• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/export.h>
8 #include <linux/clk-provider.h>
9 #include <linux/regmap.h>
10 #include <linux/delay.h>
11 
12 #include "clk-alpha-pll.h"
13 #include "common.h"
14 
15 #define PLL_MODE(p)		((p)->offset + 0x0)
16 # define PLL_OUTCTRL		BIT(0)
17 # define PLL_BYPASSNL		BIT(1)
18 # define PLL_RESET_N		BIT(2)
19 # define PLL_OFFLINE_REQ	BIT(7)
20 # define PLL_LOCK_COUNT_SHIFT	8
21 # define PLL_LOCK_COUNT_MASK	0x3f
22 # define PLL_BIAS_COUNT_SHIFT	14
23 # define PLL_BIAS_COUNT_MASK	0x3f
24 # define PLL_VOTE_FSM_ENA	BIT(20)
25 # define PLL_FSM_ENA		BIT(20)
26 # define PLL_VOTE_FSM_RESET	BIT(21)
27 # define PLL_UPDATE		BIT(22)
28 # define PLL_UPDATE_BYPASS	BIT(23)
29 # define PLL_OFFLINE_ACK	BIT(28)
30 # define ALPHA_PLL_ACK_LATCH	BIT(29)
31 # define PLL_ACTIVE_FLAG	BIT(30)
32 # define PLL_LOCK_DET		BIT(31)
33 
34 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
35 #define PLL_CAL_L_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
36 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
37 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
38 
39 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
40 # define PLL_POST_DIV_SHIFT	8
41 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
42 # define PLL_ALPHA_EN		BIT(24)
43 # define PLL_ALPHA_MODE		BIT(25)
44 # define PLL_VCO_SHIFT		20
45 # define PLL_VCO_MASK		0x3
46 
47 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
48 #define PLL_USER_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
49 
50 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
51 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
52 #define PLL_CONFIG_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
53 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
54 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
55 #define PLL_TEST_CTL_U1(p)     ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
56 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
57 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
58 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
59 
60 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
61 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
62 		[PLL_OFF_L_VAL] = 0x04,
63 		[PLL_OFF_ALPHA_VAL] = 0x08,
64 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
65 		[PLL_OFF_USER_CTL] = 0x10,
66 		[PLL_OFF_USER_CTL_U] = 0x14,
67 		[PLL_OFF_CONFIG_CTL] = 0x18,
68 		[PLL_OFF_TEST_CTL] = 0x1c,
69 		[PLL_OFF_TEST_CTL_U] = 0x20,
70 		[PLL_OFF_STATUS] = 0x24,
71 	},
72 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
73 		[PLL_OFF_L_VAL] = 0x04,
74 		[PLL_OFF_ALPHA_VAL] = 0x08,
75 		[PLL_OFF_USER_CTL] = 0x10,
76 		[PLL_OFF_CONFIG_CTL] = 0x14,
77 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
78 		[PLL_OFF_TEST_CTL] = 0x1c,
79 		[PLL_OFF_TEST_CTL_U] = 0x20,
80 		[PLL_OFF_STATUS] = 0x24,
81 	},
82 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
83 		[PLL_OFF_L_VAL] = 0x04,
84 		[PLL_OFF_ALPHA_VAL] = 0x08,
85 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
86 		[PLL_OFF_USER_CTL] = 0x10,
87 		[PLL_OFF_CONFIG_CTL] = 0x18,
88 		[PLL_OFF_TEST_CTL] = 0x1c,
89 		[PLL_OFF_STATUS] = 0x24,
90 	},
91 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
92 		[PLL_OFF_L_VAL] = 0x04,
93 		[PLL_OFF_USER_CTL] = 0x0c,
94 		[PLL_OFF_USER_CTL_U] = 0x10,
95 		[PLL_OFF_CONFIG_CTL] = 0x14,
96 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
97 		[PLL_OFF_TEST_CTL] = 0x1c,
98 		[PLL_OFF_TEST_CTL_U] = 0x20,
99 		[PLL_OFF_STATUS] = 0x24,
100 		[PLL_OFF_OPMODE] = 0x2c,
101 		[PLL_OFF_FRAC] = 0x38,
102 	},
103 	[CLK_ALPHA_PLL_TYPE_TRION] = {
104 		[PLL_OFF_L_VAL] = 0x04,
105 		[PLL_OFF_CAL_L_VAL] = 0x08,
106 		[PLL_OFF_USER_CTL] = 0x0c,
107 		[PLL_OFF_USER_CTL_U] = 0x10,
108 		[PLL_OFF_USER_CTL_U1] = 0x14,
109 		[PLL_OFF_CONFIG_CTL] = 0x18,
110 		[PLL_OFF_CONFIG_CTL_U] = 0x1c,
111 		[PLL_OFF_CONFIG_CTL_U1] = 0x20,
112 		[PLL_OFF_TEST_CTL] = 0x24,
113 		[PLL_OFF_TEST_CTL_U] = 0x28,
114 		[PLL_OFF_TEST_CTL_U1] = 0x2c,
115 		[PLL_OFF_STATUS] = 0x30,
116 		[PLL_OFF_OPMODE] = 0x38,
117 		[PLL_OFF_ALPHA_VAL] = 0x40,
118 	},
119 	[CLK_ALPHA_PLL_TYPE_AGERA] =  {
120 		[PLL_OFF_L_VAL] = 0x04,
121 		[PLL_OFF_ALPHA_VAL] = 0x08,
122 		[PLL_OFF_USER_CTL] = 0x0c,
123 		[PLL_OFF_CONFIG_CTL] = 0x10,
124 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
125 		[PLL_OFF_TEST_CTL] = 0x18,
126 		[PLL_OFF_TEST_CTL_U] = 0x1c,
127 		[PLL_OFF_STATUS] = 0x2c,
128 	},
129 	[CLK_ALPHA_PLL_TYPE_ZONDA] =  {
130 		[PLL_OFF_L_VAL] = 0x04,
131 		[PLL_OFF_ALPHA_VAL] = 0x08,
132 		[PLL_OFF_USER_CTL] = 0x0c,
133 		[PLL_OFF_CONFIG_CTL] = 0x10,
134 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
135 		[PLL_OFF_CONFIG_CTL_U1] = 0x18,
136 		[PLL_OFF_TEST_CTL] = 0x1c,
137 		[PLL_OFF_TEST_CTL_U] = 0x20,
138 		[PLL_OFF_TEST_CTL_U1] = 0x24,
139 		[PLL_OFF_OPMODE] = 0x28,
140 		[PLL_OFF_STATUS] = 0x38,
141 	},
142 };
143 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
144 
145 /*
146  * Even though 40 bits are present, use only 32 for ease of calculation.
