1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24
25 /*
26 * This is only the first step towards a full-features scrub. It reads all
27 * extent and super block and verifies the checksums. In case a bad checksum
28 * is found or the extent cannot be read, good data will be written back if
29 * any can be found.
30 *
31 * Future enhancements:
32 * - In case an unrepairable extent is encountered, track which files are
33 * affected and report them
34 * - track and record media errors, throw out bad devices
35 * - add a mode to also read unallocated space
36 */
37
38 struct scrub_block;
39 struct scrub_ctx;
40
41 /*
42 * the following three values only influence the performance.
43 * The last one configures the number of parallel and outstanding I/O
44 * operations. The first two values configure an upper limit for the number
45 * of (dynamically allocated) pages that are added to a bio.
46 */
47 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
48 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
50
51 /*
52 * the following value times PAGE_SIZE needs to be large enough to match the
53 * largest node/leaf/sector size that shall be supported.
54 * Values larger than BTRFS_STRIPE_LEN are not supported.
55 */
56 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
57
58 struct scrub_recover {
59 refcount_t refs;
60 struct btrfs_io_context *bioc;
61 u64 map_length;
62 };
63
64 struct scrub_page {
65 struct scrub_block *sblock;
66 struct page *page;
67 struct btrfs_device *dev;
68 struct list_head list;
69 u64 flags; /* extent flags */
70 u64 generation;
71 u64 logical;
72 u64 physical;
73 u64 physical_for_dev_replace;
74 atomic_t refs;
75 u8 mirror_num;
76 unsigned int have_csum:1;
77 unsigned int io_error:1;
78 u8 csum[BTRFS_CSUM_SIZE];
79
80 struct scrub_recover *recover;
81 };
82
83 struct scrub_bio {
84 int index;
85 struct scrub_ctx *sctx;
86 struct btrfs_device *dev;
87 struct bio *bio;
88 blk_status_t status;
89 u64 logical;
90 u64 physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 int page_count;
97 int next_free;
98 struct btrfs_work work;
99 };
100
101 struct scrub_block {
102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 int page_count;
104 atomic_t outstanding_pages;
105 refcount_t refs; /* free mem on transition to zero */
106 struct scrub_ctx *sctx;
107 struct scrub_parity *sparity;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
117 };
118 struct btrfs_work work;
119 };
120
121 /* Used for the chunks with parity stripe such RAID5/6 */
122 struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
133 u32 stripe_len;
134
135 refcount_t refs;
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
151 unsigned long bitmap[];
152 };
153
154 struct scrub_ctx {
155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
156 struct btrfs_fs_info *fs_info;
157 int first_free;
158 int curr;
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
163 struct list_head csum_list;
164 atomic_t cancel_req;
165 int readonly;
166 int pages_per_rd_bio;
167
168 /* State of IO submission throttling affecting the associated device */
169 ktime_t throttle_deadline;
170 u64 throttle_sent;
171
172 int is_dev_replace;
173 u64 write_pointer;
174
175 struct scrub_bio *wr_curr_bio;
176 struct mutex wr_lock;
177 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
178 struct btrfs_device *wr_tgtdev;
179 bool flush_all_writes;
180
181 /*
182 * statistics
183 */
184 struct btrfs_scrub_progress stat;
185 spinlock_t stat_lock;
186
187 /*
188 * Use a ref counter to avoid use-after-free issues. Scrub workers
189 * decrement bios_in_flight and workers_pending and then do a wakeup
190 * on the list_wait wait queue. We must ensure the main scrub task
191 * doesn't free the scrub context before or while the workers are
192 * doing the wakeup() call.
193 */
194 refcount_t refs;
195 };
196
197 struct scrub_warning {
198 struct btrfs_path *path;
199 u64 extent_item_size;
200 const char *errstr;
201 u64 physical;
202 u64 logical;
203 struct btrfs_device *dev;
204 };
205
206 struct full_stripe_lock {
207 struct rb_node node;
208 u64 logical;
209 u64 refs;
210 struct mutex mutex;
211 };
212
213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 struct scrub_block *sblocks_for_recheck);
215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 struct scrub_block *sblock,
217 int retry_failed_mirror);
218 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 struct scrub_block *sblock_good);
221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 struct scrub_block *sblock_good,
223 int page_num, int force_write);
224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 int page_num);
227 static int scrub_checksum_data(struct scrub_block *sblock);
228 static int scrub_checksum_tree_block(struct scrub_block *sblock);
229 static int scrub_checksum_super(struct scrub_block *sblock);
230 static void scrub_block_put(struct scrub_block *sblock);
231 static void scrub_page_get(struct scrub_page *spage);
232 static void scrub_page_put(struct scrub_page *spage);
233 static void scrub_parity_get(struct scrub_parity *sparity);
234 static void scrub_parity_put(struct scrub_parity *sparity);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum,
238 u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u32 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void scrub_put_ctx(struct scrub_ctx *sctx);
253
scrub_is_page_on_raid56(struct scrub_page * spage)254 static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
255 {
256 return spage->recover &&
257 (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
258 }
259
scrub_pending_bio_inc(struct scrub_ctx * sctx)260 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
261 {
262 refcount_inc(&sctx->refs);
263 atomic_inc(&sctx->bios_in_flight);
264 }
265
scrub_pending_bio_dec(struct scrub_ctx * sctx)266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
267 {
268 atomic_dec(&sctx->bios_in_flight);
269 wake_up(&sctx->list_wait);
270 scrub_put_ctx(sctx);
271 }
272
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)273 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 {
275 while (atomic_read(&fs_info->scrub_pause_req)) {
276 mutex_unlock(&fs_info->scrub_lock);
277 wait_event(fs_info->scrub_pause_wait,
278 atomic_read(&fs_info->scrub_pause_req) == 0);
279 mutex_lock(&fs_info->scrub_lock);
280 }
281 }
282
scrub_pause_on(struct btrfs_fs_info * fs_info)283 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
284 {
285 atomic_inc(&fs_info->scrubs_paused);
286 wake_up(&fs_info->scrub_pause_wait);
287 }
288
scrub_pause_off(struct btrfs_fs_info * fs_info)289 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
290 {
291 mutex_lock(&fs_info->scrub_lock);
292 __scrub_blocked_if_needed(fs_info);
293 atomic_dec(&fs_info->scrubs_paused);
294 mutex_unlock(&fs_info->scrub_lock);
295
296 wake_up(&fs_info->scrub_pause_wait);
297 }
298
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)299 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
300 {
301 scrub_pause_on(fs_info);
302 scrub_pause_off(fs_info);
303 }
304
305 /*
306 * Insert new full stripe lock into full stripe locks tree
307 *
308 * Return pointer to existing or newly inserted full_stripe_lock structure if
309 * everything works well.
310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
311 *
312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
313 * function
314 */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)315 static struct full_stripe_lock *insert_full_stripe_lock(
316 struct btrfs_full_stripe_locks_tree *locks_root,
317 u64 fstripe_logical)
318 {
319 struct rb_node **p;
320 struct rb_node *parent = NULL;
321 struct full_stripe_lock *entry;
322 struct full_stripe_lock *ret;
323
324 lockdep_assert_held(&locks_root->lock);
325
326 p = &locks_root->root.rb_node;
327 while (*p) {
328 parent = *p;
329 entry = rb_entry(parent, struct full_stripe_lock, node);
330 if (fstripe_logical < entry->logical) {
331 p = &(*p)->rb_left;
332 } else if (fstripe_logical > entry->logical) {
333 p = &(*p)->rb_right;
334 } else {
335 entry->refs++;
336 return entry;
337 }
338 }
339
340 /*
341 * Insert new lock.
342 */
343 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344 if (!ret)
345 return ERR_PTR(-ENOMEM);
346 ret->logical = fstripe_logical;
347 ret->refs = 1;
348 mutex_init(&ret->mutex);
349
350 rb_link_node(&ret->node, parent, p);
351 rb_insert_color(&ret->node, &locks_root->root);
352 return ret;
353 }
354
355 /*
356 * Search for a full stripe lock of a block group
357 *
358 * Return pointer to existing full stripe lock if found
359 * Return NULL if not found
360 */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)361 static struct full_stripe_lock *search_full_stripe_lock(
362 struct btrfs_full_stripe_locks_tree *locks_root,
363 u64 fstripe_logical)
364 {
365 struct rb_node *node;
366 struct full_stripe_lock *entry;
367
368 lockdep_assert_held(&locks_root->lock);
369
370 node = locks_root->root.rb_node;
371 while (node) {
372 entry = rb_entry(node, struct full_stripe_lock, node);
373 if (fstripe_logical < entry->logical)
374 node = node->rb_left;
375 else if (fstripe_logical > entry->logical)
376 node = node->rb_right;
377 else
378 return entry;
379 }
380 return NULL;
381 }
382
383 /*
384 * Helper to get full stripe logical from a normal bytenr.
385 *
386 * Caller must ensure @cache is a RAID56 block group.
387 */
get_full_stripe_logical(struct btrfs_block_group * cache,u64 bytenr)388 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
389 {
390 u64 ret;
391
392 /*
393 * Due to chunk item size limit, full stripe length should not be
394 * larger than U32_MAX. Just a sanity check here.
395 */
396 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
397
398 /*
399 * round_down() can only handle power of 2, while RAID56 full
400 * stripe length can be 64KiB * n, so we need to manually round down.
401 */
402 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
403 cache->full_stripe_len + cache->start;
404 return ret;
405 }
406
407 /*
408 * Lock a full stripe to avoid concurrency of recovery and read
409 *
410 * It's only used for profiles with parities (RAID5/6), for other profiles it
411 * does nothing.
412 *
413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
414 * So caller must call unlock_full_stripe() at the same context.
415 *
416 * Return <0 if encounters error.
417 */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)418 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
419 bool *locked_ret)
420 {
421 struct btrfs_block_group *bg_cache;
422 struct btrfs_full_stripe_locks_tree *locks_root;
423 struct full_stripe_lock *existing;
424 u64 fstripe_start;
425 int ret = 0;
426
427 *locked_ret = false;
428 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
429 if (!bg_cache) {
430 ASSERT(0);
431 return -ENOENT;
432 }
433
434 /* Profiles not based on parity don't need full stripe lock */
435 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
436 goto out;
437 locks_root = &bg_cache->full_stripe_locks_root;
438
439 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
440
441 /* Now insert the full stripe lock */
442 mutex_lock(&locks_root->lock);
443 existing = insert_full_stripe_lock(locks_root, fstripe_start);
444 mutex_unlock(&locks_root->lock);
445 if (IS_ERR(existing)) {
446 ret = PTR_ERR(existing);
447 goto out;
448 }
449 mutex_lock(&existing->mutex);
450 *locked_ret = true;
451 out:
452 btrfs_put_block_group(bg_cache);
453 return ret;
454 }
455
456 /*
457 * Unlock a full stripe.
458 *
459 * NOTE: Caller must ensure it's the same context calling corresponding
460 * lock_full_stripe().
461 *
462 * Return 0 if we unlock full stripe without problem.
463 * Return <0 for error
464 */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)465 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
466 bool locked)
467 {
468 struct btrfs_block_group *bg_cache;
469 struct btrfs_full_stripe_locks_tree *locks_root;
470 struct full_stripe_lock *fstripe_lock;
471 u64 fstripe_start;
472 bool freeit = false;
473 int ret = 0;
474
475 /* If we didn't acquire full stripe lock, no need to continue */
476 if (!locked)
477 return 0;
478
479 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
480 if (!bg_cache) {
481 ASSERT(0);
482 return -ENOENT;
483 }
484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
485 goto out;
486
487 locks_root = &bg_cache->full_stripe_locks_root;
488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
489
490 mutex_lock(&locks_root->lock);
491 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
492 /* Unpaired unlock_full_stripe() detected */
493 if (!fstripe_lock) {
494 WARN_ON(1);
495 ret = -ENOENT;
496 mutex_unlock(&locks_root->lock);
497 goto out;
498 }
499
500 if (fstripe_lock->refs == 0) {
501 WARN_ON(1);
502 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
503 fstripe_lock->logical);
504 } else {
505 fstripe_lock->refs--;
506 }
507
508 if (fstripe_lock->refs == 0) {
509 rb_erase(&fstripe_lock->node, &locks_root->root);
510 freeit = true;
511 }
512 mutex_unlock(&locks_root->lock);
513
514 mutex_unlock(&fstripe_lock->mutex);
515 if (freeit)
516 kfree(fstripe_lock);
517 out:
518 btrfs_put_block_group(bg_cache);
519 return ret;
520 }
521
scrub_free_csums(struct scrub_ctx * sctx)522 static void scrub_free_csums(struct scrub_ctx *sctx)
523 {
524 while (!list_empty(&sctx->csum_list)) {
525 struct btrfs_ordered_sum *sum;
526 sum = list_first_entry(&sctx->csum_list,
527 struct btrfs_ordered_sum, list);
528 list_del(&sum->list);
529 kfree(sum);
530 }
531 }
532
scrub_free_ctx(struct scrub_ctx * sctx)533 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
534 {
535 int i;
536
537 if (!sctx)
538 return;
539
540 /* this can happen when scrub is cancelled */
541 if (sctx->curr != -1) {
542 struct scrub_bio *sbio = sctx->bios[sctx->curr];
543
544 for (i = 0; i < sbio->page_count; i++) {
545 WARN_ON(!sbio->pagev[i]->page);
546 scrub_block_put(sbio->pagev[i]->sblock);
547 }
548 bio_put(sbio->bio);
549 }
550
551 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
552 struct scrub_bio *sbio = sctx->bios[i];
553
554 if (!sbio)
555 break;
556 kfree(sbio);
557 }
558
559 kfree(sctx->wr_curr_bio);
560 scrub_free_csums(sctx);
561 kfree(sctx);
562 }
563
scrub_put_ctx(struct scrub_ctx * sctx)564 static void scrub_put_ctx(struct scrub_ctx *sctx)
565 {
566 if (refcount_dec_and_test(&sctx->refs))
567 scrub_free_ctx(sctx);
568 }
569
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)570 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
571 struct btrfs_fs_info *fs_info, int is_dev_replace)
572 {
573 struct scrub_ctx *sctx;
574 int i;
575
576 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
577 if (!sctx)
578 goto nomem;
579 refcount_set(&sctx->refs, 1);
580 sctx->is_dev_replace = is_dev_replace;
581 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
582 sctx->curr = -1;
583 sctx->fs_info = fs_info;
584 INIT_LIST_HEAD(&sctx->csum_list);
585 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
586 struct scrub_bio *sbio;
587
588 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
589 if (!sbio)
590 goto nomem;
591 sctx->bios[i] = sbio;
592
593 sbio->index = i;
594 sbio->sctx = sctx;
595 sbio->page_count = 0;
596 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
597 NULL);
598
599 if (i != SCRUB_BIOS_PER_SCTX - 1)
600 sctx->bios[i]->next_free = i + 1;
601 else
602 sctx->bios[i]->next_free = -1;
603 }
604 sctx->first_free = 0;
605 atomic_set(&sctx->bios_in_flight, 0);
606 atomic_set(&sctx->workers_pending, 0);
607 atomic_set(&sctx->cancel_req, 0);
608
609 spin_lock_init(&sctx->list_lock);
610 spin_lock_init(&sctx->stat_lock);
611 init_waitqueue_head(&sctx->list_wait);
612 sctx->throttle_deadline = 0;
613
614 WARN_ON(sctx->wr_curr_bio != NULL);
615 mutex_init(&sctx->wr_lock);
616 sctx->wr_curr_bio = NULL;
617 if (is_dev_replace) {
618 WARN_ON(!fs_info->dev_replace.tgtdev);
619 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
620 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
621 sctx->flush_all_writes = false;
622 }
623
624 return sctx;
625
626 nomem:
627 scrub_free_ctx(sctx);
628 return ERR_PTR(-ENOMEM);
629 }
630
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)631 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
632 void *warn_ctx)
633 {
634 u32 nlink;
635 int ret;
636 int i;
637 unsigned nofs_flag;
638 struct extent_buffer *eb;
639 struct btrfs_inode_item *inode_item;
640 struct scrub_warning *swarn = warn_ctx;
641 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
642 struct inode_fs_paths *ipath = NULL;
643 struct btrfs_root *local_root;
644 struct btrfs_key key;
645
646 local_root = btrfs_get_fs_root(fs_info, root, true);
647 if (IS_ERR(local_root)) {
648 ret = PTR_ERR(local_root);
649 goto err;
650 }
651
652 /*
653 * this makes the path point to (inum INODE_ITEM ioff)
654 */
655 key.objectid = inum;
656 key.type = BTRFS_INODE_ITEM_KEY;
657 key.offset = 0;
658
659 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
660 if (ret) {
661 btrfs_put_root(local_root);
662 btrfs_release_path(swarn->path);
663 goto err;
664 }
665
666 eb = swarn->path->nodes[0];
667 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
668 struct btrfs_inode_item);
669 nlink = btrfs_inode_nlink(eb, inode_item);
670 btrfs_release_path(swarn->path);
671
672 /*
673 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
674 * uses GFP_NOFS in this context, so we keep it consistent but it does
675 * not seem to be strictly necessary.
