• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 #undef CREATE_TRACE_POINTS
58 #include <trace/hooks/printk.h>
59 #include <trace/hooks/logbuf.h>
60 
61 #include "printk_ringbuffer.h"
62 #include "console_cmdline.h"
63 #include "braille.h"
64 #include "internal.h"
65 
66 int console_printk[4] = {
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
68 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
69 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
70 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
71 };
72 EXPORT_SYMBOL_GPL(console_printk);
73 
74 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
75 EXPORT_SYMBOL(ignore_console_lock_warning);
76 
77 /*
78  * Low level drivers may need that to know if they can schedule in
79  * their unblank() callback or not. So let's export it.
80  */
81 int oops_in_progress;
82 EXPORT_SYMBOL(oops_in_progress);
83 
84 /*
85  * console_sem protects the console_drivers list, and also
86  * provides serialisation for access to the entire console
87  * driver system.
88  */
89 static DEFINE_SEMAPHORE(console_sem);
90 struct console *console_drivers;
91 EXPORT_SYMBOL_GPL(console_drivers);
92 
93 /*
94  * System may need to suppress printk message under certain
95  * circumstances, like after kernel panic happens.
96  */
97 int __read_mostly suppress_printk;
98 
99 #ifdef CONFIG_LOCKDEP
100 static struct lockdep_map console_lock_dep_map = {
101 	.name = "console_lock"
102 };
103 #endif
104 
105 enum devkmsg_log_bits {
106 	__DEVKMSG_LOG_BIT_ON = 0,
107 	__DEVKMSG_LOG_BIT_OFF,
108 	__DEVKMSG_LOG_BIT_LOCK,
109 };
110 
111 enum devkmsg_log_masks {
112 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
113 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
114 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
115 };
116 
117 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
118 #define DEVKMSG_LOG_MASK_DEFAULT	0
119 
120 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 
__control_devkmsg(char * str)122 static int __control_devkmsg(char *str)
123 {
124 	size_t len;
125 
126 	if (!str)
127 		return -EINVAL;
128 
129 	len = str_has_prefix(str, "on");
130 	if (len) {
131 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
132 		return len;
133 	}
134 
135 	len = str_has_prefix(str, "off");
136 	if (len) {
137 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
138 		return len;
139 	}
140 
141 	len = str_has_prefix(str, "ratelimit");
142 	if (len) {
143 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
144 		return len;
145 	}
146 
147 	return -EINVAL;
148 }
149 
control_devkmsg(char * str)150 static int __init control_devkmsg(char *str)
151 {
152 	if (__control_devkmsg(str) < 0) {
153 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
154 		return 1;
155 	}
156 
157 	/*
158 	 * Set sysctl string accordingly:
159 	 */
160 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
161 		strcpy(devkmsg_log_str, "on");
162 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
163 		strcpy(devkmsg_log_str, "off");
164 	/* else "ratelimit" which is set by default. */
165 
166 	/*
167 	 * Sysctl cannot change it anymore. The kernel command line setting of
168 	 * this parameter is to force the setting to be permanent throughout the
169 	 * runtime of the system. This is a precation measure against userspace
170 	 * trying to be a smarta** and attempting to change it up on us.
171 	 */
172 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
173 
174 	return 1;
175 }
176 __setup("printk.devkmsg=", control_devkmsg);
177 
178 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
179 
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)180 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
181 			      void *buffer, size_t *lenp, loff_t *ppos)
182 {
183 	char old_str[DEVKMSG_STR_MAX_SIZE];
184 	unsigned int old;
185 	int err;
186 
187 	if (write) {
188 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
189 			return -EINVAL;
190 
191 		old = devkmsg_log;
192 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
193 	}
194 
195 	err = proc_dostring(table, write, buffer, lenp, ppos);
196 	if (err)
197 		return err;
198 
199 	if (write) {
200 		err = __control_devkmsg(devkmsg_log_str);
201 
202 		/*
203 		 * Do not accept an unknown string OR a known string with
204 		 * trailing crap...
205 		 */
206 		if (err < 0 || (err + 1 != *lenp)) {
207 
208 			/* ... and restore old setting. */
209 			devkmsg_log = old;
210 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
211 
212 			return -EINVAL;
213 		}
214 	}
215 
216 	return 0;
217 }
218 
219 /* Number of registered extended console drivers. */
220 static int nr_ext_console_drivers;
221 
222 /*
223  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
224  * macros instead of functions so that _RET_IP_ contains useful information.
225  */
226 #define down_console_sem() do { \
227 	down(&console_sem);\
228 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
229 } while (0)
230 
__down_trylock_console_sem(unsigned long ip)231 static int __down_trylock_console_sem(unsigned long ip)
232 {
233 	int lock_failed;
234 	unsigned long flags;
235 
236 	/*
237 	 * Here and in __up_console_sem() we need to be in safe mode,
238 	 * because spindump/WARN/etc from under console ->lock will
239 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
240 	 */
241 	printk_safe_enter_irqsave(flags);
242 	lock_failed = down_trylock(&console_sem);
243 	printk_safe_exit_irqrestore(flags);
244 
245 	if (lock_failed)
246 		return 1;
247 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
248 	return 0;
249 }
250 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
251 
__up_console_sem(unsigned long ip)252 static void __up_console_sem(unsigned long ip)
253 {
254 	unsigned long flags;
255 
256 	mutex_release(&console_lock_dep_map, ip);
257 
258 	printk_safe_enter_irqsave(flags);
259 	up(&console_sem);
260 	printk_safe_exit_irqrestore(flags);
261 }
262 #define up_console_sem() __up_console_sem(_RET_IP_)
263 
264 /*
265  * This is used for debugging the mess that is the VT code by
266  * keeping track if we have the console semaphore held. It's
267  * definitely not the perfect debug tool (we don't know if _WE_
268  * hold it and are racing, but it helps tracking those weird code
269  * paths in the console code where we end up in places I want
270  * locked without the console semaphore held).
271  */
272 static int console_locked, console_suspended;
273 
274 /*
275  * If exclusive_console is non-NULL then only this console is to be printed to.
276  */
277 static struct console *exclusive_console;
278 
279 /*
280  *	Array of consoles built from command line options (console=)
281  */
282 
283 #define MAX_CMDLINECONSOLES 8
284 
285 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
286 
287 static int preferred_console = -1;
288 static bool has_preferred_console;
289 int console_set_on_cmdline;
290 EXPORT_SYMBOL(console_set_on_cmdline);
291 
292 /* Flag: console code may call schedule() */
293 static int console_may_schedule;
294 
295 enum con_msg_format_flags {
296 	MSG_FORMAT_DEFAULT	= 0,
297 	MSG_FORMAT_SYSLOG	= (1 << 0),
298 };
299 
300 static int console_msg_format = MSG_FORMAT_DEFAULT;
301 
302 /*
303  * The printk log buffer consists of a sequenced collection of records, each
304  * containing variable length message text. Every record also contains its
305  * own meta-data (@info).
306  *
307  * Every record meta-data carries the timestamp in microseconds, as well as
308  * the standard userspace syslog level and syslog facility. The usual kernel
309  * messages use LOG_KERN; userspace-injected messages always carry a matching
310  * syslog facility, by default LOG_USER. The origin of every message can be
311  * reliably determined that way.
312  *
313  * The human readable log message of a record is available in @text, the
314  * length of the message text in @text_len. The stored message is not
315  * terminated.
316  *
317  * Optionally, a record can carry a dictionary of properties (key/value
318  * pairs), to provide userspace with a machine-readable message context.
319  *
320  * Examples for well-defined, commonly used property names are:
321  *   DEVICE=b12:8               device identifier
322  *                                b12:8         block dev_t
323  *                                c127:3        char dev_t
324  *                                n8            netdev ifindex
325  *                                +sound:card0  subsystem:devname
326  *   SUBSYSTEM=pci              driver-core subsystem name
327  *
328  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
329  * and values are terminated by a '\0' character.
330  *
331  * Example of record values:
332  *   record.text_buf                = "it's a line" (unterminated)
333  *   record.info.seq                = 56
334  *   record.info.ts_nsec            = 36863
335  *   record.info.text_len           = 11
336  *   record.info.facility           = 0 (LOG_KERN)
337  *   record.info.flags              = 0
338  *   record.info.level              = 3 (LOG_ERR)
339  *   record.info.caller_id          = 299 (task 299)
340  *   record.info.dev_info.subsystem = "pci" (terminated)
341  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
342  *
343  * The 'struct printk_info' buffer must never be directly exported to
344  * userspace, it is a kernel-private implementation detail that might
345  * need to be changed in the future, when the requirements change.
346  *
347  * /dev/kmsg exports the structured data in the following line format:
348  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
349  *
350  * Users of the export format should ignore possible additional values
351  * separated by ',', and find the message after the ';' character.
352  *
353  * The optional key/value pairs are attached as continuation lines starting
354  * with a space character and terminated by a newline. All possible
355  * non-prinatable characters are escaped in the "\xff" notation.
356  */
357 
358 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
359 static DEFINE_MUTEX(syslog_lock);
360 
361 #ifdef CONFIG_PRINTK
362 DECLARE_WAIT_QUEUE_HEAD(log_wait);
363 /* All 3 protected by @syslog_lock. */
364 /* the next printk record to read by syslog(READ) or /proc/kmsg */
365 static u64 syslog_seq;
366 static size_t syslog_partial;
367 static bool syslog_time;
368 
369 /* All 3 protected by @console_sem. */
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u64 exclusive_console_stop_seq;
373 static unsigned long console_dropped;
374 
375 struct latched_seq {
376 	seqcount_latch_t	latch;
377 	u64			val[2];
378 };
379 
380 /*
381  * The next printk record to read after the last 'clear' command. There are
382  * two copies (updated with seqcount_latch) so that reads can locklessly
383  * access a valid value. Writers are synchronized by @syslog_lock.
384  */
385 static struct latched_seq clear_seq = {
386 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
387 	.val[0]		= 0,
388 	.val[1]		= 0,
389 };
390 
391 #ifdef CONFIG_PRINTK_CALLER
392 #define PREFIX_MAX		48
393 #else
394 #define PREFIX_MAX		32
395 #endif
396 
397 /* the maximum size of a formatted record (i.e. with prefix added per line) */
398 #define CONSOLE_LOG_MAX		1024
399 
400 /* the maximum size allowed to be reserved for a record */
401 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
402 
403 #define LOG_LEVEL(v)		((v) & 0x07)
404 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
405 
406 /* record buffer */
407 #define LOG_ALIGN __alignof__(unsigned long)
408 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
409 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
410 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
411 static char *log_buf = __log_buf;
412 static u32 log_buf_len = __LOG_BUF_LEN;
413 
414 /*
415  * Define the average message size. This only affects the number of
416  * descriptors that will be available. Underestimating is better than
417  * overestimating (too many available descriptors is better than not enough).
418  */
419 #define PRB_AVGBITS 5	/* 32 character average length */
420 
421 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
422 #error CONFIG_LOG_BUF_SHIFT value too small.
423 #endif
424 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
425 		 PRB_AVGBITS, &__log_buf[0]);
426 
427 static struct printk_ringbuffer printk_rb_dynamic;
428 
429 static struct printk_ringbuffer *prb = &printk_rb_static;
430 
431 /*
432  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
433  * per_cpu_areas are initialised. This variable is set to true when
434  * it's safe to access per-CPU data.
435  */
436 static bool __printk_percpu_data_ready __read_mostly;
437 
printk_percpu_data_ready(void)438 bool printk_percpu_data_ready(void)
439 {
440 	return __printk_percpu_data_ready;
441 }
442 
443 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)444 static void latched_seq_write(struct latched_seq *ls, u64 val)
445 {
446 	raw_write_seqcount_latch(&ls->latch);
447 	ls->val[0] = val;
448 	raw_write_seqcount_latch(&ls->latch);
449 	ls->val[1] = val;
450 }
451 
452 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)453 static u64 latched_seq_read_nolock(struct latched_seq *ls)
454 {
455 	unsigned int seq;
456 	unsigned int idx;
457 	u64 val;
458 
459 	do {
460 		seq = raw_read_seqcount_latch(&ls->latch);
461 		idx = seq & 0x1;
462 		val = ls->val[idx];
463 	} while (read_seqcount_latch_retry(&ls->latch, seq));
464 
465 	return val;
466 }
467 
468 /* Return log buffer address */
log_buf_addr_get(void)469 char *log_buf_addr_get(void)
470 {
471 	return log_buf;
472 }
473 
474 /* Return log buffer size */
log_buf_len_get(void)475 u32 log_buf_len_get(void)
476 {
477 	return log_buf_len;
478 }
479 
480 /*
481  * Define how much of the log buffer we could take at maximum. The value
482  * must be greater than two. Note that only half of the buffer is available
483  * when the index points to the middle.
484  */
485 #define MAX_LOG_TAKE_PART 4
486 static const char trunc_msg[] = "<truncated>";
487 
truncate_msg(u16 * text_len,u16 * trunc_msg_len)488 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
489 {
490 	/*
491 	 * The message should not take the whole buffer. Otherwise, it might
492 	 * get removed too soon.
493 	 */
494 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
495 
496 	if (*text_len > max_text_len)
497 		*text_len = max_text_len;
498 
499 	/* enable the warning message (if there is room) */
500 	*trunc_msg_len = strlen(trunc_msg);
501 	if (*text_len >= *trunc_msg_len)
502 		*text_len -= *trunc_msg_len;
503 	else
504 		*trunc_msg_len = 0;
505 }
506 
507 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
508 
syslog_action_restricted(int type)509 static int syslog_action_restricted(int type)
510 {
511 	if (dmesg_restrict)
512 		return 1;
513 	/*
514 	 * Unless restricted, we allow "read all" and "get buffer size"
515 	 * for everybody.
516 	 */
517 	return type != SYSLOG_ACTION_READ_ALL &&
518 	       type != SYSLOG_ACTION_SIZE_BUFFER;
519 }
520 
check_syslog_permissions(int type,int source)521 static int check_syslog_permissions(int type, int source)
522 {
523 	/*
524 	 * If this is from /proc/kmsg and we've already opened it, then we've
525 	 * already done the capabilities checks at open time.
526 	 */
527 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
528 		goto ok;
529 
530 	if (syslog_action_restricted(type)) {
531 		if (capable(CAP_SYSLOG))
532 			goto ok;
533 		/*
534 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
535 		 * a warning.