147  */
148 #define ALPHA_REG_BITWIDTH	40
149 #define ALPHA_REG_16BIT_WIDTH	16
150 #define ALPHA_BITWIDTH		32U
151 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
152 
153 #define PLL_HUAYRA_M_WIDTH		8
154 #define PLL_HUAYRA_M_SHIFT		8
155 #define PLL_HUAYRA_M_MASK		0xff
156 #define PLL_HUAYRA_N_SHIFT		0
157 #define PLL_HUAYRA_N_MASK		0xff
158 #define PLL_HUAYRA_ALPHA_WIDTH		16
159 
160 #define PLL_STANDBY		0x0
161 #define PLL_RUN			0x1
162 #define PLL_OUT_MASK		0x7
163 #define PLL_RATE_MARGIN		500
164 
165 /* TRION PLL specific settings and offsets */
166 #define TRION_PLL_CAL_VAL	0x44
167 #define TRION_PCAL_DONE		BIT(26)
168 
169 /* LUCID PLL specific settings and offsets */
170 #define LUCID_PCAL_DONE		BIT(27)
171 
172 /* LUCID 5LPE PLL specific settings and offsets */
173 #define LUCID_5LPE_PCAL_DONE		BIT(11)
174 #define LUCID_5LPE_ALPHA_PLL_ACK_LATCH	BIT(13)
175 #define LUCID_5LPE_PLL_LATCH_INPUT	BIT(14)
176 #define LUCID_5LPE_ENABLE_VOTE_RUN	BIT(21)
177 
178 /* ZONDA PLL specific */
179 #define ZONDA_PLL_OUT_MASK	0xf
180 #define ZONDA_STAY_IN_CFA	BIT(16)
181 #define ZONDA_PLL_FREQ_LOCK_DET	BIT(29)
182 
183 #define pll_alpha_width(p)					\
184 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
185 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
186 
187 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
188 
189 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
190 					   struct clk_alpha_pll, clkr)
191 
192 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
193 					   struct clk_alpha_pll_postdiv, clkr)
194 
wait_for_pll(struct clk_alpha_pll * pll,u32 mask,bool inverse,const char * action)195 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
196 			const char *action)
197 {
198 	u32 val;
199 	int count;
200 	int ret;
201 	const char *name = clk_hw_get_name(&pll->clkr.hw);
202 
203 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
204 	if (ret)
205 		return ret;
206 
207 	for (count = 100; count > 0; count--) {
208 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
209 		if (ret)
210 			return ret;
211 		if (inverse && !(val & mask))
212 			return 0;
213 		else if ((val & mask) == mask)
214 			return 0;
215 
216 		udelay(1);
217 	}
218 
219 	WARN(1, "%s failed to %s!\n", name, action);
220 	return -ETIMEDOUT;
221 }
222 
223 #define wait_for_pll_enable_active(pll) \
224 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
225 
226 #define wait_for_pll_enable_lock(pll) \
227 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
228 
229 #define wait_for_zonda_pll_freq_lock(pll) \
230 	wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable")
231 
232 #define wait_for_pll_disable(pll) \
233 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
234 
235 #define wait_for_pll_offline(pll) \
236 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
237 
238 #define wait_for_pll_update(pll) \
239 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
240 
241 #define wait_for_pll_update_ack_set(pll) \
242 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
243 
244 #define wait_for_pll_update_ack_clear(pll) \
245 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
246 
clk_alpha_pll_write_config(struct regmap * regmap,unsigned int reg,unsigned int val)247 static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg,
248 					unsigned int val)
249 {
250 	if (val)
251 		regmap_write(regmap, reg, val);
252 }
253 
clk_alpha_pll_configure(struct clk_alpha_pll * pll,struct regmap * regmap,const struct alpha_pll_config * config)254 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
255 			     const struct alpha_pll_config *config)
256 {
257 	u32 val, mask;
258 
259 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
260 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
261 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
262 
263 	if (pll_has_64bit_config(pll))
264 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
265 			     config->config_ctl_hi_val);
266 
267 	if (pll_alpha_width(pll) > 32)
268 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
269 
270 	val = config->main_output_mask;
271 	val |= config->aux_output_mask;
272 	val |= config->aux2_output_mask;
273 	val |= config->early_output_mask;
274 	val |= config->pre_div_val;
275 	val |= config->post_div_val;
276 	val |= config->vco_val;
277 	val |= config->alpha_en_mask;
278 	val |= config->alpha_mode_mask;
279 
280 	mask = config->main_output_mask;
281 	mask |= config->aux_output_mask;
282 	mask |= config->aux2_output_mask;
283 	mask |= config->early_output_mask;
284 	mask |= config->pre_div_mask;
285 	mask |= config->post_div_mask;
286 	mask |= config->vco_mask;
287 
288 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
289 
290 	if (pll->flags & SUPPORTS_FSM_MODE)
291 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
292 }
293 EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
294 
clk_alpha_pll_hwfsm_enable(struct clk_hw * hw)295 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
296 {
297 	int ret;
298 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
299 	u32 val;
300 
301 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
302 	if (ret)
303 		return ret;
304 
305 	val |= PLL_FSM_ENA;
306 
307 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
308 		val &= ~PLL_OFFLINE_REQ;
309 
310 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
311 	if (ret)
312 		return ret;
313 
314 	/* Make sure enable request goes through before waiting for update */
315 	mb();
316 
317 	return wait_for_pll_enable_active(pll);
318 }
319 
clk_alpha_pll_hwfsm_disable(struct clk_hw * hw)320 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
321 {
322 	int ret;
323 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
324 	u32 val;
325 
326 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
327 	if (ret)
328 		return;
329 
330 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
331 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
332 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
333 		if (ret)
334 			return;
335 
336 		ret = wait_for_pll_offline(pll);
337 		if (ret)
338 			return;
339 	}
340 
341 	/* Disable hwfsm */
342 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
343 				 PLL_FSM_ENA, 0);
344 	if (ret)
345 		return;
346 
347 	wait_for_pll_disable(pll);
348 }
349 
pll_is_enabled(struct clk_hw * hw,u32 mask)350 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
351 {
352 	int ret;
353 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
354 	u32 val;
355 
356 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
357 	if (ret)
358 		return ret;
359 
360 	return !!(val & mask);
361 }
362 
clk_alpha_pll_hwfsm_is_enabled(struct clk_hw * hw)363 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
364 {
365 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
366 }
367 
clk_alpha_pll_is_enabled(struct clk_hw * hw)368 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
369 {
370 	return pll_is_enabled(hw, PLL_LOCK_DET);
371 }
372 
clk_alpha_pll_enable(struct clk_hw * hw)373 static int clk_alpha_pll_enable(struct clk_hw *hw)
374 {
375 	int ret;
376 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
377 	u32 val, mask;
378 
379 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
380 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
381 	if (ret)
382 		return ret;
383 
384 	/* If in FSM mode, just vote for it */
385 	if (val & PLL_VOTE_FSM_ENA) {
386 		ret = clk_enable_regmap(hw);
387 		if (ret)
388 			return ret;
389 		return wait_for_pll_enable_active(pll);
390 	}
391 
392 	/* Skip if already enabled */
393 	if ((val & mask) == mask)
394 		return 0;
395 
396 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
397 				 PLL_BYPASSNL, PLL_BYPASSNL);
398 	if (ret)
399 		return ret;
400 
401 	/*
402 	 * H/W requires a 5us delay between disabling the bypass and
403 	 * de-asserting the reset.
