• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/blkdev.h>
41 #include <linux/compat.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpufreq.h>
44 #include <linux/cpuidle.h>
45 #include <linux/cpuset.h>
46 #include <linux/ctype.h>
47 #include <linux/debugfs.h>
48 #include <linux/delayacct.h>
49 #include <linux/energy_model.h>
50 #include <linux/init_task.h>
51 #include <linux/kprobes.h>
52 #include <linux/kthread.h>
53 #include <linux/membarrier.h>
54 #include <linux/migrate.h>
55 #include <linux/mmu_context.h>
56 #include <linux/nmi.h>
57 #include <linux/proc_fs.h>
58 #include <linux/prefetch.h>
59 #include <linux/profile.h>
60 #include <linux/psi.h>
61 #include <linux/ratelimit.h>
62 #include <linux/rcupdate_wait.h>
63 #include <linux/security.h>
64 #include <linux/stop_machine.h>
65 #include <linux/suspend.h>
66 #include <linux/swait.h>
67 #include <linux/syscalls.h>
68 #include <linux/task_work.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/android_vendor.h>
71 #include <linux/android_kabi.h>
72 
73 #include <asm/tlb.h>
74 
75 #ifdef CONFIG_PARAVIRT
76 # include <asm/paravirt.h>
77 #endif
78 
79 #include "cpupri.h"
80 #include "cpudeadline.h"
81 
82 #include <trace/events/sched.h>
83 
84 #ifdef CONFIG_SCHED_DEBUG
85 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
86 #else
87 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
88 #endif
89 
90 struct rq;
91 struct cpuidle_state;
92 
93 /* task_struct::on_rq states: */
94 #define TASK_ON_RQ_QUEUED	1
95 #define TASK_ON_RQ_MIGRATING	2
96 
97 extern __read_mostly int scheduler_running;
98 
99 extern unsigned long calc_load_update;
100 extern atomic_long_t calc_load_tasks;
101 
102 extern void calc_global_load_tick(struct rq *this_rq);
103 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
104 
105 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
106 /*
107  * Helpers for converting nanosecond timing to jiffy resolution
108  */
109 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 
111 /*
112  * Increase resolution of nice-level calculations for 64-bit architectures.
113  * The extra resolution improves shares distribution and load balancing of
114  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
115  * hierarchies, especially on larger systems. This is not a user-visible change
116  * and does not change the user-interface for setting shares/weights.
117  *
118  * We increase resolution only if we have enough bits to allow this increased
119  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
120  * are pretty high and the returns do not justify the increased costs.
121  *
122  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
123  * increase coverage and consistency always enable it on 64-bit platforms.
124  */
125 #ifdef CONFIG_64BIT
126 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
127 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load_down(w) \
129 ({ \
130 	unsigned long __w = (w); \
131 	if (__w) \
132 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
133 	__w; \
134 })
135 #else
136 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
137 # define scale_load(w)		(w)
138 # define scale_load_down(w)	(w)
139 #endif
140 
141 /*
142  * Task weight (visible to users) and its load (invisible to users) have
143  * independent resolution, but they should be well calibrated. We use
144  * scale_load() and scale_load_down(w) to convert between them. The
145  * following must be true:
146  *
147  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
148  *
149  */
150 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
151 
152 /*
153  * Single value that decides SCHED_DEADLINE internal math precision.
154  * 10 -> just above 1us
155  * 9  -> just above 0.5us
156  */
157 #define DL_SCALE		10
158 
159 /*
160  * Single value that denotes runtime == period, ie unlimited time.
161  */
162 #define RUNTIME_INF		((u64)~0ULL)
163 
idle_policy(int policy)164 static inline int idle_policy(int policy)
165 {
166 	return policy == SCHED_IDLE;
167 }
fair_policy(int policy)168 static inline int fair_policy(int policy)
169 {
170 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
171 }
172 
rt_policy(int policy)173 static inline int rt_policy(int policy)
174 {
175 	return policy == SCHED_FIFO || policy == SCHED_RR;
176 }
177 
dl_policy(int policy)178 static inline int dl_policy(int policy)
179 {
180 	return policy == SCHED_DEADLINE;
181 }
valid_policy(int policy)182 static inline bool valid_policy(int policy)
183 {
184 	return idle_policy(policy) || fair_policy(policy) ||
185 		rt_policy(policy) || dl_policy(policy);
186 }
187 
task_has_idle_policy(struct task_struct * p)188 static inline int task_has_idle_policy(struct task_struct *p)
189 {
190 	return idle_policy(p->policy);
191 }
192 
task_has_rt_policy(struct task_struct * p)193 static inline int task_has_rt_policy(struct task_struct *p)
194 {
195 	return rt_policy(p->policy);
196 }
197 
task_has_dl_policy(struct task_struct * p)198 static inline int task_has_dl_policy(struct task_struct *p)
199 {
200 	return dl_policy(p->policy);
201 }
202 
203 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
204 
update_avg(u64 * avg,u64 sample)205 static inline void update_avg(u64 *avg, u64 sample)
206 {
207 	s64 diff = sample - *avg;
208 	*avg += diff / 8;
209 }
210 
211 /*
212  * Shifting a value by an exponent greater *or equal* to the size of said value
213  * is UB; cap at size-1.
214  */
215 #define shr_bound(val, shift)							\
216 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
217 
218 /*
219  * !! For sched_setattr_nocheck() (kernel) only !!
220  *
221  * This is actually gross. :(
222  *
223  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
224  * tasks, but still be able to sleep. We need this on platforms that cannot
225  * atomically change clock frequency. Remove once fast switching will be
226  * available on such platforms.
227  *
228  * SUGOV stands for SchedUtil GOVernor.
229  */
230 #define SCHED_FLAG_SUGOV	0x10000000
231 
232 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
233 
dl_entity_is_special(struct sched_dl_entity * dl_se)234 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
235 {
236 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
237 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
238 #else
239 	return false;
240 #endif
241 }
242 
243 /*
244  * Tells if entity @a should preempt entity @b.
245  */
246 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)247 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
248 {
249 	return dl_entity_is_special(a) ||
250 	       dl_time_before(a->deadline, b->deadline);
251 }
252 
253 /*
254  * This is the priority-queue data structure of the RT scheduling class:
255  */
256 struct rt_prio_array {
257 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
258 	struct list_head queue[MAX_RT_PRIO];
259 };
260 
261 struct rt_bandwidth {
262 	/* nests inside the rq lock: */
263 	raw_spinlock_t		rt_runtime_lock;
264 	ktime_t			rt_period;
265 	u64			rt_runtime;
266 	struct hrtimer		rt_period_timer;
267 	unsigned int		rt_period_active;
268 };
269 
270 void __dl_clear_params(struct task_struct *p);
271 
272 struct dl_bandwidth {
273 	raw_spinlock_t		dl_runtime_lock;
274 	u64			dl_runtime;
275 	u64			dl_period;
276 };
277 
dl_bandwidth_enabled(void)278 static inline int dl_bandwidth_enabled(void)
279 {
280 	return sysctl_sched_rt_runtime >= 0;
281 }
282 
283 /*
284  * To keep the bandwidth of -deadline tasks under control
285  * we need some place where:
286  *  - store the maximum -deadline bandwidth of each cpu;
287  *  - cache the fraction of bandwidth that is currently allocated in
288  *    each root domain;
289  *
290  * This is all done in the data structure below. It is similar to the
291  * one used for RT-throttling (rt_bandwidth), with the main difference
292  * that, since here we are only interested in admission control, we
293  * do not decrease any runtime while the group "executes", neither we
294  * need a timer to replenish it.
295  *
296  * With respect to SMP, bandwidth is given on a per root domain basis,
297  * meaning that:
298  *  - bw (< 100%) is the deadline bandwidth of each CPU;
299  *  - total_bw is the currently allocated bandwidth in each root domain;
300  */
301 struct dl_bw {
302 	raw_spinlock_t		lock;
303 	u64			bw;
304 	u64			total_bw;
305 };
306 
307 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
308 
309 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)310 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
311 {
312 	dl_b->total_bw -= tsk_bw;
313 	__dl_update(dl_b, (s32)tsk_bw / cpus);
314 }
315 
316 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)317 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
318 {
319 	dl_b->total_bw += tsk_bw;
320 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
321 }
322 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)323 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
324 				 u64 old_bw, u64 new_bw)
325 {
326 	return dl_b->bw != -1 &&
327 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
328 }
329 
330 /*
331  * Verify the fitness of task @p to run on @cpu taking into account the
332  * CPU original capacity and the runtime/deadline ratio of the task.
333  *
334  * The function will return true if the CPU original capacity of the
335  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
336  * task and false otherwise.
337  */
dl_task_fits_capacity(struct task_struct * p,int cpu)338 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
339 {
340 	unsigned long cap = arch_scale_cpu_capacity(cpu);
341 
342 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
343 }
344 
345 extern void init_dl_bw(struct dl_bw *dl_b);
346 extern int  sched_dl_global_validate(void);
347 extern void sched_dl_do_global(void);
348 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
349 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
350 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
351 extern bool __checkparam_dl(const struct sched_attr *attr);
352 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
353 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
354 extern int  dl_bw_check_overflow(int cpu);
355 
356 #ifdef CONFIG_CGROUP_SCHED
357 
358 #include <linux/cgroup.h>
359 #include <linux/psi.h>
360 
361 struct cfs_rq;
362 struct rt_rq;
363 
364 extern struct list_head task_groups;
365 
366 struct cfs_bandwidth {
367 #ifdef CONFIG_CFS_BANDWIDTH
368 	raw_spinlock_t		lock;
369 	ktime_t			period;
370 	u64			quota;
371 	u64			runtime;
372 	u64			burst;
373 	s64			hierarchical_quota;
374 
375 	u8			idle;
376 	u8			period_active;
377 	u8			slack_started;
378 	struct hrtimer		period_timer;
379 	struct hrtimer		slack_timer;
380 	struct list_head	throttled_cfs_rq;
381 
382 	/* Statistics: */
383 	int			nr_periods;
384 	int			nr_throttled;
385 	u64			throttled_time;
386 #endif
387 };
388 
389 /* Task group related information */
390 struct task_group {
391 	struct cgroup_subsys_state css;
392 
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 	/* schedulable entities of this group on each CPU */
395 	struct sched_entity	**se;
396 	/* runqueue "owned" by this group on each CPU */
397 	struct cfs_rq		**cfs_rq;
398 	unsigned long		shares;
399 
400 	/* A positive value indicates that this is a SCHED_IDLE group. */
401 	int			idle;
402 
403 #ifdef	CONFIG_SMP
404 	/*
405 	 * load_avg can be heavily contended at clock tick time, so put
406 	 * it in its own cacheline separated from the fields above which
407 	 * will also be accessed at each tick.
408 	 */
409 	atomic_long_t		load_avg ____cacheline_aligned;
410 #endif
411 #endif
412 
413 #ifdef CONFIG_RT_GROUP_SCHED
414 	struct sched_rt_entity	**rt_se;
415 	struct rt_rq		**rt_rq;
416 
417 	struct rt_bandwidth	rt_bandwidth;
418 #endif
419 
420 	struct rcu_head		rcu;
421 	struct list_head	list;
422 
423 	struct task_group	*parent;
424 	struct list_head	siblings;
425 	struct list_head	children;
426 
427 #ifdef CONFIG_SCHED_AUTOGROUP
428 	struct autogroup	*autogroup;
429 #endif
430 
431 	struct cfs_bandwidth	cfs_bandwidth;
432 
433 #ifdef CONFIG_UCLAMP_TASK_GROUP
434 	/* The two decimal precision [%] value requested from user-space */
435 	unsigned int		uclamp_pct[UCLAMP_CNT];
436 	/* Clamp values requested for a task group */
437 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
438 	/* Effective clamp values used for a task group */
439 	struct uclamp_se	uclamp[UCLAMP_CNT];
440 	/* Latency-sensitive flag used for a task group */
441 	unsigned int		latency_sensitive;
442 
443 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
444 #endif
445 
446 	ANDROID_KABI_RESERVE(1);
447 	ANDROID_KABI_RESERVE(2);
448 	ANDROID_KABI_RESERVE(3);
449 	ANDROID_KABI_RESERVE(4);
450 };
451 
452 #ifdef CONFIG_FAIR_GROUP_SCHED
453 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
454 
455 /*
456  * A weight of 0 or 1 can cause arithmetics problems.
