1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18 * LOG FILE structs
19 */
20
21 // clang-format off
22
23 #define MaxLogFileSize 0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages 0x30
26
27 struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
108 __le16 name_bytes;
109 __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
148 */
149 struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225 };
226
227 struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290 * END of NTFS LOG structures
291 */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
344 */
345 static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
is_target_required(u16 op)349 static inline bool is_target_required(u16 op)
350 {
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354 }
355
can_skip_action(enum NTFS_LOG_OPERATION op)356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
lcb_put(struct lcb * lcb)403 static void lcb_put(struct lcb *lcb)
404 {
405 if (lcb->alloc)
406 kfree(lcb->log_rec);
407 kfree(lcb->lrh);
408 kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414 {
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425 }
426
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429 {
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
442 return false;
443
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462 }
463
is_rst_area_valid(const struct RESTART_HDR * rhdr)464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, seq_bits;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
513
514 seq_bits = sizeof(u64) * 8 + 3;
515 while (l_size) {
516 l_size >>= 1;
517 seq_bits -= 1;
518 }
519
520 if (seq_bits != ra->seq_num_bits)
521 return false;
522
523 /* The log page data offset and record header length must be quad-aligned. */
524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 return false;
527
528 return true;
529 }
530
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 bool usa_error)
533 {
534 u16 ro = le16_to_cpu(rhdr->ra_off);
535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 u16 ra_len = le16_to_cpu(ra->ra_len);
537 const struct CLIENT_REC *ca;
538 u32 i;
539
540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 return false;
542
543 /* Find the start of the client array. */
544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546 /*
547 * Start with the free list.
548 * Check that all the clients are valid and that there isn't a cycle.
549 * Do the in-use list on the second pass.
550 */
551 for (i = 0; i < 2; i++) {
552 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 bool first_client = true;
554 u16 clients = le16_to_cpu(ra->log_clients);
555
556 while (client_idx != LFS_NO_CLIENT) {
557 const struct CLIENT_REC *cr;
558
559 if (!clients ||
560 client_idx >= le16_to_cpu(ra->log_clients))
561 return false;
562
563 clients -= 1;
564 cr = ca + client_idx;
565
566 client_idx = le16_to_cpu(cr->next_client);
567
568 if (first_client) {
569 first_client = false;
570 if (cr->prev_client != LFS_NO_CLIENT_LE)
571 return false;
572 }
573 }
574 }
575
576 return true;
577 }
578
579 /*
580 * remove_client
581 *
582 * Remove a client record from a client record list an restart area.
583 */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)584 static inline void remove_client(struct CLIENT_REC *ca,
585 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 if (cr->prev_client == LFS_NO_CLIENT_LE)
588 *head = cr->next_client;
589 else
590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592 if (cr->next_client != LFS_NO_CLIENT_LE)
593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595
596 /*
597 * add_client - Add a client record to the start of a list.
598 */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 struct CLIENT_REC *cr = ca + index;
602
603 cr->prev_client = LFS_NO_CLIENT_LE;
604 cr->next_client = *head;
605
606 if (*head != LFS_NO_CLIENT_LE)
607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609 *head = cpu_to_le16(index);
610 }
611
enum_rstbl(struct RESTART_TABLE * t,void * c)612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613 {
614 __le32 *e;
615 u32 bprt;
616 u16 rsize = t ? le16_to_cpu(t->size) : 0;
617
618 if (!c) {
619 if (!t || !t->total)
620 return NULL;
621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622 } else {
623 e = Add2Ptr(c, rsize);
624 }
625
626 /* Loop until we hit the first one allocated, or the end of the list. */
627 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
628 e = Add2Ptr(e, rsize)) {
629 if (*e == RESTART_ENTRY_ALLOCATED_LE)
630 return e;
631 }
632 return NULL;
633 }
634
635 /*
636 * find_dp - Search for a @vcn in Dirty Page Table.
637 */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639 u32 target_attr, u64 vcn)
640 {
641 __le32 ta = cpu_to_le32(target_attr);
642 struct DIR_PAGE_ENTRY *dp = NULL;
643
644 while ((dp = enum_rstbl(dptbl, dp))) {
645 u64 dp_vcn = le64_to_cpu(dp->vcn);
646
647 if (dp->target_attr == ta && vcn >= dp_vcn &&
648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649 return dp;
650 }
651 }
652 return NULL;
653 }
654
norm_file_page(u32 page_size,u32 * l_size,bool use_default)655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 {
657 if (use_default)
658 page_size = DefaultLogPageSize;
659
660 /* Round the file size down to a system page boundary. */
661 *l_size &= ~(page_size - 1);
662
663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664 if (*l_size < (MinLogRecordPages + 2) * page_size)
665 return 0;
666
667 return page_size;
668 }
669
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671 u32 bytes_per_attr_entry)
672 {
673 u16 t16;
674
675 if (bytes < sizeof(struct LOG_REC_HDR))
676 return false;
677 if (!tr)
678 return false;
679
680 if ((tr - sizeof(struct RESTART_TABLE)) %
681 sizeof(struct TRANSACTION_ENTRY))
682 return false;
683
684 if (le16_to_cpu(lr->redo_off) & 7)
685 return false;
686
687 if (le16_to_cpu(lr->undo_off) & 7)
688 return false;
689
690 if (lr->target_attr)
691 goto check_lcns;
692
693 if (is_target_required(le16_to_cpu(lr->redo_op)))
694 return false;
695
696 if (is_target_required(le16_to_cpu(lr->undo_op)))
697 return false;
698
699 check_lcns:
700 if (!lr->lcns_follow)
701 goto check_length;
702
703 t16 = le16_to_cpu(lr->target_attr);
704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705 return false;
706
707 check_length:
708 if (bytes < lrh_length(lr))
709 return false;
710
711 return true;
712 }
713
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715 {
716 u32 ts;
717 u32 i, off;
718 u16 rsize = le16_to_cpu(rt->size);
719 u16 ne = le16_to_cpu(rt->used);
720 u32 ff = le32_to_cpu(rt->first_free);
721 u32 lf = le32_to_cpu(rt->last_free);
722
723 ts = rsize * ne + sizeof(struct RESTART_TABLE);
724
725 if (!rsize || rsize > bytes ||
726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
728 (ff && ff < sizeof(struct RESTART_TABLE)) ||
729 (lf && lf < sizeof(struct RESTART_TABLE))) {
730 return false;
731 }
732
733 /*
734 * Verify each entry is either allocated or points
735 * to a valid offset the table.
736 */
737 for (i = 0; i < ne; i++) {
738 off = le32_to_cpu(*(__le32 *)Add2Ptr(
739 rt, i * rsize + sizeof(struct RESTART_TABLE)));
740
741 if (off != RESTART_ENTRY_ALLOCATED && off &&
742 (off < sizeof(struct RESTART_TABLE) ||
743 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
744 return false;
745 }
746 }
747
748 /*
749 * Walk through the list headed by the first entry to make
750 * sure none of the entries are currently being used.
751 */
752 for (off = ff; off;) {
753 if (off == RESTART_ENTRY_ALLOCATED)
754 return false;
755
756 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
757 }
758
759 return true;
760 }
761
762 /*
763 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
764 */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766 {
767 __le32 *e;
768 u32 lf = le32_to_cpu(rt->last_free);
769 __le32 off_le = cpu_to_le32(off);
770
771 e = Add2Ptr(rt, off);
772
773 if (off < le32_to_cpu(rt->free_goal)) {
774 *e = rt->first_free;
775 rt->first_free = off_le;
776 if (!lf)
777 rt->last_free = off_le;
778 } else {
779 if (lf)
780 *(__le32 *)Add2Ptr(rt, lf) = off_le;
781 else
782 rt->first_free = off_le;
783
784 rt->last_free = off_le;
785 *e = 0;
786 }
787
788 le16_sub_cpu(&rt->total, 1);
789 }
790
init_rsttbl(u16 esize,u16 used)791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
792 {
793 __le32 *e, *last_free;
794 u32 off;
795 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
796 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
797 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
798
799 if (!t)
800 return NULL;
801
802 t->size = cpu_to_le16(esize);
803 t->used = cpu_to_le16(used);
804 t->free_goal = cpu_to_le32(~0u);
805 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
806 t->last_free = cpu_to_le32(lf);
807
808 e = (__le32 *)(t + 1);
809 last_free = Add2Ptr(t, lf);
810
811 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
812 e = Add2Ptr(e, esize), off += esize) {
813 *e = cpu_to_le32(off);
814 }
815 return t;
816 }
817
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
819 u32 add, u32 free_goal)
820 {
821 u16 esize = le16_to_cpu(tbl->size);
822 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
823 u32 used = le16_to_cpu(tbl->used);
824 struct RESTART_TABLE *rt;
825
826 rt = init_rsttbl(esize, used + add);
827 if (!rt)
828 return NULL;
829
830 memcpy(rt + 1, tbl + 1, esize * used);
831
832 rt->free_goal = free_goal == ~0u
833 ? cpu_to_le32(~0u)
834 : cpu_to_le32(sizeof(struct RESTART_TABLE) +
835 free_goal * esize);
836
837 if (tbl->first_free) {
838 rt->first_free = tbl->first_free;
839 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
840 } else {
841 rt->first_free = osize;
842 }
843
844 rt->total = tbl->total;
845
846 kfree(tbl);
847 return rt;
848 }
849
850 /*
851 * alloc_rsttbl_idx
852 *
853 * Allocate an index from within a previously initialized Restart Table.
854 */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
856 {
857 u32 off;
858 __le32 *e;
859 struct RESTART_TABLE *t = *tbl;
860
861 if (!t->first_free) {
862 *tbl = t = extend_rsttbl(t, 16, ~0u);
863 if (!t)
864 return NULL;
865 }
866
867 off = le32_to_cpu(t->first_free);
868
869 /* Dequeue this entry and zero it. */
870 e = Add2Ptr(t, off);
871
872 t->first_free = *e;
873
874 memset(e, 0, le16_to_cpu(t->size));
875
876 *e = RESTART_ENTRY_ALLOCATED_LE;
877
878 /* If list is going empty, then we fix the last_free as well. */
879 if (!t->first_free)
880 t->last_free = 0;
881
882 le16_add_cpu(&t->total, 1);
883
884 return Add2Ptr(t, off);
885 }
886
887 /*
888 * alloc_rsttbl_from_idx
889 *
890 * Allocate a specific index from within a previously initialized Restart Table.
891 */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
893 {
894 u32 off;
895 __le32 *e;
896 struct RESTART_TABLE *rt = *tbl;
897 u32 bytes = bytes_per_rt(rt);
898 u16 esize = le16_to_cpu(rt->size);
899
900 /* If the entry is not the table, we will have to extend the table. */
901 if (vbo >= bytes) {
902 /*
903 * Extend the size by computing the number of entries between
904 * the existing size and the desired index and adding 1 to that.
905 */
906 u32 bytes2idx = vbo - bytes;
907
908 /*
909 * There should always be an integral number of entries
910 * being added. Now extend the table.
911 */
912 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
913 if (!rt)
914 return NULL;
915 }
916
917 /* See if the entry is already allocated, and just return if it is. */
918 e = Add2Ptr(rt, vbo);
919
920 if (*e == RESTART_ENTRY_ALLOCATED_LE)
921 return e;
922
923 /*
924 * Walk through the table, looking for the entry we're
925 * interested and the previous entry.
926 */
927 off = le32_to_cpu(rt->first_free);
928 e = Add2Ptr(rt, off);
929
930 if (off == vbo) {
931 /* this is a match */
932 rt->first_free = *e;
933 goto skip_looking;
934 }
935
936 /*
937 * Need to walk through the list looking for the predecessor
938 * of our entry.
939 */
940 for (;;) {
941 /* Remember the entry just found */
942 u32 last_off = off;
943 __le32 *last_e = e;
944
945 /* Should never run of entries. */
946
947 /* Lookup up the next entry the list. */
948 off = le32_to_cpu(*last_e);
949 e = Add2Ptr(rt, off);
950
951 /* If this is our match we are done. */
952 if (off == vbo) {
953 *last_e = *e;
954
955 /*
956 * If this was the last entry, we update that
957 * table as well.
958 */
959 if (le32_to_cpu(rt->last_free) == off)
960 rt->last_free = cpu_to_le32(last_off);
961 break;
962 }
963 }
964
965 skip_looking:
966 /* If the list is now empty, we fix the last_free as well. */
967 if (!rt->first_free)
968 rt->last_free = 0;
969
970 /* Zero this entry. */
971 memset(e, 0, esize);
972 *e = RESTART_ENTRY_ALLOCATED_LE;
973
974 le16_add_cpu(&rt->total, 1);
975
976 return e;
977 }
978
979 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
980
981 #define NTFSLOG_WRAPPED 0x00000001
982 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
983 #define NTFSLOG_NO_LAST_LSN 0x00000004
984 #define NTFSLOG_REUSE_TAIL 0x00000010
985 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
986
987 /* Helper struct to work with NTFS $LogFile. */
988 struct ntfs_log {
989 struct ntfs_inode *ni;
990
991 u32 l_size;
992 u32 sys_page_size;
993 u32 sys_page_mask;
994 u32 page_size;
995 u32 page_mask; // page_size - 1
996 u8 page_bits;
997 struct RECORD_PAGE_HDR *one_page_buf;
998
999 struct RESTART_TABLE *open_attr_tbl;
1000 u32 transaction_id;
1001 u32 clst_per_page;
1002
1003 u32 first_page;
1004 u32 next_page;
1005 u32 ra_off;
1006 u32 data_off;
1007 u32 restart_size;
1008 u32 data_size;
1009 u16 record_header_len;
1010 u64 seq_num;
1011 u32 seq_num_bits;
1012 u32 file_data_bits;
1013 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1014
1015 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1016 u32 ra_size; /* The usable size of the restart area. */
1017
1018 /*
1019 * If true, then the in-memory restart area is to be written
1020 * to the first position on the disk.
1021 */
1022 bool init_ra;
1023 bool set_dirty; /* True if we need to set dirty flag. */
1024
1025 u64 oldest_lsn;
1026
1027 u32 oldest_lsn_off;
1028 u64 last_lsn;
1029
1030 u32 total_avail;
1031 u32 total_avail_pages;
1032 u32 total_undo_commit;
1033 u32 max_current_avail;
1034 u32 current_avail;
1035 u32 reserved;
1036
1037 short major_ver;
1038 short minor_ver;
1039
1040 u32 l_flags; /* See NTFSLOG_XXX */
1041 u32 current_openlog_count; /* On-disk value for open_log_count. */
1042
1043 struct CLIENT_ID client_id;
1044 u32 client_undo_commit;
1045 };
1046
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1047 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1048 {
1049 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1050
1051 return vbo;
1052 }
1053
1054 /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1055 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1056 {
1057 off = (off & ~log->sys_page_mask) + log->page_size;
1058 return off >= log->l_size ? log->first_page : off;
1059 }
1060
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1061 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1062 {
1063 return (((u32)lsn) << 3) & log->page_mask;
1064 }
1065
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1066 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1067 {
1068 return (off >> 3) + (Seq << log->file_data_bits);
1069 }
1070
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1071 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1072 {
1073 return lsn >= log->oldest_lsn &&
1074 lsn <= le64_to_cpu(log->ra->current_lsn);
1075 }
1076
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1077 static inline u32 hdr_file_off(struct ntfs_log *log,
1078 struct RECORD_PAGE_HDR *hdr)
1079 {
1080 if (log->major_ver < 2)
1081 return le64_to_cpu(hdr->rhdr.lsn);
1082
1083 return le32_to_cpu(hdr->file_off);
1084 }
1085
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1086 static inline u64 base_lsn(struct ntfs_log *log,
1087 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1088 {
1089 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1090 u64 ret = (((h_lsn >> log->file_data_bits) +
1091 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1092 << log->file_data_bits) +
1093 ((((is_log_record_end(hdr) &&
1094 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1095 ? le16_to_cpu(hdr->record_hdr.next_record_off)
1096 : log->page_size) +
1097 lsn) >>
1098 3);
1099
1100 return ret;
1101 }
1102
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1103 static inline bool verify_client_lsn(struct ntfs_log *log,
1104 const struct CLIENT_REC *client, u64 lsn)
1105 {
1106 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1107 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1108 }
1109
1110 struct restart_info {
1111 u64 last_lsn;
1112 struct RESTART_HDR *r_page;
1113 u32 vbo;
1114 bool chkdsk_was_run;
1115 bool valid_page;
1116 bool initialized;
1117 bool restart;
1118 };
1119
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1120 static int read_log_page(struct ntfs_log *log, u32 vbo,
1121 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1122 {
1123 int err = 0;
1124 u32 page_idx = vbo >> log->page_bits;
1125 u32 page_off = vbo & log->page_mask;
1126 u32 bytes = log->page_size - page_off;
1127 void *to_free = NULL;
1128 u32 page_vbo = page_idx << log->page_bits;
1129 struct RECORD_PAGE_HDR *page_buf;
1130 struct ntfs_inode *ni = log->ni;
1131 bool bBAAD;
1132
1133 if (vbo >= log->l_size)
1134 return -EINVAL;
1135
1136 if (!*buffer) {
1137 to_free = kmalloc(log->page_size, GFP_NOFS);
1138 if (!to_free)
1139 return -ENOMEM;
1140 *buffer = to_free;
1141 }
1142
1143 page_buf = page_off ? log->one_page_buf : *buffer;
1144
1145 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1146 log->page_size, NULL);
1147 if (err)
1148 goto out;
1149
1150 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1151 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1152
1153 if (page_buf != *buffer)
1154 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1155
1156 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1157
1158 if (usa_error)
1159 *usa_error = bBAAD;
1160 /* Check that the update sequence array for this page is valid */
1161 /* If we don't allow errors, raise an error status */
1162 else if (bBAAD)
1163 err = -EINVAL;
1164
1165 out:
1166 if (err && to_free) {
1167 kfree(to_free);
1168 *buffer = NULL;
1169 }
1170
1171 return err;
1172 }
1173
1174 /*
1175 * log_read_rst
1176 *
1177 * It walks through 512 blocks of the file looking for a valid
1178 * restart page header. It will stop the first time we find a
1179 * valid page header.