676 */
677 nofs_flag = memalloc_nofs_save();
678 ipath = init_ipath(4096, local_root, swarn->path);
679 memalloc_nofs_restore(nofs_flag);
680 if (IS_ERR(ipath)) {
681 btrfs_put_root(local_root);
682 ret = PTR_ERR(ipath);
683 ipath = NULL;
684 goto err;
685 }
686 ret = paths_from_inode(inum, ipath);
687
688 if (ret < 0)
689 goto err;
690
691 /*
692 * we deliberately ignore the bit ipath might have been too small to
693 * hold all of the paths here
694 */
695 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
696 btrfs_warn_in_rcu(fs_info,
697 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
698 swarn->errstr, swarn->logical,
699 rcu_str_deref(swarn->dev->name),
700 swarn->physical,
701 root, inum, offset,
702 fs_info->sectorsize, nlink,
703 (char *)(unsigned long)ipath->fspath->val[i]);
704
705 btrfs_put_root(local_root);
706 free_ipath(ipath);
707 return 0;
708
709 err:
710 btrfs_warn_in_rcu(fs_info,
711 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
712 swarn->errstr, swarn->logical,
713 rcu_str_deref(swarn->dev->name),
714 swarn->physical,
715 root, inum, offset, ret);
716
717 free_ipath(ipath);
718 return 0;
719 }
720
scrub_print_warning(const char * errstr,struct scrub_block * sblock)721 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
722 {
723 struct btrfs_device *dev;
724 struct btrfs_fs_info *fs_info;
725 struct btrfs_path *path;
726 struct btrfs_key found_key;
727 struct extent_buffer *eb;
728 struct btrfs_extent_item *ei;
729 struct scrub_warning swarn;
730 unsigned long ptr = 0;
731 u64 extent_item_pos;
732 u64 flags = 0;
733 u64 ref_root;
734 u32 item_size;
735 u8 ref_level = 0;
736 int ret;
737
738 WARN_ON(sblock->page_count < 1);
739 dev = sblock->pagev[0]->dev;
740 fs_info = sblock->sctx->fs_info;
741
742 path = btrfs_alloc_path();
743 if (!path)
744 return;
745
746 swarn.physical = sblock->pagev[0]->physical;
747 swarn.logical = sblock->pagev[0]->logical;
748 swarn.errstr = errstr;
749 swarn.dev = NULL;
750
751 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
752 &flags);
753 if (ret < 0)
754 goto out;
755
756 extent_item_pos = swarn.logical - found_key.objectid;
757 swarn.extent_item_size = found_key.offset;
758
759 eb = path->nodes[0];
760 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
761 item_size = btrfs_item_size_nr(eb, path->slots[0]);
762
763 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
764 do {
765 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
766 item_size, &ref_root,
767 &ref_level);
768 btrfs_warn_in_rcu(fs_info,
769 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
770 errstr, swarn.logical,
771 rcu_str_deref(dev->name),
772 swarn.physical,
773 ref_level ? "node" : "leaf",
774 ret < 0 ? -1 : ref_level,
775 ret < 0 ? -1 : ref_root);
776 } while (ret != 1);
777 btrfs_release_path(path);
778 } else {
779 btrfs_release_path(path);
780 swarn.path = path;
781 swarn.dev = dev;
782 iterate_extent_inodes(fs_info, found_key.objectid,
783 extent_item_pos, 1,
784 scrub_print_warning_inode, &swarn, false);
785 }
786
787 out:
788 btrfs_free_path(path);
789 }
790
scrub_get_recover(struct scrub_recover * recover)791 static inline void scrub_get_recover(struct scrub_recover *recover)
792 {
793 refcount_inc(&recover->refs);
794 }
795
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)796 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
797 struct scrub_recover *recover)
798 {
799 if (refcount_dec_and_test(&recover->refs)) {
800 btrfs_bio_counter_dec(fs_info);
801 btrfs_put_bioc(recover->bioc);
802 kfree(recover);
803 }
804 }
805
806 /*
807 * scrub_handle_errored_block gets called when either verification of the
808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
809 * case, this function handles all pages in the bio, even though only one
810 * may be bad.
811 * The goal of this function is to repair the errored block by using the
812 * contents of one of the mirrors.
813 */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)814 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
815 {
816 struct scrub_ctx *sctx = sblock_to_check->sctx;
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
819 u64 logical;
820 unsigned int failed_mirror_index;
821 unsigned int is_metadata;
822 unsigned int have_csum;
823 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
824 struct scrub_block *sblock_bad;
825 int ret;
826 int mirror_index;
827 int page_num;
828 int success;
829 bool full_stripe_locked;
830 unsigned int nofs_flag;
831 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
832 DEFAULT_RATELIMIT_BURST);
833
834 BUG_ON(sblock_to_check->page_count < 1);
835 fs_info = sctx->fs_info;
836 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
837 /*
838 * if we find an error in a super block, we just report it.
839 * They will get written with the next transaction commit
840 * anyway
841 */
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.super_errors;
844 spin_unlock(&sctx->stat_lock);
845 return 0;
846 }
847 logical = sblock_to_check->pagev[0]->logical;
848 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
849 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
850 is_metadata = !(sblock_to_check->pagev[0]->flags &
851 BTRFS_EXTENT_FLAG_DATA);
852 have_csum = sblock_to_check->pagev[0]->have_csum;
853 dev = sblock_to_check->pagev[0]->dev;
854
855 if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
856 return btrfs_repair_one_zone(fs_info, logical);
857
858 /*
859 * We must use GFP_NOFS because the scrub task might be waiting for a
860 * worker task executing this function and in turn a transaction commit
861 * might be waiting the scrub task to pause (which needs to wait for all
862 * the worker tasks to complete before pausing).
863 * We do allocations in the workers through insert_full_stripe_lock()
864 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
865 * this function.
866 */
867 nofs_flag = memalloc_nofs_save();
868 /*
869 * For RAID5/6, race can happen for a different device scrub thread.
870 * For data corruption, Parity and Data threads will both try
871 * to recovery the data.
872 * Race can lead to doubly added csum error, or even unrecoverable
873 * error.
874 */
875 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
876 if (ret < 0) {
877 memalloc_nofs_restore(nofs_flag);
878 spin_lock(&sctx->stat_lock);
879 if (ret == -ENOMEM)
880 sctx->stat.malloc_errors++;
881 sctx->stat.read_errors++;
882 sctx->stat.uncorrectable_errors++;
883 spin_unlock(&sctx->stat_lock);
884 return ret;
885 }
886
887 /*
888 * read all mirrors one after the other. This includes to
889 * re-read the extent or metadata block that failed (that was
890 * the cause that this fixup code is called) another time,
891 * sector by sector this time in order to know which sectors
892 * caused I/O errors and which ones are good (for all mirrors).
893 * It is the goal to handle the situation when more than one
894 * mirror contains I/O errors, but the errors do not
895 * overlap, i.e. the data can be repaired by selecting the
896 * sectors from those mirrors without I/O error on the
897 * particular sectors. One example (with blocks >= 2 * sectorsize)
898 * would be that mirror #1 has an I/O error on the first sector,
899 * the second sector is good, and mirror #2 has an I/O error on
900 * the second sector, but the first sector is good.
901 * Then the first sector of the first mirror can be repaired by
902 * taking the first sector of the second mirror, and the
903 * second sector of the second mirror can be repaired by
904 * copying the contents of the 2nd sector of the 1st mirror.
905 * One more note: if the sectors of one mirror contain I/O
906 * errors, the checksum cannot be verified. In order to get
907 * the best data for repairing, the first attempt is to find
908 * a mirror without I/O errors and with a validated checksum.
909 * Only if this is not possible, the sectors are picked from
910 * mirrors with I/O errors without considering the checksum.
911 * If the latter is the case, at the end, the checksum of the
912 * repaired area is verified in order to correctly maintain
913 * the statistics.
914 */
915
916 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
917 sizeof(*sblocks_for_recheck), GFP_KERNEL);
918 if (!sblocks_for_recheck) {
919 spin_lock(&sctx->stat_lock);
920 sctx->stat.malloc_errors++;
921 sctx->stat.read_errors++;
922 sctx->stat.uncorrectable_errors++;
923 spin_unlock(&sctx->stat_lock);
924 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
925 goto out;
926 }
927
928 /* setup the context, map the logical blocks and alloc the pages */
929 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
930 if (ret) {
931 spin_lock(&sctx->stat_lock);
932 sctx->stat.read_errors++;
933 sctx->stat.uncorrectable_errors++;
934 spin_unlock(&sctx->stat_lock);
935 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
936 goto out;
937 }
938 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
939 sblock_bad = sblocks_for_recheck + failed_mirror_index;
940
941 /* build and submit the bios for the failed mirror, check checksums */
942 scrub_recheck_block(fs_info, sblock_bad, 1);
943
944 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
945 sblock_bad->no_io_error_seen) {
946 /*
947 * the error disappeared after reading page by page, or
948 * the area was part of a huge bio and other parts of the
949 * bio caused I/O errors, or the block layer merged several
950 * read requests into one and the error is caused by a
951 * different bio (usually one of the two latter cases is
952 * the cause)
953 */
954 spin_lock(&sctx->stat_lock);
955 sctx->stat.unverified_errors++;
956 sblock_to_check->data_corrected = 1;
957 spin_unlock(&sctx->stat_lock);
958
959 if (sctx->is_dev_replace)
960 scrub_write_block_to_dev_replace(sblock_bad);
961 goto out;
962 }
963
964 if (!sblock_bad->no_io_error_seen) {
965 spin_lock(&sctx->stat_lock);
966 sctx->stat.read_errors++;
967 spin_unlock(&sctx->stat_lock);
968 if (__ratelimit(&rs))
969 scrub_print_warning("i/o error", sblock_to_check);
970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 } else if (sblock_bad->checksum_error) {
972 spin_lock(&sctx->stat_lock);
973 sctx->stat.csum_errors++;
974 spin_unlock(&sctx->stat_lock);
975 if (__ratelimit(&rs))
976 scrub_print_warning("checksum error", sblock_to_check);
977 btrfs_dev_stat_inc_and_print(dev,
978 BTRFS_DEV_STAT_CORRUPTION_ERRS);
979 } else if (sblock_bad->header_error) {
980 spin_lock(&sctx->stat_lock);
981 sctx->stat.verify_errors++;
982 spin_unlock(&sctx->stat_lock);
983 if (__ratelimit(&rs))
984 scrub_print_warning("checksum/header error",
985 sblock_to_check);
986 if (sblock_bad->generation_error)
987 btrfs_dev_stat_inc_and_print(dev,
988 BTRFS_DEV_STAT_GENERATION_ERRS);
989 else
990 btrfs_dev_stat_inc_and_print(dev,
991 BTRFS_DEV_STAT_CORRUPTION_ERRS);
992 }
993
994 if (sctx->readonly) {
995 ASSERT(!sctx->is_dev_replace);
996 goto out;
997 }
998
999 /*
1000 * now build and submit the bios for the other mirrors, check
1001 * checksums.
1002 * First try to pick the mirror which is completely without I/O
1003 * errors and also does not have a checksum error.
1004 * If one is found, and if a checksum is present, the full block
1005 * that is known to contain an error is rewritten. Afterwards
1006 * the block is known to be corrected.
1007 * If a mirror is found which is completely correct, and no
1008 * checksum is present, only those pages are rewritten that had
1009 * an I/O error in the block to be repaired, since it cannot be
1010 * determined, which copy of the other pages is better (and it
1011 * could happen otherwise that a correct page would be
1012 * overwritten by a bad one).
1013 */
1014 for (mirror_index = 0; ;mirror_index++) {
1015 struct scrub_block *sblock_other;
1016
1017 if (mirror_index == failed_mirror_index)
1018 continue;
1019
1020 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022 if (mirror_index >= BTRFS_MAX_MIRRORS)
1023 break;
1024 if (!sblocks_for_recheck[mirror_index].page_count)
1025 break;
1026
1027 sblock_other = sblocks_for_recheck + mirror_index;
1028 } else {
1029 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1031
1032 if (mirror_index >= max_allowed)
1033 break;
1034 if (!sblocks_for_recheck[1].page_count)
1035 break;
1036
1037 ASSERT(failed_mirror_index == 0);
1038 sblock_other = sblocks_for_recheck + 1;
1039 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1040 }
1041
1042 /* build and submit the bios, check checksums */
1043 scrub_recheck_block(fs_info, sblock_other, 0);
1044
1045 if (!sblock_other->header_error &&
1046 !sblock_other->checksum_error &&
1047 sblock_other->no_io_error_seen) {
1048 if (sctx->is_dev_replace) {
1049 scrub_write_block_to_dev_replace(sblock_other);
1050 goto corrected_error;
1051 } else {
1052 ret = scrub_repair_block_from_good_copy(
1053 sblock_bad, sblock_other);
1054 if (!ret)
1055 goto corrected_error;
1056 }
1057 }
1058 }
1059
1060 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1061 goto did_not_correct_error;
1062
1063 /*
1064 * In case of I/O errors in the area that is supposed to be
1065 * repaired, continue by picking good copies of those sectors.
1066 * Select the good sectors from mirrors to rewrite bad sectors from
1067 * the area to fix. Afterwards verify the checksum of the block
1068 * that is supposed to be repaired. This verification step is
1069 * only done for the purpose of statistic counting and for the
1070 * final scrub report, whether errors remain.
1071 * A perfect algorithm could make use of the checksum and try
1072 * all possible combinations of sectors from the different mirrors
1073 * until the checksum verification succeeds. For example, when
1074 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1075 * of mirror #2 is readable but the final checksum test fails,
1076 * then the 2nd sector of mirror #3 could be tried, whether now
1077 * the final checksum succeeds. But this would be a rare
1078 * exception and is therefore not implemented. At least it is
1079 * avoided that the good copy is overwritten.
1080 * A more useful improvement would be to pick the sectors
1081 * without I/O error based on sector sizes (512 bytes on legacy
1082 * disks) instead of on sectorsize. Then maybe 512 byte of one
1083 * mirror could be repaired by taking 512 byte of a different
1084 * mirror, even if other 512 byte sectors in the same sectorsize
1085 * area are unreadable.
1086 */
1087 success = 1;
1088 for (page_num = 0; page_num < sblock_bad->page_count;
1089 page_num++) {
1090 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1091 struct scrub_block *sblock_other = NULL;
1092
1093 /* skip no-io-error page in scrub */
1094 if (!spage_bad->io_error && !sctx->is_dev_replace)
1095 continue;
1096
1097 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1098 /*
1099 * In case of dev replace, if raid56 rebuild process
1100 * didn't work out correct data, then copy the content
1101 * in sblock_bad to make sure target device is identical
1102 * to source device, instead of writing garbage data in
1103 * sblock_for_recheck array to target device.
1104 */
1105 sblock_other = NULL;
1106 } else if (spage_bad->io_error) {
1107 /* try to find no-io-error page in mirrors */
1108 for (mirror_index = 0;
1109 mirror_index < BTRFS_MAX_MIRRORS &&
1110 sblocks_for_recheck[mirror_index].page_count > 0;
1111 mirror_index++) {
1112 if (!sblocks_for_recheck[mirror_index].
1113 pagev[page_num]->io_error) {
1114 sblock_other = sblocks_for_recheck +
1115 mirror_index;
1116 break;
1117 }
1118 }
1119 if (!sblock_other)
1120 success = 0;
1121 }
1122
1123 if (sctx->is_dev_replace) {
1124 /*
1125 * did not find a mirror to fetch the page
1126 * from. scrub_write_page_to_dev_replace()
1127 * handles this case (page->io_error), by
1128 * filling the block with zeros before
1129 * submitting the write request
1130 */
1131 if (!sblock_other)
1132 sblock_other = sblock_bad;
1133
1134 if (scrub_write_page_to_dev_replace(sblock_other,
1135 page_num) != 0) {
1136 atomic64_inc(
1137 &fs_info->dev_replace.num_write_errors);
1138 success = 0;
1139 }
1140 } else if (sblock_other) {
1141 ret = scrub_repair_page_from_good_copy(sblock_bad,
1142 sblock_other,
1143 page_num, 0);
1144 if (0 == ret)
1145 spage_bad->io_error = 0;
1146 else
1147 success = 0;
1148 }
1149 }
1150
1151 if (success && !sctx->is_dev_replace) {
1152 if (is_metadata || have_csum) {
1153 /*
1154 * need to verify the checksum now that all
1155 * sectors on disk are repaired (the write
1156 * request for data to be repaired is on its way).
1157 * Just be lazy and use scrub_recheck_block()
1158 * which re-reads the data before the checksum
1159 * is verified, but most likely the data comes out
1160 * of the page cache.
