1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
29
30 #include "smumgr.h"
31 #include "pp_debug.h"
32 #include "ci_smumgr.h"
33 #include "ppsmc.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
38 #include "atombios.h"
39 #include "pppcielanes.h"
40 #include "smu7_smumgr.h"
41
42 #include "smu/smu_7_0_1_d.h"
43 #include "smu/smu_7_0_1_sh_mask.h"
44
45 #include "dce/dce_8_0_d.h"
46 #include "dce/dce_8_0_sh_mask.h"
47
48 #include "bif/bif_4_1_d.h"
49 #include "bif/bif_4_1_sh_mask.h"
50
51 #include "gca/gfx_7_2_d.h"
52 #include "gca/gfx_7_2_sh_mask.h"
53
54 #include "gmc/gmc_7_1_d.h"
55 #include "gmc/gmc_7_1_sh_mask.h"
56
57 #include "processpptables.h"
58
59 #define MC_CG_ARB_FREQ_F0 0x0a
60 #define MC_CG_ARB_FREQ_F1 0x0b
61 #define MC_CG_ARB_FREQ_F2 0x0c
62 #define MC_CG_ARB_FREQ_F3 0x0d
63
64 #define SMC_RAM_END 0x40000
65
66 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
67 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
68
69 static const struct ci_pt_defaults defaults_hawaii_xt = {
70 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
71 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
72 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
73 };
74
75 static const struct ci_pt_defaults defaults_hawaii_pro = {
76 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
77 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
78 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
79 };
80
81 static const struct ci_pt_defaults defaults_bonaire_xt = {
82 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
83 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
84 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
85 };
86
87
88 static const struct ci_pt_defaults defaults_saturn_xt = {
89 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
90 { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
91 { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
92 };
93
94
ci_set_smc_sram_address(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t limit)95 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
96 uint32_t smc_addr, uint32_t limit)
97 {
98 if ((0 != (3 & smc_addr))
99 || ((smc_addr + 3) >= limit)) {
100 pr_err("smc_addr invalid \n");
101 return -EINVAL;
102 }
103
104 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
105 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
106 return 0;
107 }
108
ci_copy_bytes_to_smc(struct pp_hwmgr * hwmgr,uint32_t smc_start_address,const uint8_t * src,uint32_t byte_count,uint32_t limit)109 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
110 const uint8_t *src, uint32_t byte_count, uint32_t limit)
111 {
112 int result;
113 uint32_t data = 0;
114 uint32_t original_data;
115 uint32_t addr = 0;
116 uint32_t extra_shift;
117
118 if ((3 & smc_start_address)
119 || ((smc_start_address + byte_count) >= limit)) {
120 pr_err("smc_start_address invalid \n");
121 return -EINVAL;
122 }
123
124 addr = smc_start_address;
125
126 while (byte_count >= 4) {
127 /* Bytes are written into the SMC address space with the MSB first. */
128 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
129
130 result = ci_set_smc_sram_address(hwmgr, addr, limit);
131
132 if (0 != result)
133 return result;
134
135 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
136
137 src += 4;
138 byte_count -= 4;
139 addr += 4;
140 }
141
142 if (0 != byte_count) {
143
144 data = 0;
145
146 result = ci_set_smc_sram_address(hwmgr, addr, limit);
147
148 if (0 != result)
149 return result;
150
151
152 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
153
154 extra_shift = 8 * (4 - byte_count);
155
156 while (byte_count > 0) {
157 /* Bytes are written into the SMC addres space with the MSB first. */
158 data = (0x100 * data) + *src++;
159 byte_count--;
160 }
161
162 data <<= extra_shift;
163
164 data |= (original_data & ~((~0UL) << extra_shift));
165
166 result = ci_set_smc_sram_address(hwmgr, addr, limit);
167
168 if (0 != result)
169 return result;
170
171 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172 }
173
174 return 0;
175 }
176
177
ci_program_jump_on_start(struct pp_hwmgr * hwmgr)178 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
179 {
180 static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
181
182 ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
183
184 return 0;
185 }
186
ci_is_smc_ram_running(struct pp_hwmgr * hwmgr)187 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
188 {
189 return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
190 CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
191 && (0x20100 <= cgs_read_ind_register(hwmgr->device,
192 CGS_IND_REG__SMC, ixSMC_PC_C)));
193 }
194
ci_read_smc_sram_dword(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t * value,uint32_t limit)195 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
196 uint32_t *value, uint32_t limit)
197 {
198 int result;
199
200 result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
201
202 if (result)
203 return result;
204
205 *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
206 return 0;
207 }
208
ci_send_msg_to_smc(struct pp_hwmgr * hwmgr,uint16_t msg)209 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
210 {
211 int ret;
212
213 cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
214 cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
215
216 PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
217
218 ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
219
220 if (ret != 1)
221 pr_info("\n failed to send message %x ret is %d\n", msg, ret);
222
223 return 0;
224 }
225
ci_send_msg_to_smc_with_parameter(struct pp_hwmgr * hwmgr,uint16_t msg,uint32_t parameter)226 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
227 uint16_t msg, uint32_t parameter)
228 {
229 cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
230 return ci_send_msg_to_smc(hwmgr, msg);
231 }
232
ci_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)233 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
234 {
235 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
236 struct amdgpu_device *adev = hwmgr->adev;
237 uint32_t dev_id;
238
239 dev_id = adev->pdev->device;
240
241 switch (dev_id) {
242 case 0x67BA:
243 case 0x67B1:
244 smu_data->power_tune_defaults = &defaults_hawaii_pro;
245 break;
246 case 0x67B8:
247 case 0x66B0:
248 smu_data->power_tune_defaults = &defaults_hawaii_xt;
249 break;
250 case 0x6640:
251 case 0x6641:
252 case 0x6646:
253 case 0x6647:
254 smu_data->power_tune_defaults = &defaults_saturn_xt;
255 break;
256 case 0x6649:
257 case 0x6650:
258 case 0x6651:
259 case 0x6658:
260 case 0x665C:
261 case 0x665D:
262 case 0x67A0:
263 case 0x67A1:
264 case 0x67A2:
265 case 0x67A8:
266 case 0x67A9:
267 case 0x67AA:
268 case 0x67B9:
269 case 0x67BE:
270 default:
271 smu_data->power_tune_defaults = &defaults_bonaire_xt;
272 break;
273 }
274 }
275
ci_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)276 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
277 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
278 uint32_t clock, uint32_t *vol)
279 {
280 uint32_t i = 0;
281
282 if (allowed_clock_voltage_table->count == 0)
283 return -EINVAL;
284
285 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
286 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
287 *vol = allowed_clock_voltage_table->entries[i].v;
288 return 0;
289 }
290 }
291
292 *vol = allowed_clock_voltage_table->entries[i - 1].v;
293 return 0;
294 }
295
ci_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * sclk)296 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
297 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
298 {
299 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
300 struct pp_atomctrl_clock_dividers_vi dividers;
301 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
302 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
303 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
304 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
305 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
306 uint32_t ref_clock;
307 uint32_t ref_divider;
308 uint32_t fbdiv;
309 int result;
310
311 /* get the engine clock dividers for this clock value */
312 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
313
314 PP_ASSERT_WITH_CODE(result == 0,
315 "Error retrieving Engine Clock dividers from VBIOS.",
316 return result);
317
318 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
319 ref_clock = atomctrl_get_reference_clock(hwmgr);
320 ref_divider = 1 + dividers.uc_pll_ref_div;
321
322 /* low 14 bits is fraction and high 12 bits is divider */
323 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
324
325 /* SPLL_FUNC_CNTL setup */
326 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
327 SPLL_REF_DIV, dividers.uc_pll_ref_div);
328 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
329 SPLL_PDIV_A, dividers.uc_pll_post_div);
330
331 /* SPLL_FUNC_CNTL_3 setup*/
332 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
333 SPLL_FB_DIV, fbdiv);
334
335 /* set to use fractional accumulation*/
336 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
337 SPLL_DITHEN, 1);
338
339 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
340 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
341 struct pp_atomctrl_internal_ss_info ss_info;
342 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
343
344 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
345 vco_freq, &ss_info)) {
346 uint32_t clk_s = ref_clock * 5 /
347 (ref_divider * ss_info.speed_spectrum_rate);
348 uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
349 fbdiv / (clk_s * 10000);
350
351 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
352 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
353 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
354 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
355 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
356 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
357 }
358 }
359
360 sclk->SclkFrequency = clock;
361 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
362 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
363 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
364 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
365 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
366
367 return 0;
368 }
369
ci_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)370 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
371 const struct phm_phase_shedding_limits_table *pl,
372 uint32_t sclk, uint32_t *p_shed)
373 {
374 unsigned int i;
375
376 /* use the minimum phase shedding */
377 *p_shed = 1;
378
379 for (i = 0; i < pl->count; i++) {
380 if (sclk < pl->entries[i].Sclk) {
381 *p_shed = i;
382 break;
383 }
384 }
385 }
386
ci_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)387 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
388 uint32_t clock_insr)
389 {
390 uint8_t i;
391 uint32_t temp;
392 uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
393
394 if (clock < min) {
395 pr_info("Engine clock can't satisfy stutter requirement!\n");
396 return 0;
397 }
398 for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
399 temp = clock >> i;
400
401 if (temp >= min || i == 0)
402 break;
403 }
404 return i;
405 }
406
ci_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * level)407 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
408 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
409 {
410 int result;
411 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
412
413
414 result = ci_calculate_sclk_params(hwmgr, clock, level);
415
416 /* populate graphics levels */
417 result = ci_get_dependency_volt_by_clk(hwmgr,
418 hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
419 (uint32_t *)(&level->MinVddc));
420 if (result) {
421 pr_err("vdd_dep_on_sclk table is NULL\n");
422 return result;
423 }
424
425 level->SclkFrequency = clock;
426 level->MinVddcPhases = 1;
427
428 if (data->vddc_phase_shed_control)
429 ci_populate_phase_value_based_on_sclk(hwmgr,
430 hwmgr->dyn_state.vddc_phase_shed_limits_table,
431 clock,
432 &level->MinVddcPhases);
433
434 level->ActivityLevel = data->current_profile_setting.sclk_activity;
435 level->CcPwrDynRm = 0;
436 level->CcPwrDynRm1 = 0;
437 level->EnabledForActivity = 0;
438 /* this level can be used for throttling.*/
439 level->EnabledForThrottle = 1;
440 level->UpH = data->current_profile_setting.sclk_up_hyst;
441 level->DownH = data->current_profile_setting.sclk_down_hyst;
442 level->VoltageDownH = 0;
