1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34
btrfs_compress_type2str(enum btrfs_compression_type type)35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 switch (type) {
38 case BTRFS_COMPRESS_ZLIB:
39 case BTRFS_COMPRESS_LZO:
40 case BTRFS_COMPRESS_ZSTD:
41 case BTRFS_COMPRESS_NONE:
42 return btrfs_compress_types[type];
43 default:
44 break;
45 }
46
47 return NULL;
48 }
49
btrfs_compress_is_valid_type(const char * str,size_t len)50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 int i;
53
54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 size_t comp_len = strlen(btrfs_compress_types[i]);
56
57 if (len < comp_len)
58 continue;
59
60 if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 return true;
62 }
63 return false;
64 }
65
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)66 static int compression_compress_pages(int type, struct list_head *ws,
67 struct address_space *mapping, u64 start, struct page **pages,
68 unsigned long *out_pages, unsigned long *total_in,
69 unsigned long *total_out)
70 {
71 switch (type) {
72 case BTRFS_COMPRESS_ZLIB:
73 return zlib_compress_pages(ws, mapping, start, pages,
74 out_pages, total_in, total_out);
75 case BTRFS_COMPRESS_LZO:
76 return lzo_compress_pages(ws, mapping, start, pages,
77 out_pages, total_in, total_out);
78 case BTRFS_COMPRESS_ZSTD:
79 return zstd_compress_pages(ws, mapping, start, pages,
80 out_pages, total_in, total_out);
81 case BTRFS_COMPRESS_NONE:
82 default:
83 /*
84 * This can happen when compression races with remount setting
85 * it to 'no compress', while caller doesn't call
86 * inode_need_compress() to check if we really need to
87 * compress.
88 *
89 * Not a big deal, just need to inform caller that we
90 * haven't allocated any pages yet.
91 */
92 *out_pages = 0;
93 return -E2BIG;
94 }
95 }
96
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)97 static int compression_decompress_bio(int type, struct list_head *ws,
98 struct compressed_bio *cb)
99 {
100 switch (type) {
101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_NONE:
105 default:
106 /*
107 * This can't happen, the type is validated several times
108 * before we get here.
109 */
110 BUG();
111 }
112 }
113
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)114 static int compression_decompress(int type, struct list_head *ws,
115 unsigned char *data_in, struct page *dest_page,
116 unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 switch (type) {
119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 start_byte, srclen, destlen);
121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_NONE:
126 default:
127 /*
128 * This can't happen, the type is validated several times
129 * before we get here.
130 */
131 BUG();
132 }
133 }
134
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 unsigned long disk_size)
139 {
140 return sizeof(struct compressed_bio) +
141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 u64 disk_start)
146 {
147 struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 const u32 csum_size = fs_info->csum_size;
150 const u32 sectorsize = fs_info->sectorsize;
151 struct page *page;
152 unsigned int i;
153 char *kaddr;
154 u8 csum[BTRFS_CSUM_SIZE];
155 struct compressed_bio *cb = bio->bi_private;
156 u8 *cb_sum = cb->sums;
157
158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 return 0;
160
161 shash->tfm = fs_info->csum_shash;
162
163 for (i = 0; i < cb->nr_pages; i++) {
164 u32 pg_offset;
165 u32 bytes_left = PAGE_SIZE;
166 page = cb->compressed_pages[i];
167
168 /* Determine the remaining bytes inside the page first */
169 if (i == cb->nr_pages - 1)
170 bytes_left = cb->compressed_len - i * PAGE_SIZE;
171
172 /* Hash through the page sector by sector */
173 for (pg_offset = 0; pg_offset < bytes_left;
174 pg_offset += sectorsize) {
175 kaddr = kmap_atomic(page);
176 crypto_shash_digest(shash, kaddr + pg_offset,
177 sectorsize, csum);
178 kunmap_atomic(kaddr);
179
180 if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 btrfs_print_data_csum_error(inode, disk_start,
182 csum, cb_sum, cb->mirror_num);
183 if (btrfs_io_bio(bio)->device)
184 btrfs_dev_stat_inc_and_print(
185 btrfs_io_bio(bio)->device,
186 BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 return -EIO;
188 }
189 cb_sum += csum_size;
190 disk_start += sectorsize;
191 }
192 }
193 return 0;
194 }
195
196 /* when we finish reading compressed pages from the disk, we
197 * decompress them and then run the bio end_io routines on the
198 * decompressed pages (in the inode address space).
199 *
200 * This allows the checksumming and other IO error handling routines
201 * to work normally
202 *
203 * The compressed pages are freed here, and it must be run
204 * in process context
205 */
end_compressed_bio_read(struct bio * bio)206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 struct compressed_bio *cb = bio->bi_private;
209 struct inode *inode;
210 struct page *page;
211 unsigned int index;
212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213 int ret = 0;
214
215 if (bio->bi_status)
216 cb->errors = 1;
217
218 /* if there are more bios still pending for this compressed
219 * extent, just exit
220 */
221 if (!refcount_dec_and_test(&cb->pending_bios))
222 goto out;
223
224 /*
225 * Record the correct mirror_num in cb->orig_bio so that
226 * read-repair can work properly.
227 */
228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 cb->mirror_num = mirror;
230
231 /*
232 * Some IO in this cb have failed, just skip checksum as there
233 * is no way it could be correct.
234 */
235 if (cb->errors == 1)
236 goto csum_failed;
237
238 inode = cb->inode;
239 ret = check_compressed_csum(BTRFS_I(inode), bio,
240 bio->bi_iter.bi_sector << 9);
241 if (ret)
242 goto csum_failed;
243
244 /* ok, we're the last bio for this extent, lets start
245 * the decompression.
