• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
btrfs_put_transaction(struct btrfs_transaction * transaction)123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
switch_commit_roots(struct btrfs_trans_handle * trans)158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	down_write(&fs_info->commit_root_sem);
166 
167 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
168 		fs_info->last_reloc_trans = trans->transid;
169 
170 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
171 				 dirty_list) {
172 		list_del_init(&root->dirty_list);
173 		free_extent_buffer(root->commit_root);
174 		root->commit_root = btrfs_root_node(root);
175 		extent_io_tree_release(&root->dirty_log_pages);
176 		btrfs_qgroup_clean_swapped_blocks(root);
177 	}
178 
179 	/* We can free old roots now. */
180 	spin_lock(&cur_trans->dropped_roots_lock);
181 	while (!list_empty(&cur_trans->dropped_roots)) {
182 		root = list_first_entry(&cur_trans->dropped_roots,
183 					struct btrfs_root, root_list);
184 		list_del_init(&root->root_list);
185 		spin_unlock(&cur_trans->dropped_roots_lock);
186 		btrfs_free_log(trans, root);
187 		btrfs_drop_and_free_fs_root(fs_info, root);
188 		spin_lock(&cur_trans->dropped_roots_lock);
189 	}
190 	spin_unlock(&cur_trans->dropped_roots_lock);
191 
192 	/*
193 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
194 	 * at the same time we swap out the commit roots.
195 	 *
196 	 * This is because we must have a real view of the last spot the caching
197 	 * kthreads were while caching.  Consider the following views of the
198 	 * extent tree for a block group
199 	 *
200 	 * commit root
201 	 * +----+----+----+----+----+----+----+
202 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
203 	 * +----+----+----+----+----+----+----+
204 	 * 0    1    2    3    4    5    6    7
205 	 *
206 	 * new commit root
207 	 * +----+----+----+----+----+----+----+
208 	 * |    |    |    |\\\\|    |    |\\\\|
209 	 * +----+----+----+----+----+----+----+
210 	 * 0    1    2    3    4    5    6    7
211 	 *
212 	 * If the cache_ctl->progress was at 3, then we are only allowed to
213 	 * unpin [0,1) and [2,3], because the caching thread has already
214 	 * processed those extents.  We are not allowed to unpin [5,6), because
215 	 * the caching thread will re-start it's search from 3, and thus find
216 	 * the hole from [4,6) to add to the free space cache.
217 	 */
218 	spin_lock(&fs_info->block_group_cache_lock);
219 	list_for_each_entry_safe(caching_ctl, next,
220 				 &fs_info->caching_block_groups, list) {
221 		struct btrfs_block_group *cache = caching_ctl->block_group;
222 
223 		if (btrfs_block_group_done(cache)) {
224 			cache->last_byte_to_unpin = (u64)-1;
225 			list_del_init(&caching_ctl->list);
226 			btrfs_put_caching_control(caching_ctl);
227 		} else {
228 			cache->last_byte_to_unpin = caching_ctl->progress;
229 		}
230 	}
231 	spin_unlock(&fs_info->block_group_cache_lock);
232 	up_write(&fs_info->commit_root_sem);
233 }
234 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)235 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
236 					 unsigned int type)
237 {
238 	if (type & TRANS_EXTWRITERS)
239 		atomic_inc(&trans->num_extwriters);
240 }
241 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)242 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
243 					 unsigned int type)
244 {
245 	if (type & TRANS_EXTWRITERS)
246 		atomic_dec(&trans->num_extwriters);
247 }
248 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)249 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
250 					  unsigned int type)
251 {
252 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
253 }
254 
extwriter_counter_read(struct btrfs_transaction * trans)255 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
256 {
257 	return atomic_read(&trans->num_extwriters);
258 }
259 
260 /*
261  * To be called after doing the chunk btree updates right after allocating a new
262  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
263  * chunk after all chunk btree updates and after finishing the second phase of
264  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
265  * group had its chunk item insertion delayed to the second phase.
266  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)267 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
268 {
269 	struct btrfs_fs_info *fs_info = trans->fs_info;
270 
271 	if (!trans->chunk_bytes_reserved)
272 		return;
273 
274 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
275 				trans->chunk_bytes_reserved, NULL);
276 	trans->chunk_bytes_reserved = 0;
277 }
278 
279 /*
280  * either allocate a new transaction or hop into the existing one
281  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)282 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
283 				     unsigned int type)
284 {
285 	struct btrfs_transaction *cur_trans;
286 
287 	spin_lock(&fs_info->trans_lock);
288 loop:
289 	/* The file system has been taken offline. No new transactions. */
290 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
291 		spin_unlock(&fs_info->trans_lock);
292 		return -EROFS;
293 	}
294 
295 	cur_trans = fs_info->running_transaction;
296 	if (cur_trans) {
297 		if (TRANS_ABORTED(cur_trans)) {
298 			spin_unlock(&fs_info->trans_lock);
299 			return cur_trans->aborted;
300 		}
301 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
302 			spin_unlock(&fs_info->trans_lock);
303 			return -EBUSY;
304 		}
305 		refcount_inc(&cur_trans->use_count);
306 		atomic_inc(&cur_trans->num_writers);
307 		extwriter_counter_inc(cur_trans, type);
308 		spin_unlock(&fs_info->trans_lock);
309 		return 0;
310 	}
311 	spin_unlock(&fs_info->trans_lock);
312 
313 	/*
314 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
315 	 * current transaction, and commit it. If there is no transaction, just
316 	 * return ENOENT.
317 	 */
318 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
319 		return -ENOENT;
320 
321 	/*
322 	 * JOIN_NOLOCK only happens during the transaction commit, so
323 	 * it is impossible that ->running_transaction is NULL
324 	 */
325 	BUG_ON(type == TRANS_JOIN_NOLOCK);
326 
327 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
328 	if (!cur_trans)
329 		return -ENOMEM;
330 
331 	spin_lock(&fs_info->trans_lock);
332 	if (fs_info->running_transaction) {
333 		/*
334 		 * someone started a transaction after we unlocked.  Make sure
335 		 * to redo the checks above
336 		 */
337 		kfree(cur_trans);
338 		goto loop;
339 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
340 		spin_unlock(&fs_info->trans_lock);
341 		kfree(cur_trans);
342 		return -EROFS;
343 	}
344 
345 	cur_trans->fs_info = fs_info;
346 	atomic_set(&cur_trans->pending_ordered, 0);
347 	init_waitqueue_head(&cur_trans->pending_wait);
348 	atomic_set(&cur_trans->num_writers, 1);
349 	extwriter_counter_init(cur_trans, type);
350 	init_waitqueue_head(&cur_trans->writer_wait);
351 	init_waitqueue_head(&cur_trans->commit_wait);
352 	cur_trans->state = TRANS_STATE_RUNNING;
353 	/*
354 	 * One for this trans handle, one so it will live on until we
355 	 * commit the transaction.
356 	 */
357 	refcount_set(&cur_trans->use_count, 2);
358 	cur_trans->flags = 0;
359 	cur_trans->start_time = ktime_get_seconds();
360 
361 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
362 
363 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
364 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
365 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
366 
367 	/*
368 	 * although the tree mod log is per file system and not per transaction,
369 	 * the log must never go across transaction boundaries.
370 	 */
371 	smp_mb();
372 	if (!list_empty(&fs_info->tree_mod_seq_list))
373 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
374 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
375 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
376 	atomic64_set(&fs_info->tree_mod_seq, 0);
377 
378 	spin_lock_init(&cur_trans->delayed_refs.lock);
379 
380 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
381 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
382 	INIT_LIST_HEAD(&cur_trans->switch_commits);
383 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
384 	INIT_LIST_HEAD(&cur_trans->io_bgs);
385 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
386 	mutex_init(&cur_trans->cache_write_mutex);
387 	spin_lock_init(&cur_trans->dirty_bgs_lock);
388 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
389 	spin_lock_init(&cur_trans->dropped_roots_lock);
390 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
391 	spin_lock_init(&cur_trans->releasing_ebs_lock);
392 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
393 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
394 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
395 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
396 			IO_TREE_FS_PINNED_EXTENTS, NULL);
397 	fs_info->generation++;
398 	cur_trans->transid = fs_info->generation;
399 	fs_info->running_transaction = cur_trans;
400 	cur_trans->aborted = 0;
401 	spin_unlock(&fs_info->trans_lock);
402 
403 	return 0;
404 }
405 
406 /*
407  * This does all the record keeping required to make sure that a shareable root
408  * is properly recorded in a given transaction.  This is required to make sure
409  * the old root from before we joined the transaction is deleted when the
410  * transaction commits.
411  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)412 static int record_root_in_trans(struct btrfs_trans_handle *trans,
413 			       struct btrfs_root *root,
414 			       int force)
415 {
416 	struct btrfs_fs_info *fs_info = root->fs_info;
417 	int ret = 0;
418 
419 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
420 	    root->last_trans < trans->transid) || force) {
421 		WARN_ON(root == fs_info->extent_root);
422 		WARN_ON(!force && root->commit_root != root->node);
423 
424 		/*
425 		 * see below for IN_TRANS_SETUP usage rules
426 		 * we have the reloc mutex held now, so there
427 		 * is only one writer in this function
428 		 */
429 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
430 
431 		/* make sure readers find IN_TRANS_SETUP before
432 		 * they find our root->last_trans update
433 		 */
434 		smp_wmb();
435 
436 		spin_lock(&fs_info->fs_roots_radix_lock);
437 		if (root->last_trans == trans->transid && !force) {
438 			spin_unlock(&fs_info->fs_roots_radix_lock);
439 			return 0;
440 		}
441 		radix_tree_tag_set(&fs_info->fs_roots_radix,
442 				   (unsigned long)root->root_key.objectid,
443 				   BTRFS_ROOT_TRANS_TAG);
444 		spin_unlock(&fs_info->fs_roots_radix_lock);
445 		root->last_trans = trans->transid;
446 
447 		/* this is pretty tricky.  We don't want to
448 		 * take the relocation lock in btrfs_record_root_in_trans
449 		 * unless we're really doing the first setup for this root in
450 		 * this transaction.