443 level->PowerThrottle = 0;
444
445
446 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
447 PHM_PlatformCaps_SclkDeepSleep))
448 level->DeepSleepDivId =
449 ci_get_sleep_divider_id_from_clock(clock,
450 CISLAND_MINIMUM_ENGINE_CLOCK);
451
452 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
453 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
454
455 if (0 == result) {
456 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
457 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
458 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
459 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
460 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
461 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
462 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
463 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
464 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
465 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
466 }
467
468 return result;
469 }
470
ci_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)471 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
472 {
473 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
474 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
475 struct smu7_dpm_table *dpm_table = &data->dpm_table;
476 int result = 0;
477 uint32_t array = smu_data->dpm_table_start +
478 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
479 uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
480 SMU7_MAX_LEVELS_GRAPHICS;
481 struct SMU7_Discrete_GraphicsLevel *levels =
482 smu_data->smc_state_table.GraphicsLevel;
483 uint32_t i;
484
485 for (i = 0; i < dpm_table->sclk_table.count; i++) {
486 result = ci_populate_single_graphic_level(hwmgr,
487 dpm_table->sclk_table.dpm_levels[i].value,
488 &levels[i]);
489 if (result)
490 return result;
491 if (i > 1)
492 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
493 if (i == (dpm_table->sclk_table.count - 1))
494 smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
495 PPSMC_DISPLAY_WATERMARK_HIGH;
496 }
497
498 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
499
500 smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
501 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
502 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
503
504 result = ci_copy_bytes_to_smc(hwmgr, array,
505 (u8 *)levels, array_size,
506 SMC_RAM_END);
507
508 return result;
509
510 }
511
ci_populate_svi_load_line(struct pp_hwmgr * hwmgr)512 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
513 {
514 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
515 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
516
517 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
518 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
519 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
520 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
521
522 return 0;
523 }
524
ci_populate_tdc_limit(struct pp_hwmgr * hwmgr)525 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
526 {
527 uint16_t tdc_limit;
528 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
529 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
530
531 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
532 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
533 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
534 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
535 defaults->tdc_vddc_throttle_release_limit_perc;
536 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
537
538 return 0;
539 }
540
ci_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)541 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
542 {
543 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
544 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
545 uint32_t temp;
546
547 if (ci_read_smc_sram_dword(hwmgr,
548 fuse_table_offset +
549 offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
550 (uint32_t *)&temp, SMC_RAM_END))
551 PP_ASSERT_WITH_CODE(false,
552 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
553 return -EINVAL);
554 else
555 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
556
557 return 0;
558 }
559
ci_populate_fuzzy_fan(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)560 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
561 {
562 uint16_t tmp;
563 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
564
565 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
566 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
567 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
568 else
569 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
570
571 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
572
573 return 0;
574 }
575
ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)576 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
577 {
578 int i;
579 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
580 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
581 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
582 uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
583
584 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
585 "The CAC Leakage table does not exist!", return -EINVAL);
586 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
587 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
588 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
589 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
590
591 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
592 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
593 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
594 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
595 hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
596 } else {
597 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
598 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
599 }
600 }
601
602 return 0;
603 }
604
ci_populate_vddc_vid(struct pp_hwmgr * hwmgr)605 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
606 {
607 int i;
608 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
609 uint8_t *vid = smu_data->power_tune_table.VddCVid;
610 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
611
612 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
613 "There should never be more than 8 entries for VddcVid!!!",
614 return -EINVAL);
615
616 for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
617 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
618
619 return 0;
620 }
621
ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr * hwmgr)622 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
623 {
624 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
625 u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
626 u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
627 int i, min, max;
628
629 min = max = hi_vid[0];
630 for (i = 0; i < 8; i++) {
631 if (0 != hi_vid[i]) {
632 if (min > hi_vid[i])
633 min = hi_vid[i];
634 if (max < hi_vid[i])
635 max = hi_vid[i];
636 }
637
638 if (0 != lo_vid[i]) {
639 if (min > lo_vid[i])
640 min = lo_vid[i];
641 if (max < lo_vid[i])
642 max = lo_vid[i];
643 }
644 }
645
646 if ((min == 0) || (max == 0))
647 return -EINVAL;
648 smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
649 smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
650
651 return 0;
652 }
653
ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)654 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
655 {
656 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
657 uint16_t HiSidd;
658 uint16_t LoSidd;
659 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
660
661 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
662 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
663
664 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
665 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
666 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
667 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
668
669 return 0;
670 }
671
ci_populate_pm_fuses(struct pp_hwmgr * hwmgr)672 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
673 {
674 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
675 uint32_t pm_fuse_table_offset;
676 int ret = 0;
677
678 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
679 PHM_PlatformCaps_PowerContainment)) {
680 if (ci_read_smc_sram_dword(hwmgr,
681 SMU7_FIRMWARE_HEADER_LOCATION +
682 offsetof(SMU7_Firmware_Header, PmFuseTable),
683 &pm_fuse_table_offset, SMC_RAM_END)) {
684 pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
685 return -EINVAL;
686 }
687
688 /* DW0 - DW3 */
689 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
690 /* DW4 - DW5 */
691 ret |= ci_populate_vddc_vid(hwmgr);
692 /* DW6 */
693 ret |= ci_populate_svi_load_line(hwmgr);
694 /* DW7 */
695 ret |= ci_populate_tdc_limit(hwmgr);
696 /* DW8 */
697 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
698
699 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
700
701 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
702
703 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
704 if (ret)
705 return ret;
706
707 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
708 (uint8_t *)&smu_data->power_tune_table,
709 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
710 }
711 return ret;
712 }
713
ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)714 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
715 {
716 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
717 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
718 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
719 SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
720 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
721 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
722 const uint16_t *def1, *def2;
723 int i, j, k;
724
725 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
726 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
727
728 dpm_table->DTETjOffset = 0;
729 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
730 dpm_table->GpuTjHyst = 8;
731
732 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
733
734 if (ppm) {
735 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
736 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
737 } else {
738 dpm_table->PPM_PkgPwrLimit = 0;
739 dpm_table->PPM_TemperatureLimit = 0;
740 }
741
742 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
743 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
744
745 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
746 def1 = defaults->bapmti_r;
747 def2 = defaults->bapmti_rc;
748
749 for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
750 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
751 for (k = 0; k < SMU7_DTE_SINKS; k++) {
752 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
753 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
754 def1++;
755 def2++;
756 }
757 }
758 }
759
760 return 0;
761 }
762
ci_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)763 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
764 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
765 uint16_t *lo)
766 {
767 uint16_t v_index;
768 bool vol_found = false;
769 *hi = tab->value * VOLTAGE_SCALE;
770 *lo = tab->value * VOLTAGE_SCALE;
771
772 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
773 "The SCLK/VDDC Dependency Table does not exist.\n",
774 return -EINVAL);
775
776 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
777 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
778 return 0;
779 }
780
781 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
782 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
783 vol_found = true;
784 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
785 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
786 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
787 } else {
788 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
789 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
790 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
791 }
792 break;
793 }
794 }
795
796 if (!vol_found) {
797 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
798 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
799 vol_found = true;
800 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
801 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
802 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
803 } else {
804 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
805 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
