1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * FPU register's regset abstraction, for ptrace, core dumps, etc.
4 */
5 #include <linux/sched/task_stack.h>
6 #include <linux/vmalloc.h>
7
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/signal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/xstate.h>
12
13 /*
14 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
15 * as the "regset->n" for the xstate regset will be updated based on the feature
16 * capabilities supported by the xsave.
17 */
regset_fpregs_active(struct task_struct * target,const struct user_regset * regset)18 int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
19 {
20 return regset->n;
21 }
22
regset_xregset_fpregs_active(struct task_struct * target,const struct user_regset * regset)23 int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
24 {
25 if (boot_cpu_has(X86_FEATURE_FXSR))
26 return regset->n;
27 else
28 return 0;
29 }
30
31 /*
32 * The regset get() functions are invoked from:
33 *
34 * - coredump to dump the current task's fpstate. If the current task
35 * owns the FPU then the memory state has to be synchronized and the
36 * FPU register state preserved. Otherwise fpstate is already in sync.
37 *
38 * - ptrace to dump fpstate of a stopped task, in which case the registers
39 * have already been saved to fpstate on context switch.
40 */
sync_fpstate(struct fpu * fpu)41 static void sync_fpstate(struct fpu *fpu)
42 {
43 if (fpu == ¤t->thread.fpu)
44 fpu_sync_fpstate(fpu);
45 }
46
47 /*
48 * Invalidate cached FPU registers before modifying the stopped target
49 * task's fpstate.
50 *
51 * This forces the target task on resume to restore the FPU registers from
52 * modified fpstate. Otherwise the task might skip the restore and operate
53 * with the cached FPU registers which discards the modifications.
54 */
fpu_force_restore(struct fpu * fpu)55 static void fpu_force_restore(struct fpu *fpu)
56 {
57 /*
58 * Only stopped child tasks can be used to modify the FPU
59 * state in the fpstate buffer:
60 */
61 WARN_ON_FPU(fpu == ¤t->thread.fpu);
62
63 __fpu_invalidate_fpregs_state(fpu);
64 }
65
xfpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)66 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
67 struct membuf to)
68 {
69 struct fpu *fpu = &target->thread.fpu;
70
71 if (!cpu_feature_enabled(X86_FEATURE_FXSR))
72 return -ENODEV;
73
74 sync_fpstate(fpu);
75
76 if (!use_xsave()) {
77 return membuf_write(&to, &fpu->state.fxsave,
78 sizeof(fpu->state.fxsave));
79 }
80
81 copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX);
82 return 0;
83 }
84
xfpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)85 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
86 unsigned int pos, unsigned int count,
87 const void *kbuf, const void __user *ubuf)
88 {
89 struct fpu *fpu = &target->thread.fpu;
90 struct fxregs_state newstate;
91 int ret;
92
93 if (!cpu_feature_enabled(X86_FEATURE_FXSR))
94 return -ENODEV;
95
96 /* No funny business with partial or oversized writes is permitted. */
97 if (pos != 0 || count != sizeof(newstate))
98 return -EINVAL;
99
100 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1);
101 if (ret)
102 return ret;
103
104 /* Do not allow an invalid MXCSR value. */
105 if (newstate.mxcsr & ~mxcsr_feature_mask)
106 return -EINVAL;
107
108 fpu_force_restore(fpu);
109
110 /* Copy the state */
111 memcpy(&fpu->state.fxsave, &newstate, sizeof(newstate));
112
113 /* Clear xmm8..15 for 32-bit callers */
114 BUILD_BUG_ON(sizeof(fpu->state.fxsave.xmm_space) != 16 * 16);
115 if (in_ia32_syscall())
116 memset(&fpu->state.fxsave.xmm_space[8*4], 0, 8 * 16);
117
118 /* Mark FP and SSE as in use when XSAVE is enabled */
119 if (use_xsave())
120 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
121
122 return 0;
123 }
124
xstateregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)125 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
126 struct membuf to)
127 {
128 if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
129 return -ENODEV;
130
131 sync_fpstate(&target->thread.fpu);
132
133 copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE);
134 return 0;
135 }
136
xstateregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)137 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
138 unsigned int pos, unsigned int count,
139 const void *kbuf, const void __user *ubuf)
140 {
141 struct fpu *fpu = &target->thread.fpu;
142 struct xregs_state *tmpbuf = NULL;
143 int ret;
144
145 if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
146 return -ENODEV;
147
148 /*
149 * A whole standard-format XSAVE buffer is needed:
150 */
151 if (pos != 0 || count != fpu_user_xstate_size)
152 return -EFAULT;
153
154 if (!kbuf) {
155 tmpbuf = vmalloc(count);
156 if (!tmpbuf)
157 return -ENOMEM;
158
159 if (copy_from_user(tmpbuf, ubuf, count)) {
160 ret = -EFAULT;
161 goto out;
162 }
163 }
164
165 fpu_force_restore(fpu);
166 ret = copy_uabi_from_kernel_to_xstate(&fpu->state.xsave, kbuf ?: tmpbuf, &target->thread.pkru);
167
168 out:
169 vfree(tmpbuf);
170 return ret;
171 }
172
173 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
174
175 /*
176 * FPU tag word conversions.
177 */
178
twd_i387_to_fxsr(unsigned short twd)179 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
180 {
181 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
182
183 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
184 tmp = ~twd;
185 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
186 /* and move the valid bits to the lower byte. */
187 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
188 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
189 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
190
191 return tmp;
192 }
193
194 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
195 #define FP_EXP_TAG_VALID 0
196 #define FP_EXP_TAG_ZERO 1
197 #define FP_EXP_TAG_SPECIAL 2
198 #define FP_EXP_TAG_EMPTY 3
199
twd_fxsr_to_i387(struct fxregs_state * fxsave)200 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
201 {
202 struct _fpxreg *st;
203 u32 tos = (fxsave->swd >> 11) & 7;
204 u32 twd = (unsigned long) fxsave->twd;
205 u32 tag;
206 u32 ret = 0xffff0000u;
207 int i;
208
209 for (i = 0; i < 8; i++, twd >>= 1) {
210 if (twd & 0x1) {
211 st = FPREG_ADDR(fxsave, (i - tos) & 7);
212
213 switch (st->exponent & 0x7fff) {
214 case 0x7fff:
215 tag = FP_EXP_TAG_SPECIAL;
216 break;
217 case 0x0000:
218 if (!st->significand[0] &&
219 !st->significand[1] &&
220 !st->significand[2] &&
221 !st->significand[3])
222 tag = FP_EXP_TAG_ZERO;
223 else
224 tag = FP_EXP_TAG_SPECIAL;
225 break;
226 default:
227 if (st->significand[3] & 0x8000)
228 tag = FP_EXP_TAG_VALID;
229 else
230 tag = FP_EXP_TAG_SPECIAL;
231 break;
232 }
233 } else {
234 tag = FP_EXP_TAG_EMPTY;
235 }
236 ret |= tag << (2 * i);
237 }
238 return ret;
239 }
240
241 /*
242 * FXSR floating point environment conversions.
243 */
244
__convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk,struct fxregs_state * fxsave)245 static void __convert_from_fxsr(struct user_i387_ia32_struct *env,
246 struct task_struct *tsk,
247 struct fxregs_state *fxsave)
248 {
249 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
250 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
251 int i;
252
253 env->cwd = fxsave->cwd | 0xffff0000u;
254 env->swd = fxsave->swd | 0xffff0000u;
255 env->twd = twd_fxsr_to_i387(fxsave);
256
257 #ifdef CONFIG_X86_64
258 env->fip = fxsave->rip;
259 env->foo = fxsave->rdp;
260 /*
261 * should be actually ds/cs at fpu exception time, but
262 * that information is not available in 64bit mode.
