• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 		hbss = container_of(bss->pub.hidden_beacon_bss,
162 				    struct cfg80211_internal_bss,
163 				    pub);
164 		hbss->refcount--;
165 		if (hbss->refcount == 0)
166 			bss_free(hbss);
167 	}
168 
169 	if (bss->pub.transmitted_bss) {
170 		struct cfg80211_internal_bss *tbss;
171 
172 		tbss = container_of(bss->pub.transmitted_bss,
173 				    struct cfg80211_internal_bss,
174 				    pub);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 		return true;
226 
227 	/*
228 	 * non inheritance element format is:
229 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 	 * Both lists are optional. Both lengths are mandatory.
231 	 * This means valid length is:
232 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 	 */
234 	id_len = non_inherit_elem->data[1];
235 	if (non_inherit_elem->datalen < 3 + id_len)
236 		return true;
237 
238 	ext_id_len = non_inherit_elem->data[2 + id_len];
239 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 		return true;
241 
242 	if (elem->id == WLAN_EID_EXTENSION) {
243 		if (!ext_id_len)
244 			return true;
245 		loop_len = ext_id_len;
246 		list = &non_inherit_elem->data[3 + id_len];
247 		id = elem->data[0];
248 	} else {
249 		if (!id_len)
250 			return true;
251 		loop_len = id_len;
252 		list = &non_inherit_elem->data[2];
253 		id = elem->id;
254 	}
255 
256 	for (i = 0; i < loop_len; i++) {
257 		if (list[i] == id)
258 			return false;
259 	}
260 
261 	return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264 
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266 					    const u8 *ie, size_t ie_len,
267 					    u8 **pos, u8 *buf, size_t buf_len)
268 {
269 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270 		    elem->data + elem->datalen > ie + ie_len))
271 		return 0;
272 
273 	if (elem->datalen + 2 > buf + buf_len - *pos)
274 		return 0;
275 
276 	memcpy(*pos, elem, elem->datalen + 2);
277 	*pos += elem->datalen + 2;
278 
279 	/* Finish if it is not fragmented  */
280 	if (elem->datalen != 255)
281 		return *pos - buf;
282 
283 	ie_len = ie + ie_len - elem->data - elem->datalen;
284 	ie = (const u8 *)elem->data + elem->datalen;
285 
286 	for_each_element(elem, ie, ie_len) {
287 		if (elem->id != WLAN_EID_FRAGMENT)
288 			break;
289 
290 		if (elem->datalen + 2 > buf + buf_len - *pos)
291 			return 0;
292 
293 		memcpy(*pos, elem, elem->datalen + 2);
294 		*pos += elem->datalen + 2;
295 
296 		if (elem->datalen != 255)
297 			break;
298 	}
299 
300 	return *pos - buf;
301 }
302 
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304 				  const u8 *subie, size_t subie_len,
305 				  u8 *new_ie, size_t new_ie_len)
306 {
307 	const struct element *non_inherit_elem, *parent, *sub;
308 	u8 *pos = new_ie;
309 	u8 id, ext_id;
310 	unsigned int match_len;
311 
312 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313 						  subie, subie_len);
314 
315 	/* We copy the elements one by one from the parent to the generated
316 	 * elements.
317 	 * If they are not inherited (included in subie or in the non
318 	 * inheritance element), then we copy all occurrences the first time
319 	 * we see this element type.
320 	 */
321 	for_each_element(parent, ie, ielen) {
322 		if (parent->id == WLAN_EID_FRAGMENT)
323 			continue;
324 
325 		if (parent->id == WLAN_EID_EXTENSION) {
326 			if (parent->datalen < 1)
327 				continue;
328 
329 			id = WLAN_EID_EXTENSION;
330 			ext_id = parent->data[0];
331 			match_len = 1;
332 		} else {
333 			id = parent->id;
334 			match_len = 0;
335 		}
336 
337 		/* Find first occurrence in subie */
338 		sub = cfg80211_find_elem_match(id, subie, subie_len,
339 					       &ext_id, match_len, 0);
340 
341 		/* Copy from parent if not in subie and inherited */
342 		if (!sub &&
343 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344 			if (!cfg80211_copy_elem_with_frags(parent,
345 							   ie, ielen,
346 							   &pos, new_ie,
347 							   new_ie_len))
348 				return 0;
349 
350 			continue;
351 		}
352 
353 		/* Already copied if an earlier element had the same type */
354 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355 					     &ext_id, match_len, 0))
356 			continue;
357 
358 		/* Not inheriting, copy all similar elements from subie */
359 		while (sub) {
360 			if (!cfg80211_copy_elem_with_frags(sub,
361 							   subie, subie_len,
362 							   &pos, new_ie,
363 							   new_ie_len))
364 				return 0;
365 
366 			sub = cfg80211_find_elem_match(id,
367 						       sub->data + sub->datalen,
368 						       subie_len + subie -
369 						       (sub->data +
370 							sub->datalen),
371 						       &ext_id, match_len, 0);
372 		}
373 	}
374 
375 	/* The above misses elements that are included in subie but not in the
376 	 * parent, so do a pass over subie and append those.
377 	 * Skip the non-tx BSSID caps and non-inheritance element.
378 	 */
379 	for_each_element(sub, subie, subie_len) {
380 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381 			continue;
382 
383 		if (sub->id == WLAN_EID_FRAGMENT)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_EXTENSION) {
387 			if (sub->datalen < 1)
388 				continue;
389 
390 			id = WLAN_EID_EXTENSION;
391 			ext_id = sub->data[0];
392 			match_len = 1;
393 
394 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395 				continue;
396 		} else {
397 			id = sub->id;
398 			match_len = 0;
399 		}
400 
401 		/* Processed if one was included in the parent */
402 		if (cfg80211_find_elem_match(id, ie, ielen,
403 					     &ext_id, match_len, 0))
404 			continue;
405 
406 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407 						   &pos, new_ie, new_ie_len))
408 			return 0;
409 	}
410 
411 	return pos - new_ie;
412 }
413 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415 		   const u8 *ssid, size_t ssid_len)
416 {
417 	const struct cfg80211_bss_ies *ies;
418 	const u8 *ssidie;
419 
420 	if (bssid && !ether_addr_equal(a->bssid, bssid))
421 		return false;
422 
423 	if (!ssid)
424 		return true;
425 
426 	ies = rcu_access_pointer(a->ies);
427 	if (!ies)
428 		return false;
429 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
430 	if (!ssidie)
431 		return false;
432 	if (ssidie[1] != ssid_len)
433 		return false;
434 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
435 }
436 
437 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439 			   struct cfg80211_bss *nontrans_bss)
440 {
441 	const struct element *ssid_elem;
442 	struct cfg80211_bss *bss = NULL;
443 
444 	rcu_read_lock();
445 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
446 	if (!ssid_elem) {
447 		rcu_read_unlock();
448 		return -EINVAL;
449 	}
450 
451 	/* check if nontrans_bss is in the list */
452 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
453 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
454 			   ssid_elem->datalen)) {
455 			rcu_read_unlock();
456 			return 0;
457 		}
458 	}
459 
460 	rcu_read_unlock();
461 
462 	/*
463 	 * This is a bit weird - it's not on the list, but already on another
464 	 * one! The only way that could happen is if there's some BSSID/SSID
465 	 * shared by multiple APs in their multi-BSSID profiles, potentially
466 	 * with hidden SSID mixed in ... ignore it.
467 	 */
468 	if (!list_empty(&nontrans_bss->nontrans_list))
469 		return -EINVAL;
470 
471 	/* add to the list */
472 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
473 	return 0;
474 }
475 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)476 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
477 				  unsigned long expire_time)
478 {
479 	struct cfg80211_internal_bss *bss, *tmp;
480 	bool expired = false;
481 
482 	lockdep_assert_held(&rdev->bss_lock);
483 
484 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
485 		if (atomic_read(&bss->hold))
486 			continue;
487 		if (!time_after(expire_time, bss->ts))
488 			continue;
489 
490 		if (__cfg80211_unlink_bss(rdev, bss))
491 			expired = true;
492 	}
493 
494 	if (expired)
495 		rdev->bss_generation++;
496 }
497 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)498 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
499 {
500 	struct cfg80211_internal_bss *bss, *oldest = NULL;
501 	bool ret;
502 
503 	lockdep_assert_held(&rdev->bss_lock);
504 
505 	list_for_each_entry(bss, &rdev->bss_list, list) {
506 		if (atomic_read(&bss->hold))
507 			continue;
508 
509 		if (!list_empty(&bss->hidden_list) &&
510 		    !bss->pub.hidden_beacon_bss)
511 			continue;
512 
513 		if (oldest && time_before(oldest->ts, bss->ts))
514 			continue;
515 		oldest = bss;
516 	}
517 
518 	if (WARN_ON(!oldest))
519 		return false;
520 
521 	/*
522 	 * The callers make sure to increase rdev->bss_generation if anything
523 	 * gets removed (and a new entry added), so there's no need to also do
524 	 * it here.
525 	 */
526 
527 	ret = __cfg80211_unlink_bss(rdev, oldest);
528 	WARN_ON(!ret);
529 	return ret;
530 }
531 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)532 static u8 cfg80211_parse_bss_param(u8 data,
533 				   struct cfg80211_colocated_ap *coloc_ap)
534 {
535 	coloc_ap->oct_recommended =
536 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
537 	coloc_ap->same_ssid =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
539 	coloc_ap->multi_bss =
540 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
541 	coloc_ap->transmitted_bssid =
542 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
543 	coloc_ap->unsolicited_probe =
544 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
545 	coloc_ap->colocated_ess =
546 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
547 
548 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
549 }
550 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)551 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
552 				    const struct element **elem, u32 *s_ssid)
553 {
554 
555 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
556 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
557 		return -EINVAL;
558 
559 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
560 	return 0;
561 }
562 
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)563 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
564 {
565 	struct cfg80211_colocated_ap *ap, *tmp_ap;
566 
567 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
568 		list_del(&ap->list);
569 		kfree(ap);
570 	}
571 }
572 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)573 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
574 				  const u8 *pos, u8 length,
575 				  const struct element *ssid_elem,
576 				  int s_ssid_tmp)
577 {
578 	/* skip the TBTT offset */
579 	pos++;
580 
581 	memcpy(entry->bssid, pos, ETH_ALEN);
582 	pos += ETH_ALEN;
583 
584 	if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
585 		memcpy(&entry->short_ssid, pos,
586 		       sizeof(entry->short_ssid));
587 		entry->short_ssid_valid = true;
588 		pos += 4;
589 	}
590 
591 	/* skip non colocated APs */
592 	if (!cfg80211_parse_bss_param(*pos, entry))
593 		return -EINVAL;
594 	pos++;
595 
596 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
597 		/*
598 		 * no information about the short ssid. Consider the entry valid
599 		 * for now. It would later be dropped in case there are explicit
600 		 * SSIDs that need to be matched
601 		 */
602 		if (!entry->same_ssid)
603 			return 0;
604 	}
605 
606 	if (entry->same_ssid) {
607 		entry->short_ssid = s_ssid_tmp;
608 		entry->short_ssid_valid = true;
609 
610 		/*
611 		 * This is safe because we validate datalen in
612 		 * cfg80211_parse_colocated_ap(), before calling this
613 		 * function.