246 */
247 ret = btrfs_decompress_bio(cb);
248
249 csum_failed:
250 if (ret)
251 cb->errors = 1;
252
253 /* release the compressed pages */
254 index = 0;
255 for (index = 0; index < cb->nr_pages; index++) {
256 page = cb->compressed_pages[index];
257 page->mapping = NULL;
258 put_page(page);
259 }
260
261 /* do io completion on the original bio */
262 if (cb->errors) {
263 bio_io_error(cb->orig_bio);
264 } else {
265 struct bio_vec *bvec;
266 struct bvec_iter_all iter_all;
267
268 /*
269 * we have verified the checksum already, set page
270 * checked so the end_io handlers know about it
271 */
272 ASSERT(!bio_flagged(bio, BIO_CLONED));
273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 SetPageChecked(bvec->bv_page);
275
276 bio_endio(cb->orig_bio);
277 }
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282 out:
283 bio_put(bio);
284 }
285
286 /*
287 * Clear the writeback bits on all of the file
288 * pages for a compressed write
289 */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)290 static noinline void end_compressed_writeback(struct inode *inode,
291 const struct compressed_bio *cb)
292 {
293 unsigned long index = cb->start >> PAGE_SHIFT;
294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 struct page *pages[16];
296 unsigned long nr_pages = end_index - index + 1;
297 int i;
298 int ret;
299
300 if (cb->errors)
301 mapping_set_error(inode->i_mapping, -EIO);
302
303 while (nr_pages > 0) {
304 ret = find_get_pages_contig(inode->i_mapping, index,
305 min_t(unsigned long,
306 nr_pages, ARRAY_SIZE(pages)), pages);
307 if (ret == 0) {
308 nr_pages -= 1;
309 index += 1;
310 continue;
311 }
312 for (i = 0; i < ret; i++) {
313 if (cb->errors)
314 SetPageError(pages[i]);
315 end_page_writeback(pages[i]);
316 put_page(pages[i]);
317 }
318 nr_pages -= ret;
319 index += ret;
320 }
321 /* the inode may be gone now */
322 }
323
324 /*
325 * do the cleanup once all the compressed pages hit the disk.
326 * This will clear writeback on the file pages and free the compressed
327 * pages.
328 *
329 * This also calls the writeback end hooks for the file pages so that
330 * metadata and checksums can be updated in the file.
331 */
end_compressed_bio_write(struct bio * bio)332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 struct compressed_bio *cb = bio->bi_private;
335 struct inode *inode;
336 struct page *page;
337 unsigned int index;
338
339 if (bio->bi_status)
340 cb->errors = 1;
341
342 /* if there are more bios still pending for this compressed
343 * extent, just exit
344 */
345 if (!refcount_dec_and_test(&cb->pending_bios))
346 goto out;
347
348 /* ok, we're the last bio for this extent, step one is to
349 * call back into the FS and do all the end_io operations
350 */
351 inode = cb->inode;
352 btrfs_record_physical_zoned(inode, cb->start, bio);
353 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354 cb->start, cb->start + cb->len - 1,
355 !cb->errors);
356
357 end_compressed_writeback(inode, cb);
358 /* note, our inode could be gone now */
359
360 /*
361 * release the compressed pages, these came from alloc_page and
362 * are not attached to the inode at all
363 */
364 index = 0;
365 for (index = 0; index < cb->nr_pages; index++) {
366 page = cb->compressed_pages[index];
367 page->mapping = NULL;
368 put_page(page);
369 }
370
371 /* finally free the cb struct */
372 kfree(cb->compressed_pages);
373 kfree(cb);
374 out:
375 bio_put(bio);
376 }
377
378 /*
379 * worker function to build and submit bios for previously compressed pages.
380 * The corresponding pages in the inode should be marked for writeback
381 * and the compressed pages should have a reference on them for dropping
382 * when the IO is complete.
383 *
384 * This also checksums the file bytes and gets things ready for
385 * the end io hooks.
386 */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned int len,u64 disk_start,unsigned int compressed_len,struct page ** compressed_pages,unsigned int nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 unsigned int len, u64 disk_start,
389 unsigned int compressed_len,
390 struct page **compressed_pages,
391 unsigned int nr_pages,
392 unsigned int write_flags,
393 struct cgroup_subsys_state *blkcg_css)
394 {
395 struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 struct bio *bio = NULL;
397 struct compressed_bio *cb;
398 unsigned long bytes_left;
399 int pg_index = 0;
400 struct page *page;
401 u64 first_byte = disk_start;
402 blk_status_t ret;
403 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 const bool use_append = btrfs_use_zone_append(inode, disk_start);
405 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
406
407 WARN_ON(!PAGE_ALIGNED(start));
408 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409 if (!cb)
410 return BLK_STS_RESOURCE;
411 refcount_set(&cb->pending_bios, 0);
412 cb->errors = 0;
413 cb->inode = &inode->vfs_inode;
414 cb->start = start;
415 cb->len = len;
416 cb->mirror_num = 0;
417 cb->compressed_pages = compressed_pages;
418 cb->compressed_len = compressed_len;
419 cb->orig_bio = NULL;
420 cb->nr_pages = nr_pages;
421
422 bio = btrfs_bio_alloc(first_byte);
423 bio->bi_opf = bio_op | write_flags;
424 bio->bi_private = cb;
425 bio->bi_end_io = end_compressed_bio_write;
426
427 if (use_append) {
428 struct btrfs_device *device;
429
430 device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
431 if (IS_ERR(device)) {
432 kfree(cb);
433 bio_put(bio);
434 return BLK_STS_NOTSUPP;
435 }
436
437 bio_set_dev(bio, device->bdev);
438 }
439
440 if (blkcg_css) {
441 bio->bi_opf |= REQ_CGROUP_PUNT;
442 kthread_associate_blkcg(blkcg_css);
443 }
444 refcount_set(&cb->pending_bios, 1);
445
446 /* create and submit bios for the compressed pages */
447 bytes_left = compressed_len;
448 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449 int submit = 0;
450 int len = 0;
451
452 page = compressed_pages[pg_index];
453 page->mapping = inode->vfs_inode.i_mapping;
454 if (bio->bi_iter.bi_size)
455 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
456 0);
457
458 /*
459 * Page can only be added to bio if the current bio fits in
460 * stripe.
461 */
462 if (!submit) {
463 if (pg_index == 0 && use_append)
464 len = bio_add_zone_append_page(bio, page,
465 PAGE_SIZE, 0);
466 else
467 len = bio_add_page(bio, page, PAGE_SIZE, 0);
468 }
469
470 page->mapping = NULL;
471 if (submit || len < PAGE_SIZE) {
472 /*
473 * inc the count before we submit the bio so
474 * we know the end IO handler won't happen before
475 * we inc the count. Otherwise, the cb might get
476 * freed before we're done setting it up
477 */
478 refcount_inc(&cb->pending_bios);
479 ret = btrfs_bio_wq_end_io(fs_info, bio,
480 BTRFS_WQ_ENDIO_DATA);
481 BUG_ON(ret); /* -ENOMEM */
482
483 if (!skip_sum) {
484 ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 BUG_ON(ret); /* -ENOMEM */
486 }
487
488 ret = btrfs_map_bio(fs_info, bio, 0);
489 if (ret) {
490 bio->bi_status = ret;
491 bio_endio(bio);
492 }
493
494 bio = btrfs_bio_alloc(first_byte);
495 bio->bi_opf = bio_op | write_flags;
496 bio->bi_private = cb;
497 bio->bi_end_io = end_compressed_bio_write;
498 if (blkcg_css)
499 bio->bi_opf |= REQ_CGROUP_PUNT;
500 /*
501 * Use bio_add_page() to ensure the bio has at least one
502 * page.
