->unused_bgs_lock);
1464 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 	return;
1466 
1467 flip_async:
1468 	btrfs_end_transaction(trans);
1469 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 	btrfs_put_block_group(block_group);
1471 	btrfs_discard_punt_unused_bgs_list(fs_info);
1472 }
1473 
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 {
1476 	struct btrfs_fs_info *fs_info = bg->fs_info;
1477 
1478 	trace_btrfs_add_unused_block_group(bg);
1479 	spin_lock(&fs_info->unused_bgs_lock);
1480 	if (list_empty(&bg->bg_list)) {
1481 		btrfs_get_block_group(bg);
1482 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 	} else {
1484 		/* Pull out the block group from the reclaim_bgs list. */
1485 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1486 	}
1487 	spin_unlock(&fs_info->unused_bgs_lock);
1488 }
1489 
btrfs_reclaim_bgs_work(struct work_struct * work)1490 void btrfs_reclaim_bgs_work(struct work_struct *work)
1491 {
1492 	struct btrfs_fs_info *fs_info =
1493 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1494 	struct btrfs_block_group *bg;
1495 	struct btrfs_space_info *space_info;
1496 
1497 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1498 		return;
1499 
1500 	sb_start_write(fs_info->sb);
1501 
1502 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1503 		sb_end_write(fs_info->sb);
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * Long running balances can keep us blocked here for eternity, so
1509 	 * simply skip reclaim if we're unable to get the mutex.
1510 	 */
1511 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1512 		btrfs_exclop_finish(fs_info);
1513 		sb_end_write(fs_info->sb);
1514 		return;
1515 	}
1516 
1517 	spin_lock(&fs_info->unused_bgs_lock);
1518 	while (!list_empty(&fs_info->reclaim_bgs)) {
1519 		u64 zone_unusable;
1520 		int ret = 0;
1521 
1522 		bg = list_first_entry(&fs_info->reclaim_bgs,
1523 				      struct btrfs_block_group,
1524 				      bg_list);
1525 		list_del_init(&bg->bg_list);
1526 
1527 		space_info = bg->space_info;
1528 		spin_unlock(&fs_info->unused_bgs_lock);
1529 
1530 		/* Don't race with allocators so take the groups_sem */
1531 		down_write(&space_info->groups_sem);
1532 
1533 		spin_lock(&bg->lock);
1534 		if (bg->reserved || bg->pinned || bg->ro) {
1535 			/*
1536 			 * We want to bail if we made new allocations or have
1537 			 * outstanding allocations in this block group.  We do
1538 			 * the ro check in case balance is currently acting on
1539 			 * this block group.
1540 			 */
1541 			spin_unlock(&bg->lock);
1542 			up_write(&space_info->groups_sem);
1543 			goto next;
1544 		}
1545 		spin_unlock(&bg->lock);
1546 
1547 		/*
1548 		 * Get out fast, in case we're read-only or unmounting the
1549 		 * filesystem. It is OK to drop block groups from the list even
1550 		 * for the read-only case. As we did sb_start_write(),
1551 		 * "mount -o remount,ro" won't happen and read-only filesystem
1552 		 * means it is forced read-only due to a fatal error. So, it
1553 		 * never gets back to read-write to let us reclaim again.
1554 		 */
1555 		if (btrfs_need_cleaner_sleep(fs_info)) {
1556 			up_write(&space_info->groups_sem);
1557 			goto next;
1558 		}
1559 
1560 		/*
1561 		 * Cache the zone_unusable value before turning the block group
1562 		 * to read only. As soon as the blog group is read only it's
1563 		 * zone_unusable value gets moved to the block group's read-only
1564 		 * bytes and isn't available for calculations anymore.
1565 		 */
1566 		zone_unusable = bg->zone_unusable;
1567 		ret = inc_block_group_ro(bg, 0);
1568 		up_write(&space_info->groups_sem);
1569 		if (ret < 0)
1570 			goto next;
1571 
1572 		btrfs_info(fs_info,
1573 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1574 				bg->start,
1575 				div64_u64(bg->used * 100, bg->length),
1576 				div64_u64(zone_unusable * 100, bg->length));
1577 		trace_btrfs_reclaim_block_group(bg);
1578 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1579 		if (ret) {
1580 			btrfs_dec_block_group_ro(bg);
1581 			btrfs_err(fs_info, "error relocating chunk %llu",
1582 				  bg->start);
1583 		}
1584 
1585 next:
1586 		if (ret)
1587 			btrfs_mark_bg_to_reclaim(bg);
1588 		btrfs_put_block_group(bg);
1589 
1590 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1591 		/*
1592 		 * Reclaiming all the block groups in the list can take really
1593 		 * long.  Prioritize cleaning up unused block groups.
1594 		 */
1595 		btrfs_delete_unused_bgs(fs_info);
1596 		/*
1597 		 * If we are interrupted by a balance, we can just bail out. The
1598 		 * cleaner thread restart again if necessary.
1599 		 */
1600 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1601 			goto end;
1602 		spin_lock(&fs_info->unused_bgs_lock);
1603 	}
1604 	spin_unlock(&fs_info->unused_bgs_lock);
1605 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1606 end:
1607 	btrfs_exclop_finish(fs_info);
1608 	sb_end_write(fs_info->sb);
1609 }
1610 
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1611 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1612 {
1613 	spin_lock(&fs_info->unused_bgs_lock);
1614 	if (!list_empty(&fs_info->reclaim_bgs))
1615 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1616 	spin_unlock(&fs_info->unused_bgs_lock);
1617 }
1618 
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1619 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1620 {
1621 	struct btrfs_fs_info *fs_info = bg->fs_info;
1622 
1623 	spin_lock(&fs_info->unused_bgs_lock);
1624 	if (list_empty(&bg->bg_list)) {
1625 		btrfs_get_block_group(bg);
1626 		trace_btrfs_add_reclaim_block_group(bg);
1627 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1628 	}
1629 	spin_unlock(&fs_info->unused_bgs_lock);
1630 }
1631 
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1632 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1633 			   struct btrfs_path *path)
1634 {
1635 	struct extent_map_tree *em_tree;
1636 	struct extent_map *em;
1637 	struct btrfs_block_group_item bg;
1638 	struct extent_buffer *leaf;
1639 	int slot;
1640 	u64 flags;
1641 	int ret = 0;
1642 
1643 	slot = path->slots[0];
1644 	leaf = path->nodes[0];
1645 
1646 	em_tree = &fs_info->mapping_tree;
1647 	read_lock(&em_tree->lock);
1648 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1649 	read_unlock(&em_tree->lock);
1650 	if (!em) {
1651 		btrfs_err(fs_info,
1652 			  "logical %llu len %llu found bg but no related chunk",
1653 			  key->objectid, key->offset);
1654 		return -ENOENT;
1655 	}
1656 
1657 	if (em->start != key->objectid || em->len != key->offset) {
1658 		btrfs_err(fs_info,
1659 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1660 			key->objectid, key->offset, em->start, em->len);
1661 		ret = -EUCLEAN;
1662 		goto out_free_em;
1663 	}
1664 
1665 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1666 			   sizeof(bg));
1667 	flags = btrfs_stack_block_group_flags(&bg) &
1668 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1669 
1670 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1671 		btrfs_err(fs_info,
1672 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1673 			  key->objectid, key->offset, flags,
1674 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1675 		ret = -EUCLEAN;
1676 	}
1677 
1678 out_free_em:
1679 	free_extent_map(em);
1680 	return ret;
1681 }
1682 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1683 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1684 				  struct btrfs_path *path,
1685 				  struct btrfs_key *key)
1686 {
1687 	struct btrfs_root *root = fs_info->extent_root;
1688 	int ret;
1689 	struct btrfs_key found_key;
1690 	struct extent_buffer *leaf;
1691 	int slot;
1692 
1693 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1694 	if (ret < 0)
1695 		return ret;
1696 
1697 	while (1) {
1698 		slot = path->slots[0];
1699 		leaf = path->nodes[0];
1700 		if (slot >= btrfs_header_nritems(leaf)) {
1701 			ret = btrfs_next_leaf(root, path);
1702 			if (ret == 0)
1703 				continue;
1704 			if (ret < 0)
1705 				goto out;
1706 			break;
1707 		}
1708 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1709 
1710 		if (found_key.objectid >= key->objectid &&
1711 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1712 			ret = read_bg_from_eb(fs_info, &found_key, path);
1713 			break;
1714 		}
1715 
1716 		path->slots[0]++;
1717 	}
1718 out:
1719 	return ret;
1720 }
1721 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1722 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1723 {
1724 	u64 extra_flags = chunk_to_extended(flags) &
1725 				BTRFS_EXTENDED_PROFILE_MASK;
1726 
1727 	write_seqlock(&fs_info->profiles_lock);
1728 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1729 		fs_info->avail_data_alloc_bits |= extra_flags;
1730 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1731 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1732 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1733 		fs_info->avail_system_alloc_bits |= extra_flags;
1734 	write_sequnlock(&fs_info->profiles_lock);
1735 }
1736 
1737 /**
1738  * Map a physical disk address to a list of logical addresses
1739  *
1740  * @fs_info:       the filesystem
1741  * @chunk_start:   logical address of block group
1742  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1743  * @physical:	   physical address to map to logical addresses
1744  * @logical:	   return array of logical addresses which map to @physical
1745  * @naddrs:	   length of @logical
1746  * @stripe_len:    size of IO stripe for the given block group
1747  *
1748  * Maps a particular @physical disk address to a list of @logical addresses.
1749  * Used primarily to exclude those portions of a block group that contain super
1750  * block copies.