1161 */
1162 scrub_recheck_block(fs_info, sblock_bad, 1);
1163 if (!sblock_bad->header_error &&
1164 !sblock_bad->checksum_error &&
1165 sblock_bad->no_io_error_seen)
1166 goto corrected_error;
1167 else
1168 goto did_not_correct_error;
1169 } else {
1170 corrected_error:
1171 spin_lock(&sctx->stat_lock);
1172 sctx->stat.corrected_errors++;
1173 sblock_to_check->data_corrected = 1;
1174 spin_unlock(&sctx->stat_lock);
1175 btrfs_err_rl_in_rcu(fs_info,
1176 "fixed up error at logical %llu on dev %s",
1177 logical, rcu_str_deref(dev->name));
1178 }
1179 } else {
1180 did_not_correct_error:
1181 spin_lock(&sctx->stat_lock);
1182 sctx->stat.uncorrectable_errors++;
1183 spin_unlock(&sctx->stat_lock);
1184 btrfs_err_rl_in_rcu(fs_info,
1185 "unable to fixup (regular) error at logical %llu on dev %s",
1186 logical, rcu_str_deref(dev->name));
1187 }
1188
1189 out:
1190 if (sblocks_for_recheck) {
1191 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1192 mirror_index++) {
1193 struct scrub_block *sblock = sblocks_for_recheck +
1194 mirror_index;
1195 struct scrub_recover *recover;
1196 int page_index;
1197
1198 for (page_index = 0; page_index < sblock->page_count;
1199 page_index++) {
1200 sblock->pagev[page_index]->sblock = NULL;
1201 recover = sblock->pagev[page_index]->recover;
1202 if (recover) {
1203 scrub_put_recover(fs_info, recover);
1204 sblock->pagev[page_index]->recover =
1205 NULL;
1206 }
1207 scrub_page_put(sblock->pagev[page_index]);
1208 }
1209 }
1210 kfree(sblocks_for_recheck);
1211 }
1212
1213 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1214 memalloc_nofs_restore(nofs_flag);
1215 if (ret < 0)
1216 return ret;
1217 return 0;
1218 }
1219
scrub_nr_raid_mirrors(struct btrfs_io_context * bioc)1220 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1221 {
1222 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1223 return 2;
1224 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1225 return 3;
1226 else
1227 return (int)bioc->num_stripes;
1228 }
1229
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1230 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1231 u64 *raid_map,
1232 u64 mapped_length,
1233 int nstripes, int mirror,
1234 int *stripe_index,
1235 u64 *stripe_offset)
1236 {
1237 int i;
1238
1239 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1240 /* RAID5/6 */
1241 for (i = 0; i < nstripes; i++) {
1242 if (raid_map[i] == RAID6_Q_STRIPE ||
1243 raid_map[i] == RAID5_P_STRIPE)
1244 continue;
1245
1246 if (logical >= raid_map[i] &&
1247 logical < raid_map[i] + mapped_length)
1248 break;
1249 }
1250
1251 *stripe_index = i;
1252 *stripe_offset = logical - raid_map[i];
1253 } else {
1254 /* The other RAID type */
1255 *stripe_index = mirror;
1256 *stripe_offset = 0;
1257 }
1258 }
1259
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1260 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1261 struct scrub_block *sblocks_for_recheck)
1262 {
1263 struct scrub_ctx *sctx = original_sblock->sctx;
1264 struct btrfs_fs_info *fs_info = sctx->fs_info;
1265 u64 length = original_sblock->page_count * fs_info->sectorsize;
1266 u64 logical = original_sblock->pagev[0]->logical;
1267 u64 generation = original_sblock->pagev[0]->generation;
1268 u64 flags = original_sblock->pagev[0]->flags;
1269 u64 have_csum = original_sblock->pagev[0]->have_csum;
1270 struct scrub_recover *recover;
1271 struct btrfs_io_context *bioc;
1272 u64 sublen;
1273 u64 mapped_length;
1274 u64 stripe_offset;
1275 int stripe_index;
1276 int page_index = 0;
1277 int mirror_index;
1278 int nmirrors;
1279 int ret;
1280
1281 /*
1282 * note: the two members refs and outstanding_pages
1283 * are not used (and not set) in the blocks that are used for
1284 * the recheck procedure
1285 */
1286
1287 while (length > 0) {
1288 sublen = min_t(u64, length, fs_info->sectorsize);
1289 mapped_length = sublen;
1290 bioc = NULL;
1291
1292 /*
1293 * With a length of sectorsize, each returned stripe represents
1294 * one mirror
1295 */
1296 btrfs_bio_counter_inc_blocked(fs_info);
1297 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1298 logical, &mapped_length, &bioc);
1299 if (ret || !bioc || mapped_length < sublen) {
1300 btrfs_put_bioc(bioc);
1301 btrfs_bio_counter_dec(fs_info);
1302 return -EIO;
1303 }
1304
1305 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1306 if (!recover) {
1307 btrfs_put_bioc(bioc);
1308 btrfs_bio_counter_dec(fs_info);
1309 return -ENOMEM;
1310 }
1311
1312 refcount_set(&recover->refs, 1);
1313 recover->bioc = bioc;
1314 recover->map_length = mapped_length;
1315
1316 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1317
1318 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1319
1320 for (mirror_index = 0; mirror_index < nmirrors;
1321 mirror_index++) {
1322 struct scrub_block *sblock;
1323 struct scrub_page *spage;
1324
1325 sblock = sblocks_for_recheck + mirror_index;
1326 sblock->sctx = sctx;
1327
1328 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1329 if (!spage) {
1330 leave_nomem:
1331 spin_lock(&sctx->stat_lock);
1332 sctx->stat.malloc_errors++;
1333 spin_unlock(&sctx->stat_lock);
1334 scrub_put_recover(fs_info, recover);
1335 return -ENOMEM;
1336 }
1337 scrub_page_get(spage);
1338 sblock->pagev[page_index] = spage;
1339 spage->sblock = sblock;
1340 spage->flags = flags;
1341 spage->generation = generation;
1342 spage->logical = logical;
1343 spage->have_csum = have_csum;
1344 if (have_csum)
1345 memcpy(spage->csum,
1346 original_sblock->pagev[0]->csum,
1347 sctx->fs_info->csum_size);
1348
1349 scrub_stripe_index_and_offset(logical,
1350 bioc->map_type,
1351 bioc->raid_map,
1352 mapped_length,
1353 bioc->num_stripes -
1354 bioc->num_tgtdevs,
1355 mirror_index,
1356 &stripe_index,
1357 &stripe_offset);
1358 spage->physical = bioc->stripes[stripe_index].physical +
1359 stripe_offset;
1360 spage->dev = bioc->stripes[stripe_index].dev;
1361
1362 BUG_ON(page_index >= original_sblock->page_count);
1363 spage->physical_for_dev_replace =
1364 original_sblock->pagev[page_index]->
1365 physical_for_dev_replace;
1366 /* for missing devices, dev->bdev is NULL */
1367 spage->mirror_num = mirror_index + 1;
1368 sblock->page_count++;
1369 spage->page = alloc_page(GFP_NOFS);
1370 if (!spage->page)
1371 goto leave_nomem;
1372
1373 scrub_get_recover(recover);
1374 spage->recover = recover;
1375 }
1376 scrub_put_recover(fs_info, recover);
1377 length -= sublen;
1378 logical += sublen;
1379 page_index++;
1380 }
1381
1382 return 0;
1383 }
1384
scrub_bio_wait_endio(struct bio * bio)1385 static void scrub_bio_wait_endio(struct bio *bio)
1386 {
1387 complete(bio->bi_private);
1388 }
1389
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * spage)1390 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1391 struct bio *bio,
1392 struct scrub_page *spage)
1393 {
1394 DECLARE_COMPLETION_ONSTACK(done);
1395 int ret;
1396 int mirror_num;
1397
1398 bio->bi_iter.bi_sector = spage->logical >> 9;
1399 bio->bi_private = &done;
1400 bio->bi_end_io = scrub_bio_wait_endio;
1401
1402 mirror_num = spage->sblock->pagev[0]->mirror_num;
1403 ret = raid56_parity_recover(fs_info, bio, spage->recover->bioc,
1404 spage->recover->map_length,
1405 mirror_num, 0);
1406 if (ret)
1407 return ret;
1408
1409 wait_for_completion_io(&done);
1410 return blk_status_to_errno(bio->bi_status);
1411 }
1412
scrub_recheck_block_on_raid56(struct btrfs_fs_info * fs_info,struct scrub_block * sblock)1413 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1414 struct scrub_block *sblock)
1415 {
1416 struct scrub_page *first_page = sblock->pagev[0];
1417 struct bio *bio;
1418 int page_num;
1419
1420 /* All pages in sblock belong to the same stripe on the same device. */
1421 ASSERT(first_page->dev);
1422 if (!first_page->dev->bdev)
1423 goto out;
1424
1425 bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
1426 bio_set_dev(bio, first_page->dev->bdev);
1427
1428 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1429 struct scrub_page *spage = sblock->pagev[page_num];
1430
1431 WARN_ON(!spage->page);
1432 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1433 }
1434
1435 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1436 bio_put(bio);
1437 goto out;
1438 }
1439
1440 bio_put(bio);
1441
1442 scrub_recheck_block_checksum(sblock);
1443
1444 return;
1445 out:
1446 for (page_num = 0; page_num < sblock->page_count; page_num++)
1447 sblock->pagev[page_num]->io_error = 1;
1448
1449 sblock->no_io_error_seen = 0;
1450 }
1451
1452 /*
1453 * this function will check the on disk data for checksum errors, header
1454 * errors and read I/O errors. If any I/O errors happen, the exact pages
1455 * which are errored are marked as being bad. The goal is to enable scrub
1456 * to take those pages that are not errored from all the mirrors so that
1457 * the pages that are errored in the just handled mirror can be repaired.
1458 */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1459 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1460 struct scrub_block *sblock,
1461 int retry_failed_mirror)
1462 {
1463 int page_num;
1464
1465 sblock->no_io_error_seen = 1;
1466
1467 /* short cut for raid56 */
1468 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1469 return scrub_recheck_block_on_raid56(fs_info, sblock);
1470
1471 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1472 struct bio *bio;
1473 struct scrub_page *spage = sblock->pagev[page_num];
1474
1475 if (spage->dev->bdev == NULL) {
1476 spage->io_error = 1;
1477 sblock->no_io_error_seen = 0;
1478 continue;
1479 }
1480
1481 WARN_ON(!spage->page);
1482 bio = btrfs_io_bio_alloc(1);
1483 bio_set_dev(bio, spage->dev->bdev);
1484
1485 bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1486 bio->bi_iter.bi_sector = spage->physical >> 9;
1487 bio->bi_opf = REQ_OP_READ;
1488
1489 if (btrfsic_submit_bio_wait(bio)) {
1490 spage->io_error = 1;
1491 sblock->no_io_error_seen = 0;
1492 }
1493
1494 bio_put(bio);
1495 }
1496
1497 if (sblock->no_io_error_seen)
1498 scrub_recheck_block_checksum(sblock);
1499 }
1500
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1501 static inline int scrub_check_fsid(u8 fsid[],
1502 struct scrub_page *spage)
1503 {
1504 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1505 int ret;
1506
1507 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1508 return !ret;
1509 }
1510
scrub_recheck_block_checksum(struct scrub_block * sblock)1511 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1512 {
1513 sblock->header_error = 0;
1514 sblock->checksum_error = 0;
1515 sblock->generation_error = 0;
1516
1517 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1518 scrub_checksum_data(sblock);
1519 else
1520 scrub_checksum_tree_block(sblock);
1521 }
1522
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1523 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1524 struct scrub_block *sblock_good)
1525 {
1526 int page_num;
1527 int ret = 0;
1528
1529 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1530 int ret_sub;
1531
1532 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1533 sblock_good,
1534 page_num, 1);
1535 if (ret_sub)
1536 ret = ret_sub;
1537 }
1538
1539 return ret;
1540 }
1541
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1542 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1543 struct scrub_block *sblock_good,
1544 int page_num, int force_write)
1545 {
1546 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1547 struct scrub_page *spage_good = sblock_good->pagev[page_num];
1548 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1549 const u32 sectorsize = fs_info->sectorsize;
1550
1551 BUG_ON(spage_bad->page == NULL);
1552 BUG_ON(spage_good->page == NULL);
1553 if (force_write || sblock_bad->header_error ||
1554 sblock_bad->checksum_error || spage_bad->io_error) {
1555 struct bio *bio;
1556 int ret;
1557
1558 if (!spage_bad->dev->bdev) {
1559 btrfs_warn_rl(fs_info,
1560 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1561 return -EIO;
1562 }
1563
1564 bio = btrfs_io_bio_alloc(1);
1565 bio_set_dev(bio, spage_bad->dev->bdev);
1566 bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1567 bio->bi_opf = REQ_OP_WRITE;
1568
1569 ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1570 if (ret != sectorsize) {
1571 bio_put(bio);
1572 return -EIO;
1573 }
1574
1575 if (btrfsic_submit_bio_wait(bio)) {
1576 btrfs_dev_stat_inc_and_print(spage_bad->dev,
1577 BTRFS_DEV_STAT_WRITE_ERRS);
1578 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1579 bio_put(bio);
1580 return -EIO;
1581 }
1582 bio_put(bio);
1583 }
1584
1585 return 0;
1586 }
1587
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1588 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1589 {
1590 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1591 int page_num;
1592
1593 /*
1594 * This block is used for the check of the parity on the source device,
1595 * so the data needn't be written into the destination device.
1596 */
1597 if (sblock->sparity)
1598 return;
1599
1600 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1601 int ret;
1602
1603 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1604 if (ret)
1605 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1606 }
1607 }
1608
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1609 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1610 int page_num)
1611 {
1612 struct scrub_page *spage = sblock->pagev[page_num];
1613
1614 BUG_ON(spage->page == NULL);
1615 if (spage->io_error)
1616 clear_page(page_address(spage->page));
1617
1618 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1619 }
1620
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)1621 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1622 {
1623 int ret = 0;
1624 u64 length;
1625
1626 if (!btrfs_is_zoned(sctx->fs_info))
1627 return 0;
1628
1629 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1630 return 0;
1631
1632 if (sctx->write_pointer < physical) {
1633 length = physical - sctx->write_pointer;
1634
1635 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1636 sctx->write_pointer, length);
1637 if (!ret)
1638 sctx->write_pointer = physical;
1639 }
1640 return ret;
1641 }
1642
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1643 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1644 struct scrub_page *spage)
1645 {
1646 struct scrub_bio *sbio;
1647 int ret;
1648 const u32 sectorsize = sctx->fs_info->sectorsize;
1649
1650 mutex_lock(&sctx->wr_lock);
1651 again:
1652 if (!sctx->wr_curr_bio) {
1653 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1654 GFP_KERNEL);
1655 if (!sctx->wr_curr_bio) {
1656 mutex_unlock(&sctx->wr_lock);
1657 return -ENOMEM;
1658 }
1659 sctx->wr_curr_bio->sctx = sctx;
1660 sctx->wr_curr_bio->page_count = 0;
1661 }
1662 sbio = sctx->wr_curr_bio;
1663 if (sbio->page_count == 0) {
1664 struct bio *bio;
1665
1666 ret = fill_writer_pointer_gap(sctx,
1667 spage->physical_for_dev_replace);
1668 if (ret) {
1669 mutex_unlock(&sctx->wr_lock);
1670 return ret;
1671 }
1672
1673 sbio->physical = spage->physical_for_dev_replace;
1674 sbio->logical = spage->logical;
1675 sbio->dev = sctx->wr_tgtdev;
1676 bio = sbio->bio;
1677 if (!bio) {
1678 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1679 sbio->bio = bio;
1680 }
1681
1682 bio->bi_private = sbio;
1683 bio->bi_end_io = scrub_wr_bio_end_io;
1684 bio_set_dev(bio, sbio->dev->bdev);
1685 bio->bi_iter.bi_sector = sbio->physical >> 9;
1686 bio->bi_opf = REQ_OP_WRITE;
1687 sbio->status = 0;
1688 } else if (sbio->physical + sbio->page_count * sectorsize !=
1689 spage->physical_for_dev_replace ||
1690 sbio->logical + sbio->page_count * sectorsize !=
1691 spage->logical) {
1692 scrub_wr_submit(sctx);
1693 goto again;
1694 }
1695
1696 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1697 if (ret != sectorsize) {
1698 if (sbio->page_count < 1) {
1699 bio_put(sbio->bio);
1700 sbio->bio = NULL;
1701 mutex_unlock(&sctx->wr_lock);
1702 return -EIO;
1703 }
1704 scrub_wr_submit(sctx);
1705 goto again;
1706 }
1707
1708 sbio->pagev[sbio->page_count] = spage;
1709 scrub_page_get(spage);
1710 sbio->page_count++;
1711 if (sbio->page_count == sctx->pages_per_wr_bio)
1712 scrub_wr_submit(sctx);
1713 mutex_unlock(&sctx->wr_lock);
1714
1715 return 0;
1716 }
1717
scrub_wr_submit(struct scrub_ctx * sctx)1718 static void scrub_wr_submit(struct scrub_ctx *sctx)
1719 {
1720 struct scrub_bio *sbio;
1721
1722 if (!sctx->wr_curr_bio)
1723 return;
1724
1725 sbio = sctx->wr_curr_bio;
1726 sctx->wr_curr_bio = NULL;
1727 WARN_ON(!sbio->bio->bi_bdev);
1728 scrub_pending_bio_inc(sctx);
1729 /* process all writes in a single worker thread. Then the block layer
1730 * orders the requests before sending them to the driver which
1731 * doubled the write performance on spinning disks when measured
1732 * with Linux 3.5 */
1733 btrfsic_submit_bio(sbio->bio);
1734
1735 if (btrfs_is_zoned(sctx->fs_info))
1736 sctx->write_pointer = sbio->physical + sbio->page_count *
1737 sctx->fs_info->sectorsize;
1738 }
1739
scrub_wr_bio_end_io(struct bio * bio)1740 static void scrub_wr_bio_end_io(struct bio *bio)
1741 {
1742 struct scrub_bio *sbio = bio->bi_private;
1743 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1744
1745 sbio->status = bio->bi_status;
1746 sbio->bio = bio;
1747
1748 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1749 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1750 }
1751
scrub_wr_bio_end_io_worker(struct btrfs_work * work)1752 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1753 {
1754 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1755 struct scrub_ctx *sctx = sbio->sctx;
1756 int i;
1757
1758 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1759 if (sbio->status) {
1760 struct btrfs_dev_replace *dev_replace =
1761 &sbio->sctx->fs_info->dev_replace;
1762
1763 for (i = 0; i < sbio->page_count; i++) {
1764 struct scrub_page *spage = sbio->pagev[i];
1765
1766 spage->io_error = 1;
1767 atomic64_inc(&dev_replace->num_write_errors);
1768 }
1769 }
1770
1771 for (i = 0; i < sbio->page_count; i++)
1772 scrub_page_put(sbio->pagev[i]);
1773
1774 bio_put(sbio->bio);
1775 kfree(sbio);
1776 scrub_pending_bio_dec(sctx);
1777 }
1778
scrub_checksum(struct scrub_block * sblock)1779 static int scrub_checksum(struct scrub_block *sblock)
1780 {
1781 u64 flags;
1782 int ret;
1783
1784 /*
1785 * No need to initialize these stats currently,
1786 * because this function only use return value
1787 * instead of these stats value.