614 		 */
615 		memcpy(&entry->ssid, &ssid_elem->data,
616 		       ssid_elem->datalen);
617 		entry->ssid_len = ssid_elem->datalen;
618 	}
619 	return 0;
620 }
621 
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)622 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
623 				       struct list_head *list)
624 {
625 	struct ieee80211_neighbor_ap_info *ap_info;
626 	const struct element *elem, *ssid_elem;
627 	const u8 *pos, *end;
628 	u32 s_ssid_tmp;
629 	int n_coloc = 0, ret;
630 	LIST_HEAD(ap_list);
631 
632 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
633 				  ies->len);
634 	if (!elem)
635 		return 0;
636 
637 	pos = elem->data;
638 	end = pos + elem->datalen;
639 
640 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
641 	if (ret)
642 		return 0;
643 
644 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
645 	while (pos + sizeof(*ap_info) <= end) {
646 		enum nl80211_band band;
647 		int freq;
648 		u8 length, i, count;
649 
650 		ap_info = (void *)pos;
651 		count = u8_get_bits(ap_info->tbtt_info_hdr,
652 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
653 		length = ap_info->tbtt_info_len;
654 
655 		pos += sizeof(*ap_info);
656 
657 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
658 						       &band))
659 			break;
660 
661 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
662 
663 		if (end - pos < count * length)
664 			break;
665 
666 		/*
667 		 * TBTT info must include bss param + BSSID +
668 		 * (short SSID or same_ssid bit to be set).
669 		 * ignore other options, and move to the
670 		 * next AP info
671 		 */
672 		if (band != NL80211_BAND_6GHZ ||
673 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
674 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
675 			pos += count * length;
676 			continue;
677 		}
678 
679 		for (i = 0; i < count; i++) {
680 			struct cfg80211_colocated_ap *entry;
681 
682 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
683 					GFP_ATOMIC);
684 
685 			if (!entry)
686 				break;
687 
688 			entry->center_freq = freq;
689 
690 			if (!cfg80211_parse_ap_info(entry, pos, length,
691 						    ssid_elem, s_ssid_tmp)) {
692 				n_coloc++;
693 				list_add_tail(&entry->list, &ap_list);
694 			} else {
695 				kfree(entry);
696 			}
697 
698 			pos += length;
699 		}
700 	}
701 
702 	if (pos != end) {
703 		cfg80211_free_coloc_ap_list(&ap_list);
704 		return 0;
705 	}
706 
707 	list_splice_tail(&ap_list, list);
708 	return n_coloc;
709 }
710 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)711 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
712 					struct ieee80211_channel *chan,
713 					bool add_to_6ghz)
714 {
715 	int i;
716 	u32 n_channels = request->n_channels;
717 	struct cfg80211_scan_6ghz_params *params =
718 		&request->scan_6ghz_params[request->n_6ghz_params];
719 
720 	for (i = 0; i < n_channels; i++) {
721 		if (request->channels[i] == chan) {
722 			if (add_to_6ghz)
723 				params->channel_idx = i;
724 			return;
725 		}
726 	}
727 
728 	request->channels[n_channels] = chan;
729 	if (add_to_6ghz)
730 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
731 			n_channels;
732 
733 	request->n_channels++;
734 }
735 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)736 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
737 				     struct cfg80211_scan_request *request)
738 {
739 	int i;
740 	u32 s_ssid;
741 
742 	for (i = 0; i < request->n_ssids; i++) {
743 		/* wildcard ssid in the scan request */
744 		if (!request->ssids[i].ssid_len) {
745 			if (ap->multi_bss && !ap->transmitted_bssid)
746 				continue;
747 
748 			return true;
749 		}
750 
751 		if (ap->ssid_len &&
752 		    ap->ssid_len == request->ssids[i].ssid_len) {
753 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
754 				    ap->ssid_len))
755 				return true;
756 		} else if (ap->short_ssid_valid) {
757 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
758 					   request->ssids[i].ssid_len);
759 
760 			if (ap->short_ssid == s_ssid)
761 				return true;
762 		}
763 	}
764 
765 	return false;
766 }
767 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)768 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
769 {
770 	u8 i;
771 	struct cfg80211_colocated_ap *ap;
772 	int n_channels, count = 0, err;
773 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
774 	LIST_HEAD(coloc_ap_list);
775 	bool need_scan_psc = true;
776 	const struct ieee80211_sband_iftype_data *iftd;
777 
778 	rdev_req->scan_6ghz = true;
779 
780 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
781 		return -EOPNOTSUPP;
782 
783 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
784 					       rdev_req->wdev->iftype);
785 	if (!iftd || !iftd->he_cap.has_he)
786 		return -EOPNOTSUPP;
787 
788 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
789 
790 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
791 		struct cfg80211_internal_bss *intbss;
792 
793 		spin_lock_bh(&rdev->bss_lock);
794 		list_for_each_entry(intbss, &rdev->bss_list, list) {
795 			struct cfg80211_bss *res = &intbss->pub;
796 			const struct cfg80211_bss_ies *ies;
797 
798 			ies = rcu_access_pointer(res->ies);
799 			count += cfg80211_parse_colocated_ap(ies,
800 							     &coloc_ap_list);
801 		}
802 		spin_unlock_bh(&rdev->bss_lock);
803 	}
804 
805 	request = kzalloc(struct_size(request, channels, n_channels) +
806 			  sizeof(*request->scan_6ghz_params) * count +
807 			  sizeof(*request->ssids) * rdev_req->n_ssids,
808 			  GFP_KERNEL);
809 	if (!request) {
810 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
811 		return -ENOMEM;
812 	}
813 
814 	*request = *rdev_req;
815 	request->n_channels = 0;
816 	request->scan_6ghz_params =
817 		(void *)&request->channels[n_channels];
818 
819 	/*
820 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
821 	 * and at least one of the reported co-located APs with same SSID
822 	 * indicating that all APs in the same ESS are co-located
823 	 */
824 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
825 		list_for_each_entry(ap, &coloc_ap_list, list) {
826 			if (ap->colocated_ess &&
827 			    cfg80211_find_ssid_match(ap, request)) {
828 				need_scan_psc = false;
829 				break;
830 			}
831 		}
832 	}
833 
834 	/*
835 	 * add to the scan request the channels that need to be scanned
836 	 * regardless of the collocated APs (PSC channels or all channels
837 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
838 	 */
839 	for (i = 0; i < rdev_req->n_channels; i++) {
840 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
841 		    ((need_scan_psc &&
842 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
843 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
844 			cfg80211_scan_req_add_chan(request,
845 						   rdev_req->channels[i],
846 						   false);
847 		}
848 	}
849 
850 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
851 		goto skip;
852 
853 	list_for_each_entry(ap, &coloc_ap_list, list) {
854 		bool found = false;
855 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
856 			&request->scan_6ghz_params[request->n_6ghz_params];
857 		struct ieee80211_channel *chan =
858 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
859 
860 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
861 			continue;
862 
863 		for (i = 0; i < rdev_req->n_channels; i++) {
864 			if (rdev_req->channels[i] == chan)
865 				found = true;
866 		}
867 
868 		if (!found)
869 			continue;
870 
871 		if (request->n_ssids > 0 &&
872 		    !cfg80211_find_ssid_match(ap, request))
873 			continue;
874 
875 		if (!is_broadcast_ether_addr(request->bssid) &&
876 		    !ether_addr_equal(request->bssid, ap->bssid))
877 			continue;
878 
879 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
880 			continue;
881 
882 		cfg80211_scan_req_add_chan(request, chan, true);
883 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
884 		scan_6ghz_params->short_ssid = ap->short_ssid;
885 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
886 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
887 
888 		/*
889 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
890 		 * set to false, then all the APs that the scan logic is
891 		 * interested with on the channel are collocated and thus there
892 		 * is no need to perform the initial PSC channel listen.
893 		 */
894 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
895 			scan_6ghz_params->psc_no_listen = true;
896 
897 		request->n_6ghz_params++;
898 	}
899 
900 skip:
901 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
902 
903 	if (request->n_channels) {
904 		struct cfg80211_scan_request *old = rdev->int_scan_req;
905 		rdev->int_scan_req = request;
906 
907 		/*
908 		 * Add the ssids from the parent scan request to the new scan
909 		 * request, so the driver would be able to use them in its
910 		 * probe requests to discover hidden APs on PSC channels.
911 		 */
912 		request->ssids = (void *)&request->channels[request->n_channels];
913 		request->n_ssids = rdev_req->n_ssids;
914 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
915 		       request->n_ssids);
916 
917 		/*
918 		 * If this scan follows a previous scan, save the scan start
919 		 * info from the first part of the scan
920 		 */
921 		if (old)
922 			rdev->int_scan_req->info = old->info;
923 
924 		err = rdev_scan(rdev, request);
925 		if (err) {
926 			rdev->int_scan_req = old;
927 			kfree(request);
928 		} else {
929 			kfree(old);
930 		}
931 
932 		return err;
933 	}
934 
935 	kfree(request);
936 	return -EINVAL;
937 }
938 
cfg80211_scan(struct cfg80211_registered_device * rdev)939 int cfg80211_scan(struct cfg80211_registered_device *rdev)
940 {
941 	struct cfg80211_scan_request *request;
942 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
943 	u32 n_channels = 0, idx, i;
944 
945 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
946 		return rdev_scan(rdev, rdev_req);
947 
948 	for (i = 0; i < rdev_req->n_channels; i++) {
949 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
950 			n_channels++;
951 	}
952 
953 	if (!n_channels)
954 		return cfg80211_scan_6ghz(rdev);
955 
956 	request = kzalloc(struct_size(request, channels, n_channels),
957 			  GFP_KERNEL);
958 	if (!request)
959 		return -ENOMEM;
960 
961 	*request = *rdev_req;
962 	request->n_channels = n_channels;
963 
964 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
965 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
966 			request->channels[idx++] = rdev_req->channels[i];
967 	}
968 
969 	rdev_req->scan_6ghz = false;
970 	rdev->int_scan_req = request;
971 	return rdev_scan(rdev, request);
972 }
973 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)974 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
975 			   bool send_message)
976 {
977 	struct cfg80211_scan_request *request, *rdev_req;
978 	struct wireless_dev *wdev;
979 	struct sk_buff *msg;
980 #ifdef CONFIG_CFG80211_WEXT
981 	union iwreq_data wrqu;
982 #endif
983 
984 	lockdep_assert_held(&rdev->wiphy.mtx);
985 
986 	if (rdev->scan_msg) {
987 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
988 		rdev->scan_msg = NULL;
989 		return;
990 	}
991 
992 	rdev_req = rdev->scan_req;
993 	if (!rdev_req)
994 		return;
995 
996 	wdev = rdev_req->wdev;
997 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
998 
999 	if (wdev_running(wdev) &&
1000 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1001 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1002 	    !cfg80211_scan_6ghz(rdev))
1003 		return;
1004 
1005 	/*
1006 	 * This must be before sending the other events!
1007 	 * Otherwise, wpa_supplicant gets completely confused with
1008 	 * wext events.