1180 */
log_read_rst(struct ntfs_log * log,u32 l_size,bool first,struct restart_info * info)1181 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1182 struct restart_info *info)
1183 {
1184 u32 skip, vbo;
1185 struct RESTART_HDR *r_page = NULL;
1186
1187 /* Determine which restart area we are looking for. */
1188 if (first) {
1189 vbo = 0;
1190 skip = 512;
1191 } else {
1192 vbo = 512;
1193 skip = 0;
1194 }
1195
1196 /* Loop continuously until we succeed. */
1197 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1198 bool usa_error;
1199 bool brst, bchk;
1200 struct RESTART_AREA *ra;
1201
1202 /* Read a page header at the current offset. */
1203 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1204 &usa_error)) {
1205 /* Ignore any errors. */
1206 continue;
1207 }
1208
1209 /* Exit if the signature is a log record page. */
1210 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1211 info->initialized = true;
1212 break;
1213 }
1214
1215 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1216 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1217
1218 if (!bchk && !brst) {
1219 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1220 /*
1221 * Remember if the signature does not
1222 * indicate uninitialized file.
1223 */
1224 info->initialized = true;
1225 }
1226 continue;
1227 }
1228
1229 ra = NULL;
1230 info->valid_page = false;
1231 info->initialized = true;
1232 info->vbo = vbo;
1233
1234 /* Let's check the restart area if this is a valid page. */
1235 if (!is_rst_page_hdr_valid(vbo, r_page))
1236 goto check_result;
1237 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1238
1239 if (!is_rst_area_valid(r_page))
1240 goto check_result;
1241
1242 /*
1243 * We have a valid restart page header and restart area.
1244 * If chkdsk was run or we have no clients then we have
1245 * no more checking to do.
1246 */
1247 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1248 info->valid_page = true;
1249 goto check_result;
1250 }
1251
1252 if (is_client_area_valid(r_page, usa_error)) {
1253 info->valid_page = true;
1254 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1255 }
1256
1257 check_result:
1258 /*
1259 * If chkdsk was run then update the caller's
1260 * values and return.
1261 */
1262 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1263 info->chkdsk_was_run = true;
1264 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1265 info->restart = true;
1266 info->r_page = r_page;
1267 return 0;
1268 }
1269
1270 /*
1271 * If we have a valid page then copy the values
1272 * we need from it.
1273 */
1274 if (info->valid_page) {
1275 info->last_lsn = le64_to_cpu(ra->current_lsn);
1276 info->restart = true;
1277 info->r_page = r_page;
1278 return 0;
1279 }
1280 }
1281
1282 kfree(r_page);
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Ilog_init_pg_hdr - Init @log from restart page header.
1289 */
log_init_pg_hdr(struct ntfs_log * log,u32 sys_page_size,u32 page_size,u16 major_ver,u16 minor_ver)1290 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1291 u32 page_size, u16 major_ver, u16 minor_ver)
1292 {
1293 log->sys_page_size = sys_page_size;
1294 log->sys_page_mask = sys_page_size - 1;
1295 log->page_size = page_size;
1296 log->page_mask = page_size - 1;
1297 log->page_bits = blksize_bits(page_size);
1298
1299 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1300 if (!log->clst_per_page)
1301 log->clst_per_page = 1;
1302
1303 log->first_page = major_ver >= 2
1304 ? 0x22 * page_size
1305 : ((sys_page_size << 1) + (page_size << 1));
1306 log->major_ver = major_ver;
1307 log->minor_ver = minor_ver;
1308 }
1309
1310 /*
1311 * log_create - Init @log in cases when we don't have a restart area to use.
1312 */
log_create(struct ntfs_log * log,u32 l_size,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1313 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1314 u32 open_log_count, bool wrapped, bool use_multi_page)
1315 {
1316 log->l_size = l_size;
1317 /* All file offsets must be quadword aligned. */
1318 log->file_data_bits = blksize_bits(l_size) - 3;
1319 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1320 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1321 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1322 log->next_page = log->first_page;
1323 log->oldest_lsn = log->seq_num << log->file_data_bits;
1324 log->oldest_lsn_off = 0;
1325 log->last_lsn = log->oldest_lsn;
1326
1327 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1328
1329 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1330 if (wrapped)
1331 log->l_flags |= NTFSLOG_WRAPPED;
1332
1333 if (use_multi_page)
1334 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1335
1336 /* Compute the log page values. */
1337 log->data_off = ALIGN(
1338 offsetof(struct RECORD_PAGE_HDR, fixups) +
1339 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1340 8);
1341 log->data_size = log->page_size - log->data_off;
1342 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1343
1344 /* Remember the different page sizes for reservation. */
1345 log->reserved = log->data_size - log->record_header_len;
1346
1347 /* Compute the restart page values. */
1348 log->ra_off = ALIGN(
1349 offsetof(struct RESTART_HDR, fixups) +
1350 sizeof(short) *
1351 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1352 8);
1353 log->restart_size = log->sys_page_size - log->ra_off;
1354 log->ra_size = struct_size(log->ra, clients, 1);
1355 log->current_openlog_count = open_log_count;
1356
1357 /*
1358 * The total available log file space is the number of
1359 * log file pages times the space available on each page.
1360 */
1361 log->total_avail_pages = log->l_size - log->first_page;
1362 log->total_avail = log->total_avail_pages >> log->page_bits;
1363
1364 /*
1365 * We assume that we can't use the end of the page less than
1366 * the file record size.
1367 * Then we won't need to reserve more than the caller asks for.
1368 */
1369 log->max_current_avail = log->total_avail * log->reserved;
1370 log->total_avail = log->total_avail * log->data_size;
1371 log->current_avail = log->max_current_avail;
1372 }
1373
1374 /*
1375 * log_create_ra - Fill a restart area from the values stored in @log.
1376 */
log_create_ra(struct ntfs_log * log)1377 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1378 {
1379 struct CLIENT_REC *cr;
1380 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1381
1382 if (!ra)
1383 return NULL;
1384
1385 ra->current_lsn = cpu_to_le64(log->last_lsn);
1386 ra->log_clients = cpu_to_le16(1);
1387 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1388 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1389 ra->flags = RESTART_SINGLE_PAGE_IO;
1390 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1391 ra->ra_len = cpu_to_le16(log->ra_size);
1392 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1393 ra->l_size = cpu_to_le64(log->l_size);
1394 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1395 ra->data_off = cpu_to_le16(log->data_off);
1396 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1397
1398 cr = ra->clients;
1399
1400 cr->prev_client = LFS_NO_CLIENT_LE;
1401 cr->next_client = LFS_NO_CLIENT_LE;
1402
1403 return ra;
1404 }
1405
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1406 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1407 {
1408 u32 base_vbo = lsn << 3;
1409 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1410 u32 page_off = base_vbo & log->page_mask;
1411 u32 tail = log->page_size - page_off;
1412
1413 page_off -= 1;
1414
1415 /* Add the length of the header. */
1416 data_len += log->record_header_len;
1417
1418 /*
1419 * If this lsn is contained this log page we are done.
1420 * Otherwise we need to walk through several log pages.
1421 */
1422 if (data_len > tail) {
1423 data_len -= tail;
1424 tail = log->data_size;
1425 page_off = log->data_off - 1;
1426
1427 for (;;) {
1428 final_log_off = next_page_off(log, final_log_off);
1429
1430 /*
1431 * We are done if the remaining bytes
1432 * fit on this page.
1433 */
1434 if (data_len <= tail)
1435 break;
1436 data_len -= tail;
1437 }
1438 }
1439
1440 /*
1441 * We add the remaining bytes to our starting position on this page
1442 * and then add that value to the file offset of this log page.
1443 */
1444 return final_log_off + data_len + page_off;
1445 }
1446
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1447 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1448 u64 *lsn)
1449 {
1450 int err;
1451 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1452 u32 vbo = lsn_to_vbo(log, this_lsn);
1453 u32 end =
1454 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1455 u32 hdr_off = end & ~log->sys_page_mask;
1456 u64 seq = this_lsn >> log->file_data_bits;
1457 struct RECORD_PAGE_HDR *page = NULL;
1458
1459 /* Remember if we wrapped. */
1460 if (end <= vbo)
1461 seq += 1;
1462
1463 /* Log page header for this page. */
1464 err = read_log_page(log, hdr_off, &page, NULL);
1465 if (err)
1466 return err;
1467
1468 /*
1469 * If the lsn we were given was not the last lsn on this page,
1470 * then the starting offset for the next lsn is on a quad word
1471 * boundary following the last file offset for the current lsn.
1472 * Otherwise the file offset is the start of the data on the next page.
1473 */
1474 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1475 /* If we wrapped, we need to increment the sequence number. */
1476 hdr_off = next_page_off(log, hdr_off);
1477 if (hdr_off == log->first_page)
1478 seq += 1;
1479
1480 vbo = hdr_off + log->data_off;
1481 } else {
1482 vbo = ALIGN(end, 8);
1483 }
1484
1485 /* Compute the lsn based on the file offset and the sequence count. */
1486 *lsn = vbo_to_lsn(log, vbo, seq);
1487
1488 /*
1489 * If this lsn is within the legal range for the file, we return true.
1490 * Otherwise false indicates that there are no more lsn's.
1491 */
1492 if (!is_lsn_in_file(log, *lsn))
1493 *lsn = 0;
1494
1495 kfree(page);
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * current_log_avail - Calculate the number of bytes available for log records.
1502 */
current_log_avail(struct ntfs_log * log)1503 static u32 current_log_avail(struct ntfs_log *log)
1504 {
1505 u32 oldest_off, next_free_off, free_bytes;
1506
1507 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1508 /* The entire file is available. */
1509 return log->max_current_avail;
1510 }
1511
1512 /*
1513 * If there is a last lsn the restart area then we know that we will
1514 * have to compute the free range.
1515 * If there is no oldest lsn then start at the first page of the file.
1516 */
1517 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1518 ? log->first_page
1519 : (log->oldest_lsn_off & ~log->sys_page_mask);
1520
1521 /*
1522 * We will use the next log page offset to compute the next free page.
1523 * If we are going to reuse this page go to the next page.
1524 * If we are at the first page then use the end of the file.
1525 */
1526 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1527 ? log->next_page + log->page_size
1528 : log->next_page == log->first_page
1529 ? log->l_size
1530 : log->next_page;
1531
1532 /* If the two offsets are the same then there is no available space. */
1533 if (oldest_off == next_free_off)
1534 return 0;
1535 /*
1536 * If the free offset follows the oldest offset then subtract
1537 * this range from the total available pages.
1538 */
1539 free_bytes =
1540 oldest_off < next_free_off
1541 ? log->total_avail_pages - (next_free_off - oldest_off)
1542 : oldest_off - next_free_off;
1543
1544 free_bytes >>= log->page_bits;
1545 return free_bytes * log->reserved;
1546 }
1547
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1548 static bool check_subseq_log_page(struct ntfs_log *log,
1549 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1550 u64 seq)
1551 {
1552 u64 lsn_seq;
1553 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1554 u64 lsn = le64_to_cpu(rhdr->lsn);
1555
1556 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1557 return false;
1558
1559 /*
1560 * If the last lsn on the page occurs was written after the page
1561 * that caused the original error then we have a fatal error.
1562 */
1563 lsn_seq = lsn >> log->file_data_bits;
1564
1565 /*
1566 * If the sequence number for the lsn the page is equal or greater
1567 * than lsn we expect, then this is a subsequent write.
1568 */
1569 return lsn_seq >= seq ||
1570 (lsn_seq == seq - 1 && log->first_page == vbo &&
1571 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1572 }
1573
1574 /*
1575 * last_log_lsn
1576 *
1577 * Walks through the log pages for a file, searching for the
1578 * last log page written to the file.
