• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 
17 #define BTRFS_DELAYED_WRITEBACK		512
18 #define BTRFS_DELAYED_BACKGROUND	128
19 #define BTRFS_DELAYED_BATCH		16
20 
21 static struct kmem_cache *delayed_node_cache;
22 
btrfs_delayed_inode_init(void)23 int __init btrfs_delayed_inode_init(void)
24 {
25 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 					sizeof(struct btrfs_delayed_node),
27 					0,
28 					SLAB_MEM_SPREAD,
29 					NULL);
30 	if (!delayed_node_cache)
31 		return -ENOMEM;
32 	return 0;
33 }
34 
btrfs_delayed_inode_exit(void)35 void __cold btrfs_delayed_inode_exit(void)
36 {
37 	kmem_cache_destroy(delayed_node_cache);
38 }
39 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)40 static inline void btrfs_init_delayed_node(
41 				struct btrfs_delayed_node *delayed_node,
42 				struct btrfs_root *root, u64 inode_id)
43 {
44 	delayed_node->root = root;
45 	delayed_node->inode_id = inode_id;
46 	refcount_set(&delayed_node->refs, 0);
47 	delayed_node->ins_root = RB_ROOT_CACHED;
48 	delayed_node->del_root = RB_ROOT_CACHED;
49 	mutex_init(&delayed_node->mutex);
50 	INIT_LIST_HEAD(&delayed_node->n_list);
51 	INIT_LIST_HEAD(&delayed_node->p_list);
52 }
53 
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)54 static inline int btrfs_is_continuous_delayed_item(
55 					struct btrfs_delayed_item *item1,
56 					struct btrfs_delayed_item *item2)
57 {
58 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 	    item1->key.objectid == item2->key.objectid &&
60 	    item1->key.type == item2->key.type &&
61 	    item1->key.offset + 1 == item2->key.offset)
62 		return 1;
63 	return 0;
64 }
65 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)66 static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 		struct btrfs_inode *btrfs_inode)
68 {
69 	struct btrfs_root *root = btrfs_inode->root;
70 	u64 ino = btrfs_ino(btrfs_inode);
71 	struct btrfs_delayed_node *node;
72 
73 	node = READ_ONCE(btrfs_inode->delayed_node);
74 	if (node) {
75 		refcount_inc(&node->refs);
76 		return node;
77 	}
78 
79 	spin_lock(&root->inode_lock);
80 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81 
82 	if (node) {
83 		if (btrfs_inode->delayed_node) {
84 			refcount_inc(&node->refs);	/* can be accessed */
85 			BUG_ON(btrfs_inode->delayed_node != node);
86 			spin_unlock(&root->inode_lock);
87 			return node;
88 		}
89 
90 		/*
91 		 * It's possible that we're racing into the middle of removing
92 		 * this node from the radix tree.  In this case, the refcount
93 		 * was zero and it should never go back to one.  Just return
94 		 * NULL like it was never in the radix at all; our release
95 		 * function is in the process of removing it.
96 		 *
97 		 * Some implementations of refcount_inc refuse to bump the
98 		 * refcount once it has hit zero.  If we don't do this dance
99 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 		 * of actually bumping the refcount.
101 		 *
102 		 * If this node is properly in the radix, we want to bump the
103 		 * refcount twice, once for the inode and once for this get
104 		 * operation.
105 		 */
106 		if (refcount_inc_not_zero(&node->refs)) {
107 			refcount_inc(&node->refs);
108 			btrfs_inode->delayed_node = node;
109 		} else {
110 			node = NULL;
111 		}
112 
113 		spin_unlock(&root->inode_lock);
114 		return node;
115 	}
116 	spin_unlock(&root->inode_lock);
117 
118 	return NULL;
119 }
120 
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 		struct btrfs_inode *btrfs_inode)
124 {
125 	struct btrfs_delayed_node *node;
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(btrfs_inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(btrfs_inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	/* cached in the btrfs inode and can be accessed */
141 	refcount_set(&node->refs, 2);
142 
143 	ret = radix_tree_preload(GFP_NOFS);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		spin_unlock(&root->inode_lock);
153 		kmem_cache_free(delayed_node_cache, node);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		refcount_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 		root->nodes--;
196 		refcount_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	refcount_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
btrfs_next_delayed_node(struct btrfs_delayed_node * node)224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 		/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	refcount_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (refcount_dec_and_test(&delayed_node->refs)) {
270 		struct btrfs_root *root = delayed_node->root;
271 
272 		spin_lock(&root->inode_lock);
273 		/*
274 		 * Once our refcount goes to zero, nobody is allowed to bump it
275 		 * back up.  We can delete it now.
276 		 */
277 		ASSERT(refcount_read(&delayed_node->refs) == 0);
278 		radix_tree_delete(&root->delayed_nodes_tree,
279 				  delayed_node->inode_id);
280 		spin_unlock(&root->inode_lock);
281 		kmem_cache_free(delayed_node_cache, delayed_node);
282 	}
283 }
284 
btrfs_release_delayed_node(struct btrfs_delayed_node * node)285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 {
287 	__btrfs_release_delayed_node(node, 0);
288 }
289 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 					struct btrfs_delayed_root *delayed_root)
292 {
293 	struct list_head *p;
294 	struct btrfs_delayed_node *node = NULL;
295 
296 	spin_lock(&delayed_root->lock);
297 	if (list_empty(&delayed_root->prepare_list))
298 		goto out;
299 
300 	p = delayed_root->prepare_list.next;
301 	list_del_init(p);
302 	node = list_entry(p, struct btrfs_delayed_node, p_list);
303 	refcount_inc(&node->refs);
304 out:
305 	spin_unlock(&delayed_root->lock);
306 
307 	return node;
308 }
309 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)310 static inline void btrfs_release_prepared_delayed_node(
311 					struct btrfs_delayed_node *node)
312 {
313 	__btrfs_release_delayed_node(node, 1);
314 }
315 
btrfs_alloc_delayed_item(u32 data_len)316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 {
318 	struct btrfs_delayed_item *item;
319 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 	if (item) {
321 		item->data_len = data_len;
322 		item->ins_or_del = 0;
323 		item->bytes_reserved = 0;
324 		item->delayed_node = NULL;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * __btrfs_lookup_delayed_item - look up the delayed item by key
332  * @delayed_node: pointer to the delayed node
333  * @key:	  the key to look up
334  * @prev:	  used to store the prev item if the right item isn't found
335  * @next:	  used to store the next item if the right item isn't found
336  *
337  * Note: if we don't find the right item, we will return the prev item and
338  * the next item.
