1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cadence CDNSP DRD Driver.
4 *
5 * Copyright (C) 2020 Cadence.
6 *
7 * Author: Pawel Laszczak <pawell@cadence.com>
8 *
9 */
10
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27
cdnsp_port_speed(unsigned int port_status)28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30 /*Detect gadget speed based on PORTSC register*/
31 if (DEV_SUPERSPEEDPLUS(port_status))
32 return USB_SPEED_SUPER_PLUS;
33 else if (DEV_SUPERSPEED(port_status))
34 return USB_SPEED_SUPER;
35 else if (DEV_HIGHSPEED(port_status))
36 return USB_SPEED_HIGH;
37 else if (DEV_FULLSPEED(port_status))
38 return USB_SPEED_FULL;
39
40 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
41 return USB_SPEED_UNKNOWN;
42 }
43
44 /*
45 * Given a port state, this function returns a value that would result in the
46 * port being in the same state, if the value was written to the port status
47 * control register.
48 * Save Read Only (RO) bits and save read/write bits where
49 * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
50 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
51 */
cdnsp_port_state_to_neutral(u32 state)52 u32 cdnsp_port_state_to_neutral(u32 state)
53 {
54 /* Save read-only status and port state. */
55 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
56 }
57
58 /**
59 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
60 * with capability ID id.
61 * @base: PCI MMIO registers base address.
62 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
63 * beginning of list)
64 * @id: Extended capability ID to search for.
65 *
66 * Returns the offset of the next matching extended capability structure.
67 * Some capabilities can occur several times,
68 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
69 */
cdnsp_find_next_ext_cap(void __iomem * base,u32 start,int id)70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
71 {
72 u32 offset = start;
73 u32 next;
74 u32 val;
75
76 if (!start || start == HCC_PARAMS_OFFSET) {
77 val = readl(base + HCC_PARAMS_OFFSET);
78 if (val == ~0)
79 return 0;
80
81 offset = HCC_EXT_CAPS(val) << 2;
82 if (!offset)
83 return 0;
84 };
85
86 do {
87 val = readl(base + offset);
88 if (val == ~0)
89 return 0;
90
91 if (EXT_CAPS_ID(val) == id && offset != start)
92 return offset;
93
94 next = EXT_CAPS_NEXT(val);
95 offset += next << 2;
96 } while (next);
97
98 return 0;
99 }
100
cdnsp_set_link_state(struct cdnsp_device * pdev,__le32 __iomem * port_regs,u32 link_state)101 void cdnsp_set_link_state(struct cdnsp_device *pdev,
102 __le32 __iomem *port_regs,
103 u32 link_state)
104 {
105 int port_num = 0xFF;
106 u32 temp;
107
108 temp = readl(port_regs);
109 temp = cdnsp_port_state_to_neutral(temp);
110 temp |= PORT_WKCONN_E | PORT_WKDISC_E;
111 writel(temp, port_regs);
112
113 temp &= ~PORT_PLS_MASK;
114 temp |= PORT_LINK_STROBE | link_state;
115
116 if (pdev->active_port)
117 port_num = pdev->active_port->port_num;
118
119 trace_cdnsp_handle_port_status(port_num, readl(port_regs));
120 writel(temp, port_regs);
121 trace_cdnsp_link_state_changed(port_num, readl(port_regs));
122 }
123
cdnsp_disable_port(struct cdnsp_device * pdev,__le32 __iomem * port_regs)124 static void cdnsp_disable_port(struct cdnsp_device *pdev,
125 __le32 __iomem *port_regs)
126 {
127 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
128
129 writel(temp | PORT_PED, port_regs);
130 }
131
cdnsp_clear_port_change_bit(struct cdnsp_device * pdev,__le32 __iomem * port_regs)132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
133 __le32 __iomem *port_regs)
134 {
135 u32 portsc = readl(port_regs);
136
137 writel(cdnsp_port_state_to_neutral(portsc) |
138 (portsc & PORT_CHANGE_BITS), port_regs);
139 }
140
cdnsp_set_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
142 {
143 __le32 __iomem *reg;
144 void __iomem *base;
145 u32 offset = 0;
146
147 base = &pdev->cap_regs->hc_capbase;
148 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
149 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
150
151 bit = readl(reg) | bit;
152 writel(bit, reg);
153 }
154
cdnsp_clear_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
156 {
157 __le32 __iomem *reg;
158 void __iomem *base;
159 u32 offset = 0;
160
161 base = &pdev->cap_regs->hc_capbase;
162 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
163 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
164
165 bit = readl(reg) & ~bit;
166 writel(bit, reg);
167 }
168
169 /*
170 * Disable interrupts and begin the controller halting process.
171 */
cdnsp_quiesce(struct cdnsp_device * pdev)172 static void cdnsp_quiesce(struct cdnsp_device *pdev)
173 {
174 u32 halted;
175 u32 mask;
176 u32 cmd;
177
178 mask = ~(u32)(CDNSP_IRQS);
179
180 halted = readl(&pdev->op_regs->status) & STS_HALT;
181 if (!halted)
182 mask &= ~(CMD_R_S | CMD_DEVEN);
183
184 cmd = readl(&pdev->op_regs->command);
185 cmd &= mask;
186 writel(cmd, &pdev->op_regs->command);
187 }
188
189 /*
190 * Force controller into halt state.
191 *
192 * Disable any IRQs and clear the run/stop bit.
193 * Controller will complete any current and actively pipelined transactions, and
194 * should halt within 16 ms of the run/stop bit being cleared.
195 * Read controller Halted bit in the status register to see when the
196 * controller is finished.
197 */
cdnsp_halt(struct cdnsp_device * pdev)198 int cdnsp_halt(struct cdnsp_device *pdev)
199 {
200 int ret;
201 u32 val;
202
203 cdnsp_quiesce(pdev);
204
205 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
206 val & STS_HALT, 1,
207 CDNSP_MAX_HALT_USEC);
208 if (ret) {
209 dev_err(pdev->dev, "ERROR: Device halt failed\n");
210 return ret;
211 }
212
213 pdev->cdnsp_state |= CDNSP_STATE_HALTED;
214
215 return 0;
216 }
217
218 /*
219 * device controller died, register read returns 0xffffffff, or command never
220 * ends.
221 */
cdnsp_died(struct cdnsp_device * pdev)222 void cdnsp_died(struct cdnsp_device *pdev)
223 {
224 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
225 pdev->cdnsp_state |= CDNSP_STATE_DYING;
226 cdnsp_halt(pdev);
227 }
228
229 /*
230 * Set the run bit and wait for the device to be running.
231 */
cdnsp_start(struct cdnsp_device * pdev)232 static int cdnsp_start(struct cdnsp_device *pdev)
233 {
234 u32 temp;
235 int ret;
236
237 temp = readl(&pdev->op_regs->command);
238 temp |= (CMD_R_S | CMD_DEVEN);
239 writel(temp, &pdev->op_regs->command);
240
241 pdev->cdnsp_state = 0;
242
243 /*
244 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
245 * running.
246 */
247 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
248 !(temp & STS_HALT), 1,
249 CDNSP_MAX_HALT_USEC);
250 if (ret) {
251 pdev->cdnsp_state = CDNSP_STATE_DYING;
252 dev_err(pdev->dev, "ERROR: Controller run failed\n");
253 }
254
255 return ret;
256 }
257
258 /*
259 * Reset a halted controller.
260 *
261 * This resets pipelines, timers, counters, state machines, etc.
262 * Transactions will be terminated immediately, and operational registers
263 * will be set to their defaults.