404 	 */
405 	mb();
406 	udelay(5);
407 
408 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
409 				 PLL_RESET_N, PLL_RESET_N);
410 	if (ret)
411 		return ret;
412 
413 	ret = wait_for_pll_enable_lock(pll);
414 	if (ret)
415 		return ret;
416 
417 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
418 				 PLL_OUTCTRL, PLL_OUTCTRL);
419 
420 	/* Ensure that the write above goes through before returning. */
421 	mb();
422 	return ret;
423 }
424 
clk_alpha_pll_disable(struct clk_hw * hw)425 static void clk_alpha_pll_disable(struct clk_hw *hw)
426 {
427 	int ret;
428 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
429 	u32 val, mask;
430 
431 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
432 	if (ret)
433 		return;
434 
435 	/* If in FSM mode, just unvote it */
436 	if (val & PLL_VOTE_FSM_ENA) {
437 		clk_disable_regmap(hw);
438 		return;
439 	}
440 
441 	mask = PLL_OUTCTRL;
442 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
443 
444 	/* Delay of 2 output clock ticks required until output is disabled */
445 	mb();
446 	udelay(1);
447 
448 	mask = PLL_RESET_N | PLL_BYPASSNL;
449 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
450 }
451 
452 static unsigned long
alpha_pll_calc_rate(u64 prate,u32 l,u32 a,u32 alpha_width)453 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
454 {
455 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
456 }
457 
458 static unsigned long
alpha_pll_round_rate(unsigned long rate,unsigned long prate,u32 * l,u64 * a,u32 alpha_width)459 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
460 		     u32 alpha_width)
461 {
462 	u64 remainder;
463 	u64 quotient;
464 
465 	quotient = rate;
466 	remainder = do_div(quotient, prate);
467 	*l = quotient;
468 
469 	if (!remainder) {
470 		*a = 0;
471 		return rate;
472 	}
473 
474 	/* Upper ALPHA_BITWIDTH bits of Alpha */
475 	quotient = remainder << ALPHA_SHIFT(alpha_width);
476 
477 	remainder = do_div(quotient, prate);
478 
479 	if (remainder)
480 		quotient++;
481 
482 	*a = quotient;
483 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
484 }
485 
486 static const struct pll_vco *
alpha_pll_find_vco(const struct clk_alpha_pll * pll,unsigned long rate)487 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
488 {
489 	const struct pll_vco *v = pll->vco_table;
490 	const struct pll_vco *end = v + pll->num_vco;
491 
492 	for (; v < end; v++)
493 		if (rate >= v->min_freq && rate <= v->max_freq)
494 			return v;
495 
496 	return NULL;
497 }
498 
499 static unsigned long
clk_alpha_pll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)500 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
501 {
502 	u32 l, low, high, ctl;
503 	u64 a = 0, prate = parent_rate;
504 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
505 	u32 alpha_width = pll_alpha_width(pll);
506 
507 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
508 
509 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
510 	if (ctl & PLL_ALPHA_EN) {
511 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
512 		if (alpha_width > 32) {
513 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
514 				    &high);
515 			a = (u64)high << 32 | low;
516 		} else {
517 			a = low & GENMASK(alpha_width - 1, 0);
518 		}
519 
520 		if (alpha_width > ALPHA_BITWIDTH)
521 			a >>= alpha_width - ALPHA_BITWIDTH;
522 	}
523 
524 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
525 }
526 
527 
__clk_alpha_pll_update_latch(struct clk_alpha_pll * pll)528 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
529 {
530 	int ret;
531 	u32 mode;
532 
533 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
534 
535 	/* Latch the input to the PLL */
536 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
537 			   PLL_UPDATE);
538 
539 	/* Wait for 2 reference cycle before checking ACK bit */
540 	udelay(1);
541 
542 	/*
543 	 * PLL will latch the new L, Alpha and freq control word.
544 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
545 	 * has been latched in and PLL is being updated. When
546 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
547 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
548 	 */
549 	if (mode & PLL_UPDATE_BYPASS) {
550 		ret = wait_for_pll_update_ack_set(pll);
551 		if (ret)
552 			return ret;
553 
554 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
555 	} else {
556 		ret = wait_for_pll_update(pll);
557 		if (ret)
558 			return ret;
559 	}
560 
561 	ret = wait_for_pll_update_ack_clear(pll);
562 	if (ret)
563 		return ret;
564 
565 	/* Wait for PLL output to stabilize */
566 	udelay(10);
567 
568 	return 0;
569 }
570 
clk_alpha_pll_update_latch(struct clk_alpha_pll * pll,int (* is_enabled)(struct clk_hw *))571 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
572 				      int (*is_enabled)(struct clk_hw *))
573 {
574 	if (!is_enabled(&pll->clkr.hw) ||
575 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
576 		return 0;
577 
578 	return __clk_alpha_pll_update_latch(pll);
579 }
580 
__clk_alpha_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate,int (* is_enabled)(struct clk_hw *))581 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
582 				    unsigned long prate,
583 				    int (*is_enabled)(struct clk_hw *))
584 {
585 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
586 	const struct pll_vco *vco;
587 	u32 l, alpha_width = pll_alpha_width(pll);
588 	u64 a;
589 
590 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
591 	vco = alpha_pll_find_vco(pll, rate);
592 	if (pll->vco_table && !vco) {
593 		pr_err("%s: alpha pll not in a valid vco range\n",
594 		       clk_hw_get_name(hw));
595 		return -EINVAL;
596 	}
597 
598 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
599 
600 	if (alpha_width > ALPHA_BITWIDTH)
601 		a <<= alpha_width - ALPHA_BITWIDTH;
602 
603 	if (alpha_width > 32)
604 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
605 
606 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
607 
608 	if (vco) {
609 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
610 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
611 				   vco->val << PLL_VCO_SHIFT);
612 	}
613 
614 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
615 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
616 
617 	return clk_alpha_pll_update_latch(pll, is_enabled);
618 }
619 
clk_alpha_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)620 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
621 				  unsigned long prate)
622 {
623 	return __clk_alpha_pll_set_rate(hw, rate, prate,
624 					clk_alpha_pll_is_enabled);
625 }
626 
clk_alpha_pll_hwfsm_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)627 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
628 					unsigned long prate)
629 {
630 	return __clk_alpha_pll_set_rate(hw, rate, prate,
631 					clk_alpha_pll_hwfsm_is_enabled);
632 }
633 
clk_alpha_pll_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)634 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
635 				     unsigned long *prate)
636 {
637 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
638 	u32 l, alpha_width = pll_alpha_width(pll);
639 	u64 a;
640 	unsigned long min_freq, max_freq;
641 
642 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
643 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
644 		return rate;
645 
646 	min_freq = pll->vco_table[0].min_freq;
647 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
648 
649 	return clamp(rate, min_freq, max_freq);
650 }
651 
652 static unsigned long
alpha_huayra_pll_calc_rate(u64 prate,u32 l,u32 a)653 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
654 {
655 	/*
656 	 * a contains 16 bit alpha_val in two’s complement number in the range
657 	 * of [-0.5, 0.5).
658 	 */
659 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
660 		l -= 1;
661 
662 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
663 }
664 
665 static unsigned long
alpha_huayra_pll_round_rate(unsigned long rate,unsigned long prate,u32 * l,u32 * a)666 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
667 			    u32 *l, u32 *a)
668 {
669 	u64 remainder;
670 	u64 quotient;
671 
672 	quotient = rate;
673 	remainder = do_div(quotient, prate);
674 	*l = quotient;
675 
676 	if (!remainder) {
677 		*a = 0;
678 		return rate;
679 	}
680 
681 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
682 	remainder = do_div(quotient, prate);
683 
684 	if (remainder)
685 		quotient++;
686 
687 	/*
688 	 * alpha_val should be in two’s complement number in the range
689 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
690 	 * since alpha value will be subtracted in this case.