1788 *
1789 * Todo:
1790 * always use stats
1791 */
1792 sblock->header_error = 0;
1793 sblock->generation_error = 0;
1794 sblock->checksum_error = 0;
1795
1796 WARN_ON(sblock->page_count < 1);
1797 flags = sblock->pagev[0]->flags;
1798 ret = 0;
1799 if (flags & BTRFS_EXTENT_FLAG_DATA)
1800 ret = scrub_checksum_data(sblock);
1801 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802 ret = scrub_checksum_tree_block(sblock);
1803 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804 (void)scrub_checksum_super(sblock);
1805 else
1806 WARN_ON(1);
1807 if (ret)
1808 scrub_handle_errored_block(sblock);
1809
1810 return ret;
1811 }
1812
scrub_checksum_data(struct scrub_block * sblock)1813 static int scrub_checksum_data(struct scrub_block *sblock)
1814 {
1815 struct scrub_ctx *sctx = sblock->sctx;
1816 struct btrfs_fs_info *fs_info = sctx->fs_info;
1817 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1818 u8 csum[BTRFS_CSUM_SIZE];
1819 struct scrub_page *spage;
1820 char *kaddr;
1821
1822 BUG_ON(sblock->page_count < 1);
1823 spage = sblock->pagev[0];
1824 if (!spage->have_csum)
1825 return 0;
1826
1827 kaddr = page_address(spage->page);
1828
1829 shash->tfm = fs_info->csum_shash;
1830 crypto_shash_init(shash);
1831
1832 /*
1833 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1834 * only contains one sector of data.
1835 */
1836 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1837
1838 if (memcmp(csum, spage->csum, fs_info->csum_size))
1839 sblock->checksum_error = 1;
1840 return sblock->checksum_error;
1841 }
1842
scrub_checksum_tree_block(struct scrub_block * sblock)1843 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1844 {
1845 struct scrub_ctx *sctx = sblock->sctx;
1846 struct btrfs_header *h;
1847 struct btrfs_fs_info *fs_info = sctx->fs_info;
1848 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1849 u8 calculated_csum[BTRFS_CSUM_SIZE];
1850 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1851 /*
1852 * This is done in sectorsize steps even for metadata as there's a
1853 * constraint for nodesize to be aligned to sectorsize. This will need
1854 * to change so we don't misuse data and metadata units like that.
1855 */
1856 const u32 sectorsize = sctx->fs_info->sectorsize;
1857 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1858 int i;
1859 struct scrub_page *spage;
1860 char *kaddr;
1861
1862 BUG_ON(sblock->page_count < 1);
1863
1864 /* Each member in pagev is just one block, not a full page */
1865 ASSERT(sblock->page_count == num_sectors);
1866
1867 spage = sblock->pagev[0];
1868 kaddr = page_address(spage->page);
1869 h = (struct btrfs_header *)kaddr;
1870 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1871
1872 /*
1873 * we don't use the getter functions here, as we
1874 * a) don't have an extent buffer and
1875 * b) the page is already kmapped
1876 */
1877 if (spage->logical != btrfs_stack_header_bytenr(h))
1878 sblock->header_error = 1;
1879
1880 if (spage->generation != btrfs_stack_header_generation(h)) {
1881 sblock->header_error = 1;
1882 sblock->generation_error = 1;
1883 }
1884
1885 if (!scrub_check_fsid(h->fsid, spage))
1886 sblock->header_error = 1;
1887
1888 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1889 BTRFS_UUID_SIZE))
1890 sblock->header_error = 1;
1891
1892 shash->tfm = fs_info->csum_shash;
1893 crypto_shash_init(shash);
1894 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1895 sectorsize - BTRFS_CSUM_SIZE);
1896
1897 for (i = 1; i < num_sectors; i++) {
1898 kaddr = page_address(sblock->pagev[i]->page);
1899 crypto_shash_update(shash, kaddr, sectorsize);
1900 }
1901
1902 crypto_shash_final(shash, calculated_csum);
1903 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1904 sblock->checksum_error = 1;
1905
1906 return sblock->header_error || sblock->checksum_error;
1907 }
1908
scrub_checksum_super(struct scrub_block * sblock)1909 static int scrub_checksum_super(struct scrub_block *sblock)
1910 {
1911 struct btrfs_super_block *s;
1912 struct scrub_ctx *sctx = sblock->sctx;
1913 struct btrfs_fs_info *fs_info = sctx->fs_info;
1914 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1915 u8 calculated_csum[BTRFS_CSUM_SIZE];
1916 struct scrub_page *spage;
1917 char *kaddr;
1918 int fail_gen = 0;
1919 int fail_cor = 0;
1920
1921 BUG_ON(sblock->page_count < 1);
1922 spage = sblock->pagev[0];
1923 kaddr = page_address(spage->page);
1924 s = (struct btrfs_super_block *)kaddr;
1925
1926 if (spage->logical != btrfs_super_bytenr(s))
1927 ++fail_cor;
1928
1929 if (spage->generation != btrfs_super_generation(s))
1930 ++fail_gen;
1931
1932 if (!scrub_check_fsid(s->fsid, spage))
1933 ++fail_cor;
1934
1935 shash->tfm = fs_info->csum_shash;
1936 crypto_shash_init(shash);
1937 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1938 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1939
1940 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1941 ++fail_cor;
1942
1943 if (fail_cor + fail_gen) {
1944 /*
1945 * if we find an error in a super block, we just report it.
1946 * They will get written with the next transaction commit
1947 * anyway
1948 */
1949 spin_lock(&sctx->stat_lock);
1950 ++sctx->stat.super_errors;
1951 spin_unlock(&sctx->stat_lock);
1952 if (fail_cor)
1953 btrfs_dev_stat_inc_and_print(spage->dev,
1954 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1955 else
1956 btrfs_dev_stat_inc_and_print(spage->dev,
1957 BTRFS_DEV_STAT_GENERATION_ERRS);
1958 }
1959
1960 return fail_cor + fail_gen;
1961 }
1962
scrub_block_get(struct scrub_block * sblock)1963 static void scrub_block_get(struct scrub_block *sblock)
1964 {
1965 refcount_inc(&sblock->refs);
1966 }
1967
scrub_block_put(struct scrub_block * sblock)1968 static void scrub_block_put(struct scrub_block *sblock)
1969 {
1970 if (refcount_dec_and_test(&sblock->refs)) {
1971 int i;
1972
1973 if (sblock->sparity)
1974 scrub_parity_put(sblock->sparity);
1975
1976 for (i = 0; i < sblock->page_count; i++)
1977 scrub_page_put(sblock->pagev[i]);
1978 kfree(sblock);
1979 }
1980 }
1981
scrub_page_get(struct scrub_page * spage)1982 static void scrub_page_get(struct scrub_page *spage)
1983 {
1984 atomic_inc(&spage->refs);
1985 }
1986
scrub_page_put(struct scrub_page * spage)1987 static void scrub_page_put(struct scrub_page *spage)
1988 {
1989 if (atomic_dec_and_test(&spage->refs)) {
1990 if (spage->page)
1991 __free_page(spage->page);
1992 kfree(spage);
1993 }
1994 }
1995
1996 /*
1997 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1998 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1999 */
scrub_throttle(struct scrub_ctx * sctx)2000 static void scrub_throttle(struct scrub_ctx *sctx)
2001 {
2002 const int time_slice = 1000;
2003 struct scrub_bio *sbio;
2004 struct btrfs_device *device;
2005 s64 delta;
2006 ktime_t now;
2007 u32 div;
2008 u64 bwlimit;
2009
2010 sbio = sctx->bios[sctx->curr];
2011 device = sbio->dev;
2012 bwlimit = READ_ONCE(device->scrub_speed_max);
2013 if (bwlimit == 0)
2014 return;
2015
2016 /*
2017 * Slice is divided into intervals when the IO is submitted, adjust by
2018 * bwlimit and maximum of 64 intervals.
2019 */
2020 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2021 div = min_t(u32, 64, div);
2022
2023 /* Start new epoch, set deadline */
2024 now = ktime_get();
2025 if (sctx->throttle_deadline == 0) {
2026 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2027 sctx->throttle_sent = 0;
2028 }
2029
2030 /* Still in the time to send? */
2031 if (ktime_before(now, sctx->throttle_deadline)) {
2032 /* If current bio is within the limit, send it */
2033 sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2034 if (sctx->throttle_sent <= div_u64(bwlimit, div))
2035 return;
2036
2037 /* We're over the limit, sleep until the rest of the slice */
2038 delta = ktime_ms_delta(sctx->throttle_deadline, now);
2039 } else {
2040 /* New request after deadline, start new epoch */
2041 delta = 0;
2042 }
2043
2044 if (delta) {
2045 long timeout;
2046
2047 timeout = div_u64(delta * HZ, 1000);
2048 schedule_timeout_interruptible(timeout);
2049 }
2050
2051 /* Next call will start the deadline period */
2052 sctx->throttle_deadline = 0;
2053 }
2054
scrub_submit(struct scrub_ctx * sctx)2055 static void scrub_submit(struct scrub_ctx *sctx)
2056 {
2057 struct scrub_bio *sbio;
2058
2059 if (sctx->curr == -1)
2060 return;
2061
2062 scrub_throttle(sctx);
2063
2064 sbio = sctx->bios[sctx->curr];
2065 sctx->curr = -1;
2066 scrub_pending_bio_inc(sctx);
2067 btrfsic_submit_bio(sbio->bio);
2068 }
2069
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2070 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2071 struct scrub_page *spage)
2072 {
2073 struct scrub_block *sblock = spage->sblock;
2074 struct scrub_bio *sbio;
2075 const u32 sectorsize = sctx->fs_info->sectorsize;
2076 int ret;
2077
2078 again:
2079 /*
2080 * grab a fresh bio or wait for one to become available
2081 */
2082 while (sctx->curr == -1) {
2083 spin_lock(&sctx->list_lock);
2084 sctx->curr = sctx->first_free;
2085 if (sctx->curr != -1) {
2086 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2087 sctx->bios[sctx->curr]->next_free = -1;
2088 sctx->bios[sctx->curr]->page_count = 0;
2089 spin_unlock(&sctx->list_lock);
2090 } else {
2091 spin_unlock(&sctx->list_lock);
2092 wait_event(sctx->list_wait, sctx->first_free != -1);
2093 }
2094 }
2095 sbio = sctx->bios[sctx->curr];
2096 if (sbio->page_count == 0) {
2097 struct bio *bio;
2098
2099 sbio->physical = spage->physical;
2100 sbio->logical = spage->logical;
2101 sbio->dev = spage->dev;
2102 bio = sbio->bio;
2103 if (!bio) {
2104 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2105 sbio->bio = bio;
2106 }
2107
2108 bio->bi_private = sbio;
2109 bio->bi_end_io = scrub_bio_end_io;
2110 bio_set_dev(bio, sbio->dev->bdev);
2111 bio->bi_iter.bi_sector = sbio->physical >> 9;
2112 bio->bi_opf = REQ_OP_READ;
2113 sbio->status = 0;
2114 } else if (sbio->physical + sbio->page_count * sectorsize !=
2115 spage->physical ||
2116 sbio->logical + sbio->page_count * sectorsize !=
2117 spage->logical ||
2118 sbio->dev != spage->dev) {
2119 scrub_submit(sctx);
2120 goto again;
2121 }
2122
2123 sbio->pagev[sbio->page_count] = spage;
2124 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2125 if (ret != sectorsize) {
2126 if (sbio->page_count < 1) {
2127 bio_put(sbio->bio);
2128 sbio->bio = NULL;
2129 return -EIO;
2130 }
2131 scrub_submit(sctx);
2132 goto again;
2133 }
2134
2135 scrub_block_get(sblock); /* one for the page added to the bio */
2136 atomic_inc(&sblock->outstanding_pages);
2137 sbio->page_count++;
2138 if (sbio->page_count == sctx->pages_per_rd_bio)
2139 scrub_submit(sctx);
2140
2141 return 0;
2142 }
2143
scrub_missing_raid56_end_io(struct bio * bio)2144 static void scrub_missing_raid56_end_io(struct bio *bio)
2145 {
2146 struct scrub_block *sblock = bio->bi_private;
2147 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2148
2149 if (bio->bi_status)
2150 sblock->no_io_error_seen = 0;
2151
2152 bio_put(bio);
2153
2154 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2155 }
2156
scrub_missing_raid56_worker(struct btrfs_work * work)2157 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2158 {
2159 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2160 struct scrub_ctx *sctx = sblock->sctx;
2161 struct btrfs_fs_info *fs_info = sctx->fs_info;
2162 u64 logical;
2163 struct btrfs_device *dev;
2164
2165 logical = sblock->pagev[0]->logical;
2166 dev = sblock->pagev[0]->dev;
2167
2168 if (sblock->no_io_error_seen)
2169 scrub_recheck_block_checksum(sblock);
2170
2171 if (!sblock->no_io_error_seen) {
2172 spin_lock(&sctx->stat_lock);
2173 sctx->stat.read_errors++;
2174 spin_unlock(&sctx->stat_lock);
2175 btrfs_err_rl_in_rcu(fs_info,
2176 "IO error rebuilding logical %llu for dev %s",
2177 logical, rcu_str_deref(dev->name));
2178 } else if (sblock->header_error || sblock->checksum_error) {
2179 spin_lock(&sctx->stat_lock);
2180 sctx->stat.uncorrectable_errors++;
2181 spin_unlock(&sctx->stat_lock);
2182 btrfs_err_rl_in_rcu(fs_info,
2183 "failed to rebuild valid logical %llu for dev %s",
2184 logical, rcu_str_deref(dev->name));
2185 } else {
2186 scrub_write_block_to_dev_replace(sblock);
2187 }
2188
2189 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2190 mutex_lock(&sctx->wr_lock);
2191 scrub_wr_submit(sctx);
2192 mutex_unlock(&sctx->wr_lock);
2193 }
2194
2195 scrub_block_put(sblock);
2196 scrub_pending_bio_dec(sctx);
2197 }
2198
scrub_missing_raid56_pages(struct scrub_block * sblock)2199 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2200 {
2201 struct scrub_ctx *sctx = sblock->sctx;
2202 struct btrfs_fs_info *fs_info = sctx->fs_info;
2203 u64 length = sblock->page_count * PAGE_SIZE;
2204 u64 logical = sblock->pagev[0]->logical;
2205 struct btrfs_io_context *bioc = NULL;
2206 struct bio *bio;
2207 struct btrfs_raid_bio *rbio;
2208 int ret;
2209 int i;
2210
2211 btrfs_bio_counter_inc_blocked(fs_info);
2212 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2213 &length, &bioc);
2214 if (ret || !bioc || !bioc->raid_map)
2215 goto bioc_out;
2216
2217 if (WARN_ON(!sctx->is_dev_replace ||
2218 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2219 /*
2220 * We shouldn't be scrubbing a missing device. Even for dev
2221 * replace, we should only get here for RAID 5/6. We either
2222 * managed to mount something with no mirrors remaining or
2223 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2224 */
2225 goto bioc_out;
2226 }
2227
2228 bio = btrfs_io_bio_alloc(0);
2229 bio->bi_iter.bi_sector = logical >> 9;
2230 bio->bi_private = sblock;
2231 bio->bi_end_io = scrub_missing_raid56_end_io;
2232
2233 rbio = raid56_alloc_missing_rbio(fs_info, bio, bioc, length);
2234 if (!rbio)
2235 goto rbio_out;
2236
2237 for (i = 0; i < sblock->page_count; i++) {
2238 struct scrub_page *spage = sblock->pagev[i];
2239
2240 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2241 }
2242
2243 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2244 scrub_block_get(sblock);
2245 scrub_pending_bio_inc(sctx);
2246 raid56_submit_missing_rbio(rbio);
2247 return;
2248
2249 rbio_out:
2250 bio_put(bio);
2251 bioc_out:
2252 btrfs_bio_counter_dec(fs_info);
2253 btrfs_put_bioc(bioc);
2254 spin_lock(&sctx->stat_lock);
2255 sctx->stat.malloc_errors++;
2256 spin_unlock(&sctx->stat_lock);
2257 }
2258
scrub_pages(struct scrub_ctx * sctx,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,u64 physical_for_dev_replace)2259 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2260 u64 physical, struct btrfs_device *dev, u64 flags,
2261 u64 gen, int mirror_num, u8 *csum,
2262 u64 physical_for_dev_replace)
2263 {
2264 struct scrub_block *sblock;
2265 const u32 sectorsize = sctx->fs_info->sectorsize;
2266 int index;
2267
2268 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2269 if (!sblock) {
2270 spin_lock(&sctx->stat_lock);
2271 sctx->stat.malloc_errors++;
2272 spin_unlock(&sctx->stat_lock);
2273 return -ENOMEM;
2274 }
2275
2276 /* one ref inside this function, plus one for each page added to
2277 * a bio later on */
2278 refcount_set(&sblock->refs, 1);
2279 sblock->sctx = sctx;
2280 sblock->no_io_error_seen = 1;
2281
2282 for (index = 0; len > 0; index++) {
2283 struct scrub_page *spage;
2284 /*
2285 * Here we will allocate one page for one sector to scrub.
