• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77 
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/hwcap.h>
83 #include <asm/insn.h>
84 #include <asm/kvm_host.h>
85 #include <asm/mmu_context.h>
86 #include <asm/mte.h>
87 #include <asm/processor.h>
88 #include <asm/smp.h>
89 #include <asm/sysreg.h>
90 #include <asm/traps.h>
91 #include <asm/vectors.h>
92 #include <asm/virt.h>
93 
94 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
95 static unsigned long elf_hwcap __read_mostly;
96 
97 #ifdef CONFIG_COMPAT
98 #define COMPAT_ELF_HWCAP_DEFAULT	\
99 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
100 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
101 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
102 				 COMPAT_HWCAP_LPAE)
103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
104 unsigned int compat_elf_hwcap2 __read_mostly;
105 #endif
106 
107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
108 EXPORT_SYMBOL(cpu_hwcaps);
109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
110 
111 /* Need also bit for ARM64_CB_PATCH */
112 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 /*
138  * Flag to indicate if we have computed the system wide
139  * capabilities based on the boot time active CPUs. This
140  * will be used to determine if a new booting CPU should
141  * go through the verification process to make sure that it
142  * supports the system capabilities, without using a hotplug
143  * notifier. This is also used to decide if we could use
144  * the fast path for checking constant CPU caps.
145  */
146 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
147 EXPORT_SYMBOL(arm64_const_caps_ready);
finalize_system_capabilities(void)148 static inline void finalize_system_capabilities(void)
149 {
150 	static_branch_enable(&arm64_const_caps_ready);
151 }
152 
dump_cpu_features(void)153 void dump_cpu_features(void)
154 {
155 	/* file-wide pr_fmt adds "CPU features: " prefix */
156 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
157 }
158 
159 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
160 EXPORT_SYMBOL(cpu_hwcap_keys);
161 
162 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 	{						\
164 		.sign = SIGNED,				\
165 		.visible = VISIBLE,			\
166 		.strict = STRICT,			\
167 		.type = TYPE,				\
168 		.shift = SHIFT,				\
169 		.width = WIDTH,				\
170 		.safe_val = SAFE_VAL,			\
171 	}
172 
173 /* Define a feature with unsigned values */
174 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
175 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
176 
177 /* Define a feature with a signed value */
178 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
179 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
180 
181 #define ARM64_FTR_END					\
182 	{						\
183 		.width = 0,				\
184 	}
185 
186 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
187 
188 static bool __system_matches_cap(unsigned int n);
189 
190 /*
191  * NOTE: Any changes to the visibility of features should be kept in
192  * sync with the documentation of the CPU feature register ABI.
193  */
194 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
209 	ARM64_FTR_END,
210 };
211 
212 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
220 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
222 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
227 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
231 	ARM64_FTR_END,
232 };
233 
234 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
237 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
239 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
242 	ARM64_FTR_END,
243 };
244 
245 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
256 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
257 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
262 	ARM64_FTR_END,
263 };
264 
265 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
266 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
267 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
271 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
272 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
274 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
275 	ARM64_FTR_END,
276 };
277 
278 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
279 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
292 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
293 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
294 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
295 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
296 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
297 	ARM64_FTR_END,
298 };
299 
300 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
303 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
305 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
307 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
309 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
311 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
313 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
315 	ARM64_FTR_END,
316 };
317 
318 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
319 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
322 	/*
323 	 * Page size not being supported at Stage-2 is not fatal. You
324 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
325 	 * your favourite nesting hypervisor.
326 	 *
327 	 * There is a small corner case where the hypervisor explicitly
328 	 * advertises a given granule size at Stage-2 (value 2) on some
329 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
330 	 * vCPUs. Although this is not forbidden by the architecture, it
331 	 * indicates that the hypervisor is being silly (or buggy).
332 	 *
333 	 * We make no effort to cope with this and pretend that if these
334 	 * fields are inconsistent across vCPUs, then it isn't worth
335 	 * trying to bring KVM up.
336 	 */
337 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
338 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
339 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
340 	/*
341 	 * We already refuse to boot CPUs that don't support our configured
342 	 * page size, so we can only detect mismatches for a page size other
343 	 * than the one we're currently using. Unfortunately, SoCs like this
344 	 * exist in the wild so, even though we don't like it, we'll have to go
345 	 * along with it and treat them as non-strict.
346 	 */
347 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
348 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
350 
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
352 	/* Linux shouldn't care about secure memory */
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
356 	/*
357 	 * Differing PARange is fine as long as all peripherals and memory are mapped
358 	 * within the minimum PARange of all CPUs
359 	 */
360 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
361 	ARM64_FTR_END,
362 };
363 
364 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
365 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
369 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
373 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
375 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
376 	ARM64_FTR_END,
377 };
378 
379 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
380 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
381 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
382 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
383 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
384 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
385 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
386 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
389 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
390 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
391 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
392 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
393 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
394 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
395 	ARM64_FTR_END,
396 };
397 
398 static const struct arm64_ftr_bits ftr_ctr[] = {
399 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
400 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
401 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
402 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
403 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
404 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
405 	/*
406 	 * Linux can handle differing I-cache policies. Userspace JITs will
407 	 * make use of *minLine.
408 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
409 	 */
410 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
411 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
412 	ARM64_FTR_END,
413 };
414 
415 static struct arm64_ftr_override __ro_after_init no_override = { };
416 
417 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
418 	.name		= "SYS_CTR_EL0",
419 	.ftr_bits	= ftr_ctr,
420 	.override	= &no_override,
421 };
422 
423 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
424 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
425 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
426 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
428 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
429 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
430 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
431 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
432 	ARM64_FTR_END,
433 };
434 
435 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
436 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
441 	/*
442 	 * We can instantiate multiple PMU instances with different levels
443 	 * of support.
444 	 */
445 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
446 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
447 	ARM64_FTR_END,
448 };
449 
450 static const struct arm64_ftr_bits ftr_mvfr0[] = {
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPROUND_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSHVEC_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSQRT_SHIFT, 4, 0),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPDIVIDE_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPTRAP_SHIFT, 4, 0),
456 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPDP_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSP_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_SIMD_SHIFT, 4, 0),
459 	ARM64_FTR_END,
460 };
461 
462 static const struct arm64_ftr_bits ftr_mvfr1[] = {
463 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDFMAC_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPHP_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDHP_SHIFT, 4, 0),
466 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDSP_SHIFT, 4, 0),
467 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDINT_SHIFT, 4, 0),
468 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDLS_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPDNAN_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPFTZ_SHIFT, 4, 0),
471 	ARM64_FTR_END,
472 };
473 
474 static const struct arm64_ftr_bits ftr_mvfr2[] = {
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
477 	ARM64_FTR_END,
478 };
479 
480 static const struct arm64_ftr_bits ftr_dczid[] = {
481 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
482 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
483 	ARM64_FTR_END,
484 };
485 
486 static const struct arm64_ftr_bits ftr_gmid[] = {
487 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
488 	ARM64_FTR_END,
489 };
490 
491 static const struct arm64_ftr_bits ftr_id_isar0[] = {
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
497 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
498 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
499 	ARM64_FTR_END,
500 };
501 
502 static const struct arm64_ftr_bits ftr_id_isar5[] = {
503 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
504 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
505 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
506 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
509 	ARM64_FTR_END,
510 };
511 
512 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
513 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
514 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
516 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
520 
521 	/*
522 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
523 	 * external abort on speculative read. It is safe to assume that an
524 	 * SError might be generated than it will not be. Hence it has been
525 	 * classified as FTR_HIGHER_SAFE.
526 	 */
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
528 	ARM64_FTR_END,
529 };
530 
531 static const struct arm64_ftr_bits ftr_id_isar4[] = {
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
540 	ARM64_FTR_END,
541 };
542 
543 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
544 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
545 	ARM64_FTR_END,
546 };
547 
548 static const struct arm64_ftr_bits ftr_id_isar6[] = {
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
555 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
556 	ARM64_FTR_END,
557 };
558 
559 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
560 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
561 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
562 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
563 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
564 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
565 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
566 	ARM64_FTR_END,
567 };
568 
569 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
570 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
571 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
578 	ARM64_FTR_END,
579 };
580 
581 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
582 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
583 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
584 	ARM64_FTR_END,
585 };
586 
587 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
588 	/* [31:28] TraceFilt */
589 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
590 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
592 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
593 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
594 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
595 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
596 	ARM64_FTR_END,
597 };
598 
599 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
600 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
601 	ARM64_FTR_END,
602 };
603 
604 static const struct arm64_ftr_bits ftr_zcr[] = {
605 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
606 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),	/* LEN */
607 	ARM64_FTR_END,
608 };
609 
610 static const struct arm64_ftr_bits ftr_smcr[] = {
611 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
612 		SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),	/* LEN */
613 	ARM64_FTR_END,
614 };
615 
616 /*
617  * Common ftr bits for a 32bit register with all hidden, strict
618  * attributes, with 4bit feature fields and a default safe value of
619  * 0. Covers the following 32bit registers:
620  * id_isar[1-3], id_mmfr[1-3]
621  */
622 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
623 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
624 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
625 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
626 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
627 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
628 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
629 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
630 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
631 	ARM64_FTR_END,
632 };
633 
634 /* Table for a single 32bit feature value */
635 static const struct arm64_ftr_bits ftr_single32[] = {
636 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
637 	ARM64_FTR_END,
638 };
639 
640 static const struct arm64_ftr_bits ftr_raz[] = {
641 	ARM64_FTR_END,
642 };
643 
644 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
645 		.sys_id = id,					\
646 		.reg = 	&(struct arm64_ftr_reg){		\
647 			.name = id_str,				\
648 			.override = (ovr),			\
649 			.ftr_bits = &((table)[0]),		\
650 	}}
651 
652 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
653 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
654 
655 #define ARM64_FTR_REG(id, table)		\
656 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
657 
658 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
659 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
660 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
661 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
662 
663 static const struct __ftr_reg_entry {
664 	u32			sys_id;
665 	struct arm64_ftr_reg 	*reg;
666 } arm64_ftr_regs[] = {
667 
668 	/* Op1 = 0, CRn = 0, CRm = 1 */
669 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
670 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
671 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
672 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
673 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
674 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
675 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
676 
677 	/* Op1 = 0, CRn = 0, CRm = 2 */
678 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
679 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
680 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
681 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
682 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
683 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
684 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
685 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
686 
687 	/* Op1 = 0, CRn = 0, CRm = 3 */
688 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
689 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
690 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
691 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
692 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
693 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
694 
695 	/* Op1 = 0, CRn = 0, CRm = 4 */
696 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
697 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
698 			       &id_aa64pfr1_override),
699 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
700 	ARM64_FTR_REG(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0),
701 
702 	/* Op1 = 0, CRn = 0, CRm = 5 */
703 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
704 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
705 
706 	/* Op1 = 0, CRn = 0, CRm = 6 */
707 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
708 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
709 			       &id_aa64isar1_override),
710 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
711 			       &id_aa64isar2_override),
712 
713 	/* Op1 = 0, CRn = 0, CRm = 7 */
714 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
715 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
716 			       &id_aa64mmfr1_override),
717 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
718 
719 	/* Op1 = 0, CRn = 1, CRm = 2 */
720 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
721 	ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
722 
723 	/* Op1 = 1, CRn = 0, CRm = 0 */
724 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
725 
726 	/* Op1 = 3, CRn = 0, CRm = 0 */
727 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
728 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
729 
730 	/* Op1 = 3, CRn = 14, CRm = 0 */
731 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
732 };
733 
search_cmp_ftr_reg(const void * id,const void * regp)734 static int search_cmp_ftr_reg(const void *id, const void *regp)
735 {
736 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
737 }
738 
739 /*
740  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
741  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
742  * ascending order of sys_id, we use binary search to find a matching
743  * entry.