691 	 */
692 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
693 		*l += 1;
694 
695 	*a = quotient;
696 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
697 }
698 
699 static unsigned long
alpha_pll_huayra_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)700 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
701 {
702 	u64 rate = parent_rate, tmp;
703 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
704 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
705 
706 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
707 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
708 
709 	if (ctl & PLL_ALPHA_EN) {
710 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
711 		/*
712 		 * Depending upon alpha_mode, it can be treated as M/N value or
713 		 * as a two’s complement number. When alpha_mode=1,
714 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
715 		 *
716 		 *		Fout=FIN*(L+(M/N))
717 		 *
718 		 * M is a signed number (-128 to 127) and N is unsigned
719 		 * (0 to 255). M/N has to be within +/-0.5.
720 		 *
721 		 * When alpha_mode=0, it is a two’s complement number in the
722 		 * range [-0.5, 0.5).
723 		 *
724 		 *		Fout=FIN*(L+(alpha_val)/2^16)
725 		 *
726 		 * where alpha_val is two’s complement number.
727 		 */
728 		if (!(ctl & PLL_ALPHA_MODE))
729 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
730 
731 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
732 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
733 
734 		rate *= l;
735 		tmp = parent_rate;
736 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
737 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
738 			tmp *= alpha_m;
739 			do_div(tmp, alpha_n);
740 			rate -= tmp;
741 		} else {
742 			tmp *= alpha_m;
743 			do_div(tmp, alpha_n);
744 			rate += tmp;
745 		}
746 
747 		return rate;
748 	}
749 
750 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
751 }
752 
alpha_pll_huayra_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)753 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
754 				     unsigned long prate)
755 {
756 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
757 	u32 l, a, ctl, cur_alpha = 0;
758 
759 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
760 
761 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
762 
763 	if (ctl & PLL_ALPHA_EN)
764 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
765 
766 	/*
767 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
768 	 * without having to go through the power on sequence.
769 	 */
770 	if (clk_alpha_pll_is_enabled(hw)) {
771 		if (cur_alpha != a) {
772 			pr_err("%s: clock needs to be gated\n",
773 			       clk_hw_get_name(hw));
774 			return -EBUSY;
775 		}
776 
777 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
778 		/* Ensure that the write above goes to detect L val change. */
779 		mb();
780 		return wait_for_pll_enable_lock(pll);
781 	}
782 
783 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
784 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
785 
786 	if (a == 0)
787 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
788 				   PLL_ALPHA_EN, 0x0);
789 	else
790 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
791 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
792 
793 	return 0;
794 }
795 
alpha_pll_huayra_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)796 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
797 					unsigned long *prate)
798 {
799 	u32 l, a;
800 
801 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
802 }
803 
trion_pll_is_enabled(struct clk_alpha_pll * pll,struct regmap * regmap)804 static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
805 				struct regmap *regmap)
806 {
807 	u32 mode_val, opmode_val;
808 	int ret;
809 
810 	ret = regmap_read(regmap, PLL_MODE(pll), &mode_val);
811 	ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
812 	if (ret)
813 		return 0;
814 
815 	return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL));
816 }
817 
clk_trion_pll_is_enabled(struct clk_hw * hw)818 static int clk_trion_pll_is_enabled(struct clk_hw *hw)
819 {
820 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
821 
822 	return trion_pll_is_enabled(pll, pll->clkr.regmap);
823 }
824 
clk_trion_pll_enable(struct clk_hw * hw)825 static int clk_trion_pll_enable(struct clk_hw *hw)
826 {
827 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
828 	struct regmap *regmap = pll->clkr.regmap;
829 	u32 val;
830 	int ret;
831 
832 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
833 	if (ret)
834 		return ret;
835 
836 	/* If in FSM mode, just vote for it */
837 	if (val & PLL_VOTE_FSM_ENA) {
838 		ret = clk_enable_regmap(hw);
839 		if (ret)
840 			return ret;
841 		return wait_for_pll_enable_active(pll);
842 	}
843 
844 	/* Set operation mode to RUN */
845 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
846 
847 	ret = wait_for_pll_enable_lock(pll);
848 	if (ret)
849 		return ret;
850 
851 	/* Enable the PLL outputs */
852 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
853 				 PLL_OUT_MASK, PLL_OUT_MASK);
854 	if (ret)
855 		return ret;
856 
857 	/* Enable the global PLL outputs */
858 	return regmap_update_bits(regmap, PLL_MODE(pll),
859 				 PLL_OUTCTRL, PLL_OUTCTRL);
860 }
861 
clk_trion_pll_disable(struct clk_hw * hw)862 static void clk_trion_pll_disable(struct clk_hw *hw)
863 {
864 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
865 	struct regmap *regmap = pll->clkr.regmap;
866 	u32 val;
867 	int ret;
868 
869 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
870 	if (ret)
871 		return;
872 
873 	/* If in FSM mode, just unvote it */
874 	if (val & PLL_VOTE_FSM_ENA) {
875 		clk_disable_regmap(hw);
876 		return;
877 	}
878 
879 	/* Disable the global PLL output */
880 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
881 	if (ret)
882 		return;
883 
884 	/* Disable the PLL outputs */
885 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
886 				 PLL_OUT_MASK, 0);
887 	if (ret)
888 		return;
889 
890 	/* Place the PLL mode in STANDBY */
891 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
892 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
893 }
894 
895 static unsigned long
clk_trion_pll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)896 clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
897 {
898 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
899 	u32 l, frac, alpha_width = pll_alpha_width(pll);
900 
901 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
902 	regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
903 
904 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
905 }
906 
907 const struct clk_ops clk_alpha_pll_fixed_ops = {
908 	.enable = clk_alpha_pll_enable,
909 	.disable = clk_alpha_pll_disable,
910 	.is_enabled = clk_alpha_pll_is_enabled,
911 	.recalc_rate = clk_alpha_pll_recalc_rate,
912 };
913 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
914 
915 const struct clk_ops clk_alpha_pll_ops = {
916 	.enable = clk_alpha_pll_enable,
917 	.disable = clk_alpha_pll_disable,
918 	.is_enabled = clk_alpha_pll_is_enabled,
919 	.recalc_rate = clk_alpha_pll_recalc_rate,
920 	.round_rate = clk_alpha_pll_round_rate,
921 	.set_rate = clk_alpha_pll_set_rate,
922 };
923 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
924 
925 const struct clk_ops clk_alpha_pll_huayra_ops = {
926 	.enable = clk_alpha_pll_enable,
927 	.disable = clk_alpha_pll_disable,
928 	.is_enabled = clk_alpha_pll_is_enabled,
929 	.recalc_rate = alpha_pll_huayra_recalc_rate,
930 	.round_rate = alpha_pll_huayra_round_rate,
931 	.set_rate = alpha_pll_huayra_set_rate,
932 };
933 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
934 
935 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