536 		 */
537 		if (capable(CAP_SYS_ADMIN)) {
538 			pr_warn_once("%s (%d): Attempt to access syslog with "
539 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
540 				     "(deprecated).\n",
541 				 current->comm, task_pid_nr(current));
542 			goto ok;
543 		}
544 		return -EPERM;
545 	}
546 ok:
547 	return security_syslog(type);
548 }
549 
append_char(char ** pp,char * e,char c)550 static void append_char(char **pp, char *e, char c)
551 {
552 	if (*pp < e)
553 		*(*pp)++ = c;
554 }
555 
info_print_ext_header(char * buf,size_t size,struct printk_info * info)556 static ssize_t info_print_ext_header(char *buf, size_t size,
557 				     struct printk_info *info)
558 {
559 	u64 ts_usec = info->ts_nsec;
560 	char caller[20];
561 #ifdef CONFIG_PRINTK_CALLER
562 	int vh_ret = 0;
563 	u32 id = info->caller_id;
564 
565 	trace_android_vh_printk_ext_header(caller, sizeof(caller), id, &vh_ret);
566 
567 	if (!vh_ret)
568 		snprintf(caller, sizeof(caller), ",caller=%c%u",
569 			 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
570 #else
571 	caller[0] = '\0';
572 #endif
573 
574 	do_div(ts_usec, 1000);
575 
576 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
577 			 (info->facility << 3) | info->level, info->seq,
578 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
579 }
580 
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)581 static ssize_t msg_add_ext_text(char *buf, size_t size,
582 				const char *text, size_t text_len,
583 				unsigned char endc)
584 {
585 	char *p = buf, *e = buf + size;
586 	size_t i;
587 
588 	/* escape non-printable characters */
589 	for (i = 0; i < text_len; i++) {
590 		unsigned char c = text[i];
591 
592 		if (c < ' ' || c >= 127 || c == '\\')
593 			p += scnprintf(p, e - p, "\\x%02x", c);
594 		else
595 			append_char(&p, e, c);
596 	}
597 	append_char(&p, e, endc);
598 
599 	return p - buf;
600 }
601 
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)602 static ssize_t msg_add_dict_text(char *buf, size_t size,
603 				 const char *key, const char *val)
604 {
605 	size_t val_len = strlen(val);
606 	ssize_t len;
607 
608 	if (!val_len)
609 		return 0;
610 
611 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
612 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
613 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
614 
615 	return len;
616 }
617 
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)618 static ssize_t msg_print_ext_body(char *buf, size_t size,
619 				  char *text, size_t text_len,
620 				  struct dev_printk_info *dev_info)
621 {
622 	ssize_t len;
623 
624 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
625 
626 	if (!dev_info)
627 		goto out;
628 
629 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
630 				 dev_info->subsystem);
631 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
632 				 dev_info->device);
633 out:
634 	return len;
635 }
636 
637 /* /dev/kmsg - userspace message inject/listen interface */
638 struct devkmsg_user {
639 	atomic64_t seq;
640 	struct ratelimit_state rs;
641 	struct mutex lock;
642 	char buf[CONSOLE_EXT_LOG_MAX];
643 
644 	struct printk_info info;
645 	char text_buf[CONSOLE_EXT_LOG_MAX];
646 	struct printk_record record;
647 };
648 
649 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)650 int devkmsg_emit(int facility, int level, const char *fmt, ...)
651 {
652 	va_list args;
653 	int r;
654 
655 	va_start(args, fmt);
656 	r = vprintk_emit(facility, level, NULL, fmt, args);
657 	va_end(args);
658 
659 	return r;
660 }
661 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)662 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
663 {
664 	char *buf, *line;
665 	int level = default_message_loglevel;
666 	int facility = 1;	/* LOG_USER */
667 	struct file *file = iocb->ki_filp;
668 	struct devkmsg_user *user = file->private_data;
669 	size_t len = iov_iter_count(from);
670 	ssize_t ret = len;
671 
672 	if (!user || len > LOG_LINE_MAX)
673 		return -EINVAL;
674 
675 	/* Ignore when user logging is disabled. */
676 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
677 		return len;
678 
679 	/* Ratelimit when not explicitly enabled. */
680 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
681 		if (!___ratelimit(&user->rs, current->comm))
682 			return ret;
683 	}
684 
685 	buf = kmalloc(len+1, GFP_KERNEL);
686 	if (buf == NULL)
687 		return -ENOMEM;
688 
689 	buf[len] = '\0';
690 	if (!copy_from_iter_full(buf, len, from)) {
691 		kfree(buf);
692 		return -EFAULT;
693 	}
694 
695 	/*
696 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
697 	 * the decimal value represents 32bit, the lower 3 bit are the log
698 	 * level, the rest are the log facility.
699 	 *
700 	 * If no prefix or no userspace facility is specified, we
701 	 * enforce LOG_USER, to be able to reliably distinguish
702 	 * kernel-generated messages from userspace-injected ones.
703 	 */
704 	line = buf;
705 	if (line[0] == '<') {
706 		char *endp = NULL;
707 		unsigned int u;
708 
709 		u = simple_strtoul(line + 1, &endp, 10);
710 		if (endp && endp[0] == '>') {
711 			level = LOG_LEVEL(u);
712 			if (LOG_FACILITY(u) != 0)
713 				facility = LOG_FACILITY(u);
714 			endp++;
715 			line = endp;
716 		}
717 	}
718 
719 	devkmsg_emit(facility, level, "%s", line);
720 	kfree(buf);
721 	return ret;
722 }
723 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)724 static ssize_t devkmsg_read(struct file *file, char __user *buf,
725 			    size_t count, loff_t *ppos)
726 {
727 	struct devkmsg_user *user = file->private_data;
728 	struct printk_record *r = &user->record;
729 	size_t len;
730 	ssize_t ret;
731 
732 	if (!user)
733 		return -EBADF;
734 
735 	ret = mutex_lock_interruptible(&user->lock);
736 	if (ret)
737 		return ret;
738 
739 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
740 		if (file->f_flags & O_NONBLOCK) {
741 			ret = -EAGAIN;
742 			goto out;
743 		}
744 
745 		/*
746 		 * Guarantee this task is visible on the waitqueue before
747 		 * checking the wake condition.
748 		 *
749 		 * The full memory barrier within set_current_state() of
750 		 * prepare_to_wait_event() pairs with the full memory barrier
751 		 * within wq_has_sleeper().
752 		 *
753 		 * This pairs with __wake_up_klogd:A.
754 		 */
755 		ret = wait_event_interruptible(log_wait,
756 				prb_read_valid(prb,
757 					atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
758 		if (ret)
759 			goto out;
760 	}
761 
762 	if (r->info->seq != atomic64_read(&user->seq)) {
763 		/* our last seen message is gone, return error and reset */
764 		atomic64_set(&user->seq, r->info->seq);
765 		ret = -EPIPE;
766 		goto out;
767 	}
768 
769 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
770 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
771 				  &r->text_buf[0], r->info->text_len,
772 				  &r->info->dev_info);
773 
774 	atomic64_set(&user->seq, r->info->seq + 1);
775 
776 	if (len > count) {
777 		ret = -EINVAL;
778 		goto out;
779 	}
780 
781 	if (copy_to_user(buf, user->buf, len)) {
782 		ret = -EFAULT;
783 		goto out;
784 	}
785 	ret = len;
786 out:
787 	mutex_unlock(&user->lock);
788 	return ret;
789 }
790 
791 /*
792  * Be careful when modifying this function!!!
793  *
794  * Only few operations are supported because the device works only with the
795  * entire variable length messages (records). Non-standard values are
796  * returned in the other cases and has been this way for quite some time.
797  * User space applications might depend on this behavior.
798  */
devkmsg_llseek(struct file * file,loff_t offset,int whence)799 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
800 {
801 	struct devkmsg_user *user = file->private_data;
802 	loff_t ret = 0;
803 
804 	if (!user)
805 		return -EBADF;
806 	if (offset)
807 		return -ESPIPE;
808 
809 	switch (whence) {
810 	case SEEK_SET:
811 		/* the first record */
812 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
813 		break;
814 	case SEEK_DATA:
815 		/*
816 		 * The first record after the last SYSLOG_ACTION_CLEAR,
817 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
818 		 * changes no global state, and does not clear anything.
819 		 */
820 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
821 		break;
822 	case SEEK_END:
823 		/* after the last record */
824 		atomic64_set(&user->seq, prb_next_seq(prb));
825 		break;
826 	default:
827 		ret = -EINVAL;
828 	}
829 	return ret;
830 }
831 
devkmsg_poll(struct file * file,poll_table * wait)832 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
833 {
834 	struct devkmsg_user *user = file->private_data;
835 	struct printk_info info;
836 	__poll_t ret = 0;
837 
838 	if (!user)
839 		return EPOLLERR|EPOLLNVAL;
840 
841 	poll_wait(file, &log_wait, wait);
842 
843 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
844 		/* return error when data has vanished underneath us */
845 		if (info.seq != atomic64_read(&user->seq))
846 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
847 		else
848 			ret = EPOLLIN|EPOLLRDNORM;
849 	}
850 
851 	return ret;
852 }
853 
devkmsg_open(struct inode * inode,struct file * file)854 static int devkmsg_open(struct inode *inode, struct file *file)
855 {
856 	struct devkmsg_user *user;
857 	int err;
858 
859 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
860 		return -EPERM;
861 
862 	/* write-only does not need any file context */
863 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
864 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
865 					       SYSLOG_FROM_READER);
866 		if (err)
867 			return err;
868 	}
869 
870 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
871 	if (!user)
872 		return -ENOMEM;
873 
874 	ratelimit_default_init(&user->rs);
875 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
876 
877 	mutex_init(&user->lock);
878 
879 	prb_rec_init_rd(&user->record, &user->info,
880 			&user->text_buf[0], sizeof(user->text_buf));
881 
882 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
883 
884 	file->private_data = user;
885 	return 0;
886 }
887 
devkmsg_release(struct inode * inode,struct file * file)888 static int devkmsg_release(struct inode *inode, struct file *file)
889 {
890 	struct devkmsg_user *user = file->private_data;
891 
892 	if (!user)
893 		return 0;
894 
895 	ratelimit_state_exit(&user->rs);
896 
897 	mutex_destroy(&user->lock);
898 	kfree(user);
899 	return 0;
900 }
901 
902 const struct file_operations kmsg_fops = {
903 	.open = devkmsg_open,
904 	.read = devkmsg_read,
905 	.write_iter = devkmsg_write,
906 	.llseek = devkmsg_llseek,
907 	.poll = devkmsg_poll,
908 	.release = devkmsg_release,
909 };
910 
911 #ifdef CONFIG_CRASH_CORE
912 /*
913  * This appends the listed symbols to /proc/vmcore
914  *
915  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
916  * obtain access to symbols that are otherwise very difficult to locate.  These
917  * symbols are specifically used so that utilities can access and extract the
918  * dmesg log from a vmcore file after a crash.
919  */
log_buf_vmcoreinfo_setup(void)920 void log_buf_vmcoreinfo_setup(void)
921 {
922 	struct dev_printk_info *dev_info = NULL;
923 
924 	VMCOREINFO_SYMBOL(prb);
925 	VMCOREINFO_SYMBOL(printk_rb_static);
926 	VMCOREINFO_SYMBOL(clear_seq);
927 
928 	/*
929 	 * Export struct size and field offsets. User space tools can
930 	 * parse it and detect any changes to structure down the line.
931 	 */
932 
933 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
934 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
935 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
936 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
937 
938 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
939 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
940 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
941 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
942 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
943 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
944 
945 	VMCOREINFO_STRUCT_SIZE(prb_desc);
946 	VMCOREINFO_OFFSET(prb_desc, state_var);
947 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
948 
949 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
950 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
951 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
952 
953 	VMCOREINFO_STRUCT_SIZE(printk_info);
954 	VMCOREINFO_OFFSET(printk_info, seq);
955 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
956 	VMCOREINFO_OFFSET(printk_info, text_len);
957 	VMCOREINFO_OFFSET(printk_info, caller_id);
958 	VMCOREINFO_OFFSET(printk_info, dev_info);
959 
960 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
961 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
962 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
963 	VMCOREINFO_OFFSET(dev_printk_info, device);
964 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
965 
966 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
967 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
968 	VMCOREINFO_OFFSET(prb_data_ring, data);
969 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
970 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
971 
972 	VMCOREINFO_SIZE(atomic_long_t);
973 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
974 
975 	VMCOREINFO_STRUCT_SIZE(latched_seq);
976 	VMCOREINFO_OFFSET(latched_seq, val);
977 }
978 #endif
979 
980 /* requested log_buf_len from kernel cmdline */
981 static unsigned long __initdata new_log_buf_len;
982 
983 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)984 static void __init log_buf_len_update(u64 size)
985 {
986 	if (size > (u64)LOG_BUF_LEN_MAX) {
987 		size = (u64)LOG_BUF_LEN_MAX;
988 		pr_err("log_buf over 2G is not supported.\n");
989 	}
990 
991 	if (size)
992 		size = roundup_pow_of_two(size);
993 	if (size > log_buf_len)
994 		new_log_buf_len = (unsigned long)size;
995 }
996 
997 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)998 static int __init log_buf_len_setup(char *str)
999 {
1000 	u64 size;
1001 
1002 	if (!str)
1003 		return -EINVAL;
1004 
1005 	size = memparse(str, &str);
1006 
1007 	log_buf_len_update(size);
1008 
1009 	return 0;
1010 }
1011 early_param("log_buf_len", log_buf_len_setup);
1012 
1013 #ifdef CONFIG_SMP
1014 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1015 
log_buf_add_cpu(void)1016 static void __init log_buf_add_cpu(void)
1017 {
1018 	unsigned int cpu_extra;
1019 
1020 	/*
1021 	 * archs should set up cpu_possible_bits properly with
1022 	 * set_cpu_possible() after setup_arch() but just in
1023 	 * case lets ensure this is valid.
1024 	 */
1025 	if (num_possible_cpus() == 1)
1026 		return;
1027 
1028 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1029 
1030 	/* by default this will only continue through for large > 64 CPUs */
1031 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1032 		return;
1033 
1034 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1035 		__LOG_CPU_MAX_BUF_LEN);
1036 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1037 		cpu_extra);
1038 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1039 
1040 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1041 }
1042 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1043 static inline void log_buf_add_cpu(void) {}
1044 #endif /* CONFIG_SMP */
1045 
set_percpu_data_ready(void)1046 static void __init set_percpu_data_ready(void)
1047 {
1048 	__printk_percpu_data_ready = true;
1049 }
1050 
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1051 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052 				     struct printk_record *r)
1053 {
1054 	struct prb_reserved_entry e;
1055 	struct printk_record dest_r;
1056 
1057 	prb_rec_init_wr(&dest_r, r->info->text_len);
1058 
1059 	if (!prb_reserve(&e, rb, &dest_r))
1060 		return 0;
1061 
1062 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063 	dest_r.info->text_len = r->info->text_len;
1064 	dest_r.info->facility = r->info->facility;
1065 	dest_r.info->level = r->info->level;
1066 	dest_r.info->flags = r->info->flags;
1067 	dest_r.info->ts_nsec = r->info->ts_nsec;
1068 	dest_r.info->caller_id = r->info->caller_id;
1069 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070 
1071 	prb_final_commit(&e);
1072 
1073 	return prb_record_text_space(&e);
1074 }
1075 
1076 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1077 
setup_log_buf(int early)1078 void __init setup_log_buf(int early)
1079 {
1080 	struct printk_info *new_infos;
1081 	unsigned int new_descs_count;
1082 	struct prb_desc *new_descs;
1083 	struct printk_info info;
1084 	struct printk_record r;
1085 	unsigned int text_size;
1086 	size_t new_descs_size;
1087 	size_t new_infos_size;
1088 	unsigned long flags;
1089 	char *new_log_buf;
1090 	unsigned int free;
1091 	u64 seq;
1092 
1093 	/*
1094 	 * Some archs call setup_log_buf() multiple times - first is very
1095 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1096 	 * are initialised.