339  */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 				struct rb_root *root,
342 				struct btrfs_key *key,
343 				struct btrfs_delayed_item **prev,
344 				struct btrfs_delayed_item **next)
345 {
346 	struct rb_node *node, *prev_node = NULL;
347 	struct btrfs_delayed_item *delayed_item = NULL;
348 	int ret = 0;
349 
350 	node = root->rb_node;
351 
352 	while (node) {
353 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 					rb_node);
355 		prev_node = node;
356 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 		if (ret < 0)
358 			node = node->rb_right;
359 		else if (ret > 0)
360 			node = node->rb_left;
361 		else
362 			return delayed_item;
363 	}
364 
365 	if (prev) {
366 		if (!prev_node)
367 			*prev = NULL;
368 		else if (ret < 0)
369 			*prev = delayed_item;
370 		else if ((node = rb_prev(prev_node)) != NULL) {
371 			*prev = rb_entry(node, struct btrfs_delayed_item,
372 					 rb_node);
373 		} else
374 			*prev = NULL;
375 	}
376 
377 	if (next) {
378 		if (!prev_node)
379 			*next = NULL;
380 		else if (ret > 0)
381 			*next = delayed_item;
382 		else if ((node = rb_next(prev_node)) != NULL) {
383 			*next = rb_entry(node, struct btrfs_delayed_item,
384 					 rb_node);
385 		} else
386 			*next = NULL;
387 	}
388 	return NULL;
389 }
390 
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 					struct btrfs_delayed_node *delayed_node,
393 					struct btrfs_key *key)
394 {
395 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 					   NULL, NULL);
397 }
398 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 				    struct btrfs_delayed_item *ins,
401 				    int action)
402 {
403 	struct rb_node **p, *node;
404 	struct rb_node *parent_node = NULL;
405 	struct rb_root_cached *root;
406 	struct btrfs_delayed_item *item;
407 	int cmp;
408 	bool leftmost = true;
409 
410 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 		root = &delayed_node->ins_root;
412 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 		root = &delayed_node->del_root;
414 	else
415 		BUG();
416 	p = &root->rb_root.rb_node;
417 	node = &ins->rb_node;
418 
419 	while (*p) {
420 		parent_node = *p;
421 		item = rb_entry(parent_node, struct btrfs_delayed_item,
422 				 rb_node);
423 
424 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 		if (cmp < 0) {
426 			p = &(*p)->rb_right;
427 			leftmost = false;
428 		} else if (cmp > 0) {
429 			p = &(*p)->rb_left;
430 		} else {
431 			return -EEXIST;
432 		}
433 	}
434 
435 	rb_link_node(node, parent_node, p);
436 	rb_insert_color_cached(node, root, leftmost);
437 	ins->delayed_node = delayed_node;
438 	ins->ins_or_del = action;
439 
440 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
442 	    ins->key.offset >= delayed_node->index_cnt)
443 			delayed_node->index_cnt = ins->key.offset + 1;
444 
445 	delayed_node->count++;
446 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 	return 0;
448 }
449 
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 					      struct btrfs_delayed_item *item)
452 {
453 	return __btrfs_add_delayed_item(node, item,
454 					BTRFS_DELAYED_INSERTION_ITEM);
455 }
456 
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 					     struct btrfs_delayed_item *item)
459 {
460 	return __btrfs_add_delayed_item(node, item,
461 					BTRFS_DELAYED_DELETION_ITEM);
462 }
463 
finish_one_item(struct btrfs_delayed_root * delayed_root)464 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465 {
466 	int seq = atomic_inc_return(&delayed_root->items_seq);
467 
468 	/* atomic_dec_return implies a barrier */
469 	if ((atomic_dec_return(&delayed_root->items) <
470 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 		cond_wake_up_nomb(&delayed_root->wait);
472 }
473 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475 {
476 	struct rb_root_cached *root;
477 	struct btrfs_delayed_root *delayed_root;
478 
479 	/* Not associated with any delayed_node */
480 	if (!delayed_item->delayed_node)
481 		return;
482 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483 
484 	BUG_ON(!delayed_root);
485 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487 
488 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 		root = &delayed_item->delayed_node->ins_root;
490 	else
491 		root = &delayed_item->delayed_node->del_root;
492 
493 	rb_erase_cached(&delayed_item->rb_node, root);
494 	delayed_item->delayed_node->count--;
495 
496 	finish_one_item(delayed_root);
497 }
498 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500 {
501 	if (item) {
502 		__btrfs_remove_delayed_item(item);
503 		if (refcount_dec_and_test(&item->refs))
504 			kfree(item);
505 	}
506 }
507 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 					struct btrfs_delayed_node *delayed_node)
510 {
511 	struct rb_node *p;
512 	struct btrfs_delayed_item *item = NULL;
513 
514 	p = rb_first_cached(&delayed_node->ins_root);
515 	if (p)
516 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517 
518 	return item;
519 }
520 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 					struct btrfs_delayed_node *delayed_node)
523 {
524 	struct rb_node *p;
525 	struct btrfs_delayed_item *item = NULL;
526 
527 	p = rb_first_cached(&delayed_node->del_root);
528 	if (p)
529 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530 
531 	return item;
532 }
533 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)534 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 						struct btrfs_delayed_item *item)
536 {
537 	struct rb_node *p;
538 	struct btrfs_delayed_item *next = NULL;
539 
540 	p = rb_next(&item->rb_node);
541 	if (p)
542 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543 
544 	return next;
545 }
546 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 					       struct btrfs_root *root,
549 					       struct btrfs_delayed_item *item)
550 {
551 	struct btrfs_block_rsv *src_rsv;
552 	struct btrfs_block_rsv *dst_rsv;
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 	u64 num_bytes;
555 	int ret;
556 
557 	if (!trans->bytes_reserved)
558 		return 0;
559 
560 	src_rsv = trans->block_rsv;
561 	dst_rsv = &fs_info->delayed_block_rsv;
562 
563 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564 
565 	/*
566 	 * Here we migrate space rsv from transaction rsv, since have already
567 	 * reserved space when starting a transaction.  So no need to reserve
568 	 * qgroup space here.
569 	 */
570 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 	if (!ret) {
572 		trace_btrfs_space_reservation(fs_info, "delayed_item",
573 					      item->key.objectid,
574 					      num_bytes, 1);
575 		item->bytes_reserved = num_bytes;
576 	}
577 
578 	return ret;
579 }
580 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 						struct btrfs_delayed_item *item)
583 {
584 	struct btrfs_block_rsv *rsv;
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 
587 	if (!item->bytes_reserved)
588 		return;
589 
590 	rsv = &fs_info->delayed_block_rsv;
591 	/*
592 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 	 * to release/reserve qgroup space.