936 	.enable = clk_alpha_pll_hwfsm_enable,
937 	.disable = clk_alpha_pll_hwfsm_disable,
938 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
939 	.recalc_rate = clk_alpha_pll_recalc_rate,
940 	.round_rate = clk_alpha_pll_round_rate,
941 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
942 };
943 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
944 
945 const struct clk_ops clk_alpha_pll_fixed_trion_ops = {
946 	.enable = clk_trion_pll_enable,
947 	.disable = clk_trion_pll_disable,
948 	.is_enabled = clk_trion_pll_is_enabled,
949 	.recalc_rate = clk_trion_pll_recalc_rate,
950 	.round_rate = clk_alpha_pll_round_rate,
951 };
952 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops);
953 
954 static unsigned long
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)955 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
956 {
957 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
958 	u32 ctl;
959 
960 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
961 
962 	ctl >>= PLL_POST_DIV_SHIFT;
963 	ctl &= PLL_POST_DIV_MASK(pll);
964 
965 	return parent_rate >> fls(ctl);
966 }
967 
968 static const struct clk_div_table clk_alpha_div_table[] = {
969 	{ 0x0, 1 },
970 	{ 0x1, 2 },
971 	{ 0x3, 4 },
972 	{ 0x7, 8 },
973 	{ 0xf, 16 },
974 	{ }
975 };
976 
977 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
978 	{ 0x0, 1 },
979 	{ 0x1, 2 },
980 	{ 0x3, 4 },
981 	{ }
982 };
983 
984 static long
clk_alpha_pll_postdiv_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)985 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
986 				 unsigned long *prate)
987 {
988 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
989 	const struct clk_div_table *table;
990 
991 	if (pll->width == 2)
992 		table = clk_alpha_2bit_div_table;
993 	else
994 		table = clk_alpha_div_table;
995 
996 	return divider_round_rate(hw, rate, prate, table,
997 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
998 }
999 
1000 static long
clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)1001 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
1002 				    unsigned long *prate)
1003 {
1004 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1005 	u32 ctl, div;
1006 
1007 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
1008 
1009 	ctl >>= PLL_POST_DIV_SHIFT;
1010 	ctl &= BIT(pll->width) - 1;
1011 	div = 1 << fls(ctl);
1012 
1013 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
1014 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
1015 
1016 	return DIV_ROUND_UP_ULL((u64)*prate, div);
1017 }
1018 
clk_alpha_pll_postdiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1019 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1020 					  unsigned long parent_rate)
1021 {
1022 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1023 	int div;
1024 
1025 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
1026 	div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
1027 
1028 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1029 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1030 				  div << PLL_POST_DIV_SHIFT);
1031 }
1032 
1033 const struct clk_ops clk_alpha_pll_postdiv_ops = {
1034 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1035 	.round_rate = clk_alpha_pll_postdiv_round_rate,
1036 	.set_rate = clk_alpha_pll_postdiv_set_rate,
1037 };
1038 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
1039 
1040 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
1041 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
1042 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1043 };
1044 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
1045 
clk_fabia_pll_configure(struct clk_alpha_pll * pll,struct regmap * regmap,const struct alpha_pll_config * config)1046 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1047 			     const struct alpha_pll_config *config)
1048 {
1049 	u32 val, mask;
1050 
1051 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1052 	clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha);
1053 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1054 						config->config_ctl_val);
1055 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1056 						config->config_ctl_hi_val);
1057 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1058 						config->user_ctl_val);
1059 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1060 						config->user_ctl_hi_val);
1061 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1062 						config->test_ctl_val);
1063 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1064 						config->test_ctl_hi_val);
1065 
1066 	if (config->post_div_mask) {
1067 		mask = config->post_div_mask;
1068 		val = config->post_div_val;
1069 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
1070 	}
1071 
1072 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1073 							PLL_UPDATE_BYPASS);
1074 
1075 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1076 }
1077 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
1078 
alpha_pll_fabia_enable(struct clk_hw * hw)1079 static int alpha_pll_fabia_enable(struct clk_hw *hw)
1080 {
1081 	int ret;
1082 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1083 	u32 val, opmode_val;
1084 	struct regmap *regmap = pll->clkr.regmap;
1085 
1086 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1087 	if (ret)
1088 		return ret;
1089 
1090 	/* If in FSM mode, just vote for it */
1091 	if (val & PLL_VOTE_FSM_ENA) {
1092 		ret = clk_enable_regmap(hw);
1093 		if (ret)
1094 			return ret;
1095 		return wait_for_pll_enable_active(pll);
1096 	}
1097 
1098 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
1099 	if (ret)
1100 		return ret;
1101 
1102 	/* Skip If PLL is already running */
1103 	if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
1104 		return 0;
1105 
1106 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1107 	if (ret)
1108 		return ret;
1109 
1110 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
1115 				 PLL_RESET_N);
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = wait_for_pll_enable_lock(pll);
1124 	if (ret)
1125 		return ret;
1126 
1127 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
1128 				 PLL_OUT_MASK, PLL_OUT_MASK);
1129 	if (ret)
1130 		return ret;
1131 
1132 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
1133 				 PLL_OUTCTRL);
1134 }
1135 
alpha_pll_fabia_disable(struct clk_hw * hw)1136 static void alpha_pll_fabia_disable(struct clk_hw *hw)
1137 {
1138 	int ret;
1139 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1140 	u32 val;
1141 	struct regmap *regmap = pll->clkr.regmap;
1142 
1143 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1144 	if (ret)
1145 		return;
1146 
1147 	/* If in FSM mode, just unvote it */
1148 	if (val & PLL_FSM_ENA) {
1149 		clk_disable_regmap(hw);
1150 		return;
1151 	}
1152 
1153 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1154 	if (ret)
1155 		return;
1156 
1157 	/* Disable main outputs */
1158 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1159 	if (ret)
1160 		return;
1161 
1162 	/* Place the PLL in STANDBY */
1163 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1164 }
1165 
alpha_pll_fabia_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1166 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
1167 						unsigned long parent_rate)
1168 {
1169 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1170 	u32 l, frac, alpha_width = pll_alpha_width(pll);
1171 
1172 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
1173 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
1174 
1175 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
1176 }
1177 
1178 /*
1179  * Due to limited number of bits for fractional rate programming, the
1180  * rounded up rate could be marginally higher than the requested rate.