1751  */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,struct block_device * bdev,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1752 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1753 		     struct block_device *bdev, u64 physical, u64 **logical,
1754 		     int *naddrs, int *stripe_len)
1755 {
1756 	struct extent_map *em;
1757 	struct map_lookup *map;
1758 	u64 *buf;
1759 	u64 bytenr;
1760 	u64 data_stripe_length;
1761 	u64 io_stripe_size;
1762 	int i, nr = 0;
1763 	int ret = 0;
1764 
1765 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1766 	if (IS_ERR(em))
1767 		return -EIO;
1768 
1769 	map = em->map_lookup;
1770 	data_stripe_length = em->orig_block_len;
1771 	io_stripe_size = map->stripe_len;
1772 	chunk_start = em->start;
1773 
1774 	/* For RAID5/6 adjust to a full IO stripe length */
1775 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1777 
1778 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1779 	if (!buf) {
1780 		ret = -ENOMEM;
1781 		goto out;
1782 	}
1783 
1784 	for (i = 0; i < map->num_stripes; i++) {
1785 		bool already_inserted = false;
1786 		u64 stripe_nr;
1787 		u64 offset;
1788 		int j;
1789 
1790 		if (!in_range(physical, map->stripes[i].physical,
1791 			      data_stripe_length))
1792 			continue;
1793 
1794 		if (bdev && map->stripes[i].dev->bdev != bdev)
1795 			continue;
1796 
1797 		stripe_nr = physical - map->stripes[i].physical;
1798 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1799 
1800 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1801 			stripe_nr = stripe_nr * map->num_stripes + i;
1802 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1803 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1804 			stripe_nr = stripe_nr * map->num_stripes + i;
1805 		}
1806 		/*
1807 		 * The remaining case would be for RAID56, multiply by
1808 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1809 		 * instead of map->stripe_len
1810 		 */
1811 
1812 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1813 
1814 		/* Ensure we don't add duplicate addresses */
1815 		for (j = 0; j < nr; j++) {
1816 			if (buf[j] == bytenr) {
1817 				already_inserted = true;
1818 				break;
1819 			}
1820 		}
1821 
1822 		if (!already_inserted)
1823 			buf[nr++] = bytenr;
1824 	}
1825 
1826 	*logical = buf;
1827 	*naddrs = nr;
1828 	*stripe_len = io_stripe_size;
1829 out:
1830 	free_extent_map(em);
1831 	return ret;
1832 }
1833 
exclude_super_stripes(struct btrfs_block_group * cache)1834 static int exclude_super_stripes(struct btrfs_block_group *cache)
1835 {
1836 	struct btrfs_fs_info *fs_info = cache->fs_info;
1837 	const bool zoned = btrfs_is_zoned(fs_info);
1838 	u64 bytenr;
1839 	u64 *logical;
1840 	int stripe_len;
1841 	int i, nr, ret;
1842 
1843 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1844 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1845 		cache->bytes_super += stripe_len;
1846 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1847 						stripe_len);
1848 		if (ret)
1849 			return ret;
1850 	}
1851 
1852 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1853 		bytenr = btrfs_sb_offset(i);
1854 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1855 				       bytenr, &logical, &nr, &stripe_len);
1856 		if (ret)
1857 			return ret;
1858 
1859 		/* Shouldn't have super stripes in sequential zones */
1860 		if (zoned && nr) {
1861 			kfree(logical);
1862 			btrfs_err(fs_info,
1863 			"zoned: block group %llu must not contain super block",
1864 				  cache->start);
1865 			return -EUCLEAN;
1866 		}
1867 
1868 		while (nr--) {
1869 			u64 len = min_t(u64, stripe_len,
1870 				cache->start + cache->length - logical[nr]);
1871 
1872 			cache->bytes_super += len;
1873 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1874 							len);
1875 			if (ret) {
1876 				kfree(logical);
1877 				return ret;
1878 			}
1879 		}
1880 
1881 		kfree(logical);
1882 	}
1883 	return 0;
1884 }
1885 
link_block_group(struct btrfs_block_group * cache)1886 static void link_block_group(struct btrfs_block_group *cache)
1887 {
1888 	struct btrfs_space_info *space_info = cache->space_info;
1889 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1890 
1891 	down_write(&space_info->groups_sem);
1892 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1893 	up_write(&space_info->groups_sem);
1894 }
1895 
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1896 static struct btrfs_block_group *btrfs_create_block_group_cache(
1897 		struct btrfs_fs_info *fs_info, u64 start)
1898 {
1899 	struct btrfs_block_group *cache;
1900 
1901 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1902 	if (!cache)
1903 		return NULL;
1904 
1905 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1906 					GFP_NOFS);
1907 	if (!cache->free_space_ctl) {
1908 		kfree(cache);
1909 		return NULL;
1910 	}
1911 
1912 	cache->start = start;
1913 
1914 	cache->fs_info = fs_info;
1915 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1916 
1917 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1918 
1919 	refcount_set(&cache->refs, 1);
1920 	spin_lock_init(&cache->lock);
1921 	init_rwsem(&cache->data_rwsem);
1922 	INIT_LIST_HEAD(&cache->list);
1923 	INIT_LIST_HEAD(&cache->cluster_list);
1924 	INIT_LIST_HEAD(&cache->bg_list);
1925 	INIT_LIST_HEAD(&cache->ro_list);
1926 	INIT_LIST_HEAD(&cache->discard_list);
1927 	INIT_LIST_HEAD(&cache->dirty_list);
1928 	INIT_LIST_HEAD(&cache->io_list);
1929 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1930 	atomic_set(&cache->frozen, 0);
1931 	mutex_init(&cache->free_space_lock);
1932 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1933 
1934 	return cache;
1935 }
1936 
1937 /*
1938  * Iterate all chunks and verify that each of them has the corresponding block
1939  * group
1940  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1941 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1942 {
1943 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1944 	struct extent_map *em;
1945 	struct btrfs_block_group *bg;
1946 	u64 start = 0;
1947 	int ret = 0;
1948 
1949 	while (1) {
1950 		read_lock(&map_tree->lock);
1951 		/*
1952 		 * lookup_extent_mapping will return the first extent map
1953 		 * intersecting the range, so setting @len to 1 is enough to
1954 		 * get the first chunk.
1955 		 */
1956 		em = lookup_extent_mapping(map_tree, start, 1);
1957 		read_unlock(&map_tree->lock);
1958 		if (!em)
1959 			break;
1960 
1961 		bg = btrfs_lookup_block_group(fs_info, em->start);
1962 		if (!bg) {
1963 			btrfs_err(fs_info,
1964 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1965 				     em->start, em->len);
1966 			ret = -EUCLEAN;
1967 			free_extent_map(em);
1968 			break;
1969 		}
1970 		if (bg->start != em->start || bg->length != em->len ||
1971 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1972 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1973 			btrfs_err(fs_info,
1974 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1975 				em->start, em->len,
1976 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1977 				bg->start, bg->length,
1978 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1979 			ret = -EUCLEAN;
1980 			free_extent_map(em);
1981 			btrfs_put_block_group(bg);
1982 			break;
1983 		}
1984 		start = em->start + em->len;
1985 		free_extent_map(em);
1986 		btrfs_put_block_group(bg);
1987 	}
1988 	return ret;
1989 }
1990 
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)1991 static int read_one_block_group(struct btrfs_fs_info *info,
1992 				struct btrfs_block_group_item *bgi,
1993 				const struct btrfs_key *key,
1994 				int need_clear)
1995 {
1996 	struct btrfs_block_group *cache;
1997 	struct btrfs_space_info *space_info;
1998 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1999 	int ret;
2000 
2001 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2002 
2003 	cache = btrfs_create_block_group_cache(info, key->objectid);
2004 	if (!cache)
2005 		return -ENOMEM;
2006 
2007 	cache->length = key->offset;
2008 	cache->used = btrfs_stack_block_group_used(bgi);
2009 	cache->flags = btrfs_stack_block_group_flags(bgi);
2010 
2011 	set_free_space_tree_thresholds(cache);
2012 
2013 	if (need_clear) {
2014 		/*
2015 		 * When we mount with old space cache, we need to
2016 		 * set BTRFS_DC_CLEAR and set dirty flag.
2017 		 *
2018 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2019 		 *    truncate the old free space cache inode and
2020 		 *    setup a new one.
2021 		 * b) Setting 'dirty flag' makes sure that we flush
2022 		 *    the new space cache info onto disk.
2023 		 */
2024 		if (btrfs_test_opt(info, SPACE_CACHE))
2025 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2026 	}
2027 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2028 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2029 			btrfs_err(info,
2030 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2031 				  cache->start);
2032 			ret = -EINVAL;
2033 			goto error;
2034 	}
2035 
2036 	ret = btrfs_load_block_group_zone_info(cache, false);
2037 	if (ret) {
2038 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2039 			  cache->start);
2040 		goto error;
2041 	}
2042 
2043 	/*
2044 	 * We need to exclude the super stripes now so that the space info has
2045 	 * super bytes accounted for, otherwise we'll think we have more space
2046 	 * than we actually do.
2047 	 */
2048 	ret = exclude_super_stripes(cache);
2049 	if (ret) {
2050 		/* We may have excluded something, so call this just in case. */
2051 		btrfs_free_excluded_extents(cache);
2052 		goto error;
2053 	}
2054 
2055 	/*
2056 	 * For zoned filesystem, space after the allocation offset is the only
2057 	 * free space for a block group. So, we don't need any caching work.
2058 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2059 	 * zone_unusable space.
2060 	 *
2061 	 * For regular filesystem, check for two cases, either we are full, and
2062 	 * therefore don't need to bother with the caching work since we won't
2063 	 * find any space, or we are empty, and we can just add all the space
2064 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2065 	 * in the full case.
2066 	 */
2067 	if (btrfs_is_zoned(info)) {
2068 		btrfs_calc_zone_unusable(cache);
2069 	} else if (cache->length == cache->used) {
2070 		cache->last_byte_to_unpin = (u64)-1;
2071 		cache->cached = BTRFS_CACHE_FINISHED;
2072 		btrfs_free_excluded_extents(cache);
2073 	} else if (cache->used == 0) {
2074 		cache->last_byte_to_unpin = (u64)-1;
2075 		cache->cached = BTRFS_CACHE_FINISHED;
2076 		add_new_free_space(cache, cache->start,
2077 				   cache->start + cache->length);
2078 		btrfs_free_excluded_extents(cache);
2079 	}
2080 
2081 	ret = btrfs_add_block_group_cache(info, cache);
2082 	if (ret) {
2083 		btrfs_remove_free_space_cache(cache);
2084 		goto error;
2085 	}
2086 	trace_btrfs_add_block_group(info, cache, 0);
2087 	btrfs_update_space_info(info, cache->flags, cache->length,
2088 				cache->used, cache->bytes_super,
2089 				cache->zone_unusable, &space_info);
2090 
2091 	cache->space_info = space_info;
2092 
2093 	link_block_group(cache);
2094 
2095 	set_avail_alloc_bits(info, cache->flags);
2096 	if (btrfs_chunk_readonly(info, cache->start)) {
2097 		inc_block_group_ro(cache, 1);
2098 	} else if (cache->used == 0) {
2099 		ASSERT(list_empty(&cache->bg_list));
2100 		if (btrfs_test_opt(info, DISCARD_ASYNC))
2101 			btrfs_discard_queue_work(&info->discard_ctl, cache);
2102 		else
2103 			btrfs_mark_bg_unused(cache);
2104 	}
2105 	return 0;
2106 error:
2107 	btrfs_put_block_group(cache);
2108 	return ret;
2109 }
2110 
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2111 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2112 {
2113 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2114 	struct btrfs_space_info *space_info;
2115 	struct rb_node *node;
2116 	int ret = 0;
2117 
2118 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2119 		struct extent_map *em;
2120 		struct map_lookup *map;
2121 		struct btrfs_block_group *bg;
2122 
2123 		em = rb_entry(node, struct extent_map, rb_node);
2124 		map = em->map_lookup;
2125 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2126 		if (!bg) {
2127 			ret = -ENOMEM;
2128 			break;
2129 		}
2130 
2131 		/* Fill dummy cache as FULL */
2132 		bg->length = em->len;
2133 		bg->flags = map->type;
2134 		bg->last_byte_to_unpin = (u64)-1;
2135 		bg->cached = BTRFS_CACHE_FINISHED;
2136 		bg->used = em->len;
2137 		bg->flags = map->type;
2138 		ret = btrfs_add_block_group_cache(fs_info, bg);
2139 		/*
2140 		 * We may have some valid block group cache added already, in
2141 		 * that case we skip to the next one.