1097 	 */
1098 	if (!early)
1099 		set_percpu_data_ready();
1100 
1101 	if (log_buf != __log_buf)
1102 		return;
1103 
1104 	if (!early && !new_log_buf_len)
1105 		log_buf_add_cpu();
1106 
1107 	if (!new_log_buf_len)
1108 		return;
1109 
1110 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1111 	if (new_descs_count == 0) {
1112 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1113 		return;
1114 	}
1115 
1116 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1117 	if (unlikely(!new_log_buf)) {
1118 		pr_err("log_buf_len: %lu text bytes not available\n",
1119 		       new_log_buf_len);
1120 		return;
1121 	}
1122 
1123 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1124 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1125 	if (unlikely(!new_descs)) {
1126 		pr_err("log_buf_len: %zu desc bytes not available\n",
1127 		       new_descs_size);
1128 		goto err_free_log_buf;
1129 	}
1130 
1131 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1132 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1133 	if (unlikely(!new_infos)) {
1134 		pr_err("log_buf_len: %zu info bytes not available\n",
1135 		       new_infos_size);
1136 		goto err_free_descs;
1137 	}
1138 
1139 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1140 
1141 	prb_init(&printk_rb_dynamic,
1142 		 new_log_buf, ilog2(new_log_buf_len),
1143 		 new_descs, ilog2(new_descs_count),
1144 		 new_infos);
1145 
1146 	local_irq_save(flags);
1147 
1148 	log_buf_len = new_log_buf_len;
1149 	log_buf = new_log_buf;
1150 	new_log_buf_len = 0;
1151 
1152 	free = __LOG_BUF_LEN;
1153 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1154 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1155 		if (text_size > free)
1156 			free = 0;
1157 		else
1158 			free -= text_size;
1159 	}
1160 
1161 	prb = &printk_rb_dynamic;
1162 
1163 	local_irq_restore(flags);
1164 
1165 	/*
1166 	 * Copy any remaining messages that might have appeared from
1167 	 * NMI context after copying but before switching to the
1168 	 * dynamic buffer.
1169 	 */
1170 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1171 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1172 		if (text_size > free)
1173 			free = 0;
1174 		else
1175 			free -= text_size;
1176 	}
1177 
1178 	if (seq != prb_next_seq(&printk_rb_static)) {
1179 		pr_err("dropped %llu messages\n",
1180 		       prb_next_seq(&printk_rb_static) - seq);
1181 	}
1182 
1183 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1184 	pr_info("early log buf free: %u(%u%%)\n",
1185 		free, (free * 100) / __LOG_BUF_LEN);
1186 	return;
1187 
1188 err_free_descs:
1189 	memblock_free_ptr(new_descs, new_descs_size);
1190 err_free_log_buf:
1191 	memblock_free_ptr(new_log_buf, new_log_buf_len);
1192 }
1193 
1194 static bool __read_mostly ignore_loglevel;
1195 
ignore_loglevel_setup(char * str)1196 static int __init ignore_loglevel_setup(char *str)
1197 {
1198 	ignore_loglevel = true;
1199 	pr_info("debug: ignoring loglevel setting.\n");
1200 
1201 	return 0;
1202 }
1203 
1204 early_param("ignore_loglevel", ignore_loglevel_setup);
1205 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1206 MODULE_PARM_DESC(ignore_loglevel,
1207 		 "ignore loglevel setting (prints all kernel messages to the console)");
1208 
suppress_message_printing(int level)1209 static bool suppress_message_printing(int level)
1210 {
1211 	return (level >= console_loglevel && !ignore_loglevel);
1212 }
1213 
1214 #ifdef CONFIG_BOOT_PRINTK_DELAY
1215 
1216 static int boot_delay; /* msecs delay after each printk during bootup */
1217 static unsigned long long loops_per_msec;	/* based on boot_delay */
1218 
boot_delay_setup(char * str)1219 static int __init boot_delay_setup(char *str)
1220 {
1221 	unsigned long lpj;
1222 
1223 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1224 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1225 
1226 	get_option(&str, &boot_delay);
1227 	if (boot_delay > 10 * 1000)
1228 		boot_delay = 0;
1229 
1230 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1231 		"HZ: %d, loops_per_msec: %llu\n",
1232 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1233 	return 0;
1234 }
1235 early_param("boot_delay", boot_delay_setup);
1236 
boot_delay_msec(int level)1237 static void boot_delay_msec(int level)
1238 {
1239 	unsigned long long k;
1240 	unsigned long timeout;
1241 
1242 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1243 		|| suppress_message_printing(level)) {
1244 		return;
1245 	}
1246 
1247 	k = (unsigned long long)loops_per_msec * boot_delay;
1248 
1249 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1250 	while (k) {
1251 		k--;
1252 		cpu_relax();
1253 		/*
1254 		 * use (volatile) jiffies to prevent
1255 		 * compiler reduction; loop termination via jiffies
1256 		 * is secondary and may or may not happen.
1257 		 */
1258 		if (time_after(jiffies, timeout))
1259 			break;
1260 		touch_nmi_watchdog();
1261 	}
1262 }
1263 #else
boot_delay_msec(int level)1264 static inline void boot_delay_msec(int level)
1265 {
1266 }
1267 #endif
1268 
1269 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1270 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1271 
print_syslog(unsigned int level,char * buf)1272 static size_t print_syslog(unsigned int level, char *buf)
1273 {
1274 	return sprintf(buf, "<%u>", level);
1275 }
1276 
print_time(u64 ts,char * buf)1277 static size_t print_time(u64 ts, char *buf)
1278 {
1279 	unsigned long rem_nsec = do_div(ts, 1000000000);
1280 
1281 	return sprintf(buf, "[%5lu.%06lu]",
1282 		       (unsigned long)ts, rem_nsec / 1000);
1283 }
1284 
1285 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1286 static size_t print_caller(u32 id, char *buf)
1287 {
1288 	char caller[12];
1289 	int vh_ret = 0;
1290 
1291 	trace_android_vh_printk_caller(caller, sizeof(caller), id, &vh_ret);
1292 	if (!vh_ret)
1293 		snprintf(caller, sizeof(caller), "%c%u",
1294 			 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1295 	return sprintf(buf, "[%6s]", caller);
1296 }
1297 #else
1298 #define print_caller(id, buf) 0
1299 #endif
1300 
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1301 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1302 				bool time, char *buf)
1303 {
1304 	size_t len = 0;
1305 
1306 	if (syslog)
1307 		len = print_syslog((info->facility << 3) | info->level, buf);
1308 
1309 	if (time)
1310 		len += print_time(info->ts_nsec, buf + len);
1311 
1312 	len += print_caller(info->caller_id, buf + len);
1313 
1314 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1315 		buf[len++] = ' ';
1316 		buf[len] = '\0';
1317 	}
1318 
1319 	return len;
1320 }
1321 
1322 /*
1323  * Prepare the record for printing. The text is shifted within the given
1324  * buffer to avoid a need for another one. The following operations are
1325  * done:
1326  *
1327  *   - Add prefix for each line.
1328  *   - Drop truncated lines that no longer fit into the buffer.
1329  *   - Add the trailing newline that has been removed in vprintk_store().
1330  *   - Add a string terminator.
1331  *
1332  * Since the produced string is always terminated, the maximum possible
1333  * return value is @r->text_buf_size - 1;
1334  *
1335  * Return: The length of the updated/prepared text, including the added
1336  * prefixes and the newline. The terminator is not counted. The dropped
1337  * line(s) are not counted.
1338  */
record_print_text(struct printk_record * r,bool syslog,bool time)1339 static size_t record_print_text(struct printk_record *r, bool syslog,
1340 				bool time)
1341 {
1342 	size_t text_len = r->info->text_len;
1343 	size_t buf_size = r->text_buf_size;
1344 	char *text = r->text_buf;
1345 	char prefix[PREFIX_MAX];
1346 	bool truncated = false;
1347 	size_t prefix_len;
1348 	size_t line_len;
1349 	size_t len = 0;
1350 	char *next;
1351 
1352 	/*
1353 	 * If the message was truncated because the buffer was not large
1354 	 * enough, treat the available text as if it were the full text.
1355 	 */
1356 	if (text_len > buf_size)
1357 		text_len = buf_size;
1358 
1359 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1360 
1361 	/*
1362 	 * @text_len: bytes of unprocessed text
1363 	 * @line_len: bytes of current line _without_ newline
1364 	 * @text:     pointer to beginning of current line
1365 	 * @len:      number of bytes prepared in r->text_buf
1366 	 */
1367 	for (;;) {
1368 		next = memchr(text, '\n', text_len);
1369 		if (next) {
1370 			line_len = next - text;
1371 		} else {
1372 			/* Drop truncated line(s). */
1373 			if (truncated)
1374 				break;
1375 			line_len = text_len;
1376 		}
1377 
1378 		/*
1379 		 * Truncate the text if there is not enough space to add the
1380 		 * prefix and a trailing newline and a terminator.
1381 		 */
1382 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1383 			/* Drop even the current line if no space. */
1384 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1385 				break;
1386 
1387 			text_len = buf_size - len - prefix_len - 1 - 1;
1388 			truncated = true;
1389 		}
1390 
1391 		memmove(text + prefix_len, text, text_len);
1392 		memcpy(text, prefix, prefix_len);
1393 
1394 		/*
1395 		 * Increment the prepared length to include the text and
1396 		 * prefix that were just moved+copied. Also increment for the
1397 		 * newline at the end of this line. If this is the last line,
1398 		 * there is no newline, but it will be added immediately below.
1399 		 */
1400 		len += prefix_len + line_len + 1;
1401 		if (text_len == line_len) {
1402 			/*
1403 			 * This is the last line. Add the trailing newline
1404 			 * removed in vprintk_store().
1405 			 */
1406 			text[prefix_len + line_len] = '\n';
1407 			break;
1408 		}
1409 
1410 		/*
1411 		 * Advance beyond the added prefix and the related line with
1412 		 * its newline.
1413 		 */
1414 		text += prefix_len + line_len + 1;
1415 
1416 		/*
1417 		 * The remaining text has only decreased by the line with its
1418 		 * newline.
1419 		 *
1420 		 * Note that @text_len can become zero. It happens when @text
1421 		 * ended with a newline (either due to truncation or the
1422 		 * original string ending with "\n\n"). The loop is correctly
1423 		 * repeated and (if not truncated) an empty line with a prefix
1424 		 * will be prepared.
1425 		 */
1426 		text_len -= line_len + 1;
1427 	}
1428 
1429 	/*
1430 	 * If a buffer was provided, it will be terminated. Space for the
1431 	 * string terminator is guaranteed to be available. The terminator is
1432 	 * not counted in the return value.
1433 	 */
1434 	if (buf_size > 0)
1435 		r->text_buf[len] = 0;
1436 
1437 	return len;
1438 }
1439 
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1440 static size_t get_record_print_text_size(struct printk_info *info,
1441 					 unsigned int line_count,
1442 					 bool syslog, bool time)
1443 {
1444 	char prefix[PREFIX_MAX];
1445 	size_t prefix_len;
1446 
1447 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1448 
1449 	/*
1450 	 * Each line will be preceded with a prefix. The intermediate
1451 	 * newlines are already within the text, but a final trailing
1452 	 * newline will be added.
1453 	 */
1454 	return ((prefix_len * line_count) + info->text_len + 1);
1455 }
1456 
1457 /*
1458  * Beginning with @start_seq, find the first record where it and all following
1459  * records up to (but not including) @max_seq fit into @size.
1460  *
1461  * @max_seq is simply an upper bound and does not need to exist. If the caller
1462  * does not require an upper bound, -1 can be used for @max_seq.
1463  */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1464 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1465 				  bool syslog, bool time)
1466 {
1467 	struct printk_info info;
1468 	unsigned int line_count;
1469 	size_t len = 0;
1470 	u64 seq;
1471 
1472 	/* Determine the size of the records up to @max_seq. */
1473 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1474 		if (info.seq >= max_seq)
1475 			break;
1476 		len += get_record_print_text_size(&info, line_count, syslog, time);
1477 	}
1478 
1479 	/*
1480 	 * Adjust the upper bound for the next loop to avoid subtracting
1481 	 * lengths that were never added.
1482 	 */
1483 	if (seq < max_seq)
1484 		max_seq = seq;
1485 
1486 	/*
1487 	 * Move first record forward until length fits into the buffer. Ignore
1488 	 * newest messages that were not counted in the above cycle. Messages
1489 	 * might appear and get lost in the meantime. This is a best effort
1490 	 * that prevents an infinite loop that could occur with a retry.
1491 	 */
1492 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1493 		if (len <= size || info.seq >= max_seq)
1494 			break;
1495 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1496 	}
1497 
1498 	return seq;
1499 }
1500 
1501 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1502 static int syslog_print(char __user *buf, int size)
1503 {
1504 	struct printk_info info;
1505 	struct printk_record r;
1506 	char *text;
1507 	int len = 0;
1508 	u64 seq;
1509 
1510 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1511 	if (!text)
1512 		return -ENOMEM;
1513 
1514 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1515 
1516 	mutex_lock(&syslog_lock);
1517 
1518 	/*
1519 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1520 	 * change while waiting.
1521 	 */
1522 	do {
1523 		seq = syslog_seq;
1524 
1525 		mutex_unlock(&syslog_lock);
1526 		/*
1527 		 * Guarantee this task is visible on the waitqueue before
1528 		 * checking the wake condition.
1529 		 *
1530 		 * The full memory barrier within set_current_state() of
1531 		 * prepare_to_wait_event() pairs with the full memory barrier
1532 		 * within wq_has_sleeper().
1533 		 *
1534 		 * This pairs with __wake_up_klogd:A.