594 	 */
595 	trace_btrfs_space_reservation(fs_info, "delayed_item",
596 				      item->key.objectid, item->bytes_reserved,
597 				      0);
598 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
599 }
600 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)601 static int btrfs_delayed_inode_reserve_metadata(
602 					struct btrfs_trans_handle *trans,
603 					struct btrfs_root *root,
604 					struct btrfs_delayed_node *node)
605 {
606 	struct btrfs_fs_info *fs_info = root->fs_info;
607 	struct btrfs_block_rsv *src_rsv;
608 	struct btrfs_block_rsv *dst_rsv;
609 	u64 num_bytes;
610 	int ret;
611 
612 	src_rsv = trans->block_rsv;
613 	dst_rsv = &fs_info->delayed_block_rsv;
614 
615 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
616 
617 	/*
618 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
619 	 * which doesn't reserve space for speed.  This is a problem since we
620 	 * still need to reserve space for this update, so try to reserve the
621 	 * space.
622 	 *
623 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
624 	 * we always reserve enough to update the inode item.
625 	 */
626 	if (!src_rsv || (!trans->bytes_reserved &&
627 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
628 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
629 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
630 		if (ret < 0)
631 			return ret;
632 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
633 					  BTRFS_RESERVE_NO_FLUSH);
634 		/* NO_FLUSH could only fail with -ENOSPC */
635 		ASSERT(ret == 0 || ret == -ENOSPC);
636 		if (ret)
637 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
638 	} else {
639 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
640 	}
641 
642 	if (!ret) {
643 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
644 					      node->inode_id, num_bytes, 1);
645 		node->bytes_reserved = num_bytes;
646 	}
647 
648 	return ret;
649 }
650 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)651 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
652 						struct btrfs_delayed_node *node,
653 						bool qgroup_free)
654 {
655 	struct btrfs_block_rsv *rsv;
656 
657 	if (!node->bytes_reserved)
658 		return;
659 
660 	rsv = &fs_info->delayed_block_rsv;
661 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
662 				      node->inode_id, node->bytes_reserved, 0);
663 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
664 	if (qgroup_free)
665 		btrfs_qgroup_free_meta_prealloc(node->root,
666 				node->bytes_reserved);
667 	else
668 		btrfs_qgroup_convert_reserved_meta(node->root,
669 				node->bytes_reserved);
670 	node->bytes_reserved = 0;
671 }
672 
673 /*
674  * Insert a single delayed item or a batch of delayed items that have consecutive
675  * keys if they exist.
676  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)677 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
678 				     struct btrfs_root *root,
679 				     struct btrfs_path *path,
680 				     struct btrfs_delayed_item *first_item)
681 {
682 	LIST_HEAD(batch);
683 	struct btrfs_delayed_item *curr;
684 	struct btrfs_delayed_item *next;
685 	const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
686 	int total_size;
687 	int nitems;
688 	char *ins_data = NULL;
689 	struct btrfs_key *ins_keys;
690 	u32 *ins_sizes;
691 	int ret;
692 
693 	list_add_tail(&first_item->tree_list, &batch);
694 	nitems = 1;
695 	total_size = first_item->data_len + sizeof(struct btrfs_item);
696 	curr = first_item;
697 
698 	while (true) {
699 		int next_size;
700 
701 		next = __btrfs_next_delayed_item(curr);
702 		if (!next || !btrfs_is_continuous_delayed_item(curr, next))
703 			break;
704 
705 		next_size = next->data_len + sizeof(struct btrfs_item);
706 		if (total_size + next_size > max_size)
707 			break;
708 
709 		list_add_tail(&next->tree_list, &batch);
710 		nitems++;
711 		total_size += next_size;
712 		curr = next;
713 	}
714 
715 	if (nitems == 1) {
716 		ins_keys = &first_item->key;
717 		ins_sizes = &first_item->data_len;
718 	} else {
719 		int i = 0;
720 
721 		ins_data = kmalloc(nitems * sizeof(u32) +
722 				   nitems * sizeof(struct btrfs_key), GFP_NOFS);
723 		if (!ins_data) {
724 			ret = -ENOMEM;
725 			goto out;
726 		}
727 		ins_sizes = (u32 *)ins_data;
728 		ins_keys = (struct btrfs_key *)(ins_data + nitems * sizeof(u32));
729 		list_for_each_entry(curr, &batch, tree_list) {
730 			ins_keys[i] = curr->key;
731 			ins_sizes[i] = curr->data_len;
732 			i++;
733 		}
734 	}
735 
736 	ret = btrfs_insert_empty_items(trans, root, path, ins_keys, ins_sizes,
737 				       nitems);
738 	if (ret)
739 		goto out;
740 
741 	list_for_each_entry(curr, &batch, tree_list) {
742 		char *data_ptr;
743 
744 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
745 		write_extent_buffer(path->nodes[0], &curr->data,
746 				    (unsigned long)data_ptr, curr->data_len);
747 		path->slots[0]++;
748 	}
749 
750 	/*
751 	 * Now release our path before releasing the delayed items and their
752 	 * metadata reservations, so that we don't block other tasks for more
753 	 * time than needed.