457  * A weight of a cfs_rq is the sum of weights of which entities
458  * are queued on this cfs_rq, so a weight of a entity should not be
459  * too large, so as the shares value of a task group.
460  * (The default weight is 1024 - so there's no practical
461  *  limitation from this.)
462  */
463 #define MIN_SHARES		(1UL <<  1)
464 #define MAX_SHARES		(1UL << 18)
465 #endif
466 
467 typedef int (*tg_visitor)(struct task_group *, void *);
468 
469 extern int walk_tg_tree_from(struct task_group *from,
470 			     tg_visitor down, tg_visitor up, void *data);
471 
472 /*
473  * Iterate the full tree, calling @down when first entering a node and @up when
474  * leaving it for the final time.
475  *
476  * Caller must hold rcu_lock or sufficient equivalent.
477  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)478 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
479 {
480 	return walk_tg_tree_from(&root_task_group, down, up, data);
481 }
482 
483 extern int tg_nop(struct task_group *tg, void *data);
484 
485 extern void free_fair_sched_group(struct task_group *tg);
486 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
487 extern void online_fair_sched_group(struct task_group *tg);
488 extern void unregister_fair_sched_group(struct task_group *tg);
489 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
490 			struct sched_entity *se, int cpu,
491 			struct sched_entity *parent);
492 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
493 
494 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
495 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
496 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
497 
498 extern void unregister_rt_sched_group(struct task_group *tg);
499 extern void free_rt_sched_group(struct task_group *tg);
500 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
501 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
502 		struct sched_rt_entity *rt_se, int cpu,
503 		struct sched_rt_entity *parent);
504 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
505 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
506 extern long sched_group_rt_runtime(struct task_group *tg);
507 extern long sched_group_rt_period(struct task_group *tg);
508 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
509 
510 extern struct task_group *sched_create_group(struct task_group *parent);
511 extern void sched_online_group(struct task_group *tg,
512 			       struct task_group *parent);
513 extern void sched_destroy_group(struct task_group *tg);
514 extern void sched_release_group(struct task_group *tg);
515 
516 extern void sched_move_task(struct task_struct *tsk);
517 
518 #ifdef CONFIG_FAIR_GROUP_SCHED
519 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
520 
521 extern int sched_group_set_idle(struct task_group *tg, long idle);
522 
523 #ifdef CONFIG_SMP
524 extern void set_task_rq_fair(struct sched_entity *se,
525 			     struct cfs_rq *prev, struct cfs_rq *next);
526 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)527 static inline void set_task_rq_fair(struct sched_entity *se,
528 			     struct cfs_rq *prev, struct cfs_rq *next) { }
529 #endif /* CONFIG_SMP */
530 #endif /* CONFIG_FAIR_GROUP_SCHED */
531 
532 #else /* CONFIG_CGROUP_SCHED */
533 
534 struct cfs_bandwidth { };
535 
536 #endif	/* CONFIG_CGROUP_SCHED */
537 
538 /* CFS-related fields in a runqueue */
539 struct cfs_rq {
540 	struct load_weight	load;
541 	unsigned int		nr_running;
542 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
543 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
544 
545 	u64			exec_clock;
546 	u64			min_vruntime;
547 #ifdef CONFIG_SCHED_CORE
548 	unsigned int		forceidle_seq;
549 	u64			min_vruntime_fi;
550 #endif
551 
552 #ifndef CONFIG_64BIT
553 	u64			min_vruntime_copy;
554 #endif
555 
556 	struct rb_root_cached	tasks_timeline;
557 
558 	/*
559 	 * 'curr' points to currently running entity on this cfs_rq.
560 	 * It is set to NULL otherwise (i.e when none are currently running).
561 	 */
562 	struct sched_entity	*curr;
563 	struct sched_entity	*next;
564 	struct sched_entity	*last;
565 	struct sched_entity	*skip;
566 
567 #ifdef	CONFIG_SCHED_DEBUG
568 	unsigned int		nr_spread_over;
569 #endif
570 
571 #ifdef CONFIG_SMP
572 	/*
573 	 * CFS load tracking
574 	 */
575 	struct sched_avg	avg;
576 #ifndef CONFIG_64BIT
577 	u64			load_last_update_time_copy;
578 #endif
579 	struct {
580 		raw_spinlock_t	lock ____cacheline_aligned;
581 		int		nr;
582 		unsigned long	load_avg;
583 		unsigned long	util_avg;
584 		unsigned long	runnable_avg;
585 	} removed;
586 
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 	unsigned long		tg_load_avg_contrib;
589 	long			propagate;
590 	long			prop_runnable_sum;
591 
592 	/*
593 	 *   h_load = weight * f(tg)
594 	 *
595 	 * Where f(tg) is the recursive weight fraction assigned to
596 	 * this group.
597 	 */
598 	unsigned long		h_load;
599 	u64			last_h_load_update;
600 	struct sched_entity	*h_load_next;
601 #endif /* CONFIG_FAIR_GROUP_SCHED */
602 #endif /* CONFIG_SMP */
603 
604 #ifdef CONFIG_FAIR_GROUP_SCHED
605 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
606 
607 	/*
608 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
609 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
610 	 * (like users, containers etc.)
611 	 *
612 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
613 	 * This list is used during load balance.
614 	 */
615 	int			on_list;
616 	struct list_head	leaf_cfs_rq_list;
617 	struct task_group	*tg;	/* group that "owns" this runqueue */
618 
619 	/* Locally cached copy of our task_group's idle value */
620 	int			idle;
621 
622 #ifdef CONFIG_CFS_BANDWIDTH
623 	int			runtime_enabled;
624 	s64			runtime_remaining;
625 
626 	u64			throttled_clock;
627 	u64			throttled_clock_pelt;
628 	u64			throttled_clock_pelt_time;
629 	int			throttled;
630 	int			throttle_count;
631 	struct list_head	throttled_list;
632 #endif /* CONFIG_CFS_BANDWIDTH */
633 #endif /* CONFIG_FAIR_GROUP_SCHED */
634 };
635 
rt_bandwidth_enabled(void)636 static inline int rt_bandwidth_enabled(void)
637 {
638 	return sysctl_sched_rt_runtime >= 0;
639 }
640 
641 /* RT IPI pull logic requires IRQ_WORK */
642 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
643 # define HAVE_RT_PUSH_IPI
644 #endif
645 
646 /* Real-Time classes' related field in a runqueue: */
647 struct rt_rq {
648 	struct rt_prio_array	active;
649 	unsigned int		rt_nr_running;
650 	unsigned int		rr_nr_running;
651 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
652 	struct {
653 		int		curr; /* highest queued rt task prio */
654 #ifdef CONFIG_SMP
655 		int		next; /* next highest */
656 #endif
657 	} highest_prio;
658 #endif
659 #ifdef CONFIG_SMP
660 	unsigned int		rt_nr_migratory;
661 	unsigned int		rt_nr_total;
662 	int			overloaded;
663 	struct plist_head	pushable_tasks;
664 
665 #endif /* CONFIG_SMP */
666 	int			rt_queued;
667 
668 	int			rt_throttled;
669 	u64			rt_time;
670 	u64			rt_runtime;
671 	/* Nests inside the rq lock: */
672 	raw_spinlock_t		rt_runtime_lock;
673 
674 #ifdef CONFIG_RT_GROUP_SCHED
675 	unsigned int		rt_nr_boosted;
676 
677 	struct rq		*rq;
678 	struct task_group	*tg;
679 #endif
680 };
681 
rt_rq_is_runnable(struct rt_rq * rt_rq)682 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
683 {
684 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
685 }
686 
687 /* Deadline class' related fields in a runqueue */
688 struct dl_rq {
689 	/* runqueue is an rbtree, ordered by deadline */
690 	struct rb_root_cached	root;
691 
692 	unsigned int		dl_nr_running;
693 
694 #ifdef CONFIG_SMP
695 	/*
696 	 * Deadline values of the currently executing and the
697 	 * earliest ready task on this rq. Caching these facilitates
698 	 * the decision whether or not a ready but not running task
699 	 * should migrate somewhere else.
700 	 */
701 	struct {
702 		u64		curr;
703 		u64		next;
704 	} earliest_dl;
705 
706 	unsigned int		dl_nr_migratory;
707 	int			overloaded;
708 
709 	/*
710 	 * Tasks on this rq that can be pushed away. They are kept in
711 	 * an rb-tree, ordered by tasks' deadlines, with caching
712 	 * of the leftmost (earliest deadline) element.
713 	 */
714 	struct rb_root_cached	pushable_dl_tasks_root;
715 #else
716 	struct dl_bw		dl_bw;
717 #endif
718 	/*
719 	 * "Active utilization" for this runqueue: increased when a
720 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
721 	 * task blocks
722 	 */
723 	u64			running_bw;
724 
725 	/*
726 	 * Utilization of the tasks "assigned" to this runqueue (including
727 	 * the tasks that are in runqueue and the tasks that executed on this
728 	 * CPU and blocked). Increased when a task moves to this runqueue, and
729 	 * decreased when the task moves away (migrates, changes scheduling
730 	 * policy, or terminates).
731 	 * This is needed to compute the "inactive utilization" for the
732 	 * runqueue (inactive utilization = this_bw - running_bw).
733 	 */
734 	u64			this_bw;
735 	u64			extra_bw;
736 
737 	/*
738 	 * Inverse of the fraction of CPU utilization that can be reclaimed
739 	 * by the GRUB algorithm.
740 	 */
741 	u64			bw_ratio;
742 };
743 
744 #ifdef CONFIG_FAIR_GROUP_SCHED
745 /* An entity is a task if it doesn't "own" a runqueue */
746 #define entity_is_task(se)	(!se->my_q)
747 
se_update_runnable(struct sched_entity * se)748 static inline void se_update_runnable(struct sched_entity *se)
749 {
750 	if (!entity_is_task(se))
751 		se->runnable_weight = se->my_q->h_nr_running;
752 }
753 
se_runnable(struct sched_entity * se)754 static inline long se_runnable(struct sched_entity *se)
755 {
756 	if (entity_is_task(se))
757 		return !!se->on_rq;
758 	else
759 		return se->runnable_weight;
760 }
761 
762 #else
763 #define entity_is_task(se)	1
764 
se_update_runnable(struct sched_entity * se)765 static inline void se_update_runnable(struct sched_entity *se) {}
766 
se_runnable(struct sched_entity * se)767 static inline long se_runnable(struct sched_entity *se)
768 {
769 	return !!se->on_rq;
770 }
771 #endif
772 
773 #ifdef CONFIG_SMP
774 /*
775  * XXX we want to get rid of these helpers and use the full load resolution.
776  */
se_weight(struct sched_entity * se)777 static inline long se_weight(struct sched_entity *se)
778 {
779 	return scale_load_down(se->load.weight);
780 }
781 
782 
sched_asym_prefer(int a,int b)783 static inline bool sched_asym_prefer(int a, int b)
784 {
785 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
786 }
787 
788 struct perf_domain {
789 	struct em_perf_domain *em_pd;
790 	struct perf_domain *next;
791 	struct rcu_head rcu;
792 };
793 
794 /* Scheduling group status flags */
795 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
796 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
797 
798 /*
799  * We add the notion of a root-domain which will be used to define per-domain
800  * variables. Each exclusive cpuset essentially defines an island domain by
801  * fully partitioning the member CPUs from any other cpuset. Whenever a new
802  * exclusive cpuset is created, we also create and attach a new root-domain
803  * object.
804  *
805  */
806 struct root_domain {
807 	atomic_t		refcount;
808 	atomic_t		rto_count;
809 	struct rcu_head		rcu;
810 	cpumask_var_t		span;
811 	cpumask_var_t		online;
812 
813 	/*
814 	 * Indicate pullable load on at least one CPU, e.g:
815 	 * - More than one runnable task
816 	 * - Running task is misfit
817 	 */
818 	int			overload;
819 
820 	/* Indicate one or more cpus over-utilized (tipping point) */
821 	int			overutilized;
822 
823 	/*
824 	 * The bit corresponding to a CPU gets set here if such CPU has more
825 	 * than one runnable -deadline task (as it is below for RT tasks).
826 	 */
827 	cpumask_var_t		dlo_mask;
828 	atomic_t		dlo_count;
829 	struct dl_bw		dl_bw;
830 	struct cpudl		cpudl;
831 
832 	/*
833 	 * Indicate whether a root_domain's dl_bw has been checked or
834 	 * updated. It's monotonously increasing value.