1535 		 */
1536 		len = wait_event_interruptible(log_wait,
1537 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1538 		mutex_lock(&syslog_lock);
1539 
1540 		if (len)
1541 			goto out;
1542 	} while (syslog_seq != seq);
1543 
1544 	/*
1545 	 * Copy records that fit into the buffer. The above cycle makes sure
1546 	 * that the first record is always available.
1547 	 */
1548 	do {
1549 		size_t n;
1550 		size_t skip;
1551 		int err;
1552 
1553 		if (!prb_read_valid(prb, syslog_seq, &r))
1554 			break;
1555 
1556 		if (r.info->seq != syslog_seq) {
1557 			/* message is gone, move to next valid one */
1558 			syslog_seq = r.info->seq;
1559 			syslog_partial = 0;
1560 		}
1561 
1562 		/*
1563 		 * To keep reading/counting partial line consistent,
1564 		 * use printk_time value as of the beginning of a line.
1565 		 */
1566 		if (!syslog_partial)
1567 			syslog_time = printk_time;
1568 
1569 		skip = syslog_partial;
1570 		n = record_print_text(&r, true, syslog_time);
1571 		if (n - syslog_partial <= size) {
1572 			/* message fits into buffer, move forward */
1573 			syslog_seq = r.info->seq + 1;
1574 			n -= syslog_partial;
1575 			syslog_partial = 0;
1576 		} else if (!len){
1577 			/* partial read(), remember position */
1578 			n = size;
1579 			syslog_partial += n;
1580 		} else
1581 			n = 0;
1582 
1583 		if (!n)
1584 			break;
1585 
1586 		mutex_unlock(&syslog_lock);
1587 		err = copy_to_user(buf, text + skip, n);
1588 		mutex_lock(&syslog_lock);
1589 
1590 		if (err) {
1591 			if (!len)
1592 				len = -EFAULT;
1593 			break;
1594 		}
1595 
1596 		len += n;
1597 		size -= n;
1598 		buf += n;
1599 	} while (size);
1600 out:
1601 	mutex_unlock(&syslog_lock);
1602 	kfree(text);
1603 	return len;
1604 }
1605 
syslog_print_all(char __user * buf,int size,bool clear)1606 static int syslog_print_all(char __user *buf, int size, bool clear)
1607 {
1608 	struct printk_info info;
1609 	struct printk_record r;
1610 	char *text;
1611 	int len = 0;
1612 	u64 seq;
1613 	bool time;
1614 
1615 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1616 	if (!text)
1617 		return -ENOMEM;
1618 
1619 	time = printk_time;
1620 	/*
1621 	 * Find first record that fits, including all following records,
1622 	 * into the user-provided buffer for this dump.
1623 	 */
1624 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1625 				     size, true, time);
1626 
1627 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1628 
1629 	len = 0;
1630 	prb_for_each_record(seq, prb, seq, &r) {
1631 		int textlen;
1632 
1633 		textlen = record_print_text(&r, true, time);
1634 
1635 		if (len + textlen > size) {
1636 			seq--;
1637 			break;
1638 		}
1639 
1640 		if (copy_to_user(buf + len, text, textlen))
1641 			len = -EFAULT;
1642 		else
1643 			len += textlen;
1644 
1645 		if (len < 0)
1646 			break;
1647 	}
1648 
1649 	if (clear) {
1650 		mutex_lock(&syslog_lock);
1651 		latched_seq_write(&clear_seq, seq);
1652 		mutex_unlock(&syslog_lock);
1653 	}
1654 
1655 	kfree(text);
1656 	return len;
1657 }
1658 
syslog_clear(void)1659 static void syslog_clear(void)
1660 {
1661 	mutex_lock(&syslog_lock);
1662 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1663 	mutex_unlock(&syslog_lock);
1664 }
1665 
do_syslog(int type,char __user * buf,int len,int source)1666 int do_syslog(int type, char __user *buf, int len, int source)
1667 {
1668 	struct printk_info info;
1669 	bool clear = false;
1670 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1671 	int error;
1672 
1673 	error = check_syslog_permissions(type, source);
1674 	if (error)
1675 		return error;
1676 
1677 	switch (type) {
1678 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1679 		break;
1680 	case SYSLOG_ACTION_OPEN:	/* Open log */
1681 		break;
1682 	case SYSLOG_ACTION_READ:	/* Read from log */
1683 		if (!buf || len < 0)
1684 			return -EINVAL;
1685 		if (!len)
1686 			return 0;
1687 		if (!access_ok(buf, len))
1688 			return -EFAULT;
1689 		error = syslog_print(buf, len);
1690 		break;
1691 	/* Read/clear last kernel messages */
1692 	case SYSLOG_ACTION_READ_CLEAR:
1693 		clear = true;
1694 		fallthrough;
1695 	/* Read last kernel messages */
1696 	case SYSLOG_ACTION_READ_ALL:
1697 		if (!buf || len < 0)
1698 			return -EINVAL;
1699 		if (!len)
1700 			return 0;
1701 		if (!access_ok(buf, len))
1702 			return -EFAULT;
1703 		error = syslog_print_all(buf, len, clear);
1704 		break;
1705 	/* Clear ring buffer */
1706 	case SYSLOG_ACTION_CLEAR:
1707 		syslog_clear();
1708 		break;
1709 	/* Disable logging to console */
1710 	case SYSLOG_ACTION_CONSOLE_OFF:
1711 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1712 			saved_console_loglevel = console_loglevel;
1713 		console_loglevel = minimum_console_loglevel;
1714 		break;
1715 	/* Enable logging to console */
1716 	case SYSLOG_ACTION_CONSOLE_ON:
1717 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1718 			console_loglevel = saved_console_loglevel;
1719 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1720 		}
1721 		break;
1722 	/* Set level of messages printed to console */
1723 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1724 		if (len < 1 || len > 8)
1725 			return -EINVAL;
1726 		if (len < minimum_console_loglevel)
1727 			len = minimum_console_loglevel;
1728 		console_loglevel = len;
1729 		/* Implicitly re-enable logging to console */
1730 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1731 		break;
1732 	/* Number of chars in the log buffer */
1733 	case SYSLOG_ACTION_SIZE_UNREAD:
1734 		mutex_lock(&syslog_lock);
1735 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1736 			/* No unread messages. */
1737 			mutex_unlock(&syslog_lock);
1738 			return 0;
1739 		}
1740 		if (info.seq != syslog_seq) {
1741 			/* messages are gone, move to first one */
1742 			syslog_seq = info.seq;
1743 			syslog_partial = 0;
1744 		}
1745 		if (source == SYSLOG_FROM_PROC) {
1746 			/*
1747 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1748 			 * for pending data, not the size; return the count of
1749 			 * records, not the length.
1750 			 */
1751 			error = prb_next_seq(prb) - syslog_seq;
1752 		} else {
1753 			bool time = syslog_partial ? syslog_time : printk_time;
1754 			unsigned int line_count;
1755 			u64 seq;
1756 
1757 			prb_for_each_info(syslog_seq, prb, seq, &info,
1758 					  &line_count) {
1759 				error += get_record_print_text_size(&info, line_count,
1760 								    true, time);
1761 				time = printk_time;
1762 			}
1763 			error -= syslog_partial;
1764 		}
1765 		mutex_unlock(&syslog_lock);
1766 		break;
1767 	/* Size of the log buffer */
1768 	case SYSLOG_ACTION_SIZE_BUFFER:
1769 		error = log_buf_len;
1770 		break;
1771 	default:
1772 		error = -EINVAL;
1773 		break;
1774 	}
1775 
1776 	return error;
1777 }
1778 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1779 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1780 {
1781 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1782 }
1783 
1784 /*
1785  * Special console_lock variants that help to reduce the risk of soft-lockups.
1786  * They allow to pass console_lock to another printk() call using a busy wait.
1787  */
1788 
1789 #ifdef CONFIG_LOCKDEP
1790 static struct lockdep_map console_owner_dep_map = {
1791 	.name = "console_owner"
1792 };
1793 #endif
1794 
1795 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1796 static struct task_struct *console_owner;
1797 static bool console_waiter;
1798 
1799 /**
1800  * console_lock_spinning_enable - mark beginning of code where another
1801  *	thread might safely busy wait
1802  *
1803  * This basically converts console_lock into a spinlock. This marks
1804  * the section where the console_lock owner can not sleep, because
1805  * there may be a waiter spinning (like a spinlock). Also it must be
1806  * ready to hand over the lock at the end of the section.
1807  */
console_lock_spinning_enable(void)1808 static void console_lock_spinning_enable(void)
1809 {
1810 	raw_spin_lock(&console_owner_lock);
1811 	console_owner = current;
1812 	raw_spin_unlock(&console_owner_lock);
1813 
1814 	/* The waiter may spin on us after setting console_owner */
1815 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1816 }
1817 
1818 /**
1819  * console_lock_spinning_disable_and_check - mark end of code where another
1820  *	thread was able to busy wait and check if there is a waiter
1821  *
1822  * This is called at the end of the section where spinning is allowed.
1823  * It has two functions. First, it is a signal that it is no longer
1824  * safe to start busy waiting for the lock. Second, it checks if
1825  * there is a busy waiter and passes the lock rights to her.
1826  *
1827  * Important: Callers lose the lock if there was a busy waiter.
1828  *	They must not touch items synchronized by console_lock
1829  *	in this case.
1830  *
1831  * Return: 1 if the lock rights were passed, 0 otherwise.
1832  */
console_lock_spinning_disable_and_check(void)1833 static int console_lock_spinning_disable_and_check(void)
1834 {
1835 	int waiter;
1836 
1837 	raw_spin_lock(&console_owner_lock);
1838 	waiter = READ_ONCE(console_waiter);
1839 	console_owner = NULL;
1840 	raw_spin_unlock(&console_owner_lock);
1841 
1842 	if (!waiter) {
1843 		spin_release(&console_owner_dep_map, _THIS_IP_);
1844 		return 0;
1845 	}
1846 
1847 	/* The waiter is now free to continue */
1848 	WRITE_ONCE(console_waiter, false);
1849 
1850 	spin_release(&console_owner_dep_map, _THIS_IP_);
1851 
1852 	/*
1853 	 * Hand off console_lock to waiter. The waiter will perform
1854 	 * the up(). After this, the waiter is the console_lock owner.
1855 	 */
1856 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1857 	return 1;
1858 }
1859 
1860 /**
1861  * console_trylock_spinning - try to get console_lock by busy waiting
1862  *
1863  * This allows to busy wait for the console_lock when the current
1864  * owner is running in specially marked sections. It means that
1865  * the current owner is running and cannot reschedule until it
1866  * is ready to lose the lock.
1867  *
1868  * Return: 1 if we got the lock, 0 othrewise
1869  */
console_trylock_spinning(void)1870 static int console_trylock_spinning(void)
1871 {
1872 	struct task_struct *owner = NULL;
1873 	bool waiter;
1874 	bool spin = false;
1875 	unsigned long flags;
1876 
1877 	if (console_trylock())
1878 		return 1;
1879 
1880 	printk_safe_enter_irqsave(flags);
1881 
1882 	raw_spin_lock(&console_owner_lock);
1883 	owner = READ_ONCE(console_owner);
1884 	waiter = READ_ONCE(console_waiter);
1885 	if (!waiter && owner && owner != current) {
1886 		WRITE_ONCE(console_waiter, true);
1887 		spin = true;
1888 	}
1889 	raw_spin_unlock(&console_owner_lock);
1890 
1891 	/*
1892 	 * If there is an active printk() writing to the
1893 	 * consoles, instead of having it write our data too,
1894 	 * see if we can offload that load from the active
1895 	 * printer, and do some printing ourselves.
1896 	 * Go into a spin only if there isn't already a waiter
1897 	 * spinning, and there is an active printer, and
1898 	 * that active printer isn't us (recursive printk?).
1899 	 */
1900 	if (!spin) {
1901 		printk_safe_exit_irqrestore(flags);
1902 		return 0;
1903 	}
1904 
1905 	/* We spin waiting for the owner to release us */
1906 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1907 	/* Owner will clear console_waiter on hand off */
1908 	while (READ_ONCE(console_waiter))
1909 		cpu_relax();
1910 	spin_release(&console_owner_dep_map, _THIS_IP_);
1911 
1912 	printk_safe_exit_irqrestore(flags);
1913 	/*
1914 	 * The owner passed the console lock to us.
1915 	 * Since we did not spin on console lock, annotate
1916 	 * this as a trylock. Otherwise lockdep will
1917 	 * complain.
1918 	 */
1919 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1920 
1921 	return 1;
1922 }
1923 
1924 /*
1925  * Call the console drivers, asking them to write out
1926  * log_buf[start] to log_buf[end - 1].
1927  * The console_lock must be held.
1928  */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1929 static void call_console_drivers(const char *ext_text, size_t ext_len,
1930 				 const char *text, size_t len)
1931 {
1932 	static char dropped_text[64];
1933 	size_t dropped_len = 0;
1934 	struct console *con;
1935 
1936 	trace_console_rcuidle(text, len);
1937 
1938 	if (!console_drivers)
1939 		return;
1940 
1941 	if (console_dropped) {
1942 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1943 				       "** %lu printk messages dropped **\n",
1944 				       console_dropped);
1945 		console_dropped = 0;
1946 	}
1947 
1948 	for_each_console(con) {
1949 		if (exclusive_console && con != exclusive_console)
1950 			continue;
1951 		if (!(con->flags & CON_ENABLED))
1952 			continue;
1953 		if (!con->write)
1954 			continue;
1955 		if (!cpu_online(smp_processor_id()) &&
1956 		    !(con->flags & CON_ANYTIME))
1957 			continue;
1958 		if (con->flags & CON_EXTENDED)
1959 			con->write(con, ext_text, ext_len);
1960 		else {
1961 			if (dropped_len)
1962 				con->write(con, dropped_text, dropped_len);
1963 			con->write(con, text, len);
1964 		}
1965 	}
1966 }
1967 
1968 /*
1969  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1970  * additional NMI context per CPU is also separately tracked. Until per-CPU
1971  * is available, a separate "early tracking" is performed.
1972  */
1973 static DEFINE_PER_CPU(u8, printk_count);
1974 static u8 printk_count_early;
1975 #ifdef CONFIG_HAVE_NMI
1976 static DEFINE_PER_CPU(u8, printk_count_nmi);
1977 static u8 printk_count_nmi_early;
1978 #endif
1979 
1980 /*
1981  * Recursion is limited to keep the output sane. printk() should not require
1982  * more than 1 level of recursion (allowing, for example, printk() to trigger
1983  * a WARN), but a higher value is used in case some printk-internal errors
1984  * exist, such as the ringbuffer validation checks failing.