264 */
cdnsp_reset(struct cdnsp_device * pdev)265 int cdnsp_reset(struct cdnsp_device *pdev)
266 {
267 u32 command;
268 u32 temp;
269 int ret;
270
271 temp = readl(&pdev->op_regs->status);
272
273 if (temp == ~(u32)0) {
274 dev_err(pdev->dev, "Device not accessible, reset failed.\n");
275 return -ENODEV;
276 }
277
278 if ((temp & STS_HALT) == 0) {
279 dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
280 return -EINVAL;
281 }
282
283 command = readl(&pdev->op_regs->command);
284 command |= CMD_RESET;
285 writel(command, &pdev->op_regs->command);
286
287 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
288 !(temp & CMD_RESET), 1,
289 10 * 1000);
290 if (ret) {
291 dev_err(pdev->dev, "ERROR: Controller reset failed\n");
292 return ret;
293 }
294
295 /*
296 * CDNSP cannot write any doorbells or operational registers other
297 * than status until the "Controller Not Ready" flag is cleared.
298 */
299 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
300 !(temp & STS_CNR), 1,
301 10 * 1000);
302
303 if (ret) {
304 dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
305 return ret;
306 }
307
308 dev_dbg(pdev->dev, "Controller ready to work");
309
310 return ret;
311 }
312
313 /*
314 * cdnsp_get_endpoint_index - Find the index for an endpoint given its
315 * descriptor.Use the return value to right shift 1 for the bitmask.
316 *
317 * Index = (epnum * 2) + direction - 1,
318 * where direction = 0 for OUT, 1 for IN.
319 * For control endpoints, the IN index is used (OUT index is unused), so
320 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
321 */
322 static unsigned int
cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor * desc)323 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
324 {
325 unsigned int index = (unsigned int)usb_endpoint_num(desc);
326
327 if (usb_endpoint_xfer_control(desc))
328 return index * 2;
329
330 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
331 }
332
333 /*
334 * Find the flag for this endpoint (for use in the control context). Use the
335 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
336 * bit 1, etc.
337 */
338 static unsigned int
cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor * desc)339 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
340 {
341 return 1 << (cdnsp_get_endpoint_index(desc) + 1);
342 }
343
cdnsp_ep_enqueue(struct cdnsp_ep * pep,struct cdnsp_request * preq)344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
345 {
346 struct cdnsp_device *pdev = pep->pdev;
347 struct usb_request *request;
348 int ret;
349
350 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
351 trace_cdnsp_request_enqueue_busy(preq);
352 return -EBUSY;
353 }
354
355 request = &preq->request;
356 request->actual = 0;
357 request->status = -EINPROGRESS;
358 preq->direction = pep->direction;
359 preq->epnum = pep->number;
360 preq->td.drbl = 0;
361
362 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
363 if (ret) {
364 trace_cdnsp_request_enqueue_error(preq);
365 return ret;
366 }
367
368 list_add_tail(&preq->list, &pep->pending_list);
369
370 trace_cdnsp_request_enqueue(preq);
371
372 switch (usb_endpoint_type(pep->endpoint.desc)) {
373 case USB_ENDPOINT_XFER_CONTROL:
374 ret = cdnsp_queue_ctrl_tx(pdev, preq);
375 break;
376 case USB_ENDPOINT_XFER_BULK:
377 case USB_ENDPOINT_XFER_INT:
378 ret = cdnsp_queue_bulk_tx(pdev, preq);
379 break;
380 case USB_ENDPOINT_XFER_ISOC:
381 ret = cdnsp_queue_isoc_tx_prepare(pdev, preq);
382 }
383
384 if (ret)
385 goto unmap;
386
387 return 0;
388
389 unmap:
390 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
391 pep->direction);
392 list_del(&preq->list);
393 trace_cdnsp_request_enqueue_error(preq);
394
395 return ret;
396 }
397
398 /*
399 * Remove the request's TD from the endpoint ring. This may cause the
400 * controller to stop USB transfers, potentially stopping in the middle of a
401 * TRB buffer. The controller should pick up where it left off in the TD,
402 * unless a Set Transfer Ring Dequeue Pointer is issued.
403 *
404 * The TRBs that make up the buffers for the canceled request will be "removed"
405 * from the ring. Since the ring is a contiguous structure, they can't be
406 * physically removed. Instead, there are two options:
407 *
408 * 1) If the controller is in the middle of processing the request to be
409 * canceled, we simply move the ring's dequeue pointer past those TRBs
410 * using the Set Transfer Ring Dequeue Pointer command. This will be
411 * the common case, when drivers timeout on the last submitted request
412 * and attempt to cancel.
413 *
414 * 2) If the controller is in the middle of a different TD, we turn the TRBs
415 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
416 * The controller will need to invalidate the any TRBs it has cached after
417 * the stop endpoint command.
418 *
419 * 3) The TD may have completed by the time the Stop Endpoint Command
420 * completes, so software needs to handle that case too.
421 *
422 */
cdnsp_ep_dequeue(struct cdnsp_ep * pep,struct cdnsp_request * preq)423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
424 {
425 struct cdnsp_device *pdev = pep->pdev;
426 int ret_stop = 0;
427 int ret_rem;
428
429 trace_cdnsp_request_dequeue(preq);
430
431 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
432 ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
433
434 ret_rem = cdnsp_remove_request(pdev, preq, pep);
435
436 return ret_rem ? ret_rem : ret_stop;
437 }
438
cdnsp_zero_in_ctx(struct cdnsp_device * pdev)439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
440 {
441 struct cdnsp_input_control_ctx *ctrl_ctx;
442 struct cdnsp_slot_ctx *slot_ctx;
443 struct cdnsp_ep_ctx *ep_ctx;
444 int i;
445
446 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
447
448 /*
449 * When a device's add flag and drop flag are zero, any subsequent
450 * configure endpoint command will leave that endpoint's state
451 * untouched. Make sure we don't leave any old state in the input
452 * endpoint contexts.
453 */
454 ctrl_ctx->drop_flags = 0;
455 ctrl_ctx->add_flags = 0;
456 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
457 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
458
459 /* Endpoint 0 is always valid */
460 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
461 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
462 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
463 ep_ctx->ep_info = 0;
464 ep_ctx->ep_info2 = 0;
465 ep_ctx->deq = 0;
466 ep_ctx->tx_info = 0;
467 }
468 }
469
470 /* Issue a configure endpoint command and wait for it to finish. */
cdnsp_configure_endpoint(struct cdnsp_device * pdev)471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
472 {
473 int ret;
474
475 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
476 cdnsp_ring_cmd_db(pdev);
477 ret = cdnsp_wait_for_cmd_compl(pdev);
478 if (ret) {
479 dev_err(pdev->dev,
480 "ERR: unexpected command completion code 0x%x.\n", ret);
481 return -EINVAL;
482 }
483
484 return ret;
485 }
486
cdnsp_invalidate_ep_events(struct cdnsp_device * pdev,struct cdnsp_ep * pep)487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
488 struct cdnsp_ep *pep)
489 {
490 struct cdnsp_segment *segment;
491 union cdnsp_trb *event;
492 u32 cycle_state;
493 u32 data;
494
495 event = pdev->event_ring->dequeue;
496 segment = pdev->event_ring->deq_seg;
497 cycle_state = pdev->event_ring->cycle_state;
498
499 while (1) {
500 data = le32_to_cpu(event->trans_event.flags);
501
502 /* Check the owner of the TRB. */
503 if ((data & TRB_CYCLE) != cycle_state)
504 break;
505
506 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
507 TRB_TO_EP_ID(data) == (pep->idx + 1)) {
508 data |= TRB_EVENT_INVALIDATE;
509 event->trans_event.flags = cpu_to_le32(data);
510 }
511
512 if (cdnsp_last_trb_on_seg(segment, event)) {
513 cycle_state ^= 1;
514 segment = pdev->event_ring->deq_seg->next;
515 event = segment->trbs;
516 } else {
517 event++;
518 }
519 }
520 }
521
cdnsp_wait_for_cmd_compl(struct cdnsp_device * pdev)522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
523 {
524 struct cdnsp_segment *event_deq_seg;
525 union cdnsp_trb *cmd_trb;
526 dma_addr_t cmd_deq_dma;
527 union cdnsp_trb *event;
528 u32 cycle_state;
529 int ret, val;
530 u64 cmd_dma;
531 u32 flags;
532
533 cmd_trb = pdev->cmd.command_trb;
534 pdev->cmd.status = 0;
535
536 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
537
538 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
539 !CMD_RING_BUSY(val), 1,
540 CDNSP_CMD_TIMEOUT);
541 if (ret) {
542 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
543 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
544 pdev->cdnsp_state = CDNSP_STATE_DYING;
545 return -ETIMEDOUT;
546 }
547
548 event = pdev->event_ring->dequeue;
549 event_deq_seg = pdev->event_ring->deq_seg;
550 cycle_state = pdev->event_ring->cycle_state;
551
552 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
553 if (!cmd_deq_dma)
554 return -EINVAL;
555
556 while (1) {
557 flags = le32_to_cpu(event->event_cmd.flags);
558
559 /* Check the owner of the TRB. */
560 if ((flags & TRB_CYCLE) != cycle_state)
561 return -EINVAL;
562
563 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
564
565 /*
566 * Check whether the completion event is for last queued
567 * command.