1181  */
alpha_pll_check_rate_margin(struct clk_hw * hw,unsigned long rrate,unsigned long rate)1182 static int alpha_pll_check_rate_margin(struct clk_hw *hw,
1183 			unsigned long rrate, unsigned long rate)
1184 {
1185 	unsigned long rate_margin = rate + PLL_RATE_MARGIN;
1186 
1187 	if (rrate > rate_margin || rrate < rate) {
1188 		pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
1189 		       clk_hw_get_name(hw), rrate, rate, rate_margin);
1190 		return -EINVAL;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
alpha_pll_fabia_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)1196 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
1197 						unsigned long prate)
1198 {
1199 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1200 	u32 l, alpha_width = pll_alpha_width(pll);
1201 	unsigned long rrate;
1202 	int ret;
1203 	u64 a;
1204 
1205 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1206 
1207 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1208 	if (ret < 0)
1209 		return ret;
1210 
1211 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1212 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1213 
1214 	return __clk_alpha_pll_update_latch(pll);
1215 }
1216 
alpha_pll_fabia_prepare(struct clk_hw * hw)1217 static int alpha_pll_fabia_prepare(struct clk_hw *hw)
1218 {
1219 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1220 	const struct pll_vco *vco;
1221 	struct clk_hw *parent_hw;
1222 	unsigned long cal_freq, rrate;
1223 	u32 cal_l, val, alpha_width = pll_alpha_width(pll);
1224 	const char *name = clk_hw_get_name(hw);
1225 	u64 a;
1226 	int ret;
1227 
1228 	/* Check if calibration needs to be done i.e. PLL is in reset */
1229 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1230 	if (ret)
1231 		return ret;
1232 
1233 	/* Return early if calibration is not needed. */
1234 	if (val & PLL_RESET_N)
1235 		return 0;
1236 
1237 	vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
1238 	if (!vco) {
1239 		pr_err("%s: alpha pll not in a valid vco range\n", name);
1240 		return -EINVAL;
1241 	}
1242 
1243 	cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
1244 				pll->vco_table[0].max_freq) * 54, 100);
1245 
1246 	parent_hw = clk_hw_get_parent(hw);
1247 	if (!parent_hw)
1248 		return -EINVAL;
1249 
1250 	rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
1251 					&cal_l, &a, alpha_width);
1252 
1253 	ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq);
1254 	if (ret < 0)
1255 		return ret;
1256 
1257 	/* Setup PLL for calibration frequency */
1258 	regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l);
1259 
1260 	/* Bringup the PLL at calibration frequency */
1261 	ret = clk_alpha_pll_enable(hw);
1262 	if (ret) {
1263 		pr_err("%s: alpha pll calibration failed\n", name);
1264 		return ret;
1265 	}
1266 
1267 	clk_alpha_pll_disable(hw);
1268 
1269 	return 0;
1270 }
1271 
1272 const struct clk_ops clk_alpha_pll_fabia_ops = {
1273 	.prepare = alpha_pll_fabia_prepare,
1274 	.enable = alpha_pll_fabia_enable,
1275 	.disable = alpha_pll_fabia_disable,
1276 	.is_enabled = clk_alpha_pll_is_enabled,
1277 	.set_rate = alpha_pll_fabia_set_rate,
1278 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1279 	.round_rate = clk_alpha_pll_round_rate,
1280 };
1281 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1282 
1283 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1284 	.enable = alpha_pll_fabia_enable,
1285 	.disable = alpha_pll_fabia_disable,
1286 	.is_enabled = clk_alpha_pll_is_enabled,
1287 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1288 	.round_rate = clk_alpha_pll_round_rate,
1289 };
1290 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1291 
clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1292 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1293 					unsigned long parent_rate)
1294 {
1295 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1296 	u32 i, div = 1, val;
1297 	int ret;
1298 
1299 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1300 	if (ret)
1301 		return ret;
1302 
1303 	val >>= pll->post_div_shift;
1304 	val &= BIT(pll->width) - 1;
1305 
1306 	for (i = 0; i < pll->num_post_div; i++) {
1307 		if (pll->post_div_table[i].val == val) {
1308 			div = pll->post_div_table[i].div;
1309 			break;
1310 		}
1311 	}
1312 
1313 	return (parent_rate / div);
1314 }
1315 
1316 static unsigned long
clk_trion_pll_postdiv_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1317 clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1318 {
1319 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1320 	struct regmap *regmap = pll->clkr.regmap;
1321 	u32 i, div = 1, val;
1322 
1323 	regmap_read(regmap, PLL_USER_CTL(pll), &val);
1324 
1325 	val >>= pll->post_div_shift;
1326 	val &= PLL_POST_DIV_MASK(pll);
1327 
1328 	for (i = 0; i < pll->num_post_div; i++) {
1329 		if (pll->post_div_table[i].val == val) {
1330 			div = pll->post_div_table[i].div;
1331 			break;
1332 		}
1333 	}
1334 
1335 	return (parent_rate / div);
1336 }
1337 
1338 static long
clk_trion_pll_postdiv_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)1339 clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
1340 				 unsigned long *prate)
1341 {
1342 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1343 
1344 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1345 				  pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1346 };
1347 
1348 static int
clk_trion_pll_postdiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1349 clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1350 			       unsigned long parent_rate)
1351 {
1352 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1353 	struct regmap *regmap = pll->clkr.regmap;
1354 	int i, val = 0, div;
1355 
1356 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1357 	for (i = 0; i < pll->num_post_div; i++) {
1358 		if (pll->post_div_table[i].div == div) {
1359 			val = pll->post_div_table[i].val;
1360 			break;
1361 		}
1362 	}
1363 
1364 	return regmap_update_bits(regmap, PLL_USER_CTL(pll),
1365 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1366 				  val << PLL_POST_DIV_SHIFT);
1367 }
1368 
1369 const struct clk_ops clk_alpha_pll_postdiv_trion_ops = {
1370 	.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
1371 	.round_rate = clk_trion_pll_postdiv_round_rate,
1372 	.set_rate = clk_trion_pll_postdiv_set_rate,
1373 };
1374 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops);
1375 
clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)1376 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1377 				unsigned long rate, unsigned long *prate)
1378 {
1379 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1380 
1381 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1382 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1383 }
1384 
clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1385 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1386 				unsigned long rate, unsigned long parent_rate)
1387 {
1388 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1389 	int i, val = 0, div, ret;
1390 
1391 	/*
1392 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1393 	 * no-operation.
1394 	 */
1395 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1396 	if (ret)
1397 		return ret;
1398 
1399 	if (val & PLL_VOTE_FSM_ENA)
1400 		return 0;
1401 
1402 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1403 	for (i = 0; i < pll->num_post_div; i++) {
1404 		if (pll->post_div_table[i].div == div) {
1405 			val = pll->post_div_table[i].val;
1406 			break;
1407 		}
1408 	}
1409 
1410 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1411 				(BIT(pll->width) - 1) << pll->post_div_shift,
1412 				val << pll->post_div_shift);
1413 }
1414 
1415 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1416 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1417 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1418 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1419 };
1420 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1421 
1422 /**
1423  * clk_trion_pll_configure - configure the trion pll
1424  *
1425  * @pll: clk alpha pll
1426  * @regmap: register map
1427  * @config: configuration to apply for pll
1428  */
clk_trion_pll_configure(struct clk_alpha_pll * pll,struct regmap * regmap,const struct alpha_pll_config * config)1429 void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1430 			     const struct alpha_pll_config *config)
1431 {
1432 	/*
1433 	 * If the bootloader left the PLL enabled it's likely that there are
1434 	 * RCGs that will lock up if we disable the PLL below.
1435 	 */
1436 	if (trion_pll_is_enabled(pll, regmap)) {
1437 		pr_debug("Trion PLL is already enabled, skipping configuration\n");
1438 		return;
1439 	}
1440 
1441 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1442 	regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL);
1443 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1444 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1445 				     config->config_ctl_val);
1446 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1447 				     config->config_ctl_hi_val);
1448 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll),
1449 				     config->config_ctl_hi1_val);
1450 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1451 					config->user_ctl_val);
1452 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1453 					config->user_ctl_hi_val);
1454 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll),
1455 					config->user_ctl_hi1_val);
1456 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1457 					config->test_ctl_val);
1458 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1459 					config->test_ctl_hi_val);
1460 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll),
1461 					config->test_ctl_hi1_val);
1462 
1463 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1464 			   PLL_UPDATE_BYPASS);
1465 
1466 	/* Disable PLL output */
1467 	regmap_update_bits(regmap, PLL_MODE(pll),  PLL_OUTCTRL, 0);
1468 
1469 	/* Set operation mode to OFF */
1470 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1471 
1472 	/* Place the PLL in STANDBY mode */
1473 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1474 }
1475 EXPORT_SYMBOL_GPL(clk_trion_pll_configure);
1476 
1477 /*
1478  * The TRION PLL requires a power-on self-calibration which happens when the
1479  * PLL comes out of reset. Calibrate in case it is not completed.