1985  */
1986 #define PRINTK_MAX_RECURSION 3
1987 
1988 /*
1989  * Return a pointer to the dedicated counter for the CPU+context of the
1990  * caller.
1991  */
__printk_recursion_counter(void)1992 static u8 *__printk_recursion_counter(void)
1993 {
1994 #ifdef CONFIG_HAVE_NMI
1995 	if (in_nmi()) {
1996 		if (printk_percpu_data_ready())
1997 			return this_cpu_ptr(&printk_count_nmi);
1998 		return &printk_count_nmi_early;
1999 	}
2000 #endif
2001 	if (printk_percpu_data_ready())
2002 		return this_cpu_ptr(&printk_count);
2003 	return &printk_count_early;
2004 }
2005 
2006 /*
2007  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2008  * The caller must check the boolean return value to see if the recursion is
2009  * allowed. On failure, interrupts are not disabled.
2010  *
2011  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2012  * that is passed to printk_exit_irqrestore().
2013  */
2014 #define printk_enter_irqsave(recursion_ptr, flags)	\
2015 ({							\
2016 	bool success = true;				\
2017 							\
2018 	typecheck(u8 *, recursion_ptr);			\
2019 	local_irq_save(flags);				\
2020 	(recursion_ptr) = __printk_recursion_counter();	\
2021 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2022 		local_irq_restore(flags);		\
2023 		success = false;			\
2024 	} else {					\
2025 		(*(recursion_ptr))++;			\
2026 	}						\
2027 	success;					\
2028 })
2029 
2030 /* Exit recursion tracking, restoring interrupts. */
2031 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2032 	do {						\
2033 		typecheck(u8 *, recursion_ptr);		\
2034 		(*(recursion_ptr))--;			\
2035 		local_irq_restore(flags);		\
2036 	} while (0)
2037 
2038 int printk_delay_msec __read_mostly;
2039 
printk_delay(void)2040 static inline void printk_delay(void)
2041 {
2042 	if (unlikely(printk_delay_msec)) {
2043 		int m = printk_delay_msec;
2044 
2045 		while (m--) {
2046 			mdelay(1);
2047 			touch_nmi_watchdog();
2048 		}
2049 	}
2050 }
2051 
printk_caller_id(void)2052 static inline u32 printk_caller_id(void)
2053 {
2054 	u32 caller_id = 0;
2055 
2056 	trace_android_vh_printk_caller_id(&caller_id);
2057 	if (caller_id)
2058 		return caller_id;
2059 
2060 	return in_task() ? task_pid_nr(current) :
2061 		0x80000000 + raw_smp_processor_id();
2062 }
2063 
2064 /**
2065  * printk_parse_prefix - Parse level and control flags.
2066  *
2067  * @text:     The terminated text message.
2068  * @level:    A pointer to the current level value, will be updated.
2069  * @flags:    A pointer to the current printk_info flags, will be updated.
2070  *
2071  * @level may be NULL if the caller is not interested in the parsed value.
2072  * Otherwise the variable pointed to by @level must be set to
2073  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2074  *
2075  * @flags may be NULL if the caller is not interested in the parsed value.
2076  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2077  * value.
2078  *
2079  * Return: The length of the parsed level and control flags.
2080  */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2081 u16 printk_parse_prefix(const char *text, int *level,
2082 			enum printk_info_flags *flags)
2083 {
2084 	u16 prefix_len = 0;
2085 	int kern_level;
2086 
2087 	while (*text) {
2088 		kern_level = printk_get_level(text);
2089 		if (!kern_level)
2090 			break;
2091 
2092 		switch (kern_level) {
2093 		case '0' ... '7':
2094 			if (level && *level == LOGLEVEL_DEFAULT)
2095 				*level = kern_level - '0';
2096 			break;
2097 		case 'c':	/* KERN_CONT */
2098 			if (flags)
2099 				*flags |= LOG_CONT;
2100 		}
2101 
2102 		prefix_len += 2;
2103 		text += 2;
2104 	}
2105 
2106 	return prefix_len;
2107 }
2108 
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2109 static u16 printk_sprint(char *text, u16 size, int facility,
2110 			 enum printk_info_flags *flags, const char *fmt,
2111 			 va_list args)
2112 {
2113 	u16 text_len;
2114 
2115 	text_len = vscnprintf(text, size, fmt, args);
2116 
2117 	/* Mark and strip a trailing newline. */
2118 	if (text_len && text[text_len - 1] == '\n') {
2119 		text_len--;
2120 		*flags |= LOG_NEWLINE;
2121 	}
2122 
2123 	/* Strip log level and control flags. */
2124 	if (facility == 0) {
2125 		u16 prefix_len;
2126 
2127 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2128 		if (prefix_len) {
2129 			text_len -= prefix_len;
2130 			memmove(text, text + prefix_len, text_len);
2131 		}
2132 	}
2133 
2134 	return text_len;
2135 }
2136 
2137 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2138 int vprintk_store(int facility, int level,
2139 		  const struct dev_printk_info *dev_info,
2140 		  const char *fmt, va_list args)
2141 {
2142 	const u32 caller_id = printk_caller_id();
2143 	struct prb_reserved_entry e;
2144 	enum printk_info_flags flags = 0;
2145 	struct printk_record r;
2146 	unsigned long irqflags;
2147 	u16 trunc_msg_len = 0;
2148 	char prefix_buf[8];
2149 	u8 *recursion_ptr;
2150 	u16 reserve_size;
2151 	va_list args2;
2152 	u16 text_len;
2153 	int ret = 0;
2154 	u64 ts_nsec;
2155 
2156 	/*
2157 	 * Since the duration of printk() can vary depending on the message
2158 	 * and state of the ringbuffer, grab the timestamp now so that it is
2159 	 * close to the call of printk(). This provides a more deterministic
2160 	 * timestamp with respect to the caller.
2161 	 */
2162 	ts_nsec = local_clock();
2163 
2164 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2165 		return 0;
2166 
2167 	/*
2168 	 * The sprintf needs to come first since the syslog prefix might be
2169 	 * passed in as a parameter. An extra byte must be reserved so that
2170 	 * later the vscnprintf() into the reserved buffer has room for the
2171 	 * terminating '\0', which is not counted by vsnprintf().
2172 	 */
2173 	va_copy(args2, args);
2174 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2175 	va_end(args2);
2176 
2177 	if (reserve_size > LOG_LINE_MAX)
2178 		reserve_size = LOG_LINE_MAX;
2179 
2180 	/* Extract log level or control flags. */
2181 	if (facility == 0)
2182 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2183 
2184 	if (level == LOGLEVEL_DEFAULT)
2185 		level = default_message_loglevel;
2186 
2187 	if (dev_info)
2188 		flags |= LOG_NEWLINE;
2189 
2190 	if (flags & LOG_CONT) {
2191 		prb_rec_init_wr(&r, reserve_size);
2192 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2193 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2194 						 facility, &flags, fmt, args);
2195 			r.info->text_len += text_len;
2196 
2197 			if (flags & LOG_NEWLINE) {
2198 				r.info->flags |= LOG_NEWLINE;
2199 				prb_final_commit(&e);
2200 			} else {
2201 				prb_commit(&e);
2202 			}
2203 
2204 			trace_android_vh_logbuf_pr_cont(&r, text_len);
2205 			ret = text_len;
2206 			goto out;
2207 		}
2208 	}
2209 
2210 	/*
2211 	 * Explicitly initialize the record before every prb_reserve() call.
2212 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2213 	 * structure when they fail.
2214 	 */
2215 	prb_rec_init_wr(&r, reserve_size);
2216 	if (!prb_reserve(&e, prb, &r)) {
2217 		/* truncate the message if it is too long for empty buffer */
2218 		truncate_msg(&reserve_size, &trunc_msg_len);
2219 
2220 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2221 		if (!prb_reserve(&e, prb, &r))
2222 			goto out;
2223 	}
2224 
2225 	/* fill message */
2226 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2227 	if (trunc_msg_len)
2228 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2229 	r.info->text_len = text_len + trunc_msg_len;
2230 	r.info->facility = facility;
2231 	r.info->level = level & 7;
2232 	r.info->flags = flags & 0x1f;
2233 	r.info->ts_nsec = ts_nsec;
2234 	r.info->caller_id = caller_id;
2235 	if (dev_info)
2236 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2237 
2238 	/* A message without a trailing newline can be continued. */
2239 	if (!(flags & LOG_NEWLINE))
2240 		prb_commit(&e);
2241 	else
2242 		prb_final_commit(&e);
2243 
2244 	trace_android_vh_logbuf(prb, &r);
2245 	ret = text_len + trunc_msg_len;
2246 out:
2247 	printk_exit_irqrestore(recursion_ptr, irqflags);
2248 	return ret;
2249 }
2250 
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2251 asmlinkage int vprintk_emit(int facility, int level,
2252 			    const struct dev_printk_info *dev_info,
2253 			    const char *fmt, va_list args)
2254 {
2255 	int printed_len;
2256 	bool in_sched = false;
2257 
2258 	/* Suppress unimportant messages after panic happens */
2259 	if (unlikely(suppress_printk))
2260 		return 0;
2261 
2262 	if (level == LOGLEVEL_SCHED) {
2263 		level = LOGLEVEL_DEFAULT;
2264 		in_sched = true;
2265 	}
2266 
2267 	boot_delay_msec(level);
2268 	printk_delay();
2269 
2270 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2271 
2272 	/* If called from the scheduler, we can not call up(). */
2273 	if (!in_sched) {
2274 		/*
2275 		 * Disable preemption to avoid being preempted while holding
2276 		 * console_sem which would prevent anyone from printing to
2277 		 * console
2278 		 */
2279 		preempt_disable();
2280 		/*
2281 		 * Try to acquire and then immediately release the console
2282 		 * semaphore.  The release will print out buffers and wake up
2283 		 * /dev/kmsg and syslog() users.
2284 		 */
2285 		if (console_trylock_spinning())
2286 			console_unlock();
2287 		preempt_enable();
2288 	}
2289 
2290 	if (in_sched)
2291 		defer_console_output();
2292 	else
2293 		wake_up_klogd();
2294 
2295 	return printed_len;
2296 }
2297 EXPORT_SYMBOL(vprintk_emit);
2298 
vprintk_default(const char * fmt,va_list args)2299 int vprintk_default(const char *fmt, va_list args)
2300 {
2301 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2302 }
2303 EXPORT_SYMBOL_GPL(vprintk_default);
2304 
_printk(const char * fmt,...)2305 asmlinkage __visible int _printk(const char *fmt, ...)
2306 {
2307 	va_list args;
2308 	int r;
2309 
2310 	va_start(args, fmt);
2311 	r = vprintk(fmt, args);
2312 	va_end(args);
2313 
2314 	return r;
2315 }
2316 EXPORT_SYMBOL(_printk);
2317 
2318 #else /* CONFIG_PRINTK */
2319 
2320 #define CONSOLE_LOG_MAX		0
2321 #define printk_time		false
2322 
2323 #define prb_read_valid(rb, seq, r)	false
2324 #define prb_first_valid_seq(rb)		0
2325 
2326 static u64 syslog_seq;
2327 static u64 console_seq;
2328 static u64 exclusive_console_stop_seq;
2329 static unsigned long console_dropped;
2330 
record_print_text(const struct printk_record * r,bool syslog,bool time)2331 static size_t record_print_text(const struct printk_record *r,
2332 				bool syslog, bool time)
2333 {
2334 	return 0;
2335 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2336 static ssize_t info_print_ext_header(char *buf, size_t size,
2337 				     struct printk_info *info)
2338 {
2339 	return 0;
2340 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2341 static ssize_t msg_print_ext_body(char *buf, size_t size,
2342 				  char *text, size_t text_len,
2343 				  struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2344 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2345 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2346 static void call_console_drivers(const char *ext_text, size_t ext_len,
2347 				 const char *text, size_t len) {}
suppress_message_printing(int level)2348 static bool suppress_message_printing(int level) { return false; }
2349 
2350 #endif /* CONFIG_PRINTK */
2351 
2352 #ifdef CONFIG_EARLY_PRINTK
2353 struct console *early_console;
2354 
early_printk(const char * fmt,...)2355 asmlinkage __visible void early_printk(const char *fmt, ...)
2356 {
2357 	va_list ap;
2358 	char buf[512];
2359 	int n;
2360 
2361 	if (!early_console)
2362 		return;
2363 
2364 	va_start(ap, fmt);
2365 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2366 	va_end(ap);
2367 
2368 	early_console->write(early_console, buf, n);
2369 }
2370 #endif
2371 
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2372 static int __add_preferred_console(char *name, int idx, char *options,
2373 				   char *brl_options, bool user_specified)
2374 {
2375 	struct console_cmdline *c;
2376 	int i;
2377 
2378 	/*
2379 	 *	See if this tty is not yet registered, and
2380 	 *	if we have a slot free.
2381 	 */
2382 	for (i = 0, c = console_cmdline;
2383 	     i < MAX_CMDLINECONSOLES && c->name[0];
2384 	     i++, c++) {
2385 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2386 			if (!brl_options)
2387 				preferred_console = i;
2388 			if (user_specified)
2389 				c->user_specified = true;
2390 			return 0;
2391 		}
2392 	}
2393 	if (i == MAX_CMDLINECONSOLES)
2394 		return -E2BIG;
2395 	if (!brl_options)
2396 		preferred_console = i;
2397 	strlcpy(c->name, name, sizeof(c->name));
2398 	c->options = options;
2399 	c->user_specified = user_specified;
2400 	braille_set_options(c, brl_options);
2401 
2402 	c->index = idx;
2403 	return 0;
2404 }
2405 
console_msg_format_setup(char * str)2406 static int __init console_msg_format_setup(char *str)
2407 {
2408 	if (!strcmp(str, "syslog"))
2409 		console_msg_format = MSG_FORMAT_SYSLOG;
2410 	if (!strcmp(str, "default"))
2411 		console_msg_format = MSG_FORMAT_DEFAULT;
2412 	return 1;
2413 }
2414 __setup("console_msg_format=", console_msg_format_setup);
2415 
2416 /*
2417  * Set up a console.  Called via do_early_param() in init/main.c
2418  * for each "console=" parameter in the boot command line.
2419  */
console_setup(char * str)2420 static int __init console_setup(char *str)
2421 {
2422 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2423 	char *s, *options, *brl_options = NULL;
2424 	int idx;
2425 
2426 	/*
2427 	 * console="" or console=null have been suggested as a way to
2428 	 * disable console output. Use ttynull that has been created
2429 	 * for exactly this purpose.
2430 	 */
2431 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2432 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2433 		return 1;
2434 	}
2435 
2436 	if (_braille_console_setup(&str, &brl_options))
2437 		return 1;
2438 
2439 	/*
2440 	 * Decode str into name, index, options.