2286 * This is fine if PAGE_SIZE == sectorsize, but will cost
2287 * more memory for PAGE_SIZE > sectorsize case.
2288 */
2289 u32 l = min(sectorsize, len);
2290
2291 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2292 if (!spage) {
2293 leave_nomem:
2294 spin_lock(&sctx->stat_lock);
2295 sctx->stat.malloc_errors++;
2296 spin_unlock(&sctx->stat_lock);
2297 scrub_block_put(sblock);
2298 return -ENOMEM;
2299 }
2300 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2301 scrub_page_get(spage);
2302 sblock->pagev[index] = spage;
2303 spage->sblock = sblock;
2304 spage->dev = dev;
2305 spage->flags = flags;
2306 spage->generation = gen;
2307 spage->logical = logical;
2308 spage->physical = physical;
2309 spage->physical_for_dev_replace = physical_for_dev_replace;
2310 spage->mirror_num = mirror_num;
2311 if (csum) {
2312 spage->have_csum = 1;
2313 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2314 } else {
2315 spage->have_csum = 0;
2316 }
2317 sblock->page_count++;
2318 spage->page = alloc_page(GFP_KERNEL);
2319 if (!spage->page)
2320 goto leave_nomem;
2321 len -= l;
2322 logical += l;
2323 physical += l;
2324 physical_for_dev_replace += l;
2325 }
2326
2327 WARN_ON(sblock->page_count == 0);
2328 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2329 /*
2330 * This case should only be hit for RAID 5/6 device replace. See
2331 * the comment in scrub_missing_raid56_pages() for details.
2332 */
2333 scrub_missing_raid56_pages(sblock);
2334 } else {
2335 for (index = 0; index < sblock->page_count; index++) {
2336 struct scrub_page *spage = sblock->pagev[index];
2337 int ret;
2338
2339 ret = scrub_add_page_to_rd_bio(sctx, spage);
2340 if (ret) {
2341 scrub_block_put(sblock);
2342 return ret;
2343 }
2344 }
2345
2346 if (flags & BTRFS_EXTENT_FLAG_SUPER)
2347 scrub_submit(sctx);
2348 }
2349
2350 /* last one frees, either here or in bio completion for last page */
2351 scrub_block_put(sblock);
2352 return 0;
2353 }
2354
scrub_bio_end_io(struct bio * bio)2355 static void scrub_bio_end_io(struct bio *bio)
2356 {
2357 struct scrub_bio *sbio = bio->bi_private;
2358 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2359
2360 sbio->status = bio->bi_status;
2361 sbio->bio = bio;
2362
2363 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2364 }
2365
scrub_bio_end_io_worker(struct btrfs_work * work)2366 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2367 {
2368 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2369 struct scrub_ctx *sctx = sbio->sctx;
2370 int i;
2371
2372 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2373 if (sbio->status) {
2374 for (i = 0; i < sbio->page_count; i++) {
2375 struct scrub_page *spage = sbio->pagev[i];
2376
2377 spage->io_error = 1;
2378 spage->sblock->no_io_error_seen = 0;
2379 }
2380 }
2381
2382 /* now complete the scrub_block items that have all pages completed */
2383 for (i = 0; i < sbio->page_count; i++) {
2384 struct scrub_page *spage = sbio->pagev[i];
2385 struct scrub_block *sblock = spage->sblock;
2386
2387 if (atomic_dec_and_test(&sblock->outstanding_pages))
2388 scrub_block_complete(sblock);
2389 scrub_block_put(sblock);
2390 }
2391
2392 bio_put(sbio->bio);
2393 sbio->bio = NULL;
2394 spin_lock(&sctx->list_lock);
2395 sbio->next_free = sctx->first_free;
2396 sctx->first_free = sbio->index;
2397 spin_unlock(&sctx->list_lock);
2398
2399 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2400 mutex_lock(&sctx->wr_lock);
2401 scrub_wr_submit(sctx);
2402 mutex_unlock(&sctx->wr_lock);
2403 }
2404
2405 scrub_pending_bio_dec(sctx);
2406 }
2407
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u32 len)2408 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2409 unsigned long *bitmap,
2410 u64 start, u32 len)
2411 {
2412 u64 offset;
2413 u32 nsectors;
2414 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2415
2416 if (len >= sparity->stripe_len) {
2417 bitmap_set(bitmap, 0, sparity->nsectors);
2418 return;
2419 }
2420
2421 start -= sparity->logic_start;
2422 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2423 offset = offset >> sectorsize_bits;
2424 nsectors = len >> sectorsize_bits;
2425
2426 if (offset + nsectors <= sparity->nsectors) {
2427 bitmap_set(bitmap, offset, nsectors);
2428 return;
2429 }
2430
2431 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2432 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2433 }
2434
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u32 len)2435 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2436 u64 start, u32 len)
2437 {
2438 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2439 }
2440
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u32 len)2441 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2442 u64 start, u32 len)
2443 {
2444 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2445 }
2446
scrub_block_complete(struct scrub_block * sblock)2447 static void scrub_block_complete(struct scrub_block *sblock)
2448 {
2449 int corrupted = 0;
2450
2451 if (!sblock->no_io_error_seen) {
2452 corrupted = 1;
2453 scrub_handle_errored_block(sblock);
2454 } else {
2455 /*
2456 * if has checksum error, write via repair mechanism in
2457 * dev replace case, otherwise write here in dev replace
2458 * case.
2459 */
2460 corrupted = scrub_checksum(sblock);
2461 if (!corrupted && sblock->sctx->is_dev_replace)
2462 scrub_write_block_to_dev_replace(sblock);
2463 }
2464
2465 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2466 u64 start = sblock->pagev[0]->logical;
2467 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2468 sblock->sctx->fs_info->sectorsize;
2469
2470 ASSERT(end - start <= U32_MAX);
2471 scrub_parity_mark_sectors_error(sblock->sparity,
2472 start, end - start);
2473 }
2474 }
2475
drop_csum_range(struct scrub_ctx * sctx,struct btrfs_ordered_sum * sum)2476 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2477 {
2478 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2479 list_del(&sum->list);
2480 kfree(sum);
2481 }
2482
2483 /*
2484 * Find the desired csum for range [logical, logical + sectorsize), and store
2485 * the csum into @csum.
2486 *
2487 * The search source is sctx->csum_list, which is a pre-populated list
2488 * storing bytenr ordered csum ranges. We're responsible to cleanup any range
2489 * that is before @logical.
2490 *
2491 * Return 0 if there is no csum for the range.
2492 * Return 1 if there is csum for the range and copied to @csum.
2493 */
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2494 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2495 {
2496 bool found = false;
2497
2498 while (!list_empty(&sctx->csum_list)) {
2499 struct btrfs_ordered_sum *sum = NULL;
2500 unsigned long index;
2501 unsigned long num_sectors;
2502
2503 sum = list_first_entry(&sctx->csum_list,
2504 struct btrfs_ordered_sum, list);
2505 /* The current csum range is beyond our range, no csum found */
2506 if (sum->bytenr > logical)
2507 break;
2508
2509 /*
2510 * The current sum is before our bytenr, since scrub is always
2511 * done in bytenr order, the csum will never be used anymore,
2512 * clean it up so that later calls won't bother with the range,
2513 * and continue search the next range.
2514 */
2515 if (sum->bytenr + sum->len <= logical) {
2516 drop_csum_range(sctx, sum);
2517 continue;
2518 }
2519
2520 /* Now the csum range covers our bytenr, copy the csum */
2521 found = true;
2522 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2523 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2524
2525 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2526 sctx->fs_info->csum_size);
2527
2528 /* Cleanup the range if we're at the end of the csum range */
2529 if (index == num_sectors - 1)
2530 drop_csum_range(sctx, sum);
2531 break;
2532 }
2533 if (!found)
2534 return 0;
2535 return 1;
2536 }
2537
2538 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,struct map_lookup * map,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2539 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2540 u64 logical, u32 len,
2541 u64 physical, struct btrfs_device *dev, u64 flags,
2542 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2543 {
2544 int ret;
2545 u8 csum[BTRFS_CSUM_SIZE];
2546 u32 blocksize;
2547
2548 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2549 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2550 blocksize = map->stripe_len;
2551 else
2552 blocksize = sctx->fs_info->sectorsize;
2553 spin_lock(&sctx->stat_lock);
2554 sctx->stat.data_extents_scrubbed++;
2555 sctx->stat.data_bytes_scrubbed += len;
2556 spin_unlock(&sctx->stat_lock);
2557 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2558 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2559 blocksize = map->stripe_len;
2560 else
2561 blocksize = sctx->fs_info->nodesize;
2562 spin_lock(&sctx->stat_lock);
2563 sctx->stat.tree_extents_scrubbed++;
2564 sctx->stat.tree_bytes_scrubbed += len;
2565 spin_unlock(&sctx->stat_lock);
2566 } else {
2567 blocksize = sctx->fs_info->sectorsize;
2568 WARN_ON(1);
2569 }
2570
2571 while (len) {
2572 u32 l = min(len, blocksize);
2573 int have_csum = 0;
2574
2575 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2576 /* push csums to sbio */
2577 have_csum = scrub_find_csum(sctx, logical, csum);
2578 if (have_csum == 0)
2579 ++sctx->stat.no_csum;
2580 }
2581 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2582 mirror_num, have_csum ? csum : NULL,
2583 physical_for_dev_replace);
2584 if (ret)
2585 return ret;
2586 len -= l;
2587 logical += l;
2588 physical += l;
2589 physical_for_dev_replace += l;
2590 }
2591 return 0;
2592 }
2593
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2594 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2595 u64 logical, u32 len,
2596 u64 physical, struct btrfs_device *dev,
2597 u64 flags, u64 gen, int mirror_num, u8 *csum)
2598 {
2599 struct scrub_ctx *sctx = sparity->sctx;
2600 struct scrub_block *sblock;
2601 const u32 sectorsize = sctx->fs_info->sectorsize;
2602 int index;
2603
2604 ASSERT(IS_ALIGNED(len, sectorsize));
2605
2606 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2607 if (!sblock) {
2608 spin_lock(&sctx->stat_lock);
2609 sctx->stat.malloc_errors++;
2610 spin_unlock(&sctx->stat_lock);
2611 return -ENOMEM;
2612 }
2613
2614 /* one ref inside this function, plus one for each page added to
2615 * a bio later on */
2616 refcount_set(&sblock->refs, 1);
2617 sblock->sctx = sctx;
2618 sblock->no_io_error_seen = 1;
2619 sblock->sparity = sparity;
2620 scrub_parity_get(sparity);
2621
2622 for (index = 0; len > 0; index++) {
2623 struct scrub_page *spage;
2624
2625 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2626 if (!spage) {
2627 leave_nomem:
2628 spin_lock(&sctx->stat_lock);
2629 sctx->stat.malloc_errors++;
2630 spin_unlock(&sctx->stat_lock);
2631 scrub_block_put(sblock);
2632 return -ENOMEM;
2633 }
2634 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2635 /* For scrub block */
2636 scrub_page_get(spage);
2637 sblock->pagev[index] = spage;
2638 /* For scrub parity */
2639 scrub_page_get(spage);
2640 list_add_tail(&spage->list, &sparity->spages);
2641 spage->sblock = sblock;
2642 spage->dev = dev;
2643 spage->flags = flags;
2644 spage->generation = gen;
2645 spage->logical = logical;
2646 spage->physical = physical;
2647 spage->mirror_num = mirror_num;
2648 if (csum) {
2649 spage->have_csum = 1;
2650 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2651 } else {
2652 spage->have_csum = 0;
2653 }
2654 sblock->page_count++;
2655 spage->page = alloc_page(GFP_KERNEL);
2656 if (!spage->page)
2657 goto leave_nomem;
2658
2659
2660 /* Iterate over the stripe range in sectorsize steps */
2661 len -= sectorsize;
2662 logical += sectorsize;
2663 physical += sectorsize;
2664 }
2665
2666 WARN_ON(sblock->page_count == 0);
2667 for (index = 0; index < sblock->page_count; index++) {
2668 struct scrub_page *spage = sblock->pagev[index];
2669 int ret;
2670
2671 ret = scrub_add_page_to_rd_bio(sctx, spage);
2672 if (ret) {
2673 scrub_block_put(sblock);
2674 return ret;
2675 }
2676 }
2677
2678 /* last one frees, either here or in bio completion for last page */
2679 scrub_block_put(sblock);
2680 return 0;
2681 }
2682
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2683 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2684 u64 logical, u32 len,
2685 u64 physical, struct btrfs_device *dev,
2686 u64 flags, u64 gen, int mirror_num)
2687 {
2688 struct scrub_ctx *sctx = sparity->sctx;
2689 int ret;
2690 u8 csum[BTRFS_CSUM_SIZE];
2691 u32 blocksize;
2692
2693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2694 scrub_parity_mark_sectors_error(sparity, logical, len);
2695 return 0;
2696 }
2697
2698 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2699 blocksize = sparity->stripe_len;
2700 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2701 blocksize = sparity->stripe_len;
2702 } else {
2703 blocksize = sctx->fs_info->sectorsize;
2704 WARN_ON(1);
2705 }
2706
2707 while (len) {
2708 u32 l = min(len, blocksize);
2709 int have_csum = 0;
2710
2711 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2712 /* push csums to sbio */
2713 have_csum = scrub_find_csum(sctx, logical, csum);
2714 if (have_csum == 0)
2715 goto skip;
2716 }
2717 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2718 flags, gen, mirror_num,
2719 have_csum ? csum : NULL);
2720 if (ret)
2721 return ret;
2722 skip:
2723 len -= l;
2724 logical += l;
2725 physical += l;
2726 }
2727 return 0;
2728 }
2729
2730 /*
2731 * Given a physical address, this will calculate it's
2732 * logical offset. if this is a parity stripe, it will return
2733 * the most left data stripe's logical offset.
2734 *
2735 * return 0 if it is a data stripe, 1 means parity stripe.