744  *
745  * returns - Upon success,  matching ftr_reg entry for id.
746  *         - NULL on failure. It is upto the caller to decide
747  *	     the impact of a failure.
748  */
get_arm64_ftr_reg_nowarn(u32 sys_id)749 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
750 {
751 	const struct __ftr_reg_entry *ret;
752 
753 	ret = bsearch((const void *)(unsigned long)sys_id,
754 			arm64_ftr_regs,
755 			ARRAY_SIZE(arm64_ftr_regs),
756 			sizeof(arm64_ftr_regs[0]),
757 			search_cmp_ftr_reg);
758 	if (ret)
759 		return ret->reg;
760 	return NULL;
761 }
762 
763 /*
764  * get_arm64_ftr_reg - Looks up a feature register entry using
765  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
766  *
767  * returns - Upon success,  matching ftr_reg entry for id.
768  *         - NULL on failure but with an WARN_ON().
769  */
get_arm64_ftr_reg(u32 sys_id)770 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
771 {
772 	struct arm64_ftr_reg *reg;
773 
774 	reg = get_arm64_ftr_reg_nowarn(sys_id);
775 
776 	/*
777 	 * Requesting a non-existent register search is an error. Warn
778 	 * and let the caller handle it.
779 	 */
780 	WARN_ON(!reg);
781 	return reg;
782 }
783 
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)784 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
785 			       s64 ftr_val)
786 {
787 	u64 mask = arm64_ftr_mask(ftrp);
788 
789 	reg &= ~mask;
790 	reg |= (ftr_val << ftrp->shift) & mask;
791 	return reg;
792 }
793 
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)794 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
795 				s64 cur)
796 {
797 	s64 ret = 0;
798 
799 	switch (ftrp->type) {
800 	case FTR_EXACT:
801 		ret = ftrp->safe_val;
802 		break;
803 	case FTR_LOWER_SAFE:
804 		ret = min(new, cur);
805 		break;
806 	case FTR_HIGHER_OR_ZERO_SAFE:
807 		if (!cur || !new)
808 			break;
809 		fallthrough;
810 	case FTR_HIGHER_SAFE:
811 		ret = max(new, cur);
812 		break;
813 	default:
814 		BUG();
815 	}
816 
817 	return ret;
818 }
819 
sort_ftr_regs(void)820 static void __init sort_ftr_regs(void)
821 {
822 	unsigned int i;
823 
824 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
825 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
826 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
827 		unsigned int j = 0;
828 
829 		/*
830 		 * Features here must be sorted in descending order with respect
831 		 * to their shift values and should not overlap with each other.
832 		 */
833 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
834 			unsigned int width = ftr_reg->ftr_bits[j].width;
835 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
836 			unsigned int prev_shift;
837 
838 			WARN((shift  + width) > 64,
839 				"%s has invalid feature at shift %d\n",
840 				ftr_reg->name, shift);
841 
842 			/*
843 			 * Skip the first feature. There is nothing to
844 			 * compare against for now.
845 			 */
846 			if (j == 0)
847 				continue;
848 
849 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
850 			WARN((shift + width) > prev_shift,
851 				"%s has feature overlap at shift %d\n",
852 				ftr_reg->name, shift);
853 		}
854 
855 		/*
856 		 * Skip the first register. There is nothing to
857 		 * compare against for now.
858 		 */
859 		if (i == 0)
860 			continue;
861 		/*
862 		 * Registers here must be sorted in ascending order with respect
863 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
864 		 * to work correctly.
865 		 */
866 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
867 	}
868 }
869 
870 /*
871  * Initialise the CPU feature register from Boot CPU values.
872  * Also initiliases the strict_mask for the register.
873  * Any bits that are not covered by an arm64_ftr_bits entry are considered
874  * RES0 for the system-wide value, and must strictly match.
875  */
init_cpu_ftr_reg(u32 sys_reg,u64 new)876 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
877 {
878 	u64 val = 0;
879 	u64 strict_mask = ~0x0ULL;
880 	u64 user_mask = 0;
881 	u64 valid_mask = 0;
882 
883 	const struct arm64_ftr_bits *ftrp;
884 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
885 
886 	if (!reg)
887 		return;
888 
889 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
890 		u64 ftr_mask = arm64_ftr_mask(ftrp);
891 		s64 ftr_new = arm64_ftr_value(ftrp, new);
892 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
893 
894 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
895 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
896 			char *str = NULL;
897 
898 			if (ftr_ovr != tmp) {
899 				/* Unsafe, remove the override */
900 				reg->override->mask &= ~ftr_mask;
901 				reg->override->val &= ~ftr_mask;
902 				tmp = ftr_ovr;
903 				str = "ignoring override";
904 			} else if (ftr_new != tmp) {
905 				/* Override was valid */
906 				ftr_new = tmp;
907 				str = "forced";
908 			} else if (ftr_ovr == tmp) {
909 				/* Override was the safe value */
910 				str = "already set";
911 			}
912 
913 			if (str)
914 				pr_warn("%s[%d:%d]: %s to %llx\n",
915 					reg->name,
916 					ftrp->shift + ftrp->width - 1,
917 					ftrp->shift, str, tmp);
918 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
919 			reg->override->val &= ~ftr_mask;
920 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
921 				reg->name,
922 				ftrp->shift + ftrp->width - 1,
923 				ftrp->shift);
924 		}
925 
926 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
927 
928 		valid_mask |= ftr_mask;
929 		if (!ftrp->strict)
930 			strict_mask &= ~ftr_mask;
931 		if (ftrp->visible)
932 			user_mask |= ftr_mask;
933 		else
934 			reg->user_val = arm64_ftr_set_value(ftrp,
935 							    reg->user_val,
936 							    ftrp->safe_val);
937 	}
938 
939 	val &= valid_mask;
940 
941 	reg->sys_val = val;
942 	reg->strict_mask = strict_mask;
943 	reg->user_mask = user_mask;
944 }
945 
946 extern const struct arm64_cpu_capabilities arm64_errata[];
947 static const struct arm64_cpu_capabilities arm64_features[];
948 
949 static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)950 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
951 {
952 	for (; caps->matches; caps++) {
953 		if (WARN(caps->capability >= ARM64_NCAPS,
954 			"Invalid capability %d\n", caps->capability))
955 			continue;
956 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
957 			"Duplicate entry for capability %d\n",
958 			caps->capability))
959 			continue;
960 		cpu_hwcaps_ptrs[caps->capability] = caps;
961 	}
962 }
963 
init_cpu_hwcaps_indirect_list(void)964 static void __init init_cpu_hwcaps_indirect_list(void)
965 {
966 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
967 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
968 }
969 
970 static void __init setup_boot_cpu_capabilities(void);
971 
init_32bit_cpu_features(struct cpuinfo_32bit * info)972 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
973 {
974 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
975 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
976 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
977 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
978 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
979 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
980 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
981 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
982 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
983 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
984 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
985 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
986 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
987 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
988 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
989 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
990 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
991 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
992 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
993 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
994 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
995 }
996 
init_cpu_features(struct cpuinfo_arm64 * info)997 void __init init_cpu_features(struct cpuinfo_arm64 *info)
998 {
999 	/* Before we start using the tables, make sure it is sorted */
1000 	sort_ftr_regs();
1001 
1002 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1003 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1004 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1005 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1006 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1007 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1008 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1009 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1010 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1011 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1012 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1013 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1014 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1015 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1016 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1017 
1018 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1019 		init_32bit_cpu_features(&info->aarch32);
1020 
1021 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1022 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1023 		vec_init_vq_map(ARM64_VEC_SVE);
1024 	}
1025 
1026 	if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1027 		init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1028 		if (IS_ENABLED(CONFIG_ARM64_SME))
1029 			vec_init_vq_map(ARM64_VEC_SME);
1030 	}
1031 
1032 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1033 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1034 
1035 	/*
1036 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
1037 	 * before we handle the boot CPU below.
1038 	 */
1039 	init_cpu_hwcaps_indirect_list();
1040 
1041 	/*
1042 	 * Detect and enable early CPU capabilities based on the boot CPU,
1043 	 * after we have initialised the CPU feature infrastructure.
1044 	 */
1045 	setup_boot_cpu_capabilities();
1046 }
1047 
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1048 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1049 {
1050 	const struct arm64_ftr_bits *ftrp;
1051 
1052 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1053 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1054 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1055 
1056 		if (ftr_cur == ftr_new)
1057 			continue;
1058 		/* Find a safe value */
1059 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1060 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1061 	}
1062 
1063 }
1064 
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1065 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1066 {
1067 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1068 
1069 	if (!regp)
1070 		return 0;
1071 
1072 	update_cpu_ftr_reg(regp, val);
1073 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1074 		return 0;
1075 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1076 			regp->name, boot, cpu, val);
1077 	return 1;
1078 }
1079 
relax_cpu_ftr_reg(u32 sys_id,int field)1080 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1081 {
1082 	const struct arm64_ftr_bits *ftrp;
1083 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1084 
1085 	if (!regp)
1086 		return;
1087 
1088 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1089 		if (ftrp->shift == field) {
1090 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1091 			break;
1092 		}
1093 	}
1094 
1095 	/* Bogus field? */
1096 	WARN_ON(!ftrp->width);
1097 }
1098 
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1099 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1100 					 struct cpuinfo_arm64 *boot)
1101 {
1102 	static bool boot_cpu_32bit_regs_overridden = false;
1103 
1104 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1105 		return;
1106 
1107 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1108 		return;
1109 
1110 	boot->aarch32 = info->aarch32;
1111 	init_32bit_cpu_features(&boot->aarch32);
1112 	boot_cpu_32bit_regs_overridden = true;
1113 }
1114 
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1115 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1116 				     struct cpuinfo_32bit *boot)
1117 {
1118 	int taint = 0;
1119 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1120 
1121 	/*
1122 	 * If we don't have AArch32 at EL1, then relax the strictness of
1123 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1124 	 */
1125 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1126 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1127 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1128 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1129 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1130 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1131 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1132 	}
1133 
1134 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1135 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1136 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1137 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1138 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1139 				      info->reg_id_isar0, boot->reg_id_isar0);
1140 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1141 				      info->reg_id_isar1, boot->reg_id_isar1);
1142 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1143 				      info->reg_id_isar2, boot->reg_id_isar2);
1144 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1145 				      info->reg_id_isar3, boot->reg_id_isar3);
1146 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1147 				      info->reg_id_isar4, boot->reg_id_isar4);
1148 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1149 				      info->reg_id_isar5, boot->reg_id_isar5);
1150 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1151 				      info->reg_id_isar6, boot->reg_id_isar6);
1152 
1153 	/*
1154 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1155 	 * ACTLR formats could differ across CPUs and therefore would have to
1156 	 * be trapped for virtualization anyway.