503 */
504 bio_add_page(bio, page, PAGE_SIZE, 0);
505 }
506 if (bytes_left < PAGE_SIZE) {
507 btrfs_info(fs_info,
508 "bytes left %lu compress len %u nr %u",
509 bytes_left, cb->compressed_len, cb->nr_pages);
510 }
511 bytes_left -= PAGE_SIZE;
512 first_byte += PAGE_SIZE;
513 cond_resched();
514 }
515
516 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
517 BUG_ON(ret); /* -ENOMEM */
518
519 if (!skip_sum) {
520 ret = btrfs_csum_one_bio(inode, bio, start, 1);
521 BUG_ON(ret); /* -ENOMEM */
522 }
523
524 ret = btrfs_map_bio(fs_info, bio, 0);
525 if (ret) {
526 bio->bi_status = ret;
527 bio_endio(bio);
528 }
529
530 if (blkcg_css)
531 kthread_associate_blkcg(NULL);
532
533 return 0;
534 }
535
bio_end_offset(struct bio * bio)536 static u64 bio_end_offset(struct bio *bio)
537 {
538 struct bio_vec *last = bio_last_bvec_all(bio);
539
540 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
541 }
542
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)543 static noinline int add_ra_bio_pages(struct inode *inode,
544 u64 compressed_end,
545 struct compressed_bio *cb)
546 {
547 unsigned long end_index;
548 unsigned long pg_index;
549 u64 last_offset;
550 u64 isize = i_size_read(inode);
551 int ret;
552 struct page *page;
553 struct extent_map *em;
554 struct address_space *mapping = inode->i_mapping;
555 struct extent_map_tree *em_tree;
556 struct extent_io_tree *tree;
557 u64 end;
558 int misses = 0;
559
560 last_offset = bio_end_offset(cb->orig_bio);
561 em_tree = &BTRFS_I(inode)->extent_tree;
562 tree = &BTRFS_I(inode)->io_tree;
563
564 if (isize == 0)
565 return 0;
566
567 /*
568 * For current subpage support, we only support 64K page size,
569 * which means maximum compressed extent size (128K) is just 2x page
570 * size.
571 * This makes readahead less effective, so here disable readahead for
572 * subpage for now, until full compressed write is supported.
573 */
574 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
575 return 0;
576
577 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
578
579 while (last_offset < compressed_end) {
580 pg_index = last_offset >> PAGE_SHIFT;
581
582 if (pg_index > end_index)
583 break;
584
585 page = xa_load(&mapping->i_pages, pg_index);
586 if (page && !xa_is_value(page)) {
587 misses++;
588 if (misses > 4)
589 break;
590 goto next;
591 }
592
593 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
594 ~__GFP_FS));
595 if (!page)
596 break;
597
598 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
599 put_page(page);
600 goto next;
601 }
602
603 /*
604 * at this point, we have a locked page in the page cache
605 * for these bytes in the file. But, we have to make
606 * sure they map to this compressed extent on disk.
607 */
608 ret = set_page_extent_mapped(page);
609 if (ret < 0) {
610 unlock_page(page);
611 put_page(page);
612 break;
613 }
614
615 end = last_offset + PAGE_SIZE - 1;
616 lock_extent(tree, last_offset, end);
617 read_lock(&em_tree->lock);
618 em = lookup_extent_mapping(em_tree, last_offset,
619 PAGE_SIZE);
620 read_unlock(&em_tree->lock);
621
622 if (!em || last_offset < em->start ||
623 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
624 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
625 free_extent_map(em);
626 unlock_extent(tree, last_offset, end);
627 unlock_page(page);
628 put_page(page);
629 break;
630 }
631 free_extent_map(em);
632
633 if (page->index == end_index) {
634 size_t zero_offset = offset_in_page(isize);
635
636 if (zero_offset) {
637 int zeros;
638 zeros = PAGE_SIZE - zero_offset;
639 memzero_page(page, zero_offset, zeros);
640 flush_dcache_page(page);
641 }
642 }
643
644 ret = bio_add_page(cb->orig_bio, page,
645 PAGE_SIZE, 0);
646
647 if (ret == PAGE_SIZE) {
648 put_page(page);
649 } else {
650 unlock_extent(tree, last_offset, end);
651 unlock_page(page);
652 put_page(page);
653 break;
654 }
655 next:
656 last_offset += PAGE_SIZE;
657 }
658 return 0;
659 }
660
661 /*
662 * for a compressed read, the bio we get passed has all the inode pages
663 * in it. We don't actually do IO on those pages but allocate new ones
664 * to hold the compressed pages on disk.