2142 		 */
2143 		if (ret == -EEXIST) {
2144 			ret = 0;
2145 			btrfs_put_block_group(bg);
2146 			continue;
2147 		}
2148 
2149 		if (ret) {
2150 			btrfs_remove_free_space_cache(bg);
2151 			btrfs_put_block_group(bg);
2152 			break;
2153 		}
2154 
2155 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2156 					0, 0, &space_info);
2157 		bg->space_info = space_info;
2158 		link_block_group(bg);
2159 
2160 		set_avail_alloc_bits(fs_info, bg->flags);
2161 	}
2162 	if (!ret)
2163 		btrfs_init_global_block_rsv(fs_info);
2164 	return ret;
2165 }
2166 
btrfs_read_block_groups(struct btrfs_fs_info * info)2167 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2168 {
2169 	struct btrfs_path *path;
2170 	int ret;
2171 	struct btrfs_block_group *cache;
2172 	struct btrfs_space_info *space_info;
2173 	struct btrfs_key key;
2174 	int need_clear = 0;
2175 	u64 cache_gen;
2176 
2177 	/*
2178 	 * Either no extent root (with ibadroots rescue option) or we have
2179 	 * unsupported RO options. The fs can never be mounted read-write, so no
2180 	 * need to waste time searching block group items.
2181 	 *
2182 	 * This also allows new extent tree related changes to be RO compat,
2183 	 * no need for a full incompat flag.
2184 	 */
2185 	if (!info->extent_root || (btrfs_super_compat_ro_flags(info->super_copy) &
2186 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2187 		return fill_dummy_bgs(info);
2188 
2189 	key.objectid = 0;
2190 	key.offset = 0;
2191 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2192 	path = btrfs_alloc_path();
2193 	if (!path)
2194 		return -ENOMEM;
2195 
2196 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2197 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2198 	    btrfs_super_generation(info->super_copy) != cache_gen)
2199 		need_clear = 1;
2200 	if (btrfs_test_opt(info, CLEAR_CACHE))
2201 		need_clear = 1;
2202 
2203 	while (1) {
2204 		struct btrfs_block_group_item bgi;
2205 		struct extent_buffer *leaf;
2206 		int slot;
2207 
2208 		ret = find_first_block_group(info, path, &key);
2209 		if (ret > 0)
2210 			break;
2211 		if (ret != 0)
2212 			goto error;
2213 
2214 		leaf = path->nodes[0];
2215 		slot = path->slots[0];
2216 
2217 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2218 				   sizeof(bgi));
2219 
2220 		btrfs_item_key_to_cpu(leaf, &key, slot);
2221 		btrfs_release_path(path);
2222 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2223 		if (ret < 0)
2224 			goto error;
2225 		key.objectid += key.offset;
2226 		key.offset = 0;
2227 	}
2228 	btrfs_release_path(path);
2229 
2230 	list_for_each_entry(space_info, &info->space_info, list) {
2231 		int i;
2232 
2233 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2234 			if (list_empty(&space_info->block_groups[i]))
2235 				continue;
2236 			cache = list_first_entry(&space_info->block_groups[i],
2237 						 struct btrfs_block_group,
2238 						 list);
2239 			btrfs_sysfs_add_block_group_type(cache);
2240 		}
2241 
2242 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2243 		      (BTRFS_BLOCK_GROUP_RAID10 |
2244 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2245 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2246 		       BTRFS_BLOCK_GROUP_DUP)))
2247 			continue;
2248 		/*
2249 		 * Avoid allocating from un-mirrored block group if there are
2250 		 * mirrored block groups.
2251 		 */
2252 		list_for_each_entry(cache,
2253 				&space_info->block_groups[BTRFS_RAID_RAID0],
2254 				list)
2255 			inc_block_group_ro(cache, 1);
2256 		list_for_each_entry(cache,
2257 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2258 				list)
2259 			inc_block_group_ro(cache, 1);
2260 	}
2261 
2262 	btrfs_init_global_block_rsv(info);
2263 	ret = check_chunk_block_group_mappings(info);
2264 error:
2265 	btrfs_free_path(path);
2266 	/*
2267 	 * We've hit some error while reading the extent tree, and have
2268 	 * rescue=ibadroots mount option.
2269 	 * Try to fill the tree using dummy block groups so that the user can
2270 	 * continue to mount and grab their data.
2271 	 */
2272 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2273 		ret = fill_dummy_bgs(info);
2274 	return ret;
2275 }
2276 
2277 /*
2278  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2279  * allocation.
2280  *
2281  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2282  * phases.
2283  */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2284 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2285 				   struct btrfs_block_group *block_group)
2286 {
2287 	struct btrfs_fs_info *fs_info = trans->fs_info;
2288 	struct btrfs_block_group_item bgi;
2289 	struct btrfs_root *root;
2290 	struct btrfs_key key;
2291 
2292 	spin_lock(&block_group->lock);
2293 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2294 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2295 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2296 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2297 	key.objectid = block_group->start;
2298 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2299 	key.offset = block_group->length;
2300 	spin_unlock(&block_group->lock);
2301 
2302 	root = fs_info->extent_root;
2303 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2304 }
2305 
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2306 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2307 			    struct btrfs_device *device, u64 chunk_offset,
2308 			    u64 start, u64 num_bytes)
2309 {
2310 	struct btrfs_fs_info *fs_info = device->fs_info;
2311 	struct btrfs_root *root = fs_info->dev_root;
2312 	struct btrfs_path *path;
2313 	struct btrfs_dev_extent *extent;
2314 	struct extent_buffer *leaf;
2315 	struct btrfs_key key;
2316 	int ret;
2317 
2318 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2319 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2320 	path = btrfs_alloc_path();
2321 	if (!path)
2322 		return -ENOMEM;
2323 
2324 	key.objectid = device->devid;
2325 	key.type = BTRFS_DEV_EXTENT_KEY;
2326 	key.offset = start;
2327 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2328 	if (ret)
2329 		goto out;
2330 
2331 	leaf = path->nodes[0];
2332 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2333 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2334 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2335 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2336 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2337 
2338 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2339 	btrfs_mark_buffer_dirty(leaf);
2340 out:
2341 	btrfs_free_path(path);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * This function belongs to phase 2.
2347  *
2348  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2349  * phases.
2350  */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2351 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2352 				   u64 chunk_offset, u64 chunk_size)
2353 {
2354 	struct btrfs_fs_info *fs_info = trans->fs_info;
2355 	struct btrfs_device *device;
2356 	struct extent_map *em;
2357 	struct map_lookup *map;
2358 	u64 dev_offset;
2359 	u64 stripe_size;
2360 	int i;
2361 	int ret = 0;
2362 
2363 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2364 	if (IS_ERR(em))
2365 		return PTR_ERR(em);
2366 
2367 	map = em->map_lookup;
2368 	stripe_size = em->orig_block_len;
2369 
2370 	/*
2371 	 * Take the device list mutex to prevent races with the final phase of
2372 	 * a device replace operation that replaces the device object associated
2373 	 * with the map's stripes, because the device object's id can change
2374 	 * at any time during that final phase of the device replace operation
2375 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2376 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2377 	 * resulting in persisting a device extent item with such ID.
2378 	 */
2379 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2380 	for (i = 0; i < map->num_stripes; i++) {
2381 		device = map->stripes[i].dev;
2382 		dev_offset = map->stripes[i].physical;
2383 
2384 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2385 				       stripe_size);
2386 		if (ret)
2387 			break;
2388 	}
2389 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2390 
2391 	free_extent_map(em);
2392 	return ret;
2393 }
2394 
2395 /*
2396  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2397  * chunk allocation.
2398  *
2399  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2400  * phases.
2401  */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2402 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2403 {
2404 	struct btrfs_fs_info *fs_info = trans->fs_info;
2405 	struct btrfs_block_group *block_group;
2406 	int ret = 0;
2407 
2408 	while (!list_empty(&trans->new_bgs)) {
2409 		int index;
2410 
2411 		block_group = list_first_entry(&trans->new_bgs,
2412 					       struct btrfs_block_group,
2413 					       bg_list);
2414 		if (ret)
2415 			goto next;
2416 
2417 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2418 
2419 		ret = insert_block_group_item(trans, block_group);
2420 		if (ret)
2421 			btrfs_abort_transaction(trans, ret);
2422 		if (!block_group->chunk_item_inserted) {
2423 			mutex_lock(&fs_info->chunk_mutex);
2424 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2425 			mutex_unlock(&fs_info->chunk_mutex);
2426 			if (ret)
2427 				btrfs_abort_transaction(trans, ret);
2428 		}
2429 		ret = insert_dev_extents(trans, block_group->start,
2430 					 block_group->length);
2431 		if (ret)
2432 			btrfs_abort_transaction(trans, ret);
2433 		add_block_group_free_space(trans, block_group);
2434 
2435 		/*
2436 		 * If we restriped during balance, we may have added a new raid
2437 		 * type, so now add the sysfs entries when it is safe to do so.
2438 		 * We don't have to worry about locking here as it's handled in
2439 		 * btrfs_sysfs_add_block_group_type.
2440 		 */
2441 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2442 			btrfs_sysfs_add_block_group_type(block_group);
2443 
2444 		/* Already aborted the transaction if it failed. */
2445 next:
2446 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2447 		list_del_init(&block_group->bg_list);
2448 	}
2449 	btrfs_trans_release_chunk_metadata(trans);
2450 }
2451 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2452 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2453 						 u64 bytes_used, u64 type,
2454 						 u64 chunk_offset, u64 size)
2455 {
2456 	struct btrfs_fs_info *fs_info = trans->fs_info;
2457 	struct btrfs_block_group *cache;
2458 	int ret;
2459 
2460 	btrfs_set_log_full_commit(trans);
2461 
2462 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2463 	if (!cache)
2464 		return ERR_PTR(-ENOMEM);
2465 
2466 	cache->length = size;
2467 	set_free_space_tree_thresholds(cache);
2468 	cache->used = bytes_used;
2469 	cache->flags = type;
2470 	cache->last_byte_to_unpin = (u64)-1;
2471 	cache->cached = BTRFS_CACHE_FINISHED;
2472 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2473 		cache->needs_free_space = 1;
2474 
2475 	ret = btrfs_load_block_group_zone_info(cache, true);
2476 	if (ret) {
2477 		btrfs_put_block_group(cache);
2478 		return ERR_PTR(ret);
2479 	}
2480 
2481 	ret = exclude_super_stripes(cache);
2482 	if (ret) {
2483 		/* We may have excluded something, so call this just in case */
2484 		btrfs_free_excluded_extents(cache);
2485 		btrfs_put_block_group(cache);
2486 		return ERR_PTR(ret);
2487 	}
2488 
2489 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2490 
2491 	btrfs_free_excluded_extents(cache);
2492 
2493 #ifdef CONFIG_BTRFS_DEBUG
2494 	if (btrfs_should_fragment_free_space(cache)) {
2495 		u64 new_bytes_used = size - bytes_used;
2496 
2497 		bytes_used += new_bytes_used >> 1;
2498 		fragment_free_space(cache);
2499 	}
2500 #endif
2501 	/*
2502 	 * Ensure the corresponding space_info object is created and
2503 	 * assigned to our block group. We want our bg to be added to the rbtree
2504 	 * with its ->space_info set.