568 */
569 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
570 cmd_dma != (u64)cmd_deq_dma) {
571 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
572 event++;
573 continue;
574 }
575
576 if (cdnsp_last_trb_on_ring(pdev->event_ring,
577 event_deq_seg, event))
578 cycle_state ^= 1;
579
580 event_deq_seg = event_deq_seg->next;
581 event = event_deq_seg->trbs;
582 continue;
583 }
584
585 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
586
587 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
588 if (pdev->cmd.status == COMP_SUCCESS)
589 return 0;
590
591 return -pdev->cmd.status;
592 }
593 }
594
cdnsp_halt_endpoint(struct cdnsp_device * pdev,struct cdnsp_ep * pep,int value)595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
596 struct cdnsp_ep *pep,
597 int value)
598 {
599 int ret;
600
601 trace_cdnsp_ep_halt(value ? "Set" : "Clear");
602
603 ret = cdnsp_cmd_stop_ep(pdev, pep);
604 if (ret)
605 return ret;
606
607 if (value) {
608 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
609 cdnsp_queue_halt_endpoint(pdev, pep->idx);
610 cdnsp_ring_cmd_db(pdev);
611 ret = cdnsp_wait_for_cmd_compl(pdev);
612 }
613
614 pep->ep_state |= EP_HALTED;
615 } else {
616 cdnsp_queue_reset_ep(pdev, pep->idx);
617 cdnsp_ring_cmd_db(pdev);
618 ret = cdnsp_wait_for_cmd_compl(pdev);
619 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
620
621 if (ret)
622 return ret;
623
624 pep->ep_state &= ~EP_HALTED;
625
626 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
627 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
628
629 pep->ep_state &= ~EP_WEDGE;
630 }
631
632 return 0;
633 }
634
cdnsp_update_eps_configuration(struct cdnsp_device * pdev,struct cdnsp_ep * pep)635 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
636 struct cdnsp_ep *pep)
637 {
638 struct cdnsp_input_control_ctx *ctrl_ctx;
639 struct cdnsp_slot_ctx *slot_ctx;
640 int ret = 0;
641 u32 ep_sts;
642 int i;
643
644 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
645
646 /* Don't issue the command if there's no endpoints to update. */
647 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
648 return 0;
649
650 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
651 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
652 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
653
654 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
655 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
656 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
657 __le32 le32 = cpu_to_le32(BIT(i));
658
659 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
660 (ctrl_ctx->add_flags & le32) || i == 1) {
661 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
662 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
663 break;
664 }
665 }
666
667 ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
668
669 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
670 ep_sts == EP_STATE_DISABLED) ||
671 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
672 ret = cdnsp_configure_endpoint(pdev);
673
674 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
675 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
676
677 cdnsp_zero_in_ctx(pdev);
678
679 return ret;
680 }
681
682 /*
683 * This submits a Reset Device Command, which will set the device state to 0,
684 * set the device address to 0, and disable all the endpoints except the default
685 * control endpoint. The USB core should come back and call
686 * cdnsp_setup_device(), and then re-set up the configuration.
687 */
cdnsp_reset_device(struct cdnsp_device * pdev)688 int cdnsp_reset_device(struct cdnsp_device *pdev)
689 {
690 struct cdnsp_slot_ctx *slot_ctx;
691 int slot_state;
692 int ret, i;
693
694 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
695 slot_ctx->dev_info = 0;
696 pdev->device_address = 0;
697
698 /* If device is not setup, there is no point in resetting it. */
699 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
700 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
701 trace_cdnsp_reset_device(slot_ctx);
702
703 if (slot_state <= SLOT_STATE_DEFAULT &&
704 pdev->eps[0].ep_state & EP_HALTED) {
705 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
706 }
707
708 /*
709 * During Reset Device command controller shall transition the
710 * endpoint ep0 to the Running State.
711 */
712 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
713 pdev->eps[0].ep_state |= EP_ENABLED;
714
715 if (slot_state <= SLOT_STATE_DEFAULT)
716 return 0;
717
718 cdnsp_queue_reset_device(pdev);
719 cdnsp_ring_cmd_db(pdev);
720 ret = cdnsp_wait_for_cmd_compl(pdev);
721
722 /*
723 * After Reset Device command all not default endpoints
724 * are in Disabled state.
725 */
726 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
727 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
728
729 trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
730
731 if (ret)
732 dev_err(pdev->dev, "Reset device failed with error code %d",
733 ret);
734
735 return ret;
736 }
737
738 /*
739 * Sets the MaxPStreams field and the Linear Stream Array field.
740 * Sets the dequeue pointer to the stream context array.
741 */
cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device * pdev,struct cdnsp_ep_ctx * ep_ctx,struct cdnsp_stream_info * stream_info)742 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
743 struct cdnsp_ep_ctx *ep_ctx,
744 struct cdnsp_stream_info *stream_info)
745 {
746 u32 max_primary_streams;
747
748 /* MaxPStreams is the number of stream context array entries, not the
749 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
750 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
751 */
752 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
753 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
754 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
755 | EP_HAS_LSA);
756 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
757 }
758
759 /*
760 * The drivers use this function to prepare a bulk endpoints to use streams.
761 *
762 * Don't allow the call to succeed if endpoint only supports one stream
763 * (which means it doesn't support streams at all).
764 */
cdnsp_alloc_streams(struct cdnsp_device * pdev,struct cdnsp_ep * pep)765 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
766 {
767 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
768 unsigned int num_stream_ctxs;
769 int ret;
770
771 if (num_streams == 0)
772 return 0;
773
774 if (num_streams > STREAM_NUM_STREAMS)
775 return -EINVAL;
776
777 /*
778 * Add two to the number of streams requested to account for
779 * stream 0 that is reserved for controller usage and one additional
780 * for TASK SET FULL response.