665 *
666 * bio->bi_iter.bi_sector points to the compressed extent on disk
667 * bio->bi_io_vec points to all of the inode pages
668 *
669 * After the compressed pages are read, we copy the bytes into the
670 * bio we were passed and then call the bio end_io calls
671 */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)672 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
673 int mirror_num, unsigned long bio_flags)
674 {
675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
676 struct extent_map_tree *em_tree;
677 struct compressed_bio *cb;
678 unsigned int compressed_len;
679 unsigned int nr_pages;
680 unsigned int pg_index;
681 struct page *page;
682 struct bio *comp_bio;
683 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
684 u64 file_offset;
685 u64 em_len;
686 u64 em_start;
687 struct extent_map *em;
688 blk_status_t ret = BLK_STS_RESOURCE;
689 int faili = 0;
690 u8 *sums;
691
692 em_tree = &BTRFS_I(inode)->extent_tree;
693
694 file_offset = bio_first_bvec_all(bio)->bv_offset +
695 page_offset(bio_first_page_all(bio));
696
697 /* we need the actual starting offset of this extent in the file */
698 read_lock(&em_tree->lock);
699 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
700 read_unlock(&em_tree->lock);
701 if (!em)
702 return BLK_STS_IOERR;
703
704 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
705 compressed_len = em->block_len;
706 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
707 if (!cb)
708 goto out;
709
710 refcount_set(&cb->pending_bios, 0);
711 cb->errors = 0;
712 cb->inode = inode;
713 cb->mirror_num = mirror_num;
714 sums = cb->sums;
715
716 cb->start = em->orig_start;
717 em_len = em->len;
718 em_start = em->start;
719
720 free_extent_map(em);
721 em = NULL;
722
723 cb->len = bio->bi_iter.bi_size;
724 cb->compressed_len = compressed_len;
725 cb->compress_type = extent_compress_type(bio_flags);
726 cb->orig_bio = bio;
727
728 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
729 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
730 GFP_NOFS);
731 if (!cb->compressed_pages)
732 goto fail1;
733
734 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
735 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
736 if (!cb->compressed_pages[pg_index]) {
737 faili = pg_index - 1;
738 ret = BLK_STS_RESOURCE;
739 goto fail2;
740 }
741 }
742 faili = nr_pages - 1;
743 cb->nr_pages = nr_pages;
744
745 add_ra_bio_pages(inode, em_start + em_len, cb);
746
747 /* include any pages we added in add_ra-bio_pages */
748 cb->len = bio->bi_iter.bi_size;
749
750 comp_bio = btrfs_bio_alloc(cur_disk_byte);
751 comp_bio->bi_opf = REQ_OP_READ;
752 comp_bio->bi_private = cb;
753 comp_bio->bi_end_io = end_compressed_bio_read;
754 refcount_set(&cb->pending_bios, 1);
755
756 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
757 u32 pg_len = PAGE_SIZE;
758 int submit = 0;
759
760 /*
761 * To handle subpage case, we need to make sure the bio only
762 * covers the range we need.
763 *
764 * If we're at the last page, truncate the length to only cover
765 * the remaining part.
766 */
767 if (pg_index == nr_pages - 1)
768 pg_len = min_t(u32, PAGE_SIZE,
769 compressed_len - pg_index * PAGE_SIZE);
770
771 page = cb->compressed_pages[pg_index];
772 page->mapping = inode->i_mapping;
773 page->index = em_start >> PAGE_SHIFT;
774
775 if (comp_bio->bi_iter.bi_size)
776 submit = btrfs_bio_fits_in_stripe(page, pg_len,
777 comp_bio, 0);
778
779 page->mapping = NULL;
780 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
781 unsigned int nr_sectors;
782
783 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
784 BTRFS_WQ_ENDIO_DATA);
785 BUG_ON(ret); /* -ENOMEM */
786
787 /*
788 * inc the count before we submit the bio so
789 * we know the end IO handler won't happen before
790 * we inc the count. Otherwise, the cb might get
791 * freed before we're done setting it up
792 */
793 refcount_inc(&cb->pending_bios);
794
795 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
796 BUG_ON(ret); /* -ENOMEM */
797
798 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
799 fs_info->sectorsize);
800 sums += fs_info->csum_size * nr_sectors;
801
802 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
803 if (ret) {
804 comp_bio->bi_status = ret;
805 bio_endio(comp_bio);
806 }
807
808 comp_bio = btrfs_bio_alloc(cur_disk_byte);
809 comp_bio->bi_opf = REQ_OP_READ;
810 comp_bio->bi_private = cb;
811 comp_bio->bi_end_io = end_compressed_bio_read;
812
813 bio_add_page(comp_bio, page, pg_len, 0);
814 }
815 cur_disk_byte += pg_len;
816 }
817
818 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
819 BUG_ON(ret); /* -ENOMEM */
820
821 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
822 BUG_ON(ret); /* -ENOMEM */
823
824 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
825 if (ret) {
826 comp_bio->bi_status = ret;
827 bio_endio(comp_bio);
828 }
829
830 return 0;
831
832 fail2:
833 while (faili >= 0) {
834 __free_page(cb->compressed_pages[faili]);
835 faili--;
836 }
837
838 kfree(cb->compressed_pages);
839 fail1:
840 kfree(cb);
841 out:
842 free_extent_map(em);
843 return ret;
844 }
845
846 /*
847 * Heuristic uses systematic sampling to collect data from the input data
848 * range, the logic can be tuned by the following constants:
849 *
850 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
851 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
852 */
853 #define SAMPLING_READ_SIZE (16)
854 #define SAMPLING_INTERVAL (256)
855
856 /*
857 * For statistical analysis of the input data we consider bytes that form a
858 * Galois Field of 256 objects. Each object has an attribute count, ie. how
859 * many times the object appeared in the sample.
860 */
861 #define BUCKET_SIZE (256)
862
863 /*
864 * The size of the sample is based on a statistical sampling rule of thumb.
865 * The common way is to perform sampling tests as long as the number of
866 * elements in each cell is at least 5.
867 *
868 * Instead of 5, we choose 32 to obtain more accurate results.
869 * If the data contain the maximum number of symbols, which is 256, we obtain a
870 * sample size bound by 8192.
871 *
872 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
873 * from up to 512 locations.
874 */
875 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
876 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
877
878 struct bucket_item {
879 u32 count;
880 };
881
882 struct heuristic_ws {
883 /* Partial copy of input data */
884 u8 *sample;
885 u32 sample_size;
886 /* Buckets store counters for each byte value */
887 struct bucket_item *bucket;
888 /* Sorting buffer */
889 struct bucket_item *bucket_b;
890 struct list_head list;
891 };
892
893 static struct workspace_manager heuristic_wsm;
894
free_heuristic_ws(struct list_head * ws)895 static void free_heuristic_ws(struct list_head *ws)
896 {
897 struct heuristic_ws *workspace;
898
899 workspace = list_entry(ws, struct heuristic_ws, list);
900
901 kvfree(workspace->sample);
902 kfree(workspace->bucket);
903 kfree(workspace->bucket_b);
904 kfree(workspace);
905 }
906
alloc_heuristic_ws(unsigned int level)907 static struct list_head *alloc_heuristic_ws(unsigned int level)
908 {
909 struct heuristic_ws *ws;
910
911 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
912 if (!ws)
913 return ERR_PTR(-ENOMEM);
914
915 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
916 if (!ws->sample)
917 goto fail;
918
919 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
920 if (!ws->bucket)
921 goto fail;
922
923 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
924 if (!ws->bucket_b)
925 goto fail;
926
927 INIT_LIST_HEAD(&ws->list);
928 return &ws->list;
929 fail:
930 free_heuristic_ws(&ws->list);
931 return ERR_PTR(-ENOMEM);
932 }
933
934 const struct btrfs_compress_op btrfs_heuristic_compress = {
935 .workspace_manager = &heuristic_wsm,
936 };
937
938 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
939 /* The heuristic is represented as compression type 0 */
940 &btrfs_heuristic_compress,
941 &btrfs_zlib_compress,
942 &btrfs_lzo_compress,
943 &btrfs_zstd_compress,
944 };
945
alloc_workspace(int type,unsigned int level)946 static struct list_head *alloc_workspace(int type, unsigned int level)
947 {
948 switch (type) {
949 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
950 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
951 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
952 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
953 default:
954 /*
955 * This can't happen, the type is validated several times
956 * before we get here.