2505 	 */
2506 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2507 	ASSERT(cache->space_info);
2508 
2509 	ret = btrfs_add_block_group_cache(fs_info, cache);
2510 	if (ret) {
2511 		btrfs_remove_free_space_cache(cache);
2512 		btrfs_put_block_group(cache);
2513 		return ERR_PTR(ret);
2514 	}
2515 
2516 	/*
2517 	 * Now that our block group has its ->space_info set and is inserted in
2518 	 * the rbtree, update the space info's counters.
2519 	 */
2520 	trace_btrfs_add_block_group(fs_info, cache, 1);
2521 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2522 				cache->bytes_super, 0, &cache->space_info);
2523 	btrfs_update_global_block_rsv(fs_info);
2524 
2525 	link_block_group(cache);
2526 
2527 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2528 	trans->delayed_ref_updates++;
2529 	btrfs_update_delayed_refs_rsv(trans);
2530 
2531 	set_avail_alloc_bits(fs_info, type);
2532 	return cache;
2533 }
2534 
2535 /*
2536  * Mark one block group RO, can be called several times for the same block
2537  * group.
2538  *
2539  * @cache:		the destination block group
2540  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2541  * 			ensure we still have some free space after marking this
2542  * 			block group RO.
2543  */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2544 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2545 			     bool do_chunk_alloc)
2546 {
2547 	struct btrfs_fs_info *fs_info = cache->fs_info;
2548 	struct btrfs_trans_handle *trans;
2549 	u64 alloc_flags;
2550 	int ret;
2551 	bool dirty_bg_running;
2552 
2553 	/*
2554 	 * This can only happen when we are doing read-only scrub on read-only
2555 	 * mount.
2556 	 * In that case we should not start a new transaction on read-only fs.
2557 	 * Thus here we skip all chunk allocations.
2558 	 */
2559 	if (sb_rdonly(fs_info->sb)) {
2560 		mutex_lock(&fs_info->ro_block_group_mutex);
2561 		ret = inc_block_group_ro(cache, 0);
2562 		mutex_unlock(&fs_info->ro_block_group_mutex);
2563 		return ret;
2564 	}
2565 
2566 	do {
2567 		trans = btrfs_join_transaction(fs_info->extent_root);
2568 		if (IS_ERR(trans))
2569 			return PTR_ERR(trans);
2570 
2571 		dirty_bg_running = false;
2572 
2573 		/*
2574 		 * We're not allowed to set block groups readonly after the dirty
2575 		 * block group cache has started writing.  If it already started,
2576 		 * back off and let this transaction commit.
2577 		 */
2578 		mutex_lock(&fs_info->ro_block_group_mutex);
2579 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2580 			u64 transid = trans->transid;
2581 
2582 			mutex_unlock(&fs_info->ro_block_group_mutex);
2583 			btrfs_end_transaction(trans);
2584 
2585 			ret = btrfs_wait_for_commit(fs_info, transid);
2586 			if (ret)
2587 				return ret;
2588 			dirty_bg_running = true;
2589 		}
2590 	} while (dirty_bg_running);
2591 
2592 	if (do_chunk_alloc) {
2593 		/*
2594 		 * If we are changing raid levels, try to allocate a
2595 		 * corresponding block group with the new raid level.
2596 		 */
2597 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2598 		if (alloc_flags != cache->flags) {
2599 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2600 						CHUNK_ALLOC_FORCE);
2601 			/*
2602 			 * ENOSPC is allowed here, we may have enough space
2603 			 * already allocated at the new raid level to carry on
2604 			 */
2605 			if (ret == -ENOSPC)
2606 				ret = 0;
2607 			if (ret < 0)
2608 				goto out;
2609 		}
2610 	}
2611 
2612 	ret = inc_block_group_ro(cache, 0);
2613 	if (!ret)
2614 		goto out;
2615 	if (ret == -ETXTBSY)
2616 		goto unlock_out;
2617 
2618 	/*
2619 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2620 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2621 	 * we still want to try our best to mark the block group read-only.
2622 	 */
2623 	if (!do_chunk_alloc && ret == -ENOSPC &&
2624 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2625 		goto unlock_out;
2626 
2627 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2628 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2629 	if (ret < 0)
2630 		goto out;
2631 	ret = inc_block_group_ro(cache, 0);
2632 	if (ret == -ETXTBSY)
2633 		goto unlock_out;
2634 out:
2635 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2636 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2637 		mutex_lock(&fs_info->chunk_mutex);
2638 		check_system_chunk(trans, alloc_flags);
2639 		mutex_unlock(&fs_info->chunk_mutex);
2640 	}
2641 unlock_out:
2642 	mutex_unlock(&fs_info->ro_block_group_mutex);
2643 
2644 	btrfs_end_transaction(trans);
2645 	return ret;
2646 }
2647 
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2648 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2649 {
2650 	struct btrfs_space_info *sinfo = cache->space_info;
2651 	u64 num_bytes;
2652 
2653 	BUG_ON(!cache->ro);
2654 
2655 	spin_lock(&sinfo->lock);
2656 	spin_lock(&cache->lock);
2657 	if (!--cache->ro) {
2658 		if (btrfs_is_zoned(cache->fs_info)) {
2659 			/* Migrate zone_unusable bytes back */
2660 			cache->zone_unusable = cache->alloc_offset - cache->used;
2661 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2662 			sinfo->bytes_readonly -= cache->zone_unusable;
2663 		}
2664 		num_bytes = cache->length - cache->reserved -
2665 			    cache->pinned - cache->bytes_super -
2666 			    cache->zone_unusable - cache->used;
2667 		sinfo->bytes_readonly -= num_bytes;
2668 		list_del_init(&cache->ro_list);
2669 	}
2670 	spin_unlock(&cache->lock);
2671 	spin_unlock(&sinfo->lock);
2672 }
2673 
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2674 static int update_block_group_item(struct btrfs_trans_handle *trans,
2675 				   struct btrfs_path *path,
2676 				   struct btrfs_block_group *cache)
2677 {
2678 	struct btrfs_fs_info *fs_info = trans->fs_info;
2679 	int ret;
2680 	struct btrfs_root *root = fs_info->extent_root;
2681 	unsigned long bi;
2682 	struct extent_buffer *leaf;
2683 	struct btrfs_block_group_item bgi;
2684 	struct btrfs_key key;
2685 
2686 	key.objectid = cache->start;
2687 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2688 	key.offset = cache->length;
2689 
2690 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2691 	if (ret) {
2692 		if (ret > 0)
2693 			ret = -ENOENT;
2694 		goto fail;
2695 	}
2696 
2697 	leaf = path->nodes[0];
2698 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2699 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2700 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2701 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2702 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2703 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2704 	btrfs_mark_buffer_dirty(leaf);
2705 fail:
2706 	btrfs_release_path(path);
2707 	return ret;
2708 
2709 }
2710 
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2711 static int cache_save_setup(struct btrfs_block_group *block_group,
2712 			    struct btrfs_trans_handle *trans,
2713 			    struct btrfs_path *path)
2714 {
2715 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2716 	struct btrfs_root *root = fs_info->tree_root;
2717 	struct inode *inode = NULL;
2718 	struct extent_changeset *data_reserved = NULL;
2719 	u64 alloc_hint = 0;
2720 	int dcs = BTRFS_DC_ERROR;
2721 	u64 cache_size = 0;
2722 	int retries = 0;
2723 	int ret = 0;
2724 
2725 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2726 		return 0;
2727 
2728 	/*
2729 	 * If this block group is smaller than 100 megs don't bother caching the
2730 	 * block group.
2731 	 */
2732 	if (block_group->length < (100 * SZ_1M)) {
2733 		spin_lock(&block_group->lock);
2734 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2735 		spin_unlock(&block_group->lock);
2736 		return 0;
2737 	}
2738 
2739 	if (TRANS_ABORTED(trans))
2740 		return 0;
2741 again:
2742 	inode = lookup_free_space_inode(block_group, path);
2743 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2744 		ret = PTR_ERR(inode);
2745 		btrfs_release_path(path);
2746 		goto out;
2747 	}
2748 
2749 	if (IS_ERR(inode)) {
2750 		BUG_ON(retries);
2751 		retries++;
2752 
2753 		if (block_group->ro)
2754 			goto out_free;
2755 
2756 		ret = create_free_space_inode(trans, block_group, path);
2757 		if (ret)
2758 			goto out_free;
2759 		goto again;
2760 	}
2761 
2762 	/*
2763 	 * We want to set the generation to 0, that way if anything goes wrong
2764 	 * from here on out we know not to trust this cache when we load up next
2765 	 * time.
2766 	 */
2767 	BTRFS_I(inode)->generation = 0;
2768 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2769 	if (ret) {
2770 		/*
2771 		 * So theoretically we could recover from this, simply set the
2772 		 * super cache generation to 0 so we know to invalidate the
2773 		 * cache, but then we'd have to keep track of the block groups
2774 		 * that fail this way so we know we _have_ to reset this cache
2775 		 * before the next commit or risk reading stale cache.  So to
2776 		 * limit our exposure to horrible edge cases lets just abort the
2777 		 * transaction, this only happens in really bad situations
2778 		 * anyway.
2779 		 */
2780 		btrfs_abort_transaction(trans, ret);
2781 		goto out_put;
2782 	}
2783 	WARN_ON(ret);
2784 
2785 	/* We've already setup this transaction, go ahead and exit */
2786 	if (block_group->cache_generation == trans->transid &&
2787 	    i_size_read(inode)) {
2788 		dcs = BTRFS_DC_SETUP;
2789 		goto out_put;
2790 	}
2791 
2792 	if (i_size_read(inode) > 0) {
2793 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2794 					&fs_info->global_block_rsv);
2795 		if (ret)
2796 			goto out_put;
2797 
2798 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2799 		if (ret)
2800 			goto out_put;
2801 	}
2802 
2803 	spin_lock(&block_group->lock);
2804 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2805 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2806 		/*
2807 		 * don't bother trying to write stuff out _if_
2808 		 * a) we're not cached,
2809 		 * b) we're with nospace_cache mount option,
2810 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2811 		 */
2812 		dcs = BTRFS_DC_WRITTEN;
2813 		spin_unlock(&block_group->lock);
2814 		goto out_put;
2815 	}
2816 	spin_unlock(&block_group->lock);
2817 
2818 	/*
2819 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2820 	 * skip doing the setup, we've already cleared the cache so we're safe.
2821 	 */
2822 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2823 		ret = -ENOSPC;
2824 		goto out_put;
2825 	}
2826 
2827 	/*
2828 	 * Try to preallocate enough space based on how big the block group is.
2829 	 * Keep in mind this has to include any pinned space which could end up
2830 	 * taking up quite a bit since it's not folded into the other space
2831 	 * cache.
2832 	 */
2833 	cache_size = div_u64(block_group->length, SZ_256M);
2834 	if (!cache_size)
2835 		cache_size = 1;
2836 
2837 	cache_size *= 16;
2838 	cache_size *= fs_info->sectorsize;
2839 
2840 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2841 					  cache_size);
2842 	if (ret)
2843 		goto out_put;
2844 
2845 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2846 					      cache_size, cache_size,
2847 					      &alloc_hint);
2848 	/*
2849 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2850 	 * of metadata or split extents when writing the cache out, which means
2851 	 * we can enospc if we are heavily fragmented in addition to just normal
2852 	 * out of space conditions.  So if we hit this just skip setting up any
2853 	 * other block groups for this transaction, maybe we'll unpin enough
2854 	 * space the next time around.