781 */
782 num_streams += 2;
783
784 /* The stream context array size must be a power of two */
785 num_stream_ctxs = roundup_pow_of_two(num_streams);
786
787 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
788
789 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
790 if (ret)
791 return ret;
792
793 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
794
795 pep->ep_state |= EP_HAS_STREAMS;
796 pep->stream_info.td_count = 0;
797 pep->stream_info.first_prime_det = 0;
798
799 /* Subtract 1 for stream 0, which drivers can't use. */
800 return num_streams - 1;
801 }
802
cdnsp_disable_slot(struct cdnsp_device * pdev)803 int cdnsp_disable_slot(struct cdnsp_device *pdev)
804 {
805 int ret;
806
807 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
808 cdnsp_ring_cmd_db(pdev);
809 ret = cdnsp_wait_for_cmd_compl(pdev);
810
811 pdev->slot_id = 0;
812 pdev->active_port = NULL;
813
814 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
815
816 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
817 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
818
819 return ret;
820 }
821
cdnsp_enable_slot(struct cdnsp_device * pdev)822 int cdnsp_enable_slot(struct cdnsp_device *pdev)
823 {
824 struct cdnsp_slot_ctx *slot_ctx;
825 int slot_state;
826 int ret;
827
828 /* If device is not setup, there is no point in resetting it */
829 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
830 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
831
832 if (slot_state != SLOT_STATE_DISABLED)
833 return 0;
834
835 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
836 cdnsp_ring_cmd_db(pdev);
837 ret = cdnsp_wait_for_cmd_compl(pdev);
838 if (ret)
839 goto show_trace;
840
841 pdev->slot_id = 1;
842
843 show_trace:
844 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
845
846 return ret;
847 }
848
849 /*
850 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
851 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
852 */
cdnsp_setup_device(struct cdnsp_device * pdev,enum cdnsp_setup_dev setup)853 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
854 {
855 struct cdnsp_input_control_ctx *ctrl_ctx;
856 struct cdnsp_slot_ctx *slot_ctx;
857 int dev_state = 0;
858 int ret;
859
860 if (!pdev->slot_id) {
861 trace_cdnsp_slot_id("incorrect");
862 return -EINVAL;
863 }
864
865 if (!pdev->active_port->port_num)
866 return -EINVAL;
867
868 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
869 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
870
871 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
872 trace_cdnsp_slot_already_in_default(slot_ctx);
873 return 0;
874 }
875
876 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
877 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
878
879 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
880 ret = cdnsp_setup_addressable_priv_dev(pdev);
881 if (ret)
882 return ret;
883 }
884
885 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
886
887 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
888 ctrl_ctx->drop_flags = 0;
889
890 trace_cdnsp_setup_device_slot(slot_ctx);
891
892 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
893 cdnsp_ring_cmd_db(pdev);
894 ret = cdnsp_wait_for_cmd_compl(pdev);
895
896 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
897
898 /* Zero the input context control for later use. */
899 ctrl_ctx->add_flags = 0;
900 ctrl_ctx->drop_flags = 0;
901
902 return ret;
903 }
904
cdnsp_set_usb2_hardware_lpm(struct cdnsp_device * pdev,struct usb_request * req,int enable)905 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
906 struct usb_request *req,
907 int enable)
908 {
909 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
910 return;
911
912 trace_cdnsp_lpm(enable);
913
914 if (enable)
915 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
916 &pdev->active_port->regs->portpmsc);
917 else
918 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
919 }
920
cdnsp_get_frame(struct cdnsp_device * pdev)921 static int cdnsp_get_frame(struct cdnsp_device *pdev)
922 {
923 return readl(&pdev->run_regs->microframe_index) >> 3;
924 }
925
cdnsp_gadget_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)926 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
927 const struct usb_endpoint_descriptor *desc)
928 {
929 struct cdnsp_input_control_ctx *ctrl_ctx;
930 struct cdnsp_device *pdev;
931 struct cdnsp_ep *pep;
932 unsigned long flags;
933 u32 added_ctxs;
934 int ret;
935
936 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
937 !desc->wMaxPacketSize)
938 return -EINVAL;
939
940 pep = to_cdnsp_ep(ep);
941 pdev = pep->pdev;
942 pep->ep_state &= ~EP_UNCONFIGURED;
943
944 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
945 "%s is already enabled\n", pep->name))
946 return 0;
947
948 spin_lock_irqsave(&pdev->lock, flags);
949
950 added_ctxs = cdnsp_get_endpoint_flag(desc);
951 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
952 dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
953 ret = -EINVAL;
954 goto unlock;
955 }
956
957 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
958
959 if (pdev->gadget.speed == USB_SPEED_FULL) {
960 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
961 pep->interval = desc->bInterval << 3;
962 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
963 pep->interval = BIT(desc->bInterval - 1) << 3;
964 }
965
966 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
967 if (pep->interval > BIT(12)) {
968 dev_err(pdev->dev, "bInterval %d not supported\n",
969 desc->bInterval);
970 ret = -EINVAL;
971 goto unlock;
972 }
973 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
974 }
975
976 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
977 if (ret)
978 goto unlock;
979
980 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
981 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
982 ctrl_ctx->drop_flags = 0;
983
984 ret = cdnsp_update_eps_configuration(pdev, pep);
985 if (ret) {
986 cdnsp_free_endpoint_rings(pdev, pep);
987 goto unlock;
988 }
989
990 pep->ep_state |= EP_ENABLED;
991 pep->ep_state &= ~EP_STOPPED;
992
993 unlock:
994 trace_cdnsp_ep_enable_end(pep, 0);
995 spin_unlock_irqrestore(&pdev->lock, flags);
996
997 return ret;
998 }
999
cdnsp_gadget_ep_disable(struct usb_ep * ep)1000 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1001 {
1002 struct cdnsp_input_control_ctx *ctrl_ctx;
1003 struct cdnsp_request *preq;
1004 struct cdnsp_device *pdev;
1005 struct cdnsp_ep *pep;
1006 unsigned long flags;
1007 u32 drop_flag;
1008 int ret = 0;
1009
1010 if (!ep)
1011 return -EINVAL;
1012
1013 pep = to_cdnsp_ep(ep);
1014 pdev = pep->pdev;
1015
1016 spin_lock_irqsave(&pdev->lock, flags);
1017
1018 if (!(pep->ep_state & EP_ENABLED)) {
1019 dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1020 ret = -EINVAL;
1021 goto finish;
1022 }
1023
1024 pep->ep_state |= EP_DIS_IN_RROGRESS;
1025
1026 /* Endpoint was unconfigured by Reset Device command. */
1027 if (!(pep->ep_state & EP_UNCONFIGURED)) {
1028 cdnsp_cmd_stop_ep(pdev, pep);
1029 cdnsp_cmd_flush_ep(pdev, pep);
1030 }
1031
1032 /* Remove all queued USB requests. */
1033 while (!list_empty(&pep->pending_list)) {
1034 preq = next_request(&pep->pending_list);
1035 cdnsp_ep_dequeue(pep, preq);
1036 }
1037
1038 cdnsp_invalidate_ep_events(pdev, pep);
1039
1040 pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1041 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1042 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1043 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1044 ctrl_ctx->add_flags = 0;