835 	 *
836 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
837 	 * that u64 is 'big enough'. So that shouldn't be a concern.
838 	 */
839 	u64 visit_gen;
840 
841 #ifdef HAVE_RT_PUSH_IPI
842 	/*
843 	 * For IPI pull requests, loop across the rto_mask.
844 	 */
845 	struct irq_work		rto_push_work;
846 	raw_spinlock_t		rto_lock;
847 	/* These are only updated and read within rto_lock */
848 	int			rto_loop;
849 	int			rto_cpu;
850 	/* These atomics are updated outside of a lock */
851 	atomic_t		rto_loop_next;
852 	atomic_t		rto_loop_start;
853 #endif
854 	/*
855 	 * The "RT overload" flag: it gets set if a CPU has more than
856 	 * one runnable RT task.
857 	 */
858 	cpumask_var_t		rto_mask;
859 	struct cpupri		cpupri;
860 
861 	unsigned long		max_cpu_capacity;
862 
863 	/*
864 	 * NULL-terminated list of performance domains intersecting with the
865 	 * CPUs of the rd. Protected by RCU.
866 	 */
867 	struct perf_domain __rcu *pd;
868 
869 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
870 
871 	ANDROID_KABI_RESERVE(1);
872 	ANDROID_KABI_RESERVE(2);
873 	ANDROID_KABI_RESERVE(3);
874 	ANDROID_KABI_RESERVE(4);
875 };
876 
877 extern void init_defrootdomain(void);
878 extern int sched_init_domains(const struct cpumask *cpu_map);
879 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
880 extern void sched_get_rd(struct root_domain *rd);
881 extern void sched_put_rd(struct root_domain *rd);
882 
883 #ifdef HAVE_RT_PUSH_IPI
884 extern void rto_push_irq_work_func(struct irq_work *work);
885 #endif
886 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
887 #endif /* CONFIG_SMP */
888 
889 #ifdef CONFIG_UCLAMP_TASK
890 /*
891  * struct uclamp_bucket - Utilization clamp bucket
892  * @value: utilization clamp value for tasks on this clamp bucket
893  * @tasks: number of RUNNABLE tasks on this clamp bucket
894  *
895  * Keep track of how many tasks are RUNNABLE for a given utilization
896  * clamp value.
897  */
898 struct uclamp_bucket {
899 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
900 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
901 };
902 
903 /*
904  * struct uclamp_rq - rq's utilization clamp
905  * @value: currently active clamp values for a rq
906  * @bucket: utilization clamp buckets affecting a rq
907  *
908  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
909  * A clamp value is affecting a rq when there is at least one task RUNNABLE
910  * (or actually running) with that value.
911  *
912  * There are up to UCLAMP_CNT possible different clamp values, currently there
913  * are only two: minimum utilization and maximum utilization.
914  *
915  * All utilization clamping values are MAX aggregated, since:
916  * - for util_min: we want to run the CPU at least at the max of the minimum
917  *   utilization required by its currently RUNNABLE tasks.
918  * - for util_max: we want to allow the CPU to run up to the max of the
919  *   maximum utilization allowed by its currently RUNNABLE tasks.
920  *
921  * Since on each system we expect only a limited number of different
922  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
923  * the metrics required to compute all the per-rq utilization clamp values.
924  */
925 struct uclamp_rq {
926 	unsigned int value;
927 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
928 };
929 
930 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
931 #endif /* CONFIG_UCLAMP_TASK */
932 
933 /*
934  * This is the main, per-CPU runqueue data structure.
935  *
936  * Locking rule: those places that want to lock multiple runqueues
937  * (such as the load balancing or the thread migration code), lock
938  * acquire operations must be ordered by ascending &runqueue.
939  */
940 struct rq {
941 	/* runqueue lock: */
942 	raw_spinlock_t		__lock;
943 
944 	/*
945 	 * nr_running and cpu_load should be in the same cacheline because
946 	 * remote CPUs use both these fields when doing load calculation.
947 	 */
948 	unsigned int		nr_running;
949 #ifdef CONFIG_NUMA_BALANCING
950 	unsigned int		nr_numa_running;
951 	unsigned int		nr_preferred_running;
952 	unsigned int		numa_migrate_on;
953 #endif
954 #ifdef CONFIG_NO_HZ_COMMON
955 #ifdef CONFIG_SMP
956 	unsigned long		last_blocked_load_update_tick;
957 	unsigned int		has_blocked_load;
958 	call_single_data_t	nohz_csd;
959 #endif /* CONFIG_SMP */
960 	unsigned int		nohz_tick_stopped;
961 	atomic_t		nohz_flags;
962 #endif /* CONFIG_NO_HZ_COMMON */
963 
964 #ifdef CONFIG_SMP
965 	unsigned int		ttwu_pending;
966 #endif
967 	u64			nr_switches;
968 
969 #ifdef CONFIG_UCLAMP_TASK
970 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
971 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
972 	unsigned int		uclamp_flags;
973 #define UCLAMP_FLAG_IDLE 0x01
974 #endif
975 
976 	struct cfs_rq		cfs;
977 	struct rt_rq		rt;
978 	struct dl_rq		dl;
979 
980 #ifdef CONFIG_FAIR_GROUP_SCHED
981 	/* list of leaf cfs_rq on this CPU: */
982 	struct list_head	leaf_cfs_rq_list;
983 	struct list_head	*tmp_alone_branch;
984 #endif /* CONFIG_FAIR_GROUP_SCHED */
985 
986 	/*
987 	 * This is part of a global counter where only the total sum
988 	 * over all CPUs matters. A task can increase this counter on
989 	 * one CPU and if it got migrated afterwards it may decrease
990 	 * it on another CPU. Always updated under the runqueue lock:
991 	 */
992 	unsigned int		nr_uninterruptible;
993 
994 	struct task_struct __rcu	*curr;
995 	struct task_struct	*idle;
996 	struct task_struct	*stop;
997 	unsigned long		next_balance;
998 	struct mm_struct	*prev_mm;
999 
1000 	unsigned int		clock_update_flags;
1001 	u64			clock;
1002 	/* Ensure that all clocks are in the same cache line */
1003 	u64			clock_task ____cacheline_aligned;
1004 	u64			clock_task_mult;
1005 	u64			clock_pelt;
1006 	unsigned long		lost_idle_time;
1007 
1008 	atomic_t		nr_iowait;
1009 
1010 #ifdef CONFIG_SCHED_DEBUG
1011 	u64 last_seen_need_resched_ns;
1012 	int ticks_without_resched;
1013 #endif
1014 
1015 #ifdef CONFIG_MEMBARRIER
1016 	int membarrier_state;
1017 #endif
1018 
1019 #ifdef CONFIG_SMP
1020 	struct root_domain		*rd;
1021 	struct sched_domain __rcu	*sd;
1022 
1023 	unsigned long		cpu_capacity;
1024 	unsigned long		cpu_capacity_orig;
1025 	unsigned long		cpu_capacity_inverted;
1026 
1027 	struct callback_head	*balance_callback;
1028 
1029 	unsigned char		nohz_idle_balance;
1030 	unsigned char		idle_balance;
1031 
1032 	unsigned long		misfit_task_load;
1033 
1034 	/* For active balancing */
1035 	int			active_balance;
1036 	int			push_cpu;
1037 	struct cpu_stop_work	active_balance_work;
1038 
1039 	/* CPU of this runqueue: */
1040 	int			cpu;
1041 	int			online;
1042 
1043 	struct list_head cfs_tasks;
1044 
1045 	struct sched_avg	avg_rt;
1046 	struct sched_avg	avg_dl;
1047 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1048 	struct sched_avg	avg_irq;
1049 #endif
1050 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1051 	struct sched_avg	avg_thermal;
1052 #endif
1053 	u64			idle_stamp;
1054 	u64			avg_idle;
1055 
1056 	unsigned long		wake_stamp;
1057 	u64			wake_avg_idle;
1058 
1059 	/* This is used to determine avg_idle's max value */
1060 	u64			max_idle_balance_cost;
1061 
1062 #ifdef CONFIG_HOTPLUG_CPU
1063 	struct rcuwait		hotplug_wait;
1064 #endif
1065 #endif /* CONFIG_SMP */
1066 
1067 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1068 	u64			prev_irq_time;
1069 #endif
1070 #ifdef CONFIG_PARAVIRT
1071 	u64			prev_steal_time;
1072 #endif
1073 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1074 	u64			prev_steal_time_rq;
1075 #endif
1076 
1077 	/* calc_load related fields */
1078 	unsigned long		calc_load_update;
1079 	long			calc_load_active;
1080 
1081 #ifdef CONFIG_SCHED_HRTICK
1082 #ifdef CONFIG_SMP
1083 	call_single_data_t	hrtick_csd;
1084 #endif
1085 	struct hrtimer		hrtick_timer;
1086 	ktime_t 		hrtick_time;
1087 #endif
1088 
1089 #ifdef CONFIG_SCHEDSTATS
1090 	/* latency stats */
1091 	struct sched_info	rq_sched_info;
1092 	unsigned long long	rq_cpu_time;
1093 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1094 
1095 	/* sys_sched_yield() stats */
1096 	unsigned int		yld_count;
1097 
1098 	/* schedule() stats */
1099 	unsigned int		sched_count;
1100 	unsigned int		sched_goidle;
1101 
1102 	/* try_to_wake_up() stats */
1103 	unsigned int		ttwu_count;
1104 	unsigned int		ttwu_local;
1105 #endif
1106 
1107 #ifdef CONFIG_CPU_IDLE
1108 	/* Must be inspected within a rcu lock section */
1109 	struct cpuidle_state	*idle_state;
1110 #endif
1111 
1112 #ifdef CONFIG_SMP
1113 	unsigned int		nr_pinned;
1114 #endif
1115 	unsigned int		push_busy;
1116 	struct cpu_stop_work	push_work;
1117 
1118 #ifdef CONFIG_SCHED_CORE
1119 	/* per rq */
1120 	struct rq		*core;
1121 	struct task_struct	*core_pick;
1122 	unsigned int		core_enabled;
1123 	unsigned int		core_sched_seq;
1124 	struct rb_root		core_tree;
1125 
1126 	/* shared state -- careful with sched_core_cpu_deactivate() */
1127 	unsigned int		core_task_seq;
1128 	unsigned int		core_pick_seq;
1129 	unsigned long		core_cookie;
1130 	unsigned char		core_forceidle;
1131 	unsigned int		core_forceidle_seq;
1132 #endif
1133 
1134 	ANDROID_VENDOR_DATA_ARRAY(1, 96);
1135 	ANDROID_OEM_DATA_ARRAY(1, 16);
1136 
1137 	ANDROID_KABI_RESERVE(1);
1138 	ANDROID_KABI_RESERVE(2);
1139 	ANDROID_KABI_RESERVE(3);
1140 	ANDROID_KABI_RESERVE(4);
1141 };
1142 
1143 #ifdef CONFIG_FAIR_GROUP_SCHED
1144 
1145 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1147 {
1148 	return cfs_rq->rq;
1149 }
1150 
1151 #else
1152 
rq_of(struct cfs_rq * cfs_rq)1153 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1154 {
1155 	return container_of(cfs_rq, struct rq, cfs);
1156 }
1157 #endif
1158 
cpu_of(struct rq * rq)1159 static inline int cpu_of(struct rq *rq)
1160 {
1161 #ifdef CONFIG_SMP
1162 	return rq->cpu;
1163 #else
1164 	return 0;
1165 #endif
1166 }
1167 
1168 #define MDF_PUSH	0x01
1169 
is_migration_disabled(struct task_struct * p)1170 static inline bool is_migration_disabled(struct task_struct *p)
1171 {
1172 #ifdef CONFIG_SMP
1173 	return p->migration_disabled;
1174 #else
1175 	return false;
1176 #endif
1177 }
1178 
1179 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1180 
1181 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1182 #define this_rq()		this_cpu_ptr(&runqueues)
1183 #define task_rq(p)		cpu_rq(task_cpu(p))
1184 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1185 #define raw_rq()		raw_cpu_ptr(&runqueues)
1186 
1187 struct sched_group;
1188 #ifdef CONFIG_SCHED_CORE
1189 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1190 
1191 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1192 
sched_core_enabled(struct rq * rq)1193 static inline bool sched_core_enabled(struct rq *rq)
1194 {
1195 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1196 }
1197 
sched_core_disabled(void)1198 static inline bool sched_core_disabled(void)
1199 {
1200 	return !static_branch_unlikely(&__sched_core_enabled);
1201 }
1202 
1203 /*
1204  * Be careful with this function; not for general use. The return value isn't
1205  * stable unless you actually hold a relevant rq->__lock.