2855 	 */
2856 	if (!ret)
2857 		dcs = BTRFS_DC_SETUP;
2858 	else if (ret == -ENOSPC)
2859 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2860 
2861 out_put:
2862 	iput(inode);
2863 out_free:
2864 	btrfs_release_path(path);
2865 out:
2866 	spin_lock(&block_group->lock);
2867 	if (!ret && dcs == BTRFS_DC_SETUP)
2868 		block_group->cache_generation = trans->transid;
2869 	block_group->disk_cache_state = dcs;
2870 	spin_unlock(&block_group->lock);
2871 
2872 	extent_changeset_free(data_reserved);
2873 	return ret;
2874 }
2875 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2876 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2877 {
2878 	struct btrfs_fs_info *fs_info = trans->fs_info;
2879 	struct btrfs_block_group *cache, *tmp;
2880 	struct btrfs_transaction *cur_trans = trans->transaction;
2881 	struct btrfs_path *path;
2882 
2883 	if (list_empty(&cur_trans->dirty_bgs) ||
2884 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2885 		return 0;
2886 
2887 	path = btrfs_alloc_path();
2888 	if (!path)
2889 		return -ENOMEM;
2890 
2891 	/* Could add new block groups, use _safe just in case */
2892 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2893 				 dirty_list) {
2894 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2895 			cache_save_setup(cache, trans, path);
2896 	}
2897 
2898 	btrfs_free_path(path);
2899 	return 0;
2900 }
2901 
2902 /*
2903  * Transaction commit does final block group cache writeback during a critical
2904  * section where nothing is allowed to change the FS.  This is required in
2905  * order for the cache to actually match the block group, but can introduce a
2906  * lot of latency into the commit.
2907  *
2908  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2909  * There's a chance we'll have to redo some of it if the block group changes
2910  * again during the commit, but it greatly reduces the commit latency by
2911  * getting rid of the easy block groups while we're still allowing others to
2912  * join the commit.
2913  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2914 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2915 {
2916 	struct btrfs_fs_info *fs_info = trans->fs_info;
2917 	struct btrfs_block_group *cache;
2918 	struct btrfs_transaction *cur_trans = trans->transaction;
2919 	int ret = 0;
2920 	int should_put;
2921 	struct btrfs_path *path = NULL;
2922 	LIST_HEAD(dirty);
2923 	struct list_head *io = &cur_trans->io_bgs;
2924 	int loops = 0;
2925 
2926 	spin_lock(&cur_trans->dirty_bgs_lock);
2927 	if (list_empty(&cur_trans->dirty_bgs)) {
2928 		spin_unlock(&cur_trans->dirty_bgs_lock);
2929 		return 0;
2930 	}
2931 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2932 	spin_unlock(&cur_trans->dirty_bgs_lock);
2933 
2934 again:
2935 	/* Make sure all the block groups on our dirty list actually exist */
2936 	btrfs_create_pending_block_groups(trans);
2937 
2938 	if (!path) {
2939 		path = btrfs_alloc_path();
2940 		if (!path) {
2941 			ret = -ENOMEM;
2942 			goto out;
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * cache_write_mutex is here only to save us from balance or automatic
2948 	 * removal of empty block groups deleting this block group while we are
2949 	 * writing out the cache
2950 	 */
2951 	mutex_lock(&trans->transaction->cache_write_mutex);
2952 	while (!list_empty(&dirty)) {
2953 		bool drop_reserve = true;
2954 
2955 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2956 					 dirty_list);
2957 		/*
2958 		 * This can happen if something re-dirties a block group that
2959 		 * is already under IO.  Just wait for it to finish and then do
2960 		 * it all again
2961 		 */
2962 		if (!list_empty(&cache->io_list)) {
2963 			list_del_init(&cache->io_list);
2964 			btrfs_wait_cache_io(trans, cache, path);
2965 			btrfs_put_block_group(cache);
2966 		}
2967 
2968 
2969 		/*
2970 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2971 		 * it should update the cache_state.  Don't delete until after
2972 		 * we wait.
2973 		 *
2974 		 * Since we're not running in the commit critical section
2975 		 * we need the dirty_bgs_lock to protect from update_block_group
2976 		 */
2977 		spin_lock(&cur_trans->dirty_bgs_lock);
2978 		list_del_init(&cache->dirty_list);
2979 		spin_unlock(&cur_trans->dirty_bgs_lock);
2980 
2981 		should_put = 1;
2982 
2983 		cache_save_setup(cache, trans, path);
2984 
2985 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2986 			cache->io_ctl.inode = NULL;
2987 			ret = btrfs_write_out_cache(trans, cache, path);
2988 			if (ret == 0 && cache->io_ctl.inode) {
2989 				should_put = 0;
2990 
2991 				/*
2992 				 * The cache_write_mutex is protecting the
2993 				 * io_list, also refer to the definition of
2994 				 * btrfs_transaction::io_bgs for more details
2995 				 */
2996 				list_add_tail(&cache->io_list, io);
2997 			} else {
2998 				/*
2999 				 * If we failed to write the cache, the
3000 				 * generation will be bad and life goes on
3001 				 */
3002 				ret = 0;
3003 			}
3004 		}
3005 		if (!ret) {
3006 			ret = update_block_group_item(trans, path, cache);
3007 			/*
3008 			 * Our block group might still be attached to the list
3009 			 * of new block groups in the transaction handle of some
3010 			 * other task (struct btrfs_trans_handle->new_bgs). This
3011 			 * means its block group item isn't yet in the extent
3012 			 * tree. If this happens ignore the error, as we will
3013 			 * try again later in the critical section of the
3014 			 * transaction commit.
3015 			 */
3016 			if (ret == -ENOENT) {
3017 				ret = 0;
3018 				spin_lock(&cur_trans->dirty_bgs_lock);
3019 				if (list_empty(&cache->dirty_list)) {
3020 					list_add_tail(&cache->dirty_list,
3021 						      &cur_trans->dirty_bgs);
3022 					btrfs_get_block_group(cache);
3023 					drop_reserve = false;
3024 				}
3025 				spin_unlock(&cur_trans->dirty_bgs_lock);
3026 			} else if (ret) {
3027 				btrfs_abort_transaction(trans, ret);
3028 			}
3029 		}
3030 
3031 		/* If it's not on the io list, we need to put the block group */
3032 		if (should_put)
3033 			btrfs_put_block_group(cache);
3034 		if (drop_reserve)
3035 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3036 		/*
3037 		 * Avoid blocking other tasks for too long. It might even save
3038 		 * us from writing caches for block groups that are going to be
3039 		 * removed.
3040 		 */
3041 		mutex_unlock(&trans->transaction->cache_write_mutex);
3042 		if (ret)
3043 			goto out;
3044 		mutex_lock(&trans->transaction->cache_write_mutex);
3045 	}
3046 	mutex_unlock(&trans->transaction->cache_write_mutex);
3047 
3048 	/*
3049 	 * Go through delayed refs for all the stuff we've just kicked off
3050 	 * and then loop back (just once)
3051 	 */
3052 	if (!ret)
3053 		ret = btrfs_run_delayed_refs(trans, 0);
3054 	if (!ret && loops == 0) {
3055 		loops++;
3056 		spin_lock(&cur_trans->dirty_bgs_lock);
3057 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3058 		/*
3059 		 * dirty_bgs_lock protects us from concurrent block group
3060 		 * deletes too (not just cache_write_mutex).
3061 		 */
3062 		if (!list_empty(&dirty)) {
3063 			spin_unlock(&cur_trans->dirty_bgs_lock);
3064 			goto again;
3065 		}
3066 		spin_unlock(&cur_trans->dirty_bgs_lock);
3067 	}
3068 out:
3069 	if (ret < 0) {
3070 		spin_lock(&cur_trans->dirty_bgs_lock);
3071 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3072 		spin_unlock(&cur_trans->dirty_bgs_lock);
3073 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3074 	}
3075 
3076 	btrfs_free_path(path);
3077 	return ret;
3078 }
3079 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3080 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3081 {
3082 	struct btrfs_fs_info *fs_info = trans->fs_info;
3083 	struct btrfs_block_group *cache;
3084 	struct btrfs_transaction *cur_trans = trans->transaction;
3085 	int ret = 0;
3086 	int should_put;
3087 	struct btrfs_path *path;
3088 	struct list_head *io = &cur_trans->io_bgs;
3089 
3090 	path = btrfs_alloc_path();
3091 	if (!path)
3092 		return -ENOMEM;
3093 
3094 	/*
3095 	 * Even though we are in the critical section of the transaction commit,
3096 	 * we can still have concurrent tasks adding elements to this
3097 	 * transaction's list of dirty block groups. These tasks correspond to
3098 	 * endio free space workers started when writeback finishes for a
3099 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3100 	 * allocate new block groups as a result of COWing nodes of the root
3101 	 * tree when updating the free space inode. The writeback for the space
3102 	 * caches is triggered by an earlier call to
3103 	 * btrfs_start_dirty_block_groups() and iterations of the following
3104 	 * loop.
3105 	 * Also we want to do the cache_save_setup first and then run the
3106 	 * delayed refs to make sure we have the best chance at doing this all
3107 	 * in one shot.
3108 	 */
3109 	spin_lock(&cur_trans->dirty_bgs_lock);
3110 	while (!list_empty(&cur_trans->dirty_bgs)) {
3111 		cache = list_first_entry(&cur_trans->dirty_bgs,
3112 					 struct btrfs_block_group,
3113 					 dirty_list);
3114 
3115 		/*
3116 		 * This can happen if cache_save_setup re-dirties a block group
3117 		 * that is already under IO.  Just wait for it to finish and
3118 		 * then do it all again
3119 		 */
3120 		if (!list_empty(&cache->io_list)) {
3121 			spin_unlock(&cur_trans->dirty_bgs_lock);
3122 			list_del_init(&cache->io_list);
3123 			btrfs_wait_cache_io(trans, cache, path);
3124 			btrfs_put_block_group(cache);
3125 			spin_lock(&cur_trans->dirty_bgs_lock);
3126 		}
3127 
3128 		/*
3129 		 * Don't remove from the dirty list until after we've waited on
3130 		 * any pending IO
3131 		 */
3132 		list_del_init(&cache->dirty_list);
3133 		spin_unlock(&cur_trans->dirty_bgs_lock);
3134 		should_put = 1;
3135 
3136 		cache_save_setup(cache, trans, path);
3137 
3138 		if (!ret)
3139 			ret = btrfs_run_delayed_refs(trans,
3140 						     (unsigned long) -1);
3141 
3142 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3143 			cache->io_ctl.inode = NULL;
3144 			ret = btrfs_write_out_cache(trans, cache, path);
3145 			if (ret == 0 && cache->io_ctl.inode) {
3146 				should_put = 0;
3147 				list_add_tail(&cache->io_list, io);
3148 			} else {
3149 				/*
3150 				 * If we failed to write the cache, the
3151 				 * generation will be bad and life goes on
3152 				 */
3153 				ret = 0;
3154 			}
3155 		}
3156 		if (!ret) {
3157 			ret = update_block_group_item(trans, path, cache);
3158 			/*
3159 			 * One of the free space endio workers might have
3160 			 * created a new block group while updating a free space
3161 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3162 			 * and hasn't released its transaction handle yet, in
3163 			 * which case the new block group is still attached to
3164 			 * its transaction handle and its creation has not
3165 			 * finished yet (no block group item in the extent tree
3166 			 * yet, etc). If this is the case, wait for all free
3167 			 * space endio workers to finish and retry. This is a
3168 			 * very rare case so no need for a more efficient and
3169 			 * complex approach.