1009 	 */
1010 	if (wdev->netdev)
1011 		cfg80211_sme_scan_done(wdev->netdev);
1012 
1013 	if (!request->info.aborted &&
1014 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1015 		/* flush entries from previous scans */
1016 		spin_lock_bh(&rdev->bss_lock);
1017 		__cfg80211_bss_expire(rdev, request->scan_start);
1018 		spin_unlock_bh(&rdev->bss_lock);
1019 	}
1020 
1021 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1022 
1023 #ifdef CONFIG_CFG80211_WEXT
1024 	if (wdev->netdev && !request->info.aborted) {
1025 		memset(&wrqu, 0, sizeof(wrqu));
1026 
1027 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1028 	}
1029 #endif
1030 
1031 	dev_put(wdev->netdev);
1032 
1033 	kfree(rdev->int_scan_req);
1034 	rdev->int_scan_req = NULL;
1035 
1036 	kfree(rdev->scan_req);
1037 	rdev->scan_req = NULL;
1038 
1039 	if (!send_message)
1040 		rdev->scan_msg = msg;
1041 	else
1042 		nl80211_send_scan_msg(rdev, msg);
1043 }
1044 
__cfg80211_scan_done(struct work_struct * wk)1045 void __cfg80211_scan_done(struct work_struct *wk)
1046 {
1047 	struct cfg80211_registered_device *rdev;
1048 
1049 	rdev = container_of(wk, struct cfg80211_registered_device,
1050 			    scan_done_wk);
1051 
1052 	wiphy_lock(&rdev->wiphy);
1053 	___cfg80211_scan_done(rdev, true);
1054 	wiphy_unlock(&rdev->wiphy);
1055 }
1056 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1057 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1058 			struct cfg80211_scan_info *info)
1059 {
1060 	struct cfg80211_scan_info old_info = request->info;
1061 
1062 	trace_cfg80211_scan_done(request, info);
1063 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1064 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1065 
1066 	request->info = *info;
1067 
1068 	/*
1069 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1070 	 * be of the first part. In such a case old_info.scan_start_tsf should
1071 	 * be non zero.
1072 	 */
1073 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1074 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1075 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1076 		       sizeof(request->info.tsf_bssid));
1077 	}
1078 
1079 	request->notified = true;
1080 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1081 }
1082 EXPORT_SYMBOL(cfg80211_scan_done);
1083 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1084 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1085 				 struct cfg80211_sched_scan_request *req)
1086 {
1087 	lockdep_assert_held(&rdev->wiphy.mtx);
1088 
1089 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1090 }
1091 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1092 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1093 					struct cfg80211_sched_scan_request *req)
1094 {
1095 	lockdep_assert_held(&rdev->wiphy.mtx);
1096 
1097 	list_del_rcu(&req->list);
1098 	kfree_rcu(req, rcu_head);
1099 }
1100 
1101 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1102 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1103 {
1104 	struct cfg80211_sched_scan_request *pos;
1105 
1106 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1107 				lockdep_is_held(&rdev->wiphy.mtx)) {
1108 		if (pos->reqid == reqid)
1109 			return pos;
1110 	}
1111 	return NULL;
1112 }
1113 
1114 /*
1115  * Determines if a scheduled scan request can be handled. When a legacy
1116  * scheduled scan is running no other scheduled scan is allowed regardless
1117  * whether the request is for legacy or multi-support scan. When a multi-support
1118  * scheduled scan is running a request for legacy scan is not allowed. In this
1119  * case a request for multi-support scan can be handled if resources are
1120  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1121  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1122 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1123 				     bool want_multi)
1124 {
1125 	struct cfg80211_sched_scan_request *pos;
1126 	int i = 0;
1127 
1128 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1129 		/* request id zero means legacy in progress */
1130 		if (!i && !pos->reqid)
1131 			return -EINPROGRESS;
1132 		i++;
1133 	}
1134 
1135 	if (i) {
1136 		/* no legacy allowed when multi request(s) are active */
1137 		if (!want_multi)
1138 			return -EINPROGRESS;
1139 
1140 		/* resource limit reached */
1141 		if (i == rdev->wiphy.max_sched_scan_reqs)
1142 			return -ENOSPC;
1143 	}
1144 	return 0;
1145 }
1146 
cfg80211_sched_scan_results_wk(struct work_struct * work)1147 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1148 {
1149 	struct cfg80211_registered_device *rdev;
1150 	struct cfg80211_sched_scan_request *req, *tmp;
1151 
1152 	rdev = container_of(work, struct cfg80211_registered_device,
1153 			   sched_scan_res_wk);
1154 
1155 	wiphy_lock(&rdev->wiphy);
1156 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1157 		if (req->report_results) {
1158 			req->report_results = false;
1159 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1160 				/* flush entries from previous scans */
1161 				spin_lock_bh(&rdev->bss_lock);
1162 				__cfg80211_bss_expire(rdev, req->scan_start);
1163 				spin_unlock_bh(&rdev->bss_lock);
1164 				req->scan_start = jiffies;
1165 			}
1166 			nl80211_send_sched_scan(req,
1167 						NL80211_CMD_SCHED_SCAN_RESULTS);
1168 		}
1169 	}
1170 	wiphy_unlock(&rdev->wiphy);
1171 }
1172 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1173 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1174 {
1175 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1176 	struct cfg80211_sched_scan_request *request;
1177 
1178 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1179 	/* ignore if we're not scanning */
1180 
1181 	rcu_read_lock();
1182 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1183 	if (request) {
1184 		request->report_results = true;
1185 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1186 	}
1187 	rcu_read_unlock();
1188 }
1189 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1190 
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1191 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1192 {
1193 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1194 
1195 	lockdep_assert_held(&wiphy->mtx);
1196 
1197 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1198 
1199 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1200 }
1201 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1202 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1203 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1204 {
1205 	wiphy_lock(wiphy);
1206 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1207 	wiphy_unlock(wiphy);
1208 }
1209 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1210 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1211 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1212 				 struct cfg80211_sched_scan_request *req,
1213 				 bool driver_initiated)
1214 {
1215 	lockdep_assert_held(&rdev->wiphy.mtx);
1216 
1217 	if (!driver_initiated) {
1218 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1219 		if (err)
1220 			return err;
1221 	}
1222 
1223 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1224 
1225 	cfg80211_del_sched_scan_req(rdev, req);
1226 
1227 	return 0;
1228 }
1229 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1230 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1231 			       u64 reqid, bool driver_initiated)
1232 {
1233 	struct cfg80211_sched_scan_request *sched_scan_req;
1234 
1235 	lockdep_assert_held(&rdev->wiphy.mtx);
1236 
1237 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1238 	if (!sched_scan_req)
1239 		return -ENOENT;
1240 
1241 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1242 					    driver_initiated);
1243 }
1244 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1245 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1246                       unsigned long age_secs)
1247 {
1248 	struct cfg80211_internal_bss *bss;
1249 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1250 
1251 	spin_lock_bh(&rdev->bss_lock);
1252 	list_for_each_entry(bss, &rdev->bss_list, list)
1253 		bss->ts -= age_jiffies;
1254 	spin_unlock_bh(&rdev->bss_lock);
1255 }
1256 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1257 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1258 {
1259 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1260 }
1261 
cfg80211_bss_flush(struct wiphy * wiphy)1262 void cfg80211_bss_flush(struct wiphy *wiphy)
1263 {
1264 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265 
1266 	spin_lock_bh(&rdev->bss_lock);
1267 	__cfg80211_bss_expire(rdev, jiffies);
1268 	spin_unlock_bh(&rdev->bss_lock);
1269 }
1270 EXPORT_SYMBOL(cfg80211_bss_flush);
1271 
1272 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1273 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1274 			 const u8 *match, unsigned int match_len,
1275 			 unsigned int match_offset)
1276 {
1277 	const struct element *elem;
1278 
1279 	for_each_element_id(elem, eid, ies, len) {
1280 		if (elem->datalen >= match_offset + match_len &&
1281 		    !memcmp(elem->data + match_offset, match, match_len))
1282 			return elem;
1283 	}
1284 
1285 	return NULL;
1286 }
1287 EXPORT_SYMBOL(cfg80211_find_elem_match);
1288 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1289 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1290 						const u8 *ies,
1291 						unsigned int len)
1292 {
1293 	const struct element *elem;
1294 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1295 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1296 
1297 	if (WARN_ON(oui_type > 0xff))
1298 		return NULL;
1299 
1300 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1301 					match, match_len, 0);
1302 
1303 	if (!elem || elem->datalen < 4)
1304 		return NULL;
1305 
1306 	return elem;
1307 }
1308 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1309 
1310 /**
1311  * enum bss_compare_mode - BSS compare mode
1312  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1313  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1314  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1315  */
1316 enum bss_compare_mode {
1317 	BSS_CMP_REGULAR,
1318 	BSS_CMP_HIDE_ZLEN,
1319 	BSS_CMP_HIDE_NUL,
1320 };
1321 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1322 static int cmp_bss(struct cfg80211_bss *a,
1323 		   struct cfg80211_bss *b,
1324 		   enum bss_compare_mode mode)
1325 {
1326 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1327 	const u8 *ie1 = NULL;
1328 	const u8 *ie2 = NULL;
1329 	int i, r;
1330 
1331 	if (a->channel != b->channel)
1332 		return b->channel->center_freq - a->channel->center_freq;
1333 
1334 	a_ies = rcu_access_pointer(a->ies);
1335 	if (!a_ies)
1336 		return -1;
1337 	b_ies = rcu_access_pointer(b->ies);
1338 	if (!b_ies)
1339 		return 1;
1340 
1341 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1342 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1343 				       a_ies->data, a_ies->len);
1344 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1345 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1346 				       b_ies->data, b_ies->len);
1347 	if (ie1 && ie2) {
1348 		int mesh_id_cmp;
1349 
1350 		if (ie1[1] == ie2[1])
1351 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1352 		else
1353 			mesh_id_cmp = ie2[1] - ie1[1];
1354 
1355 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1356 				       a_ies->data, a_ies->len);
1357 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1358 				       b_ies->data, b_ies->len);
1359 		if (ie1 && ie2) {
1360 			if (mesh_id_cmp)
1361 				return mesh_id_cmp;
1362 			if (ie1[1] != ie2[1])
1363 				return ie2[1] - ie1[1];
1364 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1365 		}
1366 	}
1367 
1368 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1369 	if (r)
1370 		return r;
1371 
1372 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1373 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1374 
1375 	if (!ie1 && !ie2)
1376 		return 0;
1377 
1378 	/*
1379 	 * Note that with "hide_ssid", the function returns a match if
1380 	 * the already-present BSS ("b") is a hidden SSID beacon for
1381 	 * the new BSS ("a").
1382 	 */
1383 
1384 	/* sort missing IE before (left of) present IE */
1385 	if (!ie1)
1386 		return -1;
1387 	if (!ie2)
1388 		return 1;
1389 
1390 	switch (mode) {
1391 	case BSS_CMP_HIDE_ZLEN:
1392 		/*
1393 		 * In ZLEN mode we assume the BSS entry we're
1394 		 * looking for has a zero-length SSID. So if
1395 		 * the one we're looking at right now has that,
1396 		 * return 0. Otherwise, return the difference
1397 		 * in length, but since we're looking for the
1398 		 * 0-length it's really equivalent to returning
1399 		 * the length of the one we're looking at.
1400 		 *
1401 		 * No content comparison is needed as we assume
1402 		 * the content length is zero.