1157 	 */
1158 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1159 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1160 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1161 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1162 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1163 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1164 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1165 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1166 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1167 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1168 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1169 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1170 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1171 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1172 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1173 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1174 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1175 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1176 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1177 				      info->reg_mvfr0, boot->reg_mvfr0);
1178 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1179 				      info->reg_mvfr1, boot->reg_mvfr1);
1180 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1181 				      info->reg_mvfr2, boot->reg_mvfr2);
1182 
1183 	return taint;
1184 }
1185 
1186 /*
1187  * Update system wide CPU feature registers with the values from a
1188  * non-boot CPU. Also performs SANITY checks to make sure that there
1189  * aren't any insane variations from that of the boot CPU.
1190  */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1191 void update_cpu_features(int cpu,
1192 			 struct cpuinfo_arm64 *info,
1193 			 struct cpuinfo_arm64 *boot)
1194 {
1195 	int taint = 0;
1196 
1197 	/*
1198 	 * The kernel can handle differing I-cache policies, but otherwise
1199 	 * caches should look identical. Userspace JITs will make use of
1200 	 * *minLine.
1201 	 */
1202 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1203 				      info->reg_ctr, boot->reg_ctr);
1204 
1205 	/*
1206 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1207 	 * could result in too much or too little memory being zeroed if a
1208 	 * process is preempted and migrated between CPUs.
1209 	 */
1210 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1211 				      info->reg_dczid, boot->reg_dczid);
1212 
1213 	/* If different, timekeeping will be broken (especially with KVM) */
1214 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1215 				      info->reg_cntfrq, boot->reg_cntfrq);
1216 
1217 	/*
1218 	 * The kernel uses self-hosted debug features and expects CPUs to
1219 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1220 	 * and BRPs to be identical.
1221 	 * ID_AA64DFR1 is currently RES0.
1222 	 */
1223 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1224 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1225 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1226 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1227 	/*
1228 	 * Even in big.LITTLE, processors should be identical instruction-set
1229 	 * wise.
1230 	 */
1231 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1232 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1233 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1234 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1235 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1236 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1237 
1238 	/*
1239 	 * Differing PARange support is fine as long as all peripherals and
1240 	 * memory are mapped within the minimum PARange of all CPUs.
1241 	 * Linux should not care about secure memory.
1242 	 */
1243 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1244 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1245 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1246 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1247 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1248 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1249 
1250 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1251 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1252 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1253 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1254 
1255 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1256 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1257 
1258 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1259 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1260 
1261 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1262 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1263 					info->reg_zcr, boot->reg_zcr);
1264 
1265 		/* Probe vector lengths, unless we already gave up on SVE */
1266 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1267 		    !system_capabilities_finalized())
1268 			vec_update_vq_map(ARM64_VEC_SVE);
1269 	}
1270 
1271 	if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1272 		taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1273 					info->reg_smcr, boot->reg_smcr);
1274 
1275 		/* Probe vector lengths, unless we already gave up on SME */
1276 		if (id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1)) &&
1277 		    !system_capabilities_finalized())
1278 			vec_update_vq_map(ARM64_VEC_SME);
1279 	}
1280 
1281 	/*
1282 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1283 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1284 	 * value is the same on all CPUs.
1285 	 */
1286 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1287 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1288 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1289 					      info->reg_gmid, boot->reg_gmid);
1290 	}
1291 
1292 	/*
1293 	 * If we don't have AArch32 at all then skip the checks entirely
1294 	 * as the register values may be UNKNOWN and we're not going to be
1295 	 * using them for anything.
1296 	 *
1297 	 * This relies on a sanitised view of the AArch64 ID registers
1298 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1299 	 */
1300 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1301 		lazy_init_32bit_cpu_features(info, boot);
1302 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1303 						   &boot->aarch32);
1304 	}
1305 
1306 	/*
1307 	 * Mismatched CPU features are a recipe for disaster. Don't even
1308 	 * pretend to support them.
1309 	 */
1310 	if (taint) {
1311 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1312 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1313 	}
1314 }
1315 
read_sanitised_ftr_reg(u32 id)1316 u64 read_sanitised_ftr_reg(u32 id)
1317 {
1318 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1319 
1320 	if (!regp)
1321 		return 0;
1322 	return regp->sys_val;
1323 }
1324 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1325 
1326 #define read_sysreg_case(r)	\
1327 	case r:		val = read_sysreg_s(r); break;
1328 
1329 /*
1330  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1331  * Read the system register on the current CPU
1332  */
__read_sysreg_by_encoding(u32 sys_id)1333 u64 __read_sysreg_by_encoding(u32 sys_id)
1334 {
1335 	struct arm64_ftr_reg *regp;
1336 	u64 val;
1337 
1338 	switch (sys_id) {
1339 	read_sysreg_case(SYS_ID_PFR0_EL1);
1340 	read_sysreg_case(SYS_ID_PFR1_EL1);
1341 	read_sysreg_case(SYS_ID_PFR2_EL1);
1342 	read_sysreg_case(SYS_ID_DFR0_EL1);
1343 	read_sysreg_case(SYS_ID_DFR1_EL1);
1344 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1345 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1346 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1347 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1348 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1349 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1350 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1351 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1352 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1353 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1354 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1355 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1356 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1357 	read_sysreg_case(SYS_MVFR0_EL1);
1358 	read_sysreg_case(SYS_MVFR1_EL1);
1359 	read_sysreg_case(SYS_MVFR2_EL1);
1360 
1361 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1362 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1363 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1364 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1365 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1366 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1367 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1368 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1369 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1370 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1371 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1372 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1373 
1374 	read_sysreg_case(SYS_CNTFRQ_EL0);
1375 	read_sysreg_case(SYS_CTR_EL0);
1376 	read_sysreg_case(SYS_DCZID_EL0);
1377 
1378 	default:
1379 		BUG();
1380 		return 0;
1381 	}
1382 
1383 	regp  = get_arm64_ftr_reg(sys_id);
1384 	if (regp) {
1385 		val &= ~regp->override->mask;
1386 		val |= (regp->override->val & regp->override->mask);
1387 	}
1388 
1389 	return val;
1390 }
1391 
1392 #include <linux/irqchip/arm-gic-v3.h>
1393 
1394 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1395 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1396 {
1397 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1398 						    entry->field_width,
1399 						    entry->sign);
1400 
1401 	return val >= entry->min_field_value;
1402 }
1403 
1404 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1405 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1406 {
1407 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1408 	if (scope == SCOPE_SYSTEM)
1409 		return read_sanitised_ftr_reg(entry->sys_reg);
1410 	else
1411 		return __read_sysreg_by_encoding(entry->sys_reg);
1412 }
1413 
1414 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1415 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1416 {
1417 	int mask;
1418 	struct arm64_ftr_reg *regp;
1419 	u64 val = read_scoped_sysreg(entry, scope);
1420 
1421 	regp = get_arm64_ftr_reg(entry->sys_reg);
1422 	if (!regp)
1423 		return false;
1424 
1425 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1426 							  entry->field_pos,
1427 							  entry->field_width);
1428 	if (!mask)
1429 		return false;
1430 
1431 	return feature_matches(val, entry);
1432 }
1433 
1434 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1435 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1436 {
1437 	u64 val = read_scoped_sysreg(entry, scope);
1438 	return feature_matches(val, entry);
1439 }
1440 
system_32bit_el0_cpumask(void)1441 const struct cpumask *system_32bit_el0_cpumask(void)
1442 {
1443 	if (!system_supports_32bit_el0())
1444 		return cpu_none_mask;
1445 
1446 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1447 		return cpu_32bit_el0_mask;
1448 
1449 	return cpu_possible_mask;
1450 }
1451 EXPORT_SYMBOL_GPL(system_32bit_el0_cpumask);
1452 
parse_32bit_el0_param(char * str)1453 static int __init parse_32bit_el0_param(char *str)
1454 {
1455 	allow_mismatched_32bit_el0 = true;
1456 	return 0;
1457 }
1458 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1459 
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1460 static ssize_t aarch32_el0_show(struct device *dev,
1461 				struct device_attribute *attr, char *buf)
1462 {
1463 	const struct cpumask *mask = system_32bit_el0_cpumask();
1464 
1465 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1466 }
1467 static const DEVICE_ATTR_RO(aarch32_el0);
1468 
aarch32_el0_sysfs_init(void)1469 static int __init aarch32_el0_sysfs_init(void)
1470 {
1471 	if (!allow_mismatched_32bit_el0)
1472 		return 0;
1473 
1474 	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1475 }
1476 device_initcall(aarch32_el0_sysfs_init);
1477 
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1478 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1479 {
1480 	if (!has_cpuid_feature(entry, scope))
1481 		return allow_mismatched_32bit_el0;
1482 
1483 	if (scope == SCOPE_SYSTEM)
1484 		pr_info("detected: 32-bit EL0 Support\n");
1485 
1486 	return true;
1487 }
1488 
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1489 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1490 {
1491 	bool has_sre;
1492 
1493 	if (!has_cpuid_feature(entry, scope))
1494 		return false;
1495 
1496 	has_sre = gic_enable_sre();
1497 	if (!has_sre)
1498 		pr_warn_once("%s present but disabled by higher exception level\n",
1499 			     entry->desc);
1500 
1501 	return has_sre;
1502 }
1503 
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry,int __unused)1504 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1505 {
1506 	u32 midr = read_cpuid_id();
1507 
1508 	/* Cavium ThunderX pass 1.x and 2.x */
1509 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1510 		MIDR_CPU_VAR_REV(0, 0),
1511 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1512 }
1513 
has_no_fpsimd(const struct arm64_cpu_capabilities * entry,int __unused)1514 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1515 {
1516 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1517 
1518 	return cpuid_feature_extract_signed_field(pfr0,
1519 					ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1520 }
1521 
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1522 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1523 			  int scope)
1524 {
1525 	u64 ctr;
1526 
1527 	if (scope == SCOPE_SYSTEM)
1528 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1529 	else
1530 		ctr = read_cpuid_effective_cachetype();
1531 
1532 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1533 }
1534 
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1535 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1536 {
1537 	/*
1538 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1539 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1540 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1541 	 * value.
1542 	 */
1543 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1544 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1545 }
1546 
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1547 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1548 			  int scope)
1549 {
1550 	u64 ctr;
1551 
1552 	if (scope == SCOPE_SYSTEM)
1553 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1554 	else
1555 		ctr = read_cpuid_cachetype();
1556 
1557 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1558 }
1559 
1560 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1561 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1562 {
1563 	/*
1564 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1565 	 * may share TLB entries with a CPU stuck in the crashed
1566 	 * kernel.