3170 			 */
3171 			if (ret == -ENOENT) {
3172 				wait_event(cur_trans->writer_wait,
3173 				   atomic_read(&cur_trans->num_writers) == 1);
3174 				ret = update_block_group_item(trans, path, cache);
3175 			}
3176 			if (ret)
3177 				btrfs_abort_transaction(trans, ret);
3178 		}
3179 
3180 		/* If its not on the io list, we need to put the block group */
3181 		if (should_put)
3182 			btrfs_put_block_group(cache);
3183 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3184 		spin_lock(&cur_trans->dirty_bgs_lock);
3185 	}
3186 	spin_unlock(&cur_trans->dirty_bgs_lock);
3187 
3188 	/*
3189 	 * Refer to the definition of io_bgs member for details why it's safe
3190 	 * to use it without any locking
3191 	 */
3192 	while (!list_empty(io)) {
3193 		cache = list_first_entry(io, struct btrfs_block_group,
3194 					 io_list);
3195 		list_del_init(&cache->io_list);
3196 		btrfs_wait_cache_io(trans, cache, path);
3197 		btrfs_put_block_group(cache);
3198 	}
3199 
3200 	btrfs_free_path(path);
3201 	return ret;
3202 }
3203 
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)3204 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3205 			     u64 bytenr, u64 num_bytes, int alloc)
3206 {
3207 	struct btrfs_fs_info *info = trans->fs_info;
3208 	struct btrfs_block_group *cache = NULL;
3209 	u64 total = num_bytes;
3210 	u64 old_val;
3211 	u64 byte_in_group;
3212 	int factor;
3213 	int ret = 0;
3214 
3215 	/* Block accounting for super block */
3216 	spin_lock(&info->delalloc_root_lock);
3217 	old_val = btrfs_super_bytes_used(info->super_copy);
3218 	if (alloc)
3219 		old_val += num_bytes;
3220 	else
3221 		old_val -= num_bytes;
3222 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3223 	spin_unlock(&info->delalloc_root_lock);
3224 
3225 	while (total) {
3226 		cache = btrfs_lookup_block_group(info, bytenr);
3227 		if (!cache) {
3228 			ret = -ENOENT;
3229 			break;
3230 		}
3231 		factor = btrfs_bg_type_to_factor(cache->flags);
3232 
3233 		/*
3234 		 * If this block group has free space cache written out, we
3235 		 * need to make sure to load it if we are removing space.  This
3236 		 * is because we need the unpinning stage to actually add the
3237 		 * space back to the block group, otherwise we will leak space.
3238 		 */
3239 		if (!alloc && !btrfs_block_group_done(cache))
3240 			btrfs_cache_block_group(cache, true);
3241 
3242 		byte_in_group = bytenr - cache->start;
3243 		WARN_ON(byte_in_group > cache->length);
3244 
3245 		spin_lock(&cache->space_info->lock);
3246 		spin_lock(&cache->lock);
3247 
3248 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3249 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3250 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3251 
3252 		old_val = cache->used;
3253 		num_bytes = min(total, cache->length - byte_in_group);
3254 		if (alloc) {
3255 			old_val += num_bytes;
3256 			cache->used = old_val;
3257 			cache->reserved -= num_bytes;
3258 			cache->space_info->bytes_reserved -= num_bytes;
3259 			cache->space_info->bytes_used += num_bytes;
3260 			cache->space_info->disk_used += num_bytes * factor;
3261 			spin_unlock(&cache->lock);
3262 			spin_unlock(&cache->space_info->lock);
3263 		} else {
3264 			old_val -= num_bytes;
3265 			cache->used = old_val;
3266 			cache->pinned += num_bytes;
3267 			btrfs_space_info_update_bytes_pinned(info,
3268 					cache->space_info, num_bytes);
3269 			cache->space_info->bytes_used -= num_bytes;
3270 			cache->space_info->disk_used -= num_bytes * factor;
3271 			spin_unlock(&cache->lock);
3272 			spin_unlock(&cache->space_info->lock);
3273 
3274 			set_extent_dirty(&trans->transaction->pinned_extents,
3275 					 bytenr, bytenr + num_bytes - 1,
3276 					 GFP_NOFS | __GFP_NOFAIL);
3277 		}
3278 
3279 		spin_lock(&trans->transaction->dirty_bgs_lock);
3280 		if (list_empty(&cache->dirty_list)) {
3281 			list_add_tail(&cache->dirty_list,
3282 				      &trans->transaction->dirty_bgs);
3283 			trans->delayed_ref_updates++;
3284 			btrfs_get_block_group(cache);
3285 		}
3286 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3287 
3288 		/*
3289 		 * No longer have used bytes in this block group, queue it for
3290 		 * deletion. We do this after adding the block group to the
3291 		 * dirty list to avoid races between cleaner kthread and space
3292 		 * cache writeout.
3293 		 */
3294 		if (!alloc && old_val == 0) {
3295 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3296 				btrfs_mark_bg_unused(cache);
3297 		}
3298 
3299 		btrfs_put_block_group(cache);
3300 		total -= num_bytes;
3301 		bytenr += num_bytes;
3302 	}
3303 
3304 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3305 	btrfs_update_delayed_refs_rsv(trans);
3306 	return ret;
3307 }
3308 
3309 /**
3310  * btrfs_add_reserved_bytes - update the block_group and space info counters
3311  * @cache:	The cache we are manipulating
3312  * @ram_bytes:  The number of bytes of file content, and will be same to
3313  *              @num_bytes except for the compress path.
3314  * @num_bytes:	The number of bytes in question
3315  * @delalloc:   The blocks are allocated for the delalloc write
3316  *
3317  * This is called by the allocator when it reserves space. If this is a
3318  * reservation and the block group has become read only we cannot make the
3319  * reservation and return -EAGAIN, otherwise this function always succeeds.
3320  */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)3321 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3322 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3323 {
3324 	struct btrfs_space_info *space_info = cache->space_info;
3325 	int ret = 0;
3326 
3327 	spin_lock(&space_info->lock);
3328 	spin_lock(&cache->lock);
3329 	if (cache->ro) {
3330 		ret = -EAGAIN;
3331 	} else {
3332 		cache->reserved += num_bytes;
3333 		space_info->bytes_reserved += num_bytes;
3334 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3335 					      space_info->flags, num_bytes, 1);
3336 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3337 						      space_info, -ram_bytes);
3338 		if (delalloc)
3339 			cache->delalloc_bytes += num_bytes;
3340 
3341 		/*
3342 		 * Compression can use less space than we reserved, so wake
3343 		 * tickets if that happens
3344 		 */
3345 		if (num_bytes < ram_bytes)
3346 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3347 	}
3348 	spin_unlock(&cache->lock);
3349 	spin_unlock(&space_info->lock);
3350 	return ret;
3351 }
3352 
3353 /**
3354  * btrfs_free_reserved_bytes - update the block_group and space info counters
3355  * @cache:      The cache we are manipulating
3356  * @num_bytes:  The number of bytes in question
3357  * @delalloc:   The blocks are allocated for the delalloc write
3358  *
3359  * This is called by somebody who is freeing space that was never actually used
3360  * on disk.  For example if you reserve some space for a new leaf in transaction
3361  * A and before transaction A commits you free that leaf, you call this with
3362  * reserve set to 0 in order to clear the reservation.
3363  */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3364 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3365 			       u64 num_bytes, int delalloc)
3366 {
3367 	struct btrfs_space_info *space_info = cache->space_info;
3368 
3369 	spin_lock(&space_info->lock);
3370 	spin_lock(&cache->lock);
3371 	if (cache->ro)
3372 		space_info->bytes_readonly += num_bytes;
3373 	cache->reserved -= num_bytes;
3374 	space_info->bytes_reserved -= num_bytes;
3375 	space_info->max_extent_size = 0;
3376 
3377 	if (delalloc)
3378 		cache->delalloc_bytes -= num_bytes;
3379 	spin_unlock(&cache->lock);
3380 
3381 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3382 	spin_unlock(&space_info->lock);
3383 }
3384 
force_metadata_allocation(struct btrfs_fs_info * info)3385 static void force_metadata_allocation(struct btrfs_fs_info *info)
3386 {
3387 	struct list_head *head = &info->space_info;
3388 	struct btrfs_space_info *found;
3389 
3390 	list_for_each_entry(found, head, list) {
3391 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3392 			found->force_alloc = CHUNK_ALLOC_FORCE;
3393 	}
3394 }
3395 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3396 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3397 			      struct btrfs_space_info *sinfo, int force)
3398 {
3399 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3400 	u64 thresh;
3401 
3402 	if (force == CHUNK_ALLOC_FORCE)
3403 		return 1;
3404 
3405 	/*
3406 	 * in limited mode, we want to have some free space up to
3407 	 * about 1% of the FS size.
3408 	 */
3409 	if (force == CHUNK_ALLOC_LIMITED) {
3410 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3411 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3412 
3413 		if (sinfo->total_bytes - bytes_used < thresh)
3414 			return 1;
3415 	}
3416 
3417 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3418 		return 0;
3419 	return 1;
3420 }
3421 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3422 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3423 {
3424 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3425 
3426 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3427 }
3428 
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3429 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3430 {
3431 	struct btrfs_block_group *bg;
3432 	int ret;
3433 
3434 	/*
3435 	 * Check if we have enough space in the system space info because we
3436 	 * will need to update device items in the chunk btree and insert a new
3437 	 * chunk item in the chunk btree as well. This will allocate a new
3438 	 * system block group if needed.
3439 	 */
3440 	check_system_chunk(trans, flags);
3441 
3442 	bg = btrfs_create_chunk(trans, flags);
3443 	if (IS_ERR(bg)) {
3444 		ret = PTR_ERR(bg);
3445 		goto out;
3446 	}
3447 
3448 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3449 	/*
3450 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3451 	 * previously reserved space in the system space_info and allocated one
3452 	 * new system chunk if necessary. However there are two exceptions:
3453 	 *
3454 	 * 1) We may have enough free space in the system space_info but all the
3455 	 *    existing system block groups have a profile which can not be used
3456 	 *    for extent allocation.
3457 	 *
3458 	 *    This happens when mounting in degraded mode. For example we have a
3459 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3460 	 *    using the other device in degraded mode. If we then allocate a chunk,
3461 	 *    we may have enough free space in the existing system space_info, but
3462 	 *    none of the block groups can be used for extent allocation since they
3463 	 *    have a RAID1 profile, and because we are in degraded mode with a
3464 	 *    single device, we are forced to allocate a new system chunk with a
3465 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3466 	 *    block groups and check if they have a usable profile and enough space
3467 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3468 	 *    try again after forcing allocation of a new system chunk. Like this
3469 	 *    we avoid paying the cost of that search in normal circumstances, when
3470 	 *    we were not mounted in degraded mode;
3471 	 *
3472 	 * 2) We had enough free space info the system space_info, and one suitable
3473 	 *    block group to allocate from when we called check_system_chunk()
3474 	 *    above. However right after we called it, the only system block group
3475 	 *    with enough free space got turned into RO mode by a running scrub,
3476 	 *    and in this case we have to allocate a new one and retry. We only
3477 	 *    need do this allocate and retry once, since we have a transaction
3478 	 *    handle and scrub uses the commit root to search for block groups.