2441 	 */
2442 	if (str[0] >= '0' && str[0] <= '9') {
2443 		strcpy(buf, "ttyS");
2444 		strncpy(buf + 4, str, sizeof(buf) - 5);
2445 	} else {
2446 		strncpy(buf, str, sizeof(buf) - 1);
2447 	}
2448 	buf[sizeof(buf) - 1] = 0;
2449 	options = strchr(str, ',');
2450 	if (options)
2451 		*(options++) = 0;
2452 #ifdef __sparc__
2453 	if (!strcmp(str, "ttya"))
2454 		strcpy(buf, "ttyS0");
2455 	if (!strcmp(str, "ttyb"))
2456 		strcpy(buf, "ttyS1");
2457 #endif
2458 	for (s = buf; *s; s++)
2459 		if (isdigit(*s) || *s == ',')
2460 			break;
2461 	idx = simple_strtoul(s, NULL, 10);
2462 	*s = 0;
2463 
2464 	__add_preferred_console(buf, idx, options, brl_options, true);
2465 	console_set_on_cmdline = 1;
2466 	return 1;
2467 }
2468 __setup("console=", console_setup);
2469 
2470 /**
2471  * add_preferred_console - add a device to the list of preferred consoles.
2472  * @name: device name
2473  * @idx: device index
2474  * @options: options for this console
2475  *
2476  * The last preferred console added will be used for kernel messages
2477  * and stdin/out/err for init.  Normally this is used by console_setup
2478  * above to handle user-supplied console arguments; however it can also
2479  * be used by arch-specific code either to override the user or more
2480  * commonly to provide a default console (ie from PROM variables) when
2481  * the user has not supplied one.
2482  */
add_preferred_console(char * name,int idx,char * options)2483 int add_preferred_console(char *name, int idx, char *options)
2484 {
2485 	return __add_preferred_console(name, idx, options, NULL, false);
2486 }
2487 
2488 bool console_suspend_enabled = true;
2489 EXPORT_SYMBOL(console_suspend_enabled);
2490 
console_suspend_disable(char * str)2491 static int __init console_suspend_disable(char *str)
2492 {
2493 	console_suspend_enabled = false;
2494 	return 1;
2495 }
2496 __setup("no_console_suspend", console_suspend_disable);
2497 module_param_named(console_suspend, console_suspend_enabled,
2498 		bool, S_IRUGO | S_IWUSR);
2499 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2500 	" and hibernate operations");
2501 
2502 static bool printk_console_no_auto_verbose;
2503 
console_verbose(void)2504 void console_verbose(void)
2505 {
2506 	if (console_loglevel && !printk_console_no_auto_verbose)
2507 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2508 }
2509 EXPORT_SYMBOL_GPL(console_verbose);
2510 
2511 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2512 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2513 
2514 /**
2515  * suspend_console - suspend the console subsystem
2516  *
2517  * This disables printk() while we go into suspend states
2518  */
suspend_console(void)2519 void suspend_console(void)
2520 {
2521 	if (!console_suspend_enabled)
2522 		return;
2523 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2524 	console_lock();
2525 	console_suspended = 1;
2526 	up_console_sem();
2527 }
2528 
resume_console(void)2529 void resume_console(void)
2530 {
2531 	if (!console_suspend_enabled)
2532 		return;
2533 	down_console_sem();
2534 	console_suspended = 0;
2535 	console_unlock();
2536 }
2537 
2538 /**
2539  * console_cpu_notify - print deferred console messages after CPU hotplug
2540  * @cpu: unused
2541  *
2542  * If printk() is called from a CPU that is not online yet, the messages
2543  * will be printed on the console only if there are CON_ANYTIME consoles.
2544  * This function is called when a new CPU comes online (or fails to come
2545  * up) or goes offline.
2546  */
console_cpu_notify(unsigned int cpu)2547 static int console_cpu_notify(unsigned int cpu)
2548 {
2549 	int flag = 0;
2550 
2551 	trace_android_vh_printk_hotplug(&flag);
2552 	if (flag)
2553 		return 0;
2554 
2555 	if (!cpuhp_tasks_frozen) {
2556 		/* If trylock fails, someone else is doing the printing */
2557 		if (console_trylock())
2558 			console_unlock();
2559 	}
2560 	return 0;
2561 }
2562 
2563 /**
2564  * console_lock - lock the console system for exclusive use.
2565  *
2566  * Acquires a lock which guarantees that the caller has
2567  * exclusive access to the console system and the console_drivers list.
2568  *
2569  * Can sleep, returns nothing.
2570  */
console_lock(void)2571 void console_lock(void)
2572 {
2573 	might_sleep();
2574 
2575 	down_console_sem();
2576 	if (console_suspended)
2577 		return;
2578 	console_locked = 1;
2579 	console_may_schedule = 1;
2580 }
2581 EXPORT_SYMBOL(console_lock);
2582 
2583 /**
2584  * console_trylock - try to lock the console system for exclusive use.
2585  *
2586  * Try to acquire a lock which guarantees that the caller has exclusive
2587  * access to the console system and the console_drivers list.
2588  *
2589  * returns 1 on success, and 0 on failure to acquire the lock.
2590  */
console_trylock(void)2591 int console_trylock(void)
2592 {
2593 	if (down_trylock_console_sem())
2594 		return 0;
2595 	if (console_suspended) {
2596 		up_console_sem();
2597 		return 0;
2598 	}
2599 	console_locked = 1;
2600 	console_may_schedule = 0;
2601 	return 1;
2602 }
2603 EXPORT_SYMBOL(console_trylock);
2604 
is_console_locked(void)2605 int is_console_locked(void)
2606 {
2607 	return console_locked;
2608 }
2609 EXPORT_SYMBOL(is_console_locked);
2610 
2611 /*
2612  * Check if we have any console that is capable of printing while cpu is
2613  * booting or shutting down. Requires console_sem.
2614  */
have_callable_console(void)2615 static int have_callable_console(void)
2616 {
2617 	struct console *con;
2618 
2619 	for_each_console(con)
2620 		if ((con->flags & CON_ENABLED) &&
2621 				(con->flags & CON_ANYTIME))
2622 			return 1;
2623 
2624 	return 0;
2625 }
2626 
2627 /*
2628  * Can we actually use the console at this time on this cpu?
2629  *
2630  * Console drivers may assume that per-cpu resources have been allocated. So
2631  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2632  * call them until this CPU is officially up.
2633  */
can_use_console(void)2634 static inline int can_use_console(void)
2635 {
2636 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2637 }
2638 
2639 /**
2640  * console_unlock - unlock the console system
2641  *
2642  * Releases the console_lock which the caller holds on the console system
2643  * and the console driver list.
2644  *
2645  * While the console_lock was held, console output may have been buffered
2646  * by printk().  If this is the case, console_unlock(); emits
2647  * the output prior to releasing the lock.
2648  *
2649  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2650  *
2651  * console_unlock(); may be called from any context.
2652  */
console_unlock(void)2653 void console_unlock(void)
2654 {
2655 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2656 	static char text[CONSOLE_LOG_MAX];
2657 	unsigned long flags;
2658 	bool do_cond_resched, retry;
2659 	struct printk_info info;
2660 	struct printk_record r;
2661 	u64 __maybe_unused next_seq;
2662 
2663 	if (console_suspended) {
2664 		up_console_sem();
2665 		return;
2666 	}
2667 
2668 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2669 
2670 	/*
2671 	 * Console drivers are called with interrupts disabled, so
2672 	 * @console_may_schedule should be cleared before; however, we may
2673 	 * end up dumping a lot of lines, for example, if called from
2674 	 * console registration path, and should invoke cond_resched()
2675 	 * between lines if allowable.  Not doing so can cause a very long
2676 	 * scheduling stall on a slow console leading to RCU stall and
2677 	 * softlockup warnings which exacerbate the issue with more
2678 	 * messages practically incapacitating the system.
2679 	 *
2680 	 * console_trylock() is not able to detect the preemptive
2681 	 * context reliably. Therefore the value must be stored before
2682 	 * and cleared after the "again" goto label.
2683 	 */
2684 	do_cond_resched = console_may_schedule;
2685 again:
2686 	console_may_schedule = 0;
2687 
2688 	/*
2689 	 * We released the console_sem lock, so we need to recheck if
2690 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2691 	 * console.
2692 	 */
2693 	if (!can_use_console()) {
2694 		console_locked = 0;
2695 		up_console_sem();
2696 		return;
2697 	}
2698 
2699 	for (;;) {
2700 		size_t ext_len = 0;
2701 		int handover;
2702 		size_t len;
2703 
2704 skip:
2705 		if (!prb_read_valid(prb, console_seq, &r))
2706 			break;
2707 
2708 		if (console_seq != r.info->seq) {
2709 			console_dropped += r.info->seq - console_seq;
2710 			console_seq = r.info->seq;
2711 		}
2712 
2713 		if (suppress_message_printing(r.info->level)) {
2714 			/*
2715 			 * Skip record we have buffered and already printed
2716 			 * directly to the console when we received it, and
2717 			 * record that has level above the console loglevel.
2718 			 */
2719 			console_seq++;
2720 			goto skip;
2721 		}
2722 
2723 		/* Output to all consoles once old messages replayed. */
2724 		if (unlikely(exclusive_console &&
2725 			     console_seq >= exclusive_console_stop_seq)) {
2726 			exclusive_console = NULL;
2727 		}
2728 
2729 		/*
2730 		 * Handle extended console text first because later
2731 		 * record_print_text() will modify the record buffer in-place.
2732 		 */
2733 		if (nr_ext_console_drivers) {
2734 			ext_len = info_print_ext_header(ext_text,
2735 						sizeof(ext_text),
2736 						r.info);
2737 			ext_len += msg_print_ext_body(ext_text + ext_len,
2738 						sizeof(ext_text) - ext_len,
2739 						&r.text_buf[0],
2740 						r.info->text_len,
2741 						&r.info->dev_info);
2742 		}
2743 		len = record_print_text(&r,
2744 				console_msg_format & MSG_FORMAT_SYSLOG,
2745 				printk_time);
2746 		console_seq++;
2747 
2748 		/*
2749 		 * While actively printing out messages, if another printk()
2750 		 * were to occur on another CPU, it may wait for this one to
2751 		 * finish. This task can not be preempted if there is a
2752 		 * waiter waiting to take over.
2753 		 *
2754 		 * Interrupts are disabled because the hand over to a waiter
2755 		 * must not be interrupted until the hand over is completed
2756 		 * (@console_waiter is cleared).
2757 		 */
2758 		printk_safe_enter_irqsave(flags);
2759 		console_lock_spinning_enable();
2760 
2761 		stop_critical_timings();	/* don't trace print latency */
2762 		call_console_drivers(ext_text, ext_len, text, len);
2763 		start_critical_timings();
2764 
2765 		handover = console_lock_spinning_disable_and_check();
2766 		printk_safe_exit_irqrestore(flags);
2767 		if (handover)
2768 			return;
2769 
2770 		if (do_cond_resched)
2771 			cond_resched();
2772 	}
2773 
2774 	/* Get consistent value of the next-to-be-used sequence number. */
2775 	next_seq = console_seq;
2776 
2777 	console_locked = 0;
2778 	up_console_sem();
2779 
2780 	/*
2781 	 * Someone could have filled up the buffer again, so re-check if there's
2782 	 * something to flush. In case we cannot trylock the console_sem again,
2783 	 * there's a new owner and the console_unlock() from them will do the
2784 	 * flush, no worries.
2785 	 */
2786 	retry = prb_read_valid(prb, next_seq, NULL);
2787 	if (retry && console_trylock())
2788 		goto again;
2789 }
2790 EXPORT_SYMBOL(console_unlock);
2791 
2792 /**
2793  * console_conditional_schedule - yield the CPU if required
2794  *
2795  * If the console code is currently allowed to sleep, and
2796  * if this CPU should yield the CPU to another task, do
2797  * so here.
2798  *
2799  * Must be called within console_lock();.
2800  */
console_conditional_schedule(void)2801 void __sched console_conditional_schedule(void)
2802 {
2803 	if (console_may_schedule)
2804 		cond_resched();
2805 }
2806 EXPORT_SYMBOL(console_conditional_schedule);
2807 
console_unblank(void)2808 void console_unblank(void)
2809 {
2810 	struct console *c;
2811 
2812 	/*
2813 	 * console_unblank can no longer be called in interrupt context unless
2814 	 * oops_in_progress is set to 1..
2815 	 */
2816 	if (oops_in_progress) {
2817 		if (down_trylock_console_sem() != 0)
2818 			return;
2819 	} else
2820 		console_lock();
2821 
2822 	console_locked = 1;
2823 	console_may_schedule = 0;
2824 	for_each_console(c)
2825 		if ((c->flags & CON_ENABLED) && c->unblank)
2826 			c->unblank();
2827 	console_unlock();
2828 }
2829 
2830 /**
2831  * console_flush_on_panic - flush console content on panic
2832  * @mode: flush all messages in buffer or just the pending ones
2833  *
2834  * Immediately output all pending messages no matter what.
2835  */
console_flush_on_panic(enum con_flush_mode mode)2836 void console_flush_on_panic(enum con_flush_mode mode)
2837 {
2838 	/*
2839 	 * If someone else is holding the console lock, trylock will fail
2840 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2841 	 * that messages are flushed out.  As this can be called from any
2842 	 * context and we don't want to get preempted while flushing,
2843 	 * ensure may_schedule is cleared.
2844 	 */
2845 	console_trylock();
2846 	console_may_schedule = 0;
2847 
2848 	if (mode == CONSOLE_REPLAY_ALL)
2849 		console_seq = prb_first_valid_seq(prb);
2850 	console_unlock();
2851 }
2852 
2853 /*
2854  * Return the console tty driver structure and its associated index
2855  */
console_device(int * index)2856 struct tty_driver *console_device(int *index)
2857 {
2858 	struct console *c;
2859 	struct tty_driver *driver = NULL;
2860 
2861 	console_lock();
2862 	for_each_console(c) {
2863 		if (!c->device)
2864 			continue;
2865 		driver = c->device(c, index);
2866 		if (driver)
2867 			break;
2868 	}
2869 	console_unlock();
2870 	return driver;
2871 }
2872 
2873 /*
2874  * Prevent further output on the passed console device so that (for example)
2875  * serial drivers can disable console output before suspending a port, and can
2876  * re-enable output afterwards.