806 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
807 }
808 break;
809 }
810 }
811
812 if (!vol_found)
813 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
814 }
815
816 return 0;
817 }
818
ci_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU7_Discrete_VoltageLevel * smc_voltage_tab)819 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
820 pp_atomctrl_voltage_table_entry *tab,
821 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
822 {
823 int result;
824
825 result = ci_get_std_voltage_value_sidd(hwmgr, tab,
826 &smc_voltage_tab->StdVoltageHiSidd,
827 &smc_voltage_tab->StdVoltageLoSidd);
828 if (result) {
829 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
830 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
831 }
832
833 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
834 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
835 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
836
837 return 0;
838 }
839
ci_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)840 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
841 SMU7_Discrete_DpmTable *table)
842 {
843 unsigned int count;
844 int result;
845 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
846
847 table->VddcLevelCount = data->vddc_voltage_table.count;
848 for (count = 0; count < table->VddcLevelCount; count++) {
849 result = ci_populate_smc_voltage_table(hwmgr,
850 &(data->vddc_voltage_table.entries[count]),
851 &(table->VddcLevel[count]));
852 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
853
854 /* GPIO voltage control */
855 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
856 table->VddcLevel[count].Smio = (uint8_t) count;
857 table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
858 table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
859 } else {
860 table->VddcLevel[count].Smio = 0;
861 }
862 }
863
864 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
865
866 return 0;
867 }
868
ci_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)869 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
870 SMU7_Discrete_DpmTable *table)
871 {
872 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
873 uint32_t count;
874 int result;
875
876 table->VddciLevelCount = data->vddci_voltage_table.count;
877
878 for (count = 0; count < table->VddciLevelCount; count++) {
879 result = ci_populate_smc_voltage_table(hwmgr,
880 &(data->vddci_voltage_table.entries[count]),
881 &(table->VddciLevel[count]));
882 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
883 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
884 table->VddciLevel[count].Smio = (uint8_t) count;
885 table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
886 table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
887 } else {
888 table->VddciLevel[count].Smio = 0;
889 }
890 }
891
892 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
893
894 return 0;
895 }
896
ci_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)897 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
898 SMU7_Discrete_DpmTable *table)
899 {
900 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
901 uint32_t count;
902 int result;
903
904 table->MvddLevelCount = data->mvdd_voltage_table.count;
905
906 for (count = 0; count < table->MvddLevelCount; count++) {
907 result = ci_populate_smc_voltage_table(hwmgr,
908 &(data->mvdd_voltage_table.entries[count]),
909 &table->MvddLevel[count]);
910 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
911 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
912 table->MvddLevel[count].Smio = (uint8_t) count;
913 table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
914 table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
915 } else {
916 table->MvddLevel[count].Smio = 0;
917 }
918 }
919
920 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
921
922 return 0;
923 }
924
925
ci_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)926 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
927 SMU7_Discrete_DpmTable *table)
928 {
929 int result;
930
931 result = ci_populate_smc_vddc_table(hwmgr, table);
932 PP_ASSERT_WITH_CODE(0 == result,
933 "can not populate VDDC voltage table to SMC", return -EINVAL);
934
935 result = ci_populate_smc_vdd_ci_table(hwmgr, table);
936 PP_ASSERT_WITH_CODE(0 == result,
937 "can not populate VDDCI voltage table to SMC", return -EINVAL);
938
939 result = ci_populate_smc_mvdd_table(hwmgr, table);
940 PP_ASSERT_WITH_CODE(0 == result,
941 "can not populate MVDD voltage table to SMC", return -EINVAL);
942
943 return 0;
944 }
945
ci_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU7_Discrete_Ulv * state)946 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
947 struct SMU7_Discrete_Ulv *state)
948 {
949 uint32_t voltage_response_time, ulv_voltage;
950 int result;
951 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
952
953 state->CcPwrDynRm = 0;
954 state->CcPwrDynRm1 = 0;
955
956 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
957 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
958
959 if (ulv_voltage == 0) {
960 data->ulv_supported = false;
961 return 0;
962 }
963
964 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
965 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
966 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
967 state->VddcOffset = 0;
968 else
969 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
970 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
971 } else {
972 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
973 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
974 state->VddcOffsetVid = 0;
975 else /* used in SVI2 Mode */
976 state->VddcOffsetVid = (uint8_t)(
977 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
978 * VOLTAGE_VID_OFFSET_SCALE2
979 / VOLTAGE_VID_OFFSET_SCALE1);
980 }
981 state->VddcPhase = 1;
982
983 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
984 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
985 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
986
987 return 0;
988 }
989
ci_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU7_Discrete_Ulv * ulv_level)990 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
991 SMU7_Discrete_Ulv *ulv_level)
992 {
993 return ci_populate_ulv_level(hwmgr, ulv_level);
994 }
995
ci_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)996 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
997 {
998 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
999 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1000 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1001 uint32_t i;
1002
1003 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1004 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1005 table->LinkLevel[i].PcieGenSpeed =
1006 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1007 table->LinkLevel[i].PcieLaneCount =
1008 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1009 table->LinkLevel[i].EnabledForActivity = 1;
1010 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1011 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1012 }
1013
1014 smu_data->smc_state_table.LinkLevelCount =
1015 (uint8_t)dpm_table->pcie_speed_table.count;
1016 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1017 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1018
1019 return 0;
1020 }
1021
ci_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1022 static int ci_calculate_mclk_params(
1023 struct pp_hwmgr *hwmgr,
1024 uint32_t memory_clock,
1025 SMU7_Discrete_MemoryLevel *mclk,
1026 bool strobe_mode,
1027 bool dllStateOn
1028 )
1029 {
1030 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1031 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1032 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1033 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1034 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1035 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1036 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1037 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1038 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1039 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1040
1041 pp_atomctrl_memory_clock_param mpll_param;
1042 int result;
1043
1044 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1045 memory_clock, &mpll_param, strobe_mode);
1046 PP_ASSERT_WITH_CODE(0 == result,
1047 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1048
1049 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1050
1051 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1052 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1053 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1054 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1055 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1056 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1057
1058 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1059 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1060
1061 if (data->is_memory_gddr5) {
1062 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1063 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1064 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1065 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1066 }
1067
1068 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1069 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1070 pp_atomctrl_internal_ss_info ss_info;
1071 uint32_t freq_nom;
1072 uint32_t tmp;
1073 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1074
1075 /* for GDDR5 for all modes and DDR3 */
1076 if (1 == mpll_param.qdr)
1077 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1078 else
1079 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1080
1081 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1082 tmp = (freq_nom / reference_clock);
1083 tmp = tmp * tmp;
1084
1085 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1086 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1087 uint32_t clkv =
1088 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1089 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1090
1091 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1092 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1093 }
1094 }
1095
1096 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1097 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1098 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1100 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1102
1103
1104 mclk->MclkFrequency = memory_clock;
1105 mclk->MpllFuncCntl = mpll_func_cntl;
1106 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1107 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1108 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1109 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1110 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1111 mclk->DllCntl = dll_cntl;
1112 mclk->MpllSs1 = mpll_ss1;
1113 mclk->MpllSs2 = mpll_ss2;
1114
1115 return 0;
1116 }
1117
ci_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1118 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1119 bool strobe_mode)
1120 {
1121 uint8_t mc_para_index;
1122
1123 if (strobe_mode) {
1124 if (memory_clock < 12500)
1125 mc_para_index = 0x00;
1126 else if (memory_clock > 47500)
1127 mc_para_index = 0x0f;
1128 else
1129 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1130 } else {
1131 if (memory_clock < 65000)
1132 mc_para_index = 0x00;
1133 else if (memory_clock > 135000)
1134 mc_para_index = 0x0f;
1135 else
1136 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1137 }
1138
1139 return mc_para_index;
1140 }
1141
ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1142 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1143 {
1144 uint8_t mc_para_index;
1145
1146 if (memory_clock < 10000)
1147 mc_para_index = 0;
1148 else if (memory_clock >= 80000)
1149 mc_para_index = 0x0f;
1150 else
1151 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1152
1153 return mc_para_index;
1154 }
1155
ci_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1156 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1157 uint32_t memory_clock, uint32_t *p_shed)
1158 {
1159 unsigned int i;
1160
1161 *p_shed = 1;
1162
1163 for (i = 0; i < pl->count; i++) {
1164 if (memory_clock < pl->entries[i].Mclk) {
1165 *p_shed = i;
1166 break;
1167 }
1168 }
1169
1170 return 0;
1171 }
1172
ci_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * memory_level)1173 static int ci_populate_single_memory_level(
1174 struct pp_hwmgr *hwmgr,