2736 */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2737 static int get_raid56_logic_offset(u64 physical, int num,
2738 struct map_lookup *map, u64 *offset,
2739 u64 *stripe_start)
2740 {
2741 int i;
2742 int j = 0;
2743 u64 stripe_nr;
2744 u64 last_offset;
2745 u32 stripe_index;
2746 u32 rot;
2747 const int data_stripes = nr_data_stripes(map);
2748
2749 last_offset = (physical - map->stripes[num].physical) * data_stripes;
2750 if (stripe_start)
2751 *stripe_start = last_offset;
2752
2753 *offset = last_offset;
2754 for (i = 0; i < data_stripes; i++) {
2755 *offset = last_offset + i * map->stripe_len;
2756
2757 stripe_nr = div64_u64(*offset, map->stripe_len);
2758 stripe_nr = div_u64(stripe_nr, data_stripes);
2759
2760 /* Work out the disk rotation on this stripe-set */
2761 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2762 /* calculate which stripe this data locates */
2763 rot += i;
2764 stripe_index = rot % map->num_stripes;
2765 if (stripe_index == num)
2766 return 0;
2767 if (stripe_index < num)
2768 j++;
2769 }
2770 *offset = last_offset + j * map->stripe_len;
2771 return 1;
2772 }
2773
scrub_free_parity(struct scrub_parity * sparity)2774 static void scrub_free_parity(struct scrub_parity *sparity)
2775 {
2776 struct scrub_ctx *sctx = sparity->sctx;
2777 struct scrub_page *curr, *next;
2778 int nbits;
2779
2780 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2781 if (nbits) {
2782 spin_lock(&sctx->stat_lock);
2783 sctx->stat.read_errors += nbits;
2784 sctx->stat.uncorrectable_errors += nbits;
2785 spin_unlock(&sctx->stat_lock);
2786 }
2787
2788 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2789 list_del_init(&curr->list);
2790 scrub_page_put(curr);
2791 }
2792
2793 kfree(sparity);
2794 }
2795
scrub_parity_bio_endio_worker(struct btrfs_work * work)2796 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2797 {
2798 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2799 work);
2800 struct scrub_ctx *sctx = sparity->sctx;
2801
2802 scrub_free_parity(sparity);
2803 scrub_pending_bio_dec(sctx);
2804 }
2805
scrub_parity_bio_endio(struct bio * bio)2806 static void scrub_parity_bio_endio(struct bio *bio)
2807 {
2808 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2809 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2810
2811 if (bio->bi_status)
2812 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2813 sparity->nsectors);
2814
2815 bio_put(bio);
2816
2817 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2818 NULL);
2819 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2820 }
2821
scrub_parity_check_and_repair(struct scrub_parity * sparity)2822 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2823 {
2824 struct scrub_ctx *sctx = sparity->sctx;
2825 struct btrfs_fs_info *fs_info = sctx->fs_info;
2826 struct bio *bio;
2827 struct btrfs_raid_bio *rbio;
2828 struct btrfs_io_context *bioc = NULL;
2829 u64 length;
2830 int ret;
2831
2832 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2833 sparity->nsectors))
2834 goto out;
2835
2836 length = sparity->logic_end - sparity->logic_start;
2837
2838 btrfs_bio_counter_inc_blocked(fs_info);
2839 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2840 &length, &bioc);
2841 if (ret || !bioc || !bioc->raid_map)
2842 goto bioc_out;
2843
2844 bio = btrfs_io_bio_alloc(0);
2845 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2846 bio->bi_private = sparity;
2847 bio->bi_end_io = scrub_parity_bio_endio;
2848
2849 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bioc,
2850 length, sparity->scrub_dev,
2851 sparity->dbitmap,
2852 sparity->nsectors);
2853 if (!rbio)
2854 goto rbio_out;
2855
2856 scrub_pending_bio_inc(sctx);
2857 raid56_parity_submit_scrub_rbio(rbio);
2858 return;
2859
2860 rbio_out:
2861 bio_put(bio);
2862 bioc_out:
2863 btrfs_bio_counter_dec(fs_info);
2864 btrfs_put_bioc(bioc);
2865 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2866 sparity->nsectors);
2867 spin_lock(&sctx->stat_lock);
2868 sctx->stat.malloc_errors++;
2869 spin_unlock(&sctx->stat_lock);
2870 out:
2871 scrub_free_parity(sparity);
2872 }
2873
scrub_calc_parity_bitmap_len(int nsectors)2874 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2875 {
2876 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2877 }
2878
scrub_parity_get(struct scrub_parity * sparity)2879 static void scrub_parity_get(struct scrub_parity *sparity)
2880 {
2881 refcount_inc(&sparity->refs);
2882 }
2883
scrub_parity_put(struct scrub_parity * sparity)2884 static void scrub_parity_put(struct scrub_parity *sparity)
2885 {
2886 if (!refcount_dec_and_test(&sparity->refs))
2887 return;
2888
2889 scrub_parity_check_and_repair(sparity);
2890 }
2891
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)2892 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2893 struct map_lookup *map,
2894 struct btrfs_device *sdev,
2895 struct btrfs_path *path,
2896 u64 logic_start,
2897 u64 logic_end)
2898 {
2899 struct btrfs_fs_info *fs_info = sctx->fs_info;
2900 struct btrfs_root *root = fs_info->extent_root;
2901 struct btrfs_root *csum_root = fs_info->csum_root;
2902 struct btrfs_extent_item *extent;
2903 struct btrfs_io_context *bioc = NULL;
2904 u64 flags;
2905 int ret;
2906 int slot;
2907 struct extent_buffer *l;
2908 struct btrfs_key key;
2909 u64 generation;
2910 u64 extent_logical;
2911 u64 extent_physical;
2912 /* Check the comment in scrub_stripe() for why u32 is enough here */
2913 u32 extent_len;
2914 u64 mapped_length;
2915 struct btrfs_device *extent_dev;
2916 struct scrub_parity *sparity;
2917 int nsectors;
2918 int bitmap_len;
2919 int extent_mirror_num;
2920 int stop_loop = 0;
2921
2922 ASSERT(map->stripe_len <= U32_MAX);
2923 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2924 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2925 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2926 GFP_NOFS);
2927 if (!sparity) {
2928 spin_lock(&sctx->stat_lock);
2929 sctx->stat.malloc_errors++;
2930 spin_unlock(&sctx->stat_lock);
2931 return -ENOMEM;
2932 }
2933
2934 ASSERT(map->stripe_len <= U32_MAX);
2935 sparity->stripe_len = map->stripe_len;
2936 sparity->nsectors = nsectors;
2937 sparity->sctx = sctx;
2938 sparity->scrub_dev = sdev;
2939 sparity->logic_start = logic_start;
2940 sparity->logic_end = logic_end;
2941 refcount_set(&sparity->refs, 1);
2942 INIT_LIST_HEAD(&sparity->spages);
2943 sparity->dbitmap = sparity->bitmap;
2944 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2945
2946 ret = 0;
2947 while (logic_start < logic_end) {
2948 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2949 key.type = BTRFS_METADATA_ITEM_KEY;
2950 else
2951 key.type = BTRFS_EXTENT_ITEM_KEY;
2952 key.objectid = logic_start;
2953 key.offset = (u64)-1;
2954
2955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2956 if (ret < 0)
2957 goto out;
2958
2959 if (ret > 0) {
2960 ret = btrfs_previous_extent_item(root, path, 0);
2961 if (ret < 0)
2962 goto out;
2963 if (ret > 0) {
2964 btrfs_release_path(path);
2965 ret = btrfs_search_slot(NULL, root, &key,
2966 path, 0, 0);
2967 if (ret < 0)
2968 goto out;
2969 }
2970 }
2971
2972 stop_loop = 0;
2973 while (1) {
2974 u64 bytes;
2975
2976 l = path->nodes[0];
2977 slot = path->slots[0];
2978 if (slot >= btrfs_header_nritems(l)) {
2979 ret = btrfs_next_leaf(root, path);
2980 if (ret == 0)
2981 continue;
2982 if (ret < 0)
2983 goto out;
2984
2985 stop_loop = 1;
2986 break;
2987 }
2988 btrfs_item_key_to_cpu(l, &key, slot);
2989
2990 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2991 key.type != BTRFS_METADATA_ITEM_KEY)
2992 goto next;
2993
2994 if (key.type == BTRFS_METADATA_ITEM_KEY)
2995 bytes = fs_info->nodesize;
2996 else
2997 bytes = key.offset;
2998
2999 if (key.objectid + bytes <= logic_start)
3000 goto next;
3001
3002 if (key.objectid >= logic_end) {
3003 stop_loop = 1;
3004 break;
3005 }
3006
3007 while (key.objectid >= logic_start + map->stripe_len)
3008 logic_start += map->stripe_len;
3009
3010 extent = btrfs_item_ptr(l, slot,
3011 struct btrfs_extent_item);
3012 flags = btrfs_extent_flags(l, extent);
3013 generation = btrfs_extent_generation(l, extent);
3014
3015 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3016 (key.objectid < logic_start ||
3017 key.objectid + bytes >
3018 logic_start + map->stripe_len)) {
3019 btrfs_err(fs_info,
3020 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3021 key.objectid, logic_start);
3022 spin_lock(&sctx->stat_lock);
3023 sctx->stat.uncorrectable_errors++;
3024 spin_unlock(&sctx->stat_lock);
3025 goto next;
3026 }
3027 again:
3028 extent_logical = key.objectid;
3029 ASSERT(bytes <= U32_MAX);
3030 extent_len = bytes;
3031
3032 if (extent_logical < logic_start) {
3033 extent_len -= logic_start - extent_logical;
3034 extent_logical = logic_start;
3035 }
3036
3037 if (extent_logical + extent_len >
3038 logic_start + map->stripe_len)
3039 extent_len = logic_start + map->stripe_len -
3040 extent_logical;
3041
3042 scrub_parity_mark_sectors_data(sparity, extent_logical,
3043 extent_len);
3044
3045 mapped_length = extent_len;
3046 bioc = NULL;
3047 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3048 extent_logical, &mapped_length, &bioc,
3049 0);
3050 if (!ret) {
3051 if (!bioc || mapped_length < extent_len)
3052 ret = -EIO;
3053 }
3054 if (ret) {
3055 btrfs_put_bioc(bioc);
3056 goto out;
3057 }
3058 extent_physical = bioc->stripes[0].physical;
3059 extent_mirror_num = bioc->mirror_num;
3060 extent_dev = bioc->stripes[0].dev;
3061 btrfs_put_bioc(bioc);
3062
3063 ret = btrfs_lookup_csums_range(csum_root,
3064 extent_logical,
3065 extent_logical + extent_len - 1,
3066 &sctx->csum_list, 1);
3067 if (ret)
3068 goto out;
3069
3070 ret = scrub_extent_for_parity(sparity, extent_logical,
3071 extent_len,
3072 extent_physical,
3073 extent_dev, flags,
3074 generation,
3075 extent_mirror_num);
3076
3077 scrub_free_csums(sctx);
3078
3079 if (ret)
3080 goto out;
3081
3082 if (extent_logical + extent_len <
3083 key.objectid + bytes) {
3084 logic_start += map->stripe_len;
3085
3086 if (logic_start >= logic_end) {
3087 stop_loop = 1;
3088 break;
3089 }
3090
3091 if (logic_start < key.objectid + bytes) {
3092 cond_resched();
3093 goto again;
3094 }
3095 }
3096 next:
3097 path->slots[0]++;
3098 }
3099
3100 btrfs_release_path(path);
3101
3102 if (stop_loop)
3103 break;
3104
3105 logic_start += map->stripe_len;
3106 }
3107 out:
3108 if (ret < 0) {
3109 ASSERT(logic_end - logic_start <= U32_MAX);
3110 scrub_parity_mark_sectors_error(sparity, logic_start,
3111 logic_end - logic_start);
3112 }
3113 scrub_parity_put(sparity);
3114 scrub_submit(sctx);
3115 mutex_lock(&sctx->wr_lock);
3116 scrub_wr_submit(sctx);
3117 mutex_unlock(&sctx->wr_lock);
3118
3119 btrfs_release_path(path);
3120 return ret < 0 ? ret : 0;
3121 }
3122
sync_replace_for_zoned(struct scrub_ctx * sctx)3123 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3124 {
3125 if (!btrfs_is_zoned(sctx->fs_info))
3126 return;
3127
3128 sctx->flush_all_writes = true;
3129 scrub_submit(sctx);
3130 mutex_lock(&sctx->wr_lock);
3131 scrub_wr_submit(sctx);
3132 mutex_unlock(&sctx->wr_lock);
3133
3134 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3135 }
3136
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)3137 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3138 u64 physical, u64 physical_end)
3139 {
3140 struct btrfs_fs_info *fs_info = sctx->fs_info;
3141 int ret = 0;
3142
3143 if (!btrfs_is_zoned(fs_info))
3144 return 0;
3145
3146 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3147
3148 mutex_lock(&sctx->wr_lock);
3149 if (sctx->write_pointer < physical_end) {
3150 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3151 physical,
3152 sctx->write_pointer);
3153 if (ret)
3154 btrfs_err(fs_info,
3155 "zoned: failed to recover write pointer");
3156 }
3157 mutex_unlock(&sctx->wr_lock);
3158 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3159
3160 return ret;
3161 }
3162
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length,struct btrfs_block_group * cache)3163 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3164 struct map_lookup *map,
3165 struct btrfs_device *scrub_dev,
3166 int num, u64 base, u64 length,
3167 struct btrfs_block_group *cache)
3168 {
3169 struct btrfs_path *path, *ppath;
3170 struct btrfs_fs_info *fs_info = sctx->fs_info;
3171 struct btrfs_root *root = fs_info->extent_root;
3172 struct btrfs_root *csum_root = fs_info->csum_root;
3173 struct btrfs_extent_item *extent;
3174 struct blk_plug plug;
3175 u64 flags;
3176 int ret;
3177 int slot;
3178 u64 nstripes;
3179 struct extent_buffer *l;
3180 u64 physical;
3181 u64 logical;
3182 u64 logic_end;
3183 u64 physical_end;
3184 u64 generation;
3185 int mirror_num;
3186 struct reada_control *reada1;
3187 struct reada_control *reada2;
3188 struct btrfs_key key;
3189 struct btrfs_key key_end;
3190 u64 increment = map->stripe_len;
3191 u64 offset;
3192 u64 extent_logical;
3193 u64 extent_physical;
3194 /*
3195 * Unlike chunk length, extent length should never go beyond
3196 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3197 */
3198 u32 extent_len;
3199 u64 stripe_logical;
3200 u64 stripe_end;
3201 struct btrfs_device *extent_dev;
3202 int extent_mirror_num;
3203 int stop_loop = 0;
3204
3205 physical = map->stripes[num].physical;
3206 offset = 0;
3207 nstripes = div64_u64(length, map->stripe_len);
3208 mirror_num = 1;
3209 increment = map->stripe_len;
3210 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3211 offset = map->stripe_len * num;
3212 increment = map->stripe_len * map->num_stripes;
3213 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3214 int factor = map->num_stripes / map->sub_stripes;
3215 offset = map->stripe_len * (num / map->sub_stripes);
3216 increment = map->stripe_len * factor;
3217 mirror_num = num % map->sub_stripes + 1;
3218 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3219 mirror_num = num % map->num_stripes + 1;
3220 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3221 mirror_num = num % map->num_stripes + 1;
3222 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3223 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3224 increment = map->stripe_len * nr_data_stripes(map);
3225 }
3226
3227 path = btrfs_alloc_path();
3228 if (!path)
3229 return -ENOMEM;
3230
3231 ppath = btrfs_alloc_path();
3232 if (!ppath) {
3233 btrfs_free_path(path);
3234 return -ENOMEM;
3235 }
3236
3237 /*
3238 * work on commit root. The related disk blocks are static as
3239 * long as COW is applied. This means, it is save to rewrite
3240 * them to repair disk errors without any race conditions
3241 */
3242 path->search_commit_root = 1;
3243 path->skip_locking = 1;
3244
3245 ppath->search_commit_root = 1;
3246 ppath->skip_locking = 1;
3247 /*
3248 * trigger the readahead for extent tree csum tree and wait for
3249 * completion. During readahead, the scrub is officially paused
3250 * to not hold off transaction commits
3251 */
3252 logical = base + offset;
3253 physical_end = physical + nstripes * map->stripe_len;
3254 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3255 get_raid56_logic_offset(physical_end, num,
3256 map, &logic_end, NULL);
3257 logic_end += base;
3258 } else {
3259 logic_end = logical + increment * nstripes;
3260 }
3261 wait_event(sctx->list_wait,
3262 atomic_read(&sctx->bios_in_flight) == 0);
3263 scrub_blocked_if_needed(fs_info);
3264
3265 /* FIXME it might be better to start readahead at commit root */
3266 key.objectid = logical;
3267 key.type = BTRFS_EXTENT_ITEM_KEY;
3268 key.offset = (u64)0;
3269 key_end.objectid = logic_end;
3270 key_end.type = BTRFS_METADATA_ITEM_KEY;
3271 key_end.offset = (u64)-1;
3272 reada1 = btrfs_reada_add(root, &key, &key_end);
3273
3274 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3275 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3276 key.type = BTRFS_EXTENT_CSUM_KEY;
3277 key.offset = logical;
3278 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3279 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3280 key_end.offset = logic_end;
3281 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3282 } else {
3283 reada2 = NULL;
3284 }
3285
3286 if (!IS_ERR(reada1))
3287 btrfs_reada_wait(reada1);
3288 if (!IS_ERR_OR_NULL(reada2))
3289 btrfs_reada_wait(reada2);
3290
3291
3292 /*
3293 * collect all data csums for the stripe to avoid seeking during
3294 * the scrub. This might currently (crc32) end up to be about 1MB
3295 */
3296 blk_start_plug(&plug);
3297
3298 if (sctx->is_dev_replace &&
3299 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3300 mutex_lock(&sctx->wr_lock);
3301 sctx->write_pointer = physical;
3302 mutex_unlock(&sctx->wr_lock);
3303 sctx->flush_all_writes = true;
3304 }
3305
3306 /*
3307 * now find all extents for each stripe and scrub them
3308 */
3309 ret = 0;
3310 while (physical < physical_end) {
3311 /*
3312 * canceled?