754 	 */
755 	btrfs_release_path(path);
756 
757 	list_for_each_entry_safe(curr, next, &batch, tree_list) {
758 		list_del(&curr->tree_list);
759 		btrfs_delayed_item_release_metadata(root, curr);
760 		btrfs_release_delayed_item(curr);
761 	}
762 out:
763 	kfree(ins_data);
764 	return ret;
765 }
766 
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)767 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
768 				      struct btrfs_path *path,
769 				      struct btrfs_root *root,
770 				      struct btrfs_delayed_node *node)
771 {
772 	int ret = 0;
773 
774 	while (ret == 0) {
775 		struct btrfs_delayed_item *curr;
776 
777 		mutex_lock(&node->mutex);
778 		curr = __btrfs_first_delayed_insertion_item(node);
779 		if (!curr) {
780 			mutex_unlock(&node->mutex);
781 			break;
782 		}
783 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
784 		mutex_unlock(&node->mutex);
785 	}
786 
787 	return ret;
788 }
789 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)790 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
791 				    struct btrfs_root *root,
792 				    struct btrfs_path *path,
793 				    struct btrfs_delayed_item *item)
794 {
795 	struct btrfs_delayed_item *curr, *next;
796 	struct extent_buffer *leaf;
797 	struct btrfs_key key;
798 	struct list_head head;
799 	int nitems, i, last_item;
800 	int ret = 0;
801 
802 	BUG_ON(!path->nodes[0]);
803 
804 	leaf = path->nodes[0];
805 
806 	i = path->slots[0];
807 	last_item = btrfs_header_nritems(leaf) - 1;
808 	if (i > last_item)
809 		return -ENOENT;	/* FIXME: Is errno suitable? */
810 
811 	next = item;
812 	INIT_LIST_HEAD(&head);
813 	btrfs_item_key_to_cpu(leaf, &key, i);
814 	nitems = 0;
815 	/*
816 	 * count the number of the dir index items that we can delete in batch
817 	 */
818 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
819 		list_add_tail(&next->tree_list, &head);
820 		nitems++;
821 
822 		curr = next;
823 		next = __btrfs_next_delayed_item(curr);
824 		if (!next)
825 			break;
826 
827 		if (!btrfs_is_continuous_delayed_item(curr, next))
828 			break;
829 
830 		i++;
831 		if (i > last_item)
832 			break;
833 		btrfs_item_key_to_cpu(leaf, &key, i);
834 	}
835 
836 	if (!nitems)
837 		return 0;
838 
839 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
840 	if (ret)
841 		goto out;
842 
843 	list_for_each_entry_safe(curr, next, &head, tree_list) {
844 		btrfs_delayed_item_release_metadata(root, curr);
845 		list_del(&curr->tree_list);
846 		btrfs_release_delayed_item(curr);
847 	}
848 
849 out:
850 	return ret;
851 }
852 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)853 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
854 				      struct btrfs_path *path,
855 				      struct btrfs_root *root,
856 				      struct btrfs_delayed_node *node)
857 {
858 	struct btrfs_delayed_item *curr, *prev;
859 	int ret = 0;
860 
861 do_again:
862 	mutex_lock(&node->mutex);
863 	curr = __btrfs_first_delayed_deletion_item(node);
864 	if (!curr)
865 		goto delete_fail;
866 
867 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
868 	if (ret < 0)
869 		goto delete_fail;
870 	else if (ret > 0) {
871 		/*
872 		 * can't find the item which the node points to, so this node
873 		 * is invalid, just drop it.
874 		 */
875 		prev = curr;
876 		curr = __btrfs_next_delayed_item(prev);
877 		btrfs_release_delayed_item(prev);
878 		ret = 0;
879 		btrfs_release_path(path);
880 		if (curr) {
881 			mutex_unlock(&node->mutex);
882 			goto do_again;
883 		} else
884 			goto delete_fail;
885 	}
886 
887 	btrfs_batch_delete_items(trans, root, path, curr);
888 	btrfs_release_path(path);
889 	mutex_unlock(&node->mutex);
890 	goto do_again;
891 
892 delete_fail:
893 	btrfs_release_path(path);
894 	mutex_unlock(&node->mutex);
895 	return ret;
896 }
897 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)898 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
899 {
900 	struct btrfs_delayed_root *delayed_root;
901 
902 	if (delayed_node &&
903 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
904 		BUG_ON(!delayed_node->root);
905 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
906 		delayed_node->count--;
907 
908 		delayed_root = delayed_node->root->fs_info->delayed_root;
909 		finish_one_item(delayed_root);
910 	}
911 }
912 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)913 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
914 {
915 
916 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
917 		struct btrfs_delayed_root *delayed_root;
918 
919 		ASSERT(delayed_node->root);
920 		delayed_node->count--;
921 
922 		delayed_root = delayed_node->root->fs_info->delayed_root;
923 		finish_one_item(delayed_root);
924 	}
925 }
926 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)927 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
928 					struct btrfs_root *root,
929 					struct btrfs_path *path,
930 					struct btrfs_delayed_node *node)
931 {
932 	struct btrfs_fs_info *fs_info = root->fs_info;
933 	struct btrfs_key key;
934 	struct btrfs_inode_item *inode_item;
935 	struct extent_buffer *leaf;
936 	int mod;
937 	int ret;
938 
939 	key.objectid = node->inode_id;
940 	key.type = BTRFS_INODE_ITEM_KEY;
941 	key.offset = 0;
942 
943 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
944 		mod = -1;
945 	else
946 		mod = 1;
947 
948 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
949 	if (ret > 0)
950 		ret = -ENOENT;
951 	if (ret < 0)
952 		goto out;
953 
954 	leaf = path->nodes[0];
955 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
956 				    struct btrfs_inode_item);
957 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
958 			    sizeof(struct btrfs_inode_item));
959 	btrfs_mark_buffer_dirty(leaf);
960 
961 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
962 		goto out;
963 
964 	path->slots[0]++;
965 	if (path->slots[0] >= btrfs_header_nritems(leaf))
966 		goto search;
967 again:
968 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
969 	if (key.objectid != node->inode_id)
970 		goto out;
971 
972 	if (key.type != BTRFS_INODE_REF_KEY &&
973 	    key.type != BTRFS_INODE_EXTREF_KEY)
974 		goto out;
975 
976 	/*
977 	 * Delayed iref deletion is for the inode who has only one link,
978 	 * so there is only one iref. The case that several irefs are
979 	 * in the same item doesn't exist.
980 	 */
981 	btrfs_del_item(trans, root, path);
982 out:
983 	btrfs_release_delayed_iref(node);
984 	btrfs_release_path(path);
985 err_out:
986 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
987 	btrfs_release_delayed_inode(node);
988 
989 	/*
990 	 * If we fail to update the delayed inode we need to abort the
991 	 * transaction, because we could leave the inode with the improper
992 	 * counts behind.
993 	 */
994 	if (ret && ret != -ENOENT)
995 		btrfs_abort_transaction(trans, ret);
996 
997 	return ret;
998 
999 search:
1000 	btrfs_release_path(path);
1001 
1002 	key.type = BTRFS_INODE_EXTREF_KEY;
1003 	key.offset = -1;
1004 
1005 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1006 	if (ret < 0)
1007 		goto err_out;
1008 	ASSERT(ret);
1009 
1010 	ret = 0;
1011 	leaf = path->nodes[0];
1012 	path->slots[0]--;
1013 	goto again;
1014 }
1015 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1016 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1017 					     struct btrfs_root *root,
1018 					     struct btrfs_path *path,
1019 					     struct btrfs_delayed_node *node)
1020 {
1021 	int ret;
1022 
1023 	mutex_lock(&node->mutex);
1024 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1025 		mutex_unlock(&node->mutex);
1026 		return 0;
1027 	}
1028 
1029 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1030 	mutex_unlock(&node->mutex);
1031 	return ret;
1032 }
1033 
1034 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1035 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1036 				   struct btrfs_path *path,
1037 				   struct btrfs_delayed_node *node)
1038 {
1039 	int ret;
1040 
1041 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1042 	if (ret)
1043 		return ret;
1044 
1045 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1050 	return ret;
1051 }
1052 
1053 /*
1054  * Called when committing the transaction.
1055  * Returns 0 on success.
1056  * Returns < 0 on error and returns with an aborted transaction with any
1057  * outstanding delayed items cleaned up.