1175 uint32_t memory_clock,
1176 SMU7_Discrete_MemoryLevel *memory_level
1177 )
1178 {
1179 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1180 int result = 0;
1181 bool dll_state_on;
1182 uint32_t mclk_edc_wr_enable_threshold = 40000;
1183 uint32_t mclk_edc_enable_threshold = 40000;
1184 uint32_t mclk_strobe_mode_threshold = 40000;
1185
1186 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1187 result = ci_get_dependency_volt_by_clk(hwmgr,
1188 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1189 PP_ASSERT_WITH_CODE((0 == result),
1190 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1191 }
1192
1193 if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1194 result = ci_get_dependency_volt_by_clk(hwmgr,
1195 hwmgr->dyn_state.vddci_dependency_on_mclk,
1196 memory_clock,
1197 &memory_level->MinVddci);
1198 PP_ASSERT_WITH_CODE((0 == result),
1199 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1200 }
1201
1202 if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1203 result = ci_get_dependency_volt_by_clk(hwmgr,
1204 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1205 memory_clock,
1206 &memory_level->MinMvdd);
1207 PP_ASSERT_WITH_CODE((0 == result),
1208 "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1209 }
1210
1211 memory_level->MinVddcPhases = 1;
1212
1213 if (data->vddc_phase_shed_control) {
1214 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1215 memory_clock, &memory_level->MinVddcPhases);
1216 }
1217
1218 memory_level->EnabledForThrottle = 1;
1219 memory_level->EnabledForActivity = 1;
1220 memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1221 memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1222 memory_level->VoltageDownH = 0;
1223
1224 /* Indicates maximum activity level for this performance level.*/
1225 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1226 memory_level->StutterEnable = 0;
1227 memory_level->StrobeEnable = 0;
1228 memory_level->EdcReadEnable = 0;
1229 memory_level->EdcWriteEnable = 0;
1230 memory_level->RttEnable = 0;
1231
1232 /* default set to low watermark. Highest level will be set to high later.*/
1233 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1234
1235 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1236 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1237
1238 /* stutter mode not support on ci */
1239
1240 /* decide strobe mode*/
1241 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1242 (memory_clock <= mclk_strobe_mode_threshold);
1243
1244 /* decide EDC mode and memory clock ratio*/
1245 if (data->is_memory_gddr5) {
1246 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1247 memory_level->StrobeEnable);
1248
1249 if ((mclk_edc_enable_threshold != 0) &&
1250 (memory_clock > mclk_edc_enable_threshold)) {
1251 memory_level->EdcReadEnable = 1;
1252 }
1253
1254 if ((mclk_edc_wr_enable_threshold != 0) &&
1255 (memory_clock > mclk_edc_wr_enable_threshold)) {
1256 memory_level->EdcWriteEnable = 1;
1257 }
1258
1259 if (memory_level->StrobeEnable) {
1260 if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1261 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1262 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1263 else
1264 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1265 } else
1266 dll_state_on = data->dll_default_on;
1267 } else {
1268 memory_level->StrobeRatio =
1269 ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1270 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1271 }
1272
1273 result = ci_calculate_mclk_params(hwmgr,
1274 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1275
1276 if (0 == result) {
1277 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1278 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1279 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1280 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1281 /* MCLK frequency in units of 10KHz*/
1282 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1283 /* Indicates maximum activity level for this performance level.*/
1284 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1285 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1286 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1287 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1288 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1289 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1290 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1291 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1292 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1293 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1294 }
1295
1296 return result;
1297 }
1298
ci_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1299 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1300 {
1301 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1302 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1303 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1304 int result;
1305 struct amdgpu_device *adev = hwmgr->adev;
1306 uint32_t dev_id;
1307
1308 uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1309 uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1310 SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1311 uint32_t i;
1312
1313 memset(levels, 0x00, level_array_size);
1314
1315 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1316 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1317 "can not populate memory level as memory clock is zero", return -EINVAL);
1318 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1319 &(smu_data->smc_state_table.MemoryLevel[i]));
1320 if (0 != result)
1321 return result;
1322 }
1323
1324 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1325
1326 dev_id = adev->pdev->device;
1327
1328 if ((dpm_table->mclk_table.count >= 2)
1329 && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) {
1330 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1331 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1332 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1333 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1334 }
1335 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1336 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1337
1338 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1339 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1340 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1341
1342 result = ci_copy_bytes_to_smc(hwmgr,
1343 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1344 SMC_RAM_END);
1345
1346 return result;
1347 }
1348
ci_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU7_Discrete_VoltageLevel * voltage)1349 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1350 SMU7_Discrete_VoltageLevel *voltage)
1351 {
1352 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1353
1354 uint32_t i = 0;
1355
1356 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1357 /* find mvdd value which clock is more than request */
1358 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1359 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1360 /* Always round to higher voltage. */
1361 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1362 break;
1363 }
1364 }
1365
1366 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1367 "MVDD Voltage is outside the supported range.", return -EINVAL);
1368
1369 } else {
1370 return -EINVAL;
1371 }
1372
1373 return 0;
1374 }
1375
ci_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1376 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1377 SMU7_Discrete_DpmTable *table)
1378 {
1379 int result = 0;
1380 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1381 struct pp_atomctrl_clock_dividers_vi dividers;
1382
1383 SMU7_Discrete_VoltageLevel voltage_level;
1384 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1385 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1386 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1387 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1388
1389
1390 /* The ACPI state should not do DPM on DC (or ever).*/
1391 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1392
1393 if (data->acpi_vddc)
1394 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1395 else
1396 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1397
1398 table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1399 /* assign zero for now*/
1400 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1401
1402 /* get the engine clock dividers for this clock value*/
1403 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1404 table->ACPILevel.SclkFrequency, ÷rs);
1405
1406 PP_ASSERT_WITH_CODE(result == 0,
1407 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1408
1409 /* divider ID for required SCLK*/
1410 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1411 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1412 table->ACPILevel.DeepSleepDivId = 0;
1413
1414 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1415 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1416 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1417 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1418 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1419 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1420
1421 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1422 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1423 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1424 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1425 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1426 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1427 table->ACPILevel.CcPwrDynRm = 0;
1428 table->ACPILevel.CcPwrDynRm1 = 0;
1429
1430 /* For various features to be enabled/disabled while this level is active.*/
1431 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1432 /* SCLK frequency in units of 10KHz*/
1433 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1434 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1435 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1436 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1437 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1438 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1439 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1440 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1441 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1442
1443
1444 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1445 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1446 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1447
1448 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1449 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1450 else {
1451 if (data->acpi_vddci != 0)
1452 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1453 else
1454 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1455 }
1456
1457 if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1458 table->MemoryACPILevel.MinMvdd =
1459 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1460 else
1461 table->MemoryACPILevel.MinMvdd = 0;
1462
1463 /* Force reset on DLL*/
1464 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1465 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1466 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1467 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1468
1469 /* Disable DLL in ACPIState*/
1470 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1471 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1472 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1473 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1474
1475 /* Enable DLL bypass signal*/
1476 dll_cntl = PHM_SET_FIELD(dll_cntl,
1477 DLL_CNTL, MRDCK0_BYPASS, 0);
1478 dll_cntl = PHM_SET_FIELD(dll_cntl,
1479 DLL_CNTL, MRDCK1_BYPASS, 0);
1480
1481 table->MemoryACPILevel.DllCntl =
1482 PP_HOST_TO_SMC_UL(dll_cntl);
1483 table->MemoryACPILevel.MclkPwrmgtCntl =
1484 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1485 table->MemoryACPILevel.MpllAdFuncCntl =
1486 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1487 table->MemoryACPILevel.MpllDqFuncCntl =
1488 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1489 table->MemoryACPILevel.MpllFuncCntl =
1490 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1491 table->MemoryACPILevel.MpllFuncCntl_1 =
1492 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1493 table->MemoryACPILevel.MpllFuncCntl_2 =
1494 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1495 table->MemoryACPILevel.MpllSs1 =