957 */
958 BUG();
959 }
960 }
961
free_workspace(int type,struct list_head * ws)962 static void free_workspace(int type, struct list_head *ws)
963 {
964 switch (type) {
965 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
966 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
967 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
968 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
969 default:
970 /*
971 * This can't happen, the type is validated several times
972 * before we get here.
973 */
974 BUG();
975 }
976 }
977
btrfs_init_workspace_manager(int type)978 static void btrfs_init_workspace_manager(int type)
979 {
980 struct workspace_manager *wsm;
981 struct list_head *workspace;
982
983 wsm = btrfs_compress_op[type]->workspace_manager;
984 INIT_LIST_HEAD(&wsm->idle_ws);
985 spin_lock_init(&wsm->ws_lock);
986 atomic_set(&wsm->total_ws, 0);
987 init_waitqueue_head(&wsm->ws_wait);
988
989 /*
990 * Preallocate one workspace for each compression type so we can
991 * guarantee forward progress in the worst case
992 */
993 workspace = alloc_workspace(type, 0);
994 if (IS_ERR(workspace)) {
995 pr_warn(
996 "BTRFS: cannot preallocate compression workspace, will try later\n");
997 } else {
998 atomic_set(&wsm->total_ws, 1);
999 wsm->free_ws = 1;
1000 list_add(workspace, &wsm->idle_ws);
1001 }
1002 }
1003
btrfs_cleanup_workspace_manager(int type)1004 static void btrfs_cleanup_workspace_manager(int type)
1005 {
1006 struct workspace_manager *wsman;
1007 struct list_head *ws;
1008
1009 wsman = btrfs_compress_op[type]->workspace_manager;
1010 while (!list_empty(&wsman->idle_ws)) {
1011 ws = wsman->idle_ws.next;
1012 list_del(ws);
1013 free_workspace(type, ws);
1014 atomic_dec(&wsman->total_ws);
1015 }
1016 }
1017
1018 /*
1019 * This finds an available workspace or allocates a new one.
1020 * If it's not possible to allocate a new one, waits until there's one.
1021 * Preallocation makes a forward progress guarantees and we do not return
1022 * errors.
1023 */
btrfs_get_workspace(int type,unsigned int level)1024 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1025 {
1026 struct workspace_manager *wsm;
1027 struct list_head *workspace;
1028 int cpus = num_online_cpus();
1029 unsigned nofs_flag;
1030 struct list_head *idle_ws;
1031 spinlock_t *ws_lock;
1032 atomic_t *total_ws;
1033 wait_queue_head_t *ws_wait;
1034 int *free_ws;
1035
1036 wsm = btrfs_compress_op[type]->workspace_manager;
1037 idle_ws = &wsm->idle_ws;
1038 ws_lock = &wsm->ws_lock;
1039 total_ws = &wsm->total_ws;
1040 ws_wait = &wsm->ws_wait;
1041 free_ws = &wsm->free_ws;
1042
1043 again:
1044 spin_lock(ws_lock);
1045 if (!list_empty(idle_ws)) {
1046 workspace = idle_ws->next;
1047 list_del(workspace);
1048 (*free_ws)--;
1049 spin_unlock(ws_lock);
1050 return workspace;
1051
1052 }
1053 if (atomic_read(total_ws) > cpus) {
1054 DEFINE_WAIT(wait);
1055
1056 spin_unlock(ws_lock);
1057 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1058 if (atomic_read(total_ws) > cpus && !*free_ws)
1059 schedule();
1060 finish_wait(ws_wait, &wait);
1061 goto again;
1062 }
1063 atomic_inc(total_ws);
1064 spin_unlock(ws_lock);
1065
1066 /*
1067 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1068 * to turn it off here because we might get called from the restricted
1069 * context of btrfs_compress_bio/btrfs_compress_pages
1070 */
1071 nofs_flag = memalloc_nofs_save();
1072 workspace = alloc_workspace(type, level);
1073 memalloc_nofs_restore(nofs_flag);
1074
1075 if (IS_ERR(workspace)) {
1076 atomic_dec(total_ws);
1077 wake_up(ws_wait);
1078
1079 /*
1080 * Do not return the error but go back to waiting. There's a
1081 * workspace preallocated for each type and the compression
1082 * time is bounded so we get to a workspace eventually. This
1083 * makes our caller's life easier.
1084 *
1085 * To prevent silent and low-probability deadlocks (when the
1086 * initial preallocation fails), check if there are any
1087 * workspaces at all.
1088 */
1089 if (atomic_read(total_ws) == 0) {
1090 static DEFINE_RATELIMIT_STATE(_rs,
1091 /* once per minute */ 60 * HZ,
1092 /* no burst */ 1);
1093
1094 if (__ratelimit(&_rs)) {
1095 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1096 }
1097 }
1098 goto again;
1099 }
1100 return workspace;
1101 }
1102
get_workspace(int type,int level)1103 static struct list_head *get_workspace(int type, int level)
1104 {
1105 switch (type) {
1106 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1107 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1108 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1109 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1110 default:
1111 /*
1112 * This can't happen, the type is validated several times
1113 * before we get here.