451 		 *
452 		 * Normally we'd use root->last_trans as a flag to decide
453 		 * if we want to take the expensive mutex.
454 		 *
455 		 * But, we have to set root->last_trans before we
456 		 * init the relocation root, otherwise, we trip over warnings
457 		 * in ctree.c.  The solution used here is to flag ourselves
458 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
459 		 * fixing up the reloc trees and everyone must wait.
460 		 *
461 		 * When this is zero, they can trust root->last_trans and fly
462 		 * through btrfs_record_root_in_trans without having to take the
463 		 * lock.  smp_wmb() makes sure that all the writes above are
464 		 * done before we pop in the zero below
465 		 */
466 		ret = btrfs_init_reloc_root(trans, root);
467 		smp_mb__before_atomic();
468 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
469 	}
470 	return ret;
471 }
472 
473 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)474 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
475 			    struct btrfs_root *root)
476 {
477 	struct btrfs_fs_info *fs_info = root->fs_info;
478 	struct btrfs_transaction *cur_trans = trans->transaction;
479 
480 	/* Add ourselves to the transaction dropped list */
481 	spin_lock(&cur_trans->dropped_roots_lock);
482 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
483 	spin_unlock(&cur_trans->dropped_roots_lock);
484 
485 	/* Make sure we don't try to update the root at commit time */
486 	spin_lock(&fs_info->fs_roots_radix_lock);
487 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
488 			     (unsigned long)root->root_key.objectid,
489 			     BTRFS_ROOT_TRANS_TAG);
490 	spin_unlock(&fs_info->fs_roots_radix_lock);
491 }
492 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
494 			       struct btrfs_root *root)
495 {
496 	struct btrfs_fs_info *fs_info = root->fs_info;
497 	int ret;
498 
499 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
500 		return 0;
501 
502 	/*
503 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
504 	 * and barriers
505 	 */
506 	smp_rmb();
507 	if (root->last_trans == trans->transid &&
508 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
509 		return 0;
510 
511 	mutex_lock(&fs_info->reloc_mutex);
512 	ret = record_root_in_trans(trans, root, 0);
513 	mutex_unlock(&fs_info->reloc_mutex);
514 
515 	return ret;
516 }
517 
is_transaction_blocked(struct btrfs_transaction * trans)518 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
519 {
520 	return (trans->state >= TRANS_STATE_COMMIT_START &&
521 		trans->state < TRANS_STATE_UNBLOCKED &&
522 		!TRANS_ABORTED(trans));
523 }
524 
525 /* wait for commit against the current transaction to become unblocked
526  * when this is done, it is safe to start a new transaction, but the current
527  * transaction might not be fully on disk.
528  */
wait_current_trans(struct btrfs_fs_info * fs_info)529 static void wait_current_trans(struct btrfs_fs_info *fs_info)
530 {
531 	struct btrfs_transaction *cur_trans;
532 
533 	spin_lock(&fs_info->trans_lock);
534 	cur_trans = fs_info->running_transaction;
535 	if (cur_trans && is_transaction_blocked(cur_trans)) {
536 		refcount_inc(&cur_trans->use_count);
537 		spin_unlock(&fs_info->trans_lock);
538 
539 		wait_event(fs_info->transaction_wait,
540 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
541 			   TRANS_ABORTED(cur_trans));
542 		btrfs_put_transaction(cur_trans);
543 	} else {
544 		spin_unlock(&fs_info->trans_lock);
545 	}
546 }
547 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)548 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
549 {
550 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
551 		return 0;
552 
553 	if (type == TRANS_START)
554 		return 1;
555 
556 	return 0;
557 }
558 
need_reserve_reloc_root(struct btrfs_root * root)559 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
560 {
561 	struct btrfs_fs_info *fs_info = root->fs_info;
562 
563 	if (!fs_info->reloc_ctl ||
564 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
565 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
566 	    root->reloc_root)
567 		return false;
568 
569 	return true;
570 }
571 
572 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)573 start_transaction(struct btrfs_root *root, unsigned int num_items,
574 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
575 		  bool enforce_qgroups)
576 {
577 	struct btrfs_fs_info *fs_info = root->fs_info;
578 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579 	struct btrfs_trans_handle *h;
580 	struct btrfs_transaction *cur_trans;
581 	u64 num_bytes = 0;
582 	u64 qgroup_reserved = 0;
583 	bool reloc_reserved = false;
584 	bool do_chunk_alloc = false;
585 	int ret;
586 
587 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
588 		return ERR_PTR(-EROFS);
589 
590 	if (current->journal_info) {
591 		WARN_ON(type & TRANS_EXTWRITERS);
592 		h = current->journal_info;
593 		refcount_inc(&h->use_count);
594 		WARN_ON(refcount_read(&h->use_count) > 2);
595 		h->orig_rsv = h->block_rsv;
596 		h->block_rsv = NULL;
597 		goto got_it;
598 	}
599 
600 	/*
601 	 * Do the reservation before we join the transaction so we can do all
602 	 * the appropriate flushing if need be.
603 	 */
604 	if (num_items && root != fs_info->chunk_root) {
605 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
606 		u64 delayed_refs_bytes = 0;
607 
608 		qgroup_reserved = num_items * fs_info->nodesize;
609 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
610 				enforce_qgroups);
611 		if (ret)
612 			return ERR_PTR(ret);
613 
614 		/*
615 		 * We want to reserve all the bytes we may need all at once, so
616 		 * we only do 1 enospc flushing cycle per transaction start.  We
617 		 * accomplish this by simply assuming we'll do 2 x num_items
618 		 * worth of delayed refs updates in this trans handle, and
619 		 * refill that amount for whatever is missing in the reserve.
620 		 */
621 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
622 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
623 		    delayed_refs_rsv->full == 0) {
624 			delayed_refs_bytes = num_bytes;
625 			num_bytes <<= 1;
626 		}
627 
628 		/*
629 		 * Do the reservation for the relocation root creation
630 		 */
631 		if (need_reserve_reloc_root(root)) {
632 			num_bytes += fs_info->nodesize;
633 			reloc_reserved = true;
634 		}
635 
636 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
637 		if (ret)
638 			goto reserve_fail;
639 		if (delayed_refs_bytes) {
640 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
641 							  delayed_refs_bytes);
642 			num_bytes -= delayed_refs_bytes;
643 		}
644 
645 		if (rsv->space_info->force_alloc)
646 			do_chunk_alloc = true;
647 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
648 		   !delayed_refs_rsv->full) {
649 		/*
650 		 * Some people call with btrfs_start_transaction(root, 0)
651 		 * because they can be throttled, but have some other mechanism
652 		 * for reserving space.  We still want these guys to refill the
653 		 * delayed block_rsv so just add 1 items worth of reservation
654 		 * here.
655 		 */
656 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
657 		if (ret)
658 			goto reserve_fail;
659 	}
660 again:
661 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
662 	if (!h) {
663 		ret = -ENOMEM;
664 		goto alloc_fail;
665 	}
666 
667 	/*
668 	 * If we are JOIN_NOLOCK we're already committing a transaction and
669 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
670 	 * because we're already holding a ref.  We need this because we could
671 	 * have raced in and did an fsync() on a file which can kick a commit
672 	 * and then we deadlock with somebody doing a freeze.
673 	 *
674 	 * If we are ATTACH, it means we just want to catch the current
675 	 * transaction and commit it, so we needn't do sb_start_intwrite().
676 	 */
677 	if (type & __TRANS_FREEZABLE)
678 		sb_start_intwrite(fs_info->sb);
679 
680 	if (may_wait_transaction(fs_info, type))
681 		wait_current_trans(fs_info);
682 
683 	do {
684 		ret = join_transaction(fs_info, type);
685 		if (ret == -EBUSY) {
686 			wait_current_trans(fs_info);
687 			if (unlikely(type == TRANS_ATTACH ||
688 				     type == TRANS_JOIN_NOSTART))
689 				ret = -ENOENT;
690 		}
691 	} while (ret == -EBUSY);
692 
693 	if (ret < 0)
694 		goto join_fail;
695 
696 	cur_trans = fs_info->running_transaction;
697 
698 	h->transid = cur_trans->transid;
699 	h->transaction = cur_trans;
700 	h->root = root;
701 	refcount_set(&h->use_count, 1);
702 	h->fs_info = root->fs_info;
703 
704 	h->type = type;
705 	INIT_LIST_HEAD(&h->new_bgs);
706 
707 	smp_mb();
708 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
709 	    may_wait_transaction(fs_info, type)) {
710 		current->journal_info = h;
711 		btrfs_commit_transaction(h);
712 		goto again;
713 	}
714 
715 	if (num_bytes) {
716 		trace_btrfs_space_reservation(fs_info, "transaction",
717 					      h->transid, num_bytes, 1);
718 		h->block_rsv = &fs_info->trans_block_rsv;
719 		h->bytes_reserved = num_bytes;
720 		h->reloc_reserved = reloc_reserved;
721 	}
722 
723 got_it:
724 	if (!current->journal_info)
725 		current->journal_info = h;
726 
727 	/*
728 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
729 	 * ALLOC_FORCE the first run through, and then we won't allocate for
730 	 * anybody else who races in later.  We don't care about the return
731 	 * value here.
732 	 */
733 	if (do_chunk_alloc && num_bytes) {
734 		u64 flags = h->block_rsv->space_info->flags;
735 
736 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
737 				  CHUNK_ALLOC_NO_FORCE);
738 	}
739 
740 	/*
741 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
742 	 * call btrfs_join_transaction() while we're also starting a
743 	 * transaction.
744 	 *
745 	 * Thus it need to be called after current->journal_info initialized,
746 	 * or we can deadlock.
747 	 */
748 	ret = btrfs_record_root_in_trans(h, root);
749 	if (ret) {
750 		/*
751 		 * The transaction handle is fully initialized and linked with
752 		 * other structures so it needs to be ended in case of errors,
753 		 * not just freed.