1579 */
last_log_lsn(struct ntfs_log * log)1580 static int last_log_lsn(struct ntfs_log *log)
1581 {
1582 int err;
1583 bool usa_error = false;
1584 bool replace_page = false;
1585 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1586 bool wrapped_file, wrapped;
1587
1588 u32 page_cnt = 1, page_pos = 1;
1589 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1590 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1591 u32 first_file_off = 0, second_file_off = 0;
1592 u32 part_io_count = 0;
1593 u32 tails = 0;
1594 u32 this_off, curpage_off, nextpage_off, remain_pages;
1595
1596 u64 expected_seq, seq_base = 0, lsn_base = 0;
1597 u64 best_lsn, best_lsn1, best_lsn2;
1598 u64 lsn_cur, lsn1, lsn2;
1599 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1600
1601 u16 cur_pos, best_page_pos;
1602
1603 struct RECORD_PAGE_HDR *page = NULL;
1604 struct RECORD_PAGE_HDR *tst_page = NULL;
1605 struct RECORD_PAGE_HDR *first_tail = NULL;
1606 struct RECORD_PAGE_HDR *second_tail = NULL;
1607 struct RECORD_PAGE_HDR *tail_page = NULL;
1608 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1609 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1610 struct RECORD_PAGE_HDR *page_bufs = NULL;
1611 struct RECORD_PAGE_HDR *best_page;
1612
1613 if (log->major_ver >= 2) {
1614 final_off = 0x02 * log->page_size;
1615 second_off = 0x12 * log->page_size;
1616
1617 // 0x10 == 0x12 - 0x2
1618 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1619 if (!page_bufs)
1620 return -ENOMEM;
1621 } else {
1622 second_off = log->first_page - log->page_size;
1623 final_off = second_off - log->page_size;
1624 }
1625
1626 next_tail:
1627 /* Read second tail page (at pos 3/0x12000). */
1628 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1629 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1630 kfree(second_tail);
1631 second_tail = NULL;
1632 second_file_off = 0;
1633 lsn2 = 0;
1634 } else {
1635 second_file_off = hdr_file_off(log, second_tail);
1636 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1637 }
1638
1639 /* Read first tail page (at pos 2/0x2000). */
1640 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1641 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1642 kfree(first_tail);
1643 first_tail = NULL;
1644 first_file_off = 0;
1645 lsn1 = 0;
1646 } else {
1647 first_file_off = hdr_file_off(log, first_tail);
1648 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1649 }
1650
1651 if (log->major_ver < 2) {
1652 int best_page;
1653
1654 first_tail_prev = first_tail;
1655 final_off_prev = first_file_off;
1656 second_tail_prev = second_tail;
1657 second_off_prev = second_file_off;
1658 tails = 1;
1659
1660 if (!first_tail && !second_tail)
1661 goto tail_read;
1662
1663 if (first_tail && second_tail)
1664 best_page = lsn1 < lsn2 ? 1 : 0;
1665 else if (first_tail)
1666 best_page = 0;
1667 else
1668 best_page = 1;
1669
1670 page_off = best_page ? second_file_off : first_file_off;
1671 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1672 goto tail_read;
1673 }
1674
1675 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1676 best_lsn2 =
1677 second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1678
1679 if (first_tail && second_tail) {
1680 if (best_lsn1 > best_lsn2) {
1681 best_lsn = best_lsn1;
1682 best_page = first_tail;
1683 this_off = first_file_off;
1684 } else {
1685 best_lsn = best_lsn2;
1686 best_page = second_tail;
1687 this_off = second_file_off;
1688 }
1689 } else if (first_tail) {
1690 best_lsn = best_lsn1;
1691 best_page = first_tail;
1692 this_off = first_file_off;
1693 } else if (second_tail) {
1694 best_lsn = best_lsn2;
1695 best_page = second_tail;
1696 this_off = second_file_off;
1697 } else {
1698 goto tail_read;
1699 }
1700
1701 best_page_pos = le16_to_cpu(best_page->page_pos);
1702
1703 if (!tails) {
1704 if (best_page_pos == page_pos) {
1705 seq_base = best_lsn >> log->file_data_bits;
1706 saved_off = page_off = le32_to_cpu(best_page->file_off);
1707 lsn_base = best_lsn;
1708
1709 memmove(page_bufs, best_page, log->page_size);
1710
1711 page_cnt = le16_to_cpu(best_page->page_count);
1712 if (page_cnt > 1)
1713 page_pos += 1;
1714
1715 tails = 1;
1716 }
1717 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1718 saved_off + log->page_size == this_off &&
1719 lsn_base < best_lsn &&
1720 (page_pos != page_cnt || best_page_pos == page_pos ||
1721 best_page_pos == 1) &&
1722 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1723 u16 bppc = le16_to_cpu(best_page->page_count);
1724
1725 saved_off += log->page_size;
1726 lsn_base = best_lsn;
1727
1728 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1729 log->page_size);
1730
1731 tails += 1;
1732
1733 if (best_page_pos != bppc) {
1734 page_cnt = bppc;
1735 page_pos = best_page_pos;
1736
1737 if (page_cnt > 1)
1738 page_pos += 1;
1739 } else {
1740 page_pos = page_cnt = 1;
1741 }
1742 } else {
1743 kfree(first_tail);
1744 kfree(second_tail);
1745 goto tail_read;
1746 }
1747
1748 kfree(first_tail_prev);
1749 first_tail_prev = first_tail;
1750 final_off_prev = first_file_off;
1751 first_tail = NULL;
1752
1753 kfree(second_tail_prev);
1754 second_tail_prev = second_tail;
1755 second_off_prev = second_file_off;
1756 second_tail = NULL;
1757
1758 final_off += log->page_size;
1759 second_off += log->page_size;
1760
1761 if (tails < 0x10)
1762 goto next_tail;
1763 tail_read:
1764 first_tail = first_tail_prev;
1765 final_off = final_off_prev;
1766
1767 second_tail = second_tail_prev;
1768 second_off = second_off_prev;
1769
1770 page_cnt = page_pos = 1;
1771
1772 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1773 : log->next_page;
1774
1775 wrapped_file =
1776 curpage_off == log->first_page &&
1777 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1778
1779 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1780
1781 nextpage_off = curpage_off;
1782
1783 next_page:
1784 tail_page = NULL;
1785 /* Read the next log page. */
1786 err = read_log_page(log, curpage_off, &page, &usa_error);
1787
1788 /* Compute the next log page offset the file. */
1789 nextpage_off = next_page_off(log, curpage_off);
1790 wrapped = nextpage_off == log->first_page;
1791
1792 if (tails > 1) {
1793 struct RECORD_PAGE_HDR *cur_page =
1794 Add2Ptr(page_bufs, curpage_off - page_off);
1795
1796 if (curpage_off == saved_off) {
1797 tail_page = cur_page;
1798 goto use_tail_page;
1799 }
1800
1801 if (page_off > curpage_off || curpage_off >= saved_off)
1802 goto use_tail_page;
1803
1804 if (page_off1)
1805 goto use_cur_page;
1806
1807 if (!err && !usa_error &&
1808 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1809 cur_page->rhdr.lsn == page->rhdr.lsn &&
1810 cur_page->record_hdr.next_record_off ==
1811 page->record_hdr.next_record_off &&
1812 ((page_pos == page_cnt &&
1813 le16_to_cpu(page->page_pos) == 1) ||
1814 (page_pos != page_cnt &&
1815 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1816 le16_to_cpu(page->page_count) == page_cnt))) {
1817 cur_page = NULL;
1818 goto use_tail_page;
1819 }
1820
1821 page_off1 = page_off;
1822
1823 use_cur_page:
1824
1825 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1826
1827 if (last_ok_lsn !=
1828 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1829 ((lsn_cur >> log->file_data_bits) +
1830 ((curpage_off <
1831 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1832 ? 1
1833 : 0)) != expected_seq) {
1834 goto check_tail;
1835 }
1836
1837 if (!is_log_record_end(cur_page)) {
1838 tail_page = NULL;
1839 last_ok_lsn = lsn_cur;
1840 goto next_page_1;
1841 }
1842
1843 log->seq_num = expected_seq;
1844 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1845 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1846 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1847
1848 if (log->record_header_len <=
1849 log->page_size -
1850 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1851 log->l_flags |= NTFSLOG_REUSE_TAIL;
1852 log->next_page = curpage_off;
1853 } else {
1854 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1855 log->next_page = nextpage_off;
1856 }
1857
1858 if (wrapped_file)
1859 log->l_flags |= NTFSLOG_WRAPPED;
1860
1861 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1862 goto next_page_1;
1863 }
1864
1865 /*
1866 * If we are at the expected first page of a transfer check to see
1867 * if either tail copy is at this offset.
1868 * If this page is the last page of a transfer, check if we wrote
1869 * a subsequent tail copy.
1870 */
1871 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1872 /*
1873 * Check if the offset matches either the first or second
1874 * tail copy. It is possible it will match both.
1875 */
1876 if (curpage_off == final_off)
1877 tail_page = first_tail;
1878
1879 /*
1880 * If we already matched on the first page then
1881 * check the ending lsn's.
1882 */
1883 if (curpage_off == second_off) {
1884 if (!tail_page ||
1885 (second_tail &&
1886 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1887 le64_to_cpu(first_tail->record_hdr
1888 .last_end_lsn))) {
1889 tail_page = second_tail;
1890 }
1891 }
1892 }
1893
1894 use_tail_page:
1895 if (tail_page) {
1896 /* We have a candidate for a tail copy. */
1897 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1898
1899 if (last_ok_lsn < lsn_cur) {
1900 /*
1901 * If the sequence number is not expected,
1902 * then don't use the tail copy.
1903 */
1904 if (expected_seq != (lsn_cur >> log->file_data_bits))
1905 tail_page = NULL;
1906 } else if (last_ok_lsn > lsn_cur) {
1907 /*
1908 * If the last lsn is greater than the one on
1909 * this page then forget this tail.
1910 */
1911 tail_page = NULL;
1912 }
1913 }
1914
1915 /*
1916 *If we have an error on the current page,
1917 * we will break of this loop.
1918 */
1919 if (err || usa_error)
1920 goto check_tail;
1921
1922 /*
1923 * Done if the last lsn on this page doesn't match the previous known
1924 * last lsn or the sequence number is not expected.
1925 */
1926 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1927 if (last_ok_lsn != lsn_cur &&
1928 expected_seq != (lsn_cur >> log->file_data_bits)) {
1929 goto check_tail;
1930 }
1931
1932 /*
1933 * Check that the page position and page count values are correct.
1934 * If this is the first page of a transfer the position must be 1
1935 * and the count will be unknown.
1936 */
1937 if (page_cnt == page_pos) {
1938 if (page->page_pos != cpu_to_le16(1) &&
1939 (!reuse_page || page->page_pos != page->page_count)) {
1940 /*
1941 * If the current page is the first page we are
1942 * looking at and we are reusing this page then
1943 * it can be either the first or last page of a
1944 * transfer. Otherwise it can only be the first.
1945 */
1946 goto check_tail;
1947 }
1948 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1949 le16_to_cpu(page->page_pos) != page_pos + 1) {
1950 /*
1951 * The page position better be 1 more than the last page
1952 * position and the page count better match.
1953 */
1954 goto check_tail;
1955 }
1956
1957 /*
1958 * We have a valid page the file and may have a valid page
1959 * the tail copy area.
1960 * If the tail page was written after the page the file then
1961 * break of the loop.
1962 */
1963 if (tail_page &&
1964 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1965 /* Remember if we will replace the page. */
1966 replace_page = true;
1967 goto check_tail;
1968 }
1969
1970 tail_page = NULL;
1971
1972 if (is_log_record_end(page)) {
1973 /*
1974 * Since we have read this page we know the sequence number
1975 * is the same as our expected value.
1976 */
1977 log->seq_num = expected_seq;
1978 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1979 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1980 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1981
1982 /*
1983 * If there is room on this page for another header then
1984 * remember we want to reuse the page.
1985 */
1986 if (log->record_header_len <=
1987 log->page_size -
1988 le16_to_cpu(page->record_hdr.next_record_off)) {
1989 log->l_flags |= NTFSLOG_REUSE_TAIL;
1990 log->next_page = curpage_off;
1991 } else {
1992 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1993 log->next_page = nextpage_off;
1994 }
1995
1996 /* Remember if we wrapped the log file. */
1997 if (wrapped_file)
1998 log->l_flags |= NTFSLOG_WRAPPED;
1999 }
2000
2001 /*
2002 * Remember the last page count and position.
2003 * Also remember the last known lsn.
2004 */
2005 page_cnt = le16_to_cpu(page->page_count);
2006 page_pos = le16_to_cpu(page->page_pos);
2007 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2008
2009 next_page_1:
2010
2011 if (wrapped) {
2012 expected_seq += 1;
2013 wrapped_file = 1;
2014 }
2015
2016 curpage_off = nextpage_off;
2017 kfree(page);
2018 page = NULL;
2019 reuse_page = 0;
2020 goto next_page;
2021
2022 check_tail:
2023 if (tail_page) {
2024 log->seq_num = expected_seq;
2025 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2026 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2027 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2028
2029 if (log->page_size -
2030 le16_to_cpu(
2031 tail_page->record_hdr.next_record_off) >=
2032 log->record_header_len) {
2033 log->l_flags |= NTFSLOG_REUSE_TAIL;
2034 log->next_page = curpage_off;
2035 } else {
2036 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2037 log->next_page = nextpage_off;
2038 }
2039
2040 if (wrapped)
2041 log->l_flags |= NTFSLOG_WRAPPED;
2042 }
2043
2044 /* Remember that the partial IO will start at the next page. */
2045 second_off = nextpage_off;
2046
2047 /*
2048 * If the next page is the first page of the file then update
2049 * the sequence number for log records which begon the next page.
2050 */
2051 if (wrapped)
2052 expected_seq += 1;
2053
2054 /*
2055 * If we have a tail copy or are performing single page I/O we can
2056 * immediately look at the next page.
2057 */
2058 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2059 page_cnt = 2;
2060 page_pos = 1;
2061 goto check_valid;
2062 }
2063
2064 if (page_pos != page_cnt)
2065 goto check_valid;
2066 /*
2067 * If the next page causes us to wrap to the beginning of the log
2068 * file then we know which page to check next.
2069 */
2070 if (wrapped) {
2071 page_cnt = 2;
2072 page_pos = 1;
2073 goto check_valid;
2074 }
2075
2076 cur_pos = 2;
2077
2078 next_test_page:
2079 kfree(tst_page);
2080 tst_page = NULL;
2081
2082 /* Walk through the file, reading log pages. */
2083 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2084
2085 /*
2086 * If we get a USA error then assume that we correctly found
2087 * the end of the original transfer.
2088 */
2089 if (usa_error)
2090 goto file_is_valid;
2091
2092 /*
2093 * If we were able to read the page, we examine it to see if it
2094 * is the same or different Io block.
2095 */
2096 if (err)
2097 goto next_test_page_1;
2098
2099 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2100 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2101 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2102 page_pos = le16_to_cpu(tst_page->page_pos);
2103 goto check_valid;
2104 } else {
2105 goto file_is_valid;
2106 }
2107
2108 next_test_page_1:
2109
2110 nextpage_off = next_page_off(log, curpage_off);
2111 wrapped = nextpage_off == log->first_page;
2112
2113 if (wrapped) {
2114 expected_seq += 1;
2115 page_cnt = 2;
2116 page_pos = 1;
2117 }
2118
2119 cur_pos += 1;
2120 part_io_count += 1;
2121 if (!wrapped)
2122 goto next_test_page;
2123
2124 check_valid:
2125 /* Skip over the remaining pages this transfer. */
2126 remain_pages = page_cnt - page_pos - 1;
2127 part_io_count += remain_pages;
2128
2129 while (remain_pages--) {
2130 nextpage_off = next_page_off(log, curpage_off);
2131 wrapped = nextpage_off == log->first_page;
2132
2133 if (wrapped)
2134 expected_seq += 1;
2135 }
2136
2137 /* Call our routine to check this log page. */
2138 kfree(tst_page);
2139 tst_page = NULL;
2140
2141 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2142 if (!err && !usa_error &&
2143 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2144 err = -EINVAL;
2145 goto out;
2146 }
2147
2148 file_is_valid:
2149
2150 /* We have a valid file. */
2151 if (page_off1 || tail_page) {
2152 struct RECORD_PAGE_HDR *tmp_page;
2153
2154 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2155 err = -EROFS;
2156 goto out;
2157 }
2158
2159 if (page_off1) {
2160 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2161 tails -= (page_off1 - page_off) / log->page_size;
2162 if (!tail_page)
2163 tails -= 1;
2164 } else {
2165 tmp_page = tail_page;
2166 tails = 1;
2167 }
2168
2169 while (tails--) {
2170 u64 off = hdr_file_off(log, tmp_page);
2171
2172 if (!page) {
2173 page = kmalloc(log->page_size, GFP_NOFS);
2174 if (!page) {
2175 err = -ENOMEM;
2176 goto out;
2177 }
2178 }
2179
2180 /*
2181 * Correct page and copy the data from this page
2182 * into it and flush it to disk.
2183 */
2184 memcpy(page, tmp_page, log->page_size);
2185
2186 /* Fill last flushed lsn value flush the page. */
2187 if (log->major_ver < 2)
2188 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2189 else
2190 page->file_off = 0;
2191
2192 page->page_pos = page->page_count = cpu_to_le16(1);
2193
2194 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2195
2196 err = ntfs_sb_write_run(log->ni->mi.sbi,
2197 &log->ni->file.run, off, page,
2198 log->page_size, 0);
2199
2200 if (err)
2201 goto out;
2202
2203 if (part_io_count && second_off == off) {
2204 second_off += log->page_size;
2205 part_io_count -= 1;
2206 }
2207
2208 tmp_page = Add2Ptr(tmp_page, log->page_size);
2209 }
2210 }
2211
2212 if (part_io_count) {
2213 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2214 err = -EROFS;
2215 goto out;
2216 }
2217 }
2218
2219 out:
2220 kfree(second_tail);
2221 kfree(first_tail);
2222 kfree(page);
2223 kfree(tst_page);
2224 kfree(page_bufs);
2225
2226 return err;
2227 }
2228
2229 /*
2230 * read_log_rec_buf - Copy a log record from the file to a buffer.
2231 *
2232 * The log record may span several log pages and may even wrap the file.
2233 */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2234 static int read_log_rec_buf(struct ntfs_log *log,
2235 const struct LFS_RECORD_HDR *rh, void *buffer)
2236 {
2237 int err;
2238 struct RECORD_PAGE_HDR *ph = NULL;
2239 u64 lsn = le64_to_cpu(rh->this_lsn);
2240 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2241 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2242 u32 data_len = le32_to_cpu(rh->client_data_len);
2243
2244 /*
2245 * While there are more bytes to transfer,
2246 * we continue to attempt to perform the read.
2247 */
2248 for (;;) {
2249 bool usa_error;
2250 u32 tail = log->page_size - off;
2251
2252 if (tail >= data_len)
2253 tail = data_len;
2254
2255 data_len -= tail;
2256
2257 err = read_log_page(log, vbo, &ph, &usa_error);
2258 if (err)
2259 goto out;
2260
2261 /*
2262 * The last lsn on this page better be greater or equal
2263 * to the lsn we are copying.
2264 */
2265 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2266 err = -EINVAL;
2267 goto out;
2268 }
2269
2270 memcpy(buffer, Add2Ptr(ph, off), tail);
2271
2272 /* If there are no more bytes to transfer, we exit the loop. */
2273 if (!data_len) {
2274 if (!is_log_record_end(ph) ||
2275 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2276 err = -EINVAL;
2277 goto out;
2278 }
2279 break;
2280 }
2281
2282 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2283 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2284 err = -EINVAL;
2285 goto out;
2286 }
2287
2288 vbo = next_page_off(log, vbo);
2289 off = log->data_off;
2290
2291 /*
2292 * Adjust our pointer the user's buffer to transfer
2293 * the next block to.