1567 	 */
1568 	if (is_kdump_kernel())
1569 		return false;
1570 
1571 	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1572 		return false;
1573 
1574 	return has_cpuid_feature(entry, scope);
1575 }
1576 
1577 /*
1578  * This check is triggered during the early boot before the cpufeature
1579  * is initialised. Checking the status on the local CPU allows the boot
1580  * CPU to detect the need for non-global mappings and thus avoiding a
1581  * pagetable re-write after all the CPUs are booted. This check will be
1582  * anyway run on individual CPUs, allowing us to get the consistent
1583  * state once the SMP CPUs are up and thus make the switch to non-global
1584  * mappings if required.
1585  */
kaslr_requires_kpti(void)1586 bool kaslr_requires_kpti(void)
1587 {
1588 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1589 		return false;
1590 
1591 	/*
1592 	 * E0PD does a similar job to KPTI so can be used instead
1593 	 * where available.
1594 	 */
1595 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1596 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1597 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1598 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
1599 			return false;
1600 	}
1601 
1602 	/*
1603 	 * Systems affected by Cavium erratum 24756 are incompatible
1604 	 * with KPTI.
1605 	 */
1606 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1607 		extern const struct midr_range cavium_erratum_27456_cpus[];
1608 
1609 		if (is_midr_in_range_list(read_cpuid_id(),
1610 					  cavium_erratum_27456_cpus))
1611 			return false;
1612 	}
1613 
1614 	return kaslr_offset() > 0;
1615 }
1616 
1617 static bool __meltdown_safe = true;
1618 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1619 
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1620 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1621 				int scope)
1622 {
1623 	/* List of CPUs that are not vulnerable and don't need KPTI */
1624 	static const struct midr_range kpti_safe_list[] = {
1625 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1626 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1627 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1628 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1629 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1630 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1631 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1632 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1633 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1634 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1635 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1636 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1637 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1638 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1639 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1640 		{ /* sentinel */ }
1641 	};
1642 	char const *str = "kpti command line option";
1643 	bool meltdown_safe;
1644 
1645 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1646 
1647 	/* Defer to CPU feature registers */
1648 	if (has_cpuid_feature(entry, scope))
1649 		meltdown_safe = true;
1650 
1651 	if (!meltdown_safe)
1652 		__meltdown_safe = false;
1653 
1654 	/*
1655 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1656 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1657 	 * ends as well as you might imagine. Don't even try. We cannot rely
1658 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1659 	 * because cpucap detection order may change. However, since we know
1660 	 * affected CPUs are always in a homogeneous configuration, it is
1661 	 * safe to rely on this_cpu_has_cap() here.
1662 	 */
1663 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1664 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1665 		__kpti_forced = -1;
1666 	}
1667 
1668 	/* Useful for KASLR robustness */
1669 	if (kaslr_requires_kpti()) {
1670 		if (!__kpti_forced) {
1671 			str = "KASLR";
1672 			__kpti_forced = 1;
1673 		}
1674 	}
1675 
1676 	if (cpu_mitigations_off() && !__kpti_forced) {
1677 		str = "mitigations=off";
1678 		__kpti_forced = -1;
1679 	}
1680 
1681 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1682 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1683 		return false;
1684 	}
1685 
1686 	/* Forced? */
1687 	if (__kpti_forced) {
1688 		pr_info_once("kernel page table isolation forced %s by %s\n",
1689 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1690 		return __kpti_forced > 0;
1691 	}
1692 
1693 	return !meltdown_safe;
1694 }
1695 
1696 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1697 static void __nocfi
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1698 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1699 {
1700 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1701 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1702 	kpti_remap_fn *remap_fn;
1703 
1704 	int cpu = smp_processor_id();
1705 
1706 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1707 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1708 
1709 		__this_cpu_write(this_cpu_vector, v);
1710 	}
1711 
1712 	/*
1713 	 * We don't need to rewrite the page-tables if either we've done
1714 	 * it already or we have KASLR enabled and therefore have not
1715 	 * created any global mappings at all.
1716 	 */
1717 	if (arm64_use_ng_mappings)
1718 		return;
1719 
1720 	remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1721 
1722 	cpu_install_idmap();
1723 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1724 	cpu_uninstall_idmap();
1725 
1726 	if (!cpu)
1727 		arm64_use_ng_mappings = true;
1728 }
1729 #else
1730 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1731 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1732 {
1733 }
1734 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1735 
parse_kpti(char * str)1736 static int __init parse_kpti(char *str)
1737 {
1738 	bool enabled;
1739 	int ret = strtobool(str, &enabled);
1740 
1741 	if (ret)
1742 		return ret;
1743 
1744 	__kpti_forced = enabled ? 1 : -1;
1745 	return 0;
1746 }
1747 early_param("kpti", parse_kpti);
1748 
1749 #ifdef CONFIG_ARM64_HW_AFDBM
__cpu_enable_hw_dbm(void)1750 static inline void __cpu_enable_hw_dbm(void)
1751 {
1752 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1753 
1754 	write_sysreg(tcr, tcr_el1);
1755 	isb();
1756 	local_flush_tlb_all();
1757 }
1758 
cpu_has_broken_dbm(void)1759 static bool cpu_has_broken_dbm(void)
1760 {
1761 	/* List of CPUs which have broken DBM support. */
1762 	static const struct midr_range cpus[] = {
1763 #ifdef CONFIG_ARM64_ERRATUM_1024718
1764 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1765 		/* Kryo4xx Silver (rdpe => r1p0) */
1766 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1767 #endif
1768 		{},
1769 	};
1770 
1771 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1772 }
1773 
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1774 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1775 {
1776 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1777 	       !cpu_has_broken_dbm();
1778 }
1779 
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)1780 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1781 {
1782 	if (cpu_can_use_dbm(cap))
1783 		__cpu_enable_hw_dbm();
1784 }
1785 
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)1786 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1787 		       int __unused)
1788 {
1789 	static bool detected = false;
1790 	/*
1791 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1792 	 * run a mix of CPUs with and without the feature. So, we
1793 	 * unconditionally enable the capability to allow any late CPU
1794 	 * to use the feature. We only enable the control bits on the
1795 	 * CPU, if it actually supports.
1796 	 *
1797 	 * We have to make sure we print the "feature" detection only
1798 	 * when at least one CPU actually uses it. So check if this CPU
1799 	 * can actually use it and print the message exactly once.
1800 	 *
1801 	 * This is safe as all CPUs (including secondary CPUs - due to the
1802 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1803 	 * goes through the "matches" check exactly once. Also if a CPU
1804 	 * matches the criteria, it is guaranteed that the CPU will turn
1805 	 * the DBM on, as the capability is unconditionally enabled.
1806 	 */
1807 	if (!detected && cpu_can_use_dbm(cap)) {
1808 		detected = true;
1809 		pr_info("detected: Hardware dirty bit management\n");
1810 	}
1811 
1812 	return true;
1813 }
1814 
1815 #endif
1816 
1817 #ifdef CONFIG_ARM64_AMU_EXTN
1818 
1819 /*
1820  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1821  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1822  * information regarding all the events that it supports. When a CPU bit is
1823  * set in the cpumask, the user of this feature can only rely on the presence
1824  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1825  * counters are enabled or access to these counters is enabled by code
1826  * executed at higher exception levels (firmware).
1827  */
1828 static struct cpumask amu_cpus __read_mostly;
1829 
cpu_has_amu_feat(int cpu)1830 bool cpu_has_amu_feat(int cpu)
1831 {
1832 	return cpumask_test_cpu(cpu, &amu_cpus);
1833 }
1834 
get_cpu_with_amu_feat(void)1835 int get_cpu_with_amu_feat(void)
1836 {
1837 	return cpumask_any(&amu_cpus);
1838 }
1839 
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)1840 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1841 {
1842 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1843 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1844 			smp_processor_id());
1845 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1846 
1847 		/* 0 reference values signal broken/disabled counters */
1848 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1849 			update_freq_counters_refs();
1850 	}
1851 }
1852 
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)1853 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1854 		    int __unused)
1855 {
1856 	/*
1857 	 * The AMU extension is a non-conflicting feature: the kernel can
1858 	 * safely run a mix of CPUs with and without support for the
1859 	 * activity monitors extension. Therefore, unconditionally enable
1860 	 * the capability to allow any late CPU to use the feature.
1861 	 *
1862 	 * With this feature unconditionally enabled, the cpu_enable
1863 	 * function will be called for all CPUs that match the criteria,
1864 	 * including secondary and hotplugged, marking this feature as
1865 	 * present on that respective CPU. The enable function will also
1866 	 * print a detection message.
1867 	 */
1868 
1869 	return true;
1870 }
1871 #else
get_cpu_with_amu_feat(void)1872 int get_cpu_with_amu_feat(void)
1873 {
1874 	return nr_cpu_ids;
1875 }
1876 #endif
1877 
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)1878 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1879 {
1880 	return is_kernel_in_hyp_mode();
1881 }
1882 
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)1883 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1884 {
1885 	/*
1886 	 * Copy register values that aren't redirected by hardware.
1887 	 *
1888 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1889 	 * this value to tpidr_el2 before we patch the code. Once we've done
1890 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1891 	 * do anything here.
1892 	 */
1893 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1894 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1895 }
1896 
cpu_has_fwb(const struct arm64_cpu_capabilities * __unused)1897 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1898 {
1899 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1900 
1901 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1902 	WARN_ON(CLIDR_LOUU(val) || CLIDR_LOUIS(val));
1903 }
1904 
1905 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)1906 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1907 {
1908 	/*
1909 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1910 	 * is discarded once we return from the exception.
1911 	 */
1912 	WARN_ON_ONCE(in_interrupt());
1913 
1914 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1915 	set_pstate_pan(1);
1916 }
1917 #endif /* CONFIG_ARM64_PAN */
1918 
1919 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)1920 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1921 {
1922 	/* Firmware may have left a deferred SError in this register. */
1923 	write_sysreg_s(0, SYS_DISR_EL1);
1924 }
1925 #endif /* CONFIG_ARM64_RAS_EXTN */
1926 
1927 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)1928 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1929 {
1930 	int boot_val, sec_val;
1931 
1932 	/* We don't expect to be called with SCOPE_SYSTEM */
1933 	WARN_ON(scope == SCOPE_SYSTEM);
1934 	/*
1935 	 * The ptr-auth feature levels are not intercompatible with lower
1936 	 * levels. Hence we must match ptr-auth feature level of the secondary
1937 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1938 	 * from the sanitised register whereas direct register read is done for
1939 	 * the secondary CPUs.
1940 	 * The sanitised feature state is guaranteed to match that of the
1941 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1942 	 * a chance to update the state, with the capability.