1045
1046 cdnsp_endpoint_zero(pdev, pep);
1047
1048 if (!(pep->ep_state & EP_UNCONFIGURED))
1049 ret = cdnsp_update_eps_configuration(pdev, pep);
1050
1051 cdnsp_free_endpoint_rings(pdev, pep);
1052
1053 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1054 pep->ep_state |= EP_STOPPED;
1055
1056 finish:
1057 trace_cdnsp_ep_disable_end(pep, 0);
1058 spin_unlock_irqrestore(&pdev->lock, flags);
1059
1060 return ret;
1061 }
1062
cdnsp_gadget_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1063 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1064 gfp_t gfp_flags)
1065 {
1066 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1067 struct cdnsp_request *preq;
1068
1069 preq = kzalloc(sizeof(*preq), gfp_flags);
1070 if (!preq)
1071 return NULL;
1072
1073 preq->epnum = pep->number;
1074 preq->pep = pep;
1075
1076 trace_cdnsp_alloc_request(preq);
1077
1078 return &preq->request;
1079 }
1080
cdnsp_gadget_ep_free_request(struct usb_ep * ep,struct usb_request * request)1081 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1082 struct usb_request *request)
1083 {
1084 struct cdnsp_request *preq = to_cdnsp_request(request);
1085
1086 trace_cdnsp_free_request(preq);
1087 kfree(preq);
1088 }
1089
cdnsp_gadget_ep_queue(struct usb_ep * ep,struct usb_request * request,gfp_t gfp_flags)1090 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1091 struct usb_request *request,
1092 gfp_t gfp_flags)
1093 {
1094 struct cdnsp_request *preq;
1095 struct cdnsp_device *pdev;
1096 struct cdnsp_ep *pep;
1097 unsigned long flags;
1098 int ret;
1099
1100 if (!request || !ep)
1101 return -EINVAL;
1102
1103 pep = to_cdnsp_ep(ep);
1104 pdev = pep->pdev;
1105
1106 if (!(pep->ep_state & EP_ENABLED)) {
1107 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1108 pep->name);
1109 return -EINVAL;
1110 }
1111
1112 preq = to_cdnsp_request(request);
1113 spin_lock_irqsave(&pdev->lock, flags);
1114 ret = cdnsp_ep_enqueue(pep, preq);
1115 spin_unlock_irqrestore(&pdev->lock, flags);
1116
1117 return ret;
1118 }
1119
cdnsp_gadget_ep_dequeue(struct usb_ep * ep,struct usb_request * request)1120 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1121 struct usb_request *request)
1122 {
1123 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1124 struct cdnsp_device *pdev = pep->pdev;
1125 unsigned long flags;
1126 int ret;
1127
1128 if (request->status != -EINPROGRESS)
1129 return 0;
1130
1131 if (!pep->endpoint.desc) {
1132 dev_err(pdev->dev,
1133 "%s: can't dequeue to disabled endpoint\n",
1134 pep->name);
1135 return -ESHUTDOWN;
1136 }
1137
1138 /* Requests has been dequeued during disabling endpoint. */
1139 if (!(pep->ep_state & EP_ENABLED))
1140 return 0;
1141
1142 spin_lock_irqsave(&pdev->lock, flags);
1143 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1144 spin_unlock_irqrestore(&pdev->lock, flags);
1145
1146 return ret;
1147 }
1148
cdnsp_gadget_ep_set_halt(struct usb_ep * ep,int value)1149 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1150 {
1151 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1152 struct cdnsp_device *pdev = pep->pdev;
1153 struct cdnsp_request *preq;
1154 unsigned long flags;
1155 int ret;
1156
1157 spin_lock_irqsave(&pdev->lock, flags);
1158
1159 preq = next_request(&pep->pending_list);
1160 if (value) {
1161 if (preq) {
1162 trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1163 ret = -EAGAIN;
1164 goto done;
1165 }
1166 }
1167
1168 ret = cdnsp_halt_endpoint(pdev, pep, value);
1169
1170 done:
1171 spin_unlock_irqrestore(&pdev->lock, flags);
1172 return ret;
1173 }
1174
cdnsp_gadget_ep_set_wedge(struct usb_ep * ep)1175 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1176 {
1177 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1178 struct cdnsp_device *pdev = pep->pdev;
1179 unsigned long flags;
1180 int ret;
1181
1182 spin_lock_irqsave(&pdev->lock, flags);
1183 pep->ep_state |= EP_WEDGE;
1184 ret = cdnsp_halt_endpoint(pdev, pep, 1);
1185 spin_unlock_irqrestore(&pdev->lock, flags);
1186
1187 return ret;
1188 }
1189
1190 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1191 .enable = cdnsp_gadget_ep_enable,
1192 .disable = cdnsp_gadget_ep_disable,
1193 .alloc_request = cdnsp_gadget_ep_alloc_request,
1194 .free_request = cdnsp_gadget_ep_free_request,
1195 .queue = cdnsp_gadget_ep_queue,
1196 .dequeue = cdnsp_gadget_ep_dequeue,
1197 .set_halt = cdnsp_gadget_ep_set_halt,
1198 .set_wedge = cdnsp_gadget_ep_set_wedge,
1199 };
1200
1201 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1202 .enable = cdnsp_gadget_ep_enable,
1203 .disable = cdnsp_gadget_ep_disable,
1204 .alloc_request = cdnsp_gadget_ep_alloc_request,
1205 .free_request = cdnsp_gadget_ep_free_request,
1206 .queue = cdnsp_gadget_ep_queue,
1207 .dequeue = cdnsp_gadget_ep_dequeue,
1208 .set_halt = cdnsp_gadget_ep_set_halt,
1209 .set_wedge = cdnsp_gadget_ep_set_wedge,
1210 };
1211
cdnsp_gadget_giveback(struct cdnsp_ep * pep,struct cdnsp_request * preq,int status)1212 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1213 struct cdnsp_request *preq,
1214 int status)
1215 {
1216 struct cdnsp_device *pdev = pep->pdev;
1217
1218 list_del(&preq->list);
1219
1220 if (preq->request.status == -EINPROGRESS)
1221 preq->request.status = status;
1222
1223 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1224 preq->direction);
1225
1226 trace_cdnsp_request_giveback(preq);
1227
1228 if (preq != &pdev->ep0_preq) {
1229 spin_unlock(&pdev->lock);
1230 usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1231 spin_lock(&pdev->lock);
1232 }
1233 }
1234
1235 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1236 .bLength = USB_DT_ENDPOINT_SIZE,
1237 .bDescriptorType = USB_DT_ENDPOINT,
1238 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
1239 };
1240
cdnsp_run(struct cdnsp_device * pdev,enum usb_device_speed speed)1241 static int cdnsp_run(struct cdnsp_device *pdev,
1242 enum usb_device_speed speed)
1243 {
1244 u32 fs_speed = 0;
1245 u64 temp_64;
1246 u32 temp;
1247 int ret;
1248
1249 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1250 temp_64 &= ~ERST_PTR_MASK;
1251 temp = readl(&pdev->ir_set->irq_control);
1252 temp &= ~IMOD_INTERVAL_MASK;
1253 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1254 writel(temp, &pdev->ir_set->irq_control);
1255
1256 temp = readl(&pdev->port3x_regs->mode_addr);
1257
1258 switch (speed) {
1259 case USB_SPEED_SUPER_PLUS:
1260 temp |= CFG_3XPORT_SSP_SUPPORT;
1261 break;
1262 case USB_SPEED_SUPER:
1263 temp &= ~CFG_3XPORT_SSP_SUPPORT;
1264 break;
1265 case USB_SPEED_HIGH:
1266 break;
1267 case USB_SPEED_FULL:
1268 fs_speed = PORT_REG6_FORCE_FS;
1269 break;
1270 default:
1271 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1272 speed);
1273 fallthrough;
1274 case USB_SPEED_UNKNOWN:
1275 /* Default to superspeed. */
1276 speed = USB_SPEED_SUPER;
1277 break;
1278 }
1279
1280 if (speed >= USB_SPEED_SUPER) {
1281 writel(temp, &pdev->port3x_regs->mode_addr);
1282 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1283 XDEV_RXDETECT);
1284 } else {
1285 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1286 }
1287
1288 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1289 XDEV_RXDETECT);
1290
1291 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1292
1293 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1294
1295 ret = cdnsp_start(pdev);
1296 if (ret) {
1297 ret = -ENODEV;
1298 goto err;
1299 }
1300
1301 temp = readl(&pdev->op_regs->command);
1302 temp |= (CMD_INTE);
1303 writel(temp, &pdev->op_regs->command);
1304
1305 temp = readl(&pdev->ir_set->irq_pending);