3313 */
3314 if (atomic_read(&fs_info->scrub_cancel_req) ||
3315 atomic_read(&sctx->cancel_req)) {
3316 ret = -ECANCELED;
3317 goto out;
3318 }
3319 /*
3320 * check to see if we have to pause
3321 */
3322 if (atomic_read(&fs_info->scrub_pause_req)) {
3323 /* push queued extents */
3324 sctx->flush_all_writes = true;
3325 scrub_submit(sctx);
3326 mutex_lock(&sctx->wr_lock);
3327 scrub_wr_submit(sctx);
3328 mutex_unlock(&sctx->wr_lock);
3329 wait_event(sctx->list_wait,
3330 atomic_read(&sctx->bios_in_flight) == 0);
3331 sctx->flush_all_writes = false;
3332 scrub_blocked_if_needed(fs_info);
3333 }
3334
3335 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3336 ret = get_raid56_logic_offset(physical, num, map,
3337 &logical,
3338 &stripe_logical);
3339 logical += base;
3340 if (ret) {
3341 /* it is parity strip */
3342 stripe_logical += base;
3343 stripe_end = stripe_logical + increment;
3344 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3345 ppath, stripe_logical,
3346 stripe_end);
3347 if (ret)
3348 goto out;
3349 goto skip;
3350 }
3351 }
3352
3353 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3354 key.type = BTRFS_METADATA_ITEM_KEY;
3355 else
3356 key.type = BTRFS_EXTENT_ITEM_KEY;
3357 key.objectid = logical;
3358 key.offset = (u64)-1;
3359
3360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3361 if (ret < 0)
3362 goto out;
3363
3364 if (ret > 0) {
3365 ret = btrfs_previous_extent_item(root, path, 0);
3366 if (ret < 0)
3367 goto out;
3368 if (ret > 0) {
3369 /* there's no smaller item, so stick with the
3370 * larger one */
3371 btrfs_release_path(path);
3372 ret = btrfs_search_slot(NULL, root, &key,
3373 path, 0, 0);
3374 if (ret < 0)
3375 goto out;
3376 }
3377 }
3378
3379 stop_loop = 0;
3380 while (1) {
3381 u64 bytes;
3382
3383 l = path->nodes[0];
3384 slot = path->slots[0];
3385 if (slot >= btrfs_header_nritems(l)) {
3386 ret = btrfs_next_leaf(root, path);
3387 if (ret == 0)
3388 continue;
3389 if (ret < 0)
3390 goto out;
3391
3392 stop_loop = 1;
3393 break;
3394 }
3395 btrfs_item_key_to_cpu(l, &key, slot);
3396
3397 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3398 key.type != BTRFS_METADATA_ITEM_KEY)
3399 goto next;
3400
3401 if (key.type == BTRFS_METADATA_ITEM_KEY)
3402 bytes = fs_info->nodesize;
3403 else
3404 bytes = key.offset;
3405
3406 if (key.objectid + bytes <= logical)
3407 goto next;
3408
3409 if (key.objectid >= logical + map->stripe_len) {
3410 /* out of this device extent */
3411 if (key.objectid >= logic_end)
3412 stop_loop = 1;
3413 break;
3414 }
3415
3416 /*
3417 * If our block group was removed in the meanwhile, just
3418 * stop scrubbing since there is no point in continuing.
3419 * Continuing would prevent reusing its device extents
3420 * for new block groups for a long time.
3421 */
3422 spin_lock(&cache->lock);
3423 if (cache->removed) {
3424 spin_unlock(&cache->lock);
3425 ret = 0;
3426 goto out;
3427 }
3428 spin_unlock(&cache->lock);
3429
3430 extent = btrfs_item_ptr(l, slot,
3431 struct btrfs_extent_item);
3432 flags = btrfs_extent_flags(l, extent);
3433 generation = btrfs_extent_generation(l, extent);
3434
3435 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3436 (key.objectid < logical ||
3437 key.objectid + bytes >
3438 logical + map->stripe_len)) {
3439 btrfs_err(fs_info,
3440 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3441 key.objectid, logical);
3442 spin_lock(&sctx->stat_lock);
3443 sctx->stat.uncorrectable_errors++;
3444 spin_unlock(&sctx->stat_lock);
3445 goto next;
3446 }
3447
3448 again:
3449 extent_logical = key.objectid;
3450 ASSERT(bytes <= U32_MAX);
3451 extent_len = bytes;
3452
3453 /*
3454 * trim extent to this stripe
3455 */
3456 if (extent_logical < logical) {
3457 extent_len -= logical - extent_logical;
3458 extent_logical = logical;
3459 }
3460 if (extent_logical + extent_len >
3461 logical + map->stripe_len) {
3462 extent_len = logical + map->stripe_len -
3463 extent_logical;
3464 }
3465
3466 extent_physical = extent_logical - logical + physical;
3467 extent_dev = scrub_dev;
3468 extent_mirror_num = mirror_num;
3469 if (sctx->is_dev_replace)
3470 scrub_remap_extent(fs_info, extent_logical,
3471 extent_len, &extent_physical,
3472 &extent_dev,
3473 &extent_mirror_num);
3474
3475 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3476 ret = btrfs_lookup_csums_range(csum_root,
3477 extent_logical,
3478 extent_logical + extent_len - 1,
3479 &sctx->csum_list, 1);
3480 if (ret)
3481 goto out;
3482 }
3483
3484 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3485 extent_physical, extent_dev, flags,
3486 generation, extent_mirror_num,
3487 extent_logical - logical + physical);
3488
3489 scrub_free_csums(sctx);
3490
3491 if (ret)
3492 goto out;
3493
3494 if (sctx->is_dev_replace)
3495 sync_replace_for_zoned(sctx);
3496
3497 if (extent_logical + extent_len <
3498 key.objectid + bytes) {
3499 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3500 /*
3501 * loop until we find next data stripe
3502 * or we have finished all stripes.
3503 */
3504 loop:
3505 physical += map->stripe_len;
3506 ret = get_raid56_logic_offset(physical,
3507 num, map, &logical,
3508 &stripe_logical);
3509 logical += base;
3510
3511 if (ret && physical < physical_end) {
3512 stripe_logical += base;
3513 stripe_end = stripe_logical +
3514 increment;
3515 ret = scrub_raid56_parity(sctx,
3516 map, scrub_dev, ppath,
3517 stripe_logical,
3518 stripe_end);
3519 if (ret)
3520 goto out;
3521 goto loop;
3522 }
3523 } else {
3524 physical += map->stripe_len;
3525 logical += increment;
3526 }
3527 if (logical < key.objectid + bytes) {
3528 cond_resched();
3529 goto again;
3530 }
3531
3532 if (physical >= physical_end) {
3533 stop_loop = 1;
3534 break;
3535 }
3536 }
3537 next:
3538 path->slots[0]++;
3539 }
3540 btrfs_release_path(path);
3541 skip:
3542 logical += increment;
3543 physical += map->stripe_len;
3544 spin_lock(&sctx->stat_lock);
3545 if (stop_loop)
3546 sctx->stat.last_physical = map->stripes[num].physical +
3547 length;
3548 else
3549 sctx->stat.last_physical = physical;
3550 spin_unlock(&sctx->stat_lock);
3551 if (stop_loop)
3552 break;
3553 }
3554 out:
3555 /* push queued extents */
3556 scrub_submit(sctx);
3557 mutex_lock(&sctx->wr_lock);
3558 scrub_wr_submit(sctx);
3559 mutex_unlock(&sctx->wr_lock);
3560
3561 blk_finish_plug(&plug);
3562 btrfs_free_path(path);
3563 btrfs_free_path(ppath);
3564
3565 if (sctx->is_dev_replace && ret >= 0) {
3566 int ret2;
3567
3568 ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3569 map->stripes[num].physical,
3570 physical_end);
3571 if (ret2)
3572 ret = ret2;
3573 }
3574
3575 return ret < 0 ? ret : 0;
3576 }
3577
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group * cache)3578 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3579 struct btrfs_device *scrub_dev,
3580 u64 chunk_offset, u64 length,
3581 u64 dev_offset,
3582 struct btrfs_block_group *cache)
3583 {
3584 struct btrfs_fs_info *fs_info = sctx->fs_info;
3585 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3586 struct map_lookup *map;
3587 struct extent_map *em;
3588 int i;
3589 int ret = 0;
3590
3591 read_lock(&map_tree->lock);
3592 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3593 read_unlock(&map_tree->lock);
3594
3595 if (!em) {
3596 /*
3597 * Might have been an unused block group deleted by the cleaner
3598 * kthread or relocation.
3599 */
3600 spin_lock(&cache->lock);
3601 if (!cache->removed)
3602 ret = -EINVAL;
3603 spin_unlock(&cache->lock);
3604
3605 return ret;
3606 }
3607
3608 map = em->map_lookup;
3609 if (em->start != chunk_offset)
3610 goto out;
3611
3612 if (em->len < length)
3613 goto out;
3614
3615 for (i = 0; i < map->num_stripes; ++i) {
3616 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3617 map->stripes[i].physical == dev_offset) {
3618 ret = scrub_stripe(sctx, map, scrub_dev, i,
3619 chunk_offset, length, cache);
3620 if (ret)
3621 goto out;
3622 }
3623 }
3624 out:
3625 free_extent_map(em);
3626
3627 return ret;
3628 }
3629
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)3630 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3631 struct btrfs_block_group *cache)
3632 {
3633 struct btrfs_fs_info *fs_info = cache->fs_info;
3634 struct btrfs_trans_handle *trans;
3635
3636 if (!btrfs_is_zoned(fs_info))
3637 return 0;
3638
3639 btrfs_wait_block_group_reservations(cache);
3640 btrfs_wait_nocow_writers(cache);
3641 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3642
3643 trans = btrfs_join_transaction(root);
3644 if (IS_ERR(trans))
3645 return PTR_ERR(trans);
3646 return btrfs_commit_transaction(trans);
3647 }
3648
3649 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)3650 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3651 struct btrfs_device *scrub_dev, u64 start, u64 end)
3652 {
3653 struct btrfs_dev_extent *dev_extent = NULL;
3654 struct btrfs_path *path;
3655 struct btrfs_fs_info *fs_info = sctx->fs_info;
3656 struct btrfs_root *root = fs_info->dev_root;
3657 u64 length;
3658 u64 chunk_offset;
3659 int ret = 0;
3660 int ro_set;
3661 int slot;
3662 struct extent_buffer *l;
3663 struct btrfs_key key;
3664 struct btrfs_key found_key;
3665 struct btrfs_block_group *cache;
3666 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3667
3668 path = btrfs_alloc_path();
3669 if (!path)
3670 return -ENOMEM;
3671
3672 path->reada = READA_FORWARD;
3673 path->search_commit_root = 1;
3674 path->skip_locking = 1;
3675
3676 key.objectid = scrub_dev->devid;
3677 key.offset = 0ull;
3678 key.type = BTRFS_DEV_EXTENT_KEY;
3679
3680 while (1) {
3681 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3682 if (ret < 0)
3683 break;
3684 if (ret > 0) {
3685 if (path->slots[0] >=
3686 btrfs_header_nritems(path->nodes[0])) {
3687 ret = btrfs_next_leaf(root, path);
3688 if (ret < 0)
3689 break;
3690 if (ret > 0) {
3691 ret = 0;
3692 break;
3693 }
3694 } else {
3695 ret = 0;
3696 }
3697 }
3698
3699 l = path->nodes[0];
3700 slot = path->slots[0];
3701
3702 btrfs_item_key_to_cpu(l, &found_key, slot);
3703
3704 if (found_key.objectid != scrub_dev->devid)
3705 break;
3706
3707 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3708 break;
3709
3710 if (found_key.offset >= end)
3711 break;
3712
3713 if (found_key.offset < key.offset)
3714 break;
3715
3716 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3717 length = btrfs_dev_extent_length(l, dev_extent);
3718
3719 if (found_key.offset + length <= start)
3720 goto skip;
3721
3722 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3723
3724 /*
3725 * get a reference on the corresponding block group to prevent
3726 * the chunk from going away while we scrub it
3727 */
3728 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3729
3730 /* some chunks are removed but not committed to disk yet,
3731 * continue scrubbing */
3732 if (!cache)
3733 goto skip;
3734
3735 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3736 spin_lock(&cache->lock);
3737 if (!cache->to_copy) {
3738 spin_unlock(&cache->lock);
3739 btrfs_put_block_group(cache);
3740 goto skip;
3741 }
3742 spin_unlock(&cache->lock);
3743 }
3744
3745 /*
3746 * Make sure that while we are scrubbing the corresponding block
3747 * group doesn't get its logical address and its device extents
3748 * reused for another block group, which can possibly be of a
3749 * different type and different profile. We do this to prevent
3750 * false error detections and crashes due to bogus attempts to
3751 * repair extents.
3752 */
3753 spin_lock(&cache->lock);
3754 if (cache->removed) {
3755 spin_unlock(&cache->lock);
3756 btrfs_put_block_group(cache);
3757 goto skip;
3758 }
3759 btrfs_freeze_block_group(cache);
3760 spin_unlock(&cache->lock);
3761
3762 /*
3763 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3764 * to avoid deadlock caused by:
3765 * btrfs_inc_block_group_ro()
3766 * -> btrfs_wait_for_commit()
3767 * -> btrfs_commit_transaction()
3768 * -> btrfs_scrub_pause()
3769 */
3770 scrub_pause_on(fs_info);
3771
3772 /*
3773 * Don't do chunk preallocation for scrub.
3774 *
3775 * This is especially important for SYSTEM bgs, or we can hit
3776 * -EFBIG from btrfs_finish_chunk_alloc() like:
3777 * 1. The only SYSTEM bg is marked RO.
3778 * Since SYSTEM bg is small, that's pretty common.
3779 * 2. New SYSTEM bg will be allocated
3780 * Due to regular version will allocate new chunk.
3781 * 3. New SYSTEM bg is empty and will get cleaned up
3782 * Before cleanup really happens, it's marked RO again.
3783 * 4. Empty SYSTEM bg get scrubbed
3784 * We go back to 2.
3785 *
3786 * This can easily boost the amount of SYSTEM chunks if cleaner
3787 * thread can't be triggered fast enough, and use up all space
3788 * of btrfs_super_block::sys_chunk_array
3789 *
3790 * While for dev replace, we need to try our best to mark block
3791 * group RO, to prevent race between:
3792 * - Write duplication
3793 * Contains latest data
3794 * - Scrub copy
3795 * Contains data from commit tree
3796 *
3797 * If target block group is not marked RO, nocow writes can
3798 * be overwritten by scrub copy, causing data corruption.
3799 * So for dev-replace, it's not allowed to continue if a block
3800 * group is not RO.
3801 */
3802 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3803 if (!ret && sctx->is_dev_replace) {
3804 ret = finish_extent_writes_for_zoned(root, cache);
3805 if (ret) {
3806 btrfs_dec_block_group_ro(cache);
3807 scrub_pause_off(fs_info);
3808 btrfs_put_block_group(cache);
3809 break;
3810 }
3811 }
3812
3813 if (ret == 0) {
3814 ro_set = 1;
3815 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
3816 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
3817 /*
3818 * btrfs_inc_block_group_ro return -ENOSPC when it
3819 * failed in creating new chunk for metadata.
3820 * It is not a problem for scrub, because
3821 * metadata are always cowed, and our scrub paused
3822 * commit_transactions.
3823 *
3824 * For RAID56 chunks, we have to mark them read-only
3825 * for scrub, as later we would use our own cache
3826 * out of RAID56 realm.
3827 * Thus we want the RAID56 bg to be marked RO to
3828 * prevent RMW from screwing up out cache.
3829 */
3830 ro_set = 0;
3831 } else if (ret == -ETXTBSY) {
3832 btrfs_warn(fs_info,
3833 "skipping scrub of block group %llu due to active swapfile",
3834 cache->start);
3835 scrub_pause_off(fs_info);
3836 ret = 0;
3837 goto skip_unfreeze;
3838 } else {
3839 btrfs_warn(fs_info,
3840 "failed setting block group ro: %d", ret);
3841 btrfs_unfreeze_block_group(cache);
3842 btrfs_put_block_group(cache);
3843 scrub_pause_off(fs_info);
3844 break;
3845 }
3846
3847 /*
3848 * Now the target block is marked RO, wait for nocow writes to
3849 * finish before dev-replace.
3850 * COW is fine, as COW never overwrites extents in commit tree.
3851 */
3852 if (sctx->is_dev_replace) {
3853 btrfs_wait_nocow_writers(cache);
3854 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3855 cache->length);
3856 }
3857
3858 scrub_pause_off(fs_info);
3859 down_write(&dev_replace->rwsem);
3860 dev_replace->cursor_right = found_key.offset + length;
3861 dev_replace->cursor_left = found_key.offset;
3862 dev_replace->item_needs_writeback = 1;
3863 up_write(&dev_replace->rwsem);
3864
3865 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3866 found_key.offset, cache);
3867
3868 /*
3869 * flush, submit all pending read and write bios, afterwards
3870 * wait for them.