1496 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1497 table->MemoryACPILevel.MpllSs2 =
1498 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1499
1500 table->MemoryACPILevel.EnabledForThrottle = 0;
1501 table->MemoryACPILevel.EnabledForActivity = 0;
1502 table->MemoryACPILevel.UpH = 0;
1503 table->MemoryACPILevel.DownH = 100;
1504 table->MemoryACPILevel.VoltageDownH = 0;
1505 /* Indicates maximum activity level for this performance level.*/
1506 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1507
1508 table->MemoryACPILevel.StutterEnable = 0;
1509 table->MemoryACPILevel.StrobeEnable = 0;
1510 table->MemoryACPILevel.EdcReadEnable = 0;
1511 table->MemoryACPILevel.EdcWriteEnable = 0;
1512 table->MemoryACPILevel.RttEnable = 0;
1513
1514 return result;
1515 }
1516
ci_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1517 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1518 SMU7_Discrete_DpmTable *table)
1519 {
1520 int result = 0;
1521 uint8_t count;
1522 struct pp_atomctrl_clock_dividers_vi dividers;
1523 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1524 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1525
1526 table->UvdLevelCount = (uint8_t)(uvd_table->count);
1527
1528 for (count = 0; count < table->UvdLevelCount; count++) {
1529 table->UvdLevel[count].VclkFrequency =
1530 uvd_table->entries[count].vclk;
1531 table->UvdLevel[count].DclkFrequency =
1532 uvd_table->entries[count].dclk;
1533 table->UvdLevel[count].MinVddc =
1534 uvd_table->entries[count].v * VOLTAGE_SCALE;
1535 table->UvdLevel[count].MinVddcPhases = 1;
1536
1537 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1538 table->UvdLevel[count].VclkFrequency, ÷rs);
1539 PP_ASSERT_WITH_CODE((0 == result),
1540 "can not find divide id for Vclk clock", return result);
1541
1542 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1543
1544 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1545 table->UvdLevel[count].DclkFrequency, ÷rs);
1546 PP_ASSERT_WITH_CODE((0 == result),
1547 "can not find divide id for Dclk clock", return result);
1548
1549 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1550 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1551 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1552 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1553 }
1554
1555 return result;
1556 }
1557
ci_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1558 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1559 SMU7_Discrete_DpmTable *table)
1560 {
1561 int result = -EINVAL;
1562 uint8_t count;
1563 struct pp_atomctrl_clock_dividers_vi dividers;
1564 struct phm_vce_clock_voltage_dependency_table *vce_table =
1565 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1566
1567 table->VceLevelCount = (uint8_t)(vce_table->count);
1568 table->VceBootLevel = 0;
1569
1570 for (count = 0; count < table->VceLevelCount; count++) {
1571 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1572 table->VceLevel[count].MinVoltage =
1573 vce_table->entries[count].v * VOLTAGE_SCALE;
1574 table->VceLevel[count].MinPhases = 1;
1575
1576 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1577 table->VceLevel[count].Frequency, ÷rs);
1578 PP_ASSERT_WITH_CODE((0 == result),
1579 "can not find divide id for VCE engine clock",
1580 return result);
1581
1582 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1583
1584 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1585 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1586 }
1587 return result;
1588 }
1589
ci_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1590 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1591 SMU7_Discrete_DpmTable *table)
1592 {
1593 int result = -EINVAL;
1594 uint8_t count;
1595 struct pp_atomctrl_clock_dividers_vi dividers;
1596 struct phm_acp_clock_voltage_dependency_table *acp_table =
1597 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1598
1599 table->AcpLevelCount = (uint8_t)(acp_table->count);
1600 table->AcpBootLevel = 0;
1601
1602 for (count = 0; count < table->AcpLevelCount; count++) {
1603 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1604 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1605 table->AcpLevel[count].MinPhases = 1;
1606
1607 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1608 table->AcpLevel[count].Frequency, ÷rs);
1609 PP_ASSERT_WITH_CODE((0 == result),
1610 "can not find divide id for engine clock", return result);
1611
1612 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1613
1614 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1615 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1616 }
1617 return result;
1618 }
1619
ci_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU7_Discrete_MCArbDramTimingTableEntry * arb_regs)1620 static int ci_populate_memory_timing_parameters(
1621 struct pp_hwmgr *hwmgr,
1622 uint32_t engine_clock,
1623 uint32_t memory_clock,
1624 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1625 )
1626 {
1627 uint32_t dramTiming;
1628 uint32_t dramTiming2;
1629 uint32_t burstTime;
1630 int result;
1631
1632 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1633 engine_clock, memory_clock);
1634
1635 PP_ASSERT_WITH_CODE(result == 0,
1636 "Error calling VBIOS to set DRAM_TIMING.", return result);
1637
1638 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1639 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1640 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1641
1642 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1643 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1644 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1645
1646 return 0;
1647 }
1648
ci_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1649 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1650 {
1651 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1653 int result = 0;
1654 SMU7_Discrete_MCArbDramTimingTable arb_regs;
1655 uint32_t i, j;
1656
1657 memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1658
1659 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1660 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1661 result = ci_populate_memory_timing_parameters
1662 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1663 data->dpm_table.mclk_table.dpm_levels[j].value,
1664 &arb_regs.entries[i][j]);
1665
1666 if (0 != result)
1667 break;
1668 }
1669 }
1670
1671 if (0 == result) {
1672 result = ci_copy_bytes_to_smc(
1673 hwmgr,
1674 smu_data->arb_table_start,
1675 (uint8_t *)&arb_regs,
1676 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1677 SMC_RAM_END
1678 );
1679 }
1680
1681 return result;
1682 }
1683
ci_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1684 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1685 SMU7_Discrete_DpmTable *table)
1686 {
1687 int result = 0;
1688 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1689 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1690
1691 table->GraphicsBootLevel = 0;
1692 table->MemoryBootLevel = 0;
1693
1694 /* find boot level from dpm table*/
1695 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1696 data->vbios_boot_state.sclk_bootup_value,
1697 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1698
1699 if (0 != result) {
1700 smu_data->smc_state_table.GraphicsBootLevel = 0;
1701 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1702 result = 0;
1703 }
1704
1705 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1706 data->vbios_boot_state.mclk_bootup_value,
1707 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1708
1709 if (0 != result) {
1710 smu_data->smc_state_table.MemoryBootLevel = 0;
1711 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1712 result = 0;
1713 }
1714
1715 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1716 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1717 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1718
1719 return result;
1720 }
1721
ci_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_reg_table)1722 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1723 SMU7_Discrete_MCRegisters *mc_reg_table)
1724 {
1725 const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1726
1727 uint32_t i, j;
1728
1729 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1730 if (smu_data->mc_reg_table.validflag & 1<<j) {
1731 PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1732 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1733 mc_reg_table->address[i].s0 =
1734 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1735 mc_reg_table->address[i].s1 =
1736 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1737 i++;
1738 }
1739 }
1740
1741 mc_reg_table->last = (uint8_t)i;
1742
1743 return 0;
1744 }
1745
ci_convert_mc_registers(const struct ci_mc_reg_entry * entry,SMU7_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1746 static void ci_convert_mc_registers(
1747 const struct ci_mc_reg_entry *entry,
1748 SMU7_Discrete_MCRegisterSet *data,
1749 uint32_t num_entries, uint32_t valid_flag)
1750 {
1751 uint32_t i, j;
1752
1753 for (i = 0, j = 0; j < num_entries; j++) {
1754 if (valid_flag & 1<<j) {
1755 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1756 i++;
1757 }
1758 }
1759 }
1760
ci_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU7_Discrete_MCRegisterSet * mc_reg_table_data)1761 static int ci_convert_mc_reg_table_entry_to_smc(
1762 struct pp_hwmgr *hwmgr,
1763 const uint32_t memory_clock,
1764 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1765 )
1766 {
1767 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1768 uint32_t i = 0;
1769
1770 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1771 if (memory_clock <=
1772 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1773 break;
1774 }
1775 }
1776
1777 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1778 --i;
1779
1780 ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1781 mc_reg_table_data, smu_data->mc_reg_table.last,
1782 smu_data->mc_reg_table.validflag);
1783
1784 return 0;
1785 }
1786
ci_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_regs)1787 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1788 SMU7_Discrete_MCRegisters *mc_regs)
1789 {
1790 int result = 0;
1791 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1792 int res;
1793 uint32_t i;
1794
1795 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1796 res = ci_convert_mc_reg_table_entry_to_smc(
1797 hwmgr,
1798 data->dpm_table.mclk_table.dpm_levels[i].value,
1799 &mc_regs->data[i]
1800 );
1801
1802 if (0 != res)
1803 result = res;
1804 }
1805
1806 return result;
1807 }
1808
ci_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1809 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1810 {
1811 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1812 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1813 uint32_t address;
1814 int32_t result;
1815
1816 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1817 return 0;
1818
1819
1820 memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1821
1822 result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1823
1824 if (result != 0)
1825 return result;
1826
1827 address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1828
1829 return ci_copy_bytes_to_smc(hwmgr, address,
1830 (uint8_t *)&smu_data->mc_regs.data[0],
1831 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1832 SMC_RAM_END);
1833 }
1834
ci_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1835 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1836 {
1837 int result;
1838 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1839
1840 memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1841 result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1842 PP_ASSERT_WITH_CODE(0 == result,
1843 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1844
1845 result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1846 PP_ASSERT_WITH_CODE(0 == result,
1847 "Failed to initialize MCRegTable for driver state!", return result;);
1848
1849 return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1850 (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1851 }
1852
ci_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1853 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1854 {
1855 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1856 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1857 uint8_t count, level;
1858
1859 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1860
1861 for (level = 0; level < count; level++) {
1862 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1863 >= data->vbios_boot_state.sclk_bootup_value) {