1943 	 */
1944 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1945 					       entry->field_pos, entry->sign);
1946 	if (scope & SCOPE_BOOT_CPU)
1947 		return boot_val >= entry->min_field_value;
1948 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1949 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1950 					      entry->field_pos, entry->sign);
1951 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1952 }
1953 
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)1954 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1955 				     int scope)
1956 {
1957 	bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1958 	bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1959 	bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1960 
1961 	return apa || apa3 || api;
1962 }
1963 
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)1964 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1965 			     int __unused)
1966 {
1967 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1968 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1969 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1970 
1971 	return gpa || gpa3 || gpi;
1972 }
1973 #endif /* CONFIG_ARM64_PTR_AUTH */
1974 
1975 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)1976 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1977 {
1978 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
1979 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1980 }
1981 #endif /* CONFIG_ARM64_E0PD */
1982 
1983 #ifdef CONFIG_ARM64_PSEUDO_NMI
1984 static bool enable_pseudo_nmi;
1985 
early_enable_pseudo_nmi(char * p)1986 static int __init early_enable_pseudo_nmi(char *p)
1987 {
1988 	return strtobool(p, &enable_pseudo_nmi);
1989 }
1990 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1991 
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)1992 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1993 				   int scope)
1994 {
1995 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1996 }
1997 #endif
1998 
1999 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2000 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2001 {
2002 	/*
2003 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2004 	 * function entry points using BR is a requirement for
2005 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2006 	 * So, be strict and forbid other BRs using other registers to
2007 	 * jump onto a PACIxSP instruction:
2008 	 */
2009 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2010 	isb();
2011 }
2012 #endif /* CONFIG_ARM64_BTI */
2013 
2014 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2015 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2016 {
2017 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2018 
2019 	mte_cpu_setup();
2020 
2021 	/*
2022 	 * Clear the tags in the zero page. This needs to be done via the
2023 	 * linear map which has the Tagged attribute.
2024 	 */
2025 	if (!page_mte_tagged(ZERO_PAGE(0))) {
2026 		mte_clear_page_tags(lm_alias(empty_zero_page));
2027 		set_page_mte_tagged(ZERO_PAGE(0));
2028 	}
2029 
2030 	kasan_init_hw_tags_cpu();
2031 }
2032 #endif /* CONFIG_ARM64_MTE */
2033 
elf_hwcap_fixup(void)2034 static void elf_hwcap_fixup(void)
2035 {
2036 #ifdef CONFIG_ARM64_ERRATUM_1742098
2037 	if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2038 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2039 #endif /* ARM64_ERRATUM_1742098 */
2040 }
2041 
2042 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2043 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2044 {
2045 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2046 }
2047 #endif /* CONFIG_KVM */
2048 
2049 /* Internal helper functions to match cpu capability type */
2050 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2051 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2052 {
2053 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2054 }
2055 
2056 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2057 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2058 {
2059 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2060 }
2061 
2062 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2063 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2064 {
2065 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2066 }
2067 
2068 static const struct arm64_cpu_capabilities arm64_features[] = {
2069 	{
2070 		.desc = "GIC system register CPU interface",
2071 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2072 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2073 		.matches = has_useable_gicv3_cpuif,
2074 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2075 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2076 		.field_width = 4,
2077 		.sign = FTR_UNSIGNED,
2078 		.min_field_value = 1,
2079 	},
2080 	{
2081 		.desc = "Enhanced Counter Virtualization",
2082 		.capability = ARM64_HAS_ECV,
2083 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2084 		.matches = has_cpuid_feature,
2085 		.sys_reg = SYS_ID_AA64MMFR0_EL1,
2086 		.field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT,
2087 		.field_width = 4,
2088 		.sign = FTR_UNSIGNED,
2089 		.min_field_value = 1,
2090 	},
2091 #ifdef CONFIG_ARM64_PAN
2092 	{
2093 		.desc = "Privileged Access Never",
2094 		.capability = ARM64_HAS_PAN,
2095 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2096 		.matches = has_cpuid_feature,
2097 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2098 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2099 		.field_width = 4,
2100 		.sign = FTR_UNSIGNED,
2101 		.min_field_value = 1,
2102 		.cpu_enable = cpu_enable_pan,
2103 	},
2104 #endif /* CONFIG_ARM64_PAN */
2105 #ifdef CONFIG_ARM64_EPAN
2106 	{
2107 		.desc = "Enhanced Privileged Access Never",
2108 		.capability = ARM64_HAS_EPAN,
2109 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2110 		.matches = has_cpuid_feature,
2111 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2112 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2113 		.field_width = 4,
2114 		.sign = FTR_UNSIGNED,
2115 		.min_field_value = 3,
2116 	},
2117 #endif /* CONFIG_ARM64_EPAN */
2118 #ifdef CONFIG_ARM64_LSE_ATOMICS
2119 	{
2120 		.desc = "LSE atomic instructions",
2121 		.capability = ARM64_HAS_LSE_ATOMICS,
2122 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2123 		.matches = has_cpuid_feature,
2124 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2125 		.field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2126 		.field_width = 4,
2127 		.sign = FTR_UNSIGNED,
2128 		.min_field_value = 2,
2129 	},
2130 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2131 	{
2132 		.desc = "Software prefetching using PRFM",
2133 		.capability = ARM64_HAS_NO_HW_PREFETCH,
2134 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2135 		.matches = has_no_hw_prefetch,
2136 	},
2137 	{
2138 		.desc = "Virtualization Host Extensions",
2139 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2140 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2141 		.matches = runs_at_el2,
2142 		.cpu_enable = cpu_copy_el2regs,
2143 	},
2144 	{
2145 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2146 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2147 		.matches = has_32bit_el0,
2148 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2149 		.sign = FTR_UNSIGNED,
2150 		.field_pos = ID_AA64PFR0_EL1_EL0_SHIFT,
2151 		.field_width = 4,
2152 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2153 	},
2154 #ifdef CONFIG_KVM
2155 	{
2156 		.desc = "32-bit EL1 Support",
2157 		.capability = ARM64_HAS_32BIT_EL1,
2158 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2159 		.matches = has_cpuid_feature,
2160 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2161 		.sign = FTR_UNSIGNED,
2162 		.field_pos = ID_AA64PFR0_EL1_EL1_SHIFT,
2163 		.field_width = 4,
2164 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2165 	},
2166 	{
2167 		.desc = "Protected KVM",
2168 		.capability = ARM64_KVM_PROTECTED_MODE,
2169 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2170 		.matches = is_kvm_protected_mode,
2171 	},
2172 #endif
2173 	{
2174 		.desc = "Kernel page table isolation (KPTI)",
2175 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2176 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2177 		/*
2178 		 * The ID feature fields below are used to indicate that
2179 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2180 		 * more details.
2181 		 */
2182 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2183 		.field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT,
2184 		.field_width = 4,
2185 		.min_field_value = 1,
2186 		.matches = unmap_kernel_at_el0,
2187 		.cpu_enable = kpti_install_ng_mappings,
2188 	},
2189 	{
2190 		/* FP/SIMD is not implemented */
2191 		.capability = ARM64_HAS_NO_FPSIMD,
2192 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2193 		.min_field_value = 0,
2194 		.matches = has_no_fpsimd,
2195 	},
2196 #ifdef CONFIG_ARM64_PMEM
2197 	{
2198 		.desc = "Data cache clean to Point of Persistence",
2199 		.capability = ARM64_HAS_DCPOP,
2200 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2201 		.matches = has_cpuid_feature,
2202 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2203 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2204 		.field_width = 4,
2205 		.min_field_value = 1,
2206 	},
2207 	{
2208 		.desc = "Data cache clean to Point of Deep Persistence",
2209 		.capability = ARM64_HAS_DCPODP,
2210 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2211 		.matches = has_cpuid_feature,
2212 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2213 		.sign = FTR_UNSIGNED,
2214 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2215 		.field_width = 4,
2216 		.min_field_value = 2,
2217 	},
2218 #endif
2219 #ifdef CONFIG_ARM64_SVE
2220 	{
2221 		.desc = "Scalable Vector Extension",
2222 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2223 		.capability = ARM64_SVE,
2224 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2225 		.sign = FTR_UNSIGNED,
2226 		.field_pos = ID_AA64PFR0_EL1_SVE_SHIFT,
2227 		.field_width = 4,
2228 		.min_field_value = ID_AA64PFR0_EL1_SVE_IMP,
2229 		.matches = has_cpuid_feature,
2230 		.cpu_enable = sve_kernel_enable,
2231 	},
2232 #endif /* CONFIG_ARM64_SVE */
2233 #ifdef CONFIG_ARM64_RAS_EXTN
2234 	{
2235 		.desc = "RAS Extension Support",
2236 		.capability = ARM64_HAS_RAS_EXTN,
2237 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2238 		.matches = has_cpuid_feature,
2239 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2240 		.sign = FTR_UNSIGNED,
2241 		.field_pos = ID_AA64PFR0_EL1_RAS_SHIFT,
2242 		.field_width = 4,
2243 		.min_field_value = ID_AA64PFR0_EL1_RAS_IMP,
2244 		.cpu_enable = cpu_clear_disr,
2245 	},
2246 #endif /* CONFIG_ARM64_RAS_EXTN */
2247 #ifdef CONFIG_ARM64_AMU_EXTN
2248 	{
2249 		/*
2250 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2251 		 * Therefore, don't provide .desc as we don't want the detection
2252 		 * message to be shown until at least one CPU is detected to
2253 		 * support the feature.
2254 		 */
2255 		.capability = ARM64_HAS_AMU_EXTN,
2256 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2257 		.matches = has_amu,
2258 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2259 		.sign = FTR_UNSIGNED,
2260 		.field_pos = ID_AA64PFR0_EL1_AMU_SHIFT,
2261 		.field_width = 4,
2262 		.min_field_value = ID_AA64PFR0_EL1_AMU_IMP,
2263 		.cpu_enable = cpu_amu_enable,
2264 	},
2265 #endif /* CONFIG_ARM64_AMU_EXTN */
2266 	{
2267 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2268 		.capability = ARM64_HAS_CACHE_IDC,
2269 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2270 		.matches = has_cache_idc,
2271 		.cpu_enable = cpu_emulate_effective_ctr,
2272 	},
2273 	{
2274 		.desc = "Instruction cache invalidation not required for I/D coherence",
2275 		.capability = ARM64_HAS_CACHE_DIC,
2276 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2277 		.matches = has_cache_dic,
2278 	},
2279 	{
2280 		.desc = "Stage-2 Force Write-Back",
2281 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2282 		.capability = ARM64_HAS_STAGE2_FWB,
2283 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2284 		.sign = FTR_UNSIGNED,
2285 		.field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT,
2286 		.field_width = 4,
2287 		.min_field_value = 1,
2288 		.matches = has_cpuid_feature,
2289 		.cpu_enable = cpu_has_fwb,
2290 	},
2291 	{
2292 		.desc = "ARMv8.4 Translation Table Level",
2293 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2294 		.capability = ARM64_HAS_ARMv8_4_TTL,
2295 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2296 		.sign = FTR_UNSIGNED,
2297 		.field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT,
2298 		.field_width = 4,
2299 		.min_field_value = 1,
2300 		.matches = has_cpuid_feature,
2301 	},
2302 	{
2303 		.desc = "TLB range maintenance instructions",
2304 		.capability = ARM64_HAS_TLB_RANGE,
2305 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2306 		.matches = has_cpuid_feature,
2307 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2308 		.field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2309 		.field_width = 4,
2310 		.sign = FTR_UNSIGNED,
2311 		.min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2312 	},
2313 #ifdef CONFIG_ARM64_HW_AFDBM
2314 	{
2315 		/*
2316 		 * Since we turn this on always, we don't want the user to
2317 		 * think that the feature is available when it may not be.