1306 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1307
1308 trace_cdnsp_init("Controller ready to work");
1309 return 0;
1310 err:
1311 cdnsp_halt(pdev);
1312 return ret;
1313 }
1314
cdnsp_gadget_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1315 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1316 struct usb_gadget_driver *driver)
1317 {
1318 enum usb_device_speed max_speed = driver->max_speed;
1319 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1320 unsigned long flags;
1321 int ret;
1322
1323 spin_lock_irqsave(&pdev->lock, flags);
1324 pdev->gadget_driver = driver;
1325
1326 /* limit speed if necessary */
1327 max_speed = min(driver->max_speed, g->max_speed);
1328 ret = cdnsp_run(pdev, max_speed);
1329
1330 spin_unlock_irqrestore(&pdev->lock, flags);
1331
1332 return ret;
1333 }
1334
1335 /*
1336 * Update Event Ring Dequeue Pointer:
1337 * - When all events have finished
1338 * - To avoid "Event Ring Full Error" condition
1339 */
cdnsp_update_erst_dequeue(struct cdnsp_device * pdev,union cdnsp_trb * event_ring_deq,u8 clear_ehb)1340 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1341 union cdnsp_trb *event_ring_deq,
1342 u8 clear_ehb)
1343 {
1344 u64 temp_64;
1345 dma_addr_t deq;
1346
1347 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1348
1349 /* If necessary, update the HW's version of the event ring deq ptr. */
1350 if (event_ring_deq != pdev->event_ring->dequeue) {
1351 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1352 pdev->event_ring->dequeue);
1353 temp_64 &= ERST_PTR_MASK;
1354 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1355 }
1356
1357 /* Clear the event handler busy flag (RW1C). */
1358 if (clear_ehb)
1359 temp_64 |= ERST_EHB;
1360 else
1361 temp_64 &= ~ERST_EHB;
1362
1363 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1364 }
1365
cdnsp_clear_cmd_ring(struct cdnsp_device * pdev)1366 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1367 {
1368 struct cdnsp_segment *seg;
1369 u64 val_64;
1370 int i;
1371
1372 cdnsp_initialize_ring_info(pdev->cmd_ring);
1373
1374 seg = pdev->cmd_ring->first_seg;
1375 for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1376 memset(seg->trbs, 0,
1377 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1378 seg = seg->next;
1379 }
1380
1381 /* Set the address in the Command Ring Control register. */
1382 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1383 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1384 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1385 pdev->cmd_ring->cycle_state;
1386 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1387 }
1388
cdnsp_consume_all_events(struct cdnsp_device * pdev)1389 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1390 {
1391 struct cdnsp_segment *event_deq_seg;
1392 union cdnsp_trb *event_ring_deq;
1393 union cdnsp_trb *event;
1394 u32 cycle_bit;
1395
1396 event_ring_deq = pdev->event_ring->dequeue;
1397 event_deq_seg = pdev->event_ring->deq_seg;
1398 event = pdev->event_ring->dequeue;
1399
1400 /* Update ring dequeue pointer. */
1401 while (1) {
1402 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1403
1404 /* Does the controller or driver own the TRB? */
1405 if (cycle_bit != pdev->event_ring->cycle_state)
1406 break;
1407
1408 cdnsp_inc_deq(pdev, pdev->event_ring);
1409
1410 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1411 event++;
1412 continue;
1413 }
1414
1415 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1416 event))
1417 cycle_bit ^= 1;
1418
1419 event_deq_seg = event_deq_seg->next;
1420 event = event_deq_seg->trbs;
1421 }
1422
1423 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1424 }
1425
cdnsp_stop(struct cdnsp_device * pdev)1426 static void cdnsp_stop(struct cdnsp_device *pdev)
1427 {
1428 u32 temp;
1429
1430 cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]);
1431
1432 /* Remove internally queued request for ep0. */
1433 if (!list_empty(&pdev->eps[0].pending_list)) {
1434 struct cdnsp_request *req;
1435
1436 req = next_request(&pdev->eps[0].pending_list);
1437 if (req == &pdev->ep0_preq)
1438 cdnsp_ep_dequeue(&pdev->eps[0], req);
1439 }
1440
1441 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1442 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1443 cdnsp_disable_slot(pdev);
1444 cdnsp_halt(pdev);
1445
1446 temp = readl(&pdev->op_regs->status);
1447 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1448 temp = readl(&pdev->ir_set->irq_pending);
1449 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1450
1451 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1452 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1453
1454 /* Clear interrupt line */
1455 temp = readl(&pdev->ir_set->irq_pending);
1456 temp |= IMAN_IP;
1457 writel(temp, &pdev->ir_set->irq_pending);
1458
1459 cdnsp_consume_all_events(pdev);
1460 cdnsp_clear_cmd_ring(pdev);
1461
1462 trace_cdnsp_exit("Controller stopped.");
1463 }
1464
1465 /*
1466 * Stop controller.
1467 * This function is called by the gadget core when the driver is removed.
1468 * Disable slot, disable IRQs, and quiesce the controller.
1469 */
cdnsp_gadget_udc_stop(struct usb_gadget * g)1470 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1471 {
1472 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1473 unsigned long flags;
1474
1475 spin_lock_irqsave(&pdev->lock, flags);
1476 cdnsp_stop(pdev);
1477 pdev->gadget_driver = NULL;
1478 spin_unlock_irqrestore(&pdev->lock, flags);
1479
1480 return 0;
1481 }
1482
cdnsp_gadget_get_frame(struct usb_gadget * g)1483 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1484 {
1485 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1486
1487 return cdnsp_get_frame(pdev);
1488 }
1489
__cdnsp_gadget_wakeup(struct cdnsp_device * pdev)1490 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1491 {
1492 struct cdnsp_port_regs __iomem *port_regs;
1493 u32 portpm, portsc;
1494
1495 port_regs = pdev->active_port->regs;
1496 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1497
1498 /* Remote wakeup feature is not enabled by host. */
1499 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1500 portpm = readl(&port_regs->portpmsc);
1501
1502 if (!(portpm & PORT_RWE))
1503 return;
1504 }
1505
1506 if (portsc == XDEV_U3 && !pdev->may_wakeup)
1507 return;
1508
1509 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1510
1511 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1512 }
1513
cdnsp_gadget_wakeup(struct usb_gadget * g)1514 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1515 {
1516 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(&pdev->lock, flags);
1520 __cdnsp_gadget_wakeup(pdev);
1521 spin_unlock_irqrestore(&pdev->lock, flags);
1522
1523 return 0;
1524 }
1525
cdnsp_gadget_set_selfpowered(struct usb_gadget * g,int is_selfpowered)1526 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1527 int is_selfpowered)
1528 {
1529 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1530 unsigned long flags;
1531
1532 spin_lock_irqsave(&pdev->lock, flags);
1533 g->is_selfpowered = !!is_selfpowered;
1534 spin_unlock_irqrestore(&pdev->lock, flags);
1535
1536 return 0;
1537 }
1538
cdnsp_gadget_pullup(struct usb_gadget * gadget,int is_on)1539 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1540 {
1541 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1542 struct cdns *cdns = dev_get_drvdata(pdev->dev);
1543 unsigned long flags;
1544
1545 trace_cdnsp_pullup(is_on);
1546
1547 /*
1548 * Disable events handling while controller is being
1549 * enabled/disabled.