3479 	 */
3480 	if (ret == -ENOSPC) {
3481 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3482 		struct btrfs_block_group *sys_bg;
3483 
3484 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3485 		if (IS_ERR(sys_bg)) {
3486 			ret = PTR_ERR(sys_bg);
3487 			btrfs_abort_transaction(trans, ret);
3488 			goto out;
3489 		}
3490 
3491 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3492 		if (ret) {
3493 			btrfs_abort_transaction(trans, ret);
3494 			goto out;
3495 		}
3496 
3497 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3498 		if (ret) {
3499 			btrfs_abort_transaction(trans, ret);
3500 			goto out;
3501 		}
3502 	} else if (ret) {
3503 		btrfs_abort_transaction(trans, ret);
3504 		goto out;
3505 	}
3506 out:
3507 	btrfs_trans_release_chunk_metadata(trans);
3508 
3509 	return ret;
3510 }
3511 
3512 /*
3513  * Chunk allocation is done in 2 phases:
3514  *
3515  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3516  *    the chunk, the chunk mapping, create its block group and add the items
3517  *    that belong in the chunk btree to it - more specifically, we need to
3518  *    update device items in the chunk btree and add a new chunk item to it.
3519  *
3520  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3521  *    group item to the extent btree and the device extent items to the devices
3522  *    btree.
3523  *
3524  * This is done to prevent deadlocks. For example when COWing a node from the
3525  * extent btree we are holding a write lock on the node's parent and if we
3526  * trigger chunk allocation and attempted to insert the new block group item
3527  * in the extent btree right way, we could deadlock because the path for the
3528  * insertion can include that parent node. At first glance it seems impossible
3529  * to trigger chunk allocation after starting a transaction since tasks should
3530  * reserve enough transaction units (metadata space), however while that is true
3531  * most of the time, chunk allocation may still be triggered for several reasons:
3532  *
3533  * 1) When reserving metadata, we check if there is enough free space in the
3534  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3535  *    However later when the task actually tries to COW an extent buffer from
3536  *    the extent btree or from the device btree for example, it is forced to
3537  *    allocate a new block group (chunk) because the only one that had enough
3538  *    free space was just turned to RO mode by a running scrub for example (or
3539  *    device replace, block group reclaim thread, etc), so we can not use it
3540  *    for allocating an extent and end up being forced to allocate a new one;
3541  *
3542  * 2) Because we only check that the metadata space_info has enough free bytes,
3543  *    we end up not allocating a new metadata chunk in that case. However if
3544  *    the filesystem was mounted in degraded mode, none of the existing block
3545  *    groups might be suitable for extent allocation due to their incompatible
3546  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3547  *    use a RAID1 profile, in degraded mode using a single device). In this case
3548  *    when the task attempts to COW some extent buffer of the extent btree for
3549  *    example, it will trigger allocation of a new metadata block group with a
3550  *    suitable profile (SINGLE profile in the example of the degraded mount of
3551  *    the RAID1 filesystem);
3552  *
3553  * 3) The task has reserved enough transaction units / metadata space, but when
3554  *    it attempts to COW an extent buffer from the extent or device btree for
3555  *    example, it does not find any free extent in any metadata block group,
3556  *    therefore forced to try to allocate a new metadata block group.
3557  *    This is because some other task allocated all available extents in the
3558  *    meanwhile - this typically happens with tasks that don't reserve space
3559  *    properly, either intentionally or as a bug. One example where this is
3560  *    done intentionally is fsync, as it does not reserve any transaction units
3561  *    and ends up allocating a variable number of metadata extents for log
3562  *    tree extent buffers.
3563  *
3564  * We also need this 2 phases setup when adding a device to a filesystem with
3565  * a seed device - we must create new metadata and system chunks without adding
3566  * any of the block group items to the chunk, extent and device btrees. If we
3567  * did not do it this way, we would get ENOSPC when attempting to update those
3568  * btrees, since all the chunks from the seed device are read-only.
3569  *
3570  * Phase 1 does the updates and insertions to the chunk btree because if we had
3571  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3572  * parallel, we risk having too many system chunks allocated by many tasks if
3573  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3574  * extreme case this leads to exhaustion of the system chunk array in the
3575  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3576  * and with RAID filesystems (so we have more device items in the chunk btree).
3577  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3578  * the system chunk array due to concurrent allocations") provides more details.
3579  *
3580  * Allocation of system chunks does not happen through this function. A task that
3581  * needs to update the chunk btree (the only btree that uses system chunks), must
3582  * preallocate chunk space by calling either check_system_chunk() or
3583  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3584  * metadata chunk or when removing a chunk, while the later is used before doing
3585  * a modification to the chunk btree - use cases for the later are adding,
3586  * removing and resizing a device as well as relocation of a system chunk.
3587  * See the comment below for more details.
3588  *
3589  * The reservation of system space, done through check_system_chunk(), as well
3590  * as all the updates and insertions into the chunk btree must be done while
3591  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3592  * an extent buffer from the chunks btree we never trigger allocation of a new
3593  * system chunk, which would result in a deadlock (trying to lock twice an
3594  * extent buffer of the chunk btree, first time before triggering the chunk
3595  * allocation and the second time during chunk allocation while attempting to
3596  * update the chunks btree). The system chunk array is also updated while holding
3597  * that mutex. The same logic applies to removing chunks - we must reserve system
3598  * space, update the chunk btree and the system chunk array in the superblock
3599  * while holding fs_info->chunk_mutex.
3600  *
3601  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3602  *
3603  * If @force is CHUNK_ALLOC_FORCE:
3604  *    - return 1 if it successfully allocates a chunk,
3605  *    - return errors including -ENOSPC otherwise.
3606  * If @force is NOT CHUNK_ALLOC_FORCE:
3607  *    - return 0 if it doesn't need to allocate a new chunk,
3608  *    - return 1 if it successfully allocates a chunk,
3609  *    - return errors including -ENOSPC otherwise.
3610  */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3611 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3612 		      enum btrfs_chunk_alloc_enum force)
3613 {
3614 	struct btrfs_fs_info *fs_info = trans->fs_info;
3615 	struct btrfs_space_info *space_info;
3616 	bool wait_for_alloc = false;
3617 	bool should_alloc = false;
3618 	int ret = 0;
3619 
3620 	/* Don't re-enter if we're already allocating a chunk */
3621 	if (trans->allocating_chunk)
3622 		return -ENOSPC;
3623 	/*
3624 	 * Allocation of system chunks can not happen through this path, as we
3625 	 * could end up in a deadlock if we are allocating a data or metadata
3626 	 * chunk and there is another task modifying the chunk btree.
3627 	 *
3628 	 * This is because while we are holding the chunk mutex, we will attempt
3629 	 * to add the new chunk item to the chunk btree or update an existing
3630 	 * device item in the chunk btree, while the other task that is modifying
3631 	 * the chunk btree is attempting to COW an extent buffer while holding a
3632 	 * lock on it and on its parent - if the COW operation triggers a system
3633 	 * chunk allocation, then we can deadlock because we are holding the
3634 	 * chunk mutex and we may need to access that extent buffer or its parent
3635 	 * in order to add the chunk item or update a device item.
3636 	 *
3637 	 * Tasks that want to modify the chunk tree should reserve system space
3638 	 * before updating the chunk btree, by calling either
3639 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3640 	 * It's possible that after a task reserves the space, it still ends up
3641 	 * here - this happens in the cases described above at do_chunk_alloc().
3642 	 * The task will have to either retry or fail.
3643 	 */
3644 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3645 		return -ENOSPC;
3646 
3647 	space_info = btrfs_find_space_info(fs_info, flags);
3648 	ASSERT(space_info);
3649 
3650 	do {
3651 		spin_lock(&space_info->lock);
3652 		if (force < space_info->force_alloc)
3653 			force = space_info->force_alloc;
3654 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3655 		if (space_info->full) {
3656 			/* No more free physical space */
3657 			if (should_alloc)
3658 				ret = -ENOSPC;
3659 			else
3660 				ret = 0;
3661 			spin_unlock(&space_info->lock);
3662 			return ret;
3663 		} else if (!should_alloc) {
3664 			spin_unlock(&space_info->lock);
3665 			return 0;
3666 		} else if (space_info->chunk_alloc) {
3667 			/*
3668 			 * Someone is already allocating, so we need to block
3669 			 * until this someone is finished and then loop to
3670 			 * recheck if we should continue with our allocation
3671 			 * attempt.
3672 			 */
3673 			wait_for_alloc = true;
3674 			force = CHUNK_ALLOC_NO_FORCE;
3675 			spin_unlock(&space_info->lock);
3676 			mutex_lock(&fs_info->chunk_mutex);
3677 			mutex_unlock(&fs_info->chunk_mutex);
3678 		} else {
3679 			/* Proceed with allocation */
3680 			space_info->chunk_alloc = 1;
3681 			wait_for_alloc = false;
3682 			spin_unlock(&space_info->lock);
3683 		}
3684 
3685 		cond_resched();
3686 	} while (wait_for_alloc);
3687 
3688 	mutex_lock(&fs_info->chunk_mutex);
3689 	trans->allocating_chunk = true;
3690 
3691 	/*
3692 	 * If we have mixed data/metadata chunks we want to make sure we keep
3693 	 * allocating mixed chunks instead of individual chunks.
3694 	 */
3695 	if (btrfs_mixed_space_info(space_info))
3696 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3697 
3698 	/*
3699 	 * if we're doing a data chunk, go ahead and make sure that
3700 	 * we keep a reasonable number of metadata chunks allocated in the
3701 	 * FS as well.
3702 	 */
3703 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3704 		fs_info->data_chunk_allocations++;
3705 		if (!(fs_info->data_chunk_allocations %
3706 		      fs_info->metadata_ratio))
3707 			force_metadata_allocation(fs_info);
3708 	}
3709 
3710 	ret = do_chunk_alloc(trans, flags);
3711 	trans->allocating_chunk = false;
3712 
3713 	spin_lock(&space_info->lock);
3714 	if (ret < 0) {
3715 		if (ret == -ENOSPC)
3716 			space_info->full = 1;
3717 		else
3718 			goto out;
3719 	} else {
3720 		ret = 1;
3721 		space_info->max_extent_size = 0;
3722 	}
3723 
3724 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3725 out:
3726 	space_info->chunk_alloc = 0;
3727 	spin_unlock(&space_info->lock);
3728 	mutex_unlock(&fs_info->chunk_mutex);
3729 
3730 	return ret;
3731 }
3732 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3733 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3734 {
3735 	u64 num_dev;
3736 
3737 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3738 	if (!num_dev)
3739 		num_dev = fs_info->fs_devices->rw_devices;
3740 
3741 	return num_dev;
3742 }
3743 
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)3744 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3745 				u64 bytes,
3746 				u64 type)
3747 {
3748 	struct btrfs_fs_info *fs_info = trans->fs_info;
3749 	struct btrfs_space_info *info;
3750 	u64 left;
3751 	int ret = 0;
3752 
3753 	/*
3754 	 * Needed because we can end up allocating a system chunk and for an
3755 	 * atomic and race free space reservation in the chunk block reserve.