1206  */
rq_lockp(struct rq * rq)1207 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1208 {
1209 	if (sched_core_enabled(rq))
1210 		return &rq->core->__lock;
1211 
1212 	return &rq->__lock;
1213 }
1214 
__rq_lockp(struct rq * rq)1215 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1216 {
1217 	if (rq->core_enabled)
1218 		return &rq->core->__lock;
1219 
1220 	return &rq->__lock;
1221 }
1222 
1223 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1224 
1225 /*
1226  * Helpers to check if the CPU's core cookie matches with the task's cookie
1227  * when core scheduling is enabled.
1228  * A special case is that the task's cookie always matches with CPU's core
1229  * cookie if the CPU is in an idle core.
1230  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1231 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1232 {
1233 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1234 	if (!sched_core_enabled(rq))
1235 		return true;
1236 
1237 	return rq->core->core_cookie == p->core_cookie;
1238 }
1239 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1240 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1241 {
1242 	bool idle_core = true;
1243 	int cpu;
1244 
1245 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1246 	if (!sched_core_enabled(rq))
1247 		return true;
1248 
1249 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1250 		if (!available_idle_cpu(cpu)) {
1251 			idle_core = false;
1252 			break;
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * A CPU in an idle core is always the best choice for tasks with
1258 	 * cookies.
1259 	 */
1260 	return idle_core || rq->core->core_cookie == p->core_cookie;
1261 }
1262 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1263 static inline bool sched_group_cookie_match(struct rq *rq,
1264 					    struct task_struct *p,
1265 					    struct sched_group *group)
1266 {
1267 	int cpu;
1268 
1269 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1270 	if (!sched_core_enabled(rq))
1271 		return true;
1272 
1273 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1274 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1275 			return true;
1276 	}
1277 	return false;
1278 }
1279 
1280 extern void queue_core_balance(struct rq *rq);
1281 
sched_core_enqueued(struct task_struct * p)1282 static inline bool sched_core_enqueued(struct task_struct *p)
1283 {
1284 	return !RB_EMPTY_NODE(&p->core_node);
1285 }
1286 
1287 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1288 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1289 
1290 extern void sched_core_get(void);
1291 extern void sched_core_put(void);
1292 
1293 extern unsigned long sched_core_alloc_cookie(void);
1294 extern void sched_core_put_cookie(unsigned long cookie);
1295 extern unsigned long sched_core_get_cookie(unsigned long cookie);
1296 extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1297 
1298 #else /* !CONFIG_SCHED_CORE */
1299 
sched_core_enabled(struct rq * rq)1300 static inline bool sched_core_enabled(struct rq *rq)
1301 {
1302 	return false;
1303 }
1304 
sched_core_disabled(void)1305 static inline bool sched_core_disabled(void)
1306 {
1307 	return true;
1308 }
1309 
rq_lockp(struct rq * rq)1310 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1311 {
1312 	return &rq->__lock;
1313 }
1314 
__rq_lockp(struct rq * rq)1315 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1316 {
1317 	return &rq->__lock;
1318 }
1319 
queue_core_balance(struct rq * rq)1320 static inline void queue_core_balance(struct rq *rq)
1321 {
1322 }
1323 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1324 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1325 {
1326 	return true;
1327 }
1328 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1329 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1330 {
1331 	return true;
1332 }
1333 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1334 static inline bool sched_group_cookie_match(struct rq *rq,
1335 					    struct task_struct *p,
1336 					    struct sched_group *group)
1337 {
1338 	return true;
1339 }
1340 #endif /* CONFIG_SCHED_CORE */
1341 
lockdep_assert_rq_held(struct rq * rq)1342 static inline void lockdep_assert_rq_held(struct rq *rq)
1343 {
1344 	lockdep_assert_held(__rq_lockp(rq));
1345 }
1346 
1347 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1348 extern bool raw_spin_rq_trylock(struct rq *rq);
1349 extern void raw_spin_rq_unlock(struct rq *rq);
1350 
raw_spin_rq_lock(struct rq * rq)1351 static inline void raw_spin_rq_lock(struct rq *rq)
1352 {
1353 	raw_spin_rq_lock_nested(rq, 0);
1354 }
1355 
raw_spin_rq_lock_irq(struct rq * rq)1356 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1357 {
1358 	local_irq_disable();
1359 	raw_spin_rq_lock(rq);
1360 }
1361 
raw_spin_rq_unlock_irq(struct rq * rq)1362 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1363 {
1364 	raw_spin_rq_unlock(rq);
1365 	local_irq_enable();
1366 }
1367 
_raw_spin_rq_lock_irqsave(struct rq * rq)1368 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1369 {
1370 	unsigned long flags;
1371 	local_irq_save(flags);
1372 	raw_spin_rq_lock(rq);
1373 	return flags;
1374 }
1375 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1376 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1377 {
1378 	raw_spin_rq_unlock(rq);
1379 	local_irq_restore(flags);
1380 }
1381 
1382 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1383 do {						\
1384 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1385 } while (0)
1386 
1387 #ifdef CONFIG_SCHED_SMT
1388 extern void __update_idle_core(struct rq *rq);
1389 
update_idle_core(struct rq * rq)1390 static inline void update_idle_core(struct rq *rq)
1391 {
1392 	if (static_branch_unlikely(&sched_smt_present))
1393 		__update_idle_core(rq);
1394 }
1395 
1396 #else
update_idle_core(struct rq * rq)1397 static inline void update_idle_core(struct rq *rq) { }
1398 #endif
1399 
1400 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1401 static inline struct task_struct *task_of(struct sched_entity *se)
1402 {
1403 	SCHED_WARN_ON(!entity_is_task(se));
1404 	return container_of(se, struct task_struct, se);
1405 }
1406 
task_cfs_rq(struct task_struct * p)1407 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1408 {
1409 	return p->se.cfs_rq;
1410 }
1411 
1412 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)1413 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1414 {
1415 	return se->cfs_rq;
1416 }
1417 
1418 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1419 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1420 {
1421 	return grp->my_q;
1422 }
1423 
1424 #else
1425 
task_of(struct sched_entity * se)1426 static inline struct task_struct *task_of(struct sched_entity *se)
1427 {
1428 	return container_of(se, struct task_struct, se);
1429 }
1430 
task_cfs_rq(struct task_struct * p)1431 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1432 {
1433 	return &task_rq(p)->cfs;
1434 }
1435 
cfs_rq_of(struct sched_entity * se)1436 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1437 {
1438 	struct task_struct *p = task_of(se);
1439 	struct rq *rq = task_rq(p);
1440 
1441 	return &rq->cfs;
1442 }
1443 
1444 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1445 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1446 {
1447 	return NULL;
1448 }
1449 #endif
1450 
1451 extern void update_rq_clock(struct rq *rq);
1452 
__rq_clock_broken(struct rq * rq)1453 static inline u64 __rq_clock_broken(struct rq *rq)
1454 {
1455 	return READ_ONCE(rq->clock);
1456 }
1457 
1458 /*
1459  * rq::clock_update_flags bits
1460  *
1461  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1462  *  call to __schedule(). This is an optimisation to avoid
1463  *  neighbouring rq clock updates.
1464  *
1465  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1466  *  in effect and calls to update_rq_clock() are being ignored.
1467  *
1468  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1469  *  made to update_rq_clock() since the last time rq::lock was pinned.
1470  *
1471  * If inside of __schedule(), clock_update_flags will have been
1472  * shifted left (a left shift is a cheap operation for the fast path
1473  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1474  *
1475  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1476  *
1477  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1478  * one position though, because the next rq_unpin_lock() will shift it
1479  * back.
1480  */
1481 #define RQCF_REQ_SKIP		0x01
1482 #define RQCF_ACT_SKIP		0x02
1483 #define RQCF_UPDATED		0x04
1484 
assert_clock_updated(struct rq * rq)1485 static inline void assert_clock_updated(struct rq *rq)
1486 {
1487 	/*
1488 	 * The only reason for not seeing a clock update since the
1489 	 * last rq_pin_lock() is if we're currently skipping updates.
1490 	 */
1491 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1492 }
1493 
rq_clock(struct rq * rq)1494 static inline u64 rq_clock(struct rq *rq)
1495 {
1496 	lockdep_assert_rq_held(rq);
1497 	assert_clock_updated(rq);
1498 
1499 	return rq->clock;
1500 }
1501 
rq_clock_task(struct rq * rq)1502 static inline u64 rq_clock_task(struct rq *rq)
1503 {
1504 	lockdep_assert_rq_held(rq);
1505 	assert_clock_updated(rq);
1506 
1507 	return rq->clock_task;
1508 }
1509 
rq_clock_task_mult(struct rq * rq)1510 static inline u64 rq_clock_task_mult(struct rq *rq)
1511 {
1512 	lockdep_assert_rq_held(rq);
1513 	assert_clock_updated(rq);
1514 
1515 	return rq->clock_task_mult;
1516 }
1517 
1518 /**
1519  * By default the decay is the default pelt decay period.
1520  * The decay shift can change the decay period in
1521  * multiples of 32.
1522  *  Decay shift		Decay period(ms)
1523  *	0			32
1524  *	1			64
1525  *	2			128
1526  *	3			256
1527  *	4			512
1528  */
1529 extern int sched_thermal_decay_shift;
1530 
rq_clock_thermal(struct rq * rq)1531 static inline u64 rq_clock_thermal(struct rq *rq)
1532 {
1533 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1534 }
1535 
rq_clock_skip_update(struct rq * rq)1536 static inline void rq_clock_skip_update(struct rq *rq)
1537 {
1538 	lockdep_assert_rq_held(rq);
1539 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1540 }
1541 
1542 /*
1543  * See rt task throttling, which is the only time a skip
1544  * request is canceled.
1545  */
rq_clock_cancel_skipupdate(struct rq * rq)1546 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1547 {
1548 	lockdep_assert_rq_held(rq);
1549 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1550 }
1551 
1552 struct rq_flags {
1553 	unsigned long flags;
1554 	struct pin_cookie cookie;
1555 #ifdef CONFIG_SCHED_DEBUG
1556 	/*
1557 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1558 	 * current pin context is stashed here in case it needs to be
1559 	 * restored in rq_repin_lock().
1560 	 */
1561 	unsigned int clock_update_flags;
1562 #endif
1563 };
1564 
1565 #ifdef CONFIG_SMP
1566 extern struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1567 				 struct task_struct *p, int dest_cpu);
1568 #endif
1569 
1570 extern struct callback_head balance_push_callback;
1571 
1572 /*
1573  * Lockdep annotation that avoids accidental unlocks; it's like a
1574  * sticky/continuous lockdep_assert_held().
1575  *
1576  * This avoids code that has access to 'struct rq *rq' (basically everything in
1577  * the scheduler) from accidentally unlocking the rq if they do not also have a
1578  * copy of the (on-stack) 'struct rq_flags rf'.
1579  *
1580  * Also see Documentation/locking/lockdep-design.rst.
1581  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1582 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1583 {
1584 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1585 
1586 #ifdef CONFIG_SCHED_DEBUG
1587 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1588 	rf->clock_update_flags = 0;
1589 #ifdef CONFIG_SMP
1590 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1591 #endif
1592 #endif
1593 }
1594 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1595 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1596 {
1597 #ifdef CONFIG_SCHED_DEBUG
1598 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1599 		rf->clock_update_flags = RQCF_UPDATED;
1600 #endif
1601 
1602 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1603 }
1604 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1605 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1606 {
1607 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1608 
1609 #ifdef CONFIG_SCHED_DEBUG
1610 	/*
1611 	 * Restore the value we stashed in @rf for this pin context.