1550 */
1551 disable_irq(cdns->dev_irq);
1552 spin_lock_irqsave(&pdev->lock, flags);
1553
1554 if (!is_on) {
1555 cdnsp_reset_device(pdev);
1556 cdns_clear_vbus(cdns);
1557 } else {
1558 cdns_set_vbus(cdns);
1559 }
1560
1561 spin_unlock_irqrestore(&pdev->lock, flags);
1562 enable_irq(cdns->dev_irq);
1563
1564 return 0;
1565 }
1566
1567 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1568 .get_frame = cdnsp_gadget_get_frame,
1569 .wakeup = cdnsp_gadget_wakeup,
1570 .set_selfpowered = cdnsp_gadget_set_selfpowered,
1571 .pullup = cdnsp_gadget_pullup,
1572 .udc_start = cdnsp_gadget_udc_start,
1573 .udc_stop = cdnsp_gadget_udc_stop,
1574 };
1575
cdnsp_get_ep_buffering(struct cdnsp_device * pdev,struct cdnsp_ep * pep)1576 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1577 struct cdnsp_ep *pep)
1578 {
1579 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1580 int endpoints;
1581
1582 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1583
1584 if (!pep->direction) {
1585 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1586 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1587 pep->buffering = (pep->buffering + 1) / 2;
1588 pep->buffering_period = (pep->buffering_period + 1) / 2;
1589 return;
1590 }
1591
1592 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1593
1594 /* Set to XBUF_TX_TAG_MASK_0 register. */
1595 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1596 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1597 reg += pep->number * sizeof(u32) * 2;
1598
1599 pep->buffering = (readl(reg) + 1) / 2;
1600 pep->buffering_period = pep->buffering;
1601 }
1602
cdnsp_gadget_init_endpoints(struct cdnsp_device * pdev)1603 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1604 {
1605 int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1606 struct cdnsp_ep *pep;
1607 int i;
1608
1609 INIT_LIST_HEAD(&pdev->gadget.ep_list);
1610
1611 if (max_streams < STREAM_LOG_STREAMS) {
1612 dev_err(pdev->dev, "Stream size %d not supported\n",
1613 max_streams);
1614 return -EINVAL;
1615 }
1616
1617 max_streams = STREAM_LOG_STREAMS;
1618
1619 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1620 bool direction = !(i & 1); /* Start from OUT endpoint. */
1621 u8 epnum = ((i + 1) >> 1);
1622
1623 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1624 continue;
1625
1626 pep = &pdev->eps[i];
1627 pep->pdev = pdev;
1628 pep->number = epnum;
1629 pep->direction = direction; /* 0 for OUT, 1 for IN. */
1630
1631 /*
1632 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1633 * pdev->eps[0]
1634 */
1635 if (epnum == 0) {
1636 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1637 epnum, "BiDir");
1638
1639 pep->idx = 0;
1640 usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1641 pep->endpoint.maxburst = 1;
1642 pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1643 pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1644 pep->endpoint.comp_desc = NULL;
1645 pep->endpoint.caps.type_control = true;
1646 pep->endpoint.caps.dir_in = true;
1647 pep->endpoint.caps.dir_out = true;
1648
1649 pdev->ep0_preq.epnum = pep->number;
1650 pdev->ep0_preq.pep = pep;
1651 pdev->gadget.ep0 = &pep->endpoint;
1652 } else {
1653 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1654 epnum, (pep->direction) ? "in" : "out");
1655
1656 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1;
1657 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1658
1659 pep->endpoint.max_streams = max_streams;
1660 pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1661 list_add_tail(&pep->endpoint.ep_list,
1662 &pdev->gadget.ep_list);
1663
1664 pep->endpoint.caps.type_iso = true;
1665 pep->endpoint.caps.type_bulk = true;
1666 pep->endpoint.caps.type_int = true;
1667
1668 pep->endpoint.caps.dir_in = direction;
1669 pep->endpoint.caps.dir_out = !direction;
1670 }
1671
1672 pep->endpoint.name = pep->name;
1673 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1674 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1675 cdnsp_get_ep_buffering(pdev, pep);
1676
1677 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1678 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1679 "SupDir IN: %s, OUT: %s\n",
1680 pep->name, 1024,
1681 (pep->endpoint.caps.type_control) ? "yes" : "no",
1682 (pep->endpoint.caps.type_int) ? "yes" : "no",
1683 (pep->endpoint.caps.type_bulk) ? "yes" : "no",
1684 (pep->endpoint.caps.type_iso) ? "yes" : "no",
1685 (pep->endpoint.caps.dir_in) ? "yes" : "no",
1686 (pep->endpoint.caps.dir_out) ? "yes" : "no");
1687
1688 INIT_LIST_HEAD(&pep->pending_list);
1689 }
1690
1691 return 0;
1692 }
1693
cdnsp_gadget_free_endpoints(struct cdnsp_device * pdev)1694 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1695 {
1696 struct cdnsp_ep *pep;
1697 int i;
1698
1699 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1700 pep = &pdev->eps[i];
1701 if (pep->number != 0 && pep->out_ctx)
1702 list_del(&pep->endpoint.ep_list);
1703 }
1704 }
1705
cdnsp_disconnect_gadget(struct cdnsp_device * pdev)1706 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1707 {
1708 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1709
1710 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1711 spin_unlock(&pdev->lock);
1712 pdev->gadget_driver->disconnect(&pdev->gadget);
1713 spin_lock(&pdev->lock);
1714 }
1715
1716 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1717 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1718
1719 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1720 }
1721
cdnsp_suspend_gadget(struct cdnsp_device * pdev)1722 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1723 {
1724 if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1725 spin_unlock(&pdev->lock);
1726 pdev->gadget_driver->suspend(&pdev->gadget);
1727 spin_lock(&pdev->lock);
1728 }
1729 }
1730
cdnsp_resume_gadget(struct cdnsp_device * pdev)1731 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1732 {
1733 if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1734 spin_unlock(&pdev->lock);
1735 pdev->gadget_driver->resume(&pdev->gadget);
1736 spin_lock(&pdev->lock);
1737 }
1738 }
1739
cdnsp_irq_reset(struct cdnsp_device * pdev)1740 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1741 {
1742 struct cdnsp_port_regs __iomem *port_regs;
1743
1744 cdnsp_reset_device(pdev);
1745
1746 port_regs = pdev->active_port->regs;
1747 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1748
1749 spin_unlock(&pdev->lock);
1750 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1751 spin_lock(&pdev->lock);
1752
1753 switch (pdev->gadget.speed) {
1754 case USB_SPEED_SUPER_PLUS:
1755 case USB_SPEED_SUPER:
1756 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1757 pdev->gadget.ep0->maxpacket = 512;
1758 break;
1759 case USB_SPEED_HIGH:
1760 case USB_SPEED_FULL:
1761 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1762 pdev->gadget.ep0->maxpacket = 64;
1763 break;
1764 default:
1765 /* Low speed is not supported. */
1766 dev_err(pdev->dev, "Unknown device speed\n");
1767 break;
1768 }
1769
1770 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1771 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1772 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1773 }
1774
cdnsp_get_rev_cap(struct cdnsp_device * pdev)1775 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1776 {
1777 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1778
1779 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1780 pdev->rev_cap = reg;
1781
1782 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1783 readl(&pdev->rev_cap->ctrl_revision),
1784 readl(&pdev->rev_cap->rtl_revision),
1785 readl(&pdev->rev_cap->ep_supported),
1786 readl(&pdev->rev_cap->rx_buff_size),
1787 readl(&pdev->rev_cap->tx_buff_size));
1788 }
1789
cdnsp_gen_setup(struct cdnsp_device * pdev)1790 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1791 {
1792 int ret;
1793 u32 reg;
1794
1795 pdev->cap_regs = pdev->regs;
1796 pdev->op_regs = pdev->regs +
1797 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1798 pdev->run_regs = pdev->regs +
1799 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1800
1801 /* Cache read-only capability registers */
1802 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1803 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1804 pdev->hci_version = HC_VERSION(pdev->hcc_params);
1805 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1806
1807 cdnsp_get_rev_cap(pdev);
1808
1809 /* Make sure the Device Controller is halted. */
1810 ret = cdnsp_halt(pdev);
1811 if (ret)
1812 return ret;
1813
1814 /* Reset the internal controller memory state and registers. */
1815 ret = cdnsp_reset(pdev);
1816 if (ret)
1817 return ret;
1818
1819 /*
1820 * Set dma_mask and coherent_dma_mask to 64-bits,
1821 * if controller supports 64-bit addressing.