2294 */
2295 buffer = Add2Ptr(buffer, tail);
2296 }
2297
2298 out:
2299 kfree(ph);
2300 return err;
2301 }
2302
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2303 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2304 u64 *lsn)
2305 {
2306 int err;
2307 struct LFS_RECORD_HDR *rh = NULL;
2308 const struct CLIENT_REC *cr =
2309 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2310 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2311 u32 len;
2312 struct NTFS_RESTART *rst;
2313
2314 *lsn = 0;
2315 *rst_ = NULL;
2316
2317 /* If the client doesn't have a restart area, go ahead and exit now. */
2318 if (!lsnc)
2319 return 0;
2320
2321 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2322 (struct RECORD_PAGE_HDR **)&rh, NULL);
2323 if (err)
2324 return err;
2325
2326 rst = NULL;
2327 lsnr = le64_to_cpu(rh->this_lsn);
2328
2329 if (lsnc != lsnr) {
2330 /* If the lsn values don't match, then the disk is corrupt. */
2331 err = -EINVAL;
2332 goto out;
2333 }
2334
2335 *lsn = lsnr;
2336 len = le32_to_cpu(rh->client_data_len);
2337
2338 if (!len) {
2339 err = 0;
2340 goto out;
2341 }
2342
2343 if (len < sizeof(struct NTFS_RESTART)) {
2344 err = -EINVAL;
2345 goto out;
2346 }
2347
2348 rst = kmalloc(len, GFP_NOFS);
2349 if (!rst) {
2350 err = -ENOMEM;
2351 goto out;
2352 }
2353
2354 /* Copy the data into the 'rst' buffer. */
2355 err = read_log_rec_buf(log, rh, rst);
2356 if (err)
2357 goto out;
2358
2359 *rst_ = rst;
2360 rst = NULL;
2361
2362 out:
2363 kfree(rh);
2364 kfree(rst);
2365
2366 return err;
2367 }
2368
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2369 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2370 {
2371 int err;
2372 struct LFS_RECORD_HDR *rh = lcb->lrh;
2373 u32 rec_len, len;
2374
2375 /* Read the record header for this lsn. */
2376 if (!rh) {
2377 err = read_log_page(log, lsn_to_vbo(log, lsn),
2378 (struct RECORD_PAGE_HDR **)&rh, NULL);
2379
2380 lcb->lrh = rh;
2381 if (err)
2382 return err;
2383 }
2384
2385 /*
2386 * If the lsn the log record doesn't match the desired
2387 * lsn then the disk is corrupt.
2388 */
2389 if (lsn != le64_to_cpu(rh->this_lsn))
2390 return -EINVAL;
2391
2392 len = le32_to_cpu(rh->client_data_len);
2393
2394 /*
2395 * Check that the length field isn't greater than the total
2396 * available space the log file.
2397 */
2398 rec_len = len + log->record_header_len;
2399 if (rec_len >= log->total_avail)
2400 return -EINVAL;
2401
2402 /*
2403 * If the entire log record is on this log page,
2404 * put a pointer to the log record the context block.
2405 */
2406 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2407 void *lr = kmalloc(len, GFP_NOFS);
2408
2409 if (!lr)
2410 return -ENOMEM;
2411
2412 lcb->log_rec = lr;
2413 lcb->alloc = true;
2414
2415 /* Copy the data into the buffer returned. */
2416 err = read_log_rec_buf(log, rh, lr);
2417 if (err)
2418 return err;
2419 } else {
2420 /* If beyond the end of the current page -> an error. */
2421 u32 page_off = lsn_to_page_off(log, lsn);
2422
2423 if (page_off + len + log->record_header_len > log->page_size)
2424 return -EINVAL;
2425
2426 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2427 lcb->alloc = false;
2428 }
2429
2430 return 0;
2431 }
2432
2433 /*
2434 * read_log_rec_lcb - Init the query operation.
2435 */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2436 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2437 struct lcb **lcb_)
2438 {
2439 int err;
2440 const struct CLIENT_REC *cr;
2441 struct lcb *lcb;
2442
2443 switch (ctx_mode) {
2444 case lcb_ctx_undo_next:
2445 case lcb_ctx_prev:
2446 case lcb_ctx_next:
2447 break;
2448 default:
2449 return -EINVAL;
2450 }
2451
2452 /* Check that the given lsn is the legal range for this client. */
2453 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2454
2455 if (!verify_client_lsn(log, cr, lsn))
2456 return -EINVAL;
2457
2458 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2459 if (!lcb)
2460 return -ENOMEM;
2461 lcb->client = log->client_id;
2462 lcb->ctx_mode = ctx_mode;
2463
2464 /* Find the log record indicated by the given lsn. */
2465 err = find_log_rec(log, lsn, lcb);
2466 if (err)
2467 goto out;
2468
2469 *lcb_ = lcb;
2470 return 0;
2471
2472 out:
2473 lcb_put(lcb);
2474 *lcb_ = NULL;
2475 return err;
2476 }
2477
2478 /*
2479 * find_client_next_lsn
2480 *
2481 * Attempt to find the next lsn to return to a client based on the context mode.
2482 */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2483 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2484 {
2485 int err;
2486 u64 next_lsn;
2487 struct LFS_RECORD_HDR *hdr;
2488
2489 hdr = lcb->lrh;
2490 *lsn = 0;
2491
2492 if (lcb_ctx_next != lcb->ctx_mode)
2493 goto check_undo_next;
2494
2495 /* Loop as long as another lsn can be found. */
2496 for (;;) {
2497 u64 current_lsn;
2498
2499 err = next_log_lsn(log, hdr, ¤t_lsn);
2500 if (err)
2501 goto out;
2502
2503 if (!current_lsn)
2504 break;
2505
2506 if (hdr != lcb->lrh)
2507 kfree(hdr);
2508
2509 hdr = NULL;
2510 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2511 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2512 if (err)
2513 goto out;
2514
2515 if (memcmp(&hdr->client, &lcb->client,
2516 sizeof(struct CLIENT_ID))) {
2517 /*err = -EINVAL; */
2518 } else if (LfsClientRecord == hdr->record_type) {
2519 kfree(lcb->lrh);
2520 lcb->lrh = hdr;
2521 *lsn = current_lsn;
2522 return 0;
2523 }
2524 }
2525
2526 out:
2527 if (hdr != lcb->lrh)
2528 kfree(hdr);
2529 return err;
2530
2531 check_undo_next:
2532 if (lcb_ctx_undo_next == lcb->ctx_mode)
2533 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2534 else if (lcb_ctx_prev == lcb->ctx_mode)
2535 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2536 else
2537 return 0;
2538
2539 if (!next_lsn)
2540 return 0;
2541
2542 if (!verify_client_lsn(
2543 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2544 next_lsn))
2545 return 0;
2546
2547 hdr = NULL;
2548 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2549 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2550 if (err)
2551 return err;
2552 kfree(lcb->lrh);
2553 lcb->lrh = hdr;
2554
2555 *lsn = next_lsn;
2556
2557 return 0;
2558 }
2559
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2560 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2561 {
2562 int err;
2563
2564 err = find_client_next_lsn(log, lcb, lsn);
2565 if (err)
2566 return err;
2567
2568 if (!*lsn)
2569 return 0;
2570
2571 if (lcb->alloc)
2572 kfree(lcb->log_rec);
2573
2574 lcb->log_rec = NULL;
2575 lcb->alloc = false;
2576 kfree(lcb->lrh);
2577 lcb->lrh = NULL;
2578
2579 return find_log_rec(log, *lsn, lcb);
2580 }
2581
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2582 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2583 {
2584 __le16 mask;
2585 u32 min_de, de_off, used, total;
2586 const struct NTFS_DE *e;
2587
2588 if (hdr_has_subnode(hdr)) {
2589 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2590 mask = NTFS_IE_HAS_SUBNODES;
2591 } else {
2592 min_de = sizeof(struct NTFS_DE);
2593 mask = 0;
2594 }
2595
2596 de_off = le32_to_cpu(hdr->de_off);
2597 used = le32_to_cpu(hdr->used);
2598 total = le32_to_cpu(hdr->total);
2599
2600 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2601 de_off + min_de > used || used > total) {
2602 return false;
2603 }
2604
2605 e = Add2Ptr(hdr, de_off);
2606 for (;;) {
2607 u16 esize = le16_to_cpu(e->size);
2608 struct NTFS_DE *next = Add2Ptr(e, esize);
2609
2610 if (esize < min_de || PtrOffset(hdr, next) > used ||
2611 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2612 return false;
2613 }
2614
2615 if (de_is_last(e))
2616 break;
2617
2618 e = next;
2619 }
2620
2621 return true;
2622 }
2623
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2624 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2625 {
2626 u16 fo;
2627 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2628
2629 if (r->sign != NTFS_INDX_SIGNATURE)
2630 return false;
2631
2632 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2633
2634 if (le16_to_cpu(r->fix_off) > fo)
2635 return false;
2636
2637 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2638 return false;
2639
2640 return check_index_header(&ib->ihdr,
2641 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2642 }
2643
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2644 static inline bool check_index_root(const struct ATTRIB *attr,
2645 struct ntfs_sb_info *sbi)
2646 {
2647 bool ret;
2648 const struct INDEX_ROOT *root = resident_data(attr);
2649 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2650 ? sbi->cluster_bits
2651 : SECTOR_SHIFT;
2652 u8 block_clst = root->index_block_clst;
2653
2654 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2655 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2656 (root->type == ATTR_NAME &&
2657 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2658 (le32_to_cpu(root->index_block_size) !=
2659 (block_clst << index_bits)) ||
2660 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2661 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2662 block_clst != 0x40 && block_clst != 0x80)) {
2663 return false;
2664 }
2665
2666 ret = check_index_header(&root->ihdr,
2667 le32_to_cpu(attr->res.data_size) -
2668 offsetof(struct INDEX_ROOT, ihdr));
2669 return ret;
2670 }
2671
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2672 static inline bool check_attr(const struct MFT_REC *rec,
2673 const struct ATTRIB *attr,
2674 struct ntfs_sb_info *sbi)
2675 {
2676 u32 asize = le32_to_cpu(attr->size);
2677 u32 rsize = 0;
2678 u64 dsize, svcn, evcn;
2679 u16 run_off;
2680
2681 /* Check the fixed part of the attribute record header. */
2682 if (asize >= sbi->record_size ||
2683 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2684 (attr->name_len &&
2685 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2686 asize)) {
2687 return false;
2688 }
2689
2690 /* Check the attribute fields. */
2691 switch (attr->non_res) {
2692 case 0:
2693 rsize = le32_to_cpu(attr->res.data_size);
2694 if (rsize >= asize ||
2695 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2696 return false;
2697 }
2698 break;
2699
2700 case 1:
2701 dsize = le64_to_cpu(attr->nres.data_size);
2702 svcn = le64_to_cpu(attr->nres.svcn);
2703 evcn = le64_to_cpu(attr->nres.evcn);
2704 run_off = le16_to_cpu(attr->nres.run_off);
2705
2706 if (svcn > evcn + 1 || run_off >= asize ||
2707 le64_to_cpu(attr->nres.valid_size) > dsize ||
2708 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2709 return false;
2710 }
2711
2712 if (run_off > asize)
2713 return false;
2714
2715 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2716 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2717 return false;
2718 }
2719
2720 return true;
2721
2722 default:
2723 return false;
2724 }
2725
2726 switch (attr->type) {
2727 case ATTR_NAME:
2728 if (fname_full_size(Add2Ptr(
2729 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2730 return false;
2731 }
2732 break;
2733
2734 case ATTR_ROOT:
2735 return check_index_root(attr, sbi);
2736
2737 case ATTR_STD:
2738 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2739 rsize != sizeof(struct ATTR_STD_INFO)) {
2740 return false;
2741 }
2742 break;
2743
2744 case ATTR_LIST:
2745 case ATTR_ID:
2746 case ATTR_SECURE:
2747 case ATTR_LABEL:
2748 case ATTR_VOL_INFO:
2749 case ATTR_DATA:
2750 case ATTR_ALLOC:
2751 case ATTR_BITMAP:
2752 case ATTR_REPARSE:
2753 case ATTR_EA_INFO:
2754 case ATTR_EA:
2755 case ATTR_PROPERTYSET:
2756 case ATTR_LOGGED_UTILITY_STREAM:
2757 break;
2758
2759 default:
2760 return false;
2761 }
2762
2763 return true;
2764 }
2765
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2766 static inline bool check_file_record(const struct MFT_REC *rec,
2767 const struct MFT_REC *rec2,
2768 struct ntfs_sb_info *sbi)
2769 {
2770 const struct ATTRIB *attr;
2771 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2772 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2773 u16 ao = le16_to_cpu(rec->attr_off);
2774 u32 rs = sbi->record_size;
2775
2776 /* Check the file record header for consistency. */
2777 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2778 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2779 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2780 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2781 le32_to_cpu(rec->total) != rs) {
2782 return false;
2783 }
2784
2785 /* Loop to check all of the attributes. */
2786 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2787 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2788 if (check_attr(rec, attr, sbi))
2789 continue;
2790 return false;
2791 }
2792
2793 return true;
2794 }
2795
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2796 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2797 const u64 *rlsn)
2798 {
2799 u64 lsn;
2800
2801 if (!rlsn)
2802 return true;
2803
2804 lsn = le64_to_cpu(hdr->lsn);
2805
2806 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2807 return false;
2808
2809 if (*rlsn > lsn)
2810 return true;
2811
2812 return false;
2813 }
2814
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2815 static inline bool check_if_attr(const struct MFT_REC *rec,
2816 const struct LOG_REC_HDR *lrh)
2817 {
2818 u16 ro = le16_to_cpu(lrh->record_off);
2819 u16 o = le16_to_cpu(rec->attr_off);
2820 const struct ATTRIB *attr = Add2Ptr(rec, o);
2821
2822 while (o < ro) {
2823 u32 asize;
2824
2825 if (attr->type == ATTR_END)
2826 break;
2827
2828 asize = le32_to_cpu(attr->size);
2829 if (!asize)
2830 break;
2831
2832 o += asize;
2833 attr = Add2Ptr(attr, asize);
2834 }
2835
2836 return o == ro;
2837 }
2838
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2839 static inline bool check_if_index_root(const struct MFT_REC *rec,
2840 const struct LOG_REC_HDR *lrh)
2841 {
2842 u16 ro = le16_to_cpu(lrh->record_off);
2843 u16 o = le16_to_cpu(rec->attr_off);
2844 const struct ATTRIB *attr = Add2Ptr(rec, o);
2845
2846 while (o < ro) {
2847 u32 asize;
2848
2849 if (attr->type == ATTR_END)
2850 break;
2851
2852 asize = le32_to_cpu(attr->size);
2853 if (!asize)
2854 break;
2855
2856 o += asize;
2857 attr = Add2Ptr(attr, asize);
2858 }
2859
2860 return o == ro && attr->type == ATTR_ROOT;
2861 }
2862
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2863 static inline bool check_if_root_index(const struct ATTRIB *attr,
2864 const struct INDEX_HDR *hdr,
2865 const struct LOG_REC_HDR *lrh)
2866 {
2867 u16 ao = le16_to_cpu(lrh->attr_off);
2868 u32 de_off = le32_to_cpu(hdr->de_off);
2869 u32 o = PtrOffset(attr, hdr) + de_off;
2870 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2871 u32 asize = le32_to_cpu(attr->size);
2872
2873 while (o < ao) {
2874 u16 esize;
2875
2876 if (o >= asize)
2877 break;
2878
2879 esize = le16_to_cpu(e->size);
2880 if (!esize)
2881 break;
2882
2883 o += esize;
2884 e = Add2Ptr(e, esize);
2885 }
2886
2887 return o == ao;
2888 }
2889
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2890 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2891 u32 attr_off)
2892 {
2893 u32 de_off = le32_to_cpu(hdr->de_off);
2894 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2895 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2896 u32 used = le32_to_cpu(hdr->used);
2897
2898 while (o < attr_off) {
2899 u16 esize;
2900
2901 if (de_off >= used)
2902 break;
2903
2904 esize = le16_to_cpu(e->size);
2905 if (!esize)
2906 break;
2907
2908 o += esize;
2909 de_off += esize;
2910 e = Add2Ptr(e, esize);
2911 }
2912
2913 return o == attr_off;
2914 }
2915
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2916 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2917 u32 nsize)
2918 {
2919 u32 asize = le32_to_cpu(attr->size);
2920 int dsize = nsize - asize;
2921 u8 *next = Add2Ptr(attr, asize);
2922 u32 used = le32_to_cpu(rec->used);
2923
2924 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2925
2926 rec->used = cpu_to_le32(used + dsize);
2927 attr->size = cpu_to_le32(nsize);
2928 }
2929
2930 struct OpenAttr {
2931 struct ATTRIB *attr;
2932 struct runs_tree *run1;
2933 struct runs_tree run0;
2934 struct ntfs_inode *ni;
2935 // CLST rno;
2936 };
2937
2938 /*
2939 * cmp_type_and_name
2940 *
2941 * Return: 0 if 'attr' has the same type and name.