1612 	 */
1613 	rq->clock_update_flags |= rf->clock_update_flags;
1614 #endif
1615 }
1616 
1617 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1618 	__acquires(rq->lock);
1619 
1620 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1621 	__acquires(p->pi_lock)
1622 	__acquires(rq->lock);
1623 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1624 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1625 	__releases(rq->lock)
1626 {
1627 	rq_unpin_lock(rq, rf);
1628 	raw_spin_rq_unlock(rq);
1629 }
1630 
1631 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1632 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1633 	__releases(rq->lock)
1634 	__releases(p->pi_lock)
1635 {
1636 	rq_unpin_lock(rq, rf);
1637 	raw_spin_rq_unlock(rq);
1638 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1639 }
1640 
1641 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1642 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1643 	__acquires(rq->lock)
1644 {
1645 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1646 	rq_pin_lock(rq, rf);
1647 }
1648 
1649 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1650 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1651 	__acquires(rq->lock)
1652 {
1653 	raw_spin_rq_lock_irq(rq);
1654 	rq_pin_lock(rq, rf);
1655 }
1656 
1657 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1658 rq_lock(struct rq *rq, struct rq_flags *rf)
1659 	__acquires(rq->lock)
1660 {
1661 	raw_spin_rq_lock(rq);
1662 	rq_pin_lock(rq, rf);
1663 }
1664 
1665 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1666 rq_relock(struct rq *rq, struct rq_flags *rf)
1667 	__acquires(rq->lock)
1668 {
1669 	raw_spin_rq_lock(rq);
1670 	rq_repin_lock(rq, rf);
1671 }
1672 
1673 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1674 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1675 	__releases(rq->lock)
1676 {
1677 	rq_unpin_lock(rq, rf);
1678 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1679 }
1680 
1681 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1682 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1683 	__releases(rq->lock)
1684 {
1685 	rq_unpin_lock(rq, rf);
1686 	raw_spin_rq_unlock_irq(rq);
1687 }
1688 
1689 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1690 rq_unlock(struct rq *rq, struct rq_flags *rf)
1691 	__releases(rq->lock)
1692 {
1693 	rq_unpin_lock(rq, rf);
1694 	raw_spin_rq_unlock(rq);
1695 }
1696 
1697 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1698 this_rq_lock_irq(struct rq_flags *rf)
1699 	__acquires(rq->lock)
1700 {
1701 	struct rq *rq;
1702 
1703 	local_irq_disable();
1704 	rq = this_rq();
1705 	rq_lock(rq, rf);
1706 	return rq;
1707 }
1708 
1709 #ifdef CONFIG_NUMA
1710 enum numa_topology_type {
1711 	NUMA_DIRECT,
1712 	NUMA_GLUELESS_MESH,
1713 	NUMA_BACKPLANE,
1714 };
1715 extern enum numa_topology_type sched_numa_topology_type;
1716 extern int sched_max_numa_distance;
1717 extern bool find_numa_distance(int distance);
1718 extern void sched_init_numa(void);
1719 extern void sched_domains_numa_masks_set(unsigned int cpu);
1720 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1721 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1722 #else
sched_init_numa(void)1723 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1724 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1725 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1726 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1727 {
1728 	return nr_cpu_ids;
1729 }
1730 #endif
1731 
1732 #ifdef CONFIG_NUMA_BALANCING
1733 /* The regions in numa_faults array from task_struct */
1734 enum numa_faults_stats {
1735 	NUMA_MEM = 0,
1736 	NUMA_CPU,
1737 	NUMA_MEMBUF,
1738 	NUMA_CPUBUF
1739 };
1740 extern void sched_setnuma(struct task_struct *p, int node);
1741 extern int migrate_task_to(struct task_struct *p, int cpu);
1742 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1743 #else
1744 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1745 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1746 {
1747 }
1748 #endif /* CONFIG_NUMA_BALANCING */
1749 
1750 #ifdef CONFIG_SMP
1751 
1752 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1753 			int cpu, int scpu);
1754 
1755 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1756 queue_balance_callback(struct rq *rq,
1757 		       struct callback_head *head,
1758 		       void (*func)(struct rq *rq))
1759 {
1760 	lockdep_assert_rq_held(rq);
1761 
1762 	/*
1763 	 * Don't (re)queue an already queued item; nor queue anything when
1764 	 * balance_push() is active, see the comment with
1765 	 * balance_push_callback.
1766 	 */
1767 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1768 		return;
1769 
1770 	head->func = (void (*)(struct callback_head *))func;
1771 	head->next = rq->balance_callback;
1772 	rq->balance_callback = head;
1773 }
1774 
1775 #define rcu_dereference_check_sched_domain(p) \
1776 	rcu_dereference_check((p), \
1777 			      lockdep_is_held(&sched_domains_mutex))
1778 
1779 /*
1780  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1781  * See destroy_sched_domains: call_rcu for details.
1782  *
1783  * The domain tree of any CPU may only be accessed from within
1784  * preempt-disabled sections.
1785  */
1786 #define for_each_domain(cpu, __sd) \
1787 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1788 			__sd; __sd = __sd->parent)
1789 
1790 /**
1791  * highest_flag_domain - Return highest sched_domain containing flag.
1792  * @cpu:	The CPU whose highest level of sched domain is to
1793  *		be returned.
1794  * @flag:	The flag to check for the highest sched_domain
1795  *		for the given CPU.
1796  *
1797  * Returns the highest sched_domain of a CPU which contains the given flag.
1798  */
highest_flag_domain(int cpu,int flag)1799 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1800 {
1801 	struct sched_domain *sd, *hsd = NULL;
1802 
1803 	for_each_domain(cpu, sd) {
1804 		if (!(sd->flags & flag))
1805 			break;
1806 		hsd = sd;
1807 	}
1808 
1809 	return hsd;
1810 }
1811 
lowest_flag_domain(int cpu,int flag)1812 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1813 {
1814 	struct sched_domain *sd;
1815 
1816 	for_each_domain(cpu, sd) {
1817 		if (sd->flags & flag)
1818 			break;
1819 	}
1820 
1821 	return sd;
1822 }
1823 
1824 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1825 DECLARE_PER_CPU(int, sd_llc_size);
1826 DECLARE_PER_CPU(int, sd_llc_id);
1827 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1828 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1829 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1830 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1831 extern struct static_key_false sched_asym_cpucapacity;
1832 
sched_asym_cpucap_active(void)1833 static __always_inline bool sched_asym_cpucap_active(void)
1834 {
1835 	return static_branch_unlikely(&sched_asym_cpucapacity);
1836 }
1837 
1838 struct sched_group_capacity {
1839 	atomic_t		ref;
1840 	/*
1841 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1842 	 * for a single CPU.
1843 	 */
1844 	unsigned long		capacity;
1845 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1846 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1847 	unsigned long		next_update;
1848 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1849 
1850 #ifdef CONFIG_SCHED_DEBUG
1851 	int			id;
1852 #endif
1853 
1854 	unsigned long		cpumask[];		/* Balance mask */
1855 };
1856 
1857 struct sched_group {
1858 	struct sched_group	*next;			/* Must be a circular list */
1859 	atomic_t		ref;
1860 
1861 	unsigned int		group_weight;
1862 	struct sched_group_capacity *sgc;
1863 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1864 
1865 	/*
1866 	 * The CPUs this group covers.
1867 	 *
1868 	 * NOTE: this field is variable length. (Allocated dynamically
1869 	 * by attaching extra space to the end of the structure,
1870 	 * depending on how many CPUs the kernel has booted up with)
1871 	 */
1872 	unsigned long		cpumask[];
1873 };
1874 
sched_group_span(struct sched_group * sg)1875 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1876 {
1877 	return to_cpumask(sg->cpumask);
1878 }
1879 
1880 /*
1881  * See build_balance_mask().
1882  */
group_balance_mask(struct sched_group * sg)1883 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1884 {
1885 	return to_cpumask(sg->sgc->cpumask);
1886 }
1887 
1888 /**
1889  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1890  * @group: The group whose first CPU is to be returned.
1891  */
group_first_cpu(struct sched_group * group)1892 static inline unsigned int group_first_cpu(struct sched_group *group)
1893 {
1894 	return cpumask_first(sched_group_span(group));
1895 }
1896 
1897 extern int group_balance_cpu(struct sched_group *sg);
1898 
1899 #ifdef CONFIG_SCHED_DEBUG
1900 void update_sched_domain_debugfs(void);
1901 void dirty_sched_domain_sysctl(int cpu);
1902 #else
update_sched_domain_debugfs(void)1903 static inline void update_sched_domain_debugfs(void)
1904 {
1905 }
dirty_sched_domain_sysctl(int cpu)1906 static inline void dirty_sched_domain_sysctl(int cpu)
1907 {
1908 }
1909 #endif
1910 
1911 extern int sched_update_scaling(void);
1912 
1913 extern void flush_smp_call_function_from_idle(void);
1914 
1915 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1916 static inline void flush_smp_call_function_from_idle(void) { }
1917 #endif
1918 
1919 #include "stats.h"
1920 #include "autogroup.h"
1921 
1922 #ifdef CONFIG_CGROUP_SCHED
1923 
1924 /*
1925  * Return the group to which this tasks belongs.
1926  *
1927  * We cannot use task_css() and friends because the cgroup subsystem
1928  * changes that value before the cgroup_subsys::attach() method is called,
1929  * therefore we cannot pin it and might observe the wrong value.
1930  *
1931  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1932  * core changes this before calling sched_move_task().
1933  *
1934  * Instead we use a 'copy' which is updated from sched_move_task() while
1935  * holding both task_struct::pi_lock and rq::lock.
1936  */
task_group(struct task_struct * p)1937 static inline struct task_group *task_group(struct task_struct *p)
1938 {
1939 	return p->sched_task_group;
1940 }
1941 
1942 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1943 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1944 {
1945 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1946 	struct task_group *tg = task_group(p);
1947 #endif
1948 
1949 #ifdef CONFIG_FAIR_GROUP_SCHED
1950 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1951 	p->se.cfs_rq = tg->cfs_rq[cpu];
1952 	p->se.parent = tg->se[cpu];
1953 #endif
1954 
1955 #ifdef CONFIG_RT_GROUP_SCHED
1956 	p->rt.rt_rq  = tg->rt_rq[cpu];
1957 	p->rt.parent = tg->rt_se[cpu];
1958 #endif
1959 }
1960 
1961 #else /* CONFIG_CGROUP_SCHED */
1962 
set_task_rq(struct task_struct * p,unsigned int cpu)1963 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1964 static inline struct task_group *task_group(struct task_struct *p)
1965 {
1966 	return NULL;
1967 }
1968 
1969 #endif /* CONFIG_CGROUP_SCHED */
1970 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1971 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1972 {
1973 	set_task_rq(p, cpu);
1974 #ifdef CONFIG_SMP
1975 	/*
1976 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1977 	 * successfully executed on another CPU. We must ensure that updates of
1978 	 * per-task data have been completed by this moment.
1979 	 */
1980 	smp_wmb();
1981 #ifdef CONFIG_THREAD_INFO_IN_TASK
1982 	WRITE_ONCE(p->cpu, cpu);
1983 #else
1984 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1985 #endif
1986 	p->wake_cpu = cpu;
1987 #endif
1988 }
1989 
1990 /*
1991  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1992  */
1993 #ifdef CONFIG_SCHED_DEBUG
1994 # include <linux/static_key.h>
1995 # define const_debug __read_mostly
1996 #else
1997 # define const_debug const
1998 #endif
1999 
2000 #define SCHED_FEAT(name, enabled)	\
2001 	__SCHED_FEAT_##name ,
2002 
2003 enum {
2004 #include "features.h"
2005 	__SCHED_FEAT_NR,
2006 };
2007 
2008 #undef SCHED_FEAT
2009 
2010 #ifdef CONFIG_SCHED_DEBUG
2011 
2012 /*
2013  * To support run-time toggling of sched features, all the translation units
2014  * (but core.c) reference the sysctl_sched_features defined in core.c.
2015  */
2016 extern const_debug unsigned int sysctl_sched_features;
2017 
2018 #ifdef CONFIG_JUMP_LABEL
2019 #define SCHED_FEAT(name, enabled)					\
2020 static __always_inline bool static_branch_##name(struct static_key *key) \
2021 {									\
2022 	return static_key_##enabled(key);				\
2023 }
2024 
2025 #include "features.h"
2026 #undef SCHED_FEAT
2027 
2028 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2029 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
2030 
2031 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2032 
2033 #else /* !CONFIG_JUMP_LABEL */
2034 
2035 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2036 
2037 #endif /* CONFIG_JUMP_LABEL */
2038 
2039 #else /* !SCHED_DEBUG */
2040 
2041 /*
2042  * Each translation unit has its own copy of sysctl_sched_features to allow
2043  * constants propagation at compile time and compiler optimization based on
2044  * features default.