754 		 */
755 		btrfs_end_transaction(h);
756 		return ERR_PTR(ret);
757 	}
758 
759 	return h;
760 
761 join_fail:
762 	if (type & __TRANS_FREEZABLE)
763 		sb_end_intwrite(fs_info->sb);
764 	kmem_cache_free(btrfs_trans_handle_cachep, h);
765 alloc_fail:
766 	if (num_bytes)
767 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
768 					num_bytes, NULL);
769 reserve_fail:
770 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
771 	return ERR_PTR(ret);
772 }
773 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)774 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
775 						   unsigned int num_items)
776 {
777 	return start_transaction(root, num_items, TRANS_START,
778 				 BTRFS_RESERVE_FLUSH_ALL, true);
779 }
780 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)781 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
782 					struct btrfs_root *root,
783 					unsigned int num_items)
784 {
785 	return start_transaction(root, num_items, TRANS_START,
786 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
787 }
788 
btrfs_join_transaction(struct btrfs_root * root)789 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
790 {
791 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
792 				 true);
793 }
794 
btrfs_join_transaction_spacecache(struct btrfs_root * root)795 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
796 {
797 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
798 				 BTRFS_RESERVE_NO_FLUSH, true);
799 }
800 
801 /*
802  * Similar to regular join but it never starts a transaction when none is
803  * running or after waiting for the current one to finish.
804  */
btrfs_join_transaction_nostart(struct btrfs_root * root)805 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
806 {
807 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
808 				 BTRFS_RESERVE_NO_FLUSH, true);
809 }
810 
811 /*
812  * btrfs_attach_transaction() - catch the running transaction
813  *
814  * It is used when we want to commit the current the transaction, but
815  * don't want to start a new one.
816  *
817  * Note: If this function return -ENOENT, it just means there is no
818  * running transaction. But it is possible that the inactive transaction
819  * is still in the memory, not fully on disk. If you hope there is no
820  * inactive transaction in the fs when -ENOENT is returned, you should
821  * invoke
822  *     btrfs_attach_transaction_barrier()
823  */
btrfs_attach_transaction(struct btrfs_root * root)824 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
825 {
826 	return start_transaction(root, 0, TRANS_ATTACH,
827 				 BTRFS_RESERVE_NO_FLUSH, true);
828 }
829 
830 /*
831  * btrfs_attach_transaction_barrier() - catch the running transaction
832  *
833  * It is similar to the above function, the difference is this one
834  * will wait for all the inactive transactions until they fully
835  * complete.
836  */
837 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)838 btrfs_attach_transaction_barrier(struct btrfs_root *root)
839 {
840 	struct btrfs_trans_handle *trans;
841 
842 	trans = start_transaction(root, 0, TRANS_ATTACH,
843 				  BTRFS_RESERVE_NO_FLUSH, true);
844 	if (trans == ERR_PTR(-ENOENT)) {
845 		int ret;
846 
847 		ret = btrfs_wait_for_commit(root->fs_info, 0);
848 		if (ret)
849 			return ERR_PTR(ret);
850 	}
851 
852 	return trans;
853 }
854 
855 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)856 static noinline void wait_for_commit(struct btrfs_transaction *commit,
857 				     const enum btrfs_trans_state min_state)
858 {
859 	struct btrfs_fs_info *fs_info = commit->fs_info;
860 	u64 transid = commit->transid;
861 	bool put = false;
862 
863 	while (1) {
864 		wait_event(commit->commit_wait, commit->state >= min_state);
865 		if (put)
866 			btrfs_put_transaction(commit);
867 
868 		if (min_state < TRANS_STATE_COMPLETED)
869 			break;
870 
871 		/*
872 		 * A transaction isn't really completed until all of the
873 		 * previous transactions are completed, but with fsync we can
874 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
875 		 * transaction. Wait for those.
876 		 */
877 
878 		spin_lock(&fs_info->trans_lock);
879 		commit = list_first_entry_or_null(&fs_info->trans_list,
880 						  struct btrfs_transaction,
881 						  list);
882 		if (!commit || commit->transid > transid) {
883 			spin_unlock(&fs_info->trans_lock);
884 			break;
885 		}
886 		refcount_inc(&commit->use_count);
887 		put = true;
888 		spin_unlock(&fs_info->trans_lock);
889 	}
890 }
891 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)892 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
893 {
894 	struct btrfs_transaction *cur_trans = NULL, *t;
895 	int ret = 0;
896 
897 	if (transid) {
898 		if (transid <= fs_info->last_trans_committed)
899 			goto out;
900 
901 		/* find specified transaction */
902 		spin_lock(&fs_info->trans_lock);
903 		list_for_each_entry(t, &fs_info->trans_list, list) {
904 			if (t->transid == transid) {
905 				cur_trans = t;
906 				refcount_inc(&cur_trans->use_count);
907 				ret = 0;
908 				break;
909 			}
910 			if (t->transid > transid) {
911 				ret = 0;
912 				break;
913 			}
914 		}
915 		spin_unlock(&fs_info->trans_lock);
916 
917 		/*
918 		 * The specified transaction doesn't exist, or we
919 		 * raced with btrfs_commit_transaction
920 		 */
921 		if (!cur_trans) {
922 			if (transid > fs_info->last_trans_committed)
923 				ret = -EINVAL;
924 			goto out;
925 		}
926 	} else {
927 		/* find newest transaction that is committing | committed */
928 		spin_lock(&fs_info->trans_lock);
929 		list_for_each_entry_reverse(t, &fs_info->trans_list,
930 					    list) {
931 			if (t->state >= TRANS_STATE_COMMIT_START) {
932 				if (t->state == TRANS_STATE_COMPLETED)
933 					break;
934 				cur_trans = t;
935 				refcount_inc(&cur_trans->use_count);
936 				break;
937 			}
938 		}
939 		spin_unlock(&fs_info->trans_lock);
940 		if (!cur_trans)
941 			goto out;  /* nothing committing|committed */
942 	}
943 
944 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
945 	ret = cur_trans->aborted;
946 	btrfs_put_transaction(cur_trans);
947 out:
948 	return ret;
949 }
950 
btrfs_throttle(struct btrfs_fs_info * fs_info)951 void btrfs_throttle(struct btrfs_fs_info *fs_info)
952 {
953 	wait_current_trans(fs_info);
954 }
955 
should_end_transaction(struct btrfs_trans_handle * trans)956 static bool should_end_transaction(struct btrfs_trans_handle *trans)
957 {
958 	struct btrfs_fs_info *fs_info = trans->fs_info;
959 
960 	if (btrfs_check_space_for_delayed_refs(fs_info))
961 		return true;
962 
963 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
964 }
965 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)966 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
967 {
968 	struct btrfs_transaction *cur_trans = trans->transaction;
969 
970 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
971 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
972 		return true;
973 
974 	return should_end_transaction(trans);
975 }
976 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)977 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
978 
979 {
980 	struct btrfs_fs_info *fs_info = trans->fs_info;
981 
982 	if (!trans->block_rsv) {
983 		ASSERT(!trans->bytes_reserved);
984 		return;
985 	}
986 
987 	if (!trans->bytes_reserved)
988 		return;
989 
990 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
991 	trace_btrfs_space_reservation(fs_info, "transaction",
992 				      trans->transid, trans->bytes_reserved, 0);
993 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
994 				trans->bytes_reserved, NULL);
995 	trans->bytes_reserved = 0;
996 }
997 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)998 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
999 				   int throttle)
1000 {
1001 	struct btrfs_fs_info *info = trans->fs_info;
1002 	struct btrfs_transaction *cur_trans = trans->transaction;
1003 	int err = 0;
1004 
1005 	if (refcount_read(&trans->use_count) > 1) {
1006 		refcount_dec(&trans->use_count);
1007 		trans->block_rsv = trans->orig_rsv;
1008 		return 0;
1009 	}
1010 
1011 	btrfs_trans_release_metadata(trans);
1012 	trans->block_rsv = NULL;
1013 
1014 	btrfs_create_pending_block_groups(trans);
1015 
1016 	btrfs_trans_release_chunk_metadata(trans);
1017 
1018 	if (trans->type & __TRANS_FREEZABLE)
1019 		sb_end_intwrite(info->sb);
1020 
1021 	WARN_ON(cur_trans != info->running_transaction);
1022 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1023 	atomic_dec(&cur_trans->num_writers);
1024 	extwriter_counter_dec(cur_trans, trans->type);
1025 
1026 	cond_wake_up(&cur_trans->writer_wait);
1027 	btrfs_put_transaction(cur_trans);
1028 
1029 	if (current->journal_info == trans)
1030 		current->journal_info = NULL;
1031 
1032 	if (throttle)
1033 		btrfs_run_delayed_iputs(info);
1034 
1035 	if (TRANS_ABORTED(trans) ||
1036 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1037 		wake_up_process(info->transaction_kthread);
1038 		if (TRANS_ABORTED(trans))
1039 			err = trans->aborted;
1040 		else
1041 			err = -EROFS;
1042 	}
1043 
1044 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1045 	return err;
1046 }
1047 
btrfs_end_transaction(struct btrfs_trans_handle * trans)1048 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1049 {
1050 	return __btrfs_end_transaction(trans, 0);
1051 }
1052 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1053 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1054 {
1055 	return __btrfs_end_transaction(trans, 1);
1056 }
1057 
1058 /*
1059  * when btree blocks are allocated, they have some corresponding bits set for
1060  * them in one of two extent_io trees.  This is used to make sure all of
1061  * those extents are sent to disk but does not wait on them
1062  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1063 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1064 			       struct extent_io_tree *dirty_pages, int mark)
1065 {
1066 	int err = 0;
1067 	int werr = 0;
1068 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1069 	struct extent_state *cached_state = NULL;
1070 	u64 start = 0;
1071 	u64 end;
1072 
1073 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1074 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1075 				      mark, &cached_state)) {
1076 		bool wait_writeback = false;
1077 
1078 		err = convert_extent_bit(dirty_pages, start, end,
1079 					 EXTENT_NEED_WAIT,
1080 					 mark, &cached_state);
1081 		/*
1082 		 * convert_extent_bit can return -ENOMEM, which is most of the
1083 		 * time a temporary error. So when it happens, ignore the error
1084 		 * and wait for writeback of this range to finish - because we
1085 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1086 		 * to __btrfs_wait_marked_extents() would not know that
1087 		 * writeback for this range started and therefore wouldn't
1088 		 * wait for it to finish - we don't want to commit a
1089 		 * superblock that points to btree nodes/leafs for which
1090 		 * writeback hasn't finished yet (and without errors).