3871 * Note that in the dev replace case, a read request causes
3872 * write requests that are submitted in the read completion
3873 * worker. Therefore in the current situation, it is required
3874 * that all write requests are flushed, so that all read and
3875 * write requests are really completed when bios_in_flight
3876 * changes to 0.
3877 */
3878 sctx->flush_all_writes = true;
3879 scrub_submit(sctx);
3880 mutex_lock(&sctx->wr_lock);
3881 scrub_wr_submit(sctx);
3882 mutex_unlock(&sctx->wr_lock);
3883
3884 wait_event(sctx->list_wait,
3885 atomic_read(&sctx->bios_in_flight) == 0);
3886
3887 scrub_pause_on(fs_info);
3888
3889 /*
3890 * must be called before we decrease @scrub_paused.
3891 * make sure we don't block transaction commit while
3892 * we are waiting pending workers finished.
3893 */
3894 wait_event(sctx->list_wait,
3895 atomic_read(&sctx->workers_pending) == 0);
3896 sctx->flush_all_writes = false;
3897
3898 scrub_pause_off(fs_info);
3899
3900 if (sctx->is_dev_replace &&
3901 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3902 cache, found_key.offset))
3903 ro_set = 0;
3904
3905 down_write(&dev_replace->rwsem);
3906 dev_replace->cursor_left = dev_replace->cursor_right;
3907 dev_replace->item_needs_writeback = 1;
3908 up_write(&dev_replace->rwsem);
3909
3910 if (ro_set)
3911 btrfs_dec_block_group_ro(cache);
3912
3913 /*
3914 * We might have prevented the cleaner kthread from deleting
3915 * this block group if it was already unused because we raced
3916 * and set it to RO mode first. So add it back to the unused
3917 * list, otherwise it might not ever be deleted unless a manual
3918 * balance is triggered or it becomes used and unused again.
3919 */
3920 spin_lock(&cache->lock);
3921 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3922 cache->used == 0) {
3923 spin_unlock(&cache->lock);
3924 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3925 btrfs_discard_queue_work(&fs_info->discard_ctl,
3926 cache);
3927 else
3928 btrfs_mark_bg_unused(cache);
3929 } else {
3930 spin_unlock(&cache->lock);
3931 }
3932 skip_unfreeze:
3933 btrfs_unfreeze_block_group(cache);
3934 btrfs_put_block_group(cache);
3935 if (ret)
3936 break;
3937 if (sctx->is_dev_replace &&
3938 atomic64_read(&dev_replace->num_write_errors) > 0) {
3939 ret = -EIO;
3940 break;
3941 }
3942 if (sctx->stat.malloc_errors > 0) {
3943 ret = -ENOMEM;
3944 break;
3945 }
3946 skip:
3947 key.offset = found_key.offset + length;
3948 btrfs_release_path(path);
3949 }
3950
3951 btrfs_free_path(path);
3952
3953 return ret;
3954 }
3955
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3956 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3957 struct btrfs_device *scrub_dev)
3958 {
3959 int i;
3960 u64 bytenr;
3961 u64 gen;
3962 int ret;
3963 struct btrfs_fs_info *fs_info = sctx->fs_info;
3964
3965 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3966 return -EROFS;
3967
3968 /* Seed devices of a new filesystem has their own generation. */
3969 if (scrub_dev->fs_devices != fs_info->fs_devices)
3970 gen = scrub_dev->generation;
3971 else
3972 gen = fs_info->last_trans_committed;
3973
3974 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3975 bytenr = btrfs_sb_offset(i);
3976 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3977 scrub_dev->commit_total_bytes)
3978 break;
3979 if (!btrfs_check_super_location(scrub_dev, bytenr))
3980 continue;
3981
3982 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3983 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3984 NULL, bytenr);
3985 if (ret)
3986 return ret;
3987 }
3988 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3989
3990 return 0;
3991 }
3992
scrub_workers_put(struct btrfs_fs_info * fs_info)3993 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3994 {
3995 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3996 &fs_info->scrub_lock)) {
3997 struct btrfs_workqueue *scrub_workers = NULL;
3998 struct btrfs_workqueue *scrub_wr_comp = NULL;
3999 struct btrfs_workqueue *scrub_parity = NULL;
4000
4001 scrub_workers = fs_info->scrub_workers;
4002 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
4003 scrub_parity = fs_info->scrub_parity_workers;
4004
4005 fs_info->scrub_workers = NULL;
4006 fs_info->scrub_wr_completion_workers = NULL;
4007 fs_info->scrub_parity_workers = NULL;
4008 mutex_unlock(&fs_info->scrub_lock);
4009
4010 btrfs_destroy_workqueue(scrub_workers);
4011 btrfs_destroy_workqueue(scrub_wr_comp);
4012 btrfs_destroy_workqueue(scrub_parity);
4013 }
4014 }
4015
4016 /*
4017 * get a reference count on fs_info->scrub_workers. start worker if necessary
4018 */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)4019 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4020 int is_dev_replace)
4021 {
4022 struct btrfs_workqueue *scrub_workers = NULL;
4023 struct btrfs_workqueue *scrub_wr_comp = NULL;
4024 struct btrfs_workqueue *scrub_parity = NULL;
4025 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4026 int max_active = fs_info->thread_pool_size;
4027 int ret = -ENOMEM;
4028
4029 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4030 return 0;
4031
4032 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4033 is_dev_replace ? 1 : max_active, 4);
4034 if (!scrub_workers)
4035 goto fail_scrub_workers;
4036
4037 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4038 max_active, 2);
4039 if (!scrub_wr_comp)
4040 goto fail_scrub_wr_completion_workers;
4041
4042 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4043 max_active, 2);
4044 if (!scrub_parity)
4045 goto fail_scrub_parity_workers;
4046
4047 mutex_lock(&fs_info->scrub_lock);
4048 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4049 ASSERT(fs_info->scrub_workers == NULL &&
4050 fs_info->scrub_wr_completion_workers == NULL &&
4051 fs_info->scrub_parity_workers == NULL);
4052 fs_info->scrub_workers = scrub_workers;
4053 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4054 fs_info->scrub_parity_workers = scrub_parity;
4055 refcount_set(&fs_info->scrub_workers_refcnt, 1);
4056 mutex_unlock(&fs_info->scrub_lock);
4057 return 0;
4058 }
4059 /* Other thread raced in and created the workers for us */
4060 refcount_inc(&fs_info->scrub_workers_refcnt);
4061 mutex_unlock(&fs_info->scrub_lock);
4062
4063 ret = 0;
4064 btrfs_destroy_workqueue(scrub_parity);
4065 fail_scrub_parity_workers:
4066 btrfs_destroy_workqueue(scrub_wr_comp);
4067 fail_scrub_wr_completion_workers:
4068 btrfs_destroy_workqueue(scrub_workers);
4069 fail_scrub_workers:
4070 return ret;
4071 }
4072
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)4073 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4074 u64 end, struct btrfs_scrub_progress *progress,
4075 int readonly, int is_dev_replace)
4076 {
4077 struct btrfs_dev_lookup_args args = { .devid = devid };
4078 struct scrub_ctx *sctx;
4079 int ret;
4080 struct btrfs_device *dev;
4081 unsigned int nofs_flag;
4082 bool need_commit = false;
4083
4084 if (btrfs_fs_closing(fs_info))
4085 return -EAGAIN;
4086
4087 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4088 /*
4089 * in this case scrub is unable to calculate the checksum
4090 * the way scrub is implemented. Do not handle this
4091 * situation at all because it won't ever happen.
4092 */
4093 btrfs_err(fs_info,
4094 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4095 fs_info->nodesize,
4096 BTRFS_STRIPE_LEN);
4097 return -EINVAL;
4098 }
4099
4100 if (fs_info->nodesize >
4101 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4102 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4103 /*
4104 * would exhaust the array bounds of pagev member in
4105 * struct scrub_block
4106 */
4107 btrfs_err(fs_info,
4108 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4109 fs_info->nodesize,
4110 SCRUB_MAX_PAGES_PER_BLOCK,
4111 fs_info->sectorsize,
4112 SCRUB_MAX_PAGES_PER_BLOCK);
4113 return -EINVAL;
4114 }
4115
4116 /* Allocate outside of device_list_mutex */
4117 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4118 if (IS_ERR(sctx))
4119 return PTR_ERR(sctx);
4120
4121 ret = scrub_workers_get(fs_info, is_dev_replace);
4122 if (ret)
4123 goto out_free_ctx;
4124
4125 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4126 dev = btrfs_find_device(fs_info->fs_devices, &args);
4127 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4128 !is_dev_replace)) {
4129 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4130 ret = -ENODEV;
4131 goto out;
4132 }
4133
4134 if (!is_dev_replace && !readonly &&
4135 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4136 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4137 btrfs_err_in_rcu(fs_info,
4138 "scrub on devid %llu: filesystem on %s is not writable",
4139 devid, rcu_str_deref(dev->name));
4140 ret = -EROFS;
4141 goto out;
4142 }
4143
4144 mutex_lock(&fs_info->scrub_lock);
4145 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4146 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4147 mutex_unlock(&fs_info->scrub_lock);
4148 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4149 ret = -EIO;
4150 goto out;
4151 }
4152
4153 down_read(&fs_info->dev_replace.rwsem);
4154 if (dev->scrub_ctx ||
4155 (!is_dev_replace &&
4156 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4157 up_read(&fs_info->dev_replace.rwsem);
4158 mutex_unlock(&fs_info->scrub_lock);
4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160 ret = -EINPROGRESS;
4161 goto out;
4162 }
4163 up_read(&fs_info->dev_replace.rwsem);
4164
4165 sctx->readonly = readonly;
4166 dev->scrub_ctx = sctx;
4167 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168
4169 /*
4170 * checking @scrub_pause_req here, we can avoid
4171 * race between committing transaction and scrubbing.
4172 */
4173 __scrub_blocked_if_needed(fs_info);
4174 atomic_inc(&fs_info->scrubs_running);
4175 mutex_unlock(&fs_info->scrub_lock);
4176
4177 /*
4178 * In order to avoid deadlock with reclaim when there is a transaction
4179 * trying to pause scrub, make sure we use GFP_NOFS for all the
4180 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4181 * invoked by our callees. The pausing request is done when the
4182 * transaction commit starts, and it blocks the transaction until scrub
4183 * is paused (done at specific points at scrub_stripe() or right above
4184 * before incrementing fs_info->scrubs_running).
4185 */
4186 nofs_flag = memalloc_nofs_save();
4187 if (!is_dev_replace) {
4188 u64 old_super_errors;
4189
4190 spin_lock(&sctx->stat_lock);
4191 old_super_errors = sctx->stat.super_errors;
4192 spin_unlock(&sctx->stat_lock);
4193
4194 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4195 /*
4196 * by holding device list mutex, we can
4197 * kick off writing super in log tree sync.
4198 */
4199 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4200 ret = scrub_supers(sctx, dev);
4201 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4202
4203 spin_lock(&sctx->stat_lock);
4204 /*
4205 * Super block errors found, but we can not commit transaction
4206 * at current context, since btrfs_commit_transaction() needs
4207 * to pause the current running scrub (hold by ourselves).
4208 */
4209 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4210 need_commit = true;
4211 spin_unlock(&sctx->stat_lock);
4212 }
4213
4214 if (!ret)
4215 ret = scrub_enumerate_chunks(sctx, dev, start, end);
4216 memalloc_nofs_restore(nofs_flag);
4217
4218 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4219 atomic_dec(&fs_info->scrubs_running);
4220 wake_up(&fs_info->scrub_pause_wait);
4221
4222 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4223
4224 if (progress)
4225 memcpy(progress, &sctx->stat, sizeof(*progress));
4226
4227 if (!is_dev_replace)
4228 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4229 ret ? "not finished" : "finished", devid, ret);
4230
4231 mutex_lock(&fs_info->scrub_lock);
4232 dev->scrub_ctx = NULL;
4233 mutex_unlock(&fs_info->scrub_lock);
4234
4235 scrub_workers_put(fs_info);
4236 scrub_put_ctx(sctx);
4237
4238 /*
4239 * We found some super block errors before, now try to force a
4240 * transaction commit, as scrub has finished.
4241 */
4242 if (need_commit) {
4243 struct btrfs_trans_handle *trans;
4244
4245 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4246 if (IS_ERR(trans)) {
4247 ret = PTR_ERR(trans);
4248 btrfs_err(fs_info,
4249 "scrub: failed to start transaction to fix super block errors: %d", ret);
4250 return ret;
4251 }
4252 ret = btrfs_commit_transaction(trans);
4253 if (ret < 0)
4254 btrfs_err(fs_info,
4255 "scrub: failed to commit transaction to fix super block errors: %d", ret);
4256 }
4257 return ret;
4258 out:
4259 scrub_workers_put(fs_info);
4260 out_free_ctx:
4261 scrub_free_ctx(sctx);
4262
4263 return ret;
4264 }
4265
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)4266 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4267 {
4268 mutex_lock(&fs_info->scrub_lock);
4269 atomic_inc(&fs_info->scrub_pause_req);
4270 while (atomic_read(&fs_info->scrubs_paused) !=
4271 atomic_read(&fs_info->scrubs_running)) {
4272 mutex_unlock(&fs_info->scrub_lock);
4273 wait_event(fs_info->scrub_pause_wait,
4274 atomic_read(&fs_info->scrubs_paused) ==
4275 atomic_read(&fs_info->scrubs_running));
4276 mutex_lock(&fs_info->scrub_lock);
4277 }
4278 mutex_unlock(&fs_info->scrub_lock);
4279 }
4280
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)4281 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4282 {
4283 atomic_dec(&fs_info->scrub_pause_req);
4284 wake_up(&fs_info->scrub_pause_wait);
4285 }
4286
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)4287 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4288 {
4289 mutex_lock(&fs_info->scrub_lock);
4290 if (!atomic_read(&fs_info->scrubs_running)) {
4291 mutex_unlock(&fs_info->scrub_lock);
4292 return -ENOTCONN;
4293 }
4294
4295 atomic_inc(&fs_info->scrub_cancel_req);
4296 while (atomic_read(&fs_info->scrubs_running)) {
4297 mutex_unlock(&fs_info->scrub_lock);
4298 wait_event(fs_info->scrub_pause_wait,
4299 atomic_read(&fs_info->scrubs_running) == 0);
4300 mutex_lock(&fs_info->scrub_lock);
4301 }
4302 atomic_dec(&fs_info->scrub_cancel_req);
4303 mutex_unlock(&fs_info->scrub_lock);
4304
4305 return 0;
4306 }
4307
btrfs_scrub_cancel_dev(struct btrfs_device * dev)4308 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4309 {
4310 struct btrfs_fs_info *fs_info = dev->fs_info;
4311 struct scrub_ctx *sctx;
4312
4313 mutex_lock(&fs_info->scrub_lock);
4314 sctx = dev->scrub_ctx;
4315 if (!sctx) {
4316 mutex_unlock(&fs_info->scrub_lock);
4317 return -ENOTCONN;
4318 }
4319 atomic_inc(&sctx->cancel_req);
4320 while (dev->scrub_ctx) {
4321 mutex_unlock(&fs_info->scrub_lock);
4322 wait_event(fs_info->scrub_pause_wait,
4323 dev->scrub_ctx == NULL);
4324 mutex_lock(&fs_info->scrub_lock);
4325 }
4326 mutex_unlock(&fs_info->scrub_lock);
4327
4328 return 0;
4329 }
4330
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)4331 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4332 struct btrfs_scrub_progress *progress)
4333 {
4334 struct btrfs_dev_lookup_args args = { .devid = devid };
4335 struct btrfs_device *dev;
4336 struct scrub_ctx *sctx = NULL;
4337
4338 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4339 dev = btrfs_find_device(fs_info->fs_devices, &args);
4340 if (dev)
4341 sctx = dev->scrub_ctx;
4342 if (sctx)
4343 memcpy(progress, &sctx->stat, sizeof(*progress));
4344 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4345
4346 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4347 }
4348
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u32 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4349 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4350 u64 extent_logical, u32 extent_len,
4351 u64 *extent_physical,
4352 struct btrfs_device **extent_dev,
4353 int *extent_mirror_num)
4354 {
4355 u64 mapped_length;
4356 struct btrfs_io_context *bioc = NULL;
4357 int ret;
4358
4359 mapped_length = extent_len;
4360 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4361 &mapped_length, &bioc, 0);
4362 if (ret || !bioc || mapped_length < extent_len ||
4363 !bioc->stripes[0].dev->bdev) {
4364 btrfs_put_bioc(bioc);
4365 return;
4366 }
4367
4368 *extent_physical = bioc->stripes[0].physical;
4369 *extent_mirror_num = bioc->mirror_num;
4370 *extent_dev = bioc->stripes[0].dev;
4371 btrfs_put_bioc(bioc);
4372 }
4373