2318 		 * So hide the description.
2319 		 *
2320 		 * .desc = "Hardware pagetable Dirty Bit Management",
2321 		 *
2322 		 */
2323 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2324 		.capability = ARM64_HW_DBM,
2325 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2326 		.sign = FTR_UNSIGNED,
2327 		.field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT,
2328 		.field_width = 4,
2329 		.min_field_value = 2,
2330 		.matches = has_hw_dbm,
2331 		.cpu_enable = cpu_enable_hw_dbm,
2332 	},
2333 #endif
2334 	{
2335 		.desc = "CRC32 instructions",
2336 		.capability = ARM64_HAS_CRC32,
2337 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2338 		.matches = has_cpuid_feature,
2339 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2340 		.field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2341 		.field_width = 4,
2342 		.min_field_value = 1,
2343 	},
2344 	{
2345 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2346 		.capability = ARM64_SSBS,
2347 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2348 		.matches = has_cpuid_feature,
2349 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2350 		.field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT,
2351 		.field_width = 4,
2352 		.sign = FTR_UNSIGNED,
2353 		.min_field_value = ID_AA64PFR1_EL1_SSBS_IMP,
2354 	},
2355 #ifdef CONFIG_ARM64_CNP
2356 	{
2357 		.desc = "Common not Private translations",
2358 		.capability = ARM64_HAS_CNP,
2359 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2360 		.matches = has_useable_cnp,
2361 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2362 		.sign = FTR_UNSIGNED,
2363 		.field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT,
2364 		.field_width = 4,
2365 		.min_field_value = 1,
2366 		.cpu_enable = cpu_enable_cnp,
2367 	},
2368 #endif
2369 	{
2370 		.desc = "Speculation barrier (SB)",
2371 		.capability = ARM64_HAS_SB,
2372 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2373 		.matches = has_cpuid_feature,
2374 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2375 		.field_pos = ID_AA64ISAR1_EL1_SB_SHIFT,
2376 		.field_width = 4,
2377 		.sign = FTR_UNSIGNED,
2378 		.min_field_value = 1,
2379 	},
2380 #ifdef CONFIG_ARM64_PTR_AUTH
2381 	{
2382 		.desc = "Address authentication (architected QARMA5 algorithm)",
2383 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2384 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2385 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2386 		.sign = FTR_UNSIGNED,
2387 		.field_pos = ID_AA64ISAR1_EL1_APA_SHIFT,
2388 		.field_width = 4,
2389 		.min_field_value = ID_AA64ISAR1_EL1_APA_PAuth,
2390 		.matches = has_address_auth_cpucap,
2391 	},
2392 	{
2393 		.desc = "Address authentication (architected QARMA3 algorithm)",
2394 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2395 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2396 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2397 		.sign = FTR_UNSIGNED,
2398 		.field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT,
2399 		.field_width = 4,
2400 		.min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth,
2401 		.matches = has_address_auth_cpucap,
2402 	},
2403 	{
2404 		.desc = "Address authentication (IMP DEF algorithm)",
2405 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2406 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2407 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2408 		.sign = FTR_UNSIGNED,
2409 		.field_pos = ID_AA64ISAR1_EL1_API_SHIFT,
2410 		.field_width = 4,
2411 		.min_field_value = ID_AA64ISAR1_EL1_API_PAuth,
2412 		.matches = has_address_auth_cpucap,
2413 	},
2414 	{
2415 		.capability = ARM64_HAS_ADDRESS_AUTH,
2416 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2417 		.matches = has_address_auth_metacap,
2418 	},
2419 	{
2420 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2421 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2422 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2423 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2424 		.sign = FTR_UNSIGNED,
2425 		.field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT,
2426 		.field_width = 4,
2427 		.min_field_value = ID_AA64ISAR1_EL1_GPA_IMP,
2428 		.matches = has_cpuid_feature,
2429 	},
2430 	{
2431 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2432 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2433 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2434 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2435 		.sign = FTR_UNSIGNED,
2436 		.field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT,
2437 		.field_width = 4,
2438 		.min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP,
2439 		.matches = has_cpuid_feature,
2440 	},
2441 	{
2442 		.desc = "Generic authentication (IMP DEF algorithm)",
2443 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2444 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2445 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2446 		.sign = FTR_UNSIGNED,
2447 		.field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT,
2448 		.field_width = 4,
2449 		.min_field_value = ID_AA64ISAR1_EL1_GPI_IMP,
2450 		.matches = has_cpuid_feature,
2451 	},
2452 	{
2453 		.capability = ARM64_HAS_GENERIC_AUTH,
2454 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2455 		.matches = has_generic_auth,
2456 	},
2457 #endif /* CONFIG_ARM64_PTR_AUTH */
2458 #ifdef CONFIG_ARM64_PSEUDO_NMI
2459 	{
2460 		/*
2461 		 * Depends on having GICv3
2462 		 */
2463 		.desc = "IRQ priority masking",
2464 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2465 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2466 		.matches = can_use_gic_priorities,
2467 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2468 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2469 		.field_width = 4,
2470 		.sign = FTR_UNSIGNED,
2471 		.min_field_value = 1,
2472 	},
2473 #endif
2474 #ifdef CONFIG_ARM64_E0PD
2475 	{
2476 		.desc = "E0PD",
2477 		.capability = ARM64_HAS_E0PD,
2478 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2479 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2480 		.sign = FTR_UNSIGNED,
2481 		.field_width = 4,
2482 		.field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT,
2483 		.matches = has_cpuid_feature,
2484 		.min_field_value = 1,
2485 		.cpu_enable = cpu_enable_e0pd,
2486 	},
2487 #endif
2488 #ifdef CONFIG_ARCH_RANDOM
2489 	{
2490 		.desc = "Random Number Generator",
2491 		.capability = ARM64_HAS_RNG,
2492 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2493 		.matches = has_cpuid_feature,
2494 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2495 		.field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2496 		.field_width = 4,
2497 		.sign = FTR_UNSIGNED,
2498 		.min_field_value = 1,
2499 	},
2500 #endif
2501 #ifdef CONFIG_ARM64_BTI
2502 	{
2503 		.desc = "Branch Target Identification",
2504 		.capability = ARM64_BTI,
2505 #ifdef CONFIG_ARM64_BTI_KERNEL
2506 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2507 #else
2508 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2509 #endif
2510 		.matches = has_cpuid_feature,
2511 		.cpu_enable = bti_enable,
2512 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2513 		.field_pos = ID_AA64PFR1_EL1_BT_SHIFT,
2514 		.field_width = 4,
2515 		.min_field_value = ID_AA64PFR1_EL1_BT_IMP,
2516 		.sign = FTR_UNSIGNED,
2517 	},
2518 #endif
2519 #ifdef CONFIG_ARM64_MTE
2520 	{
2521 		.desc = "Memory Tagging Extension",
2522 		.capability = ARM64_MTE,
2523 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2524 		.matches = has_cpuid_feature,
2525 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2526 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2527 		.field_width = 4,
2528 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE2,
2529 		.sign = FTR_UNSIGNED,
2530 		.cpu_enable = cpu_enable_mte,
2531 	},
2532 	{
2533 		.desc = "Asymmetric MTE Tag Check Fault",
2534 		.capability = ARM64_MTE_ASYMM,
2535 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2536 		.matches = has_cpuid_feature,
2537 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2538 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2539 		.field_width = 4,
2540 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE3,
2541 		.sign = FTR_UNSIGNED,
2542 	},
2543 #endif /* CONFIG_ARM64_MTE */
2544 	{
2545 		.desc = "RCpc load-acquire (LDAPR)",
2546 		.capability = ARM64_HAS_LDAPR,
2547 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2548 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2549 		.sign = FTR_UNSIGNED,
2550 		.field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT,
2551 		.field_width = 4,
2552 		.matches = has_cpuid_feature,
2553 		.min_field_value = 1,
2554 	},
2555 #ifdef CONFIG_ARM64_SME
2556 	{
2557 		.desc = "Scalable Matrix Extension",
2558 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2559 		.capability = ARM64_SME,
2560 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2561 		.sign = FTR_UNSIGNED,
2562 		.field_pos = ID_AA64PFR1_EL1_SME_SHIFT,
2563 		.field_width = 4,
2564 		.min_field_value = ID_AA64PFR1_EL1_SME_IMP,
2565 		.matches = has_cpuid_feature,
2566 		.cpu_enable = sme_kernel_enable,
2567 	},
2568 	/* FA64 should be sorted after the base SME capability */
2569 	{
2570 		.desc = "FA64",
2571 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2572 		.capability = ARM64_SME_FA64,
2573 		.sys_reg = SYS_ID_AA64SMFR0_EL1,
2574 		.sign = FTR_UNSIGNED,
2575 		.field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT,
2576 		.field_width = 1,
2577 		.min_field_value = ID_AA64SMFR0_EL1_FA64_IMP,
2578 		.matches = has_cpuid_feature,
2579 		.cpu_enable = fa64_kernel_enable,
2580 	},
2581 #endif /* CONFIG_ARM64_SME */
2582 	{
2583 		.desc = "WFx with timeout",
2584 		.capability = ARM64_HAS_WFXT,
2585 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2586 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2587 		.sign = FTR_UNSIGNED,
2588 		.field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT,
2589 		.field_width = 4,
2590 		.matches = has_cpuid_feature,
2591 		.min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP,
2592 	},
2593 	{},
2594 };
2595 
2596 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)			\
2597 		.matches = has_user_cpuid_feature,					\
2598 		.sys_reg = reg,							\
2599 		.field_pos = field,						\
2600 		.field_width = width,						\
2601 		.sign = s,							\
2602 		.min_field_value = min_value,
2603 
2604 #define __HWCAP_CAP(name, cap_type, cap)					\
2605 		.desc = name,							\
2606 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2607 		.hwcap_type = cap_type,						\
2608 		.hwcap = cap,							\
2609 
2610 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)		\
2611 	{									\
2612 		__HWCAP_CAP(#cap, cap_type, cap)				\
2613 		HWCAP_CPUID_MATCH(reg, field, width, s, min_value) 		\
2614 	}
2615 
2616 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2617 	{									\
2618 		__HWCAP_CAP(#cap, cap_type, cap)				\
2619 		.matches = cpucap_multi_entry_cap_matches,			\
2620 		.match_list = list,						\
2621 	}
2622 
2623 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2624 	{									\
2625 		__HWCAP_CAP(#cap, cap_type, cap)				\
2626 		.matches = match,						\
2627 	}
2628 
2629 #ifdef CONFIG_ARM64_PTR_AUTH
2630 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2631 	{
2632 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT,
2633 				  4, FTR_UNSIGNED,
2634 				  ID_AA64ISAR1_EL1_APA_PAuth)
2635 	},
2636 	{
2637 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT,
2638 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth)
2639 	},
2640 	{
2641 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT,
2642 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth)
2643 	},
2644 	{},
2645 };
2646 
2647 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2648 	{
2649 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT,
2650 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP)
2651 	},
2652 	{
2653 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT,
2654 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP)
2655 	},
2656 	{
2657 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT,
2658 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP)
2659 	},
2660 	{},
2661 };
2662 #endif
2663 
2664 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2665 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2666 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2667 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2668 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2669 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2670 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2671 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2672 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2673 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2674 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2675 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2676 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2677 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2678 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2679 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2680 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2681 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2682 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2683 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2684 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2685 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2686 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2687 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2688 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2689 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2690 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2691 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2692 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2693 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2694 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2695 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2696 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2697 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_EL1_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2698 #ifdef CONFIG_ARM64_SVE
2699 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_EL1_SVE_IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2700 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2701 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2702 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2703 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2704 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2705 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2706 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2707 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2708 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2709 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2710 #endif
2711 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SSBS_SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2712 #ifdef CONFIG_ARM64_BTI
2713 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2714 #endif
2715 #ifdef CONFIG_ARM64_PTR_AUTH
2716 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2717 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2718 #endif
2719 #ifdef CONFIG_ARM64_MTE
2720 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2721 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2722 #endif /* CONFIG_ARM64_MTE */
2723 	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2724 	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2725 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2726 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2727 #ifdef CONFIG_ARM64_SME
2728 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SME_IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2729 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2730 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2731 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2732 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2733 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2734 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2735 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2736 #endif /* CONFIG_ARM64_SME */
2737 	{},
2738 };
2739 
2740 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)2741 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2742 {
2743 	/*
2744 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2745 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2746 	 * check is future proof, by making sure value is non-zero.