2877  */
console_stop(struct console * console)2878 void console_stop(struct console *console)
2879 {
2880 	console_lock();
2881 	console->flags &= ~CON_ENABLED;
2882 	console_unlock();
2883 }
2884 EXPORT_SYMBOL(console_stop);
2885 
console_start(struct console * console)2886 void console_start(struct console *console)
2887 {
2888 	console_lock();
2889 	console->flags |= CON_ENABLED;
2890 	console_unlock();
2891 }
2892 EXPORT_SYMBOL(console_start);
2893 
2894 static int __read_mostly keep_bootcon;
2895 
keep_bootcon_setup(char * str)2896 static int __init keep_bootcon_setup(char *str)
2897 {
2898 	keep_bootcon = 1;
2899 	pr_info("debug: skip boot console de-registration.\n");
2900 
2901 	return 0;
2902 }
2903 
2904 early_param("keep_bootcon", keep_bootcon_setup);
2905 
2906 /*
2907  * This is called by register_console() to try to match
2908  * the newly registered console with any of the ones selected
2909  * by either the command line or add_preferred_console() and
2910  * setup/enable it.
2911  *
2912  * Care need to be taken with consoles that are statically
2913  * enabled such as netconsole
2914  */
try_enable_new_console(struct console * newcon,bool user_specified)2915 static int try_enable_new_console(struct console *newcon, bool user_specified)
2916 {
2917 	struct console_cmdline *c;
2918 	int i, err;
2919 
2920 	for (i = 0, c = console_cmdline;
2921 	     i < MAX_CMDLINECONSOLES && c->name[0];
2922 	     i++, c++) {
2923 		if (c->user_specified != user_specified)
2924 			continue;
2925 		if (!newcon->match ||
2926 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2927 			/* default matching */
2928 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2929 			if (strcmp(c->name, newcon->name) != 0)
2930 				continue;
2931 			if (newcon->index >= 0 &&
2932 			    newcon->index != c->index)
2933 				continue;
2934 			if (newcon->index < 0)
2935 				newcon->index = c->index;
2936 
2937 			if (_braille_register_console(newcon, c))
2938 				return 0;
2939 
2940 			if (newcon->setup &&
2941 			    (err = newcon->setup(newcon, c->options)) != 0)
2942 				return err;
2943 		}
2944 		newcon->flags |= CON_ENABLED;
2945 		if (i == preferred_console) {
2946 			newcon->flags |= CON_CONSDEV;
2947 			has_preferred_console = true;
2948 		}
2949 		return 0;
2950 	}
2951 
2952 	/*
2953 	 * Some consoles, such as pstore and netconsole, can be enabled even
2954 	 * without matching. Accept the pre-enabled consoles only when match()
2955 	 * and setup() had a chance to be called.
2956 	 */
2957 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2958 		return 0;
2959 
2960 	return -ENOENT;
2961 }
2962 
2963 /*
2964  * The console driver calls this routine during kernel initialization
2965  * to register the console printing procedure with printk() and to
2966  * print any messages that were printed by the kernel before the
2967  * console driver was initialized.
2968  *
2969  * This can happen pretty early during the boot process (because of
2970  * early_printk) - sometimes before setup_arch() completes - be careful
2971  * of what kernel features are used - they may not be initialised yet.
2972  *
2973  * There are two types of consoles - bootconsoles (early_printk) and
2974  * "real" consoles (everything which is not a bootconsole) which are
2975  * handled differently.
2976  *  - Any number of bootconsoles can be registered at any time.
2977  *  - As soon as a "real" console is registered, all bootconsoles
2978  *    will be unregistered automatically.
2979  *  - Once a "real" console is registered, any attempt to register a
2980  *    bootconsoles will be rejected
2981  */
register_console(struct console * newcon)2982 void register_console(struct console *newcon)
2983 {
2984 	struct console *bcon = NULL;
2985 	int err;
2986 
2987 	for_each_console(bcon) {
2988 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2989 					 bcon->name, bcon->index))
2990 			return;
2991 	}
2992 
2993 	/*
2994 	 * before we register a new CON_BOOT console, make sure we don't
2995 	 * already have a valid console
2996 	 */
2997 	if (newcon->flags & CON_BOOT) {
2998 		for_each_console(bcon) {
2999 			if (!(bcon->flags & CON_BOOT)) {
3000 				pr_info("Too late to register bootconsole %s%d\n",
3001 					newcon->name, newcon->index);
3002 				return;
3003 			}
3004 		}
3005 	}
3006 
3007 	if (console_drivers && console_drivers->flags & CON_BOOT)
3008 		bcon = console_drivers;
3009 
3010 	if (!has_preferred_console || bcon || !console_drivers)
3011 		has_preferred_console = preferred_console >= 0;
3012 
3013 	/*
3014 	 *	See if we want to use this console driver. If we
3015 	 *	didn't select a console we take the first one
3016 	 *	that registers here.
3017 	 */
3018 	if (!has_preferred_console) {
3019 		if (newcon->index < 0)
3020 			newcon->index = 0;
3021 		if (newcon->setup == NULL ||
3022 		    newcon->setup(newcon, NULL) == 0) {
3023 			newcon->flags |= CON_ENABLED;
3024 			if (newcon->device) {
3025 				newcon->flags |= CON_CONSDEV;
3026 				has_preferred_console = true;
3027 			}
3028 		}
3029 	}
3030 
3031 	/* See if this console matches one we selected on the command line */
3032 	err = try_enable_new_console(newcon, true);
3033 
3034 	/* If not, try to match against the platform default(s) */
3035 	if (err == -ENOENT)
3036 		err = try_enable_new_console(newcon, false);
3037 
3038 	/* printk() messages are not printed to the Braille console. */
3039 	if (err || newcon->flags & CON_BRL)
3040 		return;
3041 
3042 	/*
3043 	 * If we have a bootconsole, and are switching to a real console,
3044 	 * don't print everything out again, since when the boot console, and
3045 	 * the real console are the same physical device, it's annoying to
3046 	 * see the beginning boot messages twice
3047 	 */
3048 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
3049 		newcon->flags &= ~CON_PRINTBUFFER;
3050 
3051 	/*
3052 	 *	Put this console in the list - keep the
3053 	 *	preferred driver at the head of the list.
3054 	 */
3055 	console_lock();
3056 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3057 		newcon->next = console_drivers;
3058 		console_drivers = newcon;
3059 		if (newcon->next)
3060 			newcon->next->flags &= ~CON_CONSDEV;
3061 		/* Ensure this flag is always set for the head of the list */
3062 		newcon->flags |= CON_CONSDEV;
3063 	} else {
3064 		newcon->next = console_drivers->next;
3065 		console_drivers->next = newcon;
3066 	}
3067 
3068 	if (newcon->flags & CON_EXTENDED)
3069 		nr_ext_console_drivers++;
3070 
3071 	if (newcon->flags & CON_PRINTBUFFER) {
3072 		/*
3073 		 * console_unlock(); will print out the buffered messages
3074 		 * for us.
3075 		 *
3076 		 * We're about to replay the log buffer.  Only do this to the
3077 		 * just-registered console to avoid excessive message spam to
3078 		 * the already-registered consoles.
3079 		 *
3080 		 * Set exclusive_console with disabled interrupts to reduce
3081 		 * race window with eventual console_flush_on_panic() that
3082 		 * ignores console_lock.
3083 		 */
3084 		exclusive_console = newcon;
3085 		exclusive_console_stop_seq = console_seq;
3086 
3087 		/* Get a consistent copy of @syslog_seq. */
3088 		mutex_lock(&syslog_lock);
3089 		console_seq = syslog_seq;
3090 		mutex_unlock(&syslog_lock);
3091 	}
3092 	console_unlock();
3093 	console_sysfs_notify();
3094 
3095 	/*
3096 	 * By unregistering the bootconsoles after we enable the real console
3097 	 * we get the "console xxx enabled" message on all the consoles -
3098 	 * boot consoles, real consoles, etc - this is to ensure that end
3099 	 * users know there might be something in the kernel's log buffer that
3100 	 * went to the bootconsole (that they do not see on the real console)
3101 	 */
3102 	pr_info("%sconsole [%s%d] enabled\n",
3103 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
3104 		newcon->name, newcon->index);
3105 	if (bcon &&
3106 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3107 	    !keep_bootcon) {
3108 		/* We need to iterate through all boot consoles, to make
3109 		 * sure we print everything out, before we unregister them.
3110 		 */
3111 		for_each_console(bcon)
3112 			if (bcon->flags & CON_BOOT)
3113 				unregister_console(bcon);
3114 	}
3115 }
3116 EXPORT_SYMBOL(register_console);
3117 
unregister_console(struct console * console)3118 int unregister_console(struct console *console)
3119 {
3120 	struct console *con;
3121 	int res;
3122 
3123 	pr_info("%sconsole [%s%d] disabled\n",
3124 		(console->flags & CON_BOOT) ? "boot" : "" ,
3125 		console->name, console->index);
3126 
3127 	res = _braille_unregister_console(console);
3128 	if (res < 0)
3129 		return res;
3130 	if (res > 0)
3131 		return 0;
3132 
3133 	res = -ENODEV;
3134 	console_lock();
3135 	if (console_drivers == console) {
3136 		console_drivers=console->next;
3137 		res = 0;
3138 	} else {
3139 		for_each_console(con) {
3140 			if (con->next == console) {
3141 				con->next = console->next;
3142 				res = 0;
3143 				break;
3144 			}
3145 		}
3146 	}
3147 
3148 	if (res)
3149 		goto out_disable_unlock;
3150 
3151 	if (console->flags & CON_EXTENDED)
3152 		nr_ext_console_drivers--;
3153 
3154 	/*
3155 	 * If this isn't the last console and it has CON_CONSDEV set, we
3156 	 * need to set it on the next preferred console.
3157 	 */
3158 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3159 		console_drivers->flags |= CON_CONSDEV;
3160 
3161 	console->flags &= ~CON_ENABLED;
3162 	console_unlock();
3163 	console_sysfs_notify();
3164 
3165 	if (console->exit)
3166 		res = console->exit(console);
3167 
3168 	return res;
3169 
3170 out_disable_unlock:
3171 	console->flags &= ~CON_ENABLED;
3172 	console_unlock();
3173 
3174 	return res;
3175 }
3176 EXPORT_SYMBOL(unregister_console);
3177 
3178 /*
3179  * Initialize the console device. This is called *early*, so
3180  * we can't necessarily depend on lots of kernel help here.
3181  * Just do some early initializations, and do the complex setup
3182  * later.
3183  */
console_init(void)3184 void __init console_init(void)
3185 {
3186 	int ret;
3187 	initcall_t call;
3188 	initcall_entry_t *ce;
3189 
3190 	/* Setup the default TTY line discipline. */
3191 	n_tty_init();
3192 
3193 	/*
3194 	 * set up the console device so that later boot sequences can
3195 	 * inform about problems etc..
3196 	 */
3197 	ce = __con_initcall_start;
3198 	trace_initcall_level("console");
3199 	while (ce < __con_initcall_end) {
3200 		call = initcall_from_entry(ce);
3201 		trace_initcall_start(call);
3202 		ret = call();
3203 		trace_initcall_finish(call, ret);
3204 		ce++;
3205 	}
3206 }
3207 
3208 /*
3209  * Some boot consoles access data that is in the init section and which will
3210  * be discarded after the initcalls have been run. To make sure that no code
3211  * will access this data, unregister the boot consoles in a late initcall.
3212  *
3213  * If for some reason, such as deferred probe or the driver being a loadable
3214  * module, the real console hasn't registered yet at this point, there will
3215  * be a brief interval in which no messages are logged to the console, which
3216  * makes it difficult to diagnose problems that occur during this time.
3217  *
3218  * To mitigate this problem somewhat, only unregister consoles whose memory
3219  * intersects with the init section. Note that all other boot consoles will
3220  * get unregistered when the real preferred console is registered.
3221  */
printk_late_init(void)3222 static int __init printk_late_init(void)
3223 {
3224 	struct console *con;
3225 	int ret;
3226 
3227 	for_each_console(con) {
3228 		if (!(con->flags & CON_BOOT))
3229 			continue;
3230 
3231 		/* Check addresses that might be used for enabled consoles. */
3232 		if (init_section_intersects(con, sizeof(*con)) ||
3233 		    init_section_contains(con->write, 0) ||
3234 		    init_section_contains(con->read, 0) ||
3235 		    init_section_contains(con->device, 0) ||
3236 		    init_section_contains(con->unblank, 0) ||
3237 		    init_section_contains(con->data, 0)) {
3238 			/*
3239 			 * Please, consider moving the reported consoles out
3240 			 * of the init section.
3241 			 */
3242 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3243 				con->name, con->index);
3244 			unregister_console(con);
3245 		}
3246 	}
3247 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3248 					console_cpu_notify);
3249 	WARN_ON(ret < 0);
3250 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3251 					console_cpu_notify, NULL);
3252 	WARN_ON(ret < 0);
3253 	return 0;
3254 }
3255 late_initcall(printk_late_init);
3256 
3257 #if defined CONFIG_PRINTK
3258 /*
3259  * Delayed printk version, for scheduler-internal messages:
3260  */
3261 #define PRINTK_PENDING_WAKEUP	0x01
3262 #define PRINTK_PENDING_OUTPUT	0x02
3263 
3264 static DEFINE_PER_CPU(int, printk_pending);
3265 
wake_up_klogd_work_func(struct irq_work * irq_work)3266 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3267 {
3268 	int pending = this_cpu_xchg(printk_pending, 0);
3269 
3270 	if (pending & PRINTK_PENDING_OUTPUT) {
3271 		/* If trylock fails, someone else is doing the printing */
3272 		if (console_trylock())
3273 			console_unlock();
3274 	}
3275 
3276 	if (pending & PRINTK_PENDING_WAKEUP)
3277 		wake_up_interruptible(&log_wait);
3278 }
3279 
3280 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3281 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3282 
__wake_up_klogd(int val)3283 static void __wake_up_klogd(int val)
3284 {
3285 	if (!printk_percpu_data_ready())
3286 		return;
3287 
3288 	preempt_disable();
3289 	/*
3290 	 * Guarantee any new records can be seen by tasks preparing to wait
3291 	 * before this context checks if the wait queue is empty.
3292 	 *
3293 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3294 	 * memory barrier within set_current_state() of
3295 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3296 	 * the waiter but before it has checked the wait condition.
3297 	 *
3298 	 * This pairs with devkmsg_read:A and syslog_print:A.
3299 	 */
3300 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3301 	    (val & PRINTK_PENDING_OUTPUT)) {
3302 		this_cpu_or(printk_pending, val);
3303 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3304 	}
3305 	preempt_enable();
3306 }
3307 
3308 /**
3309  * wake_up_klogd - Wake kernel logging daemon
3310  *
3311  * Use this function when new records have been added to the ringbuffer
3312  * and the console printing of those records has already occurred or is
3313  * known to be handled by some other context. This function will only
3314  * wake the logging daemon.