1864 smu_data->smc_state_table.GraphicsBootLevel = level;
1865 break;
1866 }
1867 }
1868
1869 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1870
1871 for (level = 0; level < count; level++) {
1872 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1873 >= data->vbios_boot_state.mclk_bootup_value) {
1874 smu_data->smc_state_table.MemoryBootLevel = level;
1875 break;
1876 }
1877 }
1878
1879 return 0;
1880 }
1881
ci_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1882 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1883 SMU7_Discrete_DpmTable *table)
1884 {
1885 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1886
1887 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1888 table->SVI2Enable = 1;
1889 else
1890 table->SVI2Enable = 0;
1891 return 0;
1892 }
1893
ci_start_smc(struct pp_hwmgr * hwmgr)1894 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1895 {
1896 /* set smc instruct start point at 0x0 */
1897 ci_program_jump_on_start(hwmgr);
1898
1899 /* enable smc clock */
1900 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1901
1902 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1903
1904 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1905 INTERRUPTS_ENABLED, 1);
1906
1907 return 0;
1908 }
1909
ci_populate_vr_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1910 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1911 {
1912 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1913 uint16_t config;
1914
1915 config = VR_SVI2_PLANE_1;
1916 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1917
1918 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1919 config = VR_SVI2_PLANE_2;
1920 table->VRConfig |= config;
1921 } else {
1922 pr_info("VDDCshould be on SVI2 controller!");
1923 }
1924
1925 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1926 config = VR_SVI2_PLANE_2;
1927 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1928 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1929 config = VR_SMIO_PATTERN_1;
1930 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1931 }
1932
1933 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1934 config = VR_SMIO_PATTERN_2;
1935 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1936 }
1937
1938 return 0;
1939 }
1940
ci_init_smc_table(struct pp_hwmgr * hwmgr)1941 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1942 {
1943 int result;
1944 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1945 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1946 SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1947 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1948 u32 i;
1949
1950 ci_initialize_power_tune_defaults(hwmgr);
1951 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1952
1953 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1954 ci_populate_smc_voltage_tables(hwmgr, table);
1955
1956 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1957 PHM_PlatformCaps_AutomaticDCTransition))
1958 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1959
1960
1961 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1962 PHM_PlatformCaps_StepVddc))
1963 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1964
1965 if (data->is_memory_gddr5)
1966 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1967
1968 if (data->ulv_supported) {
1969 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1970 PP_ASSERT_WITH_CODE(0 == result,
1971 "Failed to initialize ULV state!", return result);
1972
1973 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1974 ixCG_ULV_PARAMETER, 0x40035);
1975 }
1976
1977 result = ci_populate_all_graphic_levels(hwmgr);
1978 PP_ASSERT_WITH_CODE(0 == result,
1979 "Failed to initialize Graphics Level!", return result);
1980
1981 result = ci_populate_all_memory_levels(hwmgr);
1982 PP_ASSERT_WITH_CODE(0 == result,
1983 "Failed to initialize Memory Level!", return result);
1984
1985 result = ci_populate_smc_link_level(hwmgr, table);
1986 PP_ASSERT_WITH_CODE(0 == result,
1987 "Failed to initialize Link Level!", return result);
1988
1989 result = ci_populate_smc_acpi_level(hwmgr, table);
1990 PP_ASSERT_WITH_CODE(0 == result,
1991 "Failed to initialize ACPI Level!", return result);
1992
1993 result = ci_populate_smc_vce_level(hwmgr, table);
1994 PP_ASSERT_WITH_CODE(0 == result,
1995 "Failed to initialize VCE Level!", return result);
1996
1997 result = ci_populate_smc_acp_level(hwmgr, table);
1998 PP_ASSERT_WITH_CODE(0 == result,
1999 "Failed to initialize ACP Level!", return result);
2000
2001 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2002 /* need to populate the ARB settings for the initial state. */
2003 result = ci_program_memory_timing_parameters(hwmgr);
2004 PP_ASSERT_WITH_CODE(0 == result,
2005 "Failed to Write ARB settings for the initial state.", return result);
2006
2007 result = ci_populate_smc_uvd_level(hwmgr, table);
2008 PP_ASSERT_WITH_CODE(0 == result,
2009 "Failed to initialize UVD Level!", return result);
2010
2011 table->UvdBootLevel = 0;
2012 table->VceBootLevel = 0;
2013 table->AcpBootLevel = 0;
2014 table->SamuBootLevel = 0;
2015
2016 table->GraphicsBootLevel = 0;
2017 table->MemoryBootLevel = 0;
2018
2019 result = ci_populate_smc_boot_level(hwmgr, table);
2020 PP_ASSERT_WITH_CODE(0 == result,
2021 "Failed to initialize Boot Level!", return result);
2022
2023 result = ci_populate_smc_initial_state(hwmgr);
2024 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2025
2026 result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2027 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2028
2029 table->UVDInterval = 1;
2030 table->VCEInterval = 1;
2031 table->ACPInterval = 1;
2032 table->SAMUInterval = 1;
2033 table->GraphicsVoltageChangeEnable = 1;
2034 table->GraphicsThermThrottleEnable = 1;
2035 table->GraphicsInterval = 1;
2036 table->VoltageInterval = 1;
2037 table->ThermalInterval = 1;
2038
2039 table->TemperatureLimitHigh =
2040 (data->thermal_temp_setting.temperature_high *
2041 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2042 table->TemperatureLimitLow =
2043 (data->thermal_temp_setting.temperature_low *
2044 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2045
2046 table->MemoryVoltageChangeEnable = 1;
2047 table->MemoryInterval = 1;
2048 table->VoltageResponseTime = 0;
2049 table->VddcVddciDelta = 4000;
2050 table->PhaseResponseTime = 0;
2051 table->MemoryThermThrottleEnable = 1;
2052
2053 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2054 "There must be 1 or more PCIE levels defined in PPTable.",
2055 return -EINVAL);
2056
2057 table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2058 table->PCIeGenInterval = 1;
2059
2060 result = ci_populate_vr_config(hwmgr, table);
2061 PP_ASSERT_WITH_CODE(0 == result,
2062 "Failed to populate VRConfig setting!", return result);
2063 data->vr_config = table->VRConfig;
2064
2065 ci_populate_smc_svi2_config(hwmgr, table);
2066
2067 for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2068 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2069
2070 table->ThermGpio = 17;
2071 table->SclkStepSize = 0x4000;
2072 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2073 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2074 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2075 PHM_PlatformCaps_RegulatorHot);
2076 } else {
2077 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2078 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2079 PHM_PlatformCaps_RegulatorHot);
2080 }
2081
2082 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2083
2084 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2085 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2086 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2087 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2088 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2089 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2090 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2091 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2092 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2093 table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2094 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2095 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2096
2097 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2098 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2099 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2100
2101 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2102 result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2103 offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2104 (uint8_t *)&(table->SystemFlags),
2105 sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2106 SMC_RAM_END);
2107
2108 PP_ASSERT_WITH_CODE(0 == result,
2109 "Failed to upload dpm data to SMC memory!", return result;);
2110
2111 result = ci_populate_initial_mc_reg_table(hwmgr);
2112 PP_ASSERT_WITH_CODE((0 == result),
2113 "Failed to populate initialize MC Reg table!", return result);
2114
2115 result = ci_populate_pm_fuses(hwmgr);
2116 PP_ASSERT_WITH_CODE(0 == result,
2117 "Failed to populate PM fuses to SMC memory!", return result);
2118
2119 ci_start_smc(hwmgr);
2120
2121 return 0;
2122 }
2123
ci_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2124 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2125 {
2126 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2127 SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2128 uint32_t duty100;
2129 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2130 uint16_t fdo_min, slope1, slope2;
2131 uint32_t reference_clock;
2132 int res;
2133 uint64_t tmp64;
2134
2135 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2136 return 0;
2137
2138 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2139 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2140 PHM_PlatformCaps_MicrocodeFanControl);
2141 return 0;
2142 }
2143
2144 if (0 == ci_data->fan_table_start) {
2145 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2146 return 0;
2147 }
2148
2149 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2150
2151 if (0 == duty100) {
2152 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2153 return 0;
2154 }
2155
2156 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2157 do_div(tmp64, 10000);
2158 fdo_min = (uint16_t)tmp64;
2159
2160 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2161 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2162
2163 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2164 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2165
2166 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2167 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2168
2169 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2170 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2171 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2172
2173 fan_table.Slope1 = cpu_to_be16(slope1);
2174 fan_table.Slope2 = cpu_to_be16(slope2);
2175
2176 fan_table.FdoMin = cpu_to_be16(fdo_min);
2177
2178 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2179
2180 fan_table.HystUp = cpu_to_be16(1);
2181
2182 fan_table.HystSlope = cpu_to_be16(1);
2183
2184 fan_table.TempRespLim = cpu_to_be16(5);
2185
2186 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2187
2188 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2189
2190 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2191
2192 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2193
2194 res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2195
2196 return res;
2197 }
2198
ci_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2199 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2200 {
2201 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2202
2203 if (data->need_update_smu7_dpm_table &
2204 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2205 return ci_program_memory_timing_parameters(hwmgr);
2206
2207 return 0;
2208 }
2209
ci_update_sclk_threshold(struct pp_hwmgr * hwmgr)2210 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2211 {
2212 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2213 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2214
2215 int result = 0;
2216 uint32_t low_sclk_interrupt_threshold = 0;
2217
2218 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2219 PHM_PlatformCaps_SclkThrottleLowNotification)
2220 && (data->low_sclk_interrupt_threshold != 0)) {
2221 low_sclk_interrupt_threshold =
2222 data->low_sclk_interrupt_threshold;
2223
2224 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2225