1403 		 */
1404 		return ie2[1];
1405 	case BSS_CMP_REGULAR:
1406 	default:
1407 		/* sort by length first, then by contents */
1408 		if (ie1[1] != ie2[1])
1409 			return ie2[1] - ie1[1];
1410 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1411 	case BSS_CMP_HIDE_NUL:
1412 		if (ie1[1] != ie2[1])
1413 			return ie2[1] - ie1[1];
1414 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1415 		for (i = 0; i < ie2[1]; i++)
1416 			if (ie2[i + 2])
1417 				return -1;
1418 		return 0;
1419 	}
1420 }
1421 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1422 static bool cfg80211_bss_type_match(u16 capability,
1423 				    enum nl80211_band band,
1424 				    enum ieee80211_bss_type bss_type)
1425 {
1426 	bool ret = true;
1427 	u16 mask, val;
1428 
1429 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1430 		return ret;
1431 
1432 	if (band == NL80211_BAND_60GHZ) {
1433 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1434 		switch (bss_type) {
1435 		case IEEE80211_BSS_TYPE_ESS:
1436 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1437 			break;
1438 		case IEEE80211_BSS_TYPE_PBSS:
1439 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1440 			break;
1441 		case IEEE80211_BSS_TYPE_IBSS:
1442 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1443 			break;
1444 		default:
1445 			return false;
1446 		}
1447 	} else {
1448 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1449 		switch (bss_type) {
1450 		case IEEE80211_BSS_TYPE_ESS:
1451 			val = WLAN_CAPABILITY_ESS;
1452 			break;
1453 		case IEEE80211_BSS_TYPE_IBSS:
1454 			val = WLAN_CAPABILITY_IBSS;
1455 			break;
1456 		case IEEE80211_BSS_TYPE_MBSS:
1457 			val = 0;
1458 			break;
1459 		default:
1460 			return false;
1461 		}
1462 	}
1463 
1464 	ret = ((capability & mask) == val);
1465 	return ret;
1466 }
1467 
1468 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1469 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1470 				      struct ieee80211_channel *channel,
1471 				      const u8 *bssid,
1472 				      const u8 *ssid, size_t ssid_len,
1473 				      enum ieee80211_bss_type bss_type,
1474 				      enum ieee80211_privacy privacy)
1475 {
1476 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1477 	struct cfg80211_internal_bss *bss, *res = NULL;
1478 	unsigned long now = jiffies;
1479 	int bss_privacy;
1480 
1481 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1482 			       privacy);
1483 
1484 	spin_lock_bh(&rdev->bss_lock);
1485 
1486 	list_for_each_entry(bss, &rdev->bss_list, list) {
1487 		if (!cfg80211_bss_type_match(bss->pub.capability,
1488 					     bss->pub.channel->band, bss_type))
1489 			continue;
1490 
1491 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1492 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1493 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1494 			continue;
1495 		if (channel && bss->pub.channel != channel)
1496 			continue;
1497 		if (!is_valid_ether_addr(bss->pub.bssid))
1498 			continue;
1499 		/* Don't get expired BSS structs */
1500 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1501 		    !atomic_read(&bss->hold))
1502 			continue;
1503 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1504 			res = bss;
1505 			bss_ref_get(rdev, res);
1506 			break;
1507 		}
1508 	}
1509 
1510 	spin_unlock_bh(&rdev->bss_lock);
1511 	if (!res)
1512 		return NULL;
1513 	trace_cfg80211_return_bss(&res->pub);
1514 	return &res->pub;
1515 }
1516 EXPORT_SYMBOL(cfg80211_get_bss);
1517 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1518 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1519 			  struct cfg80211_internal_bss *bss)
1520 {
1521 	struct rb_node **p = &rdev->bss_tree.rb_node;
1522 	struct rb_node *parent = NULL;
1523 	struct cfg80211_internal_bss *tbss;
1524 	int cmp;
1525 
1526 	while (*p) {
1527 		parent = *p;
1528 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1529 
1530 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1531 
1532 		if (WARN_ON(!cmp)) {
1533 			/* will sort of leak this BSS */
1534 			return;
1535 		}
1536 
1537 		if (cmp < 0)
1538 			p = &(*p)->rb_left;
1539 		else
1540 			p = &(*p)->rb_right;
1541 	}
1542 
1543 	rb_link_node(&bss->rbn, parent, p);
1544 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1545 }
1546 
1547 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1548 rb_find_bss(struct cfg80211_registered_device *rdev,
1549 	    struct cfg80211_internal_bss *res,
1550 	    enum bss_compare_mode mode)
1551 {
1552 	struct rb_node *n = rdev->bss_tree.rb_node;
1553 	struct cfg80211_internal_bss *bss;
1554 	int r;
1555 
1556 	while (n) {
1557 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1558 		r = cmp_bss(&res->pub, &bss->pub, mode);
1559 
1560 		if (r == 0)
1561 			return bss;
1562 		else if (r < 0)
1563 			n = n->rb_left;
1564 		else
1565 			n = n->rb_right;
1566 	}
1567 
1568 	return NULL;
1569 }
1570 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1571 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1572 				   struct cfg80211_internal_bss *new)
1573 {
1574 	const struct cfg80211_bss_ies *ies;
1575 	struct cfg80211_internal_bss *bss;
1576 	const u8 *ie;
1577 	int i, ssidlen;
1578 	u8 fold = 0;
1579 	u32 n_entries = 0;
1580 
1581 	ies = rcu_access_pointer(new->pub.beacon_ies);
1582 	if (WARN_ON(!ies))
1583 		return false;
1584 
1585 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1586 	if (!ie) {
1587 		/* nothing to do */
1588 		return true;
1589 	}
1590 
1591 	ssidlen = ie[1];
1592 	for (i = 0; i < ssidlen; i++)
1593 		fold |= ie[2 + i];
1594 
1595 	if (fold) {
1596 		/* not a hidden SSID */
1597 		return true;
1598 	}
1599 
1600 	/* This is the bad part ... */
1601 
1602 	list_for_each_entry(bss, &rdev->bss_list, list) {
1603 		/*
1604 		 * we're iterating all the entries anyway, so take the
1605 		 * opportunity to validate the list length accounting
1606 		 */
1607 		n_entries++;
1608 
1609 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1610 			continue;
1611 		if (bss->pub.channel != new->pub.channel)
1612 			continue;
1613 		if (bss->pub.scan_width != new->pub.scan_width)
1614 			continue;
1615 		if (rcu_access_pointer(bss->pub.beacon_ies))
1616 			continue;
1617 		ies = rcu_access_pointer(bss->pub.ies);
1618 		if (!ies)
1619 			continue;
1620 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1621 		if (!ie)
1622 			continue;
1623 		if (ssidlen && ie[1] != ssidlen)
1624 			continue;
1625 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1626 			continue;
1627 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1628 			list_del(&bss->hidden_list);
1629 		/* combine them */
1630 		list_add(&bss->hidden_list, &new->hidden_list);
1631 		bss->pub.hidden_beacon_bss = &new->pub;
1632 		new->refcount += bss->refcount;
1633 		rcu_assign_pointer(bss->pub.beacon_ies,
1634 				   new->pub.beacon_ies);
1635 	}
1636 
1637 	WARN_ONCE(n_entries != rdev->bss_entries,
1638 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1639 		  rdev->bss_entries, n_entries);
1640 
1641 	return true;
1642 }
1643 
1644 struct cfg80211_non_tx_bss {
1645 	struct cfg80211_bss *tx_bss;
1646 	u8 max_bssid_indicator;
1647 	u8 bssid_index;
1648 };
1649 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1650 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1651 					 const struct cfg80211_bss_ies *new_ies,
1652 					 const struct cfg80211_bss_ies *old_ies)
1653 {
1654 	struct cfg80211_internal_bss *bss;
1655 
1656 	/* Assign beacon IEs to all sub entries */
1657 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1658 		const struct cfg80211_bss_ies *ies;
1659 
1660 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1661 		WARN_ON(ies != old_ies);
1662 
1663 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1664 	}
1665 }
1666 
1667 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1668 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1669 			  struct cfg80211_internal_bss *known,
1670 			  struct cfg80211_internal_bss *new,
1671 			  bool signal_valid)
1672 {
1673 	lockdep_assert_held(&rdev->bss_lock);
1674 
1675 	/* Update IEs */
1676 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1677 		const struct cfg80211_bss_ies *old;
1678 
1679 		old = rcu_access_pointer(known->pub.proberesp_ies);
1680 
1681 		rcu_assign_pointer(known->pub.proberesp_ies,
1682 				   new->pub.proberesp_ies);
1683 		/* Override possible earlier Beacon frame IEs */
1684 		rcu_assign_pointer(known->pub.ies,
1685 				   new->pub.proberesp_ies);
1686 		if (old)
1687 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1688 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1689 		const struct cfg80211_bss_ies *old;
1690 
1691 		if (known->pub.hidden_beacon_bss &&
1692 		    !list_empty(&known->hidden_list)) {
1693 			const struct cfg80211_bss_ies *f;
1694 
1695 			/* The known BSS struct is one of the probe
1696 			 * response members of a group, but we're
1697 			 * receiving a beacon (beacon_ies in the new
1698 			 * bss is used). This can only mean that the
1699 			 * AP changed its beacon from not having an
1700 			 * SSID to showing it, which is confusing so
1701 			 * drop this information.
1702 			 */
1703 
1704 			f = rcu_access_pointer(new->pub.beacon_ies);
1705 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1706 			return false;
1707 		}
1708 
1709 		old = rcu_access_pointer(known->pub.beacon_ies);
1710 
1711 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1712 
1713 		/* Override IEs if they were from a beacon before */
1714 		if (old == rcu_access_pointer(known->pub.ies))
1715 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1716 
1717 		cfg80211_update_hidden_bsses(known,
1718 					     rcu_access_pointer(new->pub.beacon_ies),
1719 					     old);
1720 
1721 		if (old)
1722 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1723 	}
1724 
1725 	known->pub.beacon_interval = new->pub.beacon_interval;
1726 
1727 	/* don't update the signal if beacon was heard on
1728 	 * adjacent channel.
1729 	 */
1730 	if (signal_valid)
1731 		known->pub.signal = new->pub.signal;
1732 	known->pub.capability = new->pub.capability;
1733 	known->ts = new->ts;
1734 	known->ts_boottime = new->ts_boottime;
1735 	known->parent_tsf = new->parent_tsf;
1736 	known->pub.chains = new->pub.chains;
1737 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1738 	       IEEE80211_MAX_CHAINS);
1739 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1740 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1741 	known->pub.bssid_index = new->pub.bssid_index;
1742 
1743 	return true;
1744 }
1745 
1746 /* Returned bss is reference counted and must be cleaned up appropriately. */
1747 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1748 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1749 		    struct cfg80211_internal_bss *tmp,
1750 		    bool signal_valid, unsigned long ts)
1751 {
1752 	struct cfg80211_internal_bss *found = NULL;
1753 
1754 	if (WARN_ON(!tmp->pub.channel))
1755 		return NULL;
1756 
1757 	tmp->ts = ts;
1758 
1759 	spin_lock_bh(&rdev->bss_lock);
1760 
1761 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1762 		spin_unlock_bh(&rdev->bss_lock);
1763 		return NULL;
1764 	}
1765 
1766 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1767 
1768 	if (found) {
1769 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1770 			goto drop;
1771 	} else {
1772 		struct cfg80211_internal_bss *new;
1773 		struct cfg80211_internal_bss *hidden;
1774 		struct cfg80211_bss_ies *ies;
1775 
1776 		/*
1777 		 * create a copy -- the "res" variable that is passed in
1778 		 * is allocated on the stack since it's not needed in the
1779 		 * more common case of an update
1780 		 */
1781 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1782 			      GFP_ATOMIC);
1783 		if (!new) {
1784 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1785 			if (ies)
1786 				kfree_rcu(ies, rcu_head);
1787 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1788 			if (ies)
1789 				kfree_rcu(ies, rcu_head);
1790 			goto drop;
1791 		}
1792 		memcpy(new, tmp, sizeof(*new));
1793 		new->refcount = 1;
1794 		INIT_LIST_HEAD(&new->hidden_list);
1795 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1796 		/* we'll set this later if it was non-NULL */
1797 		new->pub.transmitted_bss = NULL;
1798 
1799 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1800 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1801 			if (!hidden)
1802 				hidden = rb_find_bss(rdev, tmp,
1803 						     BSS_CMP_HIDE_NUL);
1804 			if (hidden) {
1805 				new->pub.hidden_beacon_bss = &hidden->pub;
1806 				list_add(&new->hidden_list,
1807 					 &hidden->hidden_list);
1808 				hidden->refcount++;
1809 
1810 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1811 				rcu_assign_pointer(new->pub.beacon_ies,
1812 						   hidden->pub.beacon_ies);
1813 				if (ies)
1814 					kfree_rcu(ies, rcu_head);
1815 			}
1816 		} else {
1817 			/*
1818 			 * Ok so we found a beacon, and don't have an entry. If
1819 			 * it's a beacon with hidden SSID, we might be in for an
1820 			 * expensive search for any probe responses that should
1821 			 * be grouped with this beacon for updates ...
