1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 [TRANS_STATE_RUNNING] = 0U,
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
103 __TRANS_ATTACH |
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
121 };
122
btrfs_put_transaction(struct btrfs_transaction * transaction)123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
127 BUG_ON(!list_empty(&transaction->list));
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
132 if (transaction->delayed_refs.pending_csums)
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
144 struct btrfs_block_group *cache;
145
146 cache = list_first_entry(&transaction->deleted_bgs,
147 struct btrfs_block_group,
148 bg_list);
149 list_del_init(&cache->bg_list);
150 btrfs_unfreeze_block_group(cache);
151 btrfs_put_block_group(cache);
152 }
153 WARN_ON(!list_empty(&transaction->dev_update_list));
154 kfree(transaction);
155 }
156 }
157
switch_commit_roots(struct btrfs_trans_handle * trans)158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 struct btrfs_transaction *cur_trans = trans->transaction;
161 struct btrfs_fs_info *fs_info = trans->fs_info;
162 struct btrfs_root *root, *tmp;
163 struct btrfs_caching_control *caching_ctl, *next;
164
165 down_write(&fs_info->commit_root_sem);
166
167 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
168 fs_info->last_reloc_trans = trans->transid;
169
170 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
171 dirty_list) {
172 list_del_init(&root->dirty_list);
173 free_extent_buffer(root->commit_root);
174 root->commit_root = btrfs_root_node(root);
175 extent_io_tree_release(&root->dirty_log_pages);
176 btrfs_qgroup_clean_swapped_blocks(root);
177 }
178
179 /* We can free old roots now. */
180 spin_lock(&cur_trans->dropped_roots_lock);
181 while (!list_empty(&cur_trans->dropped_roots)) {
182 root = list_first_entry(&cur_trans->dropped_roots,
183 struct btrfs_root, root_list);
184 list_del_init(&root->root_list);
185 spin_unlock(&cur_trans->dropped_roots_lock);
186 btrfs_free_log(trans, root);
187 btrfs_drop_and_free_fs_root(fs_info, root);
188 spin_lock(&cur_trans->dropped_roots_lock);
189 }
190 spin_unlock(&cur_trans->dropped_roots_lock);
191
192 /*
193 * We have to update the last_byte_to_unpin under the commit_root_sem,
194 * at the same time we swap out the commit roots.
195 *
196 * This is because we must have a real view of the last spot the caching
197 * kthreads were while caching. Consider the following views of the
198 * extent tree for a block group
199 *
200 * commit root
201 * +----+----+----+----+----+----+----+
202 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
203 * +----+----+----+----+----+----+----+
204 * 0 1 2 3 4 5 6 7
205 *
206 * new commit root
207 * +----+----+----+----+----+----+----+
208 * | | | |\\\\| | |\\\\|
209 * +----+----+----+----+----+----+----+
210 * 0 1 2 3 4 5 6 7
211 *
212 * If the cache_ctl->progress was at 3, then we are only allowed to
213 * unpin [0,1) and [2,3], because the caching thread has already
214 * processed those extents. We are not allowed to unpin [5,6), because
215 * the caching thread will re-start it's search from 3, and thus find
216 * the hole from [4,6) to add to the free space cache.
217 */
218 spin_lock(&fs_info->block_group_cache_lock);
219 list_for_each_entry_safe(caching_ctl, next,
220 &fs_info->caching_block_groups, list) {
221 struct btrfs_block_group *cache = caching_ctl->block_group;
222
223 if (btrfs_block_group_done(cache)) {
224 cache->last_byte_to_unpin = (u64)-1;
225 list_del_init(&caching_ctl->list);
226 btrfs_put_caching_control(caching_ctl);
227 } else {
228 cache->last_byte_to_unpin = caching_ctl->progress;
229 }
230 }
231 spin_unlock(&fs_info->block_group_cache_lock);
232 up_write(&fs_info->commit_root_sem);
233 }
234
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)235 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
236 unsigned int type)
237 {
238 if (type & TRANS_EXTWRITERS)
239 atomic_inc(&trans->num_extwriters);
240 }
241
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)242 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
243 unsigned int type)
244 {
245 if (type & TRANS_EXTWRITERS)
246 atomic_dec(&trans->num_extwriters);
247 }
248
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)249 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
250 unsigned int type)
251 {
252 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
253 }
254
extwriter_counter_read(struct btrfs_transaction * trans)255 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
256 {
257 return atomic_read(&trans->num_extwriters);
258 }
259
260 /*
261 * To be called after doing the chunk btree updates right after allocating a new
262 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
263 * chunk after all chunk btree updates and after finishing the second phase of
264 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
265 * group had its chunk item insertion delayed to the second phase.
266 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)267 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
268 {
269 struct btrfs_fs_info *fs_info = trans->fs_info;
270
271 if (!trans->chunk_bytes_reserved)
272 return;
273
274 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
275 trans->chunk_bytes_reserved, NULL);
276 trans->chunk_bytes_reserved = 0;
277 }
278
279 /*
280 * either allocate a new transaction or hop into the existing one
281 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)282 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
283 unsigned int type)
284 {
285 struct btrfs_transaction *cur_trans;
286
287 spin_lock(&fs_info->trans_lock);
288 loop:
289 /* The file system has been taken offline. No new transactions. */
290 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
291 spin_unlock(&fs_info->trans_lock);
292 return -EROFS;
293 }
294
295 cur_trans = fs_info->running_transaction;
296 if (cur_trans) {
297 if (TRANS_ABORTED(cur_trans)) {
298 spin_unlock(&fs_info->trans_lock);
299 return cur_trans->aborted;
300 }
301 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
302 spin_unlock(&fs_info->trans_lock);
303 return -EBUSY;
304 }
305 refcount_inc(&cur_trans->use_count);
306 atomic_inc(&cur_trans->num_writers);
307 extwriter_counter_inc(cur_trans, type);
308 spin_unlock(&fs_info->trans_lock);
309 return 0;
310 }
311 spin_unlock(&fs_info->trans_lock);
312
313 /*
314 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
315 * current transaction, and commit it. If there is no transaction, just
316 * return ENOENT.
317 */
318 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
319 return -ENOENT;
320
321 /*
322 * JOIN_NOLOCK only happens during the transaction commit, so
323 * it is impossible that ->running_transaction is NULL
324 */
325 BUG_ON(type == TRANS_JOIN_NOLOCK);
326
327 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
328 if (!cur_trans)
329 return -ENOMEM;
330
331 spin_lock(&fs_info->trans_lock);
332 if (fs_info->running_transaction) {
333 /*
334 * someone started a transaction after we unlocked. Make sure
335 * to redo the checks above
336 */
337 kfree(cur_trans);
338 goto loop;
339 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
340 spin_unlock(&fs_info->trans_lock);
341 kfree(cur_trans);
342 return -EROFS;
343 }
344
345 cur_trans->fs_info = fs_info;
346 atomic_set(&cur_trans->pending_ordered, 0);
347 init_waitqueue_head(&cur_trans->pending_wait);
348 atomic_set(&cur_trans->num_writers, 1);
349 extwriter_counter_init(cur_trans, type);
350 init_waitqueue_head(&cur_trans->writer_wait);
351 init_waitqueue_head(&cur_trans->commit_wait);
352 cur_trans->state = TRANS_STATE_RUNNING;
353 /*
354 * One for this trans handle, one so it will live on until we
355 * commit the transaction.
356 */
357 refcount_set(&cur_trans->use_count, 2);
358 cur_trans->flags = 0;
359 cur_trans->start_time = ktime_get_seconds();
360
361 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
362
363 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
364 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
365 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
366
367 /*
368 * although the tree mod log is per file system and not per transaction,
369 * the log must never go across transaction boundaries.
370 */
371 smp_mb();
372 if (!list_empty(&fs_info->tree_mod_seq_list))
373 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
374 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
375 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
376 atomic64_set(&fs_info->tree_mod_seq, 0);
377
378 spin_lock_init(&cur_trans->delayed_refs.lock);
379
380 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
381 INIT_LIST_HEAD(&cur_trans->dev_update_list);
382 INIT_LIST_HEAD(&cur_trans->switch_commits);
383 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
384 INIT_LIST_HEAD(&cur_trans->io_bgs);
385 INIT_LIST_HEAD(&cur_trans->dropped_roots);
386 mutex_init(&cur_trans->cache_write_mutex);
387 spin_lock_init(&cur_trans->dirty_bgs_lock);
388 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
389 spin_lock_init(&cur_trans->dropped_roots_lock);
390 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
391 spin_lock_init(&cur_trans->releasing_ebs_lock);
392 list_add_tail(&cur_trans->list, &fs_info->trans_list);
393 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
394 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
395 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
396 IO_TREE_FS_PINNED_EXTENTS, NULL);
397 fs_info->generation++;
398 cur_trans->transid = fs_info->generation;
399 fs_info->running_transaction = cur_trans;
400 cur_trans->aborted = 0;
401 spin_unlock(&fs_info->trans_lock);
402
403 return 0;
404 }
405
406 /*
407 * This does all the record keeping required to make sure that a shareable root
408 * is properly recorded in a given transaction. This is required to make sure
409 * the old root from before we joined the transaction is deleted when the
410 * transaction commits.
411 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)412 static int record_root_in_trans(struct btrfs_trans_handle *trans,
413 struct btrfs_root *root,
414 int force)
415 {
416 struct btrfs_fs_info *fs_info = root->fs_info;
417 int ret = 0;
418
419 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
420 root->last_trans < trans->transid) || force) {
421 WARN_ON(root == fs_info->extent_root);
422 WARN_ON(!force && root->commit_root != root->node);
423
424 /*
425 * see below for IN_TRANS_SETUP usage rules
426 * we have the reloc mutex held now, so there
427 * is only one writer in this function
428 */
429 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
430
431 /* make sure readers find IN_TRANS_SETUP before
432 * they find our root->last_trans update
433 */
434 smp_wmb();
435
436 spin_lock(&fs_info->fs_roots_radix_lock);
437 if (root->last_trans == trans->transid && !force) {
438 spin_unlock(&fs_info->fs_roots_radix_lock);
439 return 0;
440 }
441 radix_tree_tag_set(&fs_info->fs_roots_radix,
442 (unsigned long)root->root_key.objectid,
443 BTRFS_ROOT_TRANS_TAG);
444 spin_unlock(&fs_info->fs_roots_radix_lock);
445 root->last_trans = trans->transid;
446
447 /* this is pretty tricky. We don't want to
448 * take the relocation lock in btrfs_record_root_in_trans
449 * unless we're really doing the first setup for this root in
450 * this transaction.
451 *
452 * Normally we'd use root->last_trans as a flag to decide
453 * if we want to take the expensive mutex.
454 *
455 * But, we have to set root->last_trans before we
456 * init the relocation root, otherwise, we trip over warnings
457 * in ctree.c. The solution used here is to flag ourselves
458 * with root IN_TRANS_SETUP. When this is 1, we're still
459 * fixing up the reloc trees and everyone must wait.
460 *
461 * When this is zero, they can trust root->last_trans and fly
462 * through btrfs_record_root_in_trans without having to take the
463 * lock. smp_wmb() makes sure that all the writes above are
464 * done before we pop in the zero below
465 */
466 ret = btrfs_init_reloc_root(trans, root);
467 smp_mb__before_atomic();
468 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
469 }
470 return ret;
471 }
472
473
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)474 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
475 struct btrfs_root *root)
476 {
477 struct btrfs_fs_info *fs_info = root->fs_info;
478 struct btrfs_transaction *cur_trans = trans->transaction;
479
480 /* Add ourselves to the transaction dropped list */
481 spin_lock(&cur_trans->dropped_roots_lock);
482 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
483 spin_unlock(&cur_trans->dropped_roots_lock);
484
485 /* Make sure we don't try to update the root at commit time */
486 spin_lock(&fs_info->fs_roots_radix_lock);
487 radix_tree_tag_clear(&fs_info->fs_roots_radix,
488 (unsigned long)root->root_key.objectid,
489 BTRFS_ROOT_TRANS_TAG);
490 spin_unlock(&fs_info->fs_roots_radix_lock);
491 }
492
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
494 struct btrfs_root *root)
495 {
496 struct btrfs_fs_info *fs_info = root->fs_info;
497 int ret;
498
499 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
500 return 0;
501
502 /*
503 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
504 * and barriers
505 */
506 smp_rmb();
507 if (root->last_trans == trans->transid &&
508 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
509 return 0;
510
511 mutex_lock(&fs_info->reloc_mutex);
512 ret = record_root_in_trans(trans, root, 0);
513 mutex_unlock(&fs_info->reloc_mutex);
514
515 return ret;
516 }
517
is_transaction_blocked(struct btrfs_transaction * trans)518 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
519 {
520 return (trans->state >= TRANS_STATE_COMMIT_START &&
521 trans->state < TRANS_STATE_UNBLOCKED &&
522 !TRANS_ABORTED(trans));
523 }
524
525 /* wait for commit against the current transaction to become unblocked
526 * when this is done, it is safe to start a new transaction, but the current
527 * transaction might not be fully on disk.
528 */
wait_current_trans(struct btrfs_fs_info * fs_info)529 static void wait_current_trans(struct btrfs_fs_info *fs_info)
530 {
531 struct btrfs_transaction *cur_trans;
532
533 spin_lock(&fs_info->trans_lock);
534 cur_trans = fs_info->running_transaction;
535 if (cur_trans && is_transaction_blocked(cur_trans)) {
536 refcount_inc(&cur_trans->use_count);
537 spin_unlock(&fs_info->trans_lock);
538
539 wait_event(fs_info->transaction_wait,
540 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
541 TRANS_ABORTED(cur_trans));
542 btrfs_put_transaction(cur_trans);
543 } else {
544 spin_unlock(&fs_info->trans_lock);
545 }
546 }
547
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)548 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
549 {
550 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
551 return 0;
552
553 if (type == TRANS_START)
554 return 1;
555
556 return 0;
557 }
558
need_reserve_reloc_root(struct btrfs_root * root)559 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
560 {
561 struct btrfs_fs_info *fs_info = root->fs_info;
562
563 if (!fs_info->reloc_ctl ||
564 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
565 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
566 root->reloc_root)
567 return false;
568
569 return true;
570 }
571
572 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)573 start_transaction(struct btrfs_root *root, unsigned int num_items,
574 unsigned int type, enum btrfs_reserve_flush_enum flush,
575 bool enforce_qgroups)
576 {
577 struct btrfs_fs_info *fs_info = root->fs_info;
578 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579 struct btrfs_trans_handle *h;
580 struct btrfs_transaction *cur_trans;
581 u64 num_bytes = 0;
582 u64 qgroup_reserved = 0;
583 bool reloc_reserved = false;
584 bool do_chunk_alloc = false;
585 int ret;
586
587 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
588 return ERR_PTR(-EROFS);
589
590 if (current->journal_info) {
591 WARN_ON(type & TRANS_EXTWRITERS);
592 h = current->journal_info;
593 refcount_inc(&h->use_count);
594 WARN_ON(refcount_read(&h->use_count) > 2);
595 h->orig_rsv = h->block_rsv;
596 h->block_rsv = NULL;
597 goto got_it;
598 }
599
600 /*
601 * Do the reservation before we join the transaction so we can do all
602 * the appropriate flushing if need be.
603 */
604 if (num_items && root != fs_info->chunk_root) {
605 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
606 u64 delayed_refs_bytes = 0;
607
608 qgroup_reserved = num_items * fs_info->nodesize;
609 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
610 enforce_qgroups);
611 if (ret)
612 return ERR_PTR(ret);
613
614 /*
615 * We want to reserve all the bytes we may need all at once, so
616 * we only do 1 enospc flushing cycle per transaction start. We
617 * accomplish this by simply assuming we'll do 2 x num_items
618 * worth of delayed refs updates in this trans handle, and
619 * refill that amount for whatever is missing in the reserve.
620 */
621 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
622 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
623 delayed_refs_rsv->full == 0) {
624 delayed_refs_bytes = num_bytes;
625 num_bytes <<= 1;
626 }
627
628 /*
629 * Do the reservation for the relocation root creation
630 */
631 if (need_reserve_reloc_root(root)) {
632 num_bytes += fs_info->nodesize;
633 reloc_reserved = true;
634 }
635
636 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
637 if (ret)
638 goto reserve_fail;
639 if (delayed_refs_bytes) {
640 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
641 delayed_refs_bytes);
642 num_bytes -= delayed_refs_bytes;
643 }
644
645 if (rsv->space_info->force_alloc)
646 do_chunk_alloc = true;
647 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
648 !delayed_refs_rsv->full) {
649 /*
650 * Some people call with btrfs_start_transaction(root, 0)
651 * because they can be throttled, but have some other mechanism
652 * for reserving space. We still want these guys to refill the
653 * delayed block_rsv so just add 1 items worth of reservation
654 * here.
655 */
656 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
657 if (ret)
658 goto reserve_fail;
659 }
660 again:
661 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
662 if (!h) {
663 ret = -ENOMEM;
664 goto alloc_fail;
665 }
666
667 /*
668 * If we are JOIN_NOLOCK we're already committing a transaction and
669 * waiting on this guy, so we don't need to do the sb_start_intwrite
670 * because we're already holding a ref. We need this because we could
671 * have raced in and did an fsync() on a file which can kick a commit
672 * and then we deadlock with somebody doing a freeze.
673 *
674 * If we are ATTACH, it means we just want to catch the current
675 * transaction and commit it, so we needn't do sb_start_intwrite().
676 */
677 if (type & __TRANS_FREEZABLE)
678 sb_start_intwrite(fs_info->sb);
679
680 if (may_wait_transaction(fs_info, type))
681 wait_current_trans(fs_info);
682
683 do {
684 ret = join_transaction(fs_info, type);
685 if (ret == -EBUSY) {
686 wait_current_trans(fs_info);
687 if (unlikely(type == TRANS_ATTACH ||
688 type == TRANS_JOIN_NOSTART))
689 ret = -ENOENT;
690 }
691 } while (ret == -EBUSY);
692
693 if (ret < 0)
694 goto join_fail;
695
696 cur_trans = fs_info->running_transaction;
697
698 h->transid = cur_trans->transid;
699 h->transaction = cur_trans;
700 h->root = root;
701 refcount_set(&h->use_count, 1);
702 h->fs_info = root->fs_info;
703
704 h->type = type;
705 INIT_LIST_HEAD(&h->new_bgs);
706
707 smp_mb();
708 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
709 may_wait_transaction(fs_info, type)) {
710 current->journal_info = h;
711 btrfs_commit_transaction(h);
712 goto again;
713 }
714
715 if (num_bytes) {
716 trace_btrfs_space_reservation(fs_info, "transaction",
717 h->transid, num_bytes, 1);
718 h->block_rsv = &fs_info->trans_block_rsv;
719 h->bytes_reserved = num_bytes;
720 h->reloc_reserved = reloc_reserved;
721 }
722
723 got_it:
724 if (!current->journal_info)
725 current->journal_info = h;
726
727 /*
728 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
729 * ALLOC_FORCE the first run through, and then we won't allocate for
730 * anybody else who races in later. We don't care about the return
731 * value here.
732 */
733 if (do_chunk_alloc && num_bytes) {
734 u64 flags = h->block_rsv->space_info->flags;
735
736 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
737 CHUNK_ALLOC_NO_FORCE);
738 }
739
740 /*
741 * btrfs_record_root_in_trans() needs to alloc new extents, and may
742 * call btrfs_join_transaction() while we're also starting a
743 * transaction.
744 *
745 * Thus it need to be called after current->journal_info initialized,
746 * or we can deadlock.
747 */
748 ret = btrfs_record_root_in_trans(h, root);
749 if (ret) {
750 /*
751 * The transaction handle is fully initialized and linked with
752 * other structures so it needs to be ended in case of errors,
753 * not just freed.
754 */
755 btrfs_end_transaction(h);
756 return ERR_PTR(ret);
757 }
758
759 return h;
760
761 join_fail:
762 if (type & __TRANS_FREEZABLE)
763 sb_end_intwrite(fs_info->sb);
764 kmem_cache_free(btrfs_trans_handle_cachep, h);
765 alloc_fail:
766 if (num_bytes)
767 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
768 num_bytes, NULL);
769 reserve_fail:
770 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
771 return ERR_PTR(ret);
772 }
773
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)774 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
775 unsigned int num_items)
776 {
777 return start_transaction(root, num_items, TRANS_START,
778 BTRFS_RESERVE_FLUSH_ALL, true);
779 }
780
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)781 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
782 struct btrfs_root *root,
783 unsigned int num_items)
784 {
785 return start_transaction(root, num_items, TRANS_START,
786 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
787 }
788
btrfs_join_transaction(struct btrfs_root * root)789 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
790 {
791 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
792 true);
793 }
794
btrfs_join_transaction_spacecache(struct btrfs_root * root)795 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
796 {
797 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
798 BTRFS_RESERVE_NO_FLUSH, true);
799 }
800
801 /*
802 * Similar to regular join but it never starts a transaction when none is
803 * running or after waiting for the current one to finish.
804 */
btrfs_join_transaction_nostart(struct btrfs_root * root)805 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
806 {
807 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
808 BTRFS_RESERVE_NO_FLUSH, true);
809 }
810
811 /*
812 * btrfs_attach_transaction() - catch the running transaction
813 *
814 * It is used when we want to commit the current the transaction, but
815 * don't want to start a new one.
816 *
817 * Note: If this function return -ENOENT, it just means there is no
818 * running transaction. But it is possible that the inactive transaction
819 * is still in the memory, not fully on disk. If you hope there is no
820 * inactive transaction in the fs when -ENOENT is returned, you should
821 * invoke
822 * btrfs_attach_transaction_barrier()
823 */
btrfs_attach_transaction(struct btrfs_root * root)824 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
825 {
826 return start_transaction(root, 0, TRANS_ATTACH,
827 BTRFS_RESERVE_NO_FLUSH, true);
828 }
829
830 /*
831 * btrfs_attach_transaction_barrier() - catch the running transaction
832 *
833 * It is similar to the above function, the difference is this one
834 * will wait for all the inactive transactions until they fully
835 * complete.
836 */
837 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)838 btrfs_attach_transaction_barrier(struct btrfs_root *root)
839 {
840 struct btrfs_trans_handle *trans;
841
842 trans = start_transaction(root, 0, TRANS_ATTACH,
843 BTRFS_RESERVE_NO_FLUSH, true);
844 if (trans == ERR_PTR(-ENOENT)) {
845 int ret;
846
847 ret = btrfs_wait_for_commit(root->fs_info, 0);
848 if (ret)
849 return ERR_PTR(ret);
850 }
851
852 return trans;
853 }
854
855 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)856 static noinline void wait_for_commit(struct btrfs_transaction *commit,
857 const enum btrfs_trans_state min_state)
858 {
859 struct btrfs_fs_info *fs_info = commit->fs_info;
860 u64 transid = commit->transid;
861 bool put = false;
862
863 while (1) {
864 wait_event(commit->commit_wait, commit->state >= min_state);
865 if (put)
866 btrfs_put_transaction(commit);
867
868 if (min_state < TRANS_STATE_COMPLETED)
869 break;
870
871 /*
872 * A transaction isn't really completed until all of the
873 * previous transactions are completed, but with fsync we can
874 * end up with SUPER_COMMITTED transactions before a COMPLETED
875 * transaction. Wait for those.
876 */
877
878 spin_lock(&fs_info->trans_lock);
879 commit = list_first_entry_or_null(&fs_info->trans_list,
880 struct btrfs_transaction,
881 list);
882 if (!commit || commit->transid > transid) {
883 spin_unlock(&fs_info->trans_lock);
884 break;
885 }
886 refcount_inc(&commit->use_count);
887 put = true;
888 spin_unlock(&fs_info->trans_lock);
889 }
890 }
891
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)892 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
893 {
894 struct btrfs_transaction *cur_trans = NULL, *t;
895 int ret = 0;
896
897 if (transid) {
898 if (transid <= fs_info->last_trans_committed)
899 goto out;
900
901 /* find specified transaction */
902 spin_lock(&fs_info->trans_lock);
903 list_for_each_entry(t, &fs_info->trans_list, list) {
904 if (t->transid == transid) {
905 cur_trans = t;
906 refcount_inc(&cur_trans->use_count);
907 ret = 0;
908 break;
909 }
910 if (t->transid > transid) {
911 ret = 0;
912 break;
913 }
914 }
915 spin_unlock(&fs_info->trans_lock);
916
917 /*
918 * The specified transaction doesn't exist, or we
919 * raced with btrfs_commit_transaction
920 */
921 if (!cur_trans) {
922 if (transid > fs_info->last_trans_committed)
923 ret = -EINVAL;
924 goto out;
925 }
926 } else {
927 /* find newest transaction that is committing | committed */
928 spin_lock(&fs_info->trans_lock);
929 list_for_each_entry_reverse(t, &fs_info->trans_list,
930 list) {
931 if (t->state >= TRANS_STATE_COMMIT_START) {
932 if (t->state == TRANS_STATE_COMPLETED)
933 break;
934 cur_trans = t;
935 refcount_inc(&cur_trans->use_count);
936 break;
937 }
938 }
939 spin_unlock(&fs_info->trans_lock);
940 if (!cur_trans)
941 goto out; /* nothing committing|committed */
942 }
943
944 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
945 ret = cur_trans->aborted;
946 btrfs_put_transaction(cur_trans);
947 out:
948 return ret;
949 }
950
btrfs_throttle(struct btrfs_fs_info * fs_info)951 void btrfs_throttle(struct btrfs_fs_info *fs_info)
952 {
953 wait_current_trans(fs_info);
954 }
955
should_end_transaction(struct btrfs_trans_handle * trans)956 static bool should_end_transaction(struct btrfs_trans_handle *trans)
957 {
958 struct btrfs_fs_info *fs_info = trans->fs_info;
959
960 if (btrfs_check_space_for_delayed_refs(fs_info))
961 return true;
962
963 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
964 }
965
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)966 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
967 {
968 struct btrfs_transaction *cur_trans = trans->transaction;
969
970 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
971 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
972 return true;
973
974 return should_end_transaction(trans);
975 }
976
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)977 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
978
979 {
980 struct btrfs_fs_info *fs_info = trans->fs_info;
981
982 if (!trans->block_rsv) {
983 ASSERT(!trans->bytes_reserved);
984 return;
985 }
986
987 if (!trans->bytes_reserved)
988 return;
989
990 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
991 trace_btrfs_space_reservation(fs_info, "transaction",
992 trans->transid, trans->bytes_reserved, 0);
993 btrfs_block_rsv_release(fs_info, trans->block_rsv,
994 trans->bytes_reserved, NULL);
995 trans->bytes_reserved = 0;
996 }
997
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)998 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
999 int throttle)
1000 {
1001 struct btrfs_fs_info *info = trans->fs_info;
1002 struct btrfs_transaction *cur_trans = trans->transaction;
1003 int err = 0;
1004
1005 if (refcount_read(&trans->use_count) > 1) {
1006 refcount_dec(&trans->use_count);
1007 trans->block_rsv = trans->orig_rsv;
1008 return 0;
1009 }
1010
1011 btrfs_trans_release_metadata(trans);
1012 trans->block_rsv = NULL;
1013
1014 btrfs_create_pending_block_groups(trans);
1015
1016 btrfs_trans_release_chunk_metadata(trans);
1017
1018 if (trans->type & __TRANS_FREEZABLE)
1019 sb_end_intwrite(info->sb);
1020
1021 WARN_ON(cur_trans != info->running_transaction);
1022 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1023 atomic_dec(&cur_trans->num_writers);
1024 extwriter_counter_dec(cur_trans, trans->type);
1025
1026 cond_wake_up(&cur_trans->writer_wait);
1027 btrfs_put_transaction(cur_trans);
1028
1029 if (current->journal_info == trans)
1030 current->journal_info = NULL;
1031
1032 if (throttle)
1033 btrfs_run_delayed_iputs(info);
1034
1035 if (TRANS_ABORTED(trans) ||
1036 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1037 wake_up_process(info->transaction_kthread);
1038 if (TRANS_ABORTED(trans))
1039 err = trans->aborted;
1040 else
1041 err = -EROFS;
1042 }
1043
1044 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1045 return err;
1046 }
1047
btrfs_end_transaction(struct btrfs_trans_handle * trans)1048 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1049 {
1050 return __btrfs_end_transaction(trans, 0);
1051 }
1052
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1053 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1054 {
1055 return __btrfs_end_transaction(trans, 1);
1056 }
1057
1058 /*
1059 * when btree blocks are allocated, they have some corresponding bits set for
1060 * them in one of two extent_io trees. This is used to make sure all of
1061 * those extents are sent to disk but does not wait on them
1062 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1063 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1064 struct extent_io_tree *dirty_pages, int mark)
1065 {
1066 int err = 0;
1067 int werr = 0;
1068 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1069 struct extent_state *cached_state = NULL;
1070 u64 start = 0;
1071 u64 end;
1072
1073 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1074 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1075 mark, &cached_state)) {
1076 bool wait_writeback = false;
1077
1078 err = convert_extent_bit(dirty_pages, start, end,
1079 EXTENT_NEED_WAIT,
1080 mark, &cached_state);
1081 /*
1082 * convert_extent_bit can return -ENOMEM, which is most of the
1083 * time a temporary error. So when it happens, ignore the error
1084 * and wait for writeback of this range to finish - because we
1085 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1086 * to __btrfs_wait_marked_extents() would not know that
1087 * writeback for this range started and therefore wouldn't
1088 * wait for it to finish - we don't want to commit a
1089 * superblock that points to btree nodes/leafs for which
1090 * writeback hasn't finished yet (and without errors).
1091 * We cleanup any entries left in the io tree when committing
1092 * the transaction (through extent_io_tree_release()).
1093 */
1094 if (err == -ENOMEM) {
1095 err = 0;
1096 wait_writeback = true;
1097 }
1098 if (!err)
1099 err = filemap_fdatawrite_range(mapping, start, end);
1100 if (err)
1101 werr = err;
1102 else if (wait_writeback)
1103 werr = filemap_fdatawait_range(mapping, start, end);
1104 free_extent_state(cached_state);
1105 cached_state = NULL;
1106 cond_resched();
1107 start = end + 1;
1108 }
1109 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1110 return werr;
1111 }
1112
1113 /*
1114 * when btree blocks are allocated, they have some corresponding bits set for
1115 * them in one of two extent_io trees. This is used to make sure all of
1116 * those extents are on disk for transaction or log commit. We wait
1117 * on all the pages and clear them from the dirty pages state tree
1118 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1119 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1120 struct extent_io_tree *dirty_pages)
1121 {
1122 int err = 0;
1123 int werr = 0;
1124 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1125 struct extent_state *cached_state = NULL;
1126 u64 start = 0;
1127 u64 end;
1128
1129 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1130 EXTENT_NEED_WAIT, &cached_state)) {
1131 /*
1132 * Ignore -ENOMEM errors returned by clear_extent_bit().
1133 * When committing the transaction, we'll remove any entries
1134 * left in the io tree. For a log commit, we don't remove them
1135 * after committing the log because the tree can be accessed
1136 * concurrently - we do it only at transaction commit time when
1137 * it's safe to do it (through extent_io_tree_release()).
1138 */
1139 err = clear_extent_bit(dirty_pages, start, end,
1140 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1141 if (err == -ENOMEM)
1142 err = 0;
1143 if (!err)
1144 err = filemap_fdatawait_range(mapping, start, end);
1145 if (err)
1146 werr = err;
1147 free_extent_state(cached_state);
1148 cached_state = NULL;
1149 cond_resched();
1150 start = end + 1;
1151 }
1152 if (err)
1153 werr = err;
1154 return werr;
1155 }
1156
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1157 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1158 struct extent_io_tree *dirty_pages)
1159 {
1160 bool errors = false;
1161 int err;
1162
1163 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1165 errors = true;
1166
1167 if (errors && !err)
1168 err = -EIO;
1169 return err;
1170 }
1171
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1172 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1173 {
1174 struct btrfs_fs_info *fs_info = log_root->fs_info;
1175 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1176 bool errors = false;
1177 int err;
1178
1179 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1180
1181 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1182 if ((mark & EXTENT_DIRTY) &&
1183 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1184 errors = true;
1185
1186 if ((mark & EXTENT_NEW) &&
1187 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1188 errors = true;
1189
1190 if (errors && !err)
1191 err = -EIO;
1192 return err;
1193 }
1194
1195 /*
1196 * When btree blocks are allocated the corresponding extents are marked dirty.
1197 * This function ensures such extents are persisted on disk for transaction or
1198 * log commit.
1199 *
1200 * @trans: transaction whose dirty pages we'd like to write
1201 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1202 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1203 {
1204 int ret;
1205 int ret2;
1206 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1207 struct btrfs_fs_info *fs_info = trans->fs_info;
1208 struct blk_plug plug;
1209
1210 blk_start_plug(&plug);
1211 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1212 blk_finish_plug(&plug);
1213 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1214
1215 extent_io_tree_release(&trans->transaction->dirty_pages);
1216
1217 if (ret)
1218 return ret;
1219 else if (ret2)
1220 return ret2;
1221 else
1222 return 0;
1223 }
1224
1225 /*
1226 * this is used to update the root pointer in the tree of tree roots.
1227 *
1228 * But, in the case of the extent allocation tree, updating the root
1229 * pointer may allocate blocks which may change the root of the extent
1230 * allocation tree.
1231 *
1232 * So, this loops and repeats and makes sure the cowonly root didn't
1233 * change while the root pointer was being updated in the metadata.
1234 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1235 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1236 struct btrfs_root *root)
1237 {
1238 int ret;
1239 u64 old_root_bytenr;
1240 u64 old_root_used;
1241 struct btrfs_fs_info *fs_info = root->fs_info;
1242 struct btrfs_root *tree_root = fs_info->tree_root;
1243
1244 old_root_used = btrfs_root_used(&root->root_item);
1245
1246 while (1) {
1247 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1248 if (old_root_bytenr == root->node->start &&
1249 old_root_used == btrfs_root_used(&root->root_item))
1250 break;
1251
1252 btrfs_set_root_node(&root->root_item, root->node);
1253 ret = btrfs_update_root(trans, tree_root,
1254 &root->root_key,
1255 &root->root_item);
1256 if (ret)
1257 return ret;
1258
1259 old_root_used = btrfs_root_used(&root->root_item);
1260 }
1261
1262 return 0;
1263 }
1264
1265 /*
1266 * update all the cowonly tree roots on disk
1267 *
1268 * The error handling in this function may not be obvious. Any of the
1269 * failures will cause the file system to go offline. We still need
1270 * to clean up the delayed refs.
1271 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1272 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1273 {
1274 struct btrfs_fs_info *fs_info = trans->fs_info;
1275 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1276 struct list_head *io_bgs = &trans->transaction->io_bgs;
1277 struct list_head *next;
1278 struct extent_buffer *eb;
1279 int ret;
1280
1281 eb = btrfs_lock_root_node(fs_info->tree_root);
1282 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1283 0, &eb, BTRFS_NESTING_COW);
1284 btrfs_tree_unlock(eb);
1285 free_extent_buffer(eb);
1286
1287 if (ret)
1288 return ret;
1289
1290 ret = btrfs_run_dev_stats(trans);
1291 if (ret)
1292 return ret;
1293 ret = btrfs_run_dev_replace(trans);
1294 if (ret)
1295 return ret;
1296 ret = btrfs_run_qgroups(trans);
1297 if (ret)
1298 return ret;
1299
1300 ret = btrfs_setup_space_cache(trans);
1301 if (ret)
1302 return ret;
1303
1304 again:
1305 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1306 struct btrfs_root *root;
1307 next = fs_info->dirty_cowonly_roots.next;
1308 list_del_init(next);
1309 root = list_entry(next, struct btrfs_root, dirty_list);
1310 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1311
1312 if (root != fs_info->extent_root)
1313 list_add_tail(&root->dirty_list,
1314 &trans->transaction->switch_commits);
1315 ret = update_cowonly_root(trans, root);
1316 if (ret)
1317 return ret;
1318 }
1319
1320 /* Now flush any delayed refs generated by updating all of the roots */
1321 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1322 if (ret)
1323 return ret;
1324
1325 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1326 ret = btrfs_write_dirty_block_groups(trans);
1327 if (ret)
1328 return ret;
1329
1330 /*
1331 * We're writing the dirty block groups, which could generate
1332 * delayed refs, which could generate more dirty block groups,
1333 * so we want to keep this flushing in this loop to make sure
1334 * everything gets run.
1335 */
1336 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1337 if (ret)
1338 return ret;
1339 }
1340
1341 if (!list_empty(&fs_info->dirty_cowonly_roots))
1342 goto again;
1343
1344 list_add_tail(&fs_info->extent_root->dirty_list,
1345 &trans->transaction->switch_commits);
1346
1347 /* Update dev-replace pointer once everything is committed */
1348 fs_info->dev_replace.committed_cursor_left =
1349 fs_info->dev_replace.cursor_left_last_write_of_item;
1350
1351 return 0;
1352 }
1353
1354 /*
1355 * If we had a pending drop we need to see if there are any others left in our
1356 * dead roots list, and if not clear our bit and wake any waiters.
1357 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1358 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1359 {
1360 /*
1361 * We put the drop in progress roots at the front of the list, so if the
1362 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1363 * up.
1364 */
1365 spin_lock(&fs_info->trans_lock);
1366 if (!list_empty(&fs_info->dead_roots)) {
1367 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1368 struct btrfs_root,
1369 root_list);
1370 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1371 spin_unlock(&fs_info->trans_lock);
1372 return;
1373 }
1374 }
1375 spin_unlock(&fs_info->trans_lock);
1376
1377 btrfs_wake_unfinished_drop(fs_info);
1378 }
1379
1380 /*
1381 * dead roots are old snapshots that need to be deleted. This allocates
1382 * a dirty root struct and adds it into the list of dead roots that need to
1383 * be deleted
1384 */
btrfs_add_dead_root(struct btrfs_root * root)1385 void btrfs_add_dead_root(struct btrfs_root *root)
1386 {
1387 struct btrfs_fs_info *fs_info = root->fs_info;
1388
1389 spin_lock(&fs_info->trans_lock);
1390 if (list_empty(&root->root_list)) {
1391 btrfs_grab_root(root);
1392
1393 /* We want to process the partially complete drops first. */
1394 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1395 list_add(&root->root_list, &fs_info->dead_roots);
1396 else
1397 list_add_tail(&root->root_list, &fs_info->dead_roots);
1398 }
1399 spin_unlock(&fs_info->trans_lock);
1400 }
1401
1402 /*
1403 * update all the cowonly tree roots on disk
1404 */
commit_fs_roots(struct btrfs_trans_handle * trans)1405 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1406 {
1407 struct btrfs_fs_info *fs_info = trans->fs_info;
1408 struct btrfs_root *gang[8];
1409 int i;
1410 int ret;
1411
1412 spin_lock(&fs_info->fs_roots_radix_lock);
1413 while (1) {
1414 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1415 (void **)gang, 0,
1416 ARRAY_SIZE(gang),
1417 BTRFS_ROOT_TRANS_TAG);
1418 if (ret == 0)
1419 break;
1420 for (i = 0; i < ret; i++) {
1421 struct btrfs_root *root = gang[i];
1422 int ret2;
1423
1424 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1425 (unsigned long)root->root_key.objectid,
1426 BTRFS_ROOT_TRANS_TAG);
1427 spin_unlock(&fs_info->fs_roots_radix_lock);
1428
1429 btrfs_free_log(trans, root);
1430 ret2 = btrfs_update_reloc_root(trans, root);
1431 if (ret2)
1432 return ret2;
1433
1434 /* see comments in should_cow_block() */
1435 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1436 smp_mb__after_atomic();
1437
1438 if (root->commit_root != root->node) {
1439 list_add_tail(&root->dirty_list,
1440 &trans->transaction->switch_commits);
1441 btrfs_set_root_node(&root->root_item,
1442 root->node);
1443 }
1444
1445 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1446 &root->root_key,
1447 &root->root_item);
1448 if (ret2)
1449 return ret2;
1450 spin_lock(&fs_info->fs_roots_radix_lock);
1451 btrfs_qgroup_free_meta_all_pertrans(root);
1452 }
1453 }
1454 spin_unlock(&fs_info->fs_roots_radix_lock);
1455 return 0;
1456 }
1457
1458 /*
1459 * defrag a given btree.
1460 * Every leaf in the btree is read and defragged.
1461 */
btrfs_defrag_root(struct btrfs_root * root)1462 int btrfs_defrag_root(struct btrfs_root *root)
1463 {
1464 struct btrfs_fs_info *info = root->fs_info;
1465 struct btrfs_trans_handle *trans;
1466 int ret;
1467
1468 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1469 return 0;
1470
1471 while (1) {
1472 trans = btrfs_start_transaction(root, 0);
1473 if (IS_ERR(trans)) {
1474 ret = PTR_ERR(trans);
1475 break;
1476 }
1477
1478 ret = btrfs_defrag_leaves(trans, root);
1479
1480 btrfs_end_transaction(trans);
1481 btrfs_btree_balance_dirty(info);
1482 cond_resched();
1483
1484 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1485 break;
1486
1487 if (btrfs_defrag_cancelled(info)) {
1488 btrfs_debug(info, "defrag_root cancelled");
1489 ret = -EAGAIN;
1490 break;
1491 }
1492 }
1493 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1494 return ret;
1495 }
1496
1497 /*
1498 * Do all special snapshot related qgroup dirty hack.
1499 *
1500 * Will do all needed qgroup inherit and dirty hack like switch commit
1501 * roots inside one transaction and write all btree into disk, to make
1502 * qgroup works.
1503 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1504 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *src,
1506 struct btrfs_root *parent,
1507 struct btrfs_qgroup_inherit *inherit,
1508 u64 dst_objectid)
1509 {
1510 struct btrfs_fs_info *fs_info = src->fs_info;
1511 int ret;
1512
1513 /*
1514 * Save some performance in the case that qgroups are not
1515 * enabled. If this check races with the ioctl, rescan will
1516 * kick in anyway.
1517 */
1518 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1519 return 0;
1520
1521 /*
1522 * Ensure dirty @src will be committed. Or, after coming
1523 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1524 * recorded root will never be updated again, causing an outdated root
1525 * item.
1526 */
1527 ret = record_root_in_trans(trans, src, 1);
1528 if (ret)
1529 return ret;
1530
1531 /*
1532 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1533 * src root, so we must run the delayed refs here.
1534 *
1535 * However this isn't particularly fool proof, because there's no
1536 * synchronization keeping us from changing the tree after this point
1537 * before we do the qgroup_inherit, or even from making changes while
1538 * we're doing the qgroup_inherit. But that's a problem for the future,
1539 * for now flush the delayed refs to narrow the race window where the
1540 * qgroup counters could end up wrong.
1541 */
1542 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1543 if (ret) {
1544 btrfs_abort_transaction(trans, ret);
1545 return ret;
1546 }
1547
1548 /*
1549 * We are going to commit transaction, see btrfs_commit_transaction()
1550 * comment for reason locking tree_log_mutex
1551 */
1552 mutex_lock(&fs_info->tree_log_mutex);
1553
1554 ret = commit_fs_roots(trans);
1555 if (ret)
1556 goto out;
1557 ret = btrfs_qgroup_account_extents(trans);
1558 if (ret < 0)
1559 goto out;
1560
1561 /* Now qgroup are all updated, we can inherit it to new qgroups */
1562 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1563 inherit);
1564 if (ret < 0)
1565 goto out;
1566
1567 /*
1568 * Now we do a simplified commit transaction, which will:
1569 * 1) commit all subvolume and extent tree
1570 * To ensure all subvolume and extent tree have a valid
1571 * commit_root to accounting later insert_dir_item()
1572 * 2) write all btree blocks onto disk
1573 * This is to make sure later btree modification will be cowed
1574 * Or commit_root can be populated and cause wrong qgroup numbers
1575 * In this simplified commit, we don't really care about other trees
1576 * like chunk and root tree, as they won't affect qgroup.
1577 * And we don't write super to avoid half committed status.
1578 */
1579 ret = commit_cowonly_roots(trans);
1580 if (ret)
1581 goto out;
1582 switch_commit_roots(trans);
1583 ret = btrfs_write_and_wait_transaction(trans);
1584 if (ret)
1585 btrfs_handle_fs_error(fs_info, ret,
1586 "Error while writing out transaction for qgroup");
1587
1588 out:
1589 mutex_unlock(&fs_info->tree_log_mutex);
1590
1591 /*
1592 * Force parent root to be updated, as we recorded it before so its
1593 * last_trans == cur_transid.
1594 * Or it won't be committed again onto disk after later
1595 * insert_dir_item()
1596 */
1597 if (!ret)
1598 ret = record_root_in_trans(trans, parent, 1);
1599 return ret;
1600 }
1601
1602 /*
1603 * new snapshots need to be created at a very specific time in the
1604 * transaction commit. This does the actual creation.
1605 *
1606 * Note:
1607 * If the error which may affect the commitment of the current transaction
1608 * happens, we should return the error number. If the error which just affect
1609 * the creation of the pending snapshots, just return 0.
1610 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1611 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1612 struct btrfs_pending_snapshot *pending)
1613 {
1614
1615 struct btrfs_fs_info *fs_info = trans->fs_info;
1616 struct btrfs_key key;
1617 struct btrfs_root_item *new_root_item;
1618 struct btrfs_root *tree_root = fs_info->tree_root;
1619 struct btrfs_root *root = pending->root;
1620 struct btrfs_root *parent_root;
1621 struct btrfs_block_rsv *rsv;
1622 struct inode *parent_inode;
1623 struct btrfs_path *path;
1624 struct btrfs_dir_item *dir_item;
1625 struct dentry *dentry;
1626 struct extent_buffer *tmp;
1627 struct extent_buffer *old;
1628 struct timespec64 cur_time;
1629 int ret = 0;
1630 u64 to_reserve = 0;
1631 u64 index = 0;
1632 u64 objectid;
1633 u64 root_flags;
1634
1635 ASSERT(pending->path);
1636 path = pending->path;
1637
1638 ASSERT(pending->root_item);
1639 new_root_item = pending->root_item;
1640
1641 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1642 if (pending->error)
1643 goto no_free_objectid;
1644
1645 /*
1646 * Make qgroup to skip current new snapshot's qgroupid, as it is
1647 * accounted by later btrfs_qgroup_inherit().
1648 */
1649 btrfs_set_skip_qgroup(trans, objectid);
1650
1651 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1652
1653 if (to_reserve > 0) {
1654 pending->error = btrfs_block_rsv_add(root,
1655 &pending->block_rsv,
1656 to_reserve,
1657 BTRFS_RESERVE_NO_FLUSH);
1658 if (pending->error)
1659 goto clear_skip_qgroup;
1660 }
1661
1662 key.objectid = objectid;
1663 key.offset = (u64)-1;
1664 key.type = BTRFS_ROOT_ITEM_KEY;
1665
1666 rsv = trans->block_rsv;
1667 trans->block_rsv = &pending->block_rsv;
1668 trans->bytes_reserved = trans->block_rsv->reserved;
1669 trace_btrfs_space_reservation(fs_info, "transaction",
1670 trans->transid,
1671 trans->bytes_reserved, 1);
1672 dentry = pending->dentry;
1673 parent_inode = pending->dir;
1674 parent_root = BTRFS_I(parent_inode)->root;
1675 ret = record_root_in_trans(trans, parent_root, 0);
1676 if (ret)
1677 goto fail;
1678 cur_time = current_time(parent_inode);
1679
1680 /*
1681 * insert the directory item
1682 */
1683 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1684 BUG_ON(ret); /* -ENOMEM */
1685
1686 /* check if there is a file/dir which has the same name. */
1687 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1688 btrfs_ino(BTRFS_I(parent_inode)),
1689 dentry->d_name.name,
1690 dentry->d_name.len, 0);
1691 if (dir_item != NULL && !IS_ERR(dir_item)) {
1692 pending->error = -EEXIST;
1693 goto dir_item_existed;
1694 } else if (IS_ERR(dir_item)) {
1695 ret = PTR_ERR(dir_item);
1696 btrfs_abort_transaction(trans, ret);
1697 goto fail;
1698 }
1699 btrfs_release_path(path);
1700
1701 /*
1702 * pull in the delayed directory update
1703 * and the delayed inode item
1704 * otherwise we corrupt the FS during
1705 * snapshot
1706 */
1707 ret = btrfs_run_delayed_items(trans);
1708 if (ret) { /* Transaction aborted */
1709 btrfs_abort_transaction(trans, ret);
1710 goto fail;
1711 }
1712
1713 ret = record_root_in_trans(trans, root, 0);
1714 if (ret) {
1715 btrfs_abort_transaction(trans, ret);
1716 goto fail;
1717 }
1718 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1719 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1720 btrfs_check_and_init_root_item(new_root_item);
1721
1722 root_flags = btrfs_root_flags(new_root_item);
1723 if (pending->readonly)
1724 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1725 else
1726 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1727 btrfs_set_root_flags(new_root_item, root_flags);
1728
1729 btrfs_set_root_generation_v2(new_root_item,
1730 trans->transid);
1731 generate_random_guid(new_root_item->uuid);
1732 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1733 BTRFS_UUID_SIZE);
1734 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1735 memset(new_root_item->received_uuid, 0,
1736 sizeof(new_root_item->received_uuid));
1737 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1738 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1739 btrfs_set_root_stransid(new_root_item, 0);
1740 btrfs_set_root_rtransid(new_root_item, 0);
1741 }
1742 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1743 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1744 btrfs_set_root_otransid(new_root_item, trans->transid);
1745
1746 old = btrfs_lock_root_node(root);
1747 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1748 BTRFS_NESTING_COW);
1749 if (ret) {
1750 btrfs_tree_unlock(old);
1751 free_extent_buffer(old);
1752 btrfs_abort_transaction(trans, ret);
1753 goto fail;
1754 }
1755
1756 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1757 /* clean up in any case */
1758 btrfs_tree_unlock(old);
1759 free_extent_buffer(old);
1760 if (ret) {
1761 btrfs_abort_transaction(trans, ret);
1762 goto fail;
1763 }
1764 /* see comments in should_cow_block() */
1765 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1766 smp_wmb();
1767
1768 btrfs_set_root_node(new_root_item, tmp);
1769 /* record when the snapshot was created in key.offset */
1770 key.offset = trans->transid;
1771 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1772 btrfs_tree_unlock(tmp);
1773 free_extent_buffer(tmp);
1774 if (ret) {
1775 btrfs_abort_transaction(trans, ret);
1776 goto fail;
1777 }
1778
1779 /*
1780 * insert root back/forward references
1781 */
1782 ret = btrfs_add_root_ref(trans, objectid,
1783 parent_root->root_key.objectid,
1784 btrfs_ino(BTRFS_I(parent_inode)), index,
1785 dentry->d_name.name, dentry->d_name.len);
1786 if (ret) {
1787 btrfs_abort_transaction(trans, ret);
1788 goto fail;
1789 }
1790
1791 key.offset = (u64)-1;
1792 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1793 if (IS_ERR(pending->snap)) {
1794 ret = PTR_ERR(pending->snap);
1795 pending->snap = NULL;
1796 btrfs_abort_transaction(trans, ret);
1797 goto fail;
1798 }
1799
1800 ret = btrfs_reloc_post_snapshot(trans, pending);
1801 if (ret) {
1802 btrfs_abort_transaction(trans, ret);
1803 goto fail;
1804 }
1805
1806 /*
1807 * Do special qgroup accounting for snapshot, as we do some qgroup
1808 * snapshot hack to do fast snapshot.
1809 * To co-operate with that hack, we do hack again.
1810 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1811 */
1812 ret = qgroup_account_snapshot(trans, root, parent_root,
1813 pending->inherit, objectid);
1814 if (ret < 0)
1815 goto fail;
1816
1817 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1818 dentry->d_name.len, BTRFS_I(parent_inode),
1819 &key, BTRFS_FT_DIR, index);
1820 /* We have check then name at the beginning, so it is impossible. */
1821 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1822 if (ret) {
1823 btrfs_abort_transaction(trans, ret);
1824 goto fail;
1825 }
1826
1827 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1828 dentry->d_name.len * 2);
1829 parent_inode->i_mtime = parent_inode->i_ctime =
1830 current_time(parent_inode);
1831 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1832 if (ret) {
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1837 BTRFS_UUID_KEY_SUBVOL,
1838 objectid);
1839 if (ret) {
1840 btrfs_abort_transaction(trans, ret);
1841 goto fail;
1842 }
1843 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1844 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1845 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1846 objectid);
1847 if (ret && ret != -EEXIST) {
1848 btrfs_abort_transaction(trans, ret);
1849 goto fail;
1850 }
1851 }
1852
1853 fail:
1854 pending->error = ret;
1855 dir_item_existed:
1856 trans->block_rsv = rsv;
1857 trans->bytes_reserved = 0;
1858 clear_skip_qgroup:
1859 btrfs_clear_skip_qgroup(trans);
1860 no_free_objectid:
1861 kfree(new_root_item);
1862 pending->root_item = NULL;
1863 btrfs_free_path(path);
1864 pending->path = NULL;
1865
1866 return ret;
1867 }
1868
1869 /*
1870 * create all the snapshots we've scheduled for creation
1871 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1872 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1873 {
1874 struct btrfs_pending_snapshot *pending, *next;
1875 struct list_head *head = &trans->transaction->pending_snapshots;
1876 int ret = 0;
1877
1878 list_for_each_entry_safe(pending, next, head, list) {
1879 list_del(&pending->list);
1880 ret = create_pending_snapshot(trans, pending);
1881 if (ret)
1882 break;
1883 }
1884 return ret;
1885 }
1886
update_super_roots(struct btrfs_fs_info * fs_info)1887 static void update_super_roots(struct btrfs_fs_info *fs_info)
1888 {
1889 struct btrfs_root_item *root_item;
1890 struct btrfs_super_block *super;
1891
1892 super = fs_info->super_copy;
1893
1894 root_item = &fs_info->chunk_root->root_item;
1895 super->chunk_root = root_item->bytenr;
1896 super->chunk_root_generation = root_item->generation;
1897 super->chunk_root_level = root_item->level;
1898
1899 root_item = &fs_info->tree_root->root_item;
1900 super->root = root_item->bytenr;
1901 super->generation = root_item->generation;
1902 super->root_level = root_item->level;
1903 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1904 super->cache_generation = root_item->generation;
1905 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1906 super->cache_generation = 0;
1907 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1908 super->uuid_tree_generation = root_item->generation;
1909 }
1910
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1911 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1912 {
1913 struct btrfs_transaction *trans;
1914 int ret = 0;
1915
1916 spin_lock(&info->trans_lock);
1917 trans = info->running_transaction;
1918 if (trans)
1919 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1920 spin_unlock(&info->trans_lock);
1921 return ret;
1922 }
1923
btrfs_transaction_blocked(struct btrfs_fs_info * info)1924 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1925 {
1926 struct btrfs_transaction *trans;
1927 int ret = 0;
1928
1929 spin_lock(&info->trans_lock);
1930 trans = info->running_transaction;
1931 if (trans)
1932 ret = is_transaction_blocked(trans);
1933 spin_unlock(&info->trans_lock);
1934 return ret;
1935 }
1936
1937 /*
1938 * commit transactions asynchronously. once btrfs_commit_transaction_async
1939 * returns, any subsequent transaction will not be allowed to join.
1940 */
1941 struct btrfs_async_commit {
1942 struct btrfs_trans_handle *newtrans;
1943 struct work_struct work;
1944 };
1945
do_async_commit(struct work_struct * work)1946 static void do_async_commit(struct work_struct *work)
1947 {
1948 struct btrfs_async_commit *ac =
1949 container_of(work, struct btrfs_async_commit, work);
1950
1951 /*
1952 * We've got freeze protection passed with the transaction.
1953 * Tell lockdep about it.
1954 */
1955 if (ac->newtrans->type & __TRANS_FREEZABLE)
1956 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1957
1958 current->journal_info = ac->newtrans;
1959
1960 btrfs_commit_transaction(ac->newtrans);
1961 kfree(ac);
1962 }
1963
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1964 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1965 {
1966 struct btrfs_fs_info *fs_info = trans->fs_info;
1967 struct btrfs_async_commit *ac;
1968 struct btrfs_transaction *cur_trans;
1969
1970 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1971 if (!ac)
1972 return -ENOMEM;
1973
1974 INIT_WORK(&ac->work, do_async_commit);
1975 ac->newtrans = btrfs_join_transaction(trans->root);
1976 if (IS_ERR(ac->newtrans)) {
1977 int err = PTR_ERR(ac->newtrans);
1978 kfree(ac);
1979 return err;
1980 }
1981
1982 /* take transaction reference */
1983 cur_trans = trans->transaction;
1984 refcount_inc(&cur_trans->use_count);
1985
1986 btrfs_end_transaction(trans);
1987
1988 /*
1989 * Tell lockdep we've released the freeze rwsem, since the
1990 * async commit thread will be the one to unlock it.
1991 */
1992 if (ac->newtrans->type & __TRANS_FREEZABLE)
1993 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1994
1995 schedule_work(&ac->work);
1996 /*
1997 * Wait for the current transaction commit to start and block
1998 * subsequent transaction joins
1999 */
2000 wait_event(fs_info->transaction_blocked_wait,
2001 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2002 TRANS_ABORTED(cur_trans));
2003 if (current->journal_info == trans)
2004 current->journal_info = NULL;
2005
2006 btrfs_put_transaction(cur_trans);
2007 return 0;
2008 }
2009
2010
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2011 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2012 {
2013 struct btrfs_fs_info *fs_info = trans->fs_info;
2014 struct btrfs_transaction *cur_trans = trans->transaction;
2015
2016 WARN_ON(refcount_read(&trans->use_count) > 1);
2017
2018 btrfs_abort_transaction(trans, err);
2019
2020 spin_lock(&fs_info->trans_lock);
2021
2022 /*
2023 * If the transaction is removed from the list, it means this
2024 * transaction has been committed successfully, so it is impossible
2025 * to call the cleanup function.
2026 */
2027 BUG_ON(list_empty(&cur_trans->list));
2028
2029 if (cur_trans == fs_info->running_transaction) {
2030 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2031 spin_unlock(&fs_info->trans_lock);
2032 wait_event(cur_trans->writer_wait,
2033 atomic_read(&cur_trans->num_writers) == 1);
2034
2035 spin_lock(&fs_info->trans_lock);
2036 }
2037
2038 /*
2039 * Now that we know no one else is still using the transaction we can
2040 * remove the transaction from the list of transactions. This avoids
2041 * the transaction kthread from cleaning up the transaction while some
2042 * other task is still using it, which could result in a use-after-free
2043 * on things like log trees, as it forces the transaction kthread to
2044 * wait for this transaction to be cleaned up by us.
2045 */
2046 list_del_init(&cur_trans->list);
2047
2048 spin_unlock(&fs_info->trans_lock);
2049
2050 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2051
2052 spin_lock(&fs_info->trans_lock);
2053 if (cur_trans == fs_info->running_transaction)
2054 fs_info->running_transaction = NULL;
2055 spin_unlock(&fs_info->trans_lock);
2056
2057 if (trans->type & __TRANS_FREEZABLE)
2058 sb_end_intwrite(fs_info->sb);
2059 btrfs_put_transaction(cur_trans);
2060 btrfs_put_transaction(cur_trans);
2061
2062 trace_btrfs_transaction_commit(trans->root);
2063
2064 if (current->journal_info == trans)
2065 current->journal_info = NULL;
2066 btrfs_scrub_cancel(fs_info);
2067
2068 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2069 }
2070
2071 /*
2072 * Release reserved delayed ref space of all pending block groups of the
2073 * transaction and remove them from the list
2074 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2075 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2076 {
2077 struct btrfs_fs_info *fs_info = trans->fs_info;
2078 struct btrfs_block_group *block_group, *tmp;
2079
2080 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2081 btrfs_delayed_refs_rsv_release(fs_info, 1);
2082 list_del_init(&block_group->bg_list);
2083 }
2084 }
2085
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2086 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2087 {
2088 /*
2089 * We use try_to_writeback_inodes_sb() here because if we used
2090 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2091 * Currently are holding the fs freeze lock, if we do an async flush
2092 * we'll do btrfs_join_transaction() and deadlock because we need to
2093 * wait for the fs freeze lock. Using the direct flushing we benefit
2094 * from already being in a transaction and our join_transaction doesn't
2095 * have to re-take the fs freeze lock.
2096 *
2097 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2098 * if it can read lock sb->s_umount. It will always be able to lock it,
2099 * except when the filesystem is being unmounted or being frozen, but in
2100 * those cases sync_filesystem() is called, which results in calling
2101 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2102 * Note that we don't call writeback_inodes_sb() directly, because it
2103 * will emit a warning if sb->s_umount is not locked.
2104 */
2105 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2107 return 0;
2108 }
2109
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2110 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2111 {
2112 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2113 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2114 }
2115
2116 /*
2117 * Add a pending snapshot associated with the given transaction handle to the
2118 * respective handle. This must be called after the transaction commit started
2119 * and while holding fs_info->trans_lock.
2120 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2121 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2122 * returns an error.
2123 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2124 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2125 {
2126 struct btrfs_transaction *cur_trans = trans->transaction;
2127
2128 if (!trans->pending_snapshot)
2129 return;
2130
2131 lockdep_assert_held(&trans->fs_info->trans_lock);
2132 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2133
2134 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2135 }
2136
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2137 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2138 {
2139 struct btrfs_fs_info *fs_info = trans->fs_info;
2140 struct btrfs_transaction *cur_trans = trans->transaction;
2141 struct btrfs_transaction *prev_trans = NULL;
2142 int ret;
2143
2144 ASSERT(refcount_read(&trans->use_count) == 1);
2145
2146 /* Stop the commit early if ->aborted is set */
2147 if (TRANS_ABORTED(cur_trans)) {
2148 ret = cur_trans->aborted;
2149 btrfs_end_transaction(trans);
2150 return ret;
2151 }
2152
2153 btrfs_trans_release_metadata(trans);
2154 trans->block_rsv = NULL;
2155
2156 /*
2157 * We only want one transaction commit doing the flushing so we do not
2158 * waste a bunch of time on lock contention on the extent root node.
2159 */
2160 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2161 &cur_trans->delayed_refs.flags)) {
2162 /*
2163 * Make a pass through all the delayed refs we have so far.
2164 * Any running threads may add more while we are here.
2165 */
2166 ret = btrfs_run_delayed_refs(trans, 0);
2167 if (ret) {
2168 btrfs_end_transaction(trans);
2169 return ret;
2170 }
2171 }
2172
2173 btrfs_create_pending_block_groups(trans);
2174
2175 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2176 int run_it = 0;
2177
2178 /* this mutex is also taken before trying to set
2179 * block groups readonly. We need to make sure
2180 * that nobody has set a block group readonly
2181 * after a extents from that block group have been
2182 * allocated for cache files. btrfs_set_block_group_ro
2183 * will wait for the transaction to commit if it
2184 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2185 *
2186 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2187 * only one process starts all the block group IO. It wouldn't
2188 * hurt to have more than one go through, but there's no
2189 * real advantage to it either.
2190 */
2191 mutex_lock(&fs_info->ro_block_group_mutex);
2192 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2193 &cur_trans->flags))
2194 run_it = 1;
2195 mutex_unlock(&fs_info->ro_block_group_mutex);
2196
2197 if (run_it) {
2198 ret = btrfs_start_dirty_block_groups(trans);
2199 if (ret) {
2200 btrfs_end_transaction(trans);
2201 return ret;
2202 }
2203 }
2204 }
2205
2206 spin_lock(&fs_info->trans_lock);
2207 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2208 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2209
2210 add_pending_snapshot(trans);
2211
2212 spin_unlock(&fs_info->trans_lock);
2213 refcount_inc(&cur_trans->use_count);
2214
2215 if (trans->in_fsync)
2216 want_state = TRANS_STATE_SUPER_COMMITTED;
2217 ret = btrfs_end_transaction(trans);
2218 wait_for_commit(cur_trans, want_state);
2219
2220 if (TRANS_ABORTED(cur_trans))
2221 ret = cur_trans->aborted;
2222
2223 btrfs_put_transaction(cur_trans);
2224
2225 return ret;
2226 }
2227
2228 cur_trans->state = TRANS_STATE_COMMIT_START;
2229 wake_up(&fs_info->transaction_blocked_wait);
2230
2231 if (cur_trans->list.prev != &fs_info->trans_list) {
2232 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2233
2234 if (trans->in_fsync)
2235 want_state = TRANS_STATE_SUPER_COMMITTED;
2236
2237 prev_trans = list_entry(cur_trans->list.prev,
2238 struct btrfs_transaction, list);
2239 if (prev_trans->state < want_state) {
2240 refcount_inc(&prev_trans->use_count);
2241 spin_unlock(&fs_info->trans_lock);
2242
2243 wait_for_commit(prev_trans, want_state);
2244
2245 ret = READ_ONCE(prev_trans->aborted);
2246
2247 btrfs_put_transaction(prev_trans);
2248 if (ret)
2249 goto cleanup_transaction;
2250 } else {
2251 spin_unlock(&fs_info->trans_lock);
2252 }
2253 } else {
2254 spin_unlock(&fs_info->trans_lock);
2255 /*
2256 * The previous transaction was aborted and was already removed
2257 * from the list of transactions at fs_info->trans_list. So we
2258 * abort to prevent writing a new superblock that reflects a
2259 * corrupt state (pointing to trees with unwritten nodes/leafs).
2260 */
2261 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2262 ret = -EROFS;
2263 goto cleanup_transaction;
2264 }
2265 }
2266
2267 extwriter_counter_dec(cur_trans, trans->type);
2268
2269 ret = btrfs_start_delalloc_flush(fs_info);
2270 if (ret)
2271 goto cleanup_transaction;
2272
2273 ret = btrfs_run_delayed_items(trans);
2274 if (ret)
2275 goto cleanup_transaction;
2276
2277 wait_event(cur_trans->writer_wait,
2278 extwriter_counter_read(cur_trans) == 0);
2279
2280 /* some pending stuffs might be added after the previous flush. */
2281 ret = btrfs_run_delayed_items(trans);
2282 if (ret)
2283 goto cleanup_transaction;
2284
2285 btrfs_wait_delalloc_flush(fs_info);
2286
2287 /*
2288 * Wait for all ordered extents started by a fast fsync that joined this
2289 * transaction. Otherwise if this transaction commits before the ordered
2290 * extents complete we lose logged data after a power failure.
2291 */
2292 wait_event(cur_trans->pending_wait,
2293 atomic_read(&cur_trans->pending_ordered) == 0);
2294
2295 btrfs_scrub_pause(fs_info);
2296 /*
2297 * Ok now we need to make sure to block out any other joins while we
2298 * commit the transaction. We could have started a join before setting
2299 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2300 */
2301 spin_lock(&fs_info->trans_lock);
2302 add_pending_snapshot(trans);
2303 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2304 spin_unlock(&fs_info->trans_lock);
2305 wait_event(cur_trans->writer_wait,
2306 atomic_read(&cur_trans->num_writers) == 1);
2307
2308 if (TRANS_ABORTED(cur_trans)) {
2309 ret = cur_trans->aborted;
2310 goto scrub_continue;
2311 }
2312 /*
2313 * the reloc mutex makes sure that we stop
2314 * the balancing code from coming in and moving
2315 * extents around in the middle of the commit
2316 */
2317 mutex_lock(&fs_info->reloc_mutex);
2318
2319 /*
2320 * We needn't worry about the delayed items because we will
2321 * deal with them in create_pending_snapshot(), which is the
2322 * core function of the snapshot creation.
2323 */
2324 ret = create_pending_snapshots(trans);
2325 if (ret)
2326 goto unlock_reloc;
2327
2328 /*
2329 * We insert the dir indexes of the snapshots and update the inode
2330 * of the snapshots' parents after the snapshot creation, so there
2331 * are some delayed items which are not dealt with. Now deal with
2332 * them.
2333 *
2334 * We needn't worry that this operation will corrupt the snapshots,
2335 * because all the tree which are snapshoted will be forced to COW
2336 * the nodes and leaves.
2337 */
2338 ret = btrfs_run_delayed_items(trans);
2339 if (ret)
2340 goto unlock_reloc;
2341
2342 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2343 if (ret)
2344 goto unlock_reloc;
2345
2346 /*
2347 * make sure none of the code above managed to slip in a
2348 * delayed item
2349 */
2350 btrfs_assert_delayed_root_empty(fs_info);
2351
2352 WARN_ON(cur_trans != trans->transaction);
2353
2354 /* btrfs_commit_tree_roots is responsible for getting the
2355 * various roots consistent with each other. Every pointer
2356 * in the tree of tree roots has to point to the most up to date
2357 * root for every subvolume and other tree. So, we have to keep
2358 * the tree logging code from jumping in and changing any
2359 * of the trees.
2360 *
2361 * At this point in the commit, there can't be any tree-log
2362 * writers, but a little lower down we drop the trans mutex
2363 * and let new people in. By holding the tree_log_mutex
2364 * from now until after the super is written, we avoid races
2365 * with the tree-log code.
2366 */
2367 mutex_lock(&fs_info->tree_log_mutex);
2368
2369 ret = commit_fs_roots(trans);
2370 if (ret)
2371 goto unlock_tree_log;
2372
2373 /*
2374 * Since the transaction is done, we can apply the pending changes
2375 * before the next transaction.
2376 */
2377 btrfs_apply_pending_changes(fs_info);
2378
2379 /* commit_fs_roots gets rid of all the tree log roots, it is now
2380 * safe to free the root of tree log roots
2381 */
2382 btrfs_free_log_root_tree(trans, fs_info);
2383
2384 /*
2385 * Since fs roots are all committed, we can get a quite accurate
2386 * new_roots. So let's do quota accounting.
2387 */
2388 ret = btrfs_qgroup_account_extents(trans);
2389 if (ret < 0)
2390 goto unlock_tree_log;
2391
2392 ret = commit_cowonly_roots(trans);
2393 if (ret)
2394 goto unlock_tree_log;
2395
2396 /*
2397 * The tasks which save the space cache and inode cache may also
2398 * update ->aborted, check it.
2399 */
2400 if (TRANS_ABORTED(cur_trans)) {
2401 ret = cur_trans->aborted;
2402 goto unlock_tree_log;
2403 }
2404
2405 cur_trans = fs_info->running_transaction;
2406
2407 btrfs_set_root_node(&fs_info->tree_root->root_item,
2408 fs_info->tree_root->node);
2409 list_add_tail(&fs_info->tree_root->dirty_list,
2410 &cur_trans->switch_commits);
2411
2412 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2413 fs_info->chunk_root->node);
2414 list_add_tail(&fs_info->chunk_root->dirty_list,
2415 &cur_trans->switch_commits);
2416
2417 switch_commit_roots(trans);
2418
2419 ASSERT(list_empty(&cur_trans->dirty_bgs));
2420 ASSERT(list_empty(&cur_trans->io_bgs));
2421 update_super_roots(fs_info);
2422
2423 btrfs_set_super_log_root(fs_info->super_copy, 0);
2424 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2425 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2426 sizeof(*fs_info->super_copy));
2427
2428 btrfs_commit_device_sizes(cur_trans);
2429
2430 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2431 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2432
2433 btrfs_trans_release_chunk_metadata(trans);
2434
2435 spin_lock(&fs_info->trans_lock);
2436 cur_trans->state = TRANS_STATE_UNBLOCKED;
2437 fs_info->running_transaction = NULL;
2438 spin_unlock(&fs_info->trans_lock);
2439 mutex_unlock(&fs_info->reloc_mutex);
2440
2441 wake_up(&fs_info->transaction_wait);
2442
2443 ret = btrfs_write_and_wait_transaction(trans);
2444 if (ret) {
2445 btrfs_handle_fs_error(fs_info, ret,
2446 "Error while writing out transaction");
2447 /*
2448 * reloc_mutex has been unlocked, tree_log_mutex is still held
2449 * but we can't jump to unlock_tree_log causing double unlock
2450 */
2451 mutex_unlock(&fs_info->tree_log_mutex);
2452 goto scrub_continue;
2453 }
2454
2455 /*
2456 * At this point, we should have written all the tree blocks allocated
2457 * in this transaction. So it's now safe to free the redirtyied extent
2458 * buffers.
2459 */
2460 btrfs_free_redirty_list(cur_trans);
2461
2462 ret = write_all_supers(fs_info, 0);
2463 /*
2464 * the super is written, we can safely allow the tree-loggers
2465 * to go about their business
2466 */
2467 mutex_unlock(&fs_info->tree_log_mutex);
2468 if (ret)
2469 goto scrub_continue;
2470
2471 /*
2472 * We needn't acquire the lock here because there is no other task
2473 * which can change it.
2474 */
2475 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2476 wake_up(&cur_trans->commit_wait);
2477
2478 btrfs_finish_extent_commit(trans);
2479
2480 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2481 btrfs_clear_space_info_full(fs_info);
2482
2483 fs_info->last_trans_committed = cur_trans->transid;
2484 /*
2485 * We needn't acquire the lock here because there is no other task
2486 * which can change it.
2487 */
2488 cur_trans->state = TRANS_STATE_COMPLETED;
2489 wake_up(&cur_trans->commit_wait);
2490
2491 spin_lock(&fs_info->trans_lock);
2492 list_del_init(&cur_trans->list);
2493 spin_unlock(&fs_info->trans_lock);
2494
2495 btrfs_put_transaction(cur_trans);
2496 btrfs_put_transaction(cur_trans);
2497
2498 if (trans->type & __TRANS_FREEZABLE)
2499 sb_end_intwrite(fs_info->sb);
2500
2501 trace_btrfs_transaction_commit(trans->root);
2502
2503 btrfs_scrub_continue(fs_info);
2504
2505 if (current->journal_info == trans)
2506 current->journal_info = NULL;
2507
2508 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2509
2510 return ret;
2511
2512 unlock_tree_log:
2513 mutex_unlock(&fs_info->tree_log_mutex);
2514 unlock_reloc:
2515 mutex_unlock(&fs_info->reloc_mutex);
2516 scrub_continue:
2517 btrfs_scrub_continue(fs_info);
2518 cleanup_transaction:
2519 btrfs_trans_release_metadata(trans);
2520 btrfs_cleanup_pending_block_groups(trans);
2521 btrfs_trans_release_chunk_metadata(trans);
2522 trans->block_rsv = NULL;
2523 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2524 if (current->journal_info == trans)
2525 current->journal_info = NULL;
2526 cleanup_transaction(trans, ret);
2527
2528 return ret;
2529 }
2530
2531 /*
2532 * return < 0 if error
2533 * 0 if there are no more dead_roots at the time of call
2534 * 1 there are more to be processed, call me again
2535 *
2536 * The return value indicates there are certainly more snapshots to delete, but
2537 * if there comes a new one during processing, it may return 0. We don't mind,
2538 * because btrfs_commit_super will poke cleaner thread and it will process it a
2539 * few seconds later.
2540 */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2541 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2542 {
2543 int ret;
2544 struct btrfs_fs_info *fs_info = root->fs_info;
2545
2546 spin_lock(&fs_info->trans_lock);
2547 if (list_empty(&fs_info->dead_roots)) {
2548 spin_unlock(&fs_info->trans_lock);
2549 return 0;
2550 }
2551 root = list_first_entry(&fs_info->dead_roots,
2552 struct btrfs_root, root_list);
2553 list_del_init(&root->root_list);
2554 spin_unlock(&fs_info->trans_lock);
2555
2556 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2557
2558 btrfs_kill_all_delayed_nodes(root);
2559
2560 if (btrfs_header_backref_rev(root->node) <
2561 BTRFS_MIXED_BACKREF_REV)
2562 ret = btrfs_drop_snapshot(root, 0, 0);
2563 else
2564 ret = btrfs_drop_snapshot(root, 1, 0);
2565
2566 btrfs_put_root(root);
2567 return (ret < 0) ? 0 : 1;
2568 }
2569
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2570 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2571 {
2572 unsigned long prev;
2573 unsigned long bit;
2574
2575 prev = xchg(&fs_info->pending_changes, 0);
2576 if (!prev)
2577 return;
2578
2579 bit = 1 << BTRFS_PENDING_COMMIT;
2580 if (prev & bit)
2581 btrfs_debug(fs_info, "pending commit done");
2582 prev &= ~bit;
2583
2584 if (prev)
2585 btrfs_warn(fs_info,
2586 "unknown pending changes left 0x%lx, ignoring", prev);
2587 }
2588