1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 #include <trace/hooks/sched.h>
71 #include <trace/hooks/cgroup.h>
72
73 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
74 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
75
76 /* See "Frequency meter" comments, below. */
77
78 struct fmeter {
79 int cnt; /* unprocessed events count */
80 int val; /* most recent output value */
81 time64_t time; /* clock (secs) when val computed */
82 spinlock_t lock; /* guards read or write of above */
83 };
84
85 struct cpuset {
86 struct cgroup_subsys_state css;
87
88 unsigned long flags; /* "unsigned long" so bitops work */
89
90 /*
91 * On default hierarchy:
92 *
93 * The user-configured masks can only be changed by writing to
94 * cpuset.cpus and cpuset.mems, and won't be limited by the
95 * parent masks.
96 *
97 * The effective masks is the real masks that apply to the tasks
98 * in the cpuset. They may be changed if the configured masks are
99 * changed or hotplug happens.
100 *
101 * effective_mask == configured_mask & parent's effective_mask,
102 * and if it ends up empty, it will inherit the parent's mask.
103 *
104 *
105 * On legacy hierarchy:
106 *
107 * The user-configured masks are always the same with effective masks.
108 */
109
110 /* user-configured CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t cpus_allowed;
112 cpumask_var_t cpus_requested;
113 nodemask_t mems_allowed;
114
115 /* effective CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t effective_cpus;
117 nodemask_t effective_mems;
118
119 /*
120 * CPUs allocated to child sub-partitions (default hierarchy only)
121 * - CPUs granted by the parent = effective_cpus U subparts_cpus
122 * - effective_cpus and subparts_cpus are mutually exclusive.
123 *
124 * effective_cpus contains only onlined CPUs, but subparts_cpus
125 * may have offlined ones.
126 */
127 cpumask_var_t subparts_cpus;
128
129 /*
130 * This is old Memory Nodes tasks took on.
131 *
132 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
133 * - A new cpuset's old_mems_allowed is initialized when some
134 * task is moved into it.
135 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
136 * cpuset.mems_allowed and have tasks' nodemask updated, and
137 * then old_mems_allowed is updated to mems_allowed.
138 */
139 nodemask_t old_mems_allowed;
140
141 struct fmeter fmeter; /* memory_pressure filter */
142
143 /*
144 * Tasks are being attached to this cpuset. Used to prevent
145 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
146 */
147 int attach_in_progress;
148
149 /* partition number for rebuild_sched_domains() */
150 int pn;
151
152 /* for custom sched domain */
153 int relax_domain_level;
154
155 /* number of CPUs in subparts_cpus */
156 int nr_subparts_cpus;
157
158 /* partition root state */
159 int partition_root_state;
160
161 /*
162 * Default hierarchy only:
163 * use_parent_ecpus - set if using parent's effective_cpus
164 * child_ecpus_count - # of children with use_parent_ecpus set
165 */
166 int use_parent_ecpus;
167 int child_ecpus_count;
168
169 /*
170 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
171 * know when to rebuild associated root domain bandwidth information.
172 */
173 int nr_deadline_tasks;
174 int nr_migrate_dl_tasks;
175 u64 sum_migrate_dl_bw;
176
177 /* Handle for cpuset.cpus.partition */
178 struct cgroup_file partition_file;
179 };
180
181 /*
182 * Partition root states:
183 *
184 * 0 - not a partition root
185 *
186 * 1 - partition root
187 *
188 * -1 - invalid partition root
189 * None of the cpus in cpus_allowed can be put into the parent's
190 * subparts_cpus. In this case, the cpuset is not a real partition
191 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
192 * and the cpuset can be restored back to a partition root if the
193 * parent cpuset can give more CPUs back to this child cpuset.
194 */
195 #define PRS_DISABLED 0
196 #define PRS_ENABLED 1
197 #define PRS_ERROR -1
198
199 /*
200 * Temporary cpumasks for working with partitions that are passed among
201 * functions to avoid memory allocation in inner functions.
202 */
203 struct tmpmasks {
204 cpumask_var_t addmask, delmask; /* For partition root */
205 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
206 };
207
css_cs(struct cgroup_subsys_state * css)208 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
209 {
210 return css ? container_of(css, struct cpuset, css) : NULL;
211 }
212
213 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)214 static inline struct cpuset *task_cs(struct task_struct *task)
215 {
216 return css_cs(task_css(task, cpuset_cgrp_id));
217 }
218
parent_cs(struct cpuset * cs)219 static inline struct cpuset *parent_cs(struct cpuset *cs)
220 {
221 return css_cs(cs->css.parent);
222 }
223
inc_dl_tasks_cs(struct task_struct * p)224 void inc_dl_tasks_cs(struct task_struct *p)
225 {
226 struct cpuset *cs = task_cs(p);
227
228 cs->nr_deadline_tasks++;
229 }
230
dec_dl_tasks_cs(struct task_struct * p)231 void dec_dl_tasks_cs(struct task_struct *p)
232 {
233 struct cpuset *cs = task_cs(p);
234
235 cs->nr_deadline_tasks--;
236 }
237
238 /* bits in struct cpuset flags field */
239 typedef enum {
240 CS_ONLINE,
241 CS_CPU_EXCLUSIVE,
242 CS_MEM_EXCLUSIVE,
243 CS_MEM_HARDWALL,
244 CS_MEMORY_MIGRATE,
245 CS_SCHED_LOAD_BALANCE,
246 CS_SPREAD_PAGE,
247 CS_SPREAD_SLAB,
248 } cpuset_flagbits_t;
249
250 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)251 static inline bool is_cpuset_online(struct cpuset *cs)
252 {
253 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
254 }
255
is_cpu_exclusive(const struct cpuset * cs)256 static inline int is_cpu_exclusive(const struct cpuset *cs)
257 {
258 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
259 }
260
is_mem_exclusive(const struct cpuset * cs)261 static inline int is_mem_exclusive(const struct cpuset *cs)
262 {
263 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
264 }
265
is_mem_hardwall(const struct cpuset * cs)266 static inline int is_mem_hardwall(const struct cpuset *cs)
267 {
268 return test_bit(CS_MEM_HARDWALL, &cs->flags);
269 }
270
is_sched_load_balance(const struct cpuset * cs)271 static inline int is_sched_load_balance(const struct cpuset *cs)
272 {
273 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
274 }
275
is_memory_migrate(const struct cpuset * cs)276 static inline int is_memory_migrate(const struct cpuset *cs)
277 {
278 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
279 }
280
is_spread_page(const struct cpuset * cs)281 static inline int is_spread_page(const struct cpuset *cs)
282 {
283 return test_bit(CS_SPREAD_PAGE, &cs->flags);
284 }
285
is_spread_slab(const struct cpuset * cs)286 static inline int is_spread_slab(const struct cpuset *cs)
287 {
288 return test_bit(CS_SPREAD_SLAB, &cs->flags);
289 }
290
is_partition_root(const struct cpuset * cs)291 static inline int is_partition_root(const struct cpuset *cs)
292 {
293 return cs->partition_root_state > 0;
294 }
295
296 /*
297 * Send notification event of whenever partition_root_state changes.
298 */
notify_partition_change(struct cpuset * cs,int old_prs,int new_prs)299 static inline void notify_partition_change(struct cpuset *cs,
300 int old_prs, int new_prs)
301 {
302 if (old_prs != new_prs)
303 cgroup_file_notify(&cs->partition_file);
304 }
305
306 static struct cpuset top_cpuset = {
307 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
308 (1 << CS_MEM_EXCLUSIVE)),
309 .partition_root_state = PRS_ENABLED,
310 };
311
312 /**
313 * cpuset_for_each_child - traverse online children of a cpuset
314 * @child_cs: loop cursor pointing to the current child
315 * @pos_css: used for iteration
316 * @parent_cs: target cpuset to walk children of
317 *
318 * Walk @child_cs through the online children of @parent_cs. Must be used
319 * with RCU read locked.
320 */
321 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
322 css_for_each_child((pos_css), &(parent_cs)->css) \
323 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
324
325 /**
326 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
327 * @des_cs: loop cursor pointing to the current descendant
328 * @pos_css: used for iteration
329 * @root_cs: target cpuset to walk ancestor of
330 *
331 * Walk @des_cs through the online descendants of @root_cs. Must be used
332 * with RCU read locked. The caller may modify @pos_css by calling
333 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
334 * iteration and the first node to be visited.
335 */
336 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
337 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
338 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
339
340 /*
341 * There are two global locks guarding cpuset structures - cpuset_mutex and
342 * callback_lock. We also require taking task_lock() when dereferencing a
343 * task's cpuset pointer. See "The task_lock() exception", at the end of this
344 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
345 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
346 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
347 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
348 * correctness.
349 *
350 * A task must hold both locks to modify cpusets. If a task holds
351 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
352 * also acquire callback_lock and be able to modify cpusets. It can perform
353 * various checks on the cpuset structure first, knowing nothing will change.
354 * It can also allocate memory while just holding cpuset_mutex. While it is
355 * performing these checks, various callback routines can briefly acquire
356 * callback_lock to query cpusets. Once it is ready to make the changes, it
357 * takes callback_lock, blocking everyone else.
358 *
359 * Calls to the kernel memory allocator can not be made while holding
360 * callback_lock, as that would risk double tripping on callback_lock
361 * from one of the callbacks into the cpuset code from within
362 * __alloc_pages().
363 *
364 * If a task is only holding callback_lock, then it has read-only
365 * access to cpusets.
366 *
367 * Now, the task_struct fields mems_allowed and mempolicy may be changed
368 * by other task, we use alloc_lock in the task_struct fields to protect
369 * them.
370 *
371 * The cpuset_common_file_read() handlers only hold callback_lock across
372 * small pieces of code, such as when reading out possibly multi-word
373 * cpumasks and nodemasks.
374 *
375 * Accessing a task's cpuset should be done in accordance with the
376 * guidelines for accessing subsystem state in kernel/cgroup.c
377 */
378
379 static DEFINE_MUTEX(cpuset_mutex);
380
cpuset_lock(void)381 void cpuset_lock(void)
382 {
383 mutex_lock(&cpuset_mutex);
384 }
385
cpuset_unlock(void)386 void cpuset_unlock(void)
387 {
388 mutex_unlock(&cpuset_mutex);
389 }
390
391 static DEFINE_SPINLOCK(callback_lock);
392
393 static struct workqueue_struct *cpuset_migrate_mm_wq;
394
395 /*
396 * CPU / memory hotplug is handled asynchronously.
397 */
398 static void cpuset_hotplug_workfn(struct work_struct *work);
399 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
400
401 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
402
403 /*
404 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
405 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
406 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
407 * With v2 behavior, "cpus" and "mems" are always what the users have
408 * requested and won't be changed by hotplug events. Only the effective
409 * cpus or mems will be affected.
410 */
is_in_v2_mode(void)411 static inline bool is_in_v2_mode(void)
412 {
413 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
414 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
415 }
416
417 /*
418 * Return in pmask the portion of a task's cpusets's cpus_allowed that
419 * are online and are capable of running the task. If none are found,
420 * walk up the cpuset hierarchy until we find one that does have some
421 * appropriate cpus.
422 *
423 * One way or another, we guarantee to return some non-empty subset
424 * of cpu_online_mask.
425 *
426 * Call with callback_lock or cpuset_mutex held.
427 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)428 static void guarantee_online_cpus(struct task_struct *tsk,
429 struct cpumask *pmask)
430 {
431 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
432 struct cpuset *cs;
433
434 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
435 cpumask_copy(pmask, cpu_online_mask);
436
437 rcu_read_lock();
438 cs = task_cs(tsk);
439
440 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
441 cs = parent_cs(cs);
442 if (unlikely(!cs)) {
443 /*
444 * The top cpuset doesn't have any online cpu as a
445 * consequence of a race between cpuset_hotplug_work
446 * and cpu hotplug notifier. But we know the top
447 * cpuset's effective_cpus is on its way to be
448 * identical to cpu_online_mask.
449 */
450 goto out_unlock;
451 }
452 }
453 cpumask_and(pmask, pmask, cs->effective_cpus);
454
455 out_unlock:
456 rcu_read_unlock();
457 }
458
459 /*
460 * Return in *pmask the portion of a cpusets's mems_allowed that
461 * are online, with memory. If none are online with memory, walk
462 * up the cpuset hierarchy until we find one that does have some
463 * online mems. The top cpuset always has some mems online.
464 *
465 * One way or another, we guarantee to return some non-empty subset
466 * of node_states[N_MEMORY].
467 *
468 * Call with callback_lock or cpuset_mutex held.
469 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)470 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
471 {
472 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
473 cs = parent_cs(cs);
474 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
475 }
476
477 /*
478 * update task's spread flag if cpuset's page/slab spread flag is set
479 *
480 * Call with callback_lock or cpuset_mutex held.
481 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)482 static void cpuset_update_task_spread_flag(struct cpuset *cs,
483 struct task_struct *tsk)
484 {
485 if (is_spread_page(cs))
486 task_set_spread_page(tsk);
487 else
488 task_clear_spread_page(tsk);
489
490 if (is_spread_slab(cs))
491 task_set_spread_slab(tsk);
492 else
493 task_clear_spread_slab(tsk);
494 }
495
496 /*
497 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
498 *
499 * One cpuset is a subset of another if all its allowed CPUs and
500 * Memory Nodes are a subset of the other, and its exclusive flags
501 * are only set if the other's are set. Call holding cpuset_mutex.
502 */
503
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)504 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
505 {
506 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
507 nodes_subset(p->mems_allowed, q->mems_allowed) &&
508 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
509 is_mem_exclusive(p) <= is_mem_exclusive(q);
510 }
511
512 /**
513 * alloc_cpumasks - allocate three cpumasks for cpuset
514 * @cs: the cpuset that have cpumasks to be allocated.
515 * @tmp: the tmpmasks structure pointer
516 * Return: 0 if successful, -ENOMEM otherwise.
517 *
518 * Only one of the two input arguments should be non-NULL.
519 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)520 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
521 {
522 cpumask_var_t *pmask1, *pmask2, *pmask3;
523
524 if (cs) {
525 pmask1 = &cs->cpus_allowed;
526 pmask2 = &cs->effective_cpus;
527 pmask3 = &cs->subparts_cpus;
528 } else {
529 pmask1 = &tmp->new_cpus;
530 pmask2 = &tmp->addmask;
531 pmask3 = &tmp->delmask;
532 }
533
534 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
535 return -ENOMEM;
536
537 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
538 goto free_one;
539
540 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
541 goto free_two;
542
543 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
544 goto free_three;
545
546 return 0;
547
548 free_three:
549 free_cpumask_var(*pmask3);
550 free_two:
551 free_cpumask_var(*pmask2);
552 free_one:
553 free_cpumask_var(*pmask1);
554 return -ENOMEM;
555 }
556
557 /**
558 * free_cpumasks - free cpumasks in a tmpmasks structure
559 * @cs: the cpuset that have cpumasks to be free.
560 * @tmp: the tmpmasks structure pointer
561 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)562 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
563 {
564 if (cs) {
565 free_cpumask_var(cs->cpus_allowed);
566 free_cpumask_var(cs->cpus_requested);
567 free_cpumask_var(cs->effective_cpus);
568 free_cpumask_var(cs->subparts_cpus);
569 }
570 if (tmp) {
571 free_cpumask_var(tmp->new_cpus);
572 free_cpumask_var(tmp->addmask);
573 free_cpumask_var(tmp->delmask);
574 }
575 }
576
577 /**
578 * alloc_trial_cpuset - allocate a trial cpuset
579 * @cs: the cpuset that the trial cpuset duplicates
580 */
alloc_trial_cpuset(struct cpuset * cs)581 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
582 {
583 struct cpuset *trial;
584
585 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
586 if (!trial)
587 return NULL;
588
589 if (alloc_cpumasks(trial, NULL)) {
590 kfree(trial);
591 return NULL;
592 }
593
594 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
595 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
596 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
597 return trial;
598 }
599
600 /**
601 * free_cpuset - free the cpuset
602 * @cs: the cpuset to be freed
603 */
free_cpuset(struct cpuset * cs)604 static inline void free_cpuset(struct cpuset *cs)
605 {
606 free_cpumasks(cs, NULL);
607 kfree(cs);
608 }
609
610 /*
611 * validate_change() - Used to validate that any proposed cpuset change
612 * follows the structural rules for cpusets.
613 *
614 * If we replaced the flag and mask values of the current cpuset
615 * (cur) with those values in the trial cpuset (trial), would
616 * our various subset and exclusive rules still be valid? Presumes
617 * cpuset_mutex held.
618 *
619 * 'cur' is the address of an actual, in-use cpuset. Operations
620 * such as list traversal that depend on the actual address of the
621 * cpuset in the list must use cur below, not trial.
622 *
623 * 'trial' is the address of bulk structure copy of cur, with
624 * perhaps one or more of the fields cpus_allowed, mems_allowed,
625 * or flags changed to new, trial values.
626 *
627 * Return 0 if valid, -errno if not.
628 */
629
validate_change(struct cpuset * cur,struct cpuset * trial)630 static int validate_change(struct cpuset *cur, struct cpuset *trial)
631 {
632 struct cgroup_subsys_state *css;
633 struct cpuset *c, *par;
634 int ret;
635
636 rcu_read_lock();
637
638 /* Each of our child cpusets must be a subset of us */
639 ret = -EBUSY;
640 cpuset_for_each_child(c, css, cur)
641 if (!is_cpuset_subset(c, trial))
642 goto out;
643
644 /* Remaining checks don't apply to root cpuset */
645 ret = 0;
646 if (cur == &top_cpuset)
647 goto out;
648
649 par = parent_cs(cur);
650
651 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
652 ret = -EACCES;
653 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
654 goto out;
655
656 /*
657 * If either I or some sibling (!= me) is exclusive, we can't
658 * overlap
659 */
660 ret = -EINVAL;
661 cpuset_for_each_child(c, css, par) {
662 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
663 c != cur &&
664 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
665 goto out;
666 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
667 c != cur &&
668 nodes_intersects(trial->mems_allowed, c->mems_allowed))
669 goto out;
670 }
671
672 /*
673 * Cpusets with tasks - existing or newly being attached - can't
674 * be changed to have empty cpus_allowed or mems_allowed.
675 */
676 ret = -ENOSPC;
677 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
678 if (!cpumask_empty(cur->cpus_allowed) &&
679 cpumask_empty(trial->cpus_allowed))
680 goto out;
681 if (!nodes_empty(cur->mems_allowed) &&
682 nodes_empty(trial->mems_allowed))
683 goto out;
684 }
685
686 /*
687 * We can't shrink if we won't have enough room for SCHED_DEADLINE
688 * tasks.
689 */
690 ret = -EBUSY;
691 if (is_cpu_exclusive(cur) &&
692 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
693 trial->cpus_allowed))
694 goto out;
695
696 ret = 0;
697 out:
698 rcu_read_unlock();
699 return ret;
700 }
701
702 #ifdef CONFIG_SMP
703 /*
704 * Helper routine for generate_sched_domains().
705 * Do cpusets a, b have overlapping effective cpus_allowed masks?
706 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)707 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
708 {
709 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
710 }
711
712 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)713 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
714 {
715 if (dattr->relax_domain_level < c->relax_domain_level)
716 dattr->relax_domain_level = c->relax_domain_level;
717 return;
718 }
719
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)720 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
721 struct cpuset *root_cs)
722 {
723 struct cpuset *cp;
724 struct cgroup_subsys_state *pos_css;
725
726 rcu_read_lock();
727 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
728 /* skip the whole subtree if @cp doesn't have any CPU */
729 if (cpumask_empty(cp->cpus_allowed)) {
730 pos_css = css_rightmost_descendant(pos_css);
731 continue;
732 }
733
734 if (is_sched_load_balance(cp))
735 update_domain_attr(dattr, cp);
736 }
737 rcu_read_unlock();
738 }
739
740 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)741 static inline int nr_cpusets(void)
742 {
743 /* jump label reference count + the top-level cpuset */
744 return static_key_count(&cpusets_enabled_key.key) + 1;
745 }
746
747 /*
748 * generate_sched_domains()
749 *
750 * This function builds a partial partition of the systems CPUs
751 * A 'partial partition' is a set of non-overlapping subsets whose
752 * union is a subset of that set.
753 * The output of this function needs to be passed to kernel/sched/core.c
754 * partition_sched_domains() routine, which will rebuild the scheduler's
755 * load balancing domains (sched domains) as specified by that partial
756 * partition.
757 *
758 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
759 * for a background explanation of this.
760 *
761 * Does not return errors, on the theory that the callers of this
762 * routine would rather not worry about failures to rebuild sched
763 * domains when operating in the severe memory shortage situations
764 * that could cause allocation failures below.
765 *
766 * Must be called with cpuset_mutex held.
767 *
768 * The three key local variables below are:
769 * cp - cpuset pointer, used (together with pos_css) to perform a
770 * top-down scan of all cpusets. For our purposes, rebuilding
771 * the schedulers sched domains, we can ignore !is_sched_load_
772 * balance cpusets.
773 * csa - (for CpuSet Array) Array of pointers to all the cpusets
774 * that need to be load balanced, for convenient iterative
775 * access by the subsequent code that finds the best partition,
776 * i.e the set of domains (subsets) of CPUs such that the
777 * cpus_allowed of every cpuset marked is_sched_load_balance
778 * is a subset of one of these domains, while there are as
779 * many such domains as possible, each as small as possible.
780 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
781 * the kernel/sched/core.c routine partition_sched_domains() in a
782 * convenient format, that can be easily compared to the prior
783 * value to determine what partition elements (sched domains)
784 * were changed (added or removed.)
785 *
786 * Finding the best partition (set of domains):
787 * The triple nested loops below over i, j, k scan over the
788 * load balanced cpusets (using the array of cpuset pointers in
789 * csa[]) looking for pairs of cpusets that have overlapping
790 * cpus_allowed, but which don't have the same 'pn' partition
791 * number and gives them in the same partition number. It keeps
792 * looping on the 'restart' label until it can no longer find
793 * any such pairs.
794 *
795 * The union of the cpus_allowed masks from the set of
796 * all cpusets having the same 'pn' value then form the one
797 * element of the partition (one sched domain) to be passed to
798 * partition_sched_domains().
799 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)800 static int generate_sched_domains(cpumask_var_t **domains,
801 struct sched_domain_attr **attributes)
802 {
803 struct cpuset *cp; /* top-down scan of cpusets */
804 struct cpuset **csa; /* array of all cpuset ptrs */
805 int csn; /* how many cpuset ptrs in csa so far */
806 int i, j, k; /* indices for partition finding loops */
807 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
808 struct sched_domain_attr *dattr; /* attributes for custom domains */
809 int ndoms = 0; /* number of sched domains in result */
810 int nslot; /* next empty doms[] struct cpumask slot */
811 struct cgroup_subsys_state *pos_css;
812 bool root_load_balance = is_sched_load_balance(&top_cpuset);
813
814 doms = NULL;
815 dattr = NULL;
816 csa = NULL;
817
818 /* Special case for the 99% of systems with one, full, sched domain */
819 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
820 ndoms = 1;
821 doms = alloc_sched_domains(ndoms);
822 if (!doms)
823 goto done;
824
825 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
826 if (dattr) {
827 *dattr = SD_ATTR_INIT;
828 update_domain_attr_tree(dattr, &top_cpuset);
829 }
830 cpumask_and(doms[0], top_cpuset.effective_cpus,
831 housekeeping_cpumask(HK_FLAG_DOMAIN));
832
833 goto done;
834 }
835
836 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
837 if (!csa)
838 goto done;
839 csn = 0;
840
841 rcu_read_lock();
842 if (root_load_balance)
843 csa[csn++] = &top_cpuset;
844 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
845 if (cp == &top_cpuset)
846 continue;
847 /*
848 * Continue traversing beyond @cp iff @cp has some CPUs and
849 * isn't load balancing. The former is obvious. The
850 * latter: All child cpusets contain a subset of the
851 * parent's cpus, so just skip them, and then we call
852 * update_domain_attr_tree() to calc relax_domain_level of
853 * the corresponding sched domain.
854 *
855 * If root is load-balancing, we can skip @cp if it
856 * is a subset of the root's effective_cpus.
857 */
858 if (!cpumask_empty(cp->cpus_allowed) &&
859 !(is_sched_load_balance(cp) &&
860 cpumask_intersects(cp->cpus_allowed,
861 housekeeping_cpumask(HK_FLAG_DOMAIN))))
862 continue;
863
864 if (root_load_balance &&
865 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
866 continue;
867
868 if (is_sched_load_balance(cp) &&
869 !cpumask_empty(cp->effective_cpus))
870 csa[csn++] = cp;
871
872 /* skip @cp's subtree if not a partition root */
873 if (!is_partition_root(cp))
874 pos_css = css_rightmost_descendant(pos_css);
875 }
876 rcu_read_unlock();
877
878 for (i = 0; i < csn; i++)
879 csa[i]->pn = i;
880 ndoms = csn;
881
882 restart:
883 /* Find the best partition (set of sched domains) */
884 for (i = 0; i < csn; i++) {
885 struct cpuset *a = csa[i];
886 int apn = a->pn;
887
888 for (j = 0; j < csn; j++) {
889 struct cpuset *b = csa[j];
890 int bpn = b->pn;
891
892 if (apn != bpn && cpusets_overlap(a, b)) {
893 for (k = 0; k < csn; k++) {
894 struct cpuset *c = csa[k];
895
896 if (c->pn == bpn)
897 c->pn = apn;
898 }
899 ndoms--; /* one less element */
900 goto restart;
901 }
902 }
903 }
904
905 /*
906 * Now we know how many domains to create.
907 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
908 */
909 doms = alloc_sched_domains(ndoms);
910 if (!doms)
911 goto done;
912
913 /*
914 * The rest of the code, including the scheduler, can deal with
915 * dattr==NULL case. No need to abort if alloc fails.
916 */
917 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
918 GFP_KERNEL);
919
920 for (nslot = 0, i = 0; i < csn; i++) {
921 struct cpuset *a = csa[i];
922 struct cpumask *dp;
923 int apn = a->pn;
924
925 if (apn < 0) {
926 /* Skip completed partitions */
927 continue;
928 }
929
930 dp = doms[nslot];
931
932 if (nslot == ndoms) {
933 static int warnings = 10;
934 if (warnings) {
935 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
936 nslot, ndoms, csn, i, apn);
937 warnings--;
938 }
939 continue;
940 }
941
942 cpumask_clear(dp);
943 if (dattr)
944 *(dattr + nslot) = SD_ATTR_INIT;
945 for (j = i; j < csn; j++) {
946 struct cpuset *b = csa[j];
947
948 if (apn == b->pn) {
949 cpumask_or(dp, dp, b->effective_cpus);
950 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
951 if (dattr)
952 update_domain_attr_tree(dattr + nslot, b);
953
954 /* Done with this partition */
955 b->pn = -1;
956 }
957 }
958 nslot++;
959 }
960 BUG_ON(nslot != ndoms);
961
962 done:
963 kfree(csa);
964
965 /*
966 * Fallback to the default domain if kmalloc() failed.
967 * See comments in partition_sched_domains().
968 */
969 if (doms == NULL)
970 ndoms = 1;
971
972 *domains = doms;
973 *attributes = dattr;
974 return ndoms;
975 }
976
dl_update_tasks_root_domain(struct cpuset * cs)977 static void dl_update_tasks_root_domain(struct cpuset *cs)
978 {
979 struct css_task_iter it;
980 struct task_struct *task;
981
982 if (cs->nr_deadline_tasks == 0)
983 return;
984
985 css_task_iter_start(&cs->css, 0, &it);
986
987 while ((task = css_task_iter_next(&it)))
988 dl_add_task_root_domain(task);
989
990 css_task_iter_end(&it);
991 }
992
dl_rebuild_rd_accounting(void)993 static void dl_rebuild_rd_accounting(void)
994 {
995 struct cpuset *cs = NULL;
996 struct cgroup_subsys_state *pos_css;
997
998 lockdep_assert_held(&cpuset_mutex);
999 lockdep_assert_cpus_held();
1000 lockdep_assert_held(&sched_domains_mutex);
1001
1002 rcu_read_lock();
1003
1004 /*
1005 * Clear default root domain DL accounting, it will be computed again
1006 * if a task belongs to it.
1007 */
1008 dl_clear_root_domain(&def_root_domain);
1009
1010 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1011
1012 if (cpumask_empty(cs->effective_cpus)) {
1013 pos_css = css_rightmost_descendant(pos_css);
1014 continue;
1015 }
1016
1017 css_get(&cs->css);
1018
1019 rcu_read_unlock();
1020
1021 dl_update_tasks_root_domain(cs);
1022
1023 rcu_read_lock();
1024 css_put(&cs->css);
1025 }
1026 rcu_read_unlock();
1027 }
1028
1029 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1030 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1031 struct sched_domain_attr *dattr_new)
1032 {
1033 mutex_lock(&sched_domains_mutex);
1034 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1035 dl_rebuild_rd_accounting();
1036 mutex_unlock(&sched_domains_mutex);
1037 }
1038
1039 /*
1040 * Rebuild scheduler domains.
1041 *
1042 * If the flag 'sched_load_balance' of any cpuset with non-empty
1043 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1044 * which has that flag enabled, or if any cpuset with a non-empty
1045 * 'cpus' is removed, then call this routine to rebuild the
1046 * scheduler's dynamic sched domains.
1047 *
1048 * Call with cpuset_mutex held. Takes cpus_read_lock().
1049 */
rebuild_sched_domains_locked(void)1050 static void rebuild_sched_domains_locked(void)
1051 {
1052 struct cgroup_subsys_state *pos_css;
1053 struct sched_domain_attr *attr;
1054 cpumask_var_t *doms;
1055 struct cpuset *cs;
1056 int ndoms;
1057
1058 lockdep_assert_cpus_held();
1059 lockdep_assert_held(&cpuset_mutex);
1060
1061 /*
1062 * If we have raced with CPU hotplug, return early to avoid
1063 * passing doms with offlined cpu to partition_sched_domains().
1064 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1065 *
1066 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1067 * should be the same as the active CPUs, so checking only top_cpuset
1068 * is enough to detect racing CPU offlines.
1069 */
1070 if (!top_cpuset.nr_subparts_cpus &&
1071 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1072 return;
1073
1074 /*
1075 * With subpartition CPUs, however, the effective CPUs of a partition
1076 * root should be only a subset of the active CPUs. Since a CPU in any
1077 * partition root could be offlined, all must be checked.
1078 */
1079 if (top_cpuset.nr_subparts_cpus) {
1080 rcu_read_lock();
1081 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1082 if (!is_partition_root(cs)) {
1083 pos_css = css_rightmost_descendant(pos_css);
1084 continue;
1085 }
1086 if (!cpumask_subset(cs->effective_cpus,
1087 cpu_active_mask)) {
1088 rcu_read_unlock();
1089 return;
1090 }
1091 }
1092 rcu_read_unlock();
1093 }
1094
1095 /* Generate domain masks and attrs */
1096 ndoms = generate_sched_domains(&doms, &attr);
1097
1098 /* Have scheduler rebuild the domains */
1099 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1100 }
1101 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1102 static void rebuild_sched_domains_locked(void)
1103 {
1104 }
1105 #endif /* CONFIG_SMP */
1106
rebuild_sched_domains(void)1107 void rebuild_sched_domains(void)
1108 {
1109 cpus_read_lock();
1110 mutex_lock(&cpuset_mutex);
1111 rebuild_sched_domains_locked();
1112 mutex_unlock(&cpuset_mutex);
1113 cpus_read_unlock();
1114 }
1115 EXPORT_SYMBOL_GPL(rebuild_sched_domains);
1116
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1117 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1118 const struct cpumask *new_mask)
1119 {
1120 int ret = -EINVAL;
1121
1122 trace_android_rvh_update_cpus_allowed(p, cs->cpus_requested, new_mask, &ret);
1123 if (!ret)
1124 return ret;
1125
1126 return set_cpus_allowed_ptr(p, new_mask);
1127 }
1128
1129 /**
1130 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1131 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1132 *
1133 * Iterate through each task of @cs updating its cpus_allowed to the
1134 * effective cpuset's. As this function is called with cpuset_mutex held,
1135 * cpuset membership stays stable.
1136 */
update_tasks_cpumask(struct cpuset * cs)1137 static void update_tasks_cpumask(struct cpuset *cs)
1138 {
1139 struct css_task_iter it;
1140 struct task_struct *task;
1141 bool top_cs = cs == &top_cpuset;
1142
1143 css_task_iter_start(&cs->css, 0, &it);
1144 while ((task = css_task_iter_next(&it))) {
1145 /*
1146 * Percpu kthreads in top_cpuset are ignored
1147 */
1148 if (top_cs && (task->flags & PF_KTHREAD) &&
1149 kthread_is_per_cpu(task))
1150 continue;
1151 update_cpus_allowed(cs, task, cs->effective_cpus);
1152 }
1153 css_task_iter_end(&it);
1154 }
1155
1156 /**
1157 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1158 * @new_cpus: the temp variable for the new effective_cpus mask
1159 * @cs: the cpuset the need to recompute the new effective_cpus mask
1160 * @parent: the parent cpuset
1161 *
1162 * If the parent has subpartition CPUs, include them in the list of
1163 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1164 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1165 * to mask those out.
1166 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1167 static void compute_effective_cpumask(struct cpumask *new_cpus,
1168 struct cpuset *cs, struct cpuset *parent)
1169 {
1170 if (parent->nr_subparts_cpus) {
1171 cpumask_or(new_cpus, parent->effective_cpus,
1172 parent->subparts_cpus);
1173 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1174 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1175 } else {
1176 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1177 }
1178 }
1179
1180 /*
1181 * Commands for update_parent_subparts_cpumask
1182 */
1183 enum subparts_cmd {
1184 partcmd_enable, /* Enable partition root */
1185 partcmd_disable, /* Disable partition root */
1186 partcmd_update, /* Update parent's subparts_cpus */
1187 };
1188
1189 /**
1190 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1191 * @cpuset: The cpuset that requests change in partition root state
1192 * @cmd: Partition root state change command
1193 * @newmask: Optional new cpumask for partcmd_update
1194 * @tmp: Temporary addmask and delmask
1195 * Return: 0, 1 or an error code
1196 *
1197 * For partcmd_enable, the cpuset is being transformed from a non-partition
1198 * root to a partition root. The cpus_allowed mask of the given cpuset will
1199 * be put into parent's subparts_cpus and taken away from parent's
1200 * effective_cpus. The function will return 0 if all the CPUs listed in
1201 * cpus_allowed can be granted or an error code will be returned.
1202 *
1203 * For partcmd_disable, the cpuset is being transofrmed from a partition
1204 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1205 * parent's subparts_cpus will be taken away from that cpumask and put back
1206 * into parent's effective_cpus. 0 should always be returned.
1207 *
1208 * For partcmd_update, if the optional newmask is specified, the cpu
1209 * list is to be changed from cpus_allowed to newmask. Otherwise,
1210 * cpus_allowed is assumed to remain the same. The cpuset should either
1211 * be a partition root or an invalid partition root. The partition root
1212 * state may change if newmask is NULL and none of the requested CPUs can
1213 * be granted by the parent. The function will return 1 if changes to
1214 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1215 * Error code should only be returned when newmask is non-NULL.
1216 *
1217 * The partcmd_enable and partcmd_disable commands are used by
1218 * update_prstate(). The partcmd_update command is used by
1219 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1220 * newmask set.
1221 *
1222 * The checking is more strict when enabling partition root than the
1223 * other two commands.
1224 *
1225 * Because of the implicit cpu exclusive nature of a partition root,
1226 * cpumask changes that violates the cpu exclusivity rule will not be
1227 * permitted when checked by validate_change(). The validate_change()
1228 * function will also prevent any changes to the cpu list if it is not
1229 * a superset of children's cpu lists.
1230 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1231 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1232 struct cpumask *newmask,
1233 struct tmpmasks *tmp)
1234 {
1235 struct cpuset *parent = parent_cs(cpuset);
1236 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1237 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1238 int old_prs, new_prs;
1239 bool part_error = false; /* Partition error? */
1240
1241 lockdep_assert_held(&cpuset_mutex);
1242
1243 /*
1244 * The parent must be a partition root.
1245 * The new cpumask, if present, or the current cpus_allowed must
1246 * not be empty.
1247 */
1248 if (!is_partition_root(parent) ||
1249 (newmask && cpumask_empty(newmask)) ||
1250 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1251 return -EINVAL;
1252
1253 /*
1254 * Enabling/disabling partition root is not allowed if there are
1255 * online children.
1256 */
1257 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1258 return -EBUSY;
1259
1260 /*
1261 * Enabling partition root is not allowed if not all the CPUs
1262 * can be granted from parent's effective_cpus or at least one
1263 * CPU will be left after that.
1264 */
1265 if ((cmd == partcmd_enable) &&
1266 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1267 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1268 return -EINVAL;
1269
1270 /*
1271 * A cpumask update cannot make parent's effective_cpus become empty.
1272 */
1273 adding = deleting = false;
1274 old_prs = new_prs = cpuset->partition_root_state;
1275 if (cmd == partcmd_enable) {
1276 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1277 adding = true;
1278 } else if (cmd == partcmd_disable) {
1279 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1280 parent->subparts_cpus);
1281 } else if (newmask) {
1282 /*
1283 * partcmd_update with newmask:
1284 *
1285 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1286 * addmask = newmask & parent->effective_cpus
1287 * & ~parent->subparts_cpus
1288 */
1289 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1290 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1291 parent->subparts_cpus);
1292
1293 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1294 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1295 parent->subparts_cpus);
1296 /*
1297 * Return error if the new effective_cpus could become empty.
1298 */
1299 if (adding &&
1300 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1301 if (!deleting)
1302 return -EINVAL;
1303 /*
1304 * As some of the CPUs in subparts_cpus might have
1305 * been offlined, we need to compute the real delmask
1306 * to confirm that.
1307 */
1308 if (!cpumask_and(tmp->addmask, tmp->delmask,
1309 cpu_active_mask))
1310 return -EINVAL;
1311 cpumask_copy(tmp->addmask, parent->effective_cpus);
1312 }
1313 } else {
1314 /*
1315 * partcmd_update w/o newmask:
1316 *
1317 * addmask = cpus_allowed & parent->effective_cpus
1318 *
1319 * Note that parent's subparts_cpus may have been
1320 * pre-shrunk in case there is a change in the cpu list.
1321 * So no deletion is needed.
1322 */
1323 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1324 parent->effective_cpus);
1325 part_error = cpumask_equal(tmp->addmask,
1326 parent->effective_cpus);
1327 }
1328
1329 if (cmd == partcmd_update) {
1330 int prev_prs = cpuset->partition_root_state;
1331
1332 /*
1333 * Check for possible transition between PRS_ENABLED
1334 * and PRS_ERROR.
1335 */
1336 switch (cpuset->partition_root_state) {
1337 case PRS_ENABLED:
1338 if (part_error)
1339 new_prs = PRS_ERROR;
1340 break;
1341 case PRS_ERROR:
1342 if (!part_error)
1343 new_prs = PRS_ENABLED;
1344 break;
1345 }
1346 /*
1347 * Set part_error if previously in invalid state.
1348 */
1349 part_error = (prev_prs == PRS_ERROR);
1350 }
1351
1352 if (!part_error && (new_prs == PRS_ERROR))
1353 return 0; /* Nothing need to be done */
1354
1355 if (new_prs == PRS_ERROR) {
1356 /*
1357 * Remove all its cpus from parent's subparts_cpus.
1358 */
1359 adding = false;
1360 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1361 parent->subparts_cpus);
1362 }
1363
1364 if (!adding && !deleting && (new_prs == old_prs))
1365 return 0;
1366
1367 /*
1368 * Change the parent's subparts_cpus.
1369 * Newly added CPUs will be removed from effective_cpus and
1370 * newly deleted ones will be added back to effective_cpus.
1371 */
1372 spin_lock_irq(&callback_lock);
1373 if (adding) {
1374 cpumask_or(parent->subparts_cpus,
1375 parent->subparts_cpus, tmp->addmask);
1376 cpumask_andnot(parent->effective_cpus,
1377 parent->effective_cpus, tmp->addmask);
1378 }
1379 if (deleting) {
1380 cpumask_andnot(parent->subparts_cpus,
1381 parent->subparts_cpus, tmp->delmask);
1382 /*
1383 * Some of the CPUs in subparts_cpus might have been offlined.
1384 */
1385 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1386 cpumask_or(parent->effective_cpus,
1387 parent->effective_cpus, tmp->delmask);
1388 }
1389
1390 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1391
1392 if (old_prs != new_prs)
1393 cpuset->partition_root_state = new_prs;
1394
1395 spin_unlock_irq(&callback_lock);
1396 notify_partition_change(cpuset, old_prs, new_prs);
1397
1398 return cmd == partcmd_update;
1399 }
1400
1401 /*
1402 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1403 * @cs: the cpuset to consider
1404 * @tmp: temp variables for calculating effective_cpus & partition setup
1405 *
1406 * When configured cpumask is changed, the effective cpumasks of this cpuset
1407 * and all its descendants need to be updated.
1408 *
1409 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1410 *
1411 * Called with cpuset_mutex held
1412 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1413 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1414 {
1415 struct cpuset *cp;
1416 struct cgroup_subsys_state *pos_css;
1417 bool need_rebuild_sched_domains = false;
1418 int old_prs, new_prs;
1419
1420 rcu_read_lock();
1421 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1422 struct cpuset *parent = parent_cs(cp);
1423
1424 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1425
1426 /*
1427 * If it becomes empty, inherit the effective mask of the
1428 * parent, which is guaranteed to have some CPUs.
1429 */
1430 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1431 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1432 if (!cp->use_parent_ecpus) {
1433 cp->use_parent_ecpus = true;
1434 parent->child_ecpus_count++;
1435 }
1436 } else if (cp->use_parent_ecpus) {
1437 cp->use_parent_ecpus = false;
1438 WARN_ON_ONCE(!parent->child_ecpus_count);
1439 parent->child_ecpus_count--;
1440 }
1441
1442 /*
1443 * Skip the whole subtree if the cpumask remains the same
1444 * and has no partition root state.
1445 */
1446 if (!cp->partition_root_state &&
1447 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1448 pos_css = css_rightmost_descendant(pos_css);
1449 continue;
1450 }
1451
1452 /*
1453 * update_parent_subparts_cpumask() should have been called
1454 * for cs already in update_cpumask(). We should also call
1455 * update_tasks_cpumask() again for tasks in the parent
1456 * cpuset if the parent's subparts_cpus changes.
1457 */
1458 old_prs = new_prs = cp->partition_root_state;
1459 if ((cp != cs) && old_prs) {
1460 switch (parent->partition_root_state) {
1461 case PRS_DISABLED:
1462 /*
1463 * If parent is not a partition root or an
1464 * invalid partition root, clear its state
1465 * and its CS_CPU_EXCLUSIVE flag.
1466 */
1467 WARN_ON_ONCE(cp->partition_root_state
1468 != PRS_ERROR);
1469 new_prs = PRS_DISABLED;
1470
1471 /*
1472 * clear_bit() is an atomic operation and
1473 * readers aren't interested in the state
1474 * of CS_CPU_EXCLUSIVE anyway. So we can
1475 * just update the flag without holding
1476 * the callback_lock.
1477 */
1478 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1479 break;
1480
1481 case PRS_ENABLED:
1482 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1483 update_tasks_cpumask(parent);
1484 break;
1485
1486 case PRS_ERROR:
1487 /*
1488 * When parent is invalid, it has to be too.
1489 */
1490 new_prs = PRS_ERROR;
1491 break;
1492 }
1493 }
1494
1495 if (!css_tryget_online(&cp->css))
1496 continue;
1497 rcu_read_unlock();
1498
1499 spin_lock_irq(&callback_lock);
1500
1501 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1502 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1503 cp->nr_subparts_cpus = 0;
1504 cpumask_clear(cp->subparts_cpus);
1505 } else if (cp->nr_subparts_cpus) {
1506 /*
1507 * Make sure that effective_cpus & subparts_cpus
1508 * are mutually exclusive.
1509 *
1510 * In the unlikely event that effective_cpus
1511 * becomes empty. we clear cp->nr_subparts_cpus and
1512 * let its child partition roots to compete for
1513 * CPUs again.
1514 */
1515 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1516 cp->subparts_cpus);
1517 if (cpumask_empty(cp->effective_cpus)) {
1518 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1519 cpumask_clear(cp->subparts_cpus);
1520 cp->nr_subparts_cpus = 0;
1521 } else if (!cpumask_subset(cp->subparts_cpus,
1522 tmp->new_cpus)) {
1523 cpumask_andnot(cp->subparts_cpus,
1524 cp->subparts_cpus, tmp->new_cpus);
1525 cp->nr_subparts_cpus
1526 = cpumask_weight(cp->subparts_cpus);
1527 }
1528 }
1529
1530 if (new_prs != old_prs)
1531 cp->partition_root_state = new_prs;
1532
1533 spin_unlock_irq(&callback_lock);
1534 notify_partition_change(cp, old_prs, new_prs);
1535
1536 WARN_ON(!is_in_v2_mode() &&
1537 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1538
1539 update_tasks_cpumask(cp);
1540
1541 /*
1542 * On legacy hierarchy, if the effective cpumask of any non-
1543 * empty cpuset is changed, we need to rebuild sched domains.
1544 * On default hierarchy, the cpuset needs to be a partition
1545 * root as well.
1546 */
1547 if (!cpumask_empty(cp->cpus_allowed) &&
1548 is_sched_load_balance(cp) &&
1549 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1550 is_partition_root(cp)))
1551 need_rebuild_sched_domains = true;
1552
1553 rcu_read_lock();
1554 css_put(&cp->css);
1555 }
1556 rcu_read_unlock();
1557
1558 if (need_rebuild_sched_domains)
1559 rebuild_sched_domains_locked();
1560 }
1561
1562 /**
1563 * update_sibling_cpumasks - Update siblings cpumasks
1564 * @parent: Parent cpuset
1565 * @cs: Current cpuset
1566 * @tmp: Temp variables
1567 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1568 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1569 struct tmpmasks *tmp)
1570 {
1571 struct cpuset *sibling;
1572 struct cgroup_subsys_state *pos_css;
1573
1574 lockdep_assert_held(&cpuset_mutex);
1575
1576 /*
1577 * Check all its siblings and call update_cpumasks_hier()
1578 * if their use_parent_ecpus flag is set in order for them
1579 * to use the right effective_cpus value.
1580 *
1581 * The update_cpumasks_hier() function may sleep. So we have to
1582 * release the RCU read lock before calling it.
1583 */
1584 rcu_read_lock();
1585 cpuset_for_each_child(sibling, pos_css, parent) {
1586 if (sibling == cs)
1587 continue;
1588 if (!sibling->use_parent_ecpus)
1589 continue;
1590 if (!css_tryget_online(&sibling->css))
1591 continue;
1592
1593 rcu_read_unlock();
1594 update_cpumasks_hier(sibling, tmp);
1595 rcu_read_lock();
1596 css_put(&sibling->css);
1597 }
1598 rcu_read_unlock();
1599 }
1600
1601 /**
1602 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1603 * @cs: the cpuset to consider
1604 * @trialcs: trial cpuset
1605 * @buf: buffer of cpu numbers written to this cpuset
1606 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1607 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1608 const char *buf)
1609 {
1610 int retval;
1611 struct tmpmasks tmp;
1612
1613 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1614 if (cs == &top_cpuset)
1615 return -EACCES;
1616
1617 /*
1618 * An empty cpus_requested is ok only if the cpuset has no tasks.
1619 * Since cpulist_parse() fails on an empty mask, we special case
1620 * that parsing. The validate_change() call ensures that cpusets
1621 * with tasks have cpus.
1622 */
1623 if (!*buf) {
1624 cpumask_clear(trialcs->cpus_requested);
1625 } else {
1626 retval = cpulist_parse(buf, trialcs->cpus_requested);
1627 if (retval < 0)
1628 return retval;
1629 }
1630
1631 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1632 return -EINVAL;
1633
1634 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1635
1636 /* Nothing to do if the cpus didn't change */
1637 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1638 return 0;
1639
1640 retval = validate_change(cs, trialcs);
1641 if (retval < 0)
1642 return retval;
1643
1644 #ifdef CONFIG_CPUMASK_OFFSTACK
1645 /*
1646 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1647 * to allocated cpumasks.
1648 */
1649 tmp.addmask = trialcs->subparts_cpus;
1650 tmp.delmask = trialcs->effective_cpus;
1651 tmp.new_cpus = trialcs->cpus_allowed;
1652 #endif
1653
1654 if (cs->partition_root_state) {
1655 /* Cpumask of a partition root cannot be empty */
1656 if (cpumask_empty(trialcs->cpus_allowed))
1657 return -EINVAL;
1658 if (update_parent_subparts_cpumask(cs, partcmd_update,
1659 trialcs->cpus_allowed, &tmp) < 0)
1660 return -EINVAL;
1661 }
1662
1663 spin_lock_irq(&callback_lock);
1664 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1665 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1666
1667 /*
1668 * Make sure that subparts_cpus is a subset of cpus_allowed.
1669 */
1670 if (cs->nr_subparts_cpus) {
1671 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1672 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1673 }
1674 spin_unlock_irq(&callback_lock);
1675
1676 update_cpumasks_hier(cs, &tmp);
1677
1678 if (cs->partition_root_state) {
1679 struct cpuset *parent = parent_cs(cs);
1680
1681 /*
1682 * For partition root, update the cpumasks of sibling
1683 * cpusets if they use parent's effective_cpus.
1684 */
1685 if (parent->child_ecpus_count)
1686 update_sibling_cpumasks(parent, cs, &tmp);
1687 }
1688 return 0;
1689 }
1690
1691 /*
1692 * Migrate memory region from one set of nodes to another. This is
1693 * performed asynchronously as it can be called from process migration path
1694 * holding locks involved in process management. All mm migrations are
1695 * performed in the queued order and can be waited for by flushing
1696 * cpuset_migrate_mm_wq.
1697 */
1698
1699 struct cpuset_migrate_mm_work {
1700 struct work_struct work;
1701 struct mm_struct *mm;
1702 nodemask_t from;
1703 nodemask_t to;
1704 };
1705
cpuset_migrate_mm_workfn(struct work_struct * work)1706 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1707 {
1708 struct cpuset_migrate_mm_work *mwork =
1709 container_of(work, struct cpuset_migrate_mm_work, work);
1710
1711 /* on a wq worker, no need to worry about %current's mems_allowed */
1712 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1713 mmput(mwork->mm);
1714 kfree(mwork);
1715 }
1716
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1717 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1718 const nodemask_t *to)
1719 {
1720 struct cpuset_migrate_mm_work *mwork;
1721
1722 if (nodes_equal(*from, *to)) {
1723 mmput(mm);
1724 return;
1725 }
1726
1727 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1728 if (mwork) {
1729 mwork->mm = mm;
1730 mwork->from = *from;
1731 mwork->to = *to;
1732 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1733 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1734 } else {
1735 mmput(mm);
1736 }
1737 }
1738
cpuset_post_attach(void)1739 static void cpuset_post_attach(void)
1740 {
1741 flush_workqueue(cpuset_migrate_mm_wq);
1742 }
1743
1744 /*
1745 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1746 * @tsk: the task to change
1747 * @newmems: new nodes that the task will be set
1748 *
1749 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1750 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1751 * parallel, it might temporarily see an empty intersection, which results in
1752 * a seqlock check and retry before OOM or allocation failure.
1753 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1754 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1755 nodemask_t *newmems)
1756 {
1757 task_lock(tsk);
1758
1759 local_irq_disable();
1760 write_seqcount_begin(&tsk->mems_allowed_seq);
1761
1762 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1763 mpol_rebind_task(tsk, newmems);
1764 tsk->mems_allowed = *newmems;
1765
1766 write_seqcount_end(&tsk->mems_allowed_seq);
1767 local_irq_enable();
1768
1769 task_unlock(tsk);
1770 }
1771
1772 static void *cpuset_being_rebound;
1773
1774 /**
1775 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1776 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1777 *
1778 * Iterate through each task of @cs updating its mems_allowed to the
1779 * effective cpuset's. As this function is called with cpuset_mutex held,
1780 * cpuset membership stays stable.
1781 */
update_tasks_nodemask(struct cpuset * cs)1782 static void update_tasks_nodemask(struct cpuset *cs)
1783 {
1784 static nodemask_t newmems; /* protected by cpuset_mutex */
1785 struct css_task_iter it;
1786 struct task_struct *task;
1787
1788 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1789
1790 guarantee_online_mems(cs, &newmems);
1791
1792 /*
1793 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1794 * take while holding tasklist_lock. Forks can happen - the
1795 * mpol_dup() cpuset_being_rebound check will catch such forks,
1796 * and rebind their vma mempolicies too. Because we still hold
1797 * the global cpuset_mutex, we know that no other rebind effort
1798 * will be contending for the global variable cpuset_being_rebound.
1799 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1800 * is idempotent. Also migrate pages in each mm to new nodes.
1801 */
1802 css_task_iter_start(&cs->css, 0, &it);
1803 while ((task = css_task_iter_next(&it))) {
1804 struct mm_struct *mm;
1805 bool migrate;
1806
1807 cpuset_change_task_nodemask(task, &newmems);
1808
1809 mm = get_task_mm(task);
1810 if (!mm)
1811 continue;
1812
1813 migrate = is_memory_migrate(cs);
1814
1815 mpol_rebind_mm(mm, &cs->mems_allowed);
1816 if (migrate)
1817 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1818 else
1819 mmput(mm);
1820 }
1821 css_task_iter_end(&it);
1822
1823 /*
1824 * All the tasks' nodemasks have been updated, update
1825 * cs->old_mems_allowed.
1826 */
1827 cs->old_mems_allowed = newmems;
1828
1829 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1830 cpuset_being_rebound = NULL;
1831 }
1832
1833 /*
1834 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1835 * @cs: the cpuset to consider
1836 * @new_mems: a temp variable for calculating new effective_mems
1837 *
1838 * When configured nodemask is changed, the effective nodemasks of this cpuset
1839 * and all its descendants need to be updated.
1840 *
1841 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1842 *
1843 * Called with cpuset_mutex held
1844 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1845 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1846 {
1847 struct cpuset *cp;
1848 struct cgroup_subsys_state *pos_css;
1849
1850 rcu_read_lock();
1851 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1852 struct cpuset *parent = parent_cs(cp);
1853
1854 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1855
1856 /*
1857 * If it becomes empty, inherit the effective mask of the
1858 * parent, which is guaranteed to have some MEMs.
1859 */
1860 if (is_in_v2_mode() && nodes_empty(*new_mems))
1861 *new_mems = parent->effective_mems;
1862
1863 /* Skip the whole subtree if the nodemask remains the same. */
1864 if (nodes_equal(*new_mems, cp->effective_mems)) {
1865 pos_css = css_rightmost_descendant(pos_css);
1866 continue;
1867 }
1868
1869 if (!css_tryget_online(&cp->css))
1870 continue;
1871 rcu_read_unlock();
1872
1873 spin_lock_irq(&callback_lock);
1874 cp->effective_mems = *new_mems;
1875 spin_unlock_irq(&callback_lock);
1876
1877 WARN_ON(!is_in_v2_mode() &&
1878 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1879
1880 update_tasks_nodemask(cp);
1881
1882 rcu_read_lock();
1883 css_put(&cp->css);
1884 }
1885 rcu_read_unlock();
1886 }
1887
1888 /*
1889 * Handle user request to change the 'mems' memory placement
1890 * of a cpuset. Needs to validate the request, update the
1891 * cpusets mems_allowed, and for each task in the cpuset,
1892 * update mems_allowed and rebind task's mempolicy and any vma
1893 * mempolicies and if the cpuset is marked 'memory_migrate',
1894 * migrate the tasks pages to the new memory.
1895 *
1896 * Call with cpuset_mutex held. May take callback_lock during call.
1897 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1898 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1899 * their mempolicies to the cpusets new mems_allowed.
1900 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1901 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1902 const char *buf)
1903 {
1904 int retval;
1905
1906 /*
1907 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1908 * it's read-only
1909 */
1910 if (cs == &top_cpuset) {
1911 retval = -EACCES;
1912 goto done;
1913 }
1914
1915 /*
1916 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1917 * Since nodelist_parse() fails on an empty mask, we special case
1918 * that parsing. The validate_change() call ensures that cpusets
1919 * with tasks have memory.
1920 */
1921 if (!*buf) {
1922 nodes_clear(trialcs->mems_allowed);
1923 } else {
1924 retval = nodelist_parse(buf, trialcs->mems_allowed);
1925 if (retval < 0)
1926 goto done;
1927
1928 if (!nodes_subset(trialcs->mems_allowed,
1929 top_cpuset.mems_allowed)) {
1930 retval = -EINVAL;
1931 goto done;
1932 }
1933 }
1934
1935 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1936 retval = 0; /* Too easy - nothing to do */
1937 goto done;
1938 }
1939 retval = validate_change(cs, trialcs);
1940 if (retval < 0)
1941 goto done;
1942
1943 spin_lock_irq(&callback_lock);
1944 cs->mems_allowed = trialcs->mems_allowed;
1945 spin_unlock_irq(&callback_lock);
1946
1947 /* use trialcs->mems_allowed as a temp variable */
1948 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1949 done:
1950 return retval;
1951 }
1952
current_cpuset_is_being_rebound(void)1953 bool current_cpuset_is_being_rebound(void)
1954 {
1955 bool ret;
1956
1957 rcu_read_lock();
1958 ret = task_cs(current) == cpuset_being_rebound;
1959 rcu_read_unlock();
1960
1961 return ret;
1962 }
1963
update_relax_domain_level(struct cpuset * cs,s64 val)1964 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1965 {
1966 #ifdef CONFIG_SMP
1967 if (val < -1 || val >= sched_domain_level_max)
1968 return -EINVAL;
1969 #endif
1970
1971 if (val != cs->relax_domain_level) {
1972 cs->relax_domain_level = val;
1973 if (!cpumask_empty(cs->cpus_allowed) &&
1974 is_sched_load_balance(cs))
1975 rebuild_sched_domains_locked();
1976 }
1977
1978 return 0;
1979 }
1980
1981 /**
1982 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1983 * @cs: the cpuset in which each task's spread flags needs to be changed
1984 *
1985 * Iterate through each task of @cs updating its spread flags. As this
1986 * function is called with cpuset_mutex held, cpuset membership stays
1987 * stable.
1988 */
update_tasks_flags(struct cpuset * cs)1989 static void update_tasks_flags(struct cpuset *cs)
1990 {
1991 struct css_task_iter it;
1992 struct task_struct *task;
1993
1994 css_task_iter_start(&cs->css, 0, &it);
1995 while ((task = css_task_iter_next(&it)))
1996 cpuset_update_task_spread_flag(cs, task);
1997 css_task_iter_end(&it);
1998 }
1999
2000 /*
2001 * update_flag - read a 0 or a 1 in a file and update associated flag
2002 * bit: the bit to update (see cpuset_flagbits_t)
2003 * cs: the cpuset to update
2004 * turning_on: whether the flag is being set or cleared
2005 *
2006 * Call with cpuset_mutex held.
2007 */
2008
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2009 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2010 int turning_on)
2011 {
2012 struct cpuset *trialcs;
2013 int balance_flag_changed;
2014 int spread_flag_changed;
2015 int err;
2016
2017 trialcs = alloc_trial_cpuset(