1058  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1059 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1060 {
1061 	struct btrfs_fs_info *fs_info = trans->fs_info;
1062 	struct btrfs_delayed_root *delayed_root;
1063 	struct btrfs_delayed_node *curr_node, *prev_node;
1064 	struct btrfs_path *path;
1065 	struct btrfs_block_rsv *block_rsv;
1066 	int ret = 0;
1067 	bool count = (nr > 0);
1068 
1069 	if (TRANS_ABORTED(trans))
1070 		return -EIO;
1071 
1072 	path = btrfs_alloc_path();
1073 	if (!path)
1074 		return -ENOMEM;
1075 
1076 	block_rsv = trans->block_rsv;
1077 	trans->block_rsv = &fs_info->delayed_block_rsv;
1078 
1079 	delayed_root = fs_info->delayed_root;
1080 
1081 	curr_node = btrfs_first_delayed_node(delayed_root);
1082 	while (curr_node && (!count || nr--)) {
1083 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1084 							 curr_node);
1085 		if (ret) {
1086 			btrfs_abort_transaction(trans, ret);
1087 			break;
1088 		}
1089 
1090 		prev_node = curr_node;
1091 		curr_node = btrfs_next_delayed_node(curr_node);
1092 		/*
1093 		 * See the comment below about releasing path before releasing
1094 		 * node. If the commit of delayed items was successful the path
1095 		 * should always be released, but in case of an error, it may
1096 		 * point to locked extent buffers (a leaf at the very least).
1097 		 */
1098 		ASSERT(path->nodes[0] == NULL);
1099 		btrfs_release_delayed_node(prev_node);
1100 	}
1101 
1102 	/*
1103 	 * Release the path to avoid a potential deadlock and lockdep splat when
1104 	 * releasing the delayed node, as that requires taking the delayed node's
1105 	 * mutex. If another task starts running delayed items before we take
1106 	 * the mutex, it will first lock the mutex and then it may try to lock
1107 	 * the same btree path (leaf).
1108 	 */
1109 	btrfs_free_path(path);
1110 
1111 	if (curr_node)
1112 		btrfs_release_delayed_node(curr_node);
1113 	trans->block_rsv = block_rsv;
1114 
1115 	return ret;
1116 }
1117 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1118 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1119 {
1120 	return __btrfs_run_delayed_items(trans, -1);
1121 }
1122 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1123 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1124 {
1125 	return __btrfs_run_delayed_items(trans, nr);
1126 }
1127 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1128 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1129 				     struct btrfs_inode *inode)
1130 {
1131 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1132 	struct btrfs_path *path;
1133 	struct btrfs_block_rsv *block_rsv;
1134 	int ret;
1135 
1136 	if (!delayed_node)
1137 		return 0;
1138 
1139 	mutex_lock(&delayed_node->mutex);
1140 	if (!delayed_node->count) {
1141 		mutex_unlock(&delayed_node->mutex);
1142 		btrfs_release_delayed_node(delayed_node);
1143 		return 0;
1144 	}
1145 	mutex_unlock(&delayed_node->mutex);
1146 
1147 	path = btrfs_alloc_path();
1148 	if (!path) {
1149 		btrfs_release_delayed_node(delayed_node);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	block_rsv = trans->block_rsv;
1154 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1155 
1156 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1157 
1158 	btrfs_release_delayed_node(delayed_node);
1159 	btrfs_free_path(path);
1160 	trans->block_rsv = block_rsv;
1161 
1162 	return ret;
1163 }
1164 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1165 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1166 {
1167 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1168 	struct btrfs_trans_handle *trans;
1169 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1170 	struct btrfs_path *path;
1171 	struct btrfs_block_rsv *block_rsv;
1172 	int ret;
1173 
1174 	if (!delayed_node)
1175 		return 0;
1176 
1177 	mutex_lock(&delayed_node->mutex);
1178 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1179 		mutex_unlock(&delayed_node->mutex);
1180 		btrfs_release_delayed_node(delayed_node);
1181 		return 0;
1182 	}
1183 	mutex_unlock(&delayed_node->mutex);
1184 
1185 	trans = btrfs_join_transaction(delayed_node->root);
1186 	if (IS_ERR(trans)) {
1187 		ret = PTR_ERR(trans);
1188 		goto out;
1189 	}
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path) {
1193 		ret = -ENOMEM;
1194 		goto trans_out;
1195 	}
1196 
1197 	block_rsv = trans->block_rsv;
1198 	trans->block_rsv = &fs_info->delayed_block_rsv;
1199 
1200 	mutex_lock(&delayed_node->mutex);
1201 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1202 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1203 						   path, delayed_node);
1204 	else
1205 		ret = 0;
1206 	mutex_unlock(&delayed_node->mutex);
1207 
1208 	btrfs_free_path(path);
1209 	trans->block_rsv = block_rsv;
1210 trans_out:
1211 	btrfs_end_transaction(trans);
1212 	btrfs_btree_balance_dirty(fs_info);
1213 out:
1214 	btrfs_release_delayed_node(delayed_node);
1215 
1216 	return ret;
1217 }
1218 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1219 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1220 {
1221 	struct btrfs_delayed_node *delayed_node;
1222 
1223 	delayed_node = READ_ONCE(inode->delayed_node);
1224 	if (!delayed_node)
1225 		return;
1226 
1227 	inode->delayed_node = NULL;
1228 	btrfs_release_delayed_node(delayed_node);
1229 }
1230 
1231 struct btrfs_async_delayed_work {
1232 	struct btrfs_delayed_root *delayed_root;
1233 	int nr;
1234 	struct btrfs_work work;
1235 };
1236 
btrfs_async_run_delayed_root(struct btrfs_work * work)1237 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1238 {
1239 	struct btrfs_async_delayed_work *async_work;
1240 	struct btrfs_delayed_root *delayed_root;
1241 	struct btrfs_trans_handle *trans;
1242 	struct btrfs_path *path;
1243 	struct btrfs_delayed_node *delayed_node = NULL;
1244 	struct btrfs_root *root;
1245 	struct btrfs_block_rsv *block_rsv;
1246 	int total_done = 0;
1247 
1248 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1249 	delayed_root = async_work->delayed_root;
1250 
1251 	path = btrfs_alloc_path();
1252 	if (!path)
1253 		goto out;
1254 
1255 	do {
1256 		if (atomic_read(&delayed_root->items) <
1257 		    BTRFS_DELAYED_BACKGROUND / 2)
1258 			break;
1259 
1260 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1261 		if (!delayed_node)
1262 			break;
1263 
1264 		root = delayed_node->root;
1265 
1266 		trans = btrfs_join_transaction(root);
1267 		if (IS_ERR(trans)) {
1268 			btrfs_release_path(path);
1269 			btrfs_release_prepared_delayed_node(delayed_node);
1270 			total_done++;
1271 			continue;
1272 		}
1273 
1274 		block_rsv = trans->block_rsv;
1275 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1276 
1277 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1278 
1279 		trans->block_rsv = block_rsv;
1280 		btrfs_end_transaction(trans);
1281 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1282 
1283 		btrfs_release_path(path);