1822 			 */
1823 			if (!cfg80211_combine_bsses(rdev, new)) {
1824 				bss_ref_put(rdev, new);
1825 				goto drop;
1826 			}
1827 		}
1828 
1829 		if (rdev->bss_entries >= bss_entries_limit &&
1830 		    !cfg80211_bss_expire_oldest(rdev)) {
1831 			bss_ref_put(rdev, new);
1832 			goto drop;
1833 		}
1834 
1835 		/* This must be before the call to bss_ref_get */
1836 		if (tmp->pub.transmitted_bss) {
1837 			struct cfg80211_internal_bss *pbss =
1838 				container_of(tmp->pub.transmitted_bss,
1839 					     struct cfg80211_internal_bss,
1840 					     pub);
1841 
1842 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1843 			bss_ref_get(rdev, pbss);
1844 		}
1845 
1846 		list_add_tail(&new->list, &rdev->bss_list);
1847 		rdev->bss_entries++;
1848 		rb_insert_bss(rdev, new);
1849 		found = new;
1850 	}
1851 
1852 	rdev->bss_generation++;
1853 	bss_ref_get(rdev, found);
1854 	spin_unlock_bh(&rdev->bss_lock);
1855 
1856 	return found;
1857  drop:
1858 	spin_unlock_bh(&rdev->bss_lock);
1859 	return NULL;
1860 }
1861 
1862 /*
1863  * Update RX channel information based on the available frame payload
1864  * information. This is mainly for the 2.4 GHz band where frames can be received
1865  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1866  * element to indicate the current (transmitting) channel, but this might also
1867  * be needed on other bands if RX frequency does not match with the actual
1868  * operating channel of a BSS.
1869  */
1870 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1871 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1872 			 struct ieee80211_channel *channel,
1873 			 enum nl80211_bss_scan_width scan_width)
1874 {
1875 	const u8 *tmp;
1876 	u32 freq;
1877 	int channel_number = -1;
1878 	struct ieee80211_channel *alt_channel;
1879 
1880 	if (channel->band == NL80211_BAND_S1GHZ) {
1881 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1882 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1883 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1884 
1885 			channel_number = s1gop->primary_ch;
1886 		}
1887 	} else {
1888 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1889 		if (tmp && tmp[1] == 1) {
1890 			channel_number = tmp[2];
1891 		} else {
1892 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1893 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1894 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1895 
1896 				channel_number = htop->primary_chan;
1897 			}
1898 		}
1899 	}
1900 
1901 	if (channel_number < 0) {
1902 		/* No channel information in frame payload */
1903 		return channel;
1904 	}
1905 
1906 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1907 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1908 	if (!alt_channel) {
1909 		if (channel->band == NL80211_BAND_2GHZ) {
1910 			/*
1911 			 * Better not allow unexpected channels when that could
1912 			 * be going beyond the 1-11 range (e.g., discovering
1913 			 * BSS on channel 12 when radio is configured for
1914 			 * channel 11.
1915 			 */
1916 			return NULL;
1917 		}
1918 
1919 		/* No match for the payload channel number - ignore it */
1920 		return channel;
1921 	}
1922 
1923 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1924 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1925 		/*
1926 		 * Ignore channel number in 5 and 10 MHz channels where there
1927 		 * may not be an n:1 or 1:n mapping between frequencies and
1928 		 * channel numbers.
1929 		 */
1930 		return channel;
1931 	}
1932 
1933 	/*
1934 	 * Use the channel determined through the payload channel number
1935 	 * instead of the RX channel reported by the driver.
1936 	 */
1937 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1938 		return NULL;
1939 	return alt_channel;
1940 }
1941 
1942 /* Returned bss is reference counted and must be cleaned up appropriately. */
1943 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1944 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1945 				struct cfg80211_inform_bss *data,
1946 				enum cfg80211_bss_frame_type ftype,
1947 				const u8 *bssid, u64 tsf, u16 capability,
1948 				u16 beacon_interval, const u8 *ie, size_t ielen,
1949 				struct cfg80211_non_tx_bss *non_tx_data,
1950 				gfp_t gfp)
1951 {
1952 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1953 	struct cfg80211_bss_ies *ies;
1954 	struct ieee80211_channel *channel;
1955 	struct cfg80211_internal_bss tmp = {}, *res;
1956 	int bss_type;
1957 	bool signal_valid;
1958 	unsigned long ts;
1959 
1960 	if (WARN_ON(!wiphy))
1961 		return NULL;
1962 
1963 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1964 		    (data->signal < 0 || data->signal > 100)))
1965 		return NULL;
1966 
1967 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1968 					   data->scan_width);
1969 	if (!channel)
1970 		return NULL;
1971 
1972 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1973 	tmp.pub.channel = channel;
1974 	tmp.pub.scan_width = data->scan_width;
1975 	tmp.pub.signal = data->signal;
1976 	tmp.pub.beacon_interval = beacon_interval;
1977 	tmp.pub.capability = capability;
1978 	tmp.ts_boottime = data->boottime_ns;
1979 	tmp.parent_tsf = data->parent_tsf;
1980 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1981 
1982 	if (non_tx_data) {
1983 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1984 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1985 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1986 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1987 	} else {
1988 		ts = jiffies;
1989 	}
1990 
1991 	/*
1992 	 * If we do not know here whether the IEs are from a Beacon or Probe
1993 	 * Response frame, we need to pick one of the options and only use it
1994 	 * with the driver that does not provide the full Beacon/Probe Response
1995 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1996 	 * override the IEs pointer should we have received an earlier
1997 	 * indication of Probe Response data.
1998 	 */
1999 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2000 	if (!ies)
2001 		return NULL;
2002 	ies->len = ielen;
2003 	ies->tsf = tsf;
2004 	ies->from_beacon = false;
2005 	memcpy(ies->data, ie, ielen);
2006 
2007 	switch (ftype) {
2008 	case CFG80211_BSS_FTYPE_BEACON:
2009 		ies->from_beacon = true;
2010 		fallthrough;
2011 	case CFG80211_BSS_FTYPE_UNKNOWN:
2012 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2013 		break;
2014 	case CFG80211_BSS_FTYPE_PRESP:
2015 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2016 		break;
2017 	}
2018 	rcu_assign_pointer(tmp.pub.ies, ies);
2019 
2020 	signal_valid = data->chan == channel;
2021 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2022 	if (!res)
2023 		return NULL;
2024 
2025 	if (channel->band == NL80211_BAND_60GHZ) {
2026 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2027 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2028 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2029 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2030 	} else {
2031 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2032 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2033 	}
2034 
2035 	if (non_tx_data) {
2036 		/* this is a nontransmitting bss, we need to add it to
2037 		 * transmitting bss' list if it is not there
2038 		 */
2039 		spin_lock_bh(&rdev->bss_lock);
2040 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2041 					       &res->pub)) {
2042 			if (__cfg80211_unlink_bss(rdev, res)) {
2043 				rdev->bss_generation++;
2044 				res = NULL;
2045 			}
2046 		}
2047 		spin_unlock_bh(&rdev->bss_lock);
2048 
2049 		if (!res)
2050 			return NULL;
2051 	}
2052 
2053 	trace_cfg80211_return_bss(&res->pub);
2054 	/* cfg80211_bss_update gives us a referenced result */
2055 	return &res->pub;
2056 }
2057 
2058 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2059 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2060 				   const struct element *mbssid_elem,
2061 				   const struct element *sub_elem)
2062 {
2063 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2064 	const struct element *next_mbssid;
2065 	const struct element *next_sub;
2066 
2067 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2068 					 mbssid_end,
2069 					 ielen - (mbssid_end - ie));
2070 
2071 	/*
2072 	 * If it is not the last subelement in current MBSSID IE or there isn't
2073 	 * a next MBSSID IE - profile is complete.
2074 	*/
2075 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2076 	    !next_mbssid)
2077 		return NULL;
2078 
2079 	/* For any length error, just return NULL */
2080 
2081 	if (next_mbssid->datalen < 4)
2082 		return NULL;
2083 
2084 	next_sub = (void *)&next_mbssid->data[1];
2085 
2086 	if (next_mbssid->data + next_mbssid->datalen <
2087 	    next_sub->data + next_sub->datalen)
2088 		return NULL;
2089 
2090 	if (next_sub->id != 0 || next_sub->datalen < 2)
2091 		return NULL;
2092 
2093 	/*
2094 	 * Check if the first element in the next sub element is a start
2095 	 * of a new profile
2096 	 */
2097 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2098 	       NULL : next_mbssid;
2099 }
2100 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2101 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2102 			      const struct element *mbssid_elem,
2103 			      const struct element *sub_elem,
2104 			      u8 *merged_ie, size_t max_copy_len)
2105 {
2106 	size_t copied_len = sub_elem->datalen;
2107 	const struct element *next_mbssid;
2108 
2109 	if (sub_elem->datalen > max_copy_len)
2110 		return 0;
2111 
2112 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2113 
2114 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2115 								mbssid_elem,
2116 								sub_elem))) {
2117 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2118 
2119 		if (copied_len + next_sub->datalen > max_copy_len)
2120 			break;
2121 		memcpy(merged_ie + copied_len, next_sub->data,
2122 		       next_sub->datalen);
2123 		copied_len += next_sub->datalen;
2124 	}
2125 
2126 	return copied_len;
2127 }
2128 EXPORT_SYMBOL(cfg80211_merge_profile);
2129 
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2130 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2131 				       struct cfg80211_inform_bss *data,
2132 				       enum cfg80211_bss_frame_type ftype,
2133 				       const u8 *bssid, u64 tsf,
2134 				       u16 beacon_interval, const u8 *ie,
2135 				       size_t ielen,
2136 				       struct cfg80211_non_tx_bss *non_tx_data,
2137 				       gfp_t gfp)
2138 {
2139 	const u8 *mbssid_index_ie;
2140 	const struct element *elem, *sub;
2141 	size_t new_ie_len;
2142 	u8 new_bssid[ETH_ALEN];
2143 	u8 *new_ie, *profile;
2144 	u64 seen_indices = 0;
2145 	u16 capability;
2146 	struct cfg80211_bss *bss;
2147 
2148 	if (!non_tx_data)
2149 		return;
2150 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2151 		return;
2152 	if (!wiphy->support_mbssid)
2153 		return;
2154 	if (wiphy->support_only_he_mbssid &&
2155 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2156 		return;
2157 
2158 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2159 	if (!new_ie)
2160 		return;
2161 
2162 	profile = kmalloc(ielen, gfp);
2163 	if (!profile)
2164 		goto out;
2165 
2166 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2167 		if (elem->datalen < 4)
2168 			continue;
2169 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2170 			continue;
2171 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2172 			u8 profile_len;
2173 
2174 			if (sub->id != 0 || sub->datalen < 4) {
2175 				/* not a valid BSS profile */
2176 				continue;
2177 			}
2178 
2179 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2180 			    sub->data[1] != 2) {
2181 				/* The first element within the Nontransmitted
2182 				 * BSSID Profile is not the Nontransmitted
2183 				 * BSSID Capability element.