3756 	 */
3757 	lockdep_assert_held(&fs_info->chunk_mutex);
3758 
3759 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3760 	spin_lock(&info->lock);
3761 	left = info->total_bytes - btrfs_space_info_used(info, true);
3762 	spin_unlock(&info->lock);
3763 
3764 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3765 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3766 			   left, bytes, type);
3767 		btrfs_dump_space_info(fs_info, info, 0, 0);
3768 	}
3769 
3770 	if (left < bytes) {
3771 		u64 flags = btrfs_system_alloc_profile(fs_info);
3772 		struct btrfs_block_group *bg;
3773 
3774 		/*
3775 		 * Ignore failure to create system chunk. We might end up not
3776 		 * needing it, as we might not need to COW all nodes/leafs from
3777 		 * the paths we visit in the chunk tree (they were already COWed
3778 		 * or created in the current transaction for example).
3779 		 */
3780 		bg = btrfs_create_chunk(trans, flags);
3781 		if (IS_ERR(bg)) {
3782 			ret = PTR_ERR(bg);
3783 		} else {
3784 			/*
3785 			 * If we fail to add the chunk item here, we end up
3786 			 * trying again at phase 2 of chunk allocation, at
3787 			 * btrfs_create_pending_block_groups(). So ignore
3788 			 * any error here. An ENOSPC here could happen, due to
3789 			 * the cases described at do_chunk_alloc() - the system
3790 			 * block group we just created was just turned into RO
3791 			 * mode by a scrub for example, or a running discard
3792 			 * temporarily removed its free space entries, etc.
3793 			 */
3794 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3795 		}
3796 	}
3797 
3798 	if (!ret) {
3799 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3800 					  &fs_info->chunk_block_rsv,
3801 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3802 		if (!ret)
3803 			trans->chunk_bytes_reserved += bytes;
3804 	}
3805 }
3806 
3807 /*
3808  * Reserve space in the system space for allocating or removing a chunk.
3809  * The caller must be holding fs_info->chunk_mutex.
3810  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3811 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3812 {
3813 	struct btrfs_fs_info *fs_info = trans->fs_info;
3814 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3815 	u64 bytes;
3816 
3817 	/* num_devs device items to update and 1 chunk item to add or remove. */
3818 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3819 		btrfs_calc_insert_metadata_size(fs_info, 1);
3820 
3821 	reserve_chunk_space(trans, bytes, type);
3822 }
3823 
3824 /*
3825  * Reserve space in the system space, if needed, for doing a modification to the
3826  * chunk btree.
3827  *
3828  * @trans:		A transaction handle.
3829  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3830  *			in the chunk btree or if it's for the deletion or update
3831  *			of an existing item.
3832  *
3833  * This is used in a context where we need to update the chunk btree outside
3834  * block group allocation and removal, to avoid a deadlock with a concurrent
3835  * task that is allocating a metadata or data block group and therefore needs to
3836  * update the chunk btree while holding the chunk mutex. After the update to the
3837  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3838  *
3839  */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)3840 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3841 				  bool is_item_insertion)
3842 {
3843 	struct btrfs_fs_info *fs_info = trans->fs_info;
3844 	u64 bytes;
3845 
3846 	if (is_item_insertion)
3847 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3848 	else
3849 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3850 
3851 	mutex_lock(&fs_info->chunk_mutex);
3852 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3853 	mutex_unlock(&fs_info->chunk_mutex);
3854 }
3855 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3856 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3857 {
3858 	struct btrfs_block_group *block_group;
3859 	u64 last = 0;
3860 
3861 	while (1) {
3862 		struct inode *inode;
3863 
3864 		block_group = btrfs_lookup_first_block_group(info, last);
3865 		while (block_group) {
3866 			btrfs_wait_block_group_cache_done(block_group);
3867 			spin_lock(&block_group->lock);
3868 			if (block_group->iref)
3869 				break;
3870 			spin_unlock(&block_group->lock);
3871 			block_group = btrfs_next_block_group(block_group);
3872 		}
3873 		if (!block_group) {
3874 			if (last == 0)
3875 				break;
3876 			last = 0;
3877 			continue;
3878 		}
3879 
3880 		inode = block_group->inode;
3881 		block_group->iref = 0;
3882 		block_group->inode = NULL;
3883 		spin_unlock(&block_group->lock);
3884 		ASSERT(block_group->io_ctl.inode == NULL);
3885 		iput(inode);
3886 		last = block_group->start + block_group->length;
3887 		btrfs_put_block_group(block_group);
3888 	}
3889 }
3890 
3891 /*
3892  * Must be called only after stopping all workers, since we could have block
3893  * group caching kthreads running, and therefore they could race with us if we
3894  * freed the block groups before stopping them.
3895  */
btrfs_free_block_groups(struct btrfs_fs_info * info)3896 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3897 {
3898 	struct btrfs_block_group *block_group;
3899 	struct btrfs_space_info *space_info;
3900 	struct btrfs_caching_control *caching_ctl;
3901 	struct rb_node *n;
3902 
3903 	spin_lock(&info->block_group_cache_lock);
3904 	while (!list_empty(&info->caching_block_groups)) {
3905 		caching_ctl = list_entry(info->caching_block_groups.next,
3906 					 struct btrfs_caching_control, list);
3907 		list_del(&caching_ctl->list);
3908 		btrfs_put_caching_control(caching_ctl);
3909 	}
3910 	spin_unlock(&info->block_group_cache_lock);
3911 
3912 	spin_lock(&info->unused_bgs_lock);
3913 	while (!list_empty(&info->unused_bgs)) {
3914 		block_group = list_first_entry(&info->unused_bgs,
3915 					       struct btrfs_block_group,
3916 					       bg_list);
3917 		list_del_init(&block_group->bg_list);
3918 		btrfs_put_block_group(block_group);
3919 	}
3920 	spin_unlock(&info->unused_bgs_lock);
3921 
3922 	spin_lock(&info->unused_bgs_lock);
3923 	while (!list_empty(&info->reclaim_bgs)) {
3924 		block_group = list_first_entry(&info->reclaim_bgs,
3925 					       struct btrfs_block_group,
3926 					       bg_list);
3927 		list_del_init(&block_group->bg_list);
3928 		btrfs_put_block_group(block_group);
3929 	}
3930 	spin_unlock(&info->unused_bgs_lock);
3931 
3932 	spin_lock(&info->block_group_cache_lock);
3933 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3934 		block_group = rb_entry(n, struct btrfs_block_group,
3935 				       cache_node);
3936 		rb_erase(&block_group->cache_node,
3937 			 &info->block_group_cache_tree);
3938 		RB_CLEAR_NODE(&block_group->cache_node);
3939 		spin_unlock(&info->block_group_cache_lock);
3940 
3941 		down_write(&block_group->space_info->groups_sem);
3942 		list_del(&block_group->list);
3943 		up_write(&block_group->space_info->groups_sem);
3944 
3945 		/*
3946 		 * We haven't cached this block group, which means we could
3947 		 * possibly have excluded extents on this block group.
3948 		 */
3949 		if (block_group->cached == BTRFS_CACHE_NO ||
3950 		    block_group->cached == BTRFS_CACHE_ERROR)
3951 			btrfs_free_excluded_extents(block_group);
3952 
3953 		btrfs_remove_free_space_cache(block_group);
3954 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3955 		ASSERT(list_empty(&block_group->dirty_list));
3956 		ASSERT(list_empty(&block_group->io_list));
3957 		ASSERT(list_empty(&block_group->bg_list));
3958 		ASSERT(refcount_read(&block_group->refs) == 1);
3959 		ASSERT(block_group->swap_extents == 0);
3960 		btrfs_put_block_group(block_group);
3961 
3962 		spin_lock(&info->block_group_cache_lock);
3963 	}
3964 	spin_unlock(&info->block_group_cache_lock);
3965 
3966 	btrfs_release_global_block_rsv(info);
3967 
3968 	while (!list_empty(&info->space_info)) {
3969 		space_info = list_entry(info->space_info.next,
3970 					struct btrfs_space_info,
3971 					list);
3972 
3973 		/*
3974 		 * Do not hide this behind enospc_debug, this is actually
3975 		 * important and indicates a real bug if this happens.
3976 		 */
3977 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3978 			    space_info->bytes_may_use > 0))
3979 			btrfs_dump_space_info(info, space_info, 0, 0);
3980 
3981 		/*
3982 		 * If there was a failure to cleanup a log tree, very likely due
3983 		 * to an IO failure on a writeback attempt of one or more of its
3984 		 * extent buffers, we could not do proper (and cheap) unaccounting
3985 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
3986 		 * that case.
3987 		 */
3988 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
3989 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
3990 			if (WARN_ON(space_info->bytes_reserved > 0))
3991 				btrfs_dump_space_info(info, space_info, 0, 0);
3992 		}
3993 
3994 		WARN_ON(space_info->reclaim_size > 0);
3995 		list_del(&space_info->list);
3996 		btrfs_sysfs_remove_space_info(space_info);
3997 	}
3998 	return 0;
3999 }
4000 
btrfs_freeze_block_group(struct btrfs_block_group * cache)4001 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4002 {
4003 	atomic_inc(&cache->frozen);
4004 }
4005 
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4006 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4007 {
4008 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4009 	struct extent_map_tree *em_tree;
4010 	struct extent_map *em;
4011 	bool cleanup;
4012 
4013 	spin_lock(&block_group->lock);
4014 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4015 		   block_group->removed);
4016 	spin_unlock(&block_group->lock);
4017 
4018 	if (cleanup) {
4019 		em_tree = &fs_info->mapping_tree;
4020 		write_lock(&em_tree->lock);
4021 		em = lookup_extent_mapping(em_tree, block_group->start,
4022 					   1);
4023 		BUG_ON(!em); /* logic error, can't happen */
4024 		remove_extent_mapping(em_tree, em);
4025 		write_unlock(&em_tree->lock);
4026 
4027 		/* once for us and once for the tree */
4028 		free_extent_map(em);
4029 		free_extent_map(em);
4030 
4031 		/*
4032 		 * We may have left one free space entry and other possible
4033 		 * tasks trimming this block group have left 1 entry each one.
4034 		 * Free them if any.
4035 		 */
4036 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4037 	}
4038 }
4039 
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4040 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4041 {
4042 	bool ret = true;
4043 
4044 	spin_lock(&bg->lock);
4045 	if (bg->ro)
4046 		ret = false;
4047 	else
4048 		bg->swap_extents++;
4049 	spin_unlock(&bg->lock);
4050 
4051 	return ret;
4052 }
4053 
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4054 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4055 {
4056 	spin_lock(&bg->lock);
4057 	ASSERT(!bg->ro);
4058 	ASSERT(bg->swap_extents >= amount);
4059 	bg->swap_extents -= amount;
4060 	spin_unlock(&bg->lock);
4061 }
4062