1480  */
__alpha_pll_trion_prepare(struct clk_hw * hw,u32 pcal_done)1481 static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done)
1482 {
1483 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1484 	u32 val;
1485 	int ret;
1486 
1487 	/* Return early if calibration is not needed. */
1488 	regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val);
1489 	if (val & pcal_done)
1490 		return 0;
1491 
1492 	/* On/off to calibrate */
1493 	ret = clk_trion_pll_enable(hw);
1494 	if (!ret)
1495 		clk_trion_pll_disable(hw);
1496 
1497 	return ret;
1498 }
1499 
alpha_pll_trion_prepare(struct clk_hw * hw)1500 static int alpha_pll_trion_prepare(struct clk_hw *hw)
1501 {
1502 	return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE);
1503 }
1504 
alpha_pll_lucid_prepare(struct clk_hw * hw)1505 static int alpha_pll_lucid_prepare(struct clk_hw *hw)
1506 {
1507 	return __alpha_pll_trion_prepare(hw, LUCID_PCAL_DONE);
1508 }
1509 
__alpha_pll_trion_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate,u32 latch_bit,u32 latch_ack)1510 static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1511 				      unsigned long prate, u32 latch_bit, u32 latch_ack)
1512 {
1513 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1514 	unsigned long rrate;
1515 	u32 val, l, alpha_width = pll_alpha_width(pll);
1516 	u64 a;
1517 	int ret;
1518 
1519 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1520 
1521 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1522 	if (ret < 0)
1523 		return ret;
1524 
1525 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1526 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1527 
1528 	/* Latch the PLL input */
1529 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/* Wait for 2 reference cycles before checking the ACK bit. */
1534 	udelay(1);
1535 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1536 	if (!(val & latch_ack)) {
1537 		pr_err("Lucid PLL latch failed. Output may be unstable!\n");
1538 		return -EINVAL;
1539 	}
1540 
1541 	/* Return the latch input to 0 */
1542 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0);
1543 	if (ret)
1544 		return ret;
1545 
1546 	if (clk_hw_is_enabled(hw)) {
1547 		ret = wait_for_pll_enable_lock(pll);
1548 		if (ret)
1549 			return ret;
1550 	}
1551 
1552 	/* Wait for PLL output to stabilize */
1553 	udelay(100);
1554 	return 0;
1555 }
1556 
alpha_pll_trion_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)1557 static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1558 				    unsigned long prate)
1559 {
1560 	return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH);
1561 }
1562 
1563 const struct clk_ops clk_alpha_pll_trion_ops = {
1564 	.prepare = alpha_pll_trion_prepare,
1565 	.enable = clk_trion_pll_enable,
1566 	.disable = clk_trion_pll_disable,
1567 	.is_enabled = clk_trion_pll_is_enabled,
1568 	.recalc_rate = clk_trion_pll_recalc_rate,
1569 	.round_rate = clk_alpha_pll_round_rate,
1570 	.set_rate = alpha_pll_trion_set_rate,
1571 };
1572 EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops);
1573 
1574 const struct clk_ops clk_alpha_pll_lucid_ops = {
1575 	.prepare = alpha_pll_lucid_prepare,
1576 	.enable = clk_trion_pll_enable,
1577 	.disable = clk_trion_pll_disable,
1578 	.is_enabled = clk_trion_pll_is_enabled,
1579 	.recalc_rate = clk_trion_pll_recalc_rate,
1580 	.round_rate = clk_alpha_pll_round_rate,
1581 	.set_rate = alpha_pll_trion_set_rate,
1582 };
1583 EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
1584 
1585 const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
1586 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1587 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1588 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1589 };
1590 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
1591 
clk_agera_pll_configure(struct clk_alpha_pll * pll,struct regmap * regmap,const struct alpha_pll_config * config)1592 void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1593 			const struct alpha_pll_config *config)
1594 {
1595 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1596 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1597 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1598 							config->user_ctl_val);
1599 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1600 						config->config_ctl_val);
1601 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1602 						config->config_ctl_hi_val);
1603 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1604 						config->test_ctl_val);
1605 	clk_alpha_pll_write_config(regmap,  PLL_TEST_CTL_U(pll),
1606 						config->test_ctl_hi_val);
1607 }
1608 EXPORT_SYMBOL_GPL(clk_agera_pll_configure);
1609 
clk_alpha_pll_agera_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)1610 static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate,
1611 							unsigned long prate)
1612 {
1613 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1614 	u32 l, alpha_width = pll_alpha_width(pll);
1615 	int ret;
1616 	unsigned long rrate;
1617 	u64 a;
1618 
1619 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1620 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1621 	if (ret < 0)
1622 		return ret;
1623 
1624 	/* change L_VAL without having to go through the power on sequence */
1625 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1626 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1627 
1628 	if (clk_hw_is_enabled(hw))
1629 		return wait_for_pll_enable_lock(pll);
1630 
1631 	return 0;
1632 }
1633 
1634 const struct clk_ops clk_alpha_pll_agera_ops = {
1635 	.enable = clk_alpha_pll_enable,
1636 	.disable = clk_alpha_pll_disable,
1637 	.is_enabled = clk_alpha_pll_is_enabled,
1638 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1639 	.round_rate = clk_alpha_pll_round_rate,
1640 	.set_rate = clk_alpha_pll_agera_set_rate,
1641 };
1642 EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops);
1643 
alpha_pll_lucid_5lpe_enable(struct clk_hw * hw)1644 static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw)
1645 {
1646 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1647 	u32 val;
1648 	int ret;
1649 
1650 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1651 	if (ret)
1652 		return ret;
1653 
1654 	/* If in FSM mode, just vote for it */
1655 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1656 		ret = clk_enable_regmap(hw);
1657 		if (ret)
1658 			return ret;
1659 		return wait_for_pll_enable_lock(pll);
1660 	}
1661 
1662 	/* Check if PLL is already enabled, return if enabled */
1663 	ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
1664 	if (ret < 0)
1665 		return ret;
1666 
1667 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1668 	if (ret)
1669 		return ret;
1670 
1671 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
1672 
1673 	ret = wait_for_pll_enable_lock(pll);
1674 	if (ret)
1675 		return ret;
1676 
1677 	/* Enable the PLL outputs */
1678 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
1679 	if (ret)
1680 		return ret;
1681 
1682 	/* Enable the global PLL outputs */
1683 	return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
1684 }
1685 
alpha_pll_lucid_5lpe_disable(struct clk_hw * hw)1686 static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw)
1687 {
1688 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1689 	u32 val;
1690 	int ret;
1691 
1692 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1693 	if (ret)
1694 		return;
1695 
1696 	/* If in FSM mode, just unvote it */
1697 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1698 		clk_disable_regmap(hw);
1699 		return;
1700 	}
1701 
1702 	/* Disable the global PLL output */
1703 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1704 	if (ret)
1705 		return;
1706 
1707 	/* Disable the PLL outputs */
1708 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1709 	if (ret)
1710 		return;
1711 
1712 	/* Place the PLL mode in STANDBY */
1713 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
1714 }
1715 
1716 /*
1717  * The Lucid 5LPE PLL requires a power-on self-calibration which happens
1718  * when the PLL comes out of reset. Calibrate in case it is not completed.