3315  *
3316  * Context: Any context.
3317  */
wake_up_klogd(void)3318 void wake_up_klogd(void)
3319 {
3320 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3321 }
3322 
3323 /**
3324  * defer_console_output - Wake kernel logging daemon and trigger
3325  *	console printing in a deferred context
3326  *
3327  * Use this function when new records have been added to the ringbuffer,
3328  * this context is responsible for console printing those records, but
3329  * the current context is not allowed to perform the console printing.
3330  * Trigger an irq_work context to perform the console printing. This
3331  * function also wakes the logging daemon.
3332  *
3333  * Context: Any context.
3334  */
defer_console_output(void)3335 void defer_console_output(void)
3336 {
3337 	/*
3338 	 * New messages may have been added directly to the ringbuffer
3339 	 * using vprintk_store(), so wake any waiters as well.
3340 	 */
3341 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3342 }
3343 
printk_trigger_flush(void)3344 void printk_trigger_flush(void)
3345 {
3346 	defer_console_output();
3347 }
3348 
vprintk_deferred(const char * fmt,va_list args)3349 int vprintk_deferred(const char *fmt, va_list args)
3350 {
3351 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3352 }
3353 
_printk_deferred(const char * fmt,...)3354 int _printk_deferred(const char *fmt, ...)
3355 {
3356 	va_list args;
3357 	int r;
3358 
3359 	va_start(args, fmt);
3360 	r = vprintk_deferred(fmt, args);
3361 	va_end(args);
3362 
3363 	return r;
3364 }
3365 EXPORT_SYMBOL_GPL(_printk_deferred);
3366 
3367 /*
3368  * printk rate limiting, lifted from the networking subsystem.
3369  *
3370  * This enforces a rate limit: not more than 10 kernel messages
3371  * every 5s to make a denial-of-service attack impossible.
3372  */
3373 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3374 
__printk_ratelimit(const char * func)3375 int __printk_ratelimit(const char *func)
3376 {
3377 	return ___ratelimit(&printk_ratelimit_state, func);
3378 }
3379 EXPORT_SYMBOL(__printk_ratelimit);
3380 
3381 /**
3382  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3383  * @caller_jiffies: pointer to caller's state
3384  * @interval_msecs: minimum interval between prints
3385  *
3386  * printk_timed_ratelimit() returns true if more than @interval_msecs
3387  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3388  * returned true.
3389  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3390 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3391 			unsigned int interval_msecs)
3392 {
3393 	unsigned long elapsed = jiffies - *caller_jiffies;
3394 
3395 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3396 		return false;
3397 
3398 	*caller_jiffies = jiffies;
3399 	return true;
3400 }
3401 EXPORT_SYMBOL(printk_timed_ratelimit);
3402 
3403 static DEFINE_SPINLOCK(dump_list_lock);
3404 static LIST_HEAD(dump_list);
3405 
3406 /**
3407  * kmsg_dump_register - register a kernel log dumper.
3408  * @dumper: pointer to the kmsg_dumper structure
3409  *
3410  * Adds a kernel log dumper to the system. The dump callback in the
3411  * structure will be called when the kernel oopses or panics and must be
3412  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3413  */
kmsg_dump_register(struct kmsg_dumper * dumper)3414 int kmsg_dump_register(struct kmsg_dumper *dumper)
3415 {
3416 	unsigned long flags;
3417 	int err = -EBUSY;
3418 
3419 	/* The dump callback needs to be set */
3420 	if (!dumper->dump)
3421 		return -EINVAL;
3422 
3423 	spin_lock_irqsave(&dump_list_lock, flags);
3424 	/* Don't allow registering multiple times */
3425 	if (!dumper->registered) {
3426 		dumper->registered = 1;
3427 		list_add_tail_rcu(&dumper->list, &dump_list);
3428 		err = 0;
3429 	}
3430 	spin_unlock_irqrestore(&dump_list_lock, flags);
3431 
3432 	return err;
3433 }
3434 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3435 
3436 /**
3437  * kmsg_dump_unregister - unregister a kmsg dumper.
3438  * @dumper: pointer to the kmsg_dumper structure
3439  *
3440  * Removes a dump device from the system. Returns zero on success and
3441  * %-EINVAL otherwise.
3442  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3443 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3444 {
3445 	unsigned long flags;
3446 	int err = -EINVAL;
3447 
3448 	spin_lock_irqsave(&dump_list_lock, flags);
3449 	if (dumper->registered) {
3450 		dumper->registered = 0;
3451 		list_del_rcu(&dumper->list);
3452 		err = 0;
3453 	}
3454 	spin_unlock_irqrestore(&dump_list_lock, flags);
3455 	synchronize_rcu();
3456 
3457 	return err;
3458 }
3459 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3460 
3461 static bool always_kmsg_dump;
3462 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3463 
kmsg_dump_reason_str(enum kmsg_dump_reason reason)3464 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3465 {
3466 	switch (reason) {
3467 	case KMSG_DUMP_PANIC:
3468 		return "Panic";
3469 	case KMSG_DUMP_OOPS:
3470 		return "Oops";
3471 	case KMSG_DUMP_EMERG:
3472 		return "Emergency";
3473 	case KMSG_DUMP_SHUTDOWN:
3474 		return "Shutdown";
3475 	default:
3476 		return "Unknown";
3477 	}
3478 }
3479 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3480 
3481 /**
3482  * kmsg_dump - dump kernel log to kernel message dumpers.
3483  * @reason: the reason (oops, panic etc) for dumping
3484  *
3485  * Call each of the registered dumper's dump() callback, which can
3486  * retrieve the kmsg records with kmsg_dump_get_line() or
3487  * kmsg_dump_get_buffer().
3488  */
kmsg_dump(enum kmsg_dump_reason reason)3489 void kmsg_dump(enum kmsg_dump_reason reason)
3490 {
3491 	struct kmsg_dumper *dumper;
3492 
3493 	rcu_read_lock();
3494 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3495 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3496 
3497 		/*
3498 		 * If client has not provided a specific max_reason, default
3499 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3500 		 */
3501 		if (max_reason == KMSG_DUMP_UNDEF) {
3502 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3503 							KMSG_DUMP_OOPS;
3504 		}
3505 		if (reason > max_reason)
3506 			continue;
3507 
3508 		/* invoke dumper which will iterate over records */
3509 		dumper->dump(dumper, reason);
3510 	}
3511 	rcu_read_unlock();
3512 }
3513 
3514 /**
3515  * kmsg_dump_get_line - retrieve one kmsg log line
3516  * @iter: kmsg dump iterator
3517  * @syslog: include the "<4>" prefixes
3518  * @line: buffer to copy the line to
3519  * @size: maximum size of the buffer
3520  * @len: length of line placed into buffer
3521  *
3522  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3523  * record, and copy one record into the provided buffer.
3524  *
3525  * Consecutive calls will return the next available record moving
3526  * towards the end of the buffer with the youngest messages.
3527  *
3528  * A return value of FALSE indicates that there are no more records to
3529  * read.
3530  */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)3531 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3532 			char *line, size_t size, size_t *len)
3533 {
3534 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3535 	struct printk_info info;
3536 	unsigned int line_count;
3537 	struct printk_record r;
3538 	size_t l = 0;
3539 	bool ret = false;
3540 
3541 	if (iter->cur_seq < min_seq)
3542 		iter->cur_seq = min_seq;
3543 
3544 	prb_rec_init_rd(&r, &info, line, size);
3545 
3546 	/* Read text or count text lines? */
3547 	if (line) {
3548 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3549 			goto out;
3550 		l = record_print_text(&r, syslog, printk_time);
3551 	} else {
3552 		if (!prb_read_valid_info(prb, iter->cur_seq,
3553 					 &info, &line_count)) {
3554 			goto out;
3555 		}
3556 		l = get_record_print_text_size(&info, line_count, syslog,
3557 					       printk_time);
3558 
3559 	}
3560 
3561 	iter->cur_seq = r.info->seq + 1;
3562 	ret = true;
3563 out:
3564 	if (len)
3565 		*len = l;
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3569 
3570 /**
3571  * kmsg_dump_get_buffer - copy kmsg log lines
3572  * @iter: kmsg dump iterator
3573  * @syslog: include the "<4>" prefixes
3574  * @buf: buffer to copy the line to
3575  * @size: maximum size of the buffer
3576  * @len_out: length of line placed into buffer
3577  *
3578  * Start at the end of the kmsg buffer and fill the provided buffer
3579  * with as many of the *youngest* kmsg records that fit into it.
3580  * If the buffer is large enough, all available kmsg records will be
3581  * copied with a single call.
3582  *
3583  * Consecutive calls will fill the buffer with the next block of
3584  * available older records, not including the earlier retrieved ones.
3585  *
3586  * A return value of FALSE indicates that there are no more records to
3587  * read.
3588  */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)3589 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3590 			  char *buf, size_t size, size_t *len_out)
3591 {
3592 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3593 	struct printk_info info;
3594 	struct printk_record r;
3595 	u64 seq;
3596 	u64 next_seq;
3597 	size_t len = 0;
3598 	bool ret = false;
3599 	bool time = printk_time;
3600 
3601 	if (!buf || !size)
3602 		goto out;
3603 
3604 	if (iter->cur_seq < min_seq)
3605 		iter->cur_seq = min_seq;
3606 
3607 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3608 		if (info.seq != iter->cur_seq) {
3609 			/* messages are gone, move to first available one */
3610 			iter->cur_seq = info.seq;
3611 		}
3612 	}
3613 
3614 	/* last entry */
3615 	if (iter->cur_seq >= iter->next_seq)
3616 		goto out;
3617 
3618 	/*
3619 	 * Find first record that fits, including all following records,
3620 	 * into the user-provided buffer for this dump. Pass in size-1
3621 	 * because this function (by way of record_print_text()) will
3622 	 * not write more than size-1 bytes of text into @buf.
3623 	 */
3624 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3625 				     size - 1, syslog, time);
3626 
3627 	/*
3628 	 * Next kmsg_dump_get_buffer() invocation will dump block of
3629 	 * older records stored right before this one.
3630 	 */
3631 	next_seq = seq;
3632 
3633 	prb_rec_init_rd(&r, &info, buf, size);
3634 
3635 	len = 0;
3636 	prb_for_each_record(seq, prb, seq, &r) {
3637 		if (r.info->seq >= iter->next_seq)
3638 			break;
3639 
3640 		len += record_print_text(&r, syslog, time);
3641 
3642 		/* Adjust record to store to remaining buffer space. */
3643 		prb_rec_init_rd(&r, &info, buf + len, size - len);
3644 	}
3645 
3646 	iter->next_seq = next_seq;
3647 	ret = true;
3648 out:
3649 	if (len_out)
3650 		*len_out = len;
3651 	return ret;
3652 }
3653 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3654 
3655 /**
3656  * kmsg_dump_rewind - reset the iterator
3657  * @iter: kmsg dump iterator
3658  *
3659  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3660  * kmsg_dump_get_buffer() can be called again and used multiple
3661  * times within the same dumper.dump() callback.
3662  */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)3663 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3664 {
3665 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3666 	iter->next_seq = prb_next_seq(prb);
3667 }
3668 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3669 
3670 #endif
3671 
3672 #ifdef CONFIG_SMP
3673 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3674 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3675 
3676 /**
3677  * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3678  *                               spinning lock is not owned by any CPU.
3679  *
3680  * Context: Any context.
3681  */
__printk_wait_on_cpu_lock(void)3682 void __printk_wait_on_cpu_lock(void)
3683 {
3684 	do {
3685 		cpu_relax();
3686 	} while (atomic_read(&printk_cpulock_owner) != -1);
3687 }
3688 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3689 
3690 /**
3691  * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3692  *                          spinning lock.
3693  *
3694  * If no processor has the lock, the calling processor takes the lock and
3695  * becomes the owner. If the calling processor is already the owner of the
3696  * lock, this function succeeds immediately.
3697  *
3698  * Context: Any context. Expects interrupts to be disabled.
3699  * Return: 1 on success, otherwise 0.
3700  */
__printk_cpu_trylock(void)3701 int __printk_cpu_trylock(void)
3702 {
3703 	int cpu;
3704 	int old;
3705 
3706 	cpu = smp_processor_id();
3707 
3708 	/*
3709 	 * Guarantee loads and stores from this CPU when it is the lock owner
3710 	 * are _not_ visible to the previous lock owner. This pairs with
3711 	 * __printk_cpu_unlock:B.
3712 	 *
3713 	 * Memory barrier involvement:
3714 	 *
3715 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3716 	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3717 	 *
3718 	 * Relies on:
3719 	 *
3720 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3721 	 * of the previous CPU
3722 	 *    matching
3723 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3724 	 * of this CPU
3725 	 */
3726 	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3727 				     cpu); /* LMM(__printk_cpu_trylock:A) */
3728 	if (old == -1) {
3729 		/*
3730 		 * This CPU is now the owner and begins loading/storing
3731 		 * data: LMM(__printk_cpu_trylock:B)
3732 		 */
3733 		return 1;
3734 
3735 	} else if (old == cpu) {
3736 		/* This CPU is already the owner. */
3737 		atomic_inc(&printk_cpulock_nested);
3738 		return 1;
3739 	}
3740 
3741 	return 0;
3742 }
3743 EXPORT_SYMBOL(__printk_cpu_trylock);
3744 
3745 /**
3746  * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3747  *
3748  * The calling processor must be the owner of the lock.
3749  *
3750  * Context: Any context. Expects interrupts to be disabled.
3751  */
__printk_cpu_unlock(void)3752 void __printk_cpu_unlock(void)
3753 {
3754 	if (atomic_read(&printk_cpulock_nested)) {
3755 		atomic_dec(&printk_cpulock_nested);
3756 		return;
3757 	}
3758 
3759 	/*
3760 	 * This CPU is finished loading/storing data:
3761 	 * LMM(__printk_cpu_unlock:A)
3762 	 */
3763 
3764 	/*
3765 	 * Guarantee loads and stores from this CPU when it was the
3766 	 * lock owner are visible to the next lock owner. This pairs
3767 	 * with __printk_cpu_trylock:A.
3768 	 *
3769 	 * Memory barrier involvement:
3770 	 *
3771 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3772 	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3773 	 *
3774 	 * Relies on:
3775 	 *
3776 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3777 	 * of this CPU
3778 	 *    matching
3779 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3780 	 * of the next CPU
3781 	 */
3782 	atomic_set_release(&printk_cpulock_owner,
3783 			   -1); /* LMM(__printk_cpu_unlock:B) */
3784 }
3785 EXPORT_SYMBOL(__printk_cpu_unlock);
3786 #endif /* CONFIG_SMP */
3787