1822 */
1823 if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1824 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1825 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1826 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1827 } else {
1828 /*
1829 * This is to avoid error in cases where a 32-bit USB
1830 * controller is used on a 64-bit capable system.
1831 */
1832 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1833 if (ret)
1834 return ret;
1835
1836 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1837 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1838 }
1839
1840 spin_lock_init(&pdev->lock);
1841
1842 ret = cdnsp_mem_init(pdev);
1843 if (ret)
1844 return ret;
1845
1846 /*
1847 * Software workaround for U1: after transition
1848 * to U1 the controller starts gating clock, and in some cases,
1849 * it causes that controller stack.
1850 */
1851 reg = readl(&pdev->port3x_regs->mode_2);
1852 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1853 writel(reg, &pdev->port3x_regs->mode_2);
1854
1855 return 0;
1856 }
1857
__cdnsp_gadget_init(struct cdns * cdns)1858 static int __cdnsp_gadget_init(struct cdns *cdns)
1859 {
1860 struct cdnsp_device *pdev;
1861 u32 max_speed;
1862 int ret = -ENOMEM;
1863
1864 cdns_drd_gadget_on(cdns);
1865
1866 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1867 if (!pdev)
1868 return -ENOMEM;
1869
1870 pm_runtime_get_sync(cdns->dev);
1871
1872 cdns->gadget_dev = pdev;
1873 pdev->dev = cdns->dev;
1874 pdev->regs = cdns->dev_regs;
1875 max_speed = usb_get_maximum_speed(cdns->dev);
1876
1877 switch (max_speed) {
1878 case USB_SPEED_FULL:
1879 case USB_SPEED_HIGH:
1880 case USB_SPEED_SUPER:
1881 case USB_SPEED_SUPER_PLUS:
1882 break;
1883 default:
1884 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1885 fallthrough;
1886 case USB_SPEED_UNKNOWN:
1887 /* Default to SSP */
1888 max_speed = USB_SPEED_SUPER_PLUS;
1889 break;
1890 }
1891
1892 pdev->gadget.ops = &cdnsp_gadget_ops;
1893 pdev->gadget.name = "cdnsp-gadget";
1894 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1895 pdev->gadget.sg_supported = 1;
1896 pdev->gadget.max_speed = max_speed;
1897 pdev->gadget.lpm_capable = 1;
1898
1899 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1900 if (!pdev->setup_buf)
1901 goto free_pdev;
1902
1903 /*
1904 * Controller supports not aligned buffer but it should improve
1905 * performance.
1906 */
1907 pdev->gadget.quirk_ep_out_aligned_size = true;
1908
1909 ret = cdnsp_gen_setup(pdev);
1910 if (ret) {
1911 dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1912 goto free_setup;
1913 }
1914
1915 ret = cdnsp_gadget_init_endpoints(pdev);
1916 if (ret) {
1917 dev_err(pdev->dev, "failed to initialize endpoints\n");
1918 goto halt_pdev;
1919 }
1920
1921 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1922 if (ret) {
1923 dev_err(pdev->dev, "failed to register udc\n");
1924 goto free_endpoints;
1925 }
1926
1927 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1928 cdnsp_irq_handler,
1929 cdnsp_thread_irq_handler, IRQF_SHARED,
1930 dev_name(pdev->dev), pdev);
1931 if (ret)
1932 goto del_gadget;
1933
1934 return 0;
1935
1936 del_gadget:
1937 usb_del_gadget_udc(&pdev->gadget);
1938 free_endpoints:
1939 cdnsp_gadget_free_endpoints(pdev);
1940 halt_pdev:
1941 cdnsp_halt(pdev);
1942 cdnsp_reset(pdev);
1943 cdnsp_mem_cleanup(pdev);
1944 free_setup:
1945 kfree(pdev->setup_buf);
1946 free_pdev:
1947 kfree(pdev);
1948
1949 return ret;
1950 }
1951
cdnsp_gadget_exit(struct cdns * cdns)1952 static void cdnsp_gadget_exit(struct cdns *cdns)
1953 {
1954 struct cdnsp_device *pdev = cdns->gadget_dev;
1955
1956 devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1957 pm_runtime_mark_last_busy(cdns->dev);
1958 pm_runtime_put_autosuspend(cdns->dev);
1959 usb_del_gadget_udc(&pdev->gadget);
1960 cdnsp_gadget_free_endpoints(pdev);
1961 cdnsp_mem_cleanup(pdev);
1962 kfree(pdev);
1963 cdns->gadget_dev = NULL;
1964 cdns_drd_gadget_off(cdns);
1965 }
1966
cdnsp_gadget_suspend(struct cdns * cdns,bool do_wakeup)1967 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1968 {
1969 struct cdnsp_device *pdev = cdns->gadget_dev;
1970 unsigned long flags;
1971
1972 if (pdev->link_state == XDEV_U3)
1973 return 0;
1974
1975 spin_lock_irqsave(&pdev->lock, flags);
1976 cdnsp_disconnect_gadget(pdev);
1977 cdnsp_stop(pdev);
1978 spin_unlock_irqrestore(&pdev->lock, flags);
1979
1980 return 0;
1981 }
1982
cdnsp_gadget_resume(struct cdns * cdns,bool hibernated)1983 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
1984 {
1985 struct cdnsp_device *pdev = cdns->gadget_dev;
1986 enum usb_device_speed max_speed;
1987 unsigned long flags;
1988 int ret;
1989
1990 if (!pdev->gadget_driver)
1991 return 0;
1992
1993 spin_lock_irqsave(&pdev->lock, flags);
1994 max_speed = pdev->gadget_driver->max_speed;
1995
1996 /* Limit speed if necessary. */
1997 max_speed = min(max_speed, pdev->gadget.max_speed);
1998
1999 ret = cdnsp_run(pdev, max_speed);
2000
2001 if (pdev->link_state == XDEV_U3)
2002 __cdnsp_gadget_wakeup(pdev);
2003
2004 spin_unlock_irqrestore(&pdev->lock, flags);
2005
2006 return ret;
2007 }
2008
2009 /**
2010 * cdnsp_gadget_init - initialize device structure
2011 * @cdns: cdnsp instance
2012 *
2013 * This function initializes the gadget.
2014 */
cdnsp_gadget_init(struct cdns * cdns)2015 int cdnsp_gadget_init(struct cdns *cdns)
2016 {
2017 struct cdns_role_driver *rdrv;
2018
2019 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2020 if (!rdrv)
2021 return -ENOMEM;
2022
2023 rdrv->start = __cdnsp_gadget_init;
2024 rdrv->stop = cdnsp_gadget_exit;
2025 rdrv->suspend = cdnsp_gadget_suspend;
2026 rdrv->resume = cdnsp_gadget_resume;
2027 rdrv->state = CDNS_ROLE_STATE_INACTIVE;
2028 rdrv->name = "gadget";
2029 cdns->roles[USB_ROLE_DEVICE] = rdrv;
2030
2031 return 0;
2032 }
2033