1284 		btrfs_release_prepared_delayed_node(delayed_node);
1285 		total_done++;
1286 
1287 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1288 		 || total_done < async_work->nr);
1289 
1290 	btrfs_free_path(path);
1291 out:
1292 	wake_up(&delayed_root->wait);
1293 	kfree(async_work);
1294 }
1295 
1296 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1297 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1298 				     struct btrfs_fs_info *fs_info, int nr)
1299 {
1300 	struct btrfs_async_delayed_work *async_work;
1301 
1302 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1303 	if (!async_work)
1304 		return -ENOMEM;
1305 
1306 	async_work->delayed_root = delayed_root;
1307 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1308 			NULL);
1309 	async_work->nr = nr;
1310 
1311 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1312 	return 0;
1313 }
1314 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1315 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1316 {
1317 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1318 }
1319 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1320 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1321 {
1322 	int val = atomic_read(&delayed_root->items_seq);
1323 
1324 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1325 		return 1;
1326 
1327 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1328 		return 1;
1329 
1330 	return 0;
1331 }
1332 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1333 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1334 {
1335 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1336 
1337 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1338 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1339 		return;
1340 
1341 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1342 		int seq;
1343 		int ret;
1344 
1345 		seq = atomic_read(&delayed_root->items_seq);
1346 
1347 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1348 		if (ret)
1349 			return;
1350 
1351 		wait_event_interruptible(delayed_root->wait,
1352 					 could_end_wait(delayed_root, seq));
1353 		return;
1354 	}
1355 
1356 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1357 }
1358 
1359 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1360 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1361 				   const char *name, int name_len,
1362 				   struct btrfs_inode *dir,
1363 				   struct btrfs_disk_key *disk_key, u8 type,
1364 				   u64 index)
1365 {
1366 	struct btrfs_delayed_node *delayed_node;
1367 	struct btrfs_delayed_item *delayed_item;
1368 	struct btrfs_dir_item *dir_item;
1369 	int ret;
1370 
1371 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1372 	if (IS_ERR(delayed_node))
1373 		return PTR_ERR(delayed_node);
1374 
1375 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1376 	if (!delayed_item) {
1377 		ret = -ENOMEM;
1378 		goto release_node;
1379 	}
1380 
1381 	delayed_item->key.objectid = btrfs_ino(dir);
1382 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1383 	delayed_item->key.offset = index;
1384 
1385 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1386 	dir_item->location = *disk_key;
1387 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1388 	btrfs_set_stack_dir_data_len(dir_item, 0);
1389 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1390 	btrfs_set_stack_dir_type(dir_item, type);
1391 	memcpy((char *)(dir_item + 1), name, name_len);
1392 
1393 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1394 	/*
1395 	 * we have reserved enough space when we start a new transaction,
1396 	 * so reserving metadata failure is impossible
1397 	 */
1398 	BUG_ON(ret);
1399 
1400 	mutex_lock(&delayed_node->mutex);
1401 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1402 	if (unlikely(ret)) {
1403 		btrfs_err(trans->fs_info,
1404 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1405 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1406 			  delayed_node->inode_id, dir->index_cnt,
1407 			  delayed_node->index_cnt, ret);
1408 		BUG();
1409 	}
1410 	mutex_unlock(&delayed_node->mutex);
1411 
1412 release_node:
1413 	btrfs_release_delayed_node(delayed_node);
1414 	return ret;
1415 }
1416 
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1417 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1418 					       struct btrfs_delayed_node *node,
1419 					       struct btrfs_key *key)
1420 {
1421 	struct btrfs_delayed_item *item;
1422 
1423 	mutex_lock(&node->mutex);
1424 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1425 	if (!item) {
1426 		mutex_unlock(&node->mutex);
1427 		return 1;
1428 	}
1429 
1430 	btrfs_delayed_item_release_metadata(node->root, item);
1431 	btrfs_release_delayed_item(item);
1432 	mutex_unlock(&node->mutex);
1433 	return 0;
1434 }
1435 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1436 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1437 				   struct btrfs_inode *dir, u64 index)
1438 {
1439 	struct btrfs_delayed_node *node;
1440 	struct btrfs_delayed_item *item;
1441 	struct btrfs_key item_key;
1442 	int ret;
1443 
1444 	node = btrfs_get_or_create_delayed_node(dir);
1445 	if (IS_ERR(node))
1446 		return PTR_ERR(node);
1447 
1448 	item_key.objectid = btrfs_ino(dir);
1449 	item_key.type = BTRFS_DIR_INDEX_KEY;
1450 	item_key.offset = index;
1451 
1452 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1453 						  &item_key);
1454 	if (!ret)
1455 		goto end;
1456 
1457 	item = btrfs_alloc_delayed_item(0);
1458 	if (!item) {
1459 		ret = -ENOMEM;
1460 		goto end;
1461 	}
1462 
1463 	item->key = item_key;
1464 
1465 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1466 	/*
1467 	 * we have reserved enough space when we start a new transaction,
1468 	 * so reserving metadata failure is impossible.
1469 	 */
1470 	if (ret < 0) {
1471 		btrfs_err(trans->fs_info,
1472 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1473 		btrfs_release_delayed_item(item);
1474 		goto end;
1475 	}
1476 
1477 	mutex_lock(&node->mutex);
1478 	ret = __btrfs_add_delayed_deletion_item(node, item);
1479 	if (unlikely(ret)) {
1480 		btrfs_err(trans->fs_info,
1481 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1482 			  index, node->root->root_key.objectid,
1483 			  node->inode_id, ret);
1484 		btrfs_delayed_item_release_metadata(dir->root, item);
1485 		btrfs_release_delayed_item(item);
1486 	}
1487 	mutex_unlock(&node->mutex);
1488 end:
1489 	btrfs_release_delayed_node(node);
1490 	return ret;
1491 }
1492 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1493 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1494 {
1495 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1496 
1497 	if (!delayed_node)
1498 		return -ENOENT;
1499 
1500 	/*
1501 	 * Since we have held i_mutex of this directory, it is impossible that
1502 	 * a new directory index is added into the delayed node and index_cnt
1503 	 * is updated now. So we needn't lock the delayed node.