2942 */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2943 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2944 const struct ATTRIB *a2)
2945 {
2946 return a1->type != a2->type || a1->name_len != a2->name_len ||
2947 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2948 a1->name_len * sizeof(short)));
2949 }
2950
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2951 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2952 const struct ATTRIB *attr, CLST rno)
2953 {
2954 struct OPEN_ATTR_ENRTY *oe = NULL;
2955
2956 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2957 struct OpenAttr *op_attr;
2958
2959 if (ino_get(&oe->ref) != rno)
2960 continue;
2961
2962 op_attr = (struct OpenAttr *)oe->ptr;
2963 if (!cmp_type_and_name(op_attr->attr, attr))
2964 return op_attr;
2965 }
2966 return NULL;
2967 }
2968
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2969 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2970 enum ATTR_TYPE type, u64 size,
2971 const u16 *name, size_t name_len,
2972 __le16 flags)
2973 {
2974 struct ATTRIB *attr;
2975 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2976 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2977 u32 asize = name_size +
2978 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2979
2980 attr = kzalloc(asize, GFP_NOFS);
2981 if (!attr)
2982 return NULL;
2983
2984 attr->type = type;
2985 attr->size = cpu_to_le32(asize);
2986 attr->flags = flags;
2987 attr->non_res = 1;
2988 attr->name_len = name_len;
2989
2990 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2991 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2992 attr->nres.data_size = cpu_to_le64(size);
2993 attr->nres.valid_size = attr->nres.data_size;
2994 if (is_ext) {
2995 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2996 if (is_attr_compressed(attr))
2997 attr->nres.c_unit = COMPRESSION_UNIT;
2998
2999 attr->nres.run_off =
3000 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3001 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3002 name_len * sizeof(short));
3003 } else {
3004 attr->name_off = SIZEOF_NONRESIDENT_LE;
3005 attr->nres.run_off =
3006 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3007 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3008 name_len * sizeof(short));
3009 }
3010
3011 return attr;
3012 }
3013
3014 /*
3015 * do_action - Common routine for the Redo and Undo Passes.
3016 * @rlsn: If it is NULL then undo.
3017 */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3018 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3019 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3020 u32 dlen, u32 rec_len, const u64 *rlsn)
3021 {
3022 int err = 0;
3023 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3024 struct inode *inode = NULL, *inode_parent;
3025 struct mft_inode *mi = NULL, *mi2_child = NULL;
3026 CLST rno = 0, rno_base = 0;
3027 struct INDEX_BUFFER *ib = NULL;
3028 struct MFT_REC *rec = NULL;
3029 struct ATTRIB *attr = NULL, *attr2;
3030 struct INDEX_HDR *hdr;
3031 struct INDEX_ROOT *root;
3032 struct NTFS_DE *e, *e1, *e2;
3033 struct NEW_ATTRIBUTE_SIZES *new_sz;
3034 struct ATTR_FILE_NAME *fname;
3035 struct OpenAttr *oa, *oa2;
3036 u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3037 u16 id, id2;
3038 u32 record_size = sbi->record_size;
3039 u64 t64;
3040 u16 roff = le16_to_cpu(lrh->record_off);
3041 u16 aoff = le16_to_cpu(lrh->attr_off);
3042 u64 lco = 0;
3043 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3044 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3045 u64 vbo = cbo + tvo;
3046 void *buffer_le = NULL;
3047 u32 bytes = 0;
3048 bool a_dirty = false;
3049 u16 data_off;
3050
3051 oa = oe->ptr;
3052
3053 /* Big switch to prepare. */
3054 switch (op) {
3055 /* ============================================================
3056 * Process MFT records, as described by the current log record.
3057 * ============================================================
3058 */
3059 case InitializeFileRecordSegment:
3060 case DeallocateFileRecordSegment:
3061 case WriteEndOfFileRecordSegment:
3062 case CreateAttribute:
3063 case DeleteAttribute:
3064 case UpdateResidentValue:
3065 case UpdateMappingPairs:
3066 case SetNewAttributeSizes:
3067 case AddIndexEntryRoot:
3068 case DeleteIndexEntryRoot:
3069 case SetIndexEntryVcnRoot:
3070 case UpdateFileNameRoot:
3071 case UpdateRecordDataRoot:
3072 case ZeroEndOfFileRecord:
3073 rno = vbo >> sbi->record_bits;
3074 inode = ilookup(sbi->sb, rno);
3075 if (inode) {
3076 mi = &ntfs_i(inode)->mi;
3077 } else if (op == InitializeFileRecordSegment) {
3078 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3079 if (!mi)
3080 return -ENOMEM;
3081 err = mi_format_new(mi, sbi, rno, 0, false);
3082 if (err)
3083 goto out;
3084 } else {
3085 /* Read from disk. */
3086 err = mi_get(sbi, rno, &mi);
3087 if (err)
3088 return err;
3089 }
3090 rec = mi->mrec;
3091
3092 if (op == DeallocateFileRecordSegment)
3093 goto skip_load_parent;
3094
3095 if (InitializeFileRecordSegment != op) {
3096 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3097 goto dirty_vol;
3098 if (!check_lsn(&rec->rhdr, rlsn))
3099 goto out;
3100 if (!check_file_record(rec, NULL, sbi))
3101 goto dirty_vol;
3102 attr = Add2Ptr(rec, roff);
3103 }
3104
3105 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3106 rno_base = rno;
3107 goto skip_load_parent;
3108 }
3109
3110 rno_base = ino_get(&rec->parent_ref);
3111 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3112 if (IS_ERR(inode_parent))
3113 goto skip_load_parent;
3114
3115 if (is_bad_inode(inode_parent)) {
3116 iput(inode_parent);
3117 goto skip_load_parent;
3118 }
3119
3120 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3121 iput(inode_parent);
3122 } else {
3123 if (mi2_child->mrec != mi->mrec)
3124 memcpy(mi2_child->mrec, mi->mrec,
3125 sbi->record_size);
3126
3127 if (inode)
3128 iput(inode);
3129 else if (mi)
3130 mi_put(mi);
3131
3132 inode = inode_parent;
3133 mi = mi2_child;
3134 rec = mi2_child->mrec;
3135 attr = Add2Ptr(rec, roff);
3136 }
3137
3138 skip_load_parent:
3139 inode_parent = NULL;
3140 break;
3141
3142 /*
3143 * Process attributes, as described by the current log record.
3144 */
3145 case UpdateNonresidentValue:
3146 case AddIndexEntryAllocation:
3147 case DeleteIndexEntryAllocation:
3148 case WriteEndOfIndexBuffer:
3149 case SetIndexEntryVcnAllocation:
3150 case UpdateFileNameAllocation:
3151 case SetBitsInNonresidentBitMap:
3152 case ClearBitsInNonresidentBitMap:
3153 case UpdateRecordDataAllocation:
3154 attr = oa->attr;
3155 bytes = UpdateNonresidentValue == op ? dlen : 0;
3156 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3157
3158 if (attr->type == ATTR_ALLOC) {
3159 t32 = le32_to_cpu(oe->bytes_per_index);
3160 if (bytes < t32)
3161 bytes = t32;
3162 }
3163
3164 if (!bytes)
3165 bytes = lco - cbo;
3166
3167 bytes += roff;
3168 if (attr->type == ATTR_ALLOC)
3169 bytes = (bytes + 511) & ~511; // align
3170
3171 buffer_le = kmalloc(bytes, GFP_NOFS);
3172 if (!buffer_le)
3173 return -ENOMEM;
3174
3175 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3176 NULL);
3177 if (err)
3178 goto out;
3179
3180 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3181 ntfs_fix_post_read(buffer_le, bytes, false);
3182 break;
3183
3184 default:
3185 WARN_ON(1);
3186 }
3187
3188 /* Big switch to do operation. */
3189 switch (op) {
3190 case InitializeFileRecordSegment:
3191 if (roff + dlen > record_size)
3192 goto dirty_vol;
3193
3194 memcpy(Add2Ptr(rec, roff), data, dlen);
3195 mi->dirty = true;
3196 break;
3197
3198 case DeallocateFileRecordSegment:
3199 clear_rec_inuse(rec);
3200 le16_add_cpu(&rec->seq, 1);
3201 mi->dirty = true;
3202 break;
3203
3204 case WriteEndOfFileRecordSegment:
3205 attr2 = (struct ATTRIB *)data;
3206 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3207 goto dirty_vol;
3208
3209 memmove(attr, attr2, dlen);
3210 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3211
3212 mi->dirty = true;
3213 break;
3214
3215 case CreateAttribute:
3216 attr2 = (struct ATTRIB *)data;
3217 asize = le32_to_cpu(attr2->size);
3218 used = le32_to_cpu(rec->used);
3219
3220 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3221 !IS_ALIGNED(asize, 8) ||
3222 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3223 dlen > record_size - used) {
3224 goto dirty_vol;
3225 }
3226
3227 memmove(Add2Ptr(attr, asize), attr, used - roff);
3228 memcpy(attr, attr2, asize);
3229
3230 rec->used = cpu_to_le32(used + asize);
3231 id = le16_to_cpu(rec->next_attr_id);
3232 id2 = le16_to_cpu(attr2->id);
3233 if (id <= id2)
3234 rec->next_attr_id = cpu_to_le16(id2 + 1);
3235 if (is_attr_indexed(attr))
3236 le16_add_cpu(&rec->hard_links, 1);
3237
3238 oa2 = find_loaded_attr(log, attr, rno_base);
3239 if (oa2) {
3240 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3241 GFP_NOFS);
3242 if (p2) {
3243 // run_close(oa2->run1);
3244 kfree(oa2->attr);
3245 oa2->attr = p2;
3246 }
3247 }
3248
3249 mi->dirty = true;
3250 break;
3251
3252 case DeleteAttribute:
3253 asize = le32_to_cpu(attr->size);
3254 used = le32_to_cpu(rec->used);
3255
3256 if (!check_if_attr(rec, lrh))
3257 goto dirty_vol;
3258
3259 rec->used = cpu_to_le32(used - asize);
3260 if (is_attr_indexed(attr))
3261 le16_add_cpu(&rec->hard_links, -1);
3262
3263 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3264
3265 mi->dirty = true;
3266 break;
3267
3268 case UpdateResidentValue:
3269 nsize = aoff + dlen;
3270
3271 if (!check_if_attr(rec, lrh))
3272 goto dirty_vol;
3273
3274 asize = le32_to_cpu(attr->size);
3275 used = le32_to_cpu(rec->used);
3276
3277 if (lrh->redo_len == lrh->undo_len) {
3278 if (nsize > asize)
3279 goto dirty_vol;
3280 goto move_data;
3281 }
3282
3283 if (nsize > asize && nsize - asize > record_size - used)
3284 goto dirty_vol;
3285
3286 nsize = ALIGN(nsize, 8);
3287 data_off = le16_to_cpu(attr->res.data_off);
3288
3289 if (nsize < asize) {
3290 memmove(Add2Ptr(attr, aoff), data, dlen);
3291 data = NULL; // To skip below memmove().
3292 }
3293
3294 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3295 used - le16_to_cpu(lrh->record_off) - asize);
3296
3297 rec->used = cpu_to_le32(used + nsize - asize);
3298 attr->size = cpu_to_le32(nsize);
3299 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3300
3301 move_data:
3302 if (data)
3303 memmove(Add2Ptr(attr, aoff), data, dlen);
3304
3305 oa2 = find_loaded_attr(log, attr, rno_base);
3306 if (oa2) {
3307 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3308 GFP_NOFS);
3309 if (p2) {
3310 // run_close(&oa2->run0);
3311 oa2->run1 = &oa2->run0;
3312 kfree(oa2->attr);
3313 oa2->attr = p2;
3314 }
3315 }
3316
3317 mi->dirty = true;
3318 break;
3319
3320 case UpdateMappingPairs:
3321 nsize = aoff + dlen;
3322 asize = le32_to_cpu(attr->size);
3323 used = le32_to_cpu(rec->used);
3324
3325 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3326 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3327 (nsize > asize && nsize - asize > record_size - used)) {
3328 goto dirty_vol;
3329 }
3330
3331 nsize = ALIGN(nsize, 8);
3332
3333 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3334 used - le16_to_cpu(lrh->record_off) - asize);
3335 rec->used = cpu_to_le32(used + nsize - asize);
3336 attr->size = cpu_to_le32(nsize);
3337 memmove(Add2Ptr(attr, aoff), data, dlen);
3338
3339 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3340 attr_run(attr), &t64)) {
3341 goto dirty_vol;
3342 }
3343
3344 attr->nres.evcn = cpu_to_le64(t64);
3345 oa2 = find_loaded_attr(log, attr, rno_base);
3346 if (oa2 && oa2->attr->non_res)
3347 oa2->attr->nres.evcn = attr->nres.evcn;
3348
3349 mi->dirty = true;
3350 break;
3351
3352 case SetNewAttributeSizes:
3353 new_sz = data;
3354 if (!check_if_attr(rec, lrh) || !attr->non_res)
3355 goto dirty_vol;
3356
3357 attr->nres.alloc_size = new_sz->alloc_size;
3358 attr->nres.data_size = new_sz->data_size;
3359 attr->nres.valid_size = new_sz->valid_size;
3360
3361 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3362 attr->nres.total_size = new_sz->total_size;
3363
3364 oa2 = find_loaded_attr(log, attr, rno_base);
3365 if (oa2) {
3366 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3367 GFP_NOFS);
3368 if (p2) {
3369 kfree(oa2->attr);
3370 oa2->attr = p2;
3371 }
3372 }
3373 mi->dirty = true;
3374 break;
3375
3376 case AddIndexEntryRoot:
3377 e = (struct NTFS_DE *)data;
3378 esize = le16_to_cpu(e->size);
3379 root = resident_data(attr);
3380 hdr = &root->ihdr;
3381 used = le32_to_cpu(hdr->used);
3382
3383 if (!check_if_index_root(rec, lrh) ||
3384 !check_if_root_index(attr, hdr, lrh) ||
3385 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3386 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3387 goto dirty_vol;
3388 }
3389
3390 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3391
3392 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3393
3394 memmove(Add2Ptr(e1, esize), e1,
3395 PtrOffset(e1, Add2Ptr(hdr, used)));
3396 memmove(e1, e, esize);
3397
3398 le32_add_cpu(&attr->res.data_size, esize);
3399 hdr->used = cpu_to_le32(used + esize);
3400 le32_add_cpu(&hdr->total, esize);
3401
3402 mi->dirty = true;
3403 break;
3404
3405 case DeleteIndexEntryRoot:
3406 root = resident_data(attr);
3407 hdr = &root->ihdr;
3408 used = le32_to_cpu(hdr->used);
3409
3410 if (!check_if_index_root(rec, lrh) ||
3411 !check_if_root_index(attr, hdr, lrh)) {
3412 goto dirty_vol;
3413 }
3414
3415 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3416 esize = le16_to_cpu(e1->size);
3417 e2 = Add2Ptr(e1, esize);
3418
3419 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3420
3421 le32_sub_cpu(&attr->res.data_size, esize);
3422 hdr->used = cpu_to_le32(used - esize);
3423 le32_sub_cpu(&hdr->total, esize);
3424
3425 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3426
3427 mi->dirty = true;
3428 break;
3429
3430 case SetIndexEntryVcnRoot:
3431 root = resident_data(attr);
3432 hdr = &root->ihdr;
3433
3434 if (!check_if_index_root(rec, lrh) ||
3435 !check_if_root_index(attr, hdr, lrh)) {
3436 goto dirty_vol;
3437 }
3438
3439 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3440
3441 de_set_vbn_le(e, *(__le64 *)data);
3442 mi->dirty = true;
3443 break;
3444
3445 case UpdateFileNameRoot:
3446 root = resident_data(attr);
3447 hdr = &root->ihdr;
3448
3449 if (!check_if_index_root(rec, lrh) ||
3450 !check_if_root_index(attr, hdr, lrh)) {
3451 goto dirty_vol;
3452 }
3453