2747 	 */
2748 	u32 mvfr1;
2749 
2750 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2751 	if (scope == SCOPE_SYSTEM)
2752 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2753 	else
2754 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2755 
2756 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2757 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2758 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2759 }
2760 #endif
2761 
2762 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2763 #ifdef CONFIG_COMPAT
2764 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2765 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2766 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2767 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2768 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2769 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2770 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2771 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2772 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2773 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2774 #endif
2775 	{},
2776 };
2777 
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)2778 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2779 {
2780 	switch (cap->hwcap_type) {
2781 	case CAP_HWCAP:
2782 		cpu_set_feature(cap->hwcap);
2783 		break;
2784 #ifdef CONFIG_COMPAT
2785 	case CAP_COMPAT_HWCAP:
2786 		compat_elf_hwcap |= (u32)cap->hwcap;
2787 		break;
2788 	case CAP_COMPAT_HWCAP2:
2789 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2790 		break;
2791 #endif
2792 	default:
2793 		WARN_ON(1);
2794 		break;
2795 	}
2796 }
2797 
2798 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)2799 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2800 {
2801 	bool rc;
2802 
2803 	switch (cap->hwcap_type) {
2804 	case CAP_HWCAP:
2805 		rc = cpu_have_feature(cap->hwcap);
2806 		break;
2807 #ifdef CONFIG_COMPAT
2808 	case CAP_COMPAT_HWCAP:
2809 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2810 		break;
2811 	case CAP_COMPAT_HWCAP2:
2812 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2813 		break;
2814 #endif
2815 	default:
2816 		WARN_ON(1);
2817 		rc = false;
2818 	}
2819 
2820 	return rc;
2821 }
2822 
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)2823 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2824 {
2825 	/* We support emulation of accesses to CPU ID feature registers */
2826 	cpu_set_named_feature(CPUID);
2827 	for (; hwcaps->matches; hwcaps++)
2828 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2829 			cap_set_elf_hwcap(hwcaps);
2830 }
2831 
update_cpu_capabilities(u16 scope_mask)2832 static void update_cpu_capabilities(u16 scope_mask)
2833 {
2834 	int i;
2835 	const struct arm64_cpu_capabilities *caps;
2836 
2837 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2838 	for (i = 0; i < ARM64_NCAPS; i++) {
2839 		caps = cpu_hwcaps_ptrs[i];
2840 		if (!caps || !(caps->type & scope_mask) ||
2841 		    cpus_have_cap(caps->capability) ||
2842 		    !caps->matches(caps, cpucap_default_scope(caps)))
2843 			continue;
2844 
2845 		if (caps->desc)
2846 			pr_info("detected: %s\n", caps->desc);
2847 		cpus_set_cap(caps->capability);
2848 
2849 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2850 			set_bit(caps->capability, boot_capabilities);
2851 	}
2852 }
2853 
2854 /*
2855  * Enable all the available capabilities on this CPU. The capabilities
2856  * with BOOT_CPU scope are handled separately and hence skipped here.
2857  */
cpu_enable_non_boot_scope_capabilities(void * __unused)2858 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2859 {
2860 	int i;
2861 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2862 
2863 	for_each_available_cap(i) {
2864 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2865 
2866 		if (WARN_ON(!cap))
2867 			continue;
2868 
2869 		if (!(cap->type & non_boot_scope))
2870 			continue;
2871 
2872 		if (cap->cpu_enable)
2873 			cap->cpu_enable(cap);
2874 	}
2875 	return 0;
2876 }
2877 
2878 /*
2879  * Run through the enabled capabilities and enable() it on all active
2880  * CPUs
2881  */
enable_cpu_capabilities(u16 scope_mask)2882 static void __init enable_cpu_capabilities(u16 scope_mask)
2883 {
2884 	int i;
2885 	const struct arm64_cpu_capabilities *caps;
2886 	bool boot_scope;
2887 
2888 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2889 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2890 
2891 	for (i = 0; i < ARM64_NCAPS; i++) {
2892 		unsigned int num;
2893 
2894 		caps = cpu_hwcaps_ptrs[i];
2895 		if (!caps || !(caps->type & scope_mask))
2896 			continue;
2897 		num = caps->capability;
2898 		if (!cpus_have_cap(num))
2899 			continue;
2900 
2901 		/* Ensure cpus_have_const_cap(num) works */
2902 		static_branch_enable(&cpu_hwcap_keys[num]);
2903 
2904 		if (boot_scope && caps->cpu_enable)
2905 			/*
2906 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2907 			 * before any secondary CPU boots. Thus, each secondary
2908 			 * will enable the capability as appropriate via
2909 			 * check_local_cpu_capabilities(). The only exception is
2910 			 * the boot CPU, for which the capability must be
2911 			 * enabled here. This approach avoids costly
2912 			 * stop_machine() calls for this case.
2913 			 */
2914 			caps->cpu_enable(caps);
2915 	}
2916 
2917 	/*
2918 	 * For all non-boot scope capabilities, use stop_machine()
2919 	 * as it schedules the work allowing us to modify PSTATE,
2920 	 * instead of on_each_cpu() which uses an IPI, giving us a
2921 	 * PSTATE that disappears when we return.
2922 	 */
2923 	if (!boot_scope)
2924 		stop_machine(cpu_enable_non_boot_scope_capabilities,
2925 			     NULL, cpu_online_mask);
2926 }
2927 
2928 /*
2929  * Run through the list of capabilities to check for conflicts.
2930  * If the system has already detected a capability, take necessary
2931  * action on this CPU.
2932  */
verify_local_cpu_caps(u16 scope_mask)2933 static void verify_local_cpu_caps(u16 scope_mask)
2934 {
2935 	int i;
2936 	bool cpu_has_cap, system_has_cap;
2937 	const struct arm64_cpu_capabilities *caps;
2938 
2939 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2940 
2941 	for (i = 0; i < ARM64_NCAPS; i++) {
2942 		caps = cpu_hwcaps_ptrs[i];
2943 		if (!caps || !(caps->type & scope_mask))
2944 			continue;
2945 
2946 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2947 		system_has_cap = cpus_have_cap(caps->capability);
2948 
2949 		if (system_has_cap) {
2950 			/*
2951 			 * Check if the new CPU misses an advertised feature,
2952 			 * which is not safe to miss.
2953 			 */
2954 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2955 				break;
2956 			/*
2957 			 * We have to issue cpu_enable() irrespective of
2958 			 * whether the CPU has it or not, as it is enabeld
2959 			 * system wide. It is upto the call back to take
2960 			 * appropriate action on this CPU.
2961 			 */
2962 			if (caps->cpu_enable)
2963 				caps->cpu_enable(caps);
2964 		} else {
2965 			/*
2966 			 * Check if the CPU has this capability if it isn't
2967 			 * safe to have when the system doesn't.
2968 			 */
2969 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2970 				break;
2971 		}
2972 	}
2973 
2974 	if (i < ARM64_NCAPS) {
2975 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2976 			smp_processor_id(), caps->capability,
2977 			caps->desc, system_has_cap, cpu_has_cap);
2978 
2979 		if (cpucap_panic_on_conflict(caps))
2980 			cpu_panic_kernel();
2981 		else
2982 			cpu_die_early();
2983 	}
2984 }
2985 
2986 /*
2987  * Check for CPU features that are used in early boot
2988  * based on the Boot CPU value.
2989  */
check_early_cpu_features(void)2990 static void check_early_cpu_features(void)
2991 {
2992 	verify_cpu_asid_bits();
2993 
2994 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
2995 }
2996 
2997 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)2998 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2999 {
3000 
3001 	for (; caps->matches; caps++)
3002 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3003 			pr_crit("CPU%d: missing HWCAP: %s\n",
3004 					smp_processor_id(), caps->desc);
3005 			cpu_die_early();
3006 		}
3007 }
3008 
verify_local_elf_hwcaps(void)3009 static void verify_local_elf_hwcaps(void)
3010 {
3011 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3012 
3013 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3014 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3015 }
3016 
verify_sve_features(void)3017 static void verify_sve_features(void)
3018 {
3019 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3020 	u64 zcr = read_zcr_features();
3021 
3022 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3023 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3024 
3025 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3026 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3027 			smp_processor_id());
3028 		cpu_die_early();
3029 	}
3030 
3031 	/* Add checks on other ZCR bits here if necessary */
3032 }
3033 
verify_sme_features(void)3034 static void verify_sme_features(void)
3035 {
3036 	u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3037 	u64 smcr = read_smcr_features();
3038 
3039 	unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3040 	unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3041 
3042 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3043 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3044 			smp_processor_id());
3045 		cpu_die_early();
3046 	}
3047 
3048 	/* Add checks on other SMCR bits here if necessary */
3049 }
3050 
verify_hyp_capabilities(void)3051 static void verify_hyp_capabilities(void)
3052 {
3053 	u64 safe_mmfr1, mmfr0, mmfr1;
3054 	int parange, ipa_max;
3055 	unsigned int safe_vmid_bits, vmid_bits;
3056 
3057 	if (!IS_ENABLED(CONFIG_KVM))
3058 		return;
3059 
3060 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3061 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3062 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3063 
3064 	/* Verify VMID bits */
3065 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3066 	vmid_bits = get_vmid_bits(mmfr1);
3067 	if (vmid_bits < safe_vmid_bits) {
3068 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3069 		cpu_die_early();
3070 	}
3071 
3072 	/* Verify IPA range */
3073 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3074 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3075 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3076 	if (ipa_max < get_kvm_ipa_limit()) {
3077 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3078 		cpu_die_early();
3079 	}
3080 }
3081 
3082 /*
3083  * Run through the enabled system capabilities and enable() it on this CPU.