1719  */
alpha_pll_lucid_5lpe_prepare(struct clk_hw * hw)1720 static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw)
1721 {
1722 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1723 	struct clk_hw *p;
1724 	u32 val = 0;
1725 	int ret;
1726 
1727 	/* Return early if calibration is not needed. */
1728 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1729 	if (val & LUCID_5LPE_PCAL_DONE)
1730 		return 0;
1731 
1732 	p = clk_hw_get_parent(hw);
1733 	if (!p)
1734 		return -EINVAL;
1735 
1736 	ret = alpha_pll_lucid_5lpe_enable(hw);
1737 	if (ret)
1738 		return ret;
1739 
1740 	alpha_pll_lucid_5lpe_disable(hw);
1741 
1742 	return 0;
1743 }
1744 
alpha_pll_lucid_5lpe_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)1745 static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate,
1746 					 unsigned long prate)
1747 {
1748 	return __alpha_pll_trion_set_rate(hw, rate, prate,
1749 					  LUCID_5LPE_PLL_LATCH_INPUT,
1750 					  LUCID_5LPE_ALPHA_PLL_ACK_LATCH);
1751 }
1752 
clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1753 static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1754 					       unsigned long parent_rate)
1755 {
1756 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1757 	int i, val = 0, div, ret;
1758 	u32 mask;
1759 
1760 	/*
1761 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1762 	 * no-operation.
1763 	 */
1764 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1765 	if (ret)
1766 		return ret;
1767 
1768 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN)
1769 		return 0;
1770 
1771 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
1772 	for (i = 0; i < pll->num_post_div; i++) {
1773 		if (pll->post_div_table[i].div == div) {
1774 			val = pll->post_div_table[i].val;
1775 			break;
1776 		}
1777 	}
1778 
1779 	mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift);
1780 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1781 				  mask, val << pll->post_div_shift);
1782 }
1783 
1784 const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = {
1785 	.prepare = alpha_pll_lucid_5lpe_prepare,
1786 	.enable = alpha_pll_lucid_5lpe_enable,
1787 	.disable = alpha_pll_lucid_5lpe_disable,
1788 	.is_enabled = clk_trion_pll_is_enabled,
1789 	.recalc_rate = clk_trion_pll_recalc_rate,
1790 	.round_rate = clk_alpha_pll_round_rate,
1791 	.set_rate = alpha_pll_lucid_5lpe_set_rate,
1792 };
1793 EXPORT_SYMBOL(clk_alpha_pll_lucid_5lpe_ops);
1794 
1795 const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = {
1796 	.enable = alpha_pll_lucid_5lpe_enable,
1797 	.disable = alpha_pll_lucid_5lpe_disable,
1798 	.is_enabled = clk_trion_pll_is_enabled,
1799 	.recalc_rate = clk_trion_pll_recalc_rate,
1800 	.round_rate = clk_alpha_pll_round_rate,
1801 };
1802 EXPORT_SYMBOL(clk_alpha_pll_fixed_lucid_5lpe_ops);
1803 
1804 const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = {
1805 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1806 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1807 	.set_rate = clk_lucid_5lpe_pll_postdiv_set_rate,
1808 };
1809 EXPORT_SYMBOL(clk_alpha_pll_postdiv_lucid_5lpe_ops);
1810 
clk_zonda_pll_configure(struct clk_alpha_pll * pll,struct regmap * regmap,const struct alpha_pll_config * config)1811 void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1812 			     const struct alpha_pll_config *config)
1813 {
1814 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1815 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1816 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
1817 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
1818 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
1819 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
1820 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
1821 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val);
1822 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
1823 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
1824 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
1825 
1826 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0);
1827 
1828 	/* Disable PLL output */
1829 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1830 
1831 	/* Set operation mode to OFF */
1832 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1833 
1834 	/* Place the PLL in STANDBY mode */
1835 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1836 }
1837 EXPORT_SYMBOL_GPL(clk_zonda_pll_configure);
1838 
clk_zonda_pll_enable(struct clk_hw * hw)1839 static int clk_zonda_pll_enable(struct clk_hw *hw)
1840 {
1841 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1842 	struct regmap *regmap = pll->clkr.regmap;
1843 	u32 val;
1844 	int ret;
1845 
1846 	regmap_read(regmap, PLL_MODE(pll), &val);
1847 
1848 	/* If in FSM mode, just vote for it */
1849 	if (val & PLL_VOTE_FSM_ENA) {
1850 		ret = clk_enable_regmap(hw);
1851 		if (ret)
1852 			return ret;
1853 		return wait_for_pll_enable_active(pll);
1854 	}
1855 
1856 	/* Get the PLL out of bypass mode */
1857 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL);
1858 
1859 	/*
1860 	 * H/W requires a 1us delay between disabling the bypass and
1861 	 * de-asserting the reset.
1862 	 */
1863 	udelay(1);
1864 
1865 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1866 
1867 	/* Set operation mode to RUN */
1868 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
1869 
1870 	regmap_read(regmap, PLL_TEST_CTL(pll), &val);
1871 
1872 	/* If cfa mode then poll for freq lock */
1873 	if (val & ZONDA_STAY_IN_CFA)
1874 		ret = wait_for_zonda_pll_freq_lock(pll);
1875 	else
1876 		ret = wait_for_pll_enable_lock(pll);
1877 	if (ret)
1878 		return ret;
1879 
1880 	/* Enable the PLL outputs */
1881 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
1882 
1883 	/* Enable the global PLL outputs */
1884 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
1885 
1886 	return 0;
1887 }
1888 
clk_zonda_pll_disable(struct clk_hw * hw)1889 static void clk_zonda_pll_disable(struct clk_hw *hw)
1890 {
1891 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1892 	struct regmap *regmap = pll->clkr.regmap;
1893 	u32 val;
1894 
1895 	regmap_read(regmap, PLL_MODE(pll), &val);
1896 
1897 	/* If in FSM mode, just unvote it */
1898 	if (val & PLL_VOTE_FSM_ENA) {
1899 		clk_disable_regmap(hw);
1900 		return;
1901 	}
1902 
1903 	/* Disable the global PLL output */
1904 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1905 
1906 	/* Disable the PLL outputs */
1907 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0);
1908 
1909 	/* Put the PLL in bypass and reset */
1910 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0);
1911 
1912 	/* Place the PLL mode in OFF state */
1913 	regmap_write(regmap, PLL_OPMODE(pll), 0x0);
1914 }
1915 
clk_zonda_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)1916 static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate,
1917 				  unsigned long prate)
1918 {
1919 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1920 	unsigned long rrate;
1921 	u32 test_ctl_val;
1922 	u32 l, alpha_width = pll_alpha_width(pll);
1923 	u64 a;
1924 	int ret;
1925 
1926 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1927 
1928 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1929 	if (ret < 0)
1930 		return ret;
1931 
1932 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1933 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1934 
1935 	/* Wait before polling for the frequency latch */
1936 	udelay(5);
1937 
1938 	/* Read stay in cfa mode */
1939 	regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
1940 
1941 	/* If cfa mode then poll for freq lock */
1942 	if (test_ctl_val & ZONDA_STAY_IN_CFA)
1943 		ret = wait_for_zonda_pll_freq_lock(pll);
1944 	else
1945 		ret = wait_for_pll_enable_lock(pll);
1946 	if (ret)
1947 		return ret;
1948 
1949 	/* Wait for PLL output to stabilize */
1950 	udelay(100);
1951 	return 0;
1952 }
1953 
1954 const struct clk_ops clk_alpha_pll_zonda_ops = {
1955 	.enable = clk_zonda_pll_enable,
1956 	.disable = clk_zonda_pll_disable,
1957 	.is_enabled = clk_trion_pll_is_enabled,
1958 	.recalc_rate = clk_trion_pll_recalc_rate,
1959 	.round_rate = clk_alpha_pll_round_rate,
1960 	.set_rate = clk_zonda_pll_set_rate,
1961 };
1962 EXPORT_SYMBOL(clk_alpha_pll_zonda_ops);
1963