2226 result = ci_copy_bytes_to_smc(
2227 hwmgr,
2228 smu_data->dpm_table_start +
2229 offsetof(SMU7_Discrete_DpmTable,
2230 LowSclkInterruptT),
2231 (uint8_t *)&low_sclk_interrupt_threshold,
2232 sizeof(uint32_t),
2233 SMC_RAM_END);
2234 }
2235
2236 result = ci_update_and_upload_mc_reg_table(hwmgr);
2237
2238 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2239
2240 result = ci_program_mem_timing_parameters(hwmgr);
2241 PP_ASSERT_WITH_CODE((result == 0),
2242 "Failed to program memory timing parameters!",
2243 );
2244
2245 return result;
2246 }
2247
ci_get_offsetof(uint32_t type,uint32_t member)2248 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2249 {
2250 switch (type) {
2251 case SMU_SoftRegisters:
2252 switch (member) {
2253 case HandshakeDisables:
2254 return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2255 case VoltageChangeTimeout:
2256 return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2257 case AverageGraphicsActivity:
2258 return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2259 case AverageMemoryActivity:
2260 return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2261 case PreVBlankGap:
2262 return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2263 case VBlankTimeout:
2264 return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2265 case DRAM_LOG_ADDR_H:
2266 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2267 case DRAM_LOG_ADDR_L:
2268 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2269 case DRAM_LOG_PHY_ADDR_H:
2270 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2271 case DRAM_LOG_PHY_ADDR_L:
2272 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2273 case DRAM_LOG_BUFF_SIZE:
2274 return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2275 }
2276 break;
2277 case SMU_Discrete_DpmTable:
2278 switch (member) {
2279 case LowSclkInterruptThreshold:
2280 return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2281 }
2282 break;
2283 }
2284 pr_debug("can't get the offset of type %x member %x\n", type, member);
2285 return 0;
2286 }
2287
ci_get_mac_definition(uint32_t value)2288 static uint32_t ci_get_mac_definition(uint32_t value)
2289 {
2290 switch (value) {
2291 case SMU_MAX_LEVELS_GRAPHICS:
2292 return SMU7_MAX_LEVELS_GRAPHICS;
2293 case SMU_MAX_LEVELS_MEMORY:
2294 return SMU7_MAX_LEVELS_MEMORY;
2295 case SMU_MAX_LEVELS_LINK:
2296 return SMU7_MAX_LEVELS_LINK;
2297 case SMU_MAX_ENTRIES_SMIO:
2298 return SMU7_MAX_ENTRIES_SMIO;
2299 case SMU_MAX_LEVELS_VDDC:
2300 return SMU7_MAX_LEVELS_VDDC;
2301 case SMU_MAX_LEVELS_VDDCI:
2302 return SMU7_MAX_LEVELS_VDDCI;
2303 case SMU_MAX_LEVELS_MVDD:
2304 return SMU7_MAX_LEVELS_MVDD;
2305 }
2306
2307 pr_debug("can't get the mac of %x\n", value);
2308 return 0;
2309 }
2310
ci_load_smc_ucode(struct pp_hwmgr * hwmgr)2311 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2312 {
2313 uint32_t byte_count, start_addr;
2314 uint8_t *src;
2315 uint32_t data;
2316
2317 struct cgs_firmware_info info = {0};
2318
2319 cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2320
2321 hwmgr->is_kicker = info.is_kicker;
2322 hwmgr->smu_version = info.version;
2323 byte_count = info.image_size;
2324 src = (uint8_t *)info.kptr;
2325 start_addr = info.ucode_start_address;
2326
2327 if (byte_count > SMC_RAM_END) {
2328 pr_err("SMC address is beyond the SMC RAM area.\n");
2329 return -EINVAL;
2330 }
2331
2332 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2333 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2334
2335 for (; byte_count >= 4; byte_count -= 4) {
2336 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2337 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2338 src += 4;
2339 }
2340 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2341
2342 if (0 != byte_count) {
2343 pr_err("SMC size must be divisible by 4\n");
2344 return -EINVAL;
2345 }
2346
2347 return 0;
2348 }
2349
ci_upload_firmware(struct pp_hwmgr * hwmgr)2350 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2351 {
2352 if (ci_is_smc_ram_running(hwmgr)) {
2353 pr_info("smc is running, no need to load smc firmware\n");
2354 return 0;
2355 }
2356 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2357 boot_seq_done, 1);
2358 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2359 pre_fetcher_en, 1);
2360
2361 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2362 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2363 return ci_load_smc_ucode(hwmgr);
2364 }
2365
ci_process_firmware_header(struct pp_hwmgr * hwmgr)2366 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2367 {
2368 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2369 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2370
2371 uint32_t tmp = 0;
2372 int result;
2373 bool error = false;
2374
2375 if (ci_upload_firmware(hwmgr))
2376 return -EINVAL;
2377
2378 result = ci_read_smc_sram_dword(hwmgr,
2379 SMU7_FIRMWARE_HEADER_LOCATION +
2380 offsetof(SMU7_Firmware_Header, DpmTable),
2381 &tmp, SMC_RAM_END);
2382
2383 if (0 == result)
2384 ci_data->dpm_table_start = tmp;
2385
2386 error |= (0 != result);
2387
2388 result = ci_read_smc_sram_dword(hwmgr,
2389 SMU7_FIRMWARE_HEADER_LOCATION +
2390 offsetof(SMU7_Firmware_Header, SoftRegisters),
2391 &tmp, SMC_RAM_END);
2392
2393 if (0 == result) {
2394 data->soft_regs_start = tmp;
2395 ci_data->soft_regs_start = tmp;
2396 }
2397
2398 error |= (0 != result);
2399
2400 result = ci_read_smc_sram_dword(hwmgr,
2401 SMU7_FIRMWARE_HEADER_LOCATION +
2402 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2403 &tmp, SMC_RAM_END);
2404
2405 if (0 == result)
2406 ci_data->mc_reg_table_start = tmp;
2407
2408 result = ci_read_smc_sram_dword(hwmgr,
2409 SMU7_FIRMWARE_HEADER_LOCATION +
2410 offsetof(SMU7_Firmware_Header, FanTable),
2411 &tmp, SMC_RAM_END);
2412
2413 if (0 == result)
2414 ci_data->fan_table_start = tmp;
2415
2416 error |= (0 != result);
2417
2418 result = ci_read_smc_sram_dword(hwmgr,
2419 SMU7_FIRMWARE_HEADER_LOCATION +
2420 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2421 &tmp, SMC_RAM_END);
2422
2423 if (0 == result)
2424 ci_data->arb_table_start = tmp;
2425
2426 error |= (0 != result);
2427
2428 result = ci_read_smc_sram_dword(hwmgr,
2429 SMU7_FIRMWARE_HEADER_LOCATION +
2430 offsetof(SMU7_Firmware_Header, Version),
2431 &tmp, SMC_RAM_END);
2432
2433 if (0 == result)
2434 hwmgr->microcode_version_info.SMC = tmp;
2435
2436 error |= (0 != result);
2437
2438 return error ? 1 : 0;
2439 }
2440
ci_get_memory_modile_index(struct pp_hwmgr * hwmgr)2441 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2442 {
2443 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2444 }
2445
ci_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2446 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2447 {
2448 bool result = true;
2449
2450 switch (in_reg) {
2451 case mmMC_SEQ_RAS_TIMING:
2452 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2453 break;
2454
2455 case mmMC_SEQ_DLL_STBY:
2456 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2457 break;
2458
2459 case mmMC_SEQ_G5PDX_CMD0:
2460 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2461 break;
2462
2463 case mmMC_SEQ_G5PDX_CMD1:
2464 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2465 break;
2466
2467 case mmMC_SEQ_G5PDX_CTRL:
2468 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2469 break;
2470
2471 case mmMC_SEQ_CAS_TIMING:
2472 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2473 break;
2474
2475 case mmMC_SEQ_MISC_TIMING:
2476 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2477 break;
2478
2479 case mmMC_SEQ_MISC_TIMING2:
2480 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2481 break;
2482
2483 case mmMC_SEQ_PMG_DVS_CMD:
2484 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2485 break;
2486
2487 case mmMC_SEQ_PMG_DVS_CTL:
2488 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2489 break;
2490
2491 case mmMC_SEQ_RD_CTL_D0:
2492 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2493 break;
2494
2495 case mmMC_SEQ_RD_CTL_D1:
2496 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2497 break;
2498
2499 case mmMC_SEQ_WR_CTL_D0:
2500 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2501 break;
2502
2503 case mmMC_SEQ_WR_CTL_D1:
2504 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2505 break;
2506
2507 case mmMC_PMG_CMD_EMRS:
2508 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2509 break;
2510
2511 case mmMC_PMG_CMD_MRS:
2512 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2513 break;
2514
2515 case mmMC_PMG_CMD_MRS1:
2516 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2517 break;
2518
2519 case mmMC_SEQ_PMG_TIMING:
2520 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2521 break;
2522
2523 case mmMC_PMG_CMD_MRS2:
2524 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2525 break;
2526
2527 case mmMC_SEQ_WR_CTL_2:
2528 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2529 break;
2530
2531 default:
2532 result = false;
2533 break;
2534 }
2535
2536 return result;
2537 }
2538
ci_set_s0_mc_reg_index(struct ci_mc_reg_table * table)2539 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2540 {
2541 uint32_t i;
2542 uint16_t address;
2543
2544 for (i = 0; i < table->last; i++) {
2545 table->mc_reg_address[i].s0 =
2546 ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2547 ? address : table->mc_reg_address[i].s1;
2548 }
2549 return 0;
2550 }
2551
ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct ci_mc_reg_table * ni_table)2552 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2553 struct ci_mc_reg_table *ni_table)
2554 {
2555 uint8_t i, j;
2556
2557 PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2558 "Invalid VramInfo table.", return -EINVAL);
2559 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2560 "Invalid VramInfo table.", return -EINVAL);
2561
2562 for (i = 0; i < table->last; i++)
2563 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2564
2565 ni_table->last = table->last;
2566
2567 for (i = 0; i < table->num_entries; i++) {
2568 ni_table->mc_reg_table_entry[i].mclk_max =
2569 table->mc_reg_table_entry[i].mclk_max;
2570 for (j = 0; j < table->last; j++) {
2571 ni_table->mc_reg_table_entry[i].mc_data[j] =
2572 table->mc_reg_table_entry[i].mc_data[j];
2573 }
2574 }
2575
2576 ni_table->num_entries = table->num_entries;
2577
2578 return 0;
2579 }
2580
ci_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct ci_mc_reg_table * table)2581 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2582 struct ci_mc_reg_table *table)
2583 {
2584 uint8_t i, j, k;
2585 uint32_t temp_reg;
2586 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2587
2588 for (i = 0, j = table->last; i < table->last; i++) {
2589 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2590 "Invalid VramInfo table.", return -EINVAL);
2591
2592 switch (table->mc_reg_address[i].s1) {
2593
2594 case mmMC_SEQ_MISC1:
2595 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2596 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2597 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2598 for (k = 0; k < table->num_entries; k++) {
2599 table->mc_reg_table_entry[k].mc_data[j] =
2600 ((temp_reg & 0xffff0000)) |
2601 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2602 }
2603 j++;
2604
2605 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2606 "Invalid VramInfo table.", return -EINVAL);
2607 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2608 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2609 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2610 for (k = 0; k < table->num_entries; k++) {
2611 table->mc_reg_table_entry[k].mc_data[j] =
2612 (temp_reg & 0xffff0000) |
2613 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2614
2615 if (!data->is_memory_gddr5)
2616 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2617 }
2618 j++;
2619
2620 if (!data->is_memory_gddr5) {
2621 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2622 "Invalid VramInfo table.", return -EINVAL);
2623 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2624 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2625 for (k = 0; k < table->num_entries; k++) {
2626 table->mc_reg_table_entry[k].mc_data[j] =
2627 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2628 }
2629 j++;
2630 }
2631
2632 break;
2633
2634 case mmMC_SEQ_RESERVE_M:
2635 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2636 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2637 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2638 for (k = 0; k < table->num_entries; k++) {
2639 table->mc_reg_table_entry[k].mc_data[j] =