2184 				 */
2185 				continue;
2186 			}
2187 
2188 			memset(profile, 0, ielen);
2189 			profile_len = cfg80211_merge_profile(ie, ielen,
2190 							     elem,
2191 							     sub,
2192 							     profile,
2193 							     ielen);
2194 
2195 			/* found a Nontransmitted BSSID Profile */
2196 			mbssid_index_ie = cfg80211_find_ie
2197 				(WLAN_EID_MULTI_BSSID_IDX,
2198 				 profile, profile_len);
2199 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2200 			    mbssid_index_ie[2] == 0 ||
2201 			    mbssid_index_ie[2] > 46) {
2202 				/* No valid Multiple BSSID-Index element */
2203 				continue;
2204 			}
2205 
2206 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2207 				/* We don't support legacy split of a profile */
2208 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2209 						    mbssid_index_ie[2]);
2210 
2211 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2212 
2213 			non_tx_data->bssid_index = mbssid_index_ie[2];
2214 			non_tx_data->max_bssid_indicator = elem->data[0];
2215 
2216 			cfg80211_gen_new_bssid(bssid,
2217 					       non_tx_data->max_bssid_indicator,
2218 					       non_tx_data->bssid_index,
2219 					       new_bssid);
2220 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2221 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2222 							 profile,
2223 							 profile_len, new_ie,
2224 							 IEEE80211_MAX_DATA_LEN);
2225 			if (!new_ie_len)
2226 				continue;
2227 
2228 			capability = get_unaligned_le16(profile + 2);
2229 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2230 							      ftype,
2231 							      new_bssid, tsf,
2232 							      capability,
2233 							      beacon_interval,
2234 							      new_ie,
2235 							      new_ie_len,
2236 							      non_tx_data,
2237 							      gfp);
2238 			if (!bss)
2239 				break;
2240 			cfg80211_put_bss(wiphy, bss);
2241 		}
2242 	}
2243 
2244 out:
2245 	kfree(new_ie);
2246 	kfree(profile);
2247 }
2248 
2249 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2250 cfg80211_inform_bss_data(struct wiphy *wiphy,
2251 			 struct cfg80211_inform_bss *data,
2252 			 enum cfg80211_bss_frame_type ftype,
2253 			 const u8 *bssid, u64 tsf, u16 capability,
2254 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2255 			 gfp_t gfp)
2256 {
2257 	struct cfg80211_bss *res;
2258 	struct cfg80211_non_tx_bss non_tx_data;
2259 
2260 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2261 					      capability, beacon_interval, ie,
2262 					      ielen, NULL, gfp);
2263 	if (!res)
2264 		return NULL;
2265 	non_tx_data.tx_bss = res;
2266 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2267 				   beacon_interval, ie, ielen, &non_tx_data,
2268 				   gfp);
2269 	return res;
2270 }
2271 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2272 
2273 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2274 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2275 				 struct cfg80211_inform_bss *data,
2276 				 struct ieee80211_mgmt *mgmt, size_t len,
2277 				 struct cfg80211_non_tx_bss *non_tx_data,
2278 				 gfp_t gfp)
2279 {
2280 	enum cfg80211_bss_frame_type ftype;
2281 	const u8 *ie = mgmt->u.probe_resp.variable;
2282 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2283 				      u.probe_resp.variable);
2284 
2285 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2286 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2287 
2288 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2289 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2290 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2291 				   ie, ielen, non_tx_data, gfp);
2292 }
2293 
2294 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2295 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2296 				   struct cfg80211_bss *nontrans_bss,
2297 				   struct ieee80211_mgmt *mgmt, size_t len)
2298 {
2299 	u8 *ie, *new_ie, *pos;
2300 	const struct element *nontrans_ssid;
2301 	const u8 *trans_ssid, *mbssid;
2302 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2303 				      u.probe_resp.variable);
2304 	size_t new_ie_len;
2305 	struct cfg80211_bss_ies *new_ies;
2306 	const struct cfg80211_bss_ies *old;
2307 	size_t cpy_len;
2308 
2309 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2310 
2311 	ie = mgmt->u.probe_resp.variable;
2312 
2313 	new_ie_len = ielen;
2314 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2315 	if (!trans_ssid)
2316 		return;
2317 	new_ie_len -= trans_ssid[1];
2318 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2319 	/*
2320 	 * It's not valid to have the MBSSID element before SSID
2321 	 * ignore if that happens - the code below assumes it is
2322 	 * after (while copying things inbetween).
2323 	 */
2324 	if (!mbssid || mbssid < trans_ssid)
2325 		return;
2326 	new_ie_len -= mbssid[1];
2327 
2328 	nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2329 	if (!nontrans_ssid)
2330 		return;
2331 
2332 	new_ie_len += nontrans_ssid->datalen;
2333 
2334 	/* generate new ie for nontrans BSS
2335 	 * 1. replace SSID with nontrans BSS' SSID
2336 	 * 2. skip MBSSID IE
2337 	 */
2338 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2339 	if (!new_ie)
2340 		return;
2341 
2342 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2343 	if (!new_ies)
2344 		goto out_free;
2345 
2346 	pos = new_ie;
2347 
2348 	/* copy the nontransmitted SSID */
2349 	cpy_len = nontrans_ssid->datalen + 2;
2350 	memcpy(pos, nontrans_ssid, cpy_len);
2351 	pos += cpy_len;
2352 	/* copy the IEs between SSID and MBSSID */
2353 	cpy_len = trans_ssid[1] + 2;
2354 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2355 	pos += (mbssid - (trans_ssid + cpy_len));
2356 	/* copy the IEs after MBSSID */
2357 	cpy_len = mbssid[1] + 2;
2358 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2359 
2360 	/* update ie */
2361 	new_ies->len = new_ie_len;
2362 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2363 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2364 	memcpy(new_ies->data, new_ie, new_ie_len);
2365 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2366 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2367 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2368 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2369 		if (old)
2370 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2371 	} else {
2372 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2373 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2374 		cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2375 					     new_ies, old);
2376 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2377 		if (old)
2378 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2379 	}
2380 
2381 out_free:
2382 	kfree(new_ie);
2383 }
2384 
2385 /* cfg80211_inform_bss_width_frame helper */
2386 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2387 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2388 				      struct cfg80211_inform_bss *data,
2389 				      struct ieee80211_mgmt *mgmt, size_t len,
2390 				      gfp_t gfp)
2391 {
2392 	struct cfg80211_internal_bss tmp = {}, *res;
2393 	struct cfg80211_bss_ies *ies;
2394 	struct ieee80211_channel *channel;
2395 	bool signal_valid;
2396 	struct ieee80211_ext *ext = NULL;
2397 	u8 *bssid, *variable;
2398 	u16 capability, beacon_int;
2399 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2400 					     u.probe_resp.variable);
2401 	int bss_type;
2402 
2403 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2404 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2405 
2406 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2407 
2408 	if (WARN_ON(!mgmt))
2409 		return NULL;
2410 
2411 	if (WARN_ON(!wiphy))
2412 		return NULL;
2413 
2414 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2415 		    (data->signal < 0 || data->signal > 100)))
2416 		return NULL;
2417 
2418 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2419 		ext = (void *) mgmt;
2420 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2421 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2422 			min_hdr_len = offsetof(struct ieee80211_ext,
2423 					       u.s1g_short_beacon.variable);
2424 	}
2425 
2426 	if (WARN_ON(len < min_hdr_len))
2427 		return NULL;
2428 
2429 	ielen = len - min_hdr_len;
2430 	variable = mgmt->u.probe_resp.variable;
2431 	if (ext) {
2432 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2433 			variable = ext->u.s1g_short_beacon.variable;
2434 		else
2435 			variable = ext->u.s1g_beacon.variable;
2436 	}
2437 
2438 	channel = cfg80211_get_bss_channel(wiphy, variable,
2439 					   ielen, data->chan, data->scan_width);
2440 	if (!channel)
2441 		return NULL;
2442 
2443 	if (ext) {
2444 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2445 		const struct element *elem;
2446 
2447 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2448 					  variable, ielen);
2449 		if (!elem)
2450 			return NULL;
2451 		if (elem->datalen < sizeof(*compat))
2452 			return NULL;
2453 		compat = (void *)elem->data;
2454 		bssid = ext->u.s1g_beacon.sa;
2455 		capability = le16_to_cpu(compat->compat_info);
2456 		beacon_int = le16_to_cpu(compat->beacon_int);
2457 	} else {
2458 		bssid = mgmt->bssid;
2459 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2460 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2461 	}
2462 
2463 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2464 	if (!ies)
2465 		return NULL;
2466 	ies->len = ielen;
2467 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2468 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2469 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2470 	memcpy(ies->data, variable, ielen);
2471 
2472 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2473 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2474 	else
2475 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2476 	rcu_assign_pointer(tmp.pub.ies, ies);
2477 
2478 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2479 	tmp.pub.beacon_interval = beacon_int;
2480 	tmp.pub.capability = capability;
2481 	tmp.pub.channel = channel;
2482 	tmp.pub.scan_width = data->scan_width;
2483 	tmp.pub.signal = data->signal;
2484 	tmp.ts_boottime = data->boottime_ns;
2485 	tmp.parent_tsf = data->parent_tsf;
2486 	tmp.pub.chains = data->chains;
2487 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2488 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2489 
2490 	signal_valid = data->chan == channel;
2491 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2492 				  jiffies);
2493 	if (!res)
2494 		return NULL;
2495 
2496 	if (channel->band == NL80211_BAND_60GHZ) {
2497 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2498 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2499 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2500 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2501 	} else {
2502 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2503 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2504 	}
2505 
2506 	trace_cfg80211_return_bss(&res->pub);
2507 	/* cfg80211_bss_update gives us a referenced result */
2508 	return &res->pub;
2509 }
2510 
2511 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2512 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2513 			       struct cfg80211_inform_bss *data,
2514 			       struct ieee80211_mgmt *mgmt, size_t len,
2515 			       gfp_t gfp)
2516 {
2517 	struct cfg80211_bss *res, *tmp_bss;
2518 	const u8 *ie = mgmt->u.probe_resp.variable;
2519 	const struct cfg80211_bss_ies *ies1, *ies2;
2520 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2521 				      u.probe_resp.variable);
2522 	struct cfg80211_non_tx_bss non_tx_data = {};
2523 
2524 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2525 						    len, gfp);
2526 
2527 	/* don't do any further MBSSID handling for S1G */
2528 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2529 		return res;
2530 
2531 	if (!res || !wiphy->support_mbssid ||
2532 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2533 		return res;
2534 	if (wiphy->support_only_he_mbssid &&
2535 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2536 		return res;
2537 
2538 	non_tx_data.tx_bss = res;
2539 	/* process each non-transmitting bss */
2540 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2541 					 &non_tx_data, gfp);
2542 
2543 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2544 
2545 	/* check if the res has other nontransmitting bss which is not
2546 	 * in MBSSID IE
2547 	 */
2548 	ies1 = rcu_access_pointer(res->ies);
2549 
2550 	/* go through nontrans_list, if the timestamp of the BSS is
2551 	 * earlier than the timestamp of the transmitting BSS then
2552 	 * update it
2553 	 */
2554 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2555 			    nontrans_list) {
2556 		ies2 = rcu_access_pointer(tmp_bss->ies);
2557 		if (ies2->tsf < ies1->tsf)
2558 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2559 							   mgmt, len);
2560 	}
2561 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2562 
2563 	return res;
2564 }
2565 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2566 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2567 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2568 {
2569 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2570 	struct cfg80211_internal_bss *bss;
2571 
2572 	if (!pub)
2573 		return;
2574 
2575 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2576 
2577 	spin_lock_bh(&rdev->bss_lock);
2578 	bss_ref_get(rdev, bss);
2579 	spin_unlock_bh(&rdev->bss_lock);
2580 }
2581 EXPORT_SYMBOL(cfg80211_ref_bss);
2582 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2583 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2584 {
2585 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2586 	struct cfg80211_internal_bss *bss;
2587 
2588 	if (!pub)
2589 		return;
2590 
2591 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2592 
2593 	spin_lock_bh(&rdev->bss_lock);
2594 	bss_ref_put(rdev, bss);
2595 	spin_unlock_bh(&rdev->bss_lock);
2596 }
2597 EXPORT_SYMBOL(cfg80211_put_bss);
2598 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2599 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2600 {
2601 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2602 	struct cfg80211_internal_bss *bss, *tmp1;
2603 	struct cfg80211_bss *nontrans_bss, *tmp;
2604 
2605 	if (WARN_ON(!pub))
2606 		return;
2607 
2608 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2609 
2610 	spin_lock_bh(&rdev->bss_lock);
2611 	if (list_empty(&bss->list))
2612 		goto out;
2613 
2614 	list_for_each_entry_safe(nontrans_bss, tmp,
2615 				 &pub->nontrans_list,
2616 				 nontrans_list) {
2617 		tmp1 = container_of(nontrans_bss,
2618 				    struct cfg80211_internal_bss, pub);
2619 		if (__cfg80211_unlink_bss(rdev, tmp1))
2620 			rdev->bss_generation++;
2621 	}
2622 
2623 	if (__cfg80211_unlink_bss(rdev, bss))
2624 		rdev->bss_generation++;
2625 out:
2626 	spin_unlock_bh(&rdev->bss_lock);
2627 }
2628 EXPORT_SYMBOL(cfg80211_unlink_bss);
2629 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2630 void cfg80211_bss_iter(struct wiphy *wiphy,
2631 		       struct cfg80211_chan_def *chandef,
2632 		       void (*iter)(struct wiphy *wiphy,
2633 				    struct cfg80211_bss *bss,
2634 				    void *data),
2635 		       void *iter_data)
2636 {
2637 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2638 	struct cfg80211_internal_bss *bss;
2639 
2640 	spin_lock_bh(&rdev->bss_lock);
2641 
2642 	list_for_each_entry(bss, &rdev->bss_list, list) {
2643 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2644 						     false))
2645 			iter(wiphy, &bss->pub, iter_data);
2646 	}
2647 
2648 	spin_unlock_bh(&rdev->bss_lock);
2649 }
2650 EXPORT_SYMBOL(cfg80211_bss_iter);
2651 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)2652 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2653 				     unsigned int link_id,
2654 				     struct ieee80211_channel *chan)
2655 {
2656 	struct wiphy *wiphy = wdev->wiphy;
2657 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2658 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2659 	struct cfg80211_internal_bss *new = NULL;
2660 	struct cfg80211_internal_bss *bss;
2661 	struct cfg80211_bss *nontrans_bss;
2662 	struct cfg80211_bss *tmp;
2663 
2664 	spin_lock_bh(&rdev->bss_lock);
2665 
2666 	/*
2667 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2668 	 * changing the control channel, so no need to update in such a case.