1114 */
1115 BUG();
1116 }
1117 }
1118
1119 /*
1120 * put a workspace struct back on the list or free it if we have enough
1121 * idle ones sitting around
1122 */
btrfs_put_workspace(int type,struct list_head * ws)1123 void btrfs_put_workspace(int type, struct list_head *ws)
1124 {
1125 struct workspace_manager *wsm;
1126 struct list_head *idle_ws;
1127 spinlock_t *ws_lock;
1128 atomic_t *total_ws;
1129 wait_queue_head_t *ws_wait;
1130 int *free_ws;
1131
1132 wsm = btrfs_compress_op[type]->workspace_manager;
1133 idle_ws = &wsm->idle_ws;
1134 ws_lock = &wsm->ws_lock;
1135 total_ws = &wsm->total_ws;
1136 ws_wait = &wsm->ws_wait;
1137 free_ws = &wsm->free_ws;
1138
1139 spin_lock(ws_lock);
1140 if (*free_ws <= num_online_cpus()) {
1141 list_add(ws, idle_ws);
1142 (*free_ws)++;
1143 spin_unlock(ws_lock);
1144 goto wake;
1145 }
1146 spin_unlock(ws_lock);
1147
1148 free_workspace(type, ws);
1149 atomic_dec(total_ws);
1150 wake:
1151 cond_wake_up(ws_wait);
1152 }
1153
put_workspace(int type,struct list_head * ws)1154 static void put_workspace(int type, struct list_head *ws)
1155 {
1156 switch (type) {
1157 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1158 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1159 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1160 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1161 default:
1162 /*
1163 * This can't happen, the type is validated several times
1164 * before we get here.
1165 */
1166 BUG();
1167 }
1168 }
1169
1170 /*
1171 * Adjust @level according to the limits of the compression algorithm or
1172 * fallback to default
1173 */
btrfs_compress_set_level(int type,unsigned level)1174 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1175 {
1176 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1177
1178 if (level == 0)
1179 level = ops->default_level;
1180 else
1181 level = min(level, ops->max_level);
1182
1183 return level;
1184 }
1185
1186 /*
1187 * Given an address space and start and length, compress the bytes into @pages
1188 * that are allocated on demand.
1189 *
1190 * @type_level is encoded algorithm and level, where level 0 means whatever
1191 * default the algorithm chooses and is opaque here;
1192 * - compression algo are 0-3
1193 * - the level are bits 4-7
1194 *
1195 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1196 * and returns number of actually allocated pages
1197 *
1198 * @total_in is used to return the number of bytes actually read. It
1199 * may be smaller than the input length if we had to exit early because we
1200 * ran out of room in the pages array or because we cross the
1201 * max_out threshold.
1202 *
1203 * @total_out is an in/out parameter, must be set to the input length and will
1204 * be also used to return the total number of compressed bytes
1205 */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1206 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1207 u64 start, struct page **pages,
1208 unsigned long *out_pages,
1209 unsigned long *total_in,
1210 unsigned long *total_out)
1211 {
1212 int type = btrfs_compress_type(type_level);
1213 int level = btrfs_compress_level(type_level);
1214 struct list_head *workspace;
1215 int ret;
1216
1217 level = btrfs_compress_set_level(type, level);
1218 workspace = get_workspace(type, level);
1219 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1220 out_pages, total_in, total_out);
1221 put_workspace(type, workspace);
1222 return ret;
1223 }
1224
btrfs_decompress_bio(struct compressed_bio * cb)1225 static int btrfs_decompress_bio(struct compressed_bio *cb)
1226 {
1227 struct list_head *workspace;
1228 int ret;
1229 int type = cb->compress_type;
1230
1231 workspace = get_workspace(type, 0);
1232 ret = compression_decompress_bio(type, workspace, cb);
1233 put_workspace(type, workspace);
1234
1235 return ret;
1236 }
1237
1238 /*
1239 * a less complex decompression routine. Our compressed data fits in a
1240 * single page, and we want to read a single page out of it.
1241 * start_byte tells us the offset into the compressed data we're interested in
1242 */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1243 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1244 unsigned long start_byte, size_t srclen, size_t destlen)
1245 {
1246 struct list_head *workspace;
1247 int ret;
1248
1249 workspace = get_workspace(type, 0);
1250 ret = compression_decompress(type, workspace, data_in, dest_page,
1251 start_byte, srclen, destlen);
1252 put_workspace(type, workspace);
1253
1254 return ret;
1255 }
1256
btrfs_init_compress(void)1257 void __init btrfs_init_compress(void)
1258 {
1259 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1260 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1261 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1262 zstd_init_workspace_manager();
1263 }
1264
btrfs_exit_compress(void)1265 void __cold btrfs_exit_compress(void)
1266 {
1267 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1268 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1269 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1270 zstd_cleanup_workspace_manager();
1271 }
1272
1273 /*
1274 * Copy decompressed data from working buffer to pages.
1275 *
1276 * @buf: The decompressed data buffer
1277 * @buf_len: The decompressed data length
1278 * @decompressed: Number of bytes that are already decompressed inside the
1279 * compressed extent
1280 * @cb: The compressed extent descriptor
1281 * @orig_bio: The original bio that the caller wants to read for
1282 *
1283 * An easier to understand graph is like below:
1284 *
1285 * |<- orig_bio ->| |<- orig_bio->|
1286 * |<------- full decompressed extent ----->|
1287 * |<----------- @cb range ---->|
1288 * | |<-- @buf_len -->|
1289 * |<--- @decompressed --->|
1290 *
1291 * Note that, @cb can be a subpage of the full decompressed extent, but
1292 * @cb->start always has the same as the orig_file_offset value of the full
1293 * decompressed extent.
1294 *
1295 * When reading compressed extent, we have to read the full compressed extent,
1296 * while @orig_bio may only want part of the range.
1297 * Thus this function will ensure only data covered by @orig_bio will be copied
1298 * to.
1299 *
1300 * Return 0 if we have copied all needed contents for @orig_bio.
1301 * Return >0 if we need continue decompress.
1302 */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1303 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1304 struct compressed_bio *cb, u32 decompressed)
1305 {
1306 struct bio *orig_bio = cb->orig_bio;
1307 /* Offset inside the full decompressed extent */
1308 u32 cur_offset;
1309
1310 cur_offset = decompressed;
1311 /* The main loop to do the copy */
1312 while (cur_offset < decompressed + buf_len) {
1313 struct bio_vec bvec;
1314 size_t copy_len;
1315 u32 copy_start;
1316 /* Offset inside the full decompressed extent */
1317 u32 bvec_offset;
1318
1319 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1320 /*
1321 * cb->start may underflow, but subtracting that value can still
1322 * give us correct offset inside the full decompressed extent.
1323 */
1324 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1325
1326 /* Haven't reached the bvec range, exit */
1327 if (decompressed + buf_len <= bvec_offset)
1328 return 1;
1329
1330 copy_start = max(cur_offset, bvec_offset);
1331 copy_len = min(bvec_offset + bvec.bv_len,
1332 decompressed + buf_len) - copy_start;
1333 ASSERT(copy_len);
1334
1335 /*
1336 * Extra range check to ensure we didn't go beyond
1337 * @buf + @buf_len.