3084  * The capabilities were decided based on the available CPUs at the boot time.
3085  * Any new CPU should match the system wide status of the capability. If the
3086  * new CPU doesn't have a capability which the system now has enabled, we
3087  * cannot do anything to fix it up and could cause unexpected failures. So
3088  * we park the CPU.
3089  */
verify_local_cpu_capabilities(void)3090 static void verify_local_cpu_capabilities(void)
3091 {
3092 	/*
3093 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3094 	 * check_early_cpu_features(), as they need to be verified
3095 	 * on all secondary CPUs.
3096 	 */
3097 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3098 	verify_local_elf_hwcaps();
3099 
3100 	if (system_supports_sve())
3101 		verify_sve_features();
3102 
3103 	if (system_supports_sme())
3104 		verify_sme_features();
3105 
3106 	if (is_hyp_mode_available())
3107 		verify_hyp_capabilities();
3108 }
3109 
check_local_cpu_capabilities(void)3110 void check_local_cpu_capabilities(void)
3111 {
3112 	/*
3113 	 * All secondary CPUs should conform to the early CPU features
3114 	 * in use by the kernel based on boot CPU.
3115 	 */
3116 	check_early_cpu_features();
3117 
3118 	/*
3119 	 * If we haven't finalised the system capabilities, this CPU gets
3120 	 * a chance to update the errata work arounds and local features.
3121 	 * Otherwise, this CPU should verify that it has all the system
3122 	 * advertised capabilities.
3123 	 */
3124 	if (!system_capabilities_finalized())
3125 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3126 	else
3127 		verify_local_cpu_capabilities();
3128 }
3129 
setup_boot_cpu_capabilities(void)3130 static void __init setup_boot_cpu_capabilities(void)
3131 {
3132 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3133 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3134 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3135 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3136 }
3137 
this_cpu_has_cap(unsigned int n)3138 bool this_cpu_has_cap(unsigned int n)
3139 {
3140 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3141 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3142 
3143 		if (cap)
3144 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3145 	}
3146 
3147 	return false;
3148 }
3149 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3150 
3151 /*
3152  * This helper function is used in a narrow window when,
3153  * - The system wide safe registers are set with all the SMP CPUs and,
3154  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3155  * In all other cases cpus_have_{const_}cap() should be used.
3156  */
__system_matches_cap(unsigned int n)3157 static bool __maybe_unused __system_matches_cap(unsigned int n)
3158 {
3159 	if (n < ARM64_NCAPS) {
3160 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3161 
3162 		if (cap)
3163 			return cap->matches(cap, SCOPE_SYSTEM);
3164 	}
3165 	return false;
3166 }
3167 
cpu_set_feature(unsigned int num)3168 void cpu_set_feature(unsigned int num)
3169 {
3170 	WARN_ON(num >= MAX_CPU_FEATURES);
3171 	elf_hwcap |= BIT(num);
3172 }
3173 EXPORT_SYMBOL_GPL(cpu_set_feature);
3174 
cpu_have_feature(unsigned int num)3175 bool cpu_have_feature(unsigned int num)
3176 {
3177 	WARN_ON(num >= MAX_CPU_FEATURES);
3178 	return elf_hwcap & BIT(num);
3179 }
3180 EXPORT_SYMBOL_GPL(cpu_have_feature);
3181 
cpu_get_elf_hwcap(void)3182 unsigned long cpu_get_elf_hwcap(void)
3183 {
3184 	/*
3185 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3186 	 * note that for userspace compatibility we guarantee that bits 62
3187 	 * and 63 will always be returned as 0.
3188 	 */
3189 	return lower_32_bits(elf_hwcap);
3190 }
3191 
cpu_get_elf_hwcap2(void)3192 unsigned long cpu_get_elf_hwcap2(void)
3193 {
3194 	return upper_32_bits(elf_hwcap);
3195 }
3196 
setup_system_capabilities(void)3197 static void __init setup_system_capabilities(void)
3198 {
3199 	/*
3200 	 * We have finalised the system-wide safe feature
3201 	 * registers, finalise the capabilities that depend
3202 	 * on it. Also enable all the available capabilities,
3203 	 * that are not enabled already.
3204 	 */
3205 	update_cpu_capabilities(SCOPE_SYSTEM);
3206 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3207 }
3208 
setup_cpu_features(void)3209 void __init setup_cpu_features(void)
3210 {
3211 	u32 cwg;
3212 
3213 	setup_system_capabilities();
3214 	setup_elf_hwcaps(arm64_elf_hwcaps);
3215 
3216 	if (system_supports_32bit_el0()) {
3217 		setup_elf_hwcaps(compat_elf_hwcaps);
3218 		elf_hwcap_fixup();
3219 	}
3220 
3221 	if (system_uses_ttbr0_pan())
3222 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3223 
3224 	sve_setup();
3225 	sme_setup();
3226 	minsigstksz_setup();
3227 
3228 	/* Advertise that we have computed the system capabilities */
3229 	finalize_system_capabilities();
3230 
3231 	/*
3232 	 * Check for sane CTR_EL0.CWG value.
3233 	 */
3234 	cwg = cache_type_cwg();
3235 	if (!cwg)
3236 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3237 			ARCH_DMA_MINALIGN);
3238 }
3239 
enable_mismatched_32bit_el0(unsigned int cpu)3240 static int enable_mismatched_32bit_el0(unsigned int cpu)
3241 {
3242 	/*
3243 	 * The first 32-bit-capable CPU we detected and so can no longer
3244 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3245 	 * a 32-bit-capable CPU.
3246 	 */
3247 	static int lucky_winner = -1;
3248 
3249 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3250 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3251 
3252 	if (cpu_32bit) {
3253 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3254 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3255 	}
3256 
3257 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3258 		return 0;
3259 
3260 	if (lucky_winner >= 0)
3261 		return 0;
3262 
3263 	/*
3264 	 * We've detected a mismatch. We need to keep one of our CPUs with
3265 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3266 	 * every CPU in the system for a 32-bit task.
3267 	 */
3268 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3269 							 cpu_active_mask);
3270 	get_cpu_device(lucky_winner)->offline_disabled = true;
3271 	setup_elf_hwcaps(compat_elf_hwcaps);
3272 	elf_hwcap_fixup();
3273 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3274 		cpu, lucky_winner);
3275 	return 0;
3276 }
3277 
init_32bit_el0_mask(void)3278 static int __init init_32bit_el0_mask(void)
3279 {
3280 	if (!allow_mismatched_32bit_el0)
3281 		return 0;
3282 
3283 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3284 		return -ENOMEM;
3285 
3286 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3287 				 "arm64/mismatched_32bit_el0:online",
3288 				 enable_mismatched_32bit_el0, NULL);
3289 }
3290 subsys_initcall_sync(init_32bit_el0_mask);
3291 
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3292 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3293 {
3294 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
3295 }
3296 
3297 /*
3298  * We emulate only the following system register space.
3299  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3300  * See Table C5-6 System instruction encodings for System register accesses,
3301  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3302  */
is_emulated(u32 id)3303 static inline bool __attribute_const__ is_emulated(u32 id)
3304 {
3305 	return (sys_reg_Op0(id) == 0x3 &&
3306 		sys_reg_CRn(id) == 0x0 &&
3307 		sys_reg_Op1(id) == 0x0 &&
3308 		(sys_reg_CRm(id) == 0 ||
3309 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3310 }
3311 
3312 /*
3313  * With CRm == 0, reg should be one of :
3314  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3315  */
emulate_id_reg(u32 id,u64 * valp)3316 static inline int emulate_id_reg(u32 id, u64 *valp)
3317 {
3318 	switch (id) {
3319 	case SYS_MIDR_EL1:
3320 		*valp = read_cpuid_id();
3321 		break;
3322 	case SYS_MPIDR_EL1:
3323 		*valp = SYS_MPIDR_SAFE_VAL;
3324 		break;
3325 	case SYS_REVIDR_EL1:
3326 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3327 		*valp = 0;
3328 		break;
3329 	default:
3330 		return -EINVAL;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
emulate_sys_reg(u32 id,u64 * valp)3336 static int emulate_sys_reg(u32 id, u64 *valp)
3337 {
3338 	struct arm64_ftr_reg *regp;
3339 
3340 	if (!is_emulated(id))
3341 		return -EINVAL;
3342 
3343 	if (sys_reg_CRm(id) == 0)
3344 		return emulate_id_reg(id, valp);
3345 
3346 	regp = get_arm64_ftr_reg_nowarn(id);
3347 	if (regp)
3348 		*valp = arm64_ftr_reg_user_value(regp);
3349 	else
3350 		/*
3351 		 * The untracked registers are either IMPLEMENTATION DEFINED
3352 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3353 		 */
3354 		*valp = 0;
3355 	return 0;
3356 }
3357 
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)3358 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3359 {
3360 	int rc;
3361 	u64 val;
3362 
3363 	rc = emulate_sys_reg(sys_reg, &val);
3364 	if (!rc) {
3365 		pt_regs_write_reg(regs, rt, val);
3366 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3367 	}
3368 	return rc;
3369 }
3370 
try_emulate_mrs(struct pt_regs * regs,u32 insn)3371 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3372 {
3373 	u32 sys_reg, rt;
3374 
3375 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3376 		return false;
3377 
3378 	/*
3379 	 * sys_reg values are defined as used in mrs/msr instruction.
3380 	 * shift the imm value to get the encoding.
3381 	 */
3382 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3383 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3384 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3385 }
3386 
arm64_get_meltdown_state(void)3387 enum mitigation_state arm64_get_meltdown_state(void)
3388 {
3389 	if (__meltdown_safe)
3390 		return SPECTRE_UNAFFECTED;
3391 
3392 	if (arm64_kernel_unmapped_at_el0())
3393 		return SPECTRE_MITIGATED;
3394 
3395 	return SPECTRE_VULNERABLE;
3396 }
3397 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3398 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3399 			  char *buf)
3400 {
3401 	switch (arm64_get_meltdown_state()) {
3402 	case SPECTRE_UNAFFECTED:
3403 		return sprintf(buf, "Not affected\n");
3404 
3405 	case SPECTRE_MITIGATED:
3406 		return sprintf(buf, "Mitigation: PTI\n");
3407 
3408 	default:
3409 		return sprintf(buf, "Vulnerable\n");
3410 	}
3411 }
3412