2669 	 */
2670 	if (cbss->pub.channel == chan)
2671 		goto done;
2672 
2673 	/* use transmitting bss */
2674 	if (cbss->pub.transmitted_bss)
2675 		cbss = container_of(cbss->pub.transmitted_bss,
2676 				    struct cfg80211_internal_bss,
2677 				    pub);
2678 
2679 	cbss->pub.channel = chan;
2680 
2681 	list_for_each_entry(bss, &rdev->bss_list, list) {
2682 		if (!cfg80211_bss_type_match(bss->pub.capability,
2683 					     bss->pub.channel->band,
2684 					     wdev->conn_bss_type))
2685 			continue;
2686 
2687 		if (bss == cbss)
2688 			continue;
2689 
2690 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2691 			new = bss;
2692 			break;
2693 		}
2694 	}
2695 
2696 	if (new) {
2697 		/* to save time, update IEs for transmitting bss only */
2698 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2699 			new->pub.proberesp_ies = NULL;
2700 			new->pub.beacon_ies = NULL;
2701 		}
2702 
2703 		list_for_each_entry_safe(nontrans_bss, tmp,
2704 					 &new->pub.nontrans_list,
2705 					 nontrans_list) {
2706 			bss = container_of(nontrans_bss,
2707 					   struct cfg80211_internal_bss, pub);
2708 			if (__cfg80211_unlink_bss(rdev, bss))
2709 				rdev->bss_generation++;
2710 		}
2711 
2712 		WARN_ON(atomic_read(&new->hold));
2713 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2714 			rdev->bss_generation++;
2715 	}
2716 
2717 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2718 	rb_insert_bss(rdev, cbss);
2719 	rdev->bss_generation++;
2720 
2721 	list_for_each_entry_safe(nontrans_bss, tmp,
2722 				 &cbss->pub.nontrans_list,
2723 				 nontrans_list) {
2724 		bss = container_of(nontrans_bss,
2725 				   struct cfg80211_internal_bss, pub);
2726 		bss->pub.channel = chan;
2727 		rb_erase(&bss->rbn, &rdev->bss_tree);
2728 		rb_insert_bss(rdev, bss);
2729 		rdev->bss_generation++;
2730 	}
2731 
2732 done:
2733 	spin_unlock_bh(&rdev->bss_lock);
2734 }
2735 
2736 #ifdef CONFIG_CFG80211_WEXT
2737 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2738 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2739 {
2740 	struct cfg80211_registered_device *rdev;
2741 	struct net_device *dev;
2742 
2743 	ASSERT_RTNL();
2744 
2745 	dev = dev_get_by_index(net, ifindex);
2746 	if (!dev)
2747 		return ERR_PTR(-ENODEV);
2748 	if (dev->ieee80211_ptr)
2749 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2750 	else
2751 		rdev = ERR_PTR(-ENODEV);
2752 	dev_put(dev);
2753 	return rdev;
2754 }
2755 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2756 int cfg80211_wext_siwscan(struct net_device *dev,
2757 			  struct iw_request_info *info,
2758 			  union iwreq_data *wrqu, char *extra)
2759 {
2760 	struct cfg80211_registered_device *rdev;
2761 	struct wiphy *wiphy;
2762 	struct iw_scan_req *wreq = NULL;
2763 	struct cfg80211_scan_request *creq;
2764 	int i, err, n_channels = 0;
2765 	enum nl80211_band band;
2766 
2767 	if (!netif_running(dev))
2768 		return -ENETDOWN;
2769 
2770 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2771 		wreq = (struct iw_scan_req *)extra;
2772 
2773 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2774 
2775 	if (IS_ERR(rdev))
2776 		return PTR_ERR(rdev);
2777 
2778 	if (rdev->scan_req || rdev->scan_msg)
2779 		return -EBUSY;
2780 
2781 	wiphy = &rdev->wiphy;
2782 
2783 	/* Determine number of channels, needed to allocate creq */
2784 	if (wreq && wreq->num_channels)
2785 		n_channels = wreq->num_channels;
2786 	else
2787 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2788 
2789 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2790 		       n_channels * sizeof(void *),
2791 		       GFP_ATOMIC);
2792 	if (!creq)
2793 		return -ENOMEM;
2794 
2795 	creq->wiphy = wiphy;
2796 	creq->wdev = dev->ieee80211_ptr;
2797 	/* SSIDs come after channels */
2798 	creq->ssids = (void *)&creq->channels[n_channels];
2799 	creq->n_channels = n_channels;
2800 	creq->n_ssids = 1;
2801 	creq->scan_start = jiffies;
2802 
2803 	/* translate "Scan on frequencies" request */
2804 	i = 0;
2805 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2806 		int j;
2807 
2808 		if (!wiphy->bands[band])
2809 			continue;
2810 
2811 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2812 			/* ignore disabled channels */
2813 			if (wiphy->bands[band]->channels[j].flags &
2814 						IEEE80211_CHAN_DISABLED)
2815 				continue;
2816 
2817 			/* If we have a wireless request structure and the
2818 			 * wireless request specifies frequencies, then search
2819 			 * for the matching hardware channel.