1338 */
1339 ASSERT(copy_start - decompressed < buf_len);
1340 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1341 buf + copy_start - decompressed, copy_len);
1342 flush_dcache_page(bvec.bv_page);
1343 cur_offset += copy_len;
1344
1345 bio_advance(orig_bio, copy_len);
1346 /* Finished the bio */
1347 if (!orig_bio->bi_iter.bi_size)
1348 return 0;
1349 }
1350 return 1;
1351 }
1352
1353 /*
1354 * Shannon Entropy calculation
1355 *
1356 * Pure byte distribution analysis fails to determine compressibility of data.
1357 * Try calculating entropy to estimate the average minimum number of bits
1358 * needed to encode the sampled data.
1359 *
1360 * For convenience, return the percentage of needed bits, instead of amount of
1361 * bits directly.
1362 *
1363 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1364 * and can be compressible with high probability
1365 *
1366 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1367 *
1368 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1369 */
1370 #define ENTROPY_LVL_ACEPTABLE (65)
1371 #define ENTROPY_LVL_HIGH (80)
1372
1373 /*
1374 * For increasead precision in shannon_entropy calculation,
1375 * let's do pow(n, M) to save more digits after comma:
1376 *
1377 * - maximum int bit length is 64
1378 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1379 * - 13 * 4 = 52 < 64 -> M = 4
1380 *
1381 * So use pow(n, 4).
1382 */
ilog2_w(u64 n)1383 static inline u32 ilog2_w(u64 n)
1384 {
1385 return ilog2(n * n * n * n);
1386 }
1387
shannon_entropy(struct heuristic_ws * ws)1388 static u32 shannon_entropy(struct heuristic_ws *ws)
1389 {
1390 const u32 entropy_max = 8 * ilog2_w(2);
1391 u32 entropy_sum = 0;
1392 u32 p, p_base, sz_base;
1393 u32 i;
1394
1395 sz_base = ilog2_w(ws->sample_size);
1396 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1397 p = ws->bucket[i].count;
1398 p_base = ilog2_w(p);
1399 entropy_sum += p * (sz_base - p_base);
1400 }
1401
1402 entropy_sum /= ws->sample_size;
1403 return entropy_sum * 100 / entropy_max;
1404 }
1405
1406 #define RADIX_BASE 4U
1407 #define COUNTERS_SIZE (1U << RADIX_BASE)
1408
get4bits(u64 num,int shift)1409 static u8 get4bits(u64 num, int shift) {
1410 u8 low4bits;
1411
1412 num >>= shift;
1413 /* Reverse order */
1414 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1415 return low4bits;
1416 }
1417
1418 /*
1419 * Use 4 bits as radix base
1420 * Use 16 u32 counters for calculating new position in buf array
1421 *
1422 * @array - array that will be sorted
1423 * @array_buf - buffer array to store sorting results
1424 * must be equal in size to @array
1425 * @num - array size
1426 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1427 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1428 int num)
1429 {
1430 u64 max_num;
1431 u64 buf_num;
1432 u32 counters[COUNTERS_SIZE];
1433 u32 new_addr;
1434 u32 addr;
1435 int bitlen;
1436 int shift;
1437 int i;
1438
1439 /*
1440 * Try avoid useless loop iterations for small numbers stored in big
1441 * counters. Example: 48 33 4 ... in 64bit array
1442 */
1443 max_num = array[0].count;
1444 for (i = 1; i < num; i++) {
1445 buf_num = array[i].count;
1446 if (buf_num > max_num)
1447 max_num = buf_num;
1448 }
1449
1450 buf_num = ilog2(max_num);
1451 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1452
1453 shift = 0;
1454 while (shift < bitlen) {
1455 memset(counters, 0, sizeof(counters));
1456
1457 for (i = 0; i < num; i++) {
1458 buf_num = array[i].count;
1459 addr = get4bits(buf_num, shift);
1460 counters[addr]++;
1461 }
1462
1463 for (i = 1; i < COUNTERS_SIZE; i++)
1464 counters[i] += counters[i - 1];
1465
1466 for (i = num - 1; i >= 0; i--) {
1467 buf_num = array[i].count;
1468 addr = get4bits(buf_num, shift);
1469 counters[addr]--;
1470 new_addr = counters[addr];
1471 array_buf[new_addr] = array[i];
1472 }
1473
1474 shift += RADIX_BASE;
1475
1476 /*
1477 * Normal radix expects to move data from a temporary array, to
1478 * the main one. But that requires some CPU time. Avoid that
1479 * by doing another sort iteration to original array instead of
1480 * memcpy()
1481 */
1482 memset(counters, 0, sizeof(counters));
1483
1484 for (i = 0; i < num; i ++) {
1485 buf_num = array_buf[i].count;
1486 addr = get4bits(buf_num, shift);
1487 counters[addr]++;
1488 }
1489
1490 for (i = 1; i < COUNTERS_SIZE; i++)
1491 counters[i] += counters[i - 1];
1492
1493 for (i = num - 1; i >= 0; i--) {
1494 buf_num = array_buf[i].count;
1495 addr = get4bits(buf_num, shift);
1496 counters[addr]--;
1497 new_addr = counters[addr];
1498 array[new_addr] = array_buf[i];
1499 }
1500
1501 shift += RADIX_BASE;
1502 }
1503 }
1504
1505 /*
1506 * Size of the core byte set - how many bytes cover 90% of the sample
1507 *
1508 * There are several types of structured binary data that use nearly all byte
1509 * values. The distribution can be uniform and counts in all buckets will be
1510 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1511 *
1512 * Other possibility is normal (Gaussian) distribution, where the data could
1513 * be potentially compressible, but we have to take a few more steps to decide
1514 * how much.
1515 *
1516 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1517 * compression algo can easy fix that
1518 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1519 * probability is not compressible
1520 */
1521 #define BYTE_CORE_SET_LOW (64)
1522 #define BYTE_CORE_SET_HIGH (200)
1523
byte_core_set_size(struct heuristic_ws * ws)1524 static int byte_core_set_size(struct heuristic_ws *ws)
1525 {
1526 u32 i;
1527 u32 coreset_sum = 0;
1528 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1529 struct bucket_item *bucket = ws->bucket;
1530
1531 /* Sort in reverse order */
1532 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1533
1534 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1535 coreset_sum += bucket[i].count;
1536
1537 if (coreset_sum > core_set_threshold)
1538 return i;
1539
1540 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1541 coreset_sum += bucket[i].count;
1542 if (coreset_sum > core_set_threshold)
1543 break;
1544 }
1545
1546 return i;
1547 }
1548
1549 /*
1550 * Count byte values in buckets.