2045  */
2046 #define SCHED_FEAT(name, enabled)	\
2047 	(1UL << __SCHED_FEAT_##name) * enabled |
2048 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2049 #include "features.h"
2050 	0;
2051 #undef SCHED_FEAT
2052 
2053 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2054 
2055 #endif /* SCHED_DEBUG */
2056 
2057 extern struct static_key_false sched_numa_balancing;
2058 extern struct static_key_false sched_schedstats;
2059 
global_rt_period(void)2060 static inline u64 global_rt_period(void)
2061 {
2062 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2063 }
2064 
global_rt_runtime(void)2065 static inline u64 global_rt_runtime(void)
2066 {
2067 	if (sysctl_sched_rt_runtime < 0)
2068 		return RUNTIME_INF;
2069 
2070 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2071 }
2072 
task_current(struct rq * rq,struct task_struct * p)2073 static inline int task_current(struct rq *rq, struct task_struct *p)
2074 {
2075 	return rq->curr == p;
2076 }
2077 
task_running(struct rq * rq,struct task_struct * p)2078 static inline int task_running(struct rq *rq, struct task_struct *p)
2079 {
2080 #ifdef CONFIG_SMP
2081 	return p->on_cpu;
2082 #else
2083 	return task_current(rq, p);
2084 #endif
2085 }
2086 
task_on_rq_queued(struct task_struct * p)2087 static inline int task_on_rq_queued(struct task_struct *p)
2088 {
2089 	return p->on_rq == TASK_ON_RQ_QUEUED;
2090 }
2091 
task_on_rq_migrating(struct task_struct * p)2092 static inline int task_on_rq_migrating(struct task_struct *p)
2093 {
2094 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2095 }
2096 
2097 /* Wake flags. The first three directly map to some SD flag value */
2098 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2099 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2100 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2101 
2102 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2103 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2104 
2105 #define WF_ANDROID_VENDOR	0x1000 /* Vendor specific for Android */
2106 
2107 #ifdef CONFIG_SMP
2108 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2109 static_assert(WF_FORK == SD_BALANCE_FORK);
2110 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2111 #endif
2112 
2113 /*
2114  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2115  * of tasks with abnormal "nice" values across CPUs the contribution that
2116  * each task makes to its run queue's load is weighted according to its
2117  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2118  * scaled version of the new time slice allocation that they receive on time
2119  * slice expiry etc.
2120  */
2121 
2122 #define WEIGHT_IDLEPRIO		3
2123 #define WMULT_IDLEPRIO		1431655765
2124 
2125 extern const int		sched_prio_to_weight[40];
2126 extern const u32		sched_prio_to_wmult[40];
2127 
2128 /*
2129  * {de,en}queue flags:
2130  *
2131  * DEQUEUE_SLEEP  - task is no longer runnable
2132  * ENQUEUE_WAKEUP - task just became runnable
2133  *
2134  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2135  *                are in a known state which allows modification. Such pairs
2136  *                should preserve as much state as possible.
2137  *
2138  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2139  *        in the runqueue.
2140  *
2141  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2142  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2143  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2144  *
2145  */
2146 
2147 #define DEQUEUE_SLEEP		0x01
2148 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2149 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2150 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2151 
2152 #define ENQUEUE_WAKEUP		0x01
2153 #define ENQUEUE_RESTORE		0x02
2154 #define ENQUEUE_MOVE		0x04
2155 #define ENQUEUE_NOCLOCK		0x08
2156 
2157 #define ENQUEUE_HEAD		0x10
2158 #define ENQUEUE_REPLENISH	0x20
2159 #ifdef CONFIG_SMP
2160 #define ENQUEUE_MIGRATED	0x40
2161 #else
2162 #define ENQUEUE_MIGRATED	0x00
2163 #endif
2164 
2165 #define ENQUEUE_WAKEUP_SYNC	0x80
2166 
2167 #define RETRY_TASK		((void *)-1UL)
2168 
2169 struct sched_class {
2170 
2171 #ifdef CONFIG_UCLAMP_TASK
2172 	int uclamp_enabled;
2173 #endif
2174 
2175 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2176 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2177 	void (*yield_task)   (struct rq *rq);
2178 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2179 
2180 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2181 
2182 	struct task_struct *(*pick_next_task)(struct rq *rq);
2183 
2184 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2185 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2186 
2187 #ifdef CONFIG_SMP
2188 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2189 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2190 
2191 	struct task_struct * (*pick_task)(struct rq *rq);
2192 
2193 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2194 
2195 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2196 
2197 	void (*set_cpus_allowed)(struct task_struct *p,
2198 				 const struct cpumask *newmask,
2199 				 u32 flags);
2200 
2201 	void (*rq_online)(struct rq *rq);
2202 	void (*rq_offline)(struct rq *rq);
2203 
2204 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2205 #endif
2206 
2207 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2208 	void (*task_fork)(struct task_struct *p);
2209 	void (*task_dead)(struct task_struct *p);
2210 
2211 	/*
2212 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2213 	 * cannot assume the switched_from/switched_to pair is serialized by
2214 	 * rq->lock. They are however serialized by p->pi_lock.
2215 	 */
2216 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2217 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2218 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2219 			      int oldprio);
2220 
2221 	unsigned int (*get_rr_interval)(struct rq *rq,
2222 					struct task_struct *task);
2223 
2224 	void (*update_curr)(struct rq *rq);
2225 
2226 #define TASK_SET_GROUP		0
2227 #define TASK_MOVE_GROUP		1
2228 
2229 #ifdef CONFIG_FAIR_GROUP_SCHED
2230 	void (*task_change_group)(struct task_struct *p, int type);
2231 #endif
2232 };
2233 
put_prev_task(struct rq * rq,struct task_struct * prev)2234 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2235 {
2236 	WARN_ON_ONCE(rq->curr != prev);
2237 	prev->sched_class->put_prev_task(rq, prev);
2238 }
2239 
set_next_task(struct rq * rq,struct task_struct * next)2240 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2241 {
2242 	next->sched_class->set_next_task(rq, next, false);
2243 }
2244 
2245 
2246 /*
2247  * Helper to define a sched_class instance; each one is placed in a separate
2248  * section which is ordered by the linker script:
2249  *
2250  *   include/asm-generic/vmlinux.lds.h
2251  *
2252  * Also enforce alignment on the instance, not the type, to guarantee layout.
2253  */
2254 #define DEFINE_SCHED_CLASS(name) \
2255 const struct sched_class name##_sched_class \
2256 	__aligned(__alignof__(struct sched_class)) \
2257 	__section("__" #name "_sched_class")
2258 
2259 /* Defined in include/asm-generic/vmlinux.lds.h */
2260 extern struct sched_class __begin_sched_classes[];
2261 extern struct sched_class __end_sched_classes[];
2262 
2263 #define sched_class_highest (__end_sched_classes - 1)
2264 #define sched_class_lowest  (__begin_sched_classes - 1)
2265 
2266 #define for_class_range(class, _from, _to) \
2267 	for (class = (_from); class != (_to); class--)
2268 
2269 #define for_each_class(class) \
2270 	for_class_range(class, sched_class_highest, sched_class_lowest)
2271 
2272 extern const struct sched_class stop_sched_class;
2273 extern const struct sched_class dl_sched_class;
2274 extern const struct sched_class rt_sched_class;
2275 extern const struct sched_class fair_sched_class;
2276 extern const struct sched_class idle_sched_class;
2277 
sched_stop_runnable(struct rq * rq)2278 static inline bool sched_stop_runnable(struct rq *rq)
2279 {
2280 	return rq->stop && task_on_rq_queued(rq->stop);
2281 }
2282 
sched_dl_runnable(struct rq * rq)2283 static inline bool sched_dl_runnable(struct rq *rq)
2284 {
2285 	return rq->dl.dl_nr_running > 0;
2286 }
2287 
sched_rt_runnable(struct rq * rq)2288 static inline bool sched_rt_runnable(struct rq *rq)
2289 {
2290 	return rq->rt.rt_queued > 0;
2291 }
2292 
sched_fair_runnable(struct rq * rq)2293 static inline bool sched_fair_runnable(struct rq *rq)
2294 {
2295 	return rq->cfs.nr_running > 0;
2296 }
2297 
2298 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2299 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2300 
2301 #define SCA_CHECK		0x01
2302 #define SCA_MIGRATE_DISABLE	0x02
2303 #define SCA_MIGRATE_ENABLE	0x04
2304 #define SCA_USER		0x08
2305 
2306 #ifdef CONFIG_SMP
2307 
2308 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2309 
2310 extern void trigger_load_balance(struct rq *rq);
2311 
2312 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2313 
get_push_task(struct rq * rq)2314 static inline struct task_struct *get_push_task(struct rq *rq)
2315 {
2316 	struct task_struct *p = rq->curr;
2317 
2318 	lockdep_assert_rq_held(rq);
2319 
2320 	if (rq->push_busy)
2321 		return NULL;
2322 
2323 	if (p->nr_cpus_allowed == 1)
2324 		return NULL;
2325 
2326 	if (p->migration_disabled)
2327 		return NULL;
2328 
2329 	rq->push_busy = true;
2330 	return get_task_struct(p);
2331 }
2332 
2333 extern int push_cpu_stop(void *arg);
2334 
2335 extern unsigned long __read_mostly max_load_balance_interval;
2336 #endif
2337 
2338 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2339 static inline void idle_set_state(struct rq *rq,
2340 				  struct cpuidle_state *idle_state)
2341 {
2342 	rq->idle_state = idle_state;
2343 }
2344 
idle_get_state(struct rq * rq)2345 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2346 {
2347 	SCHED_WARN_ON(!rcu_read_lock_held());
2348 
2349 	return rq->idle_state;
2350 }
2351 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2352 static inline void idle_set_state(struct rq *rq,
2353 				  struct cpuidle_state *idle_state)
2354 {
2355 }
2356 
idle_get_state(struct rq * rq)2357 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2358 {
2359 	return NULL;
2360 }
2361 #endif
2362 
2363 extern void schedule_idle(void);
2364 
2365 extern void sysrq_sched_debug_show(void);
2366 extern void sched_init_granularity(void);
2367 extern void update_max_interval(void);
2368 
2369 extern void init_sched_dl_class(void);
2370 extern void init_sched_rt_class(void);
2371 extern void init_sched_fair_class(void);
2372 
2373 extern void reweight_task(struct task_struct *p, int prio);
2374 
2375 extern void resched_curr(struct rq *rq);
2376 extern void resched_cpu(int cpu);
2377 
2378 extern struct rt_bandwidth def_rt_bandwidth;
2379 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2380 
2381 extern struct dl_bandwidth def_dl_bandwidth;
2382 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2383 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2384 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2385 
2386 #define BW_SHIFT		20
2387 #define BW_UNIT			(1 << BW_SHIFT)
2388 #define RATIO_SHIFT		8
2389 #define MAX_BW_BITS		(64 - BW_SHIFT)
2390 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2391 unsigned long to_ratio(u64 period, u64 runtime);
2392 
2393 extern void init_entity_runnable_average(struct sched_entity *se);
2394 extern void post_init_entity_util_avg(struct task_struct *p);
2395 
2396 #ifdef CONFIG_NO_HZ_FULL
2397 extern bool sched_can_stop_tick(struct rq *rq);
2398 extern int __init sched_tick_offload_init(void);
2399 
2400 /*
2401  * Tick may be needed by tasks in the runqueue depending on their policy and
2402  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2403  * nohz mode if necessary.
2404  */
sched_update_tick_dependency(struct rq * rq)2405 static inline void sched_update_tick_dependency(struct rq *rq)
2406 {
2407 	int cpu = cpu_of(rq);
2408 
2409 	if (!tick_nohz_full_cpu(cpu))
2410 		return;
2411 
2412 	if (sched_can_stop_tick(rq))
2413 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2414 	else
2415 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2416 }
2417 #else
sched_tick_offload_init(void)2418 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2419 static inline void sched_update_tick_dependency(struct rq *rq) { }
2420 #endif
2421 
add_nr_running(struct rq * rq,unsigned count)2422 static inline void add_nr_running(struct rq *rq, unsigned count)
2423 {
2424 	unsigned prev_nr = rq->nr_running;
2425 
2426 	rq->nr_running = prev_nr + count;
2427 	if (trace_sched_update_nr_running_tp_enabled()) {
2428 		call_trace_sched_update_nr_running(rq, count);
2429 	}
2430 
2431 #ifdef CONFIG_SMP
2432 	if (prev_nr < 2 && rq->nr_running >= 2) {
2433 		if (!READ_ONCE(rq->rd->overload))
2434 			WRITE_ONCE(rq->rd->overload, 1);
2435 	}
2436 #endif
2437 
2438 	sched_update_tick_dependency(rq);
2439 }
2440 
sub_nr_running(struct rq * rq,unsigned count)2441 static inline void sub_nr_running(struct rq *rq, unsigned count)
2442 {
2443 	rq->nr_running -= count;
2444 	if (trace_sched_update_nr_running_tp_enabled()) {
2445 		call_trace_sched_update_nr_running(rq, -count);
2446 	}
2447 
2448 	/* Check if we still need preemption */
2449 	sched_update_tick_dependency(rq);
2450 }
2451 
2452 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2453 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2454 
2455 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2456 
2457 extern const_debug unsigned int sysctl_sched_nr_migrate;
2458 extern const_debug unsigned int sysctl_sched_migration_cost;
2459 
2460 #ifdef CONFIG_SCHED_DEBUG
2461 extern unsigned int sysctl_sched_latency;
2462 extern unsigned int sysctl_sched_min_granularity;
2463 extern unsigned int sysctl_sched_wakeup_granularity;
2464 extern int sysctl_resched_latency_warn_ms;
2465 extern int sysctl_resched_latency_warn_once;
2466 
2467 extern unsigned int sysctl_sched_tunable_scaling;
2468 
2469 extern unsigned int sysctl_numa_balancing_scan_delay;
2470 extern unsigned int sysctl_numa_balancing_scan_period_min;
2471 extern unsigned int sysctl_numa_balancing_scan_period_max;
2472 extern unsigned int sysctl_numa_balancing_scan_size;
2473 #endif
2474 
2475 #ifdef CONFIG_SCHED_HRTICK
2476 
2477 /*
2478  * Use hrtick when:
2479  *  - enabled by features
2480  *  - hrtimer is actually high res
2481  */
hrtick_enabled(struct rq * rq)2482 static inline int hrtick_enabled(struct rq *rq)
2483 {
2484 	if (!cpu_active(cpu_of(rq)))
2485 		return 0;
2486 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2487 }
2488 
hrtick_enabled_fair(struct rq * rq)2489 static inline int hrtick_enabled_fair(struct rq *rq)
2490 {
2491 	if (!sched_feat(HRTICK))
2492 		return 0;
2493 	return hrtick_enabled(rq);
2494 }
2495 
hrtick_enabled_dl(struct rq * rq)2496 static inline int hrtick_enabled_dl(struct rq *rq)
2497 {
2498 	if (!sched_feat(HRTICK_DL))
2499 		return 0;
2500 	return hrtick_enabled(rq);
2501 }
2502 
2503 void hrtick_start(struct rq *rq, u64 delay);
2504 
2505 #else
2506 
hrtick_enabled_fair(struct rq * rq)2507 static inline int hrtick_enabled_fair(struct rq *rq)
2508 {
2509 	return 0;
2510 }
2511 
hrtick_enabled_dl(struct rq * rq)2512 static inline int hrtick_enabled_dl(struct rq *rq)
2513 {
2514 	return 0;
2515 }
2516 
hrtick_enabled(struct rq * rq)2517 static inline int hrtick_enabled(struct rq *rq)
2518 {
2519 	return 0;
2520 }
2521 
2522 #endif /* CONFIG_SCHED_HRTICK */
2523 
2524 #ifndef arch_scale_freq_tick
2525 static __always_inline
arch_scale_freq_tick(void)2526 void arch_scale_freq_tick(void)
2527 {
2528 }
2529 #endif
2530 
2531 #ifndef arch_scale_freq_capacity
2532 /**
2533  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2534  * @cpu: the CPU in question.
2535  *
2536  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2537  *
2538  *     f_curr
2539  *     ------ * SCHED_CAPACITY_SCALE
2540  *     f_max
2541  */
2542 static __always_inline
arch_scale_freq_capacity(int cpu)2543 unsigned long arch_scale_freq_capacity(int cpu)
2544 {
2545 	return SCHED_CAPACITY_SCALE;
2546 }
2547 #endif
2548 
2549 #ifdef CONFIG_SCHED_DEBUG
2550 /*
2551  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2552  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2553  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2554  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2555  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2556 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2557 {
2558 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2559 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2560 #ifdef CONFIG_SMP
2561 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2562 #endif
2563 }
2564 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2565 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2566 #endif
2567 
2568 #ifdef CONFIG_SMP
2569 
rq_order_less(struct rq * rq1,struct rq * rq2)2570 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2571 {
2572 #ifdef CONFIG_SCHED_CORE
2573 	/*
2574 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2575 	 * order by core-id first and cpu-id second.
2576 	 *
2577 	 * Notably:
2578 	 *
2579 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2580 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2581 	 *
2582 	 * when only cpu-id is considered.
2583 	 */
2584 	if (rq1->core->cpu < rq2->core->cpu)
2585 		return true;
2586 	if (rq1->core->cpu > rq2->core->cpu)
2587 		return false;
2588 
2589 	/*
2590 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2591 	 */
2592 #endif
2593 	return rq1->cpu < rq2->cpu;
2594 }
2595 
2596 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2597 
2598 #ifdef CONFIG_PREEMPTION
2599 
2600 /*
2601  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2602  * way at the expense of forcing extra atomic operations in all
2603  * invocations.  This assures that the double_lock is acquired using the
2604  * same underlying policy as the spinlock_t on this architecture, which
2605  * reduces latency compared to the unfair variant below.  However, it
2606  * also adds more overhead and therefore may reduce throughput.
2607  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2608 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2609 	__releases(this_rq->lock)
2610 	__acquires(busiest->lock)
2611 	__acquires(this_rq->lock)
2612 {
2613 	raw_spin_rq_unlock(this_rq);
2614 	double_rq_lock(this_rq, busiest);
2615 
2616 	return 1;
2617 }
2618 
2619 #else
2620 /*
2621  * Unfair double_lock_balance: Optimizes throughput at the expense of
2622  * latency by eliminating extra atomic operations when the locks are
2623  * already in proper order on entry.  This favors lower CPU-ids and will
2624  * grant the double lock to lower CPUs over higher ids under contention,
2625  * regardless of entry order into the function.
2626  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2627 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2628 	__releases(this_rq->lock)
2629 	__acquires(busiest->lock)
2630 	__acquires(this_rq->lock)
2631 {
2632 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2633 	    likely(raw_spin_rq_trylock(busiest))) {
2634 		double_rq_clock_clear_update(this_rq, busiest);
2635 		return 0;
2636 	}
2637 
2638 	if (rq_order_less(this_rq, busiest)) {
2639 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2640 		double_rq_clock_clear_update(this_rq, busiest);
2641 		return 0;
2642 	}
2643 
2644 	raw_spin_rq_unlock(this_rq);
2645 	double_rq_lock(this_rq, busiest);
2646 
2647 	return 1;
2648 }
2649 
2650 #endif /* CONFIG_PREEMPTION */
2651 
2652 /*
2653  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2654  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2655 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2656 {
2657 	lockdep_assert_irqs_disabled();
2658 
2659 	return _double_lock_balance(this_rq, busiest);
2660 }
2661 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2662 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2663 	__releases(busiest->lock)
2664 {
2665 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2666 		raw_spin_rq_unlock(busiest);
2667 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2668 }
2669 
double_lock(spinlock_t * l1,spinlock_t * l2)2670 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2671 {
2672 	if (l1 > l2)
2673 		swap(l1, l2);
2674 
2675 	spin_lock(l1);
2676 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2677 }
2678 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2679 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2680 {
2681 	if (l1 > l2)
2682 		swap(l1, l2);
2683 
2684 	spin_lock_irq(l1);
2685 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2686 }
2687 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2688 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2689 {
2690 	if (l1 > l2)
2691 		swap(l1, l2);
2692 
2693 	raw_spin_lock(l1);
2694 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2695 }
2696 
2697 /*
2698  * double_rq_unlock - safely unlock two runqueues
2699  *
2700  * Note this does not restore interrupts like task_rq_unlock,
2701  * you need to do so manually after calling.
2702  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2703 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2704 	__releases(rq1->lock)
2705 	__releases(rq2->lock)
2706 {
2707 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2708 		raw_spin_rq_unlock(rq2);
2709 	else
2710 		__release(rq2->lock);
2711 	raw_spin_rq_unlock(rq1);
2712 }
2713 
2714 extern void set_rq_online (struct rq *rq);
2715 extern void set_rq_offline(struct rq *rq);
2716 extern bool sched_smp_initialized;
2717 
2718 #else /* CONFIG_SMP */
2719 
2720 /*
2721  * double_rq_lock - safely lock two runqueues
2722  *
2723  * Note this does not disable interrupts like task_rq_lock,
2724  * you need to do so manually before calling.
2725  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2726 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2727 	__acquires(rq1->lock)
2728 	__acquires(rq2->lock)
2729 {
2730 	BUG_ON(!irqs_disabled());
2731 	BUG_ON(rq1 != rq2);
2732 	raw_spin_rq_lock(rq1);
2733 	__acquire(rq2->lock);	/* Fake it out ;) */
2734 	double_rq_clock_clear_update(rq1, rq2);
2735 }
2736 
2737 /*
2738  * double_rq_unlock - safely unlock two runqueues
2739  *
2740  * Note this does not restore interrupts like task_rq_unlock,
2741  * you need to do so manually after calling.
2742  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2743 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2744 	__releases(rq1->lock)
2745 	__releases(rq2->lock)
2746 {
2747 	BUG_ON(rq1 != rq2);
2748 	raw_spin_rq_unlock(rq1);
2749 	__release(rq2->lock);
2750 }
2751 
2752 #endif
2753 
2754 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2755 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2756 
2757 #ifdef	CONFIG_SCHED_DEBUG
2758 extern bool sched_debug_verbose;
2759 
2760 extern void print_cfs_stats(struct seq_file *m, int cpu);
2761 extern void print_rt_stats(struct seq_file *m, int cpu);
2762 extern void print_dl_stats(struct seq_file *m, int cpu);
2763 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2764 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2765 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2766 
2767 extern void resched_latency_warn(int cpu, u64 latency);
2768 #ifdef CONFIG_NUMA_BALANCING
2769 extern void
2770 show_numa_stats(struct task_struct *p, struct seq_file *m);
2771 extern void
2772 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2773 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2774 #endif /* CONFIG_NUMA_BALANCING */
2775 #else
resched_latency_warn(int cpu,u64 latency)2776 static inline void resched_latency_warn(int cpu, u64 latency) {}
2777 #endif /* CONFIG_SCHED_DEBUG */
2778 
2779 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2780 extern void init_rt_rq(struct rt_rq *rt_rq);
2781 extern void init_dl_rq(struct dl_rq *dl_rq);
2782 
2783 extern void cfs_bandwidth_usage_inc(void);
2784 extern void cfs_bandwidth_usage_dec(void);
2785 
2786 #ifdef CONFIG_NO_HZ_COMMON
2787 #define NOHZ_BALANCE_KICK_BIT	0
2788 #define NOHZ_STATS_KICK_BIT	1
2789 #define NOHZ_NEWILB_KICK_BIT	2
2790 
2791 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2792 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2793 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2794 
2795 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2796 
2797 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2798 
2799 extern void nohz_balance_exit_idle(struct rq *rq);
2800 #else
nohz_balance_exit_idle(struct rq * rq)2801 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2802 #endif
2803 
2804 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2805 extern void nohz_run_idle_balance(int cpu);
2806 #else
nohz_run_idle_balance(int cpu)2807 static inline void nohz_run_idle_balance(int cpu) { }
2808 #endif
2809 
2810 #ifdef CONFIG_SMP
2811 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2812 void __dl_update(struct dl_bw *dl_b, s64 bw)
2813 {
2814 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2815 	int i;
2816 
2817 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2818 			 "sched RCU must be held");
2819 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2820 		struct rq *rq = cpu_rq(i);
2821 
2822 		rq->dl.extra_bw += bw;
2823 	}
2824 }
2825 #else
2826 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2827 void __dl_update(struct dl_bw *dl_b, s64 bw)
2828 {
2829 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2830 
2831 	dl->extra_bw += bw;
2832 }
2833 #endif
2834 
2835 
2836 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2837 struct irqtime {
2838 	u64			total;
2839 	u64			tick_delta;
2840 	u64			irq_start_time;
2841 	struct u64_stats_sync	sync;
2842 };
2843 
2844 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2845 
2846 /*
2847  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2848  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2849  * and never move forward.
2850  */
irq_time_read(int cpu)2851 static inline u64 irq_time_read(int cpu)
2852 {
2853 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2854 	unsigned int seq;
2855 	u64 total;
2856 
2857 	do {
2858 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2859 		total = irqtime->total;
2860 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2861 
2862 	return total;
2863 }
2864 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2865 
2866 #ifdef CONFIG_CPU_FREQ
2867 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2868 
2869 /**
2870  * cpufreq_update_util - Take a note about CPU utilization changes.
2871  * @rq: Runqueue to carry out the update for.
2872  * @flags: Update reason flags.
2873  *
2874  * This function is called by the scheduler on the CPU whose utilization is
2875  * being updated.
2876  *
2877  * It can only be called from RCU-sched read-side critical sections.
2878  *
2879  * The way cpufreq is currently arranged requires it to evaluate the CPU
2880  * performance state (frequency/voltage) on a regular basis to prevent it from
2881  * being stuck in a completely inadequate performance level for too long.
2882  * That is not guaranteed to happen if the updates are only triggered from CFS
2883  * and DL, though, because they may not be coming in if only RT tasks are
2884  * active all the time (or there are RT tasks only).
2885  *
2886  * As a workaround for that issue, this function is called periodically by the
2887  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2888  * but that really is a band-aid.  Going forward it should be replaced with
2889  * solutions targeted more specifically at RT tasks.
2890  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2891 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2892 {
2893 	struct update_util_data *data;
2894 
2895 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2896 						  cpu_of(rq)));
2897 	if (data)
2898 		data->func(data, rq_clock(rq), flags);
2899 }
2900 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2901 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2902 #endif /* CONFIG_CPU_FREQ */
2903 
2904 #ifdef CONFIG_UCLAMP_TASK
2905 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2906 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2907 static inline unsigned long uclamp_rq_get(struct rq *rq,
2908 					  enum uclamp_id clamp_id)
2909 {
2910 	return READ_ONCE(rq->uclamp[clamp_id].value);
2911 }
2912 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2913 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2914 				 unsigned int value)
2915 {
2916 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
2917 }
2918 
uclamp_rq_is_idle(struct rq * rq)2919 static inline bool uclamp_rq_is_idle(struct rq *rq)
2920 {
2921 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
2922 }
2923 
2924 /**
2925  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2926  * @rq:		The rq to clamp against. Must not be NULL.
2927  * @util:	The util value to clamp.
2928  * @p:		The task to clamp against. Can be NULL if you want to clamp
2929  *		against @rq only.
2930  *
2931  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2932  *
2933  * If sched_uclamp_used static key is disabled, then just return the util
2934  * without any clamping since uclamp aggregation at the rq level in the fast
2935  * path is disabled, rendering this operation a NOP.
2936  *
2937  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2938  * will return the correct effective uclamp value of the task even if the
2939  * static key is disabled.
2940  */
2941 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2942 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2943 				  struct task_struct *p)
2944 {
2945 	unsigned long min_util = 0;
2946 	unsigned long max_util = 0;
2947 
2948 	if (!static_branch_likely(&sched_uclamp_used))
2949 		return util;
2950 
2951 	if (p) {
2952 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2953 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2954 
2955 		/*
2956 		 * Ignore last runnable task's max clamp, as this task will
2957 		 * reset it. Similarly, no need to read the rq's min clamp.
2958 		 */
2959 		if (uclamp_rq_is_idle(rq))
2960 			goto out;
2961 	}
2962 
2963 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
2964 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
2965 out:
2966 	/*
2967 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2968 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2969 	 * inversion. Fix it now when the clamps are applied.
2970 	 */
2971 	if (unlikely(min_util >= max_util))
2972 		return min_util;
2973 
2974 	return clamp(util, min_util, max_util);
2975 }
2976 
uclamp_boosted(struct task_struct * p)2977 static inline bool uclamp_boosted(struct task_struct *p)
2978 {
2979 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2980 }
2981 
2982 /*
2983  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2984  * by default in the fast path and only gets turned on once userspace performs
2985  * an operation that requires it.
2986  *
2987  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2988  * hence is active.
2989  */
uclamp_is_used(void)2990 static inline bool uclamp_is_used(void)
2991 {
2992 	return static_branch_likely(&sched_uclamp_used);
2993 }
2994 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)2995 static inline unsigned long uclamp_eff_value(struct task_struct *p,
2996 					     enum uclamp_id clamp_id)
2997 {
2998 	if (clamp_id == UCLAMP_MIN)
2999 		return 0;
3000 
3001 	return SCHED_CAPACITY_SCALE;
3002 }
3003 
3004 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3005 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3006 				  struct task_struct *p)
3007 {
3008 	return util;
3009 }
3010 
uclamp_boosted(struct task_struct * p)3011 static inline bool uclamp_boosted(struct task_struct *p)
3012 {
3013 	return false;
3014 }
3015 
uclamp_is_used(void)3016 static inline bool uclamp_is_used(void)
3017 {
3018 	return false;
3019 }
3020 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3021 static inline unsigned long uclamp_rq_get(struct rq *rq,
3022 					  enum uclamp_id clamp_id)
3023 {
3024 	if (clamp_id == UCLAMP_MIN)
3025 		return 0;
3026 
3027 	return SCHED_CAPACITY_SCALE;
3028 }
3029 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3030 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3031 				 unsigned int value)
3032 {
3033 }
3034 
uclamp_rq_is_idle(struct rq * rq)3035 static inline bool uclamp_rq_is_idle(struct rq *rq)
3036 {
3037 	return false;
3038 }
3039 #endif /* CONFIG_UCLAMP_TASK */
3040 
3041 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_latency_sensitive(struct task_struct * p)3042 static inline bool uclamp_latency_sensitive(struct task_struct *p)
3043 {
3044 	struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
3045 	struct task_group *tg;
3046 
3047 	if (!css)
3048 		return false;
3049 	tg = container_of(css, struct task_group, css);
3050 
3051 	return tg->latency_sensitive;
3052 }
3053 #else
uclamp_latency_sensitive(struct task_struct * p)3054 static inline bool uclamp_latency_sensitive(struct task_struct *p)
3055 {
3056 	return false;
3057 }
3058 #endif /* CONFIG_UCLAMP_TASK_GROUP */
3059 
3060 #ifdef arch_scale_freq_capacity
3061 # ifndef arch_scale_freq_invariant
3062 #  define arch_scale_freq_invariant()	true
3063 # endif
3064 #else
3065 # define arch_scale_freq_invariant()	false
3066 #endif
3067 
3068 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)3069 static inline unsigned long capacity_orig_of(int cpu)
3070 {
3071 	return cpu_rq(cpu)->cpu_capacity_orig;
3072 }
3073 
3074 /*
3075  * Returns inverted capacity if the CPU is in capacity inversion state.
3076  * 0 otherwise.
3077  *
3078  * Capacity inversion detection only considers thermal impact where actual
3079  * performance points (OPPs) gets dropped.
3080  *
3081  * Capacity inversion state happens when another performance domain that has
3082  * equal or lower capacity_orig_of() becomes effectively larger than the perf
3083  * domain this CPU belongs to due to thermal pressure throttling it hard.
3084  *
3085  * See comment in update_cpu_capacity().
3086  */
cpu_in_capacity_inversion(int cpu)3087 static inline unsigned long cpu_in_capacity_inversion(int cpu)
3088 {
3089 	return cpu_rq(cpu)->cpu_capacity_inverted;
3090 }
3091 
3092 /**
3093  * enum cpu_util_type - CPU utilization type
3094  * @FREQUENCY_UTIL:	Utilization used to select frequency
3095  * @ENERGY_UTIL:	Utilization used during energy calculation
3096  *
3097  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
3098  * need to be aggregated differently depending on the usage made of them. This
3099  * enum is used within effective_cpu_util() to differentiate the types of
3100  * utilization expected by the callers, and adjust the aggregation accordingly.
3101  */
3102 enum cpu_util_type {
3103 	FREQUENCY_UTIL,
3104 	ENERGY_UTIL,
3105 };
3106 
3107 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3108 				 unsigned long max, enum cpu_util_type type,
3109 				 struct task_struct *p);
3110 
cpu_bw_dl(struct rq * rq)3111 static inline unsigned long cpu_bw_dl(struct rq *rq)
3112 {
3113 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3114 }
3115 
cpu_util_dl(struct rq * rq)3116 static inline unsigned long cpu_util_dl(struct rq *rq)
3117 {
3118 	return READ_ONCE(rq->avg_dl.util_avg);
3119 }
3120 
cpu_util_cfs(struct rq * rq)3121 static inline unsigned long cpu_util_cfs(struct rq *rq)
3122 {
3123 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
3124 
3125 	if (sched_feat(UTIL_EST)) {
3126 		util = max_t(unsigned long, util,
3127 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
3128 	}
3129 
3130 	return util;
3131 }
3132 
cpu_util_rt(struct rq * rq)3133 static inline unsigned long cpu_util_rt(struct rq *rq)
3134 {
3135 	return READ_ONCE(rq->avg_rt.util_avg);
3136 }
3137 #endif
3138 
3139 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3140 static inline unsigned long cpu_util_irq(struct rq *rq)
3141 {
3142 	return rq->avg_irq.util_avg;
3143 }
3144 
3145 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3146 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3147 {
3148 	util *= (max - irq);
3149 	util /= max;
3150 
3151 	return util;
3152 
3153 }
3154 #else
cpu_util_irq(struct rq * rq)3155 static inline unsigned long cpu_util_irq(struct rq *rq)
3156 {
3157 	return 0;
3158 }
3159 
3160 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3161 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3162 {
3163 	return util;
3164 }
3165 #endif
3166 
3167 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3168 
3169 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3170 
3171 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3172 
sched_energy_enabled(void)3173 static inline bool sched_energy_enabled(void)
3174 {
3175 	return static_branch_unlikely(&sched_energy_present);
3176 }
3177 
3178 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3179 
3180 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3181 static inline bool sched_energy_enabled(void) { return false; }
3182 
3183 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3184 
3185 #ifdef CONFIG_MEMBARRIER
3186 /*
3187  * The scheduler provides memory barriers required by membarrier between:
3188  * - prior user-space memory accesses and store to rq->membarrier_state,
3189  * - store to rq->membarrier_state and following user-space memory accesses.
3190  * In the same way it provides those guarantees around store to rq->curr.
3191  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3192 static inline void membarrier_switch_mm(struct rq *rq,
3193 					struct mm_struct *prev_mm,
3194 					struct mm_struct *next_mm)
3195 {
3196 	int membarrier_state;
3197 
3198 	if (prev_mm == next_mm)
3199 		return;
3200 
3201 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3202 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3203 		return;
3204 
3205 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3206 }
3207 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3208 static inline void membarrier_switch_mm(struct rq *rq,
3209 					struct mm_struct *prev_mm,
3210 					struct mm_struct *next_mm)
3211 {
3212 }
3213 #endif
3214 
3215 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3216 static inline bool is_per_cpu_kthread(struct task_struct *p)
3217 {
3218 	if (!(p->flags & PF_KTHREAD))
3219 		return false;
3220 
3221 	if (p->nr_cpus_allowed != 1)
3222 		return false;
3223 
3224 	return true;
3225 }
3226 #endif
3227 
3228 extern void swake_up_all_locked(struct swait_queue_head *q);
3229 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3230 
3231 #ifdef CONFIG_PREEMPT_DYNAMIC
3232 extern int preempt_dynamic_mode;
3233 extern int sched_dynamic_mode(const char *str);
3234 extern void sched_dynamic_update(int mode);
3235 #endif
3236 
3237 /*
3238  * task_may_not_preempt - check whether a task may not be preemptible soon
3239  */
3240 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
3241 extern bool task_may_not_preempt(struct task_struct *task, int cpu);
3242 #else
task_may_not_preempt(struct task_struct * task,int cpu)3243 static inline bool task_may_not_preempt(struct task_struct *task, int cpu)
3244 {
3245 	return false;
3246 }
3247 #endif /* CONFIG_RT_SOFTINT_OPTIMIZATION */
3248