2820 			 */
2821 			if (wreq && wreq->num_channels) {
2822 				int k;
2823 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2824 				for (k = 0; k < wreq->num_channels; k++) {
2825 					struct iw_freq *freq =
2826 						&wreq->channel_list[k];
2827 					int wext_freq =
2828 						cfg80211_wext_freq(freq);
2829 
2830 					if (wext_freq == wiphy_freq)
2831 						goto wext_freq_found;
2832 				}
2833 				goto wext_freq_not_found;
2834 			}
2835 
2836 		wext_freq_found:
2837 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2838 			i++;
2839 		wext_freq_not_found: ;
2840 		}
2841 	}
2842 	/* No channels found? */
2843 	if (!i) {
2844 		err = -EINVAL;
2845 		goto out;
2846 	}
2847 
2848 	/* Set real number of channels specified in creq->channels[] */
2849 	creq->n_channels = i;
2850 
2851 	/* translate "Scan for SSID" request */
2852 	if (wreq) {
2853 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2854 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2855 				err = -EINVAL;
2856 				goto out;
2857 			}
2858 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2859 			creq->ssids[0].ssid_len = wreq->essid_len;
2860 		}
2861 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2862 			creq->n_ssids = 0;
2863 	}
2864 
2865 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2866 		if (wiphy->bands[i])
2867 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2868 
2869 	eth_broadcast_addr(creq->bssid);
2870 
2871 	wiphy_lock(&rdev->wiphy);
2872 
2873 	rdev->scan_req = creq;
2874 	err = rdev_scan(rdev, creq);
2875 	if (err) {
2876 		rdev->scan_req = NULL;
2877 		/* creq will be freed below */
2878 	} else {
2879 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2880 		/* creq now owned by driver */
2881 		creq = NULL;
2882 		dev_hold(dev);
2883 	}
2884 	wiphy_unlock(&rdev->wiphy);
2885  out:
2886 	kfree(creq);
2887 	return err;
2888 }
2889 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2890 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2891 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2892 				    const struct cfg80211_bss_ies *ies,
2893 				    char *current_ev, char *end_buf)
2894 {
2895 	const u8 *pos, *end, *next;
2896 	struct iw_event iwe;
2897 
2898 	if (!ies)
2899 		return current_ev;
2900 
2901 	/*
2902 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2903 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2904 	 */
2905 	pos = ies->data;
2906 	end = pos + ies->len;
2907 
2908 	while (end - pos > IW_GENERIC_IE_MAX) {
2909 		next = pos + 2 + pos[1];
2910 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2911 			next = next + 2 + next[1];
2912 
2913 		memset(&iwe, 0, sizeof(iwe));
2914 		iwe.cmd = IWEVGENIE;
2915 		iwe.u.data.length = next - pos;
2916 		current_ev = iwe_stream_add_point_check(info, current_ev,
2917 							end_buf, &iwe,
2918 							(void *)pos);
2919 		if (IS_ERR(current_ev))
2920 			return current_ev;
2921 		pos = next;
2922 	}
2923 
2924 	if (end > pos) {
2925 		memset(&iwe, 0, sizeof(iwe));
2926 		iwe.cmd = IWEVGENIE;
2927 		iwe.u.data.length = end - pos;
2928 		current_ev = iwe_stream_add_point_check(info, current_ev,
2929 							end_buf, &iwe,
2930 							(void *)pos);
2931 		if (IS_ERR(current_ev))
2932 			return current_ev;
2933 	}
2934 
2935 	return current_ev;
2936 }
2937 
2938 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2939 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2940 	      struct cfg80211_internal_bss *bss, char *current_ev,
2941 	      char *end_buf)
2942 {
2943 	const struct cfg80211_bss_ies *ies;
2944 	struct iw_event iwe;
2945 	const u8 *ie;
2946 	u8 buf[50];
2947 	u8 *cfg, *p, *tmp;
2948 	int rem, i, sig;
2949 	bool ismesh = false;
2950 
2951 	memset(&iwe, 0, sizeof(iwe));
2952 	iwe.cmd = SIOCGIWAP;
2953 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2954 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2955 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2956 						IW_EV_ADDR_LEN);
2957 	if (IS_ERR(current_ev))
2958 		return current_ev;
2959 
2960 	memset(&iwe, 0, sizeof(iwe));
2961 	iwe.cmd = SIOCGIWFREQ;
2962 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2963 	iwe.u.freq.e = 0;
2964 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2965 						IW_EV_FREQ_LEN);
2966 	if (IS_ERR(current_ev))
2967 		return current_ev;
2968 
2969 	memset(&iwe, 0, sizeof(iwe));
2970 	iwe.cmd = SIOCGIWFREQ;
2971 	iwe.u.freq.m = bss->pub.channel->center_freq;
2972 	iwe.u.freq.e = 6;
2973 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2974 						IW_EV_FREQ_LEN);
2975 	if (IS_ERR(current_ev))
2976 		return current_ev;
2977 
2978 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2979 		memset(&iwe, 0, sizeof(iwe));
2980 		iwe.cmd = IWEVQUAL;
2981 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2982 				     IW_QUAL_NOISE_INVALID |
2983 				     IW_QUAL_QUAL_UPDATED;
2984 		switch (wiphy->signal_type) {
2985 		case CFG80211_SIGNAL_TYPE_MBM:
2986 			sig = bss->pub.signal / 100;
2987 			iwe.u.qual.level = sig;
2988 			iwe.u.qual.updated |= IW_QUAL_DBM;
2989 			if (sig < -110)		/* rather bad */
2990 				sig = -110;
2991 			else if (sig > -40)	/* perfect */
2992 				sig = -40;
2993 			/* will give a range of 0 .. 70 */
2994 			iwe.u.qual.qual = sig + 110;
2995 			break;
2996 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2997 			iwe.u.qual.level = bss->pub.signal;
2998 			/* will give range 0 .. 100 */
2999 			iwe.u.qual.qual = bss->pub.signal;
3000 			break;
3001 		default:
3002 			/* not reached */
3003 			break;
3004 		}
3005 		current_ev = iwe_stream_add_event_check(info, current_ev,
3006 							end_buf, &iwe,
3007 							IW_EV_QUAL_LEN);
3008 		if (IS_ERR(current_ev))
3009 			return current_ev;
3010 	}
3011 
3012 	memset(&iwe, 0, sizeof(iwe));
3013 	iwe.cmd = SIOCGIWENCODE;
3014 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3015 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3016 	else
3017 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3018 	iwe.u.data.length = 0;
3019 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3020 						&iwe, "");
3021 	if (IS_ERR(current_ev))
3022 		return current_ev;
3023 
3024 	rcu_read_lock();
3025 	ies = rcu_dereference(bss->pub.ies);
3026 	rem = ies->len;
3027 	ie = ies->data;
3028 
3029 	while (rem >= 2) {
3030 		/* invalid data */
3031 		if (ie[1] > rem - 2)
3032 			break;
3033 
3034 		switch (ie[0]) {
3035 		case WLAN_EID_SSID:
3036 			memset(&iwe, 0, sizeof(iwe));
3037 			iwe.cmd = SIOCGIWESSID;
3038 			iwe.u.data.length = ie[1];
3039 			iwe.u.data.flags = 1;
3040 			current_ev = iwe_stream_add_point_check(info,
3041 								current_ev,
3042 								end_buf, &iwe,
3043 								(u8 *)ie + 2);
3044 			if (IS_ERR(current_ev))
3045 				goto unlock;
3046 			break;
3047 		case WLAN_EID_MESH_ID:
3048 			memset(&iwe, 0, sizeof(iwe));
3049 			iwe.cmd = SIOCGIWESSID;
3050 			iwe.u.data.length = ie[1];
3051 			iwe.u.data.flags = 1;
3052 			current_ev = iwe_stream_add_point_check(info,
3053 								current_ev,
3054 								end_buf, &iwe,
3055 								(u8 *)ie + 2);
3056 			if (IS_ERR(current_ev))
3057 				goto unlock;
3058 			break;
3059 		case WLAN_EID_MESH_CONFIG:
3060 			ismesh = true;
3061 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3062 				break;
3063 			cfg = (u8 *)ie + 2;
3064 			memset(&iwe, 0, sizeof(iwe));
3065 			iwe.cmd = IWEVCUSTOM;
3066 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3067 				"0x%02X", cfg[0]);
3068 			iwe.u.data.length = strlen(buf);
3069 			current_ev = iwe_stream_add_point_check(info,
3070 								current_ev,
3071 								end_buf,
3072 								&iwe, buf);
3073 			if (IS_ERR(current_ev))
3074 				goto unlock;
3075 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3076 				cfg[1]);
3077 			iwe.u.data.length = strlen(buf);
3078 			current_ev = iwe_stream_add_point_check(info,
3079 								current_ev,
3080 								end_buf,
3081 								&iwe, buf);
3082 			if (IS_ERR(current_ev))
3083 				goto unlock;
3084 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3085 				cfg[2]);
3086 			iwe.u.data.length = strlen(buf);
3087 			current_ev = iwe_stream_add_point_check(info,
3088 								current_ev,
3089 								end_buf,
3090 								&iwe, buf);
3091 			if (IS_ERR(current_ev))
3092 				goto unlock;
3093 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3094 			iwe.u.data.length = strlen(buf);
3095 			current_ev = iwe_stream_add_point_check(info,
3096 								current_ev,
3097 								end_buf,
3098 								&iwe, buf);
3099 			if (IS_ERR(current_ev))
3100 				goto unlock;
3101 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3102 			iwe.u.data.length = strlen(buf);
3103 			current_ev = iwe_stream_add_point_check(info,
3104 								current_ev,
3105 								end_buf,
3106 								&iwe, buf);
3107 			if (IS_ERR(current_ev))
3108 				goto unlock;
3109 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3110 			iwe.u.data.length = strlen(buf);
3111 			current_ev = iwe_stream_add_point_check(info,
3112 								current_ev,
3113 								end_buf,
3114 								&iwe, buf);
3115 			if (IS_ERR(current_ev))
3116 				goto unlock;
3117 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3118 			iwe.u.data.length = strlen(buf);
3119 			current_ev = iwe_stream_add_point_check(info,
3120 								current_ev,
3121 								end_buf,
3122 								&iwe, buf);
3123 			if (IS_ERR(current_ev))
3124 				goto unlock;
3125 			break;
3126 		case WLAN_EID_SUPP_RATES:
3127 		case WLAN_EID_EXT_SUPP_RATES:
3128 			/* display all supported rates in readable format */
3129 			p = current_ev + iwe_stream_lcp_len(info);
3130 
3131 			memset(&iwe, 0, sizeof(iwe));
3132 			iwe.cmd = SIOCGIWRATE;
3133 			/* Those two flags are ignored... */
3134 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3135 
3136 			for (i = 0; i < ie[1]; i++) {
3137 				iwe.u.bitrate.value =
3138 					((ie[i + 2] & 0x7f) * 500000);
3139 				tmp = p;
3140 				p = iwe_stream_add_value(info, current_ev, p,
3141 							 end_buf, &iwe,
3142 							 IW_EV_PARAM_LEN);
3143 				if (p == tmp) {
3144 					current_ev = ERR_PTR(-E2BIG);
3145 					goto unlock;
3146 				}
3147 			}
3148 			current_ev = p;
3149 			break;
3150 		}
3151 		rem -= ie[1] + 2;
3152 		ie += ie[1] + 2;
3153 	}
3154 
3155 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3156 	    ismesh) {
3157 		memset(&iwe, 0, sizeof(iwe));
3158 		iwe.cmd = SIOCGIWMODE;
3159 		if (ismesh)
3160 			iwe.u.mode = IW_MODE_MESH;
3161 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3162 			iwe.u.mode = IW_MODE_MASTER;
3163 		else
3164 			iwe.u.mode = IW_MODE_ADHOC;
3165 		current_ev = iwe_stream_add_event_check(info, current_ev,
3166 							end_buf, &iwe,
3167 							IW_EV_UINT_LEN);
3168 		if (IS_ERR(current_ev))
3169 			goto unlock;
3170 	}
3171 
3172 	memset(&iwe, 0, sizeof(iwe));
3173 	iwe.cmd = IWEVCUSTOM;
3174 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3175 	iwe.u.data.length = strlen(buf);
3176 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3177 						&iwe, buf);
3178 	if (IS_ERR(current_ev))
3179 		goto unlock;
3180 	memset(&iwe, 0, sizeof(iwe));
3181 	iwe.cmd = IWEVCUSTOM;
3182 	sprintf(buf, " Last beacon: %ums ago",
3183 		elapsed_jiffies_msecs(bss->ts));
3184 	iwe.u.data.length = strlen(buf);
3185 	current_ev = iwe_stream_add_point_check(info, current_ev,
3186 						end_buf, &iwe, buf);
3187 	if (IS_ERR(current_ev))
3188 		goto unlock;
3189 
3190 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3191 
3192  unlock:
3193 	rcu_read_unlock();
3194 	return current_ev;
3195 }
3196 
3197 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3198 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3199 				  struct iw_request_info *info,
3200 				  char *buf, size_t len)
3201 {
3202 	char *current_ev = buf;
3203 	char *end_buf = buf + len;
3204 	struct cfg80211_internal_bss *bss;
3205 	int err = 0;
3206 
3207 	spin_lock_bh(&rdev->bss_lock);
3208 	cfg80211_bss_expire(rdev);
3209 
3210 	list_for_each_entry(bss, &rdev->bss_list, list) {
3211 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3212 			err = -E2BIG;
3213 			break;
3214 		}
3215 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3216 					   current_ev, end_buf);
3217 		if (IS_ERR(current_ev)) {
3218 			err = PTR_ERR(current_ev);
3219 			break;
3220 		}
3221 	}
3222 	spin_unlock_bh(&rdev->bss_lock);
3223 
3224 	if (err)
3225 		return err;
3226 	return current_ev - buf;
3227 }
3228 
3229 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3230 int cfg80211_wext_giwscan(struct net_device *dev,
3231 			  struct iw_request_info *info,
3232 			  struct iw_point *data, char *extra)
3233 {
3234 	struct cfg80211_registered_device *rdev;
3235 	int res;
3236 
3237 	if (!netif_running(dev))
3238 		return -ENETDOWN;
3239 
3240 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3241 
3242 	if (IS_ERR(rdev))
3243 		return PTR_ERR(rdev);
3244 
3245 	if (rdev->scan_req || rdev->scan_msg)
3246 		return -EAGAIN;
3247 
3248 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3249 	data->length = 0;
3250 	if (res >= 0) {
3251 		data->length = res;
3252 		res = 0;
3253 	}
3254 
3255 	return res;
3256 }
3257 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3258 #endif
3259