1551 * This heuristic can detect textual data (configs, xml, json, html, etc).
1552 * Because in most text-like data byte set is restricted to limited number of
1553 * possible characters, and that restriction in most cases makes data easy to
1554 * compress.
1555 *
1556 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1557 * less - compressible
1558 * more - need additional analysis
1559 */
1560 #define BYTE_SET_THRESHOLD (64)
1561
byte_set_size(const struct heuristic_ws * ws)1562 static u32 byte_set_size(const struct heuristic_ws *ws)
1563 {
1564 u32 i;
1565 u32 byte_set_size = 0;
1566
1567 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1568 if (ws->bucket[i].count > 0)
1569 byte_set_size++;
1570 }
1571
1572 /*
1573 * Continue collecting count of byte values in buckets. If the byte
1574 * set size is bigger then the threshold, it's pointless to continue,
1575 * the detection technique would fail for this type of data.
1576 */
1577 for (; i < BUCKET_SIZE; i++) {
1578 if (ws->bucket[i].count > 0) {
1579 byte_set_size++;
1580 if (byte_set_size > BYTE_SET_THRESHOLD)
1581 return byte_set_size;
1582 }
1583 }
1584
1585 return byte_set_size;
1586 }
1587
sample_repeated_patterns(struct heuristic_ws * ws)1588 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1589 {
1590 const u32 half_of_sample = ws->sample_size / 2;
1591 const u8 *data = ws->sample;
1592
1593 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1594 }
1595
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1596 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1597 struct heuristic_ws *ws)
1598 {
1599 struct page *page;
1600 u64 index, index_end;
1601 u32 i, curr_sample_pos;
1602 u8 *in_data;
1603
1604 /*
1605 * Compression handles the input data by chunks of 128KiB
1606 * (defined by BTRFS_MAX_UNCOMPRESSED)
1607 *
1608 * We do the same for the heuristic and loop over the whole range.
1609 *
1610 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1611 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1612 */
1613 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1614 end = start + BTRFS_MAX_UNCOMPRESSED;
1615
1616 index = start >> PAGE_SHIFT;
1617 index_end = end >> PAGE_SHIFT;
1618
1619 /* Don't miss unaligned end */
1620 if (!IS_ALIGNED(end, PAGE_SIZE))
1621 index_end++;
1622
1623 curr_sample_pos = 0;
1624 while (index < index_end) {
1625 page = find_get_page(inode->i_mapping, index);
1626 in_data = kmap_local_page(page);
1627 /* Handle case where the start is not aligned to PAGE_SIZE */
1628 i = start % PAGE_SIZE;
1629 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1630 /* Don't sample any garbage from the last page */
1631 if (start > end - SAMPLING_READ_SIZE)
1632 break;
1633 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1634 SAMPLING_READ_SIZE);
1635 i += SAMPLING_INTERVAL;
1636 start += SAMPLING_INTERVAL;
1637 curr_sample_pos += SAMPLING_READ_SIZE;
1638 }
1639 kunmap_local(in_data);
1640 put_page(page);
1641
1642 index++;
1643 }
1644
1645 ws->sample_size = curr_sample_pos;
1646 }
1647
1648 /*
1649 * Compression heuristic.
1650 *
1651 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1652 * quickly (compared to direct compression) detect data characteristics
1653 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1654 * data.
1655 *
1656 * The following types of analysis can be performed:
1657 * - detect mostly zero data
1658 * - detect data with low "byte set" size (text, etc)
1659 * - detect data with low/high "core byte" set
1660 *
1661 * Return non-zero if the compression should be done, 0 otherwise.
1662 */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1663 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1664 {
1665 struct list_head *ws_list = get_workspace(0, 0);
1666 struct heuristic_ws *ws;
1667 u32 i;
1668 u8 byte;
1669 int ret = 0;
1670
1671 ws = list_entry(ws_list, struct heuristic_ws, list);
1672
1673 heuristic_collect_sample(inode, start, end, ws);
1674
1675 if (sample_repeated_patterns(ws)) {
1676 ret = 1;
1677 goto out;
1678 }
1679
1680 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1681
1682 for (i = 0; i < ws->sample_size; i++) {
1683 byte = ws->sample[i];
1684 ws->bucket[byte].count++;
1685 }
1686
1687 i = byte_set_size(ws);
1688 if (i < BYTE_SET_THRESHOLD) {
1689 ret = 2;
1690 goto out;
1691 }
1692
1693 i = byte_core_set_size(ws);
1694 if (i <= BYTE_CORE_SET_LOW) {
1695 ret = 3;
1696 goto out;
1697 }
1698
1699 if (i >= BYTE_CORE_SET_HIGH) {
1700 ret = 0;
1701 goto out;
1702 }
1703
1704 i = shannon_entropy(ws);
1705 if (i <= ENTROPY_LVL_ACEPTABLE) {
1706 ret = 4;
1707 goto out;
1708 }
1709
1710 /*
1711 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1712 * needed to give green light to compression.
1713 *
1714 * For now just assume that compression at that level is not worth the
1715 * resources because:
1716 *
1717 * 1. it is possible to defrag the data later
1718 *
1719 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1720 * values, every bucket has counter at level ~54. The heuristic would
1721 * be confused. This can happen when data have some internal repeated
1722 * patterns like "abbacbbc...". This can be detected by analyzing
1723 * pairs of bytes, which is too costly.
1724 */
1725 if (i < ENTROPY_LVL_HIGH) {
1726 ret = 5;
1727 goto out;
1728 } else {
1729 ret = 0;
1730 goto out;
1731 }
1732
1733 out:
1734 put_workspace(0, ws_list);
1735 return ret;
1736 }
1737
1738 /*
1739 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1740 * level, unrecognized string will set the default level
1741 */
btrfs_compress_str2level(unsigned int type,const char * str)1742 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1743 {
1744 unsigned int level = 0;
1745 int ret;
1746
1747 if (!type)
1748 return 0;
1749
1750 if (str[0] == ':') {
1751 ret = kstrtouint(str + 1, 10, &level);
1752 if (ret)
1753 level = 0;
1754 }
1755
1756 level = btrfs_compress_set_level(type, level);
1757
1758 return level;
1759 }
1760