1504 	 */
1505 	if (!delayed_node->index_cnt) {
1506 		btrfs_release_delayed_node(delayed_node);
1507 		return -EINVAL;
1508 	}
1509 
1510 	inode->index_cnt = delayed_node->index_cnt;
1511 	btrfs_release_delayed_node(delayed_node);
1512 	return 0;
1513 }
1514 
btrfs_readdir_get_delayed_items(struct inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1515 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1516 				     u64 last_index,
1517 				     struct list_head *ins_list,
1518 				     struct list_head *del_list)
1519 {
1520 	struct btrfs_delayed_node *delayed_node;
1521 	struct btrfs_delayed_item *item;
1522 
1523 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1524 	if (!delayed_node)
1525 		return false;
1526 
1527 	/*
1528 	 * We can only do one readdir with delayed items at a time because of
1529 	 * item->readdir_list.
1530 	 */
1531 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1532 	btrfs_inode_lock(inode, 0);
1533 
1534 	mutex_lock(&delayed_node->mutex);
1535 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1536 	while (item && item->key.offset <= last_index) {
1537 		refcount_inc(&item->refs);
1538 		list_add_tail(&item->readdir_list, ins_list);
1539 		item = __btrfs_next_delayed_item(item);
1540 	}
1541 
1542 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1543 	while (item && item->key.offset <= last_index) {
1544 		refcount_inc(&item->refs);
1545 		list_add_tail(&item->readdir_list, del_list);
1546 		item = __btrfs_next_delayed_item(item);
1547 	}
1548 	mutex_unlock(&delayed_node->mutex);
1549 	/*
1550 	 * This delayed node is still cached in the btrfs inode, so refs
1551 	 * must be > 1 now, and we needn't check it is going to be freed
1552 	 * or not.
1553 	 *
1554 	 * Besides that, this function is used to read dir, we do not
1555 	 * insert/delete delayed items in this period. So we also needn't
1556 	 * requeue or dequeue this delayed node.
1557 	 */
1558 	refcount_dec(&delayed_node->refs);
1559 
1560 	return true;
1561 }
1562 
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1563 void btrfs_readdir_put_delayed_items(struct inode *inode,
1564 				     struct list_head *ins_list,
1565 				     struct list_head *del_list)
1566 {
1567 	struct btrfs_delayed_item *curr, *next;
1568 
1569 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1570 		list_del(&curr->readdir_list);
1571 		if (refcount_dec_and_test(&curr->refs))
1572 			kfree(curr);
1573 	}
1574 
1575 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1576 		list_del(&curr->readdir_list);
1577 		if (refcount_dec_and_test(&curr->refs))
1578 			kfree(curr);
1579 	}
1580 
1581 	/*
1582 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1583 	 * read lock.
1584 	 */
1585 	downgrade_write(&inode->i_rwsem);
1586 }
1587 
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1588 int btrfs_should_delete_dir_index(struct list_head *del_list,
1589 				  u64 index)
1590 {
1591 	struct btrfs_delayed_item *curr;
1592 	int ret = 0;
1593 
1594 	list_for_each_entry(curr, del_list, readdir_list) {
1595 		if (curr->key.offset > index)
1596 			break;
1597 		if (curr->key.offset == index) {
1598 			ret = 1;
1599 			break;
1600 		}
1601 	}
1602 	return ret;
1603 }
1604 
1605 /*
1606  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1607  *
1608  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1609 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1610 				    struct list_head *ins_list)
1611 {
1612 	struct btrfs_dir_item *di;
1613 	struct btrfs_delayed_item *curr, *next;
1614 	struct btrfs_key location;
1615 	char *name;
1616 	int name_len;
1617 	int over = 0;
1618 	unsigned char d_type;
1619 
1620 	if (list_empty(ins_list))
1621 		return 0;
1622 
1623 	/*
1624 	 * Changing the data of the delayed item is impossible. So
1625 	 * we needn't lock them. And we have held i_mutex of the
1626 	 * directory, nobody can delete any directory indexes now.
1627 	 */
1628 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1629 		list_del(&curr->readdir_list);
1630 
1631 		if (curr->key.offset < ctx->pos) {
1632 			if (refcount_dec_and_test(&curr->refs))
1633 				kfree(curr);
1634 			continue;
1635 		}
1636 
1637 		ctx->pos = curr->key.offset;
1638 
1639 		di = (struct btrfs_dir_item *)curr->data;
1640 		name = (char *)(di + 1);
1641 		name_len = btrfs_stack_dir_name_len(di);
1642 
1643 		d_type = fs_ftype_to_dtype(di->type);
1644 		btrfs_disk_key_to_cpu(&location, &di->location);
1645 
1646 		over = !dir_emit(ctx, name, name_len,
1647 			       location.objectid, d_type);
1648 
1649 		if (refcount_dec_and_test(&curr->refs))
1650 			kfree(curr);
1651 
1652 		if (over)
1653 			return 1;
1654 		ctx->pos++;
1655 	}
1656 	return 0;
1657 }
1658 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1659 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1660 				  struct btrfs_inode_item *inode_item,
1661 				  struct inode *inode)
1662 {
1663 	u64 flags;
1664 
1665 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1666 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1667 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1668 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1669 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1670 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1671 	btrfs_set_stack_inode_generation(inode_item,
1672 					 BTRFS_I(inode)->generation);
1673 	btrfs_set_stack_inode_sequence(inode_item,
1674 				       inode_peek_iversion(inode));
1675 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1676 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1677 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1678 					  BTRFS_I(inode)->ro_flags);
1679 	btrfs_set_stack_inode_flags(inode_item, flags);
1680 	btrfs_set_stack_inode_block_group(inode_item, 0);
1681 
1682 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1683 				     inode->i_atime.tv_sec);
1684 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1685 				      inode->i_atime.tv_nsec);
1686 
1687 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1688 				     inode->i_mtime.tv_sec);
1689 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1690 				      inode->i_mtime.tv_nsec);
1691 
1692 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1693 				     inode->i_ctime.tv_sec);
1694 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1695 				      inode->i_ctime.tv_nsec);
1696 
1697 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1698 				     BTRFS_I(inode)->i_otime.tv_sec);
1699 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1700 				     BTRFS_I(inode)->i_otime.tv_nsec);
1701 }
1702 
btrfs_fill_inode(struct inode * inode,u32 * rdev)1703 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1704 {
1705 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1706 	struct btrfs_delayed_node *delayed_node;
1707 	struct btrfs_inode_item *inode_item;
1708 
1709 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1710 	if (!delayed_node)
1711 		return -ENOENT;
1712 
1713 	mutex_lock(&delayed_node->mutex);
1714 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1715 		mutex_unlock(&delayed_node->mutex);
1716 		btrfs_release_delayed_node(delayed_node);
1717 		return -ENOENT;
1718 	}
1719 
1720 	inode_item = &delayed_node->inode_item;
1721 
1722 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1723 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1724 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1725 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1726 			round_up(i_size_read(inode), fs_info->sectorsize));