3454 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3455 fname = (struct ATTR_FILE_NAME *)(e + 1);
3456 memmove(&fname->dup, data, sizeof(fname->dup)); //
3457 mi->dirty = true;
3458 break;
3459
3460 case UpdateRecordDataRoot:
3461 root = resident_data(attr);
3462 hdr = &root->ihdr;
3463
3464 if (!check_if_index_root(rec, lrh) ||
3465 !check_if_root_index(attr, hdr, lrh)) {
3466 goto dirty_vol;
3467 }
3468
3469 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3470
3471 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3472
3473 mi->dirty = true;
3474 break;
3475
3476 case ZeroEndOfFileRecord:
3477 if (roff + dlen > record_size)
3478 goto dirty_vol;
3479
3480 memset(attr, 0, dlen);
3481 mi->dirty = true;
3482 break;
3483
3484 case UpdateNonresidentValue:
3485 if (lco < cbo + roff + dlen)
3486 goto dirty_vol;
3487
3488 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3489
3490 a_dirty = true;
3491 if (attr->type == ATTR_ALLOC)
3492 ntfs_fix_pre_write(buffer_le, bytes);
3493 break;
3494
3495 case AddIndexEntryAllocation:
3496 ib = Add2Ptr(buffer_le, roff);
3497 hdr = &ib->ihdr;
3498 e = data;
3499 esize = le16_to_cpu(e->size);
3500 e1 = Add2Ptr(ib, aoff);
3501
3502 if (is_baad(&ib->rhdr))
3503 goto dirty_vol;
3504 if (!check_lsn(&ib->rhdr, rlsn))
3505 goto out;
3506
3507 used = le32_to_cpu(hdr->used);
3508
3509 if (!check_index_buffer(ib, bytes) ||
3510 !check_if_alloc_index(hdr, aoff) ||
3511 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3512 used + esize > le32_to_cpu(hdr->total)) {
3513 goto dirty_vol;
3514 }
3515
3516 memmove(Add2Ptr(e1, esize), e1,
3517 PtrOffset(e1, Add2Ptr(hdr, used)));
3518 memcpy(e1, e, esize);
3519
3520 hdr->used = cpu_to_le32(used + esize);
3521
3522 a_dirty = true;
3523
3524 ntfs_fix_pre_write(&ib->rhdr, bytes);
3525 break;
3526
3527 case DeleteIndexEntryAllocation:
3528 ib = Add2Ptr(buffer_le, roff);
3529 hdr = &ib->ihdr;
3530 e = Add2Ptr(ib, aoff);
3531 esize = le16_to_cpu(e->size);
3532
3533 if (is_baad(&ib->rhdr))
3534 goto dirty_vol;
3535 if (!check_lsn(&ib->rhdr, rlsn))
3536 goto out;
3537
3538 if (!check_index_buffer(ib, bytes) ||
3539 !check_if_alloc_index(hdr, aoff)) {
3540 goto dirty_vol;
3541 }
3542
3543 e1 = Add2Ptr(e, esize);
3544 nsize = esize;
3545 used = le32_to_cpu(hdr->used);
3546
3547 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3548
3549 hdr->used = cpu_to_le32(used - nsize);
3550
3551 a_dirty = true;
3552
3553 ntfs_fix_pre_write(&ib->rhdr, bytes);
3554 break;
3555
3556 case WriteEndOfIndexBuffer:
3557 ib = Add2Ptr(buffer_le, roff);
3558 hdr = &ib->ihdr;
3559 e = Add2Ptr(ib, aoff);
3560
3561 if (is_baad(&ib->rhdr))
3562 goto dirty_vol;
3563 if (!check_lsn(&ib->rhdr, rlsn))
3564 goto out;
3565 if (!check_index_buffer(ib, bytes) ||
3566 !check_if_alloc_index(hdr, aoff) ||
3567 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3568 le32_to_cpu(hdr->total)) {
3569 goto dirty_vol;
3570 }
3571
3572 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3573 memmove(e, data, dlen);
3574
3575 a_dirty = true;
3576 ntfs_fix_pre_write(&ib->rhdr, bytes);
3577 break;
3578
3579 case SetIndexEntryVcnAllocation:
3580 ib = Add2Ptr(buffer_le, roff);
3581 hdr = &ib->ihdr;
3582 e = Add2Ptr(ib, aoff);
3583
3584 if (is_baad(&ib->rhdr))
3585 goto dirty_vol;
3586
3587 if (!check_lsn(&ib->rhdr, rlsn))
3588 goto out;
3589 if (!check_index_buffer(ib, bytes) ||
3590 !check_if_alloc_index(hdr, aoff)) {
3591 goto dirty_vol;
3592 }
3593
3594 de_set_vbn_le(e, *(__le64 *)data);
3595
3596 a_dirty = true;
3597 ntfs_fix_pre_write(&ib->rhdr, bytes);
3598 break;
3599
3600 case UpdateFileNameAllocation:
3601 ib = Add2Ptr(buffer_le, roff);
3602 hdr = &ib->ihdr;
3603 e = Add2Ptr(ib, aoff);
3604
3605 if (is_baad(&ib->rhdr))
3606 goto dirty_vol;
3607
3608 if (!check_lsn(&ib->rhdr, rlsn))
3609 goto out;
3610 if (!check_index_buffer(ib, bytes) ||
3611 !check_if_alloc_index(hdr, aoff)) {
3612 goto dirty_vol;
3613 }
3614
3615 fname = (struct ATTR_FILE_NAME *)(e + 1);
3616 memmove(&fname->dup, data, sizeof(fname->dup));
3617
3618 a_dirty = true;
3619 ntfs_fix_pre_write(&ib->rhdr, bytes);
3620 break;
3621
3622 case SetBitsInNonresidentBitMap:
3623 bmp_off =
3624 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3625 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3626
3627 if (cbo + (bmp_off + 7) / 8 > lco ||
3628 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3629 goto dirty_vol;
3630 }
3631
3632 __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3633 a_dirty = true;
3634 break;
3635
3636 case ClearBitsInNonresidentBitMap:
3637 bmp_off =
3638 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3639 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3640
3641 if (cbo + (bmp_off + 7) / 8 > lco ||
3642 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3643 goto dirty_vol;
3644 }
3645
3646 __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3647 a_dirty = true;
3648 break;
3649
3650 case UpdateRecordDataAllocation:
3651 ib = Add2Ptr(buffer_le, roff);
3652 hdr = &ib->ihdr;
3653 e = Add2Ptr(ib, aoff);
3654
3655 if (is_baad(&ib->rhdr))
3656 goto dirty_vol;
3657
3658 if (!check_lsn(&ib->rhdr, rlsn))
3659 goto out;
3660 if (!check_index_buffer(ib, bytes) ||
3661 !check_if_alloc_index(hdr, aoff)) {
3662 goto dirty_vol;
3663 }
3664
3665 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3666
3667 a_dirty = true;
3668 ntfs_fix_pre_write(&ib->rhdr, bytes);
3669 break;
3670
3671 default:
3672 WARN_ON(1);
3673 }
3674
3675 if (rlsn) {
3676 __le64 t64 = cpu_to_le64(*rlsn);
3677
3678 if (rec)
3679 rec->rhdr.lsn = t64;
3680 if (ib)
3681 ib->rhdr.lsn = t64;
3682 }
3683
3684 if (mi && mi->dirty) {
3685 err = mi_write(mi, 0);
3686 if (err)
3687 goto out;
3688 }
3689
3690 if (a_dirty) {
3691 attr = oa->attr;
3692 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3693 if (err)
3694 goto out;
3695 }
3696
3697 out:
3698
3699 if (inode)
3700 iput(inode);
3701 else if (mi != mi2_child)
3702 mi_put(mi);
3703
3704 kfree(buffer_le);
3705
3706 return err;
3707
3708 dirty_vol:
3709 log->set_dirty = true;
3710 goto out;
3711 }
3712
3713 /*
3714 * log_replay - Replays log and empties it.
3715 *
3716 * This function is called during mount operation.
3717 * It replays log and empties it.
3718 * Initialized is set false if logfile contains '-1'.
3719 */
log_replay(struct ntfs_inode * ni,bool * initialized)3720 int log_replay(struct ntfs_inode *ni, bool *initialized)
3721 {
3722 int err;
3723 struct ntfs_sb_info *sbi = ni->mi.sbi;
3724 struct ntfs_log *log;
3725
3726 struct restart_info rst_info, rst_info2;
3727 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3728 struct ATTR_NAME_ENTRY *attr_names = NULL;
3729 struct ATTR_NAME_ENTRY *ane;
3730 struct RESTART_TABLE *dptbl = NULL;
3731 struct RESTART_TABLE *trtbl = NULL;
3732 const struct RESTART_TABLE *rt;
3733 struct RESTART_TABLE *oatbl = NULL;
3734 struct inode *inode;
3735 struct OpenAttr *oa;
3736 struct ntfs_inode *ni_oe;
3737 struct ATTRIB *attr = NULL;
3738 u64 size, vcn, undo_next_lsn;
3739 CLST rno, lcn, lcn0, len0, clen;
3740 void *data;
3741 struct NTFS_RESTART *rst = NULL;
3742 struct lcb *lcb = NULL;
3743 struct OPEN_ATTR_ENRTY *oe;
3744 struct TRANSACTION_ENTRY *tr;
3745 struct DIR_PAGE_ENTRY *dp;
3746 u32 i, bytes_per_attr_entry;
3747 u32 l_size = ni->vfs_inode.i_size;
3748 u32 orig_file_size = l_size;
3749 u32 page_size, vbo, tail, off, dlen;
3750 u32 saved_len, rec_len, transact_id;
3751 bool use_second_page;
3752 struct RESTART_AREA *ra2, *ra = NULL;
3753 struct CLIENT_REC *ca, *cr;
3754 __le16 client;
3755 struct RESTART_HDR *rh;
3756 const struct LFS_RECORD_HDR *frh;
3757 const struct LOG_REC_HDR *lrh;
3758 bool is_mapped;
3759 bool is_ro = sb_rdonly(sbi->sb);
3760 u64 t64;
3761 u16 t16;
3762 u32 t32;
3763
3764 /* Get the size of page. NOTE: To replay we can use default page. */
3765 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3766 page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3767 #else
3768 page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3769 #endif
3770 if (!page_size)
3771 return -EINVAL;
3772
3773 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3774 if (!log)
3775 return -ENOMEM;
3776
3777 memset(&rst_info, 0, sizeof(struct restart_info));
3778
3779 log->ni = ni;
3780 log->l_size = l_size;
3781 log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3782 if (!log->one_page_buf) {
3783 err = -ENOMEM;
3784 goto out;
3785 }
3786
3787 log->page_size = page_size;
3788 log->page_mask = page_size - 1;
3789 log->page_bits = blksize_bits(page_size);
3790
3791 /* Look for a restart area on the disk. */
3792 err = log_read_rst(log, l_size, true, &rst_info);
3793 if (err)
3794 goto out;
3795
3796 /* remember 'initialized' */
3797 *initialized = rst_info.initialized;
3798
3799 if (!rst_info.restart) {
3800 if (rst_info.initialized) {
3801 /* No restart area but the file is not initialized. */
3802 err = -EINVAL;
3803 goto out;
3804 }
3805
3806 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3807 log_create(log, l_size, 0, get_random_int(), false, false);
3808
3809 log->ra = ra;
3810
3811 ra = log_create_ra(log);
3812 if (!ra) {
3813 err = -ENOMEM;
3814 goto out;
3815 }
3816 log->ra = ra;
3817 log->init_ra = true;
3818
3819 goto process_log;
3820 }
3821
3822 /*
3823 * If the restart offset above wasn't zero then we won't
3824 * look for a second restart.
3825 */
3826 if (rst_info.vbo)
3827 goto check_restart_area;
3828
3829 memset(&rst_info2, 0, sizeof(struct restart_info));
3830 err = log_read_rst(log, l_size, false, &rst_info2);
3831
3832 /* Determine which restart area to use. */
3833 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3834 goto use_first_page;
3835
3836 use_second_page = true;
3837
3838 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3839 struct RECORD_PAGE_HDR *sp = NULL;
3840 bool usa_error;
3841
3842 if (!read_log_page(log, page_size, &sp, &usa_error) &&
3843 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3844 use_second_page = false;
3845 }
3846 kfree(sp);
3847 }
3848
3849 if (use_second_page) {
3850 kfree(rst_info.r_page);
3851 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3852 rst_info2.r_page = NULL;
3853 }
3854
3855 use_first_page:
3856 kfree(rst_info2.r_page);
3857
3858 check_restart_area:
3859 /*
3860 * If the restart area is at offset 0, we want
3861 * to write the second restart area first.
3862 */
3863 log->init_ra = !!rst_info.vbo;
3864
3865 /* If we have a valid page then grab a pointer to the restart area. */
3866 ra2 = rst_info.valid_page
3867 ? Add2Ptr(rst_info.r_page,
3868 le16_to_cpu(rst_info.r_page->ra_off))
3869 : NULL;
3870
3871 if (rst_info.chkdsk_was_run ||
3872 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3873 bool wrapped = false;
3874 bool use_multi_page = false;
3875 u32 open_log_count;
3876
3877 /* Do some checks based on whether we have a valid log page. */
3878 if (!rst_info.valid_page) {
3879 open_log_count = get_random_int();
3880 goto init_log_instance;
3881 }
3882 open_log_count = le32_to_cpu(ra2->open_log_count);
3883
3884 /*
3885 * If the restart page size isn't changing then we want to
3886 * check how much work we need to do.
3887 */
3888 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3889 goto init_log_instance;
3890
3891 init_log_instance:
3892 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3893
3894 log_create(log, l_size, rst_info.last_lsn, open_log_count,
3895 wrapped, use_multi_page);
3896
3897 ra = log_create_ra(log);
3898 if (!ra) {
3899 err = -ENOMEM;
3900 goto out;
3901 }
3902 log->ra = ra;
3903
3904 /* Put the restart areas and initialize
3905 * the log file as required.
3906 */
3907 goto process_log;
3908 }
3909
3910 if (!ra2) {
3911 err = -EINVAL;
3912 goto out;
3913 }
3914
3915 /*
3916 * If the log page or the system page sizes have changed, we can't
3917 * use the log file. We must use the system page size instead of the
3918 * default size if there is not a clean shutdown.
3919 */
3920 t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3921 if (page_size != t32) {
3922 l_size = orig_file_size;
3923 page_size =
3924 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3925 }
3926
3927 if (page_size != t32 ||
3928 page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3929 err = -EINVAL;
3930 goto out;
3931 }
3932
3933 /* If the file size has shrunk then we won't mount it. */
3934 if (l_size < le64_to_cpu(ra2->l_size)) {
3935 err = -EINVAL;
3936 goto out;
3937 }
3938
3939 log_init_pg_hdr(log, page_size, page_size,
3940 le16_to_cpu(rst_info.r_page->major_ver),
3941 le16_to_cpu(rst_info.r_page->minor_ver));
3942
3943 log->l_size = le64_to_cpu(ra2->l_size);
3944 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3945 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3946 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3947 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3948 log->seq_num = log->last_lsn >> log->file_data_bits;
3949 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3950 log->restart_size = log->sys_page_size - log->ra_off;
3951 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3952 log->ra_size = le16_to_cpu(ra2->ra_len);
3953 log->data_off = le16_to_cpu(ra2->data_off);
3954 log->data_size = log->page_size - log->data_off;
3955 log->reserved = log->data_size - log->record_header_len;
3956
3957 vbo = lsn_to_vbo(log, log->last_lsn);
3958
3959 if (vbo < log->first_page) {
3960 /* This is a pseudo lsn. */
3961 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3962 log->next_page = log->first_page;
3963 goto find_oldest;
3964 }
3965
3966 /* Find the end of this log record. */
3967 off = final_log_off(log, log->last_lsn,
3968 le32_to_cpu(ra2->last_lsn_data_len));
3969
3970 /* If we wrapped the file then increment the sequence number. */
3971 if (off <= vbo) {
3972 log->seq_num += 1;
3973 log->l_flags |= NTFSLOG_WRAPPED;
3974 }
3975
3976 /* Now compute the next log page to use. */
3977 vbo &= ~log->sys_page_mask;
3978 tail = log->page_size - (off & log->page_mask) - 1;
3979
3980 /*
3981 *If we can fit another log record on the page,
3982 * move back a page the log file.
3983 */
3984 if (tail >= log->record_header_len) {
3985 log->l_flags |= NTFSLOG_REUSE_TAIL;
3986 log->next_page = vbo;
3987 } else {
3988 log->next_page = next_page_off(log, vbo);
3989 }
3990
3991 find_oldest:
3992 /*
3993 * Find the oldest client lsn. Use the last
3994 * flushed lsn as a starting point.