2640 (temp_reg & 0xffff0000) |
2641 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2642 }
2643 j++;
2644 break;
2645
2646 default:
2647 break;
2648 }
2649
2650 }
2651
2652 table->last = j;
2653
2654 return 0;
2655 }
2656
ci_set_valid_flag(struct ci_mc_reg_table * table)2657 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2658 {
2659 uint8_t i, j;
2660
2661 for (i = 0; i < table->last; i++) {
2662 for (j = 1; j < table->num_entries; j++) {
2663 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2664 table->mc_reg_table_entry[j].mc_data[i]) {
2665 table->validflag |= (1 << i);
2666 break;
2667 }
2668 }
2669 }
2670
2671 return 0;
2672 }
2673
ci_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2674 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2675 {
2676 int result;
2677 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2678 pp_atomctrl_mc_reg_table *table;
2679 struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2680 uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2681
2682 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2683
2684 if (NULL == table)
2685 return -ENOMEM;
2686
2687 /* Program additional LP registers that are no longer programmed by VBIOS */
2688 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2689 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2690 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2691 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2692 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2693 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2694 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2695 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2696 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2697 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2698 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2699 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2700 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2701 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2702 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2703 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2704 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2705 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2706 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2707 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2708
2709 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2710
2711 if (0 == result)
2712 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2713
2714 if (0 == result) {
2715 ci_set_s0_mc_reg_index(ni_table);
2716 result = ci_set_mc_special_registers(hwmgr, ni_table);
2717 }
2718
2719 if (0 == result)
2720 ci_set_valid_flag(ni_table);
2721
2722 kfree(table);
2723
2724 return result;
2725 }
2726
ci_is_dpm_running(struct pp_hwmgr * hwmgr)2727 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2728 {
2729 return ci_is_smc_ram_running(hwmgr);
2730 }
2731
ci_smu_init(struct pp_hwmgr * hwmgr)2732 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2733 {
2734 struct ci_smumgr *ci_priv = NULL;
2735
2736 ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2737
2738 if (ci_priv == NULL)
2739 return -ENOMEM;
2740
2741 hwmgr->smu_backend = ci_priv;
2742
2743 return 0;
2744 }
2745
ci_smu_fini(struct pp_hwmgr * hwmgr)2746 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2747 {
2748 kfree(hwmgr->smu_backend);
2749 hwmgr->smu_backend = NULL;
2750 return 0;
2751 }
2752
ci_start_smu(struct pp_hwmgr * hwmgr)2753 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2754 {
2755 return 0;
2756 }
2757
ci_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2758 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2759 void *profile_setting)
2760 {
2761 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2762 struct ci_smumgr *smu_data = (struct ci_smumgr *)
2763 (hwmgr->smu_backend);
2764 struct profile_mode_setting *setting;
2765 struct SMU7_Discrete_GraphicsLevel *levels =
2766 smu_data->smc_state_table.GraphicsLevel;
2767 uint32_t array = smu_data->dpm_table_start +
2768 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2769
2770 uint32_t mclk_array = smu_data->dpm_table_start +
2771 offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2772 struct SMU7_Discrete_MemoryLevel *mclk_levels =
2773 smu_data->smc_state_table.MemoryLevel;
2774 uint32_t i;
2775 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2776
2777 if (profile_setting == NULL)
2778 return -EINVAL;
2779
2780 setting = (struct profile_mode_setting *)profile_setting;
2781
2782 if (setting->bupdate_sclk) {
2783 if (!data->sclk_dpm_key_disabled)
2784 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2785 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2786 if (levels[i].ActivityLevel !=
2787 cpu_to_be16(setting->sclk_activity)) {
2788 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2789
2790 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2791 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2792 offset = clk_activity_offset & ~0x3;
2793 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2794 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2795 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2796
2797 }
2798 if (levels[i].UpH != setting->sclk_up_hyst ||
2799 levels[i].DownH != setting->sclk_down_hyst) {
2800 levels[i].UpH = setting->sclk_up_hyst;
2801 levels[i].DownH = setting->sclk_down_hyst;
2802 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2803 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2804 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2805 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2806 offset = up_hyst_offset & ~0x3;
2807 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2808 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2809 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2810 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2811 }
2812 }
2813 if (!data->sclk_dpm_key_disabled)
2814 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2815 }
2816
2817 if (setting->bupdate_mclk) {
2818 if (!data->mclk_dpm_key_disabled)
2819 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2820 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2821 if (mclk_levels[i].ActivityLevel !=
2822 cpu_to_be16(setting->mclk_activity)) {
2823 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2824
2825 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2826 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2827 offset = clk_activity_offset & ~0x3;
2828 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2829 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2830 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2831
2832 }
2833 if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2834 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2835 mclk_levels[i].UpH = setting->mclk_up_hyst;
2836 mclk_levels[i].DownH = setting->mclk_down_hyst;
2837 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2838 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2839 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2840 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2841 offset = up_hyst_offset & ~0x3;
2842 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2843 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2844 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2845 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2846 }
2847 }
2848 if (!data->mclk_dpm_key_disabled)
2849 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2850 }
2851 return 0;
2852 }
2853
ci_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2854 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2855 {
2856 struct amdgpu_device *adev = hwmgr->adev;
2857 struct smu7_hwmgr *data = hwmgr->backend;
2858 struct ci_smumgr *smu_data = hwmgr->smu_backend;
2859 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2860 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2861 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2862 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2863 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2864 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2865 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2866 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2867 int32_t i;
2868
2869 if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2870 smu_data->smc_state_table.UvdBootLevel = 0;
2871 else
2872 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2873
2874 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2875 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2876
2877 data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2878
2879 for (i = uvd_table->count - 1; i >= 0; i--) {
2880 if (uvd_table->entries[i].v <= max_vddc)
2881 data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2882 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2883 break;
2884 }
2885 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2886 data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2887 NULL);
2888
2889 return 0;
2890 }
2891
ci_update_vce_smc_table(struct pp_hwmgr * hwmgr)2892 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2893 {
2894 struct amdgpu_device *adev = hwmgr->adev;
2895 struct smu7_hwmgr *data = hwmgr->backend;
2896 struct phm_vce_clock_voltage_dependency_table *vce_table =
2897 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2898 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2899 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2900 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2901 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2902 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2903 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2904 int32_t i;
2905
2906 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2907 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2908
2909 data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2910
2911 for (i = vce_table->count - 1; i >= 0; i--) {
2912 if (vce_table->entries[i].v <= max_vddc)
2913 data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2914 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2915 break;
2916 }
2917 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2918 data->dpm_level_enable_mask.vce_dpm_enable_mask,
2919 NULL);
2920
2921 return 0;
2922 }
2923
ci_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2924 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2925 {
2926 switch (type) {
2927 case SMU_UVD_TABLE:
2928 ci_update_uvd_smc_table(hwmgr);
2929 break;
2930 case SMU_VCE_TABLE:
2931 ci_update_vce_smc_table(hwmgr);
2932 break;
2933 default:
2934 break;
2935 }
2936 return 0;
2937 }
2938
ci_reset_smc(struct pp_hwmgr * hwmgr)2939 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2940 {
2941 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2942 SMC_SYSCON_RESET_CNTL,
2943 rst_reg, 1);
2944 }
2945
2946
ci_stop_smc_clock(struct pp_hwmgr * hwmgr)2947 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2948 {
2949 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2950 SMC_SYSCON_CLOCK_CNTL_0,
2951 ck_disable, 1);
2952 }
2953
ci_stop_smc(struct pp_hwmgr * hwmgr)2954 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2955 {
2956 ci_reset_smc(hwmgr);
2957 ci_stop_smc_clock(hwmgr);
2958
2959 return 0;
2960 }
2961
2962 const struct pp_smumgr_func ci_smu_funcs = {
2963 .name = "ci_smu",
2964 .smu_init = ci_smu_init,
2965 .smu_fini = ci_smu_fini,
2966 .start_smu = ci_start_smu,
2967 .check_fw_load_finish = NULL,
2968 .request_smu_load_fw = NULL,
2969 .request_smu_load_specific_fw = NULL,
2970 .send_msg_to_smc = ci_send_msg_to_smc,
2971 .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2972 .get_argument = smu7_get_argument,
2973 .download_pptable_settings = NULL,
2974 .upload_pptable_settings = NULL,
2975 .get_offsetof = ci_get_offsetof,
2976 .process_firmware_header = ci_process_firmware_header,
2977 .init_smc_table = ci_init_smc_table,
2978 .update_sclk_threshold = ci_update_sclk_threshold,
2979 .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2980 .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2981 .populate_all_memory_levels = ci_populate_all_memory_levels,
2982 .get_mac_definition = ci_get_mac_definition,
2983 .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2984 .is_dpm_running = ci_is_dpm_running,
2985 .update_dpm_settings = ci_update_dpm_settings,
2986 .update_smc_table = ci_update_smc_table,
2987 .stop_smc = ci_stop_smc,
2988 };
2989