1091 		 * We cleanup any entries left in the io tree when committing
1092 		 * the transaction (through extent_io_tree_release()).
1093 		 */
1094 		if (err == -ENOMEM) {
1095 			err = 0;
1096 			wait_writeback = true;
1097 		}
1098 		if (!err)
1099 			err = filemap_fdatawrite_range(mapping, start, end);
1100 		if (err)
1101 			werr = err;
1102 		else if (wait_writeback)
1103 			werr = filemap_fdatawait_range(mapping, start, end);
1104 		free_extent_state(cached_state);
1105 		cached_state = NULL;
1106 		cond_resched();
1107 		start = end + 1;
1108 	}
1109 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1110 	return werr;
1111 }
1112 
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are on disk for transaction or log commit.  We wait
1117  * on all the pages and clear them from the dirty pages state tree
1118  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1119 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1120 				       struct extent_io_tree *dirty_pages)
1121 {
1122 	int err = 0;
1123 	int werr = 0;
1124 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1125 	struct extent_state *cached_state = NULL;
1126 	u64 start = 0;
1127 	u64 end;
1128 
1129 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1130 				      EXTENT_NEED_WAIT, &cached_state)) {
1131 		/*
1132 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1133 		 * When committing the transaction, we'll remove any entries
1134 		 * left in the io tree. For a log commit, we don't remove them
1135 		 * after committing the log because the tree can be accessed
1136 		 * concurrently - we do it only at transaction commit time when
1137 		 * it's safe to do it (through extent_io_tree_release()).
1138 		 */
1139 		err = clear_extent_bit(dirty_pages, start, end,
1140 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1141 		if (err == -ENOMEM)
1142 			err = 0;
1143 		if (!err)
1144 			err = filemap_fdatawait_range(mapping, start, end);
1145 		if (err)
1146 			werr = err;
1147 		free_extent_state(cached_state);
1148 		cached_state = NULL;
1149 		cond_resched();
1150 		start = end + 1;
1151 	}
1152 	if (err)
1153 		werr = err;
1154 	return werr;
1155 }
1156 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1157 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1158 		       struct extent_io_tree *dirty_pages)
1159 {
1160 	bool errors = false;
1161 	int err;
1162 
1163 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1165 		errors = true;
1166 
1167 	if (errors && !err)
1168 		err = -EIO;
1169 	return err;
1170 }
1171 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1172 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1173 {
1174 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1175 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1176 	bool errors = false;
1177 	int err;
1178 
1179 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1180 
1181 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1182 	if ((mark & EXTENT_DIRTY) &&
1183 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1184 		errors = true;
1185 
1186 	if ((mark & EXTENT_NEW) &&
1187 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1188 		errors = true;
1189 
1190 	if (errors && !err)
1191 		err = -EIO;
1192 	return err;
1193 }
1194 
1195 /*
1196  * When btree blocks are allocated the corresponding extents are marked dirty.
1197  * This function ensures such extents are persisted on disk for transaction or
1198  * log commit.
1199  *
1200  * @trans: transaction whose dirty pages we'd like to write
1201  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1202 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1203 {
1204 	int ret;
1205 	int ret2;
1206 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1207 	struct btrfs_fs_info *fs_info = trans->fs_info;
1208 	struct blk_plug plug;
1209 
1210 	blk_start_plug(&plug);
1211 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1212 	blk_finish_plug(&plug);
1213 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1214 
1215 	extent_io_tree_release(&trans->transaction->dirty_pages);
1216 
1217 	if (ret)
1218 		return ret;
1219 	else if (ret2)
1220 		return ret2;
1221 	else
1222 		return 0;
1223 }
1224 
1225 /*
1226  * this is used to update the root pointer in the tree of tree roots.
1227  *
1228  * But, in the case of the extent allocation tree, updating the root
1229  * pointer may allocate blocks which may change the root of the extent
1230  * allocation tree.
1231  *
1232  * So, this loops and repeats and makes sure the cowonly root didn't
1233  * change while the root pointer was being updated in the metadata.
1234  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1235 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1236 			       struct btrfs_root *root)
1237 {
1238 	int ret;
1239 	u64 old_root_bytenr;
1240 	u64 old_root_used;
1241 	struct btrfs_fs_info *fs_info = root->fs_info;
1242 	struct btrfs_root *tree_root = fs_info->tree_root;
1243 
1244 	old_root_used = btrfs_root_used(&root->root_item);
1245 
1246 	while (1) {
1247 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1248 		if (old_root_bytenr == root->node->start &&
1249 		    old_root_used == btrfs_root_used(&root->root_item))
1250 			break;
1251 
1252 		btrfs_set_root_node(&root->root_item, root->node);
1253 		ret = btrfs_update_root(trans, tree_root,
1254 					&root->root_key,
1255 					&root->root_item);
1256 		if (ret)
1257 			return ret;
1258 
1259 		old_root_used = btrfs_root_used(&root->root_item);
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * update all the cowonly tree roots on disk
1267  *
1268  * The error handling in this function may not be obvious. Any of the
1269  * failures will cause the file system to go offline. We still need
1270  * to clean up the delayed refs.
1271  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1272 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1273 {
1274 	struct btrfs_fs_info *fs_info = trans->fs_info;
1275 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1276 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1277 	struct list_head *next;
1278 	struct extent_buffer *eb;
1279 	int ret;
1280 
1281 	eb = btrfs_lock_root_node(fs_info->tree_root);
1282 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1283 			      0, &eb, BTRFS_NESTING_COW);
1284 	btrfs_tree_unlock(eb);
1285 	free_extent_buffer(eb);
1286 
1287 	if (ret)
1288 		return ret;
1289 
1290 	ret = btrfs_run_dev_stats(trans);
1291 	if (ret)
1292 		return ret;
1293 	ret = btrfs_run_dev_replace(trans);
1294 	if (ret)
1295 		return ret;
1296 	ret = btrfs_run_qgroups(trans);
1297 	if (ret)
1298 		return ret;
1299 
1300 	ret = btrfs_setup_space_cache(trans);
1301 	if (ret)
1302 		return ret;
1303 
1304 again:
1305 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1306 		struct btrfs_root *root;
1307 		next = fs_info->dirty_cowonly_roots.next;
1308 		list_del_init(next);
1309 		root = list_entry(next, struct btrfs_root, dirty_list);
1310 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1311 
1312 		if (root != fs_info->extent_root)
1313 			list_add_tail(&root->dirty_list,
1314 				      &trans->transaction->switch_commits);
1315 		ret = update_cowonly_root(trans, root);
1316 		if (ret)
1317 			return ret;
1318 	}
1319 
1320 	/* Now flush any delayed refs generated by updating all of the roots */
1321 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1322 	if (ret)
1323 		return ret;
1324 
1325 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1326 		ret = btrfs_write_dirty_block_groups(trans);
1327 		if (ret)
1328 			return ret;
1329 
1330 		/*
1331 		 * We're writing the dirty block groups, which could generate
1332 		 * delayed refs, which could generate more dirty block groups,
1333 		 * so we want to keep this flushing in this loop to make sure
1334 		 * everything gets run.
1335 		 */
1336 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1337 		if (ret)
1338 			return ret;
1339 	}
1340 
1341 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1342 		goto again;
1343 
1344 	list_add_tail(&fs_info->extent_root->dirty_list,
1345 		      &trans->transaction->switch_commits);
1346 
1347 	/* Update dev-replace pointer once everything is committed */
1348 	fs_info->dev_replace.committed_cursor_left =
1349 		fs_info->dev_replace.cursor_left_last_write_of_item;
1350 
1351 	return 0;
1352 }
1353 
1354 /*
1355  * If we had a pending drop we need to see if there are any others left in our
1356  * dead roots list, and if not clear our bit and wake any waiters.
1357  */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1358 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1359 {
1360 	/*
1361 	 * We put the drop in progress roots at the front of the list, so if the
1362 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1363 	 * up.
1364 	 */
1365 	spin_lock(&fs_info->trans_lock);
1366 	if (!list_empty(&fs_info->dead_roots)) {
1367 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1368 							   struct btrfs_root,
1369 							   root_list);
1370 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1371 			spin_unlock(&fs_info->trans_lock);
1372 			return;
1373 		}
1374 	}
1375 	spin_unlock(&fs_info->trans_lock);
1376 
1377 	btrfs_wake_unfinished_drop(fs_info);
1378 }
1379 
1380 /*
1381  * dead roots are old snapshots that need to be deleted.  This allocates
1382  * a dirty root struct and adds it into the list of dead roots that need to
1383  * be deleted
1384  */
btrfs_add_dead_root(struct btrfs_root * root)1385 void btrfs_add_dead_root(struct btrfs_root *root)
1386 {
1387 	struct btrfs_fs_info *fs_info = root->fs_info;
1388 
1389 	spin_lock(&fs_info->trans_lock);
1390 	if (list_empty(&root->root_list)) {
1391 		btrfs_grab_root(root);
1392 
1393 		/* We want to process the partially complete drops first. */
1394 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1395 			list_add(&root->root_list, &fs_info->dead_roots);
1396 		else
1397 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1398 	}
1399 	spin_unlock(&fs_info->trans_lock);
1400 }
1401 
1402 /*
1403  * update all the cowonly tree roots on disk
1404  */
commit_fs_roots(struct btrfs_trans_handle * trans)1405 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1406 {
1407 	struct btrfs_fs_info *fs_info = trans->fs_info;
1408 	struct btrfs_root *gang[8];
1409 	int i;
1410 	int ret;
1411 
1412 	spin_lock(&fs_info->fs_roots_radix_lock);
1413 	while (1) {
1414 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1415 						 (void **)gang, 0,
1416 						 ARRAY_SIZE(gang),
1417 						 BTRFS_ROOT_TRANS_TAG);
1418 		if (ret == 0)
1419 			break;
1420 		for (i = 0; i < ret; i++) {
1421 			struct btrfs_root *root = gang[i];
1422 			int ret2;
1423 
1424 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1425 					(unsigned long)root->root_key.objectid,
1426 					BTRFS_ROOT_TRANS_TAG);
1427 			spin_unlock(&fs_info->fs_roots_radix_lock);
1428 
1429 			btrfs_free_log(trans, root);
1430 			ret2 = btrfs_update_reloc_root(trans, root);
1431 			if (ret2)
1432 				return ret2;
1433 
1434 			/* see comments in should_cow_block() */
1435 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1436 			smp_mb__after_atomic();
1437 
1438 			if (root->commit_root != root->node) {
1439 				list_add_tail(&root->dirty_list,
1440 					&trans->transaction->switch_commits);
1441 				btrfs_set_root_node(&root->root_item,
1442 						    root->node);
1443 			}
1444 
1445 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1446 						&root->root_key,
1447 						&root->root_item);
1448 			if (ret2)
1449 				return ret2;
1450 			spin_lock(&fs_info->fs_roots_radix_lock);
1451 			btrfs_qgroup_free_meta_all_pertrans(root);
1452 		}
1453 	}
1454 	spin_unlock(&fs_info->fs_roots_radix_lock);
1455 	return 0;
1456 }
1457 
1458 /*
1459  * defrag a given btree.