3995 */
3996 log->oldest_lsn = log->last_lsn;
3997 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3998 ra2->client_idx[1], &log->oldest_lsn);
3999 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4000
4001 if (log->oldest_lsn_off < log->first_page)
4002 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4003
4004 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4005 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4006
4007 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4008 log->total_avail_pages = log->l_size - log->first_page;
4009 log->total_avail = log->total_avail_pages >> log->page_bits;
4010 log->max_current_avail = log->total_avail * log->reserved;
4011 log->total_avail = log->total_avail * log->data_size;
4012
4013 log->current_avail = current_log_avail(log);
4014
4015 ra = kzalloc(log->restart_size, GFP_NOFS);
4016 if (!ra) {
4017 err = -ENOMEM;
4018 goto out;
4019 }
4020 log->ra = ra;
4021
4022 t16 = le16_to_cpu(ra2->client_off);
4023 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4024 memcpy(ra, ra2, log->ra_size);
4025 } else {
4026 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4027 memcpy(ra->clients, Add2Ptr(ra2, t16),
4028 le16_to_cpu(ra2->ra_len) - t16);
4029
4030 log->current_openlog_count = get_random_int();
4031 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4032 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4033 sizeof(struct CLIENT_REC);
4034 ra->client_off =
4035 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4036 ra->ra_len = cpu_to_le16(log->ra_size);
4037 }
4038
4039 le32_add_cpu(&ra->open_log_count, 1);
4040
4041 /* Now we need to walk through looking for the last lsn. */
4042 err = last_log_lsn(log);
4043 if (err)
4044 goto out;
4045
4046 log->current_avail = current_log_avail(log);
4047
4048 /* Remember which restart area to write first. */
4049 log->init_ra = rst_info.vbo;
4050
4051 process_log:
4052 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4053 switch ((log->major_ver << 16) + log->minor_ver) {
4054 case 0x10000:
4055 case 0x10001:
4056 case 0x20000:
4057 break;
4058 default:
4059 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4060 log->major_ver, log->minor_ver);
4061 err = -EOPNOTSUPP;
4062 log->set_dirty = true;
4063 goto out;
4064 }
4065
4066 /* One client "NTFS" per logfile. */
4067 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4068
4069 for (client = ra->client_idx[1];; client = cr->next_client) {
4070 if (client == LFS_NO_CLIENT_LE) {
4071 /* Insert "NTFS" client LogFile. */
4072 client = ra->client_idx[0];
4073 if (client == LFS_NO_CLIENT_LE) {
4074 err = -EINVAL;
4075 goto out;
4076 }
4077
4078 t16 = le16_to_cpu(client);
4079 cr = ca + t16;
4080
4081 remove_client(ca, cr, &ra->client_idx[0]);
4082
4083 cr->restart_lsn = 0;
4084 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4085 cr->name_bytes = cpu_to_le32(8);
4086 cr->name[0] = cpu_to_le16('N');
4087 cr->name[1] = cpu_to_le16('T');
4088 cr->name[2] = cpu_to_le16('F');
4089 cr->name[3] = cpu_to_le16('S');
4090
4091 add_client(ca, t16, &ra->client_idx[1]);
4092 break;
4093 }
4094
4095 cr = ca + le16_to_cpu(client);
4096
4097 if (cpu_to_le32(8) == cr->name_bytes &&
4098 cpu_to_le16('N') == cr->name[0] &&
4099 cpu_to_le16('T') == cr->name[1] &&
4100 cpu_to_le16('F') == cr->name[2] &&
4101 cpu_to_le16('S') == cr->name[3])
4102 break;
4103 }
4104
4105 /* Update the client handle with the client block information. */
4106 log->client_id.seq_num = cr->seq_num;
4107 log->client_id.client_idx = client;
4108
4109 err = read_rst_area(log, &rst, &ra_lsn);
4110 if (err)
4111 goto out;
4112
4113 if (!rst)
4114 goto out;
4115
4116 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4117
4118 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4119 if (!checkpt_lsn)
4120 checkpt_lsn = ra_lsn;
4121
4122 /* Allocate and Read the Transaction Table. */
4123 if (!rst->transact_table_len)
4124 goto check_dirty_page_table;
4125
4126 t64 = le64_to_cpu(rst->transact_table_lsn);
4127 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4128 if (err)
4129 goto out;
4130
4131 lrh = lcb->log_rec;
4132 frh = lcb->lrh;
4133 rec_len = le32_to_cpu(frh->client_data_len);
4134
4135 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4136 bytes_per_attr_entry)) {
4137 err = -EINVAL;
4138 goto out;
4139 }
4140
4141 t16 = le16_to_cpu(lrh->redo_off);
4142
4143 rt = Add2Ptr(lrh, t16);
4144 t32 = rec_len - t16;
4145
4146 /* Now check that this is a valid restart table. */
4147 if (!check_rstbl(rt, t32)) {
4148 err = -EINVAL;
4149 goto out;
4150 }
4151
4152 trtbl = kmemdup(rt, t32, GFP_NOFS);
4153 if (!trtbl) {
4154 err = -ENOMEM;
4155 goto out;
4156 }
4157
4158 lcb_put(lcb);
4159 lcb = NULL;
4160
4161 check_dirty_page_table:
4162 /* The next record back should be the Dirty Pages Table. */
4163 if (!rst->dirty_pages_len)
4164 goto check_attribute_names;
4165
4166 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4167 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4168 if (err)
4169 goto out;
4170
4171 lrh = lcb->log_rec;
4172 frh = lcb->lrh;
4173 rec_len = le32_to_cpu(frh->client_data_len);
4174
4175 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4176 bytes_per_attr_entry)) {
4177 err = -EINVAL;
4178 goto out;
4179 }
4180
4181 t16 = le16_to_cpu(lrh->redo_off);
4182
4183 rt = Add2Ptr(lrh, t16);
4184 t32 = rec_len - t16;
4185
4186 /* Now check that this is a valid restart table. */
4187 if (!check_rstbl(rt, t32)) {
4188 err = -EINVAL;
4189 goto out;
4190 }
4191
4192 dptbl = kmemdup(rt, t32, GFP_NOFS);
4193 if (!dptbl) {
4194 err = -ENOMEM;
4195 goto out;
4196 }
4197
4198 /* Convert Ra version '0' into version '1'. */
4199 if (rst->major_ver)
4200 goto end_conv_1;
4201
4202 dp = NULL;
4203 while ((dp = enum_rstbl(dptbl, dp))) {
4204 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4205 // NOTE: Danger. Check for of boundary.
4206 memmove(&dp->vcn, &dp0->vcn_low,
4207 2 * sizeof(u64) +
4208 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4209 }
4210
4211 end_conv_1:
4212 lcb_put(lcb);
4213 lcb = NULL;
4214
4215 /*
4216 * Go through the table and remove the duplicates,
4217 * remembering the oldest lsn values.
4218 */
4219 if (sbi->cluster_size <= log->page_size)
4220 goto trace_dp_table;
4221
4222 dp = NULL;
4223 while ((dp = enum_rstbl(dptbl, dp))) {
4224 struct DIR_PAGE_ENTRY *next = dp;
4225
4226 while ((next = enum_rstbl(dptbl, next))) {
4227 if (next->target_attr == dp->target_attr &&
4228 next->vcn == dp->vcn) {
4229 if (le64_to_cpu(next->oldest_lsn) <
4230 le64_to_cpu(dp->oldest_lsn)) {
4231 dp->oldest_lsn = next->oldest_lsn;
4232 }
4233
4234 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4235 }
4236 }
4237 }
4238 trace_dp_table:
4239 check_attribute_names:
4240 /* The next record should be the Attribute Names. */
4241 if (!rst->attr_names_len)
4242 goto check_attr_table;
4243
4244 t64 = le64_to_cpu(rst->attr_names_lsn);
4245 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4246 if (err)
4247 goto out;
4248
4249 lrh = lcb->log_rec;
4250 frh = lcb->lrh;
4251 rec_len = le32_to_cpu(frh->client_data_len);
4252
4253 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4254 bytes_per_attr_entry)) {
4255 err = -EINVAL;
4256 goto out;
4257 }
4258
4259 t32 = lrh_length(lrh);
4260 rec_len -= t32;
4261
4262 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4263 if (!attr_names) {
4264 err = -ENOMEM;
4265 goto out;
4266 }
4267
4268 lcb_put(lcb);
4269 lcb = NULL;
4270
4271 check_attr_table:
4272 /* The next record should be the attribute Table. */
4273 if (!rst->open_attr_len)
4274 goto check_attribute_names2;
4275
4276 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4277 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4278 if (err)
4279 goto out;
4280
4281 lrh = lcb->log_rec;
4282 frh = lcb->lrh;
4283 rec_len = le32_to_cpu(frh->client_data_len);
4284
4285 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4286 bytes_per_attr_entry)) {
4287 err = -EINVAL;
4288 goto out;
4289 }
4290
4291 t16 = le16_to_cpu(lrh->redo_off);
4292
4293 rt = Add2Ptr(lrh, t16);
4294 t32 = rec_len - t16;
4295
4296 if (!check_rstbl(rt, t32)) {
4297 err = -EINVAL;
4298 goto out;
4299 }
4300
4301 oatbl = kmemdup(rt, t32, GFP_NOFS);
4302 if (!oatbl) {
4303 err = -ENOMEM;
4304 goto out;
4305 }
4306
4307 log->open_attr_tbl = oatbl;
4308
4309 /* Clear all of the Attr pointers. */
4310 oe = NULL;
4311 while ((oe = enum_rstbl(oatbl, oe))) {
4312 if (!rst->major_ver) {
4313 struct OPEN_ATTR_ENRTY_32 oe0;
4314
4315 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4316 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4317
4318 oe->bytes_per_index = oe0.bytes_per_index;
4319 oe->type = oe0.type;
4320 oe->is_dirty_pages = oe0.is_dirty_pages;
4321 oe->name_len = 0;
4322 oe->ref = oe0.ref;
4323 oe->open_record_lsn = oe0.open_record_lsn;
4324 }
4325
4326 oe->is_attr_name = 0;
4327 oe->ptr = NULL;
4328 }
4329
4330 lcb_put(lcb);
4331 lcb = NULL;
4332
4333 check_attribute_names2:
4334 if (!rst->attr_names_len)
4335 goto trace_attribute_table;
4336
4337 ane = attr_names;
4338 if (!oatbl)
4339 goto trace_attribute_table;
4340 while (ane->off) {
4341 /* TODO: Clear table on exit! */
4342 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4343 t16 = le16_to_cpu(ane->name_bytes);
4344 oe->name_len = t16 / sizeof(short);
4345 oe->ptr = ane->name;
4346 oe->is_attr_name = 2;
4347 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4348 }
4349
4350 trace_attribute_table:
4351 /*
4352 * If the checkpt_lsn is zero, then this is a freshly
4353 * formatted disk and we have no work to do.
4354 */
4355 if (!checkpt_lsn) {
4356 err = 0;
4357 goto out;
4358 }
4359
4360 if (!oatbl) {
4361 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4362 if (!oatbl) {
4363 err = -ENOMEM;
4364 goto out;
4365 }
4366 }
4367
4368 log->open_attr_tbl = oatbl;
4369
4370 /* Start the analysis pass from the Checkpoint lsn. */
4371 rec_lsn = checkpt_lsn;
4372
4373 /* Read the first lsn. */
4374 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4375 if (err)
4376 goto out;
4377
4378 /* Loop to read all subsequent records to the end of the log file. */
4379 next_log_record_analyze:
4380 err = read_next_log_rec(log, lcb, &rec_lsn);
4381 if (err)
4382 goto out;
4383
4384 if (!rec_lsn)
4385 goto end_log_records_enumerate;
4386
4387 frh = lcb->lrh;
4388 transact_id = le32_to_cpu(frh->transact_id);
4389 rec_len = le32_to_cpu(frh->client_data_len);
4390 lrh = lcb->log_rec;
4391
4392 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4393 err = -EINVAL;
4394 goto out;
4395 }
4396
4397 /*
4398 * The first lsn after the previous lsn remembered
4399 * the checkpoint is the first candidate for the rlsn.
4400 */
4401 if (!rlsn)
4402 rlsn = rec_lsn;
4403
4404 if (LfsClientRecord != frh->record_type)
4405 goto next_log_record_analyze;
4406
4407 /*
4408 * Now update the Transaction Table for this transaction. If there
4409 * is no entry present or it is unallocated we allocate the entry.
4410 */
4411 if (!trtbl) {
4412 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4413 INITIAL_NUMBER_TRANSACTIONS);
4414 if (!trtbl) {
4415 err = -ENOMEM;
4416 goto out;
4417 }
4418 }
4419
4420 tr = Add2Ptr(trtbl, transact_id);
4421
4422 if (transact_id >= bytes_per_rt(trtbl) ||
4423 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4424 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4425 if (!tr) {
4426 err = -ENOMEM;
4427 goto out;
4428 }
4429 tr->transact_state = TransactionActive;
4430 tr->first_lsn = cpu_to_le64(rec_lsn);
4431 }
4432
4433 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4434
4435 /*
4436 * If this is a compensation log record, then change
4437 * the undo_next_lsn to be the undo_next_lsn of this record.
4438 */
4439 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4440 tr->undo_next_lsn = frh->client_undo_next_lsn;
4441
4442 /* Dispatch to handle log record depending on type. */
4443 switch (le16_to_cpu(lrh->redo_op)) {
4444 case InitializeFileRecordSegment:
4445 case DeallocateFileRecordSegment:
4446 case WriteEndOfFileRecordSegment:
4447 case CreateAttribute:
4448 case DeleteAttribute:
4449 case UpdateResidentValue:
4450 case UpdateNonresidentValue:
4451 case UpdateMappingPairs:
4452 case SetNewAttributeSizes:
4453 case AddIndexEntryRoot:
4454 case DeleteIndexEntryRoot:
4455 case AddIndexEntryAllocation:
4456 case DeleteIndexEntryAllocation:
4457 case WriteEndOfIndexBuffer:
4458 case SetIndexEntryVcnRoot:
4459 case SetIndexEntryVcnAllocation:
4460 case UpdateFileNameRoot:
4461 case UpdateFileNameAllocation:
4462 case SetBitsInNonresidentBitMap:
4463 case ClearBitsInNonresidentBitMap:
4464 case UpdateRecordDataRoot:
4465 case UpdateRecordDataAllocation:
4466 case ZeroEndOfFileRecord:
4467 t16 = le16_to_cpu(lrh->target_attr);
4468 t64 = le64_to_cpu(lrh->target_vcn);
4469 dp = find_dp(dptbl, t16, t64);
4470
4471 if (dp)
4472 goto copy_lcns;
4473
4474 /*
4475 * Calculate the number of clusters per page the system
4476 * which wrote the checkpoint, possibly creating the table.
4477 */
4478 if (dptbl) {
4479 t32 = (le16_to_cpu(dptbl->size) -
4480 sizeof(struct DIR_PAGE_ENTRY)) /
4481 sizeof(u64);
4482 } else {
4483 t32 = log->clst_per_page;
4484 kfree(dptbl);
4485 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4486 32);
4487 if (!dptbl) {
4488 err = -ENOMEM;
4489 goto out;
4490 }
4491 }
4492
4493 dp = alloc_rsttbl_idx(&dptbl);
4494 if (!dp) {
4495 err = -ENOMEM;
4496 goto out;
4497 }
4498 dp->target_attr = cpu_to_le32(t16);
4499 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4500 dp->lcns_follow = cpu_to_le32(t32);
4501 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4502 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4503
4504 copy_lcns:
4505 /*
4506 * Copy the Lcns from the log record into the Dirty Page Entry.
4507 * TODO: For different page size support, must somehow make
4508 * whole routine a loop, case Lcns do not fit below.
4509 */
4510 t16 = le16_to_cpu(lrh->lcns_follow);
4511 for (i = 0; i < t16; i++) {
4512 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4513 le64_to_cpu(dp->vcn));
4514 dp->page_lcns[j + i] = lrh->page_lcns[i];
4515 }
4516
4517 goto next_log_record_analyze;
4518
4519 case DeleteDirtyClusters: {
4520 u32 range_count =
4521 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4522 const struct LCN_RANGE *r =
4523 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4524
4525 /* Loop through all of the Lcn ranges this log record. */
4526 for (i = 0; i < range_count; i++, r++) {
4527 u64 lcn0 = le64_to_cpu(r->lcn);
4528 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4529
4530 dp = NULL;
4531 while ((dp = enum_rstbl(dptbl, dp))) {
4532 u32 j;
4533
4534 t32 = le32_to_cpu(dp->lcns_follow);
4535 for (j = 0; j < t32; j++) {
4536 t64 = le64_to_cpu(dp->page_lcns[j]);
4537 if (t64 >= lcn0 && t64 <= lcn_e)
4538 dp->page_lcns[j] = 0;
4539 }
4540 }
4541 }
4542 goto next_log_record_analyze;
4543 ;
4544 }
4545
4546 case OpenNonresidentAttribute:
4547 t16 = le16_to_cpu(lrh->target_attr);
4548 if (t16 >= bytes_per_rt(oatbl)) {
4549 /*
4550 * Compute how big the table needs to be.
4551 * Add 10 extra entries for some cushion.
4552 */
4553 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4554
4555 new_e += 10 - le16_to_cpu(oatbl->used);
4556
4557 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4558 log->open_attr_tbl = oatbl;
4559 if (!oatbl) {
4560 err = -ENOMEM;
4561 goto out;
4562 }
4563 }
4564
4565 /* Point to the entry being opened. */
4566 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4567 log->open_attr_tbl = oatbl;
4568 if (!oe) {
4569 err = -ENOMEM;
4570 goto out;
4571 }
4572
4573 /* Initialize this entry from the log record. */
4574 t16 = le16_to_cpu(lrh->redo_off);
4575 if (!rst->major_ver) {
4576 /* Convert version '0' into version '1'. */
4577 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4578
4579 oe->bytes_per_index = oe0->bytes_per_index;
4580 oe->type = oe0->type;
4581 oe->is_dirty_pages = oe0->is_dirty_pages;
4582 oe->name_len = 0; //oe0.name_len;
4583 oe->ref = oe0->ref;
4584 oe->open_record_lsn = oe0->open_record_lsn;
4585 } else {
4586 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4587 }
4588
4589 t16 = le16_to_cpu(lrh->undo_len);
4590 if (t16) {
4591 oe->ptr = kmalloc(t16, GFP_NOFS);
4592 if (!oe->ptr) {
4593 err = -ENOMEM;
4594 goto out;
4595 }
4596 oe->name_len = t16 / sizeof(short);
4597 memcpy(oe->ptr,
4598 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4599 oe->is_attr_name = 1;
4600 } else {
4601 oe->ptr = NULL;
4602 oe->is_attr_name = 0;
4603 }
4604
4605 goto next_log_record_analyze;
4606
4607 case HotFix:
4608 t16 = le16_to_cpu(lrh->target_attr);
4609 t64 = le64_to_cpu(lrh->target_vcn);
4610 dp = find_dp(dptbl, t16, t64);
4611 if (dp) {
4612 size_t j = le64_to_cpu(lrh->target_vcn) -
4613 le64_to_cpu(dp->vcn);
4614 if (dp->page_lcns[j])
4615 dp->page_lcns[j] = lrh->page_lcns[0];
4616 }
4617 goto next_log_record_analyze;
4618
4619 case EndTopLevelAction:
4620 tr = Add2Ptr(trtbl, transact_id);
4621 tr->prev_lsn = cpu_to_le64(rec_lsn);
4622 tr->undo_next_lsn = frh->client_undo_next_lsn;
4623 goto next_log_record_analyze;
4624
4625 case PrepareTransaction:
4626 tr = Add2Ptr(trtbl, transact_id);
4627 tr->transact_state = TransactionPrepared;
4628 goto next_log_record_analyze;
4629
4630 case CommitTransaction:
4631 tr = Add2Ptr(trtbl, transact_id);
4632 tr->transact_state = TransactionCommitted;
4633 goto next_log_record_analyze;
4634
4635 case ForgetTransaction:
4636 free_rsttbl_idx(trtbl, transact_id);
4637 goto next_log_record_analyze;
4638
4639 case Noop:
4640 case OpenAttributeTableDump:
4641 case AttributeNamesDump:
4642 case DirtyPageTableDump:
4643 case TransactionTableDump:
4644 /* The following cases require no action the Analysis Pass. */
4645 goto next_log_record_analyze;
4646
4647 default:
4648 /*
4649 * All codes will be explicitly handled.
4650 * If we see a code we do not expect, then we are trouble.
4651 */
4652 goto next_log_record_analyze;
4653 }
4654
4655 end_log_records_enumerate:
4656 lcb_put(lcb);
4657 lcb = NULL;
4658
4659 /*
4660 * Scan the Dirty Page Table and Transaction Table for
4661 * the lowest lsn, and return it as the Redo lsn.
4662 */
4663 dp = NULL;
4664 while ((dp = enum_rstbl(dptbl, dp))) {
4665 t64 = le64_to_cpu(dp->oldest_lsn);
4666 if (t64 && t64 < rlsn)
4667 rlsn = t64;
4668 }
4669
4670 tr = NULL;
4671 while ((tr = enum_rstbl(trtbl, tr))) {
4672 t64 = le64_to_cpu(tr->first_lsn);
4673 if (t64 && t64 < rlsn)
4674 rlsn = t64;
4675 }
4676
4677 /*
4678 * Only proceed if the Dirty Page Table or Transaction
4679 * table are not empty.
4680 */
4681 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4682 goto end_reply;
4683
4684 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4685 if (is_ro)
4686 goto out;
4687
4688 /* Reopen all of the attributes with dirty pages. */
4689 oe = NULL;
4690 next_open_attribute:
4691
4692 oe = enum_rstbl(oatbl, oe);
4693 if (!oe) {
4694 err = 0;
4695 dp = NULL;
4696 goto next_dirty_page;
4697 }
4698
4699 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4700 if (!oa) {
4701 err = -ENOMEM;
4702 goto out;
4703 }
4704
4705 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4706 if (IS_ERR(inode))
4707 goto fake_attr;
4708
4709 if (is_bad_inode(inode)) {
4710 iput(inode);
4711 fake_attr:
4712 if (oa->ni) {
4713 iput(&oa->ni->vfs_inode);
4714 oa->ni = NULL;
4715 }
4716
4717 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4718 oe->name_len, 0);
4719 if (!attr) {
4720 kfree(oa);
4721 err = -ENOMEM;
4722 goto out;
4723 }
4724 oa->attr = attr;
4725 oa->run1 = &oa->run0;
4726 goto final_oe;
4727 }
4728
4729 ni_oe = ntfs_i(inode);
4730 oa->ni = ni_oe;
4731
4732 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4733 NULL, NULL);
4734
4735 if (!attr)
4736 goto fake_attr;
4737
4738 t32 = le32_to_cpu(attr->size);
4739 oa->attr = kmemdup(attr, t32, GFP_NOFS);
4740 if (!oa->attr)
4741 goto fake_attr;
4742
4743 if (!S_ISDIR(inode->i_mode)) {
4744 if (attr->type == ATTR_DATA && !attr->name_len) {
4745 oa->run1 = &ni_oe->file.run;
4746 goto final_oe;
4747 }
4748 } else {
4749 if (attr->type == ATTR_ALLOC &&
4750 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4751 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4752 oa->run1 = &ni_oe->dir.alloc_run;
4753 goto final_oe;
4754 }
4755 }
4756
4757 if (attr->non_res) {
4758 u16 roff = le16_to_cpu(attr->nres.run_off);
4759 CLST svcn = le64_to_cpu(attr->nres.svcn);
4760
4761 if (roff > t32) {
4762 kfree(oa->attr);
4763 oa->attr = NULL;
4764 goto fake_attr;
4765 }
4766
4767 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4768 le64_to_cpu(attr->nres.evcn), svcn,
4769 Add2Ptr(attr, roff), t32 - roff);
4770 if (err < 0) {
4771 kfree(oa->attr);
4772 oa->attr = NULL;
4773 goto fake_attr;
4774 }
4775 err = 0;
4776 }
4777 oa->run1 = &oa->run0;
4778 attr = oa->attr;
4779
4780 final_oe:
4781 if (oe->is_attr_name == 1)
4782 kfree(oe->ptr);
4783 oe->is_attr_name = 0;
4784 oe->ptr = oa;
4785 oe->name_len = attr->name_len;
4786
4787 goto next_open_attribute;
4788
4789 /*
4790 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4791 * Mapping that we have, and insert it into the appropriate run.
4792 */
4793 next_dirty_page:
4794 dp = enum_rstbl(dptbl, dp);
4795 if (!dp)
4796 goto do_redo_1;
4797
4798 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4799
4800 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4801 goto next_dirty_page;
4802
4803 oa = oe->ptr;
4804 if (!oa)
4805 goto next_dirty_page;
4806
4807 i = -1;
4808 next_dirty_page_vcn:
4809 i += 1;
4810 if (i >= le32_to_cpu(dp->lcns_follow))
4811 goto next_dirty_page;
4812
4813 vcn = le64_to_cpu(dp->vcn) + i;
4814 size = (vcn + 1) << sbi->cluster_bits;
4815
4816 if (!dp->page_lcns[i])
4817 goto next_dirty_page_vcn;
4818
4819 rno = ino_get(&oe->ref);
4820 if (rno <= MFT_REC_MIRR &&
4821 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4822 oe->type == ATTR_DATA) {
4823 goto next_dirty_page_vcn;
4824 }
4825
4826 lcn = le64_to_cpu(dp->page_lcns[i]);
4827
4828 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4829 lcn0 != lcn) &&
4830 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4831 err = -ENOMEM;
4832 goto out;
4833 }
4834 attr = oa->attr;
4835 t64 = le64_to_cpu(attr->nres.alloc_size);
4836 if (size > t64) {
4837 attr->nres.valid_size = attr->nres.data_size =
4838 attr->nres.alloc_size = cpu_to_le64(size);
4839 }
4840 goto next_dirty_page_vcn;
4841
4842 do_redo_1:
4843 /*
4844 * Perform the Redo Pass, to restore all of the dirty pages to the same
4845 * contents that they had immediately before the crash. If the dirty
4846 * page table is empty, then we can skip the entire Redo Pass.
4847 */
4848 if (!dptbl || !dptbl->total)
4849 goto do_undo_action;
4850
4851 rec_lsn = rlsn;
4852
4853 /*
4854 * Read the record at the Redo lsn, before falling
4855 * into common code to handle each record.
4856 */
4857 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4858 if (err)
4859 goto out;
4860
4861 /*
4862 * Now loop to read all of our log records forwards, until
4863 * we hit the end of the file, cleaning up at the end.
4864 */
4865 do_action_next:
4866 frh = lcb->lrh;
4867
4868 if (LfsClientRecord != frh->record_type)
4869 goto read_next_log_do_action;
4870
4871 transact_id = le32_to_cpu(frh->transact_id);
4872 rec_len = le32_to_cpu(frh->client_data_len);
4873 lrh = lcb->log_rec;
4874
4875 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4876 err = -EINVAL;
4877 goto out;
4878 }
4879
4880 /* Ignore log records that do not update pages. */
4881 if (lrh->lcns_follow)
4882 goto find_dirty_page;
4883
4884 goto read_next_log_do_action;
4885
4886 find_dirty_page:
4887 t16 = le16_to_cpu(lrh->target_attr);
4888 t64 = le64_to_cpu(lrh->target_vcn);
4889 dp = find_dp(dptbl, t16, t64);
4890
4891 if (!dp)
4892 goto read_next_log_do_action;
4893
4894 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4895 goto read_next_log_do_action;
4896
4897 t16 = le16_to_cpu(lrh->target_attr);
4898 if (t16 >= bytes_per_rt(oatbl)) {
4899 err = -EINVAL;
4900 goto out;
4901 }
4902
4903 oe = Add2Ptr(oatbl, t16);
4904
4905 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4906 err = -EINVAL;
4907 goto out;
4908 }
4909
4910 oa = oe->ptr;
4911
4912 if (!oa) {
4913 err = -EINVAL;
4914 goto out;
4915 }
4916 attr = oa->attr;
4917
4918 vcn = le64_to_cpu(lrh->target_vcn);
4919
4920 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4921 lcn == SPARSE_LCN) {
4922 goto read_next_log_do_action;
4923 }
4924
4925 /* Point to the Redo data and get its length. */
4926 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4927 dlen = le16_to_cpu(lrh->redo_len);
4928
4929 /* Shorten length by any Lcns which were deleted. */
4930 saved_len = dlen;
4931
4932 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4933 size_t j;
4934 u32 alen, voff;
4935
4936 voff = le16_to_cpu(lrh->record_off) +
4937 le16_to_cpu(lrh->attr_off);
4938 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4939
4940 /* If the Vcn question is allocated, we can just get out. */
4941 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4942 if (dp->page_lcns[j + i - 1])
4943 break;
4944
4945 if (!saved_len)
4946 saved_len = 1;
4947
4948 /*
4949 * Calculate the allocated space left relative to the
4950 * log record Vcn, after removing this unallocated Vcn.
4951 */
4952 alen = (i - 1) << sbi->cluster_bits;
4953
4954 /*
4955 * If the update described this log record goes beyond
4956 * the allocated space, then we will have to reduce the length.
4957 */
4958 if (voff >= alen)
4959 dlen = 0;
4960 else if (voff + dlen > alen)
4961 dlen = alen - voff;
4962 }
4963
4964 /*
4965 * If the resulting dlen from above is now zero,
4966 * we can skip this log record.
4967 */
4968 if (!dlen && saved_len)
4969 goto read_next_log_do_action;
4970
4971 t16 = le16_to_cpu(lrh->redo_op);
4972 if (can_skip_action(t16))
4973 goto read_next_log_do_action;
4974
4975 /* Apply the Redo operation a common routine. */
4976 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4977 if (err)
4978 goto out;
4979
4980 /* Keep reading and looping back until end of file. */
4981 read_next_log_do_action:
4982 err = read_next_log_rec(log, lcb, &rec_lsn);
4983 if (!err && rec_lsn)
4984 goto do_action_next;
4985
4986 lcb_put(lcb);
4987 lcb = NULL;
4988
4989 do_undo_action:
4990 /* Scan Transaction Table. */
4991 tr = NULL;
4992 transaction_table_next:
4993 tr = enum_rstbl(trtbl, tr);
4994 if (!tr)
4995 goto undo_action_done;
4996
4997 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4998 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4999 goto transaction_table_next;
5000 }
5001
5002 log->transaction_id = PtrOffset(trtbl, tr);
5003 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5004
5005 /*
5006 * We only have to do anything if the transaction has
5007 * something its undo_next_lsn field.
5008 */
5009 if (!undo_next_lsn)
5010 goto commit_undo;
5011
5012 /* Read the first record to be undone by this transaction. */
5013 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5014 if (err)
5015 goto out;
5016
5017 /*
5018 * Now loop to read all of our log records forwards,
5019 * until we hit the end of the file, cleaning up at the end.
5020 */
5021 undo_action_next:
5022
5023 lrh = lcb->log_rec;
5024 frh = lcb->lrh;
5025 transact_id = le32_to_cpu(frh->transact_id);
5026 rec_len = le32_to_cpu(frh->client_data_len);
5027
5028 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5029 err = -EINVAL;
5030 goto out;
5031 }
5032
5033 if (lrh->undo_op == cpu_to_le16(Noop))
5034 goto read_next_log_undo_action;
5035
5036 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5037 oa = oe->ptr;
5038
5039 t16 = le16_to_cpu(lrh->lcns_follow);
5040 if (!t16)
5041 goto add_allocated_vcns;
5042
5043 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5044 &lcn, &clen, NULL);
5045
5046 /*
5047 * If the mapping isn't already the table or the mapping
5048 * corresponds to a hole the mapping, we need to make sure
5049 * there is no partial page already memory.
5050 */
5051 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5052 goto add_allocated_vcns;
5053
5054 vcn = le64_to_cpu(lrh->target_vcn);
5055 vcn &= ~(u64)(log->clst_per_page - 1);
5056
5057 add_allocated_vcns:
5058 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5059 size = (vcn + 1) << sbi->cluster_bits;
5060 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5061 attr = oa->attr;
5062 if (!attr->non_res) {
5063 if (size > le32_to_cpu(attr->res.data_size))
5064 attr->res.data_size = cpu_to_le32(size);
5065 } else {
5066 if (size > le64_to_cpu(attr->nres.data_size))
5067 attr->nres.valid_size = attr->nres.data_size =
5068 attr->nres.alloc_size =
5069 cpu_to_le64(size);
5070 }
5071 }
5072
5073 t16 = le16_to_cpu(lrh->undo_op);
5074 if (can_skip_action(t16))
5075 goto read_next_log_undo_action;
5076
5077 /* Point to the Redo data and get its length. */
5078 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5079 dlen = le16_to_cpu(lrh->undo_len);
5080
5081 /* It is time to apply the undo action. */
5082 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5083
5084 read_next_log_undo_action:
5085 /*
5086 * Keep reading and looping back until we have read the
5087 * last record for this transaction.
5088 */
5089 err = read_next_log_rec(log, lcb, &rec_lsn);
5090 if (err)
5091 goto out;
5092
5093 if (rec_lsn)
5094 goto undo_action_next;
5095
5096 lcb_put(lcb);
5097 lcb = NULL;
5098
5099 commit_undo:
5100 free_rsttbl_idx(trtbl, log->transaction_id);
5101
5102 log->transaction_id = 0;
5103
5104 goto transaction_table_next;
5105
5106 undo_action_done:
5107
5108 ntfs_update_mftmirr(sbi, 0);
5109
5110 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5111
5112 end_reply:
5113
5114 err = 0;
5115 if (is_ro)
5116 goto out;
5117
5118 rh = kzalloc(log->page_size, GFP_NOFS);
5119 if (!rh) {
5120 err = -ENOMEM;
5121 goto out;
5122 }
5123
5124 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5125 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5126 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5127 rh->rhdr.fix_num = cpu_to_le16(t16);
5128 rh->sys_page_size = cpu_to_le32(log->page_size);
5129 rh->page_size = cpu_to_le32(log->page_size);
5130
5131 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5132 8);
5133 rh->ra_off = cpu_to_le16(t16);
5134 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5135 rh->major_ver = cpu_to_le16(1); // 0x1C:
5136
5137 ra2 = Add2Ptr(rh, t16);
5138 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5139
5140 ra2->client_idx[0] = 0;
5141 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5142 ra2->flags = cpu_to_le16(2);
5143
5144 le32_add_cpu(&ra2->open_log_count, 1);
5145
5146 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5147
5148 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5149 if (!err)
5150 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5151 rh, log->page_size, 0);
5152
5153 kfree(rh);
5154 if (err)
5155 goto out;
5156
5157 out:
5158 kfree(rst);
5159 if (lcb)
5160 lcb_put(lcb);
5161
5162 /*
5163 * Scan the Open Attribute Table to close all of
5164 * the open attributes.
5165 */
5166 oe = NULL;
5167 while ((oe = enum_rstbl(oatbl, oe))) {
5168 rno = ino_get(&oe->ref);
5169
5170 if (oe->is_attr_name == 1) {
5171 kfree(oe->ptr);
5172 oe->ptr = NULL;
5173 continue;
5174 }
5175
5176 if (oe->is_attr_name)
5177 continue;
5178
5179 oa = oe->ptr;
5180 if (!oa)
5181 continue;
5182
5183 run_close(&oa->run0);
5184 kfree(oa->attr);
5185 if (oa->ni)
5186 iput(&oa->ni->vfs_inode);
5187 kfree(oa);
5188 }
5189
5190 kfree(trtbl);
5191 kfree(oatbl);
5192 kfree(dptbl);
5193 kfree(attr_names);
5194 kfree(rst_info.r_page);
5195
5196 kfree(ra);
5197 kfree(log->one_page_buf);
5198
5199 if (err)
5200 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5201
5202 if (err == -EROFS)
5203 err = 0;
5204 else if (log->set_dirty)
5205 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5206
5207 kfree(log);
5208
5209 return err;
5210 }
5211