263 */
264 env->fcs = task_pt_regs(tsk)->cs;
265 if (tsk == current) {
266 savesegment(ds, env->fos);
267 } else {
268 env->fos = tsk->thread.ds;
269 }
270 env->fos |= 0xffff0000;
271 #else
272 env->fip = fxsave->fip;
273 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
274 env->foo = fxsave->foo;
275 env->fos = fxsave->fos;
276 #endif
277
278 for (i = 0; i < 8; ++i)
279 memcpy(&to[i], &from[i], sizeof(to[0]));
280 }
281
282 void
convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk)283 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
284 {
285 __convert_from_fxsr(env, tsk, &tsk->thread.fpu.state.fxsave);
286 }
287
convert_to_fxsr(struct fxregs_state * fxsave,const struct user_i387_ia32_struct * env)288 void convert_to_fxsr(struct fxregs_state *fxsave,
289 const struct user_i387_ia32_struct *env)
290
291 {
292 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
293 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
294 int i;
295
296 fxsave->cwd = env->cwd;
297 fxsave->swd = env->swd;
298 fxsave->twd = twd_i387_to_fxsr(env->twd);
299 fxsave->fop = (u16) ((u32) env->fcs >> 16);
300 #ifdef CONFIG_X86_64
301 fxsave->rip = env->fip;
302 fxsave->rdp = env->foo;
303 /* cs and ds ignored */
304 #else
305 fxsave->fip = env->fip;
306 fxsave->fcs = (env->fcs & 0xffff);
307 fxsave->foo = env->foo;
308 fxsave->fos = env->fos;
309 #endif
310
311 for (i = 0; i < 8; ++i)
312 memcpy(&to[i], &from[i], sizeof(from[0]));
313 }
314
fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)315 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
316 struct membuf to)
317 {
318 struct fpu *fpu = &target->thread.fpu;
319 struct user_i387_ia32_struct env;
320 struct fxregs_state fxsave, *fx;
321
322 sync_fpstate(fpu);
323
324 if (!cpu_feature_enabled(X86_FEATURE_FPU))
325 return fpregs_soft_get(target, regset, to);
326
327 if (!cpu_feature_enabled(X86_FEATURE_FXSR)) {
328 return membuf_write(&to, &fpu->state.fsave,
329 sizeof(struct fregs_state));
330 }
331
332 if (use_xsave()) {
333 struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) };
334
335 /* Handle init state optimized xstate correctly */
336 copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP);
337 fx = &fxsave;
338 } else {
339 fx = &fpu->state.fxsave;
340 }
341
342 __convert_from_fxsr(&env, target, fx);
343 return membuf_write(&to, &env, sizeof(env));
344 }
345
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)346 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
347 unsigned int pos, unsigned int count,
348 const void *kbuf, const void __user *ubuf)
349 {
350 struct fpu *fpu = &target->thread.fpu;
351 struct user_i387_ia32_struct env;
352 int ret;
353
354 /* No funny business with partial or oversized writes is permitted. */
355 if (pos != 0 || count != sizeof(struct user_i387_ia32_struct))
356 return -EINVAL;
357
358 if (!cpu_feature_enabled(X86_FEATURE_FPU))
359 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
360
361 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
362 if (ret)
363 return ret;
364
365 fpu_force_restore(fpu);
366
367 if (cpu_feature_enabled(X86_FEATURE_FXSR))
368 convert_to_fxsr(&fpu->state.fxsave, &env);
369 else
370 memcpy(&fpu->state.fsave, &env, sizeof(env));
371
372 /*
373 * Update the header bit in the xsave header, indicating the
374 * presence of FP.
375 */
376 if (cpu_feature_enabled(X86_FEATURE_XSAVE))
377 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
378
379 return 0;
380 }
381
382 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
383