1460  * Every leaf in the btree is read and defragged.
1461  */
btrfs_defrag_root(struct btrfs_root * root)1462 int btrfs_defrag_root(struct btrfs_root *root)
1463 {
1464 	struct btrfs_fs_info *info = root->fs_info;
1465 	struct btrfs_trans_handle *trans;
1466 	int ret;
1467 
1468 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1469 		return 0;
1470 
1471 	while (1) {
1472 		trans = btrfs_start_transaction(root, 0);
1473 		if (IS_ERR(trans)) {
1474 			ret = PTR_ERR(trans);
1475 			break;
1476 		}
1477 
1478 		ret = btrfs_defrag_leaves(trans, root);
1479 
1480 		btrfs_end_transaction(trans);
1481 		btrfs_btree_balance_dirty(info);
1482 		cond_resched();
1483 
1484 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1485 			break;
1486 
1487 		if (btrfs_defrag_cancelled(info)) {
1488 			btrfs_debug(info, "defrag_root cancelled");
1489 			ret = -EAGAIN;
1490 			break;
1491 		}
1492 	}
1493 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1494 	return ret;
1495 }
1496 
1497 /*
1498  * Do all special snapshot related qgroup dirty hack.
1499  *
1500  * Will do all needed qgroup inherit and dirty hack like switch commit
1501  * roots inside one transaction and write all btree into disk, to make
1502  * qgroup works.
1503  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1504 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1505 				   struct btrfs_root *src,
1506 				   struct btrfs_root *parent,
1507 				   struct btrfs_qgroup_inherit *inherit,
1508 				   u64 dst_objectid)
1509 {
1510 	struct btrfs_fs_info *fs_info = src->fs_info;
1511 	int ret;
1512 
1513 	/*
1514 	 * Save some performance in the case that qgroups are not
1515 	 * enabled. If this check races with the ioctl, rescan will
1516 	 * kick in anyway.
1517 	 */
1518 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1519 		return 0;
1520 
1521 	/*
1522 	 * Ensure dirty @src will be committed.  Or, after coming
1523 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1524 	 * recorded root will never be updated again, causing an outdated root
1525 	 * item.
1526 	 */
1527 	ret = record_root_in_trans(trans, src, 1);
1528 	if (ret)
1529 		return ret;
1530 
1531 	/*
1532 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1533 	 * src root, so we must run the delayed refs here.
1534 	 *
1535 	 * However this isn't particularly fool proof, because there's no
1536 	 * synchronization keeping us from changing the tree after this point
1537 	 * before we do the qgroup_inherit, or even from making changes while
1538 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1539 	 * for now flush the delayed refs to narrow the race window where the
1540 	 * qgroup counters could end up wrong.
1541 	 */
1542 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1543 	if (ret) {
1544 		btrfs_abort_transaction(trans, ret);
1545 		return ret;
1546 	}
1547 
1548 	/*
1549 	 * We are going to commit transaction, see btrfs_commit_transaction()
1550 	 * comment for reason locking tree_log_mutex
1551 	 */
1552 	mutex_lock(&fs_info->tree_log_mutex);
1553 
1554 	ret = commit_fs_roots(trans);
1555 	if (ret)
1556 		goto out;
1557 	ret = btrfs_qgroup_account_extents(trans);
1558 	if (ret < 0)
1559 		goto out;
1560 
1561 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1562 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1563 				   inherit);
1564 	if (ret < 0)
1565 		goto out;
1566 
1567 	/*
1568 	 * Now we do a simplified commit transaction, which will:
1569 	 * 1) commit all subvolume and extent tree
1570 	 *    To ensure all subvolume and extent tree have a valid
1571 	 *    commit_root to accounting later insert_dir_item()
1572 	 * 2) write all btree blocks onto disk
1573 	 *    This is to make sure later btree modification will be cowed
1574 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1575 	 * In this simplified commit, we don't really care about other trees
1576 	 * like chunk and root tree, as they won't affect qgroup.
1577 	 * And we don't write super to avoid half committed status.
1578 	 */
1579 	ret = commit_cowonly_roots(trans);
1580 	if (ret)
1581 		goto out;
1582 	switch_commit_roots(trans);
1583 	ret = btrfs_write_and_wait_transaction(trans);
1584 	if (ret)
1585 		btrfs_handle_fs_error(fs_info, ret,
1586 			"Error while writing out transaction for qgroup");
1587 
1588 out:
1589 	mutex_unlock(&fs_info->tree_log_mutex);
1590 
1591 	/*
1592 	 * Force parent root to be updated, as we recorded it before so its
1593 	 * last_trans == cur_transid.
1594 	 * Or it won't be committed again onto disk after later
1595 	 * insert_dir_item()
1596 	 */
1597 	if (!ret)
1598 		ret = record_root_in_trans(trans, parent, 1);
1599 	return ret;
1600 }
1601 
1602 /*
1603  * new snapshots need to be created at a very specific time in the
1604  * transaction commit.  This does the actual creation.
1605  *
1606  * Note:
1607  * If the error which may affect the commitment of the current transaction
1608  * happens, we should return the error number. If the error which just affect
1609  * the creation of the pending snapshots, just return 0.
1610  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1611 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1612 				   struct btrfs_pending_snapshot *pending)
1613 {
1614 
1615 	struct btrfs_fs_info *fs_info = trans->fs_info;
1616 	struct btrfs_key key;
1617 	struct btrfs_root_item *new_root_item;
1618 	struct btrfs_root *tree_root = fs_info->tree_root;
1619 	struct btrfs_root *root = pending->root;
1620 	struct btrfs_root *parent_root;
1621 	struct btrfs_block_rsv *rsv;
1622 	struct inode *parent_inode;
1623 	struct btrfs_path *path;
1624 	struct btrfs_dir_item *dir_item;
1625 	struct dentry *dentry;
1626 	struct extent_buffer *tmp;
1627 	struct extent_buffer *old;
1628 	struct timespec64 cur_time;
1629 	int ret = 0;
1630 	u64 to_reserve = 0;
1631 	u64 index = 0;
1632 	u64 objectid;
1633 	u64 root_flags;
1634 
1635 	ASSERT(pending->path);
1636 	path = pending->path;
1637 
1638 	ASSERT(pending->root_item);
1639 	new_root_item = pending->root_item;
1640 
1641 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1642 	if (pending->error)
1643 		goto no_free_objectid;
1644 
1645 	/*
1646 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1647 	 * accounted by later btrfs_qgroup_inherit().
1648 	 */
1649 	btrfs_set_skip_qgroup(trans, objectid);
1650 
1651 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1652 
1653 	if (to_reserve > 0) {
1654 		pending->error = btrfs_block_rsv_add(root,
1655 						     &pending->block_rsv,
1656 						     to_reserve,
1657 						     BTRFS_RESERVE_NO_FLUSH);
1658 		if (pending->error)
1659 			goto clear_skip_qgroup;
1660 	}
1661 
1662 	key.objectid = objectid;
1663 	key.offset = (u64)-1;
1664 	key.type = BTRFS_ROOT_ITEM_KEY;
1665 
1666 	rsv = trans->block_rsv;
1667 	trans->block_rsv = &pending->block_rsv;
1668 	trans->bytes_reserved = trans->block_rsv->reserved;
1669 	trace_btrfs_space_reservation(fs_info, "transaction",
1670 				      trans->transid,
1671 				      trans->bytes_reserved, 1);
1672 	dentry = pending->dentry;
1673 	parent_inode = pending->dir;
1674 	parent_root = BTRFS_I(parent_inode)->root;
1675 	ret = record_root_in_trans(trans, parent_root, 0);
1676 	if (ret)
1677 		goto fail;
1678 	cur_time = current_time(parent_inode);
1679 
1680 	/*
1681 	 * insert the directory item
1682 	 */
1683 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1684 	BUG_ON(ret); /* -ENOMEM */
1685 
1686 	/* check if there is a file/dir which has the same name. */
1687 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1688 					 btrfs_ino(BTRFS_I(parent_inode)),
1689 					 dentry->d_name.name,
1690 					 dentry->d_name.len, 0);
1691 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1692 		pending->error = -EEXIST;
1693 		goto dir_item_existed;
1694 	} else if (IS_ERR(dir_item)) {
1695 		ret = PTR_ERR(dir_item);
1696 		btrfs_abort_transaction(trans, ret);
1697 		goto fail;
1698 	}
1699 	btrfs_release_path(path);
1700 
1701 	/*
1702 	 * pull in the delayed directory update
1703 	 * and the delayed inode item
1704 	 * otherwise we corrupt the FS during
1705 	 * snapshot
1706 	 */
1707 	ret = btrfs_run_delayed_items(trans);
1708 	if (ret) {	/* Transaction aborted */
1709 		btrfs_abort_transaction(trans, ret);
1710 		goto fail;
1711 	}
1712 
1713 	ret = record_root_in_trans(trans, root, 0);
1714 	if (ret) {
1715 		btrfs_abort_transaction(trans, ret);
1716 		goto fail;
1717 	}
1718 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1719 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1720 	btrfs_check_and_init_root_item(new_root_item);
1721 
1722 	root_flags = btrfs_root_flags(new_root_item);
1723 	if (pending->readonly)
1724 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1725 	else
1726 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1727 	btrfs_set_root_flags(new_root_item, root_flags);
1728 
1729 	btrfs_set_root_generation_v2(new_root_item,
1730 			trans->transid);
1731 	generate_random_guid(new_root_item->uuid);
1732 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1733 			BTRFS_UUID_SIZE);
1734 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1735 		memset(new_root_item->received_uuid, 0,
1736 		       sizeof(new_root_item->received_uuid));
1737 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1738 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1739 		btrfs_set_root_stransid(new_root_item, 0);
1740 		btrfs_set_root_rtransid(new_root_item, 0);
1741 	}
1742 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1743 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1744 	btrfs_set_root_otransid(new_root_item, trans->transid);
1745 
1746 	old = btrfs_lock_root_node(root);
1747 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1748 			      BTRFS_NESTING_COW);
1749 	if (ret) {
1750 		btrfs_tree_unlock(old);
1751 		free_extent_buffer(old);
1752 		btrfs_abort_transaction(trans, ret);
1753 		goto fail;
1754 	}
1755 
1756 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1757 	/* clean up in any case */
1758 	btrfs_tree_unlock(old);
1759 	free_extent_buffer(old);
1760 	if (ret) {
1761 		btrfs_abort_transaction(trans, ret);
1762 		goto fail;
1763 	}
1764 	/* see comments in should_cow_block() */
1765 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1766 	smp_wmb();
1767 
1768 	btrfs_set_root_node(new_root_item, tmp);
1769 	/* record when the snapshot was created in key.offset */
1770 	key.offset = trans->transid;
1771 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1772 	btrfs_tree_unlock(tmp);
1773 	free_extent_buffer(tmp);
1774 	if (ret) {
1775 		btrfs_abort_transaction(trans, ret);
1776 		goto fail;
1777 	}
1778 
1779 	/*
1780 	 * insert root back/forward references
1781 	 */
1782 	ret = btrfs_add_root_ref(trans, objectid,
1783 				 parent_root->root_key.objectid,
1784 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1785 				 dentry->d_name.name, dentry->d_name.len);
1786 	if (ret) {
1787 		btrfs_abort_transaction(trans, ret);
1788 		goto fail;
1789 	}
1790 
1791 	key.offset = (u64)-1;
1792 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1793 	if (IS_ERR(pending->snap)) {
1794 		ret = PTR_ERR(pending->snap);
1795 		pending->snap = NULL;
1796 		btrfs_abort_transaction(trans, ret);
1797 		goto fail;
1798 	}
1799 
1800 	ret = btrfs_reloc_post_snapshot(trans, pending);
1801 	if (ret) {
1802 		btrfs_abort_transaction(trans, ret);
1803 		goto fail;
1804 	}
1805 
1806 	/*
1807 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1808 	 * snapshot hack to do fast snapshot.
1809 	 * To co-operate with that hack, we do hack again.
1810 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1811 	 */
1812 	ret = qgroup_account_snapshot(trans, root, parent_root,
1813 				      pending->inherit, objectid);
1814 	if (ret < 0)
1815 		goto fail;
1816 
1817 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1818 				    dentry->d_name.len, BTRFS_I(parent_inode),
1819 				    &key, BTRFS_FT_DIR, index);
1820 	/* We have check then name at the beginning, so it is impossible. */
1821 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1822 	if (ret) {
1823 		btrfs_abort_transaction(trans, ret);
1824 		goto fail;
1825 	}
1826 
1827 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1828 					 dentry->d_name.len * 2);
1829 	parent_inode->i_mtime = parent_inode->i_ctime =
1830 		current_time(parent_inode);
1831 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1832 	if (ret) {
1833 		btrfs_abort_transaction(trans, ret);
1834 		goto fail;
1835 	}
1836 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1837 				  BTRFS_UUID_KEY_SUBVOL,
1838 				  objectid);
1839 	if (ret) {
1840 		btrfs_abort_transaction(trans, ret);
1841 		goto fail;
1842 	}
1843 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1844 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1845 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1846 					  objectid);
1847 		if (ret && ret != -EEXIST) {
1848 			btrfs_abort_transaction(trans, ret);
1849 			goto fail;
1850 		}
1851 	}
1852 
1853 fail:
1854 	pending->error = ret;
1855 dir_item_existed:
1856 	trans->block_rsv = rsv;
1857 	trans->bytes_reserved = 0;
1858 clear_skip_qgroup:
1859 	btrfs_clear_skip_qgroup(trans);
1860 no_free_objectid:
1861 	kfree(new_root_item);
1862 	pending->root_item = NULL;
1863 	btrfs_free_path(path);
1864 	pending->path = NULL;
1865 
1866 	return ret;
1867 }
1868 
1869 /*
1870  * create all the snapshots we've scheduled for creation
1871  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1872 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1873 {
1874 	struct btrfs_pending_snapshot *pending, *next;
1875 	struct list_head *head = &trans->transaction->pending_snapshots;
1876 	int ret = 0;
1877 
1878 	list_for_each_entry_safe(pending, next, head, list) {
1879 		list_del(&pending->list);
1880 		ret = create_pending_snapshot(trans, pending);
1881 		if (ret)
1882 			break;
1883 	}
1884 	return ret;
1885 }
1886 
update_super_roots(struct btrfs_fs_info * fs_info)1887 static void update_super_roots(struct btrfs_fs_info *fs_info)
1888 {
1889 	struct btrfs_root_item *root_item;
1890 	struct btrfs_super_block *super;
1891 
1892 	super = fs_info->super_copy;
1893 
1894 	root_item = &fs_info->chunk_root->root_item;
1895 	super->chunk_root = root_item->bytenr;
1896 	super->chunk_root_generation = root_item->generation;
1897 	super->chunk_root_level = root_item->level;
1898 
1899 	root_item = &fs_info->tree_root->root_item;
1900 	super->root = root_item->bytenr;
1901 	super->generation = root_item->generation;
1902 	super->root_level = root_item->level;
1903 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1904 		super->cache_generation = root_item->generation;
1905 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1906 		super->cache_generation = 0;
1907 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1908 		super->uuid_tree_generation = root_item->generation;
1909 }
1910 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1911 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1912 {
1913 	struct btrfs_transaction *trans;
1914 	int ret = 0;
1915 
1916 	spin_lock(&info->trans_lock);
1917 	trans = info->running_transaction;
1918 	if (trans)
1919 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1920 	spin_unlock(&info->trans_lock);
1921 	return ret;
1922 }
1923 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1924 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1925 {
1926 	struct btrfs_transaction *trans;
1927 	int ret = 0;
1928 
1929 	spin_lock(&info->trans_lock);
1930 	trans = info->running_transaction;
1931 	if (trans)
1932 		ret = is_transaction_blocked(trans);
1933 	spin_unlock(&info->trans_lock);
1934 	return ret;
1935 }
1936 
1937 /*
1938  * commit transactions asynchronously. once btrfs_commit_transaction_async
1939  * returns, any subsequent transaction will not be allowed to join.
1940  */
1941 struct btrfs_async_commit {
1942 	struct btrfs_trans_handle *newtrans;
1943 	struct work_struct work;
1944 };
1945 
do_async_commit(struct work_struct * work)1946 static void do_async_commit(struct work_struct *work)
1947 {
1948 	struct btrfs_async_commit *ac =
1949 		container_of(work, struct btrfs_async_commit, work);
1950 
1951 	/*
1952 	 * We've got freeze protection passed with the transaction.
1953 	 * Tell lockdep about it.
1954 	 */
1955 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1956 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1957 
1958 	current->journal_info = ac->newtrans;
1959 
1960 	btrfs_commit_transaction(ac->newtrans);
1961 	kfree(ac);
1962 }
1963 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1964 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1965 {
1966 	struct btrfs_fs_info *fs_info = trans->fs_info;
1967 	struct btrfs_async_commit *ac;
1968 	struct btrfs_transaction *cur_trans;
1969 
1970 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1971 	if (!ac)
1972 		return -ENOMEM;
1973 
1974 	INIT_WORK(&ac->work, do_async_commit);
1975 	ac->newtrans = btrfs_join_transaction(trans->root);
1976 	if (IS_ERR(ac->newtrans)) {
1977 		int err = PTR_ERR(ac->newtrans);
1978 		kfree(ac);
1979 		return err;
1980 	}
1981 
1982 	/* take transaction reference */
1983 	cur_trans = trans->transaction;
1984 	refcount_inc(&cur_trans->use_count);
1985 
1986 	btrfs_end_transaction(trans);
1987 
1988 	/*
1989 	 * Tell lockdep we've released the freeze rwsem, since the
1990 	 * async commit thread will be the one to unlock it.
1991 	 */
1992 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1993 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1994 
1995 	schedule_work(&ac->work);
1996 	/*
1997 	 * Wait for the current transaction commit to start and block
1998 	 * subsequent transaction joins
1999 	 */
2000 	wait_event(fs_info->transaction_blocked_wait,
2001 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
2002 		   TRANS_ABORTED(cur_trans));
2003 	if (current->journal_info == trans)
2004 		current->journal_info = NULL;
2005 
2006 	btrfs_put_transaction(cur_trans);
2007 	return 0;
2008 }
2009 
2010 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2011 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2012 {
2013 	struct btrfs_fs_info *fs_info = trans->fs_info;
2014 	struct btrfs_transaction *cur_trans = trans->transaction;
2015 
2016 	WARN_ON(refcount_read(&trans->use_count) > 1);
2017 
2018 	btrfs_abort_transaction(trans, err);
2019 
2020 	spin_lock(&fs_info->trans_lock);
2021 
2022 	/*
2023 	 * If the transaction is removed from the list, it means this
2024 	 * transaction has been committed successfully, so it is impossible
2025 	 * to call the cleanup function.
2026 	 */
2027 	BUG_ON(list_empty(&cur_trans->list));
2028 
2029 	if (cur_trans == fs_info->running_transaction) {
2030 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2031 		spin_unlock(&fs_info->trans_lock);
2032 		wait_event(cur_trans->writer_wait,
2033 			   atomic_read(&cur_trans->num_writers) == 1);
2034 
2035 		spin_lock(&fs_info->trans_lock);
2036 	}
2037 
2038 	/*
2039 	 * Now that we know no one else is still using the transaction we can
2040 	 * remove the transaction from the list of transactions. This avoids
2041 	 * the transaction kthread from cleaning up the transaction while some
2042 	 * other task is still using it, which could result in a use-after-free
2043 	 * on things like log trees, as it forces the transaction kthread to
2044 	 * wait for this transaction to be cleaned up by us.
2045 	 */
2046 	list_del_init(&cur_trans->list);
2047 
2048 	spin_unlock(&fs_info->trans_lock);
2049 
2050 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2051 
2052 	spin_lock(&fs_info->trans_lock);
2053 	if (cur_trans == fs_info->running_transaction)
2054 		fs_info->running_transaction = NULL;
2055 	spin_unlock(&fs_info->trans_lock);
2056 
2057 	if (trans->type & __TRANS_FREEZABLE)
2058 		sb_end_intwrite(fs_info->sb);
2059 	btrfs_put_transaction(cur_trans);
2060 	btrfs_put_transaction(cur_trans);
2061 
2062 	trace_btrfs_transaction_commit(trans->root);
2063 
2064 	if (current->journal_info == trans)
2065 		current->journal_info = NULL;
2066 	btrfs_scrub_cancel(fs_info);
2067 
2068 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2069 }
2070 
2071 /*
2072  * Release reserved delayed ref space of all pending block groups of the
2073  * transaction and remove them from the list
2074  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2075 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2076 {
2077        struct btrfs_fs_info *fs_info = trans->fs_info;
2078        struct btrfs_block_group *block_group, *tmp;
2079 
2080        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2081                btrfs_delayed_refs_rsv_release(fs_info, 1);
2082                list_del_init(&block_group->bg_list);
2083        }
2084 }
2085 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2086 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2087 {
2088 	/*
2089 	 * We use try_to_writeback_inodes_sb() here because if we used
2090 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2091 	 * Currently are holding the fs freeze lock, if we do an async flush
2092 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2093 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2094 	 * from already being in a transaction and our join_transaction doesn't
2095 	 * have to re-take the fs freeze lock.
2096 	 *
2097 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2098 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2099 	 * except when the filesystem is being unmounted or being frozen, but in
2100 	 * those cases sync_filesystem() is called, which results in calling
2101 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2102 	 * Note that we don't call writeback_inodes_sb() directly, because it
2103 	 * will emit a warning if sb->s_umount is not locked.
2104 	 */
2105 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2107 	return 0;
2108 }
2109 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2110 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2111 {
2112 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2113 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2114 }
2115 
2116 /*
2117  * Add a pending snapshot associated with the given transaction handle to the
2118  * respective handle. This must be called after the transaction commit started
2119  * and while holding fs_info->trans_lock.
2120  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2121  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2122  * returns an error.
2123  */
add_pending_snapshot(struct btrfs_trans_handle * trans)2124 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2125 {
2126 	struct btrfs_transaction *cur_trans = trans->transaction;
2127 
2128 	if (!trans->pending_snapshot)
2129 		return;
2130 
2131 	lockdep_assert_held(&trans->fs_info->trans_lock);
2132 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2133 
2134 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2135 }
2136 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2137 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2138 {
2139 	struct btrfs_fs_info *fs_info = trans->fs_info;
2140 	struct btrfs_transaction *cur_trans = trans->transaction;
2141 	struct btrfs_transaction *prev_trans = NULL;
2142 	int ret;
2143 
2144 	ASSERT(refcount_read(&trans->use_count) == 1);
2145 
2146 	/* Stop the commit early if ->aborted is set */
2147 	if (TRANS_ABORTED(cur_trans)) {
2148 		ret = cur_trans->aborted;
2149 		btrfs_end_transaction(trans);
2150 		return ret;
2151 	}
2152 
2153 	btrfs_trans_release_metadata(trans);
2154 	trans->block_rsv = NULL;
2155 
2156 	/*
2157 	 * We only want one transaction commit doing the flushing so we do not
2158 	 * waste a bunch of time on lock contention on the extent root node.
2159 	 */
2160 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2161 			      &cur_trans->delayed_refs.flags)) {
2162 		/*
2163 		 * Make a pass through all the delayed refs we have so far.
2164 		 * Any running threads may add more while we are here.
2165 		 */
2166 		ret = btrfs_run_delayed_refs(trans, 0);
2167 		if (ret) {
2168 			btrfs_end_transaction(trans);
2169 			return ret;
2170 		}
2171 	}
2172 
2173 	btrfs_create_pending_block_groups(trans);
2174 
2175 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2176 		int run_it = 0;
2177 
2178 		/* this mutex is also taken before trying to set
2179 		 * block groups readonly.  We need to make sure
2180 		 * that nobody has set a block group readonly
2181 		 * after a extents from that block group have been
2182 		 * allocated for cache files.  btrfs_set_block_group_ro
2183 		 * will wait for the transaction to commit if it
2184 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2185 		 *
2186 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2187 		 * only one process starts all the block group IO.  It wouldn't
2188 		 * hurt to have more than one go through, but there's no
2189 		 * real advantage to it either.
2190 		 */
2191 		mutex_lock(&fs_info->ro_block_group_mutex);
2192 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2193 				      &cur_trans->flags))
2194 			run_it = 1;
2195 		mutex_unlock(&fs_info->ro_block_group_mutex);
2196 
2197 		if (run_it) {
2198 			ret = btrfs_start_dirty_block_groups(trans);
2199 			if (ret) {
2200 				btrfs_end_transaction(trans);
2201 				return ret;
2202 			}
2203 		}
2204 	}
2205 
2206 	spin_lock(&fs_info->trans_lock);
2207 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2208 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2209 
2210 		add_pending_snapshot(trans);
2211 
2212 		spin_unlock(&fs_info->trans_lock);
2213 		refcount_inc(&cur_trans->use_count);
2214 
2215 		if (trans->in_fsync)
2216 			want_state = TRANS_STATE_SUPER_COMMITTED;
2217 		ret = btrfs_end_transaction(trans);
2218 		wait_for_commit(cur_trans, want_state);
2219 
2220 		if (TRANS_ABORTED(cur_trans))
2221 			ret = cur_trans->aborted;
2222 
2223 		btrfs_put_transaction(cur_trans);
2224 
2225 		return ret;
2226 	}
2227 
2228 	cur_trans->state = TRANS_STATE_COMMIT_START;
2229 	wake_up(&fs_info->transaction_blocked_wait);
2230 
2231 	if (cur_trans->list.prev != &fs_info->trans_list) {
2232 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2233 
2234 		if (trans->in_fsync)
2235 			want_state = TRANS_STATE_SUPER_COMMITTED;
2236 
2237 		prev_trans = list_entry(cur_trans->list.prev,
2238 					struct btrfs_transaction, list);
2239 		if (prev_trans->state < want_state) {
2240 			refcount_inc(&prev_trans->use_count);
2241 			spin_unlock(&fs_info->trans_lock);
2242 
2243 			wait_for_commit(prev_trans, want_state);
2244 
2245 			ret = READ_ONCE(prev_trans->aborted);
2246 
2247 			btrfs_put_transaction(prev_trans);
2248 			if (ret)
2249 				goto cleanup_transaction;
2250 		} else {
2251 			spin_unlock(&fs_info->trans_lock);
2252 		}
2253 	} else {
2254 		spin_unlock(&fs_info->trans_lock);
2255 		/*
2256 		 * The previous transaction was aborted and was already removed
2257 		 * from the list of transactions at fs_info->trans_list. So we
2258 		 * abort to prevent writing a new superblock that reflects a
2259 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2260 		 */
2261 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2262 			ret = -EROFS;
2263 			goto cleanup_transaction;
2264 		}
2265 	}
2266 
2267 	extwriter_counter_dec(cur_trans, trans->type);
2268 
2269 	ret = btrfs_start_delalloc_flush(fs_info);
2270 	if (ret)
2271 		goto cleanup_transaction;
2272 
2273 	ret = btrfs_run_delayed_items(trans);
2274 	if (ret)
2275 		goto cleanup_transaction;
2276 
2277 	wait_event(cur_trans->writer_wait,
2278 		   extwriter_counter_read(cur_trans) == 0);
2279 
2280 	/* some pending stuffs might be added after the previous flush. */
2281 	ret = btrfs_run_delayed_items(trans);
2282 	if (ret)
2283 		goto cleanup_transaction;
2284 
2285 	btrfs_wait_delalloc_flush(fs_info);
2286 
2287 	/*
2288 	 * Wait for all ordered extents started by a fast fsync that joined this
2289 	 * transaction. Otherwise if this transaction commits before the ordered
2290 	 * extents complete we lose logged data after a power failure.
2291 	 */
2292 	wait_event(cur_trans->pending_wait,
2293 		   atomic_read(&cur_trans->pending_ordered) == 0);
2294 
2295 	btrfs_scrub_pause(fs_info);
2296 	/*
2297 	 * Ok now we need to make sure to block out any other joins while we
2298 	 * commit the transaction.  We could have started a join before setting
2299 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2300 	 */
2301 	spin_lock(&fs_info->trans_lock);
2302 	add_pending_snapshot(trans);
2303 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2304 	spin_unlock(&fs_info->trans_lock);
2305 	wait_event(cur_trans->writer_wait,
2306 		   atomic_read(&cur_trans->num_writers) == 1);
2307 
2308 	if (TRANS_ABORTED(cur_trans)) {
2309 		ret = cur_trans->aborted;
2310 		goto scrub_continue;
2311 	}
2312 	/*
2313 	 * the reloc mutex makes sure that we stop
2314 	 * the balancing code from coming in and moving
2315 	 * extents around in the middle of the commit
2316 	 */
2317 	mutex_lock(&fs_info->reloc_mutex);
2318 
2319 	/*
2320 	 * We needn't worry about the delayed items because we will
2321 	 * deal with them in create_pending_snapshot(), which is the
2322 	 * core function of the snapshot creation.
2323 	 */
2324 	ret = create_pending_snapshots(trans);
2325 	if (ret)
2326 		goto unlock_reloc;
2327 
2328 	/*
2329 	 * We insert the dir indexes of the snapshots and update the inode
2330 	 * of the snapshots' parents after the snapshot creation, so there
2331 	 * are some delayed items which are not dealt with. Now deal with
2332 	 * them.
2333 	 *
2334 	 * We needn't worry that this operation will corrupt the snapshots,
2335 	 * because all the tree which are snapshoted will be forced to COW
2336 	 * the nodes and leaves.
2337 	 */
2338 	ret = btrfs_run_delayed_items(trans);
2339 	if (ret)
2340 		goto unlock_reloc;
2341 
2342 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2343 	if (ret)
2344 		goto unlock_reloc;
2345 
2346 	/*
2347 	 * make sure none of the code above managed to slip in a
2348 	 * delayed item
2349 	 */
2350 	btrfs_assert_delayed_root_empty(fs_info);
2351 
2352 	WARN_ON(cur_trans != trans->transaction);
2353 
2354 	/* btrfs_commit_tree_roots is responsible for getting the
2355 	 * various roots consistent with each other.  Every pointer
2356 	 * in the tree of tree roots has to point to the most up to date
2357 	 * root for every subvolume and other tree.  So, we have to keep
2358 	 * the tree logging code from jumping in and changing any
2359 	 * of the trees.
2360 	 *
2361 	 * At this point in the commit, there can't be any tree-log
2362 	 * writers, but a little lower down we drop the trans mutex
2363 	 * and let new people in.  By holding the tree_log_mutex
2364 	 * from now until after the super is written, we avoid races
2365 	 * with the tree-log code.
2366 	 */
2367 	mutex_lock(&fs_info->tree_log_mutex);
2368 
2369 	ret = commit_fs_roots(trans);
2370 	if (ret)
2371 		goto unlock_tree_log;
2372 
2373 	/*
2374 	 * Since the transaction is done, we can apply the pending changes
2375 	 * before the next transaction.
2376 	 */
2377 	btrfs_apply_pending_changes(fs_info);
2378 
2379 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2380 	 * safe to free the root of tree log roots
2381 	 */
2382 	btrfs_free_log_root_tree(trans, fs_info);
2383 
2384 	/*
2385 	 * Since fs roots are all committed, we can get a quite accurate
2386 	 * new_roots. So let's do quota accounting.
2387 	 */
2388 	ret = btrfs_qgroup_account_extents(trans);
2389 	if (ret < 0)
2390 		goto unlock_tree_log;
2391 
2392 	ret = commit_cowonly_roots(trans);
2393 	if (ret)
2394 		goto unlock_tree_log;
2395 
2396 	/*
2397 	 * The tasks which save the space cache and inode cache may also
2398 	 * update ->aborted, check it.
2399 	 */
2400 	if (TRANS_ABORTED(cur_trans)) {
2401 		ret = cur_trans->aborted;
2402 		goto unlock_tree_log;
2403 	}
2404 
2405 	cur_trans = fs_info->running_transaction;
2406 
2407 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2408 			    fs_info->tree_root->node);
2409 	list_add_tail(&fs_info->tree_root->dirty_list,
2410 		      &cur_trans->switch_commits);
2411 
2412 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2413 			    fs_info->chunk_root->node);
2414 	list_add_tail(&fs_info->chunk_root->dirty_list,
2415 		      &cur_trans->switch_commits);
2416 
2417 	switch_commit_roots(trans);
2418 
2419 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2420 	ASSERT(list_empty(&cur_trans->io_bgs));
2421 	update_super_roots(fs_info);
2422 
2423 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2424 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2425 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2426 	       sizeof(*fs_info->super_copy));
2427 
2428 	btrfs_commit_device_sizes(cur_trans);
2429 
2430 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2431 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2432 
2433 	btrfs_trans_release_chunk_metadata(trans);
2434 
2435 	spin_lock(&fs_info->trans_lock);
2436 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2437 	fs_info->running_transaction = NULL;
2438 	spin_unlock(&fs_info->trans_lock);
2439 	mutex_unlock(&fs_info->reloc_mutex);
2440 
2441 	wake_up(&fs_info->transaction_wait);
2442 
2443 	ret = btrfs_write_and_wait_transaction(trans);
2444 	if (ret) {
2445 		btrfs_handle_fs_error(fs_info, ret,
2446 				      "Error while writing out transaction");
2447 		/*
2448 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2449 		 * but we can't jump to unlock_tree_log causing double unlock
2450 		 */
2451 		mutex_unlock(&fs_info->tree_log_mutex);
2452 		goto scrub_continue;
2453 	}
2454 
2455 	/*
2456 	 * At this point, we should have written all the tree blocks allocated
2457 	 * in this transaction. So it's now safe to free the redirtyied extent
2458 	 * buffers.
2459 	 */
2460 	btrfs_free_redirty_list(cur_trans);
2461 
2462 	ret = write_all_supers(fs_info, 0);
2463 	/*
2464 	 * the super is written, we can safely allow the tree-loggers
2465 	 * to go about their business
2466 	 */
2467 	mutex_unlock(&fs_info->tree_log_mutex);
2468 	if (ret)
2469 		goto scrub_continue;
2470 
2471 	/*
2472 	 * We needn't acquire the lock here because there is no other task
2473 	 * which can change it.
2474 	 */
2475 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2476 	wake_up(&cur_trans->commit_wait);
2477 
2478 	btrfs_finish_extent_commit(trans);
2479 
2480 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2481 		btrfs_clear_space_info_full(fs_info);
2482 
2483 	fs_info->last_trans_committed = cur_trans->transid;
2484 	/*
2485 	 * We needn't acquire the lock here because there is no other task
2486 	 * which can change it.
2487 	 */
2488 	cur_trans->state = TRANS_STATE_COMPLETED;
2489 	wake_up(&cur_trans->commit_wait);
2490 
2491 	spin_lock(&fs_info->trans_lock);
2492 	list_del_init(&cur_trans->list);
2493 	spin_unlock(&fs_info->trans_lock);
2494 
2495 	btrfs_put_transaction(cur_trans);
2496 	btrfs_put_transaction(cur_trans);
2497 
2498 	if (trans->type & __TRANS_FREEZABLE)
2499 		sb_end_intwrite(fs_info->sb);
2500 
2501 	trace_btrfs_transaction_commit(trans->root);
2502 
2503 	btrfs_scrub_continue(fs_info);
2504 
2505 	if (current->journal_info == trans)
2506 		current->journal_info = NULL;
2507 
2508 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2509 
2510 	return ret;
2511 
2512 unlock_tree_log:
2513 	mutex_unlock(&fs_info->tree_log_mutex);
2514 unlock_reloc:
2515 	mutex_unlock(&fs_info->reloc_mutex);
2516 scrub_continue:
2517 	btrfs_scrub_continue(fs_info);
2518 cleanup_transaction:
2519 	btrfs_trans_release_metadata(trans);
2520 	btrfs_cleanup_pending_block_groups(trans);
2521 	btrfs_trans_release_chunk_metadata(trans);
2522 	trans->block_rsv = NULL;
2523 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2524 	if (current->journal_info == trans)
2525 		current->journal_info = NULL;
2526 	cleanup_transaction(trans, ret);
2527 
2528 	return ret;
2529 }
2530 
2531 /*
2532  * return < 0 if error
2533  * 0 if there are no more dead_roots at the time of call
2534  * 1 there are more to be processed, call me again
2535  *
2536  * The return value indicates there are certainly more snapshots to delete, but
2537  * if there comes a new one during processing, it may return 0. We don't mind,
2538  * because btrfs_commit_super will poke cleaner thread and it will process it a
2539  * few seconds later.
2540  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2541 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2542 {
2543 	int ret;
2544 	struct btrfs_fs_info *fs_info = root->fs_info;
2545 
2546 	spin_lock(&fs_info->trans_lock);
2547 	if (list_empty(&fs_info->dead_roots)) {
2548 		spin_unlock(&fs_info->trans_lock);
2549 		return 0;
2550 	}
2551 	root = list_first_entry(&fs_info->dead_roots,
2552 			struct btrfs_root, root_list);
2553 	list_del_init(&root->root_list);
2554 	spin_unlock(&fs_info->trans_lock);
2555 
2556 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2557 
2558 	btrfs_kill_all_delayed_nodes(root);
2559 
2560 	if (btrfs_header_backref_rev(root->node) <
2561 			BTRFS_MIXED_BACKREF_REV)
2562 		ret = btrfs_drop_snapshot(root, 0, 0);
2563 	else
2564 		ret = btrfs_drop_snapshot(root, 1, 0);
2565 
2566 	btrfs_put_root(root);
2567 	return (ret < 0) ? 0 : 1;
2568 }
2569 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2570 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2571 {
2572 	unsigned long prev;
2573 	unsigned long bit;
2574 
2575 	prev = xchg(&fs_info->pending_changes, 0);
2576 	if (!prev)
2577 		return;
2578 
2579 	bit = 1 << BTRFS_PENDING_COMMIT;
2580 	if (prev & bit)
2581 		btrfs_debug(fs_info, "pending commit done");
2582 	prev &= ~bit;
2583 
2584 	if (prev)
2585 		btrfs_warn(fs_info,
2586 			"unknown pending changes left 0x%lx, ignoring", prev);
2587 }
2588