1727 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1728 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1729 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1730 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1731         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1732 
1733 	inode_set_iversion_queried(inode,
1734 				   btrfs_stack_inode_sequence(inode_item));
1735 	inode->i_rdev = 0;
1736 	*rdev = btrfs_stack_inode_rdev(inode_item);
1737 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1738 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1739 
1740 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1741 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1742 
1743 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1744 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1745 
1746 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1747 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1748 
1749 	BTRFS_I(inode)->i_otime.tv_sec =
1750 		btrfs_stack_timespec_sec(&inode_item->otime);
1751 	BTRFS_I(inode)->i_otime.tv_nsec =
1752 		btrfs_stack_timespec_nsec(&inode_item->otime);
1753 
1754 	inode->i_generation = BTRFS_I(inode)->generation;
1755 	BTRFS_I(inode)->index_cnt = (u64)-1;
1756 
1757 	mutex_unlock(&delayed_node->mutex);
1758 	btrfs_release_delayed_node(delayed_node);
1759 	return 0;
1760 }
1761 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)1762 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1763 			       struct btrfs_root *root,
1764 			       struct btrfs_inode *inode)
1765 {
1766 	struct btrfs_delayed_node *delayed_node;
1767 	int ret = 0;
1768 
1769 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1770 	if (IS_ERR(delayed_node))
1771 		return PTR_ERR(delayed_node);
1772 
1773 	mutex_lock(&delayed_node->mutex);
1774 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1775 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1776 				      &inode->vfs_inode);
1777 		goto release_node;
1778 	}
1779 
1780 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1781 	if (ret)
1782 		goto release_node;
1783 
1784 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1785 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1786 	delayed_node->count++;
1787 	atomic_inc(&root->fs_info->delayed_root->items);
1788 release_node:
1789 	mutex_unlock(&delayed_node->mutex);
1790 	btrfs_release_delayed_node(delayed_node);
1791 	return ret;
1792 }
1793 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1794 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1795 {
1796 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 	struct btrfs_delayed_node *delayed_node;
1798 
1799 	/*
1800 	 * we don't do delayed inode updates during log recovery because it
1801 	 * leads to enospc problems.  This means we also can't do
1802 	 * delayed inode refs
1803 	 */
1804 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1805 		return -EAGAIN;
1806 
1807 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1808 	if (IS_ERR(delayed_node))
1809 		return PTR_ERR(delayed_node);
1810 
1811 	/*
1812 	 * We don't reserve space for inode ref deletion is because:
1813 	 * - We ONLY do async inode ref deletion for the inode who has only
1814 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1815 	 *   And in most case, the inode ref and the inode item are in the
1816 	 *   same leaf, and we will deal with them at the same time.
1817 	 *   Since we are sure we will reserve the space for the inode item,
1818 	 *   it is unnecessary to reserve space for inode ref deletion.
1819 	 * - If the inode ref and the inode item are not in the same leaf,
1820 	 *   We also needn't worry about enospc problem, because we reserve
1821 	 *   much more space for the inode update than it needs.
1822 	 * - At the worst, we can steal some space from the global reservation.
1823 	 *   It is very rare.
1824 	 */
1825 	mutex_lock(&delayed_node->mutex);
1826 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1827 		goto release_node;
1828 
1829 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1830 	delayed_node->count++;
1831 	atomic_inc(&fs_info->delayed_root->items);
1832 release_node:
1833 	mutex_unlock(&delayed_node->mutex);
1834 	btrfs_release_delayed_node(delayed_node);
1835 	return 0;
1836 }
1837 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1838 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1839 {
1840 	struct btrfs_root *root = delayed_node->root;
1841 	struct btrfs_fs_info *fs_info = root->fs_info;
1842 	struct btrfs_delayed_item *curr_item, *prev_item;
1843 
1844 	mutex_lock(&delayed_node->mutex);
1845 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1846 	while (curr_item) {
1847 		btrfs_delayed_item_release_metadata(root, curr_item);
1848 		prev_item = curr_item;
1849 		curr_item = __btrfs_next_delayed_item(prev_item);
1850 		btrfs_release_delayed_item(prev_item);
1851 	}
1852 
1853 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1854 	while (curr_item) {
1855 		btrfs_delayed_item_release_metadata(root, curr_item);
1856 		prev_item = curr_item;
1857 		curr_item = __btrfs_next_delayed_item(prev_item);
1858 		btrfs_release_delayed_item(prev_item);
1859 	}
1860 
1861 	btrfs_release_delayed_iref(delayed_node);
1862 
1863 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1864 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1865 		btrfs_release_delayed_inode(delayed_node);
1866 	}
1867 	mutex_unlock(&delayed_node->mutex);
1868 }
1869 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1870 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1871 {
1872 	struct btrfs_delayed_node *delayed_node;
1873 
1874 	delayed_node = btrfs_get_delayed_node(inode);
1875 	if (!delayed_node)
1876 		return;
1877 
1878 	__btrfs_kill_delayed_node(delayed_node);
1879 	btrfs_release_delayed_node(delayed_node);
1880 }
1881 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1882 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1883 {
1884 	u64 inode_id = 0;
1885 	struct btrfs_delayed_node *delayed_nodes[8];
1886 	int i, n;
1887 
1888 	while (1) {
1889 		spin_lock(&root->inode_lock);
1890 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1891 					   (void **)delayed_nodes, inode_id,
1892 					   ARRAY_SIZE(delayed_nodes));
1893 		if (!n) {
1894 			spin_unlock(&root->inode_lock);
1895 			break;
1896 		}
1897 
1898 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1899 		for (i = 0; i < n; i++) {
1900 			/*
1901 			 * Don't increase refs in case the node is dead and
1902 			 * about to be removed from the tree in the loop below
1903 			 */
1904 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1905 				delayed_nodes[i] = NULL;
1906 		}
1907 		spin_unlock(&root->inode_lock);
1908 
1909 		for (i = 0; i < n; i++) {
1910 			if (!delayed_nodes[i])
1911 				continue;
1912 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1913 			btrfs_release_delayed_node(delayed_nodes[i]);
1914 		}
1915 	}
1916 }
1917 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)1918 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1919 {
1920 	struct btrfs_delayed_node *curr_node, *prev_node;
1921 
1922 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1923 	while (curr_node) {
1924 		__btrfs_kill_delayed_node(curr_node);
1925 
1926 		prev_node = curr_node;
1927 		curr_node = btrfs_next_delayed_node(curr_node);
1928 		btrfs_release_delayed_node(prev_node);
1929 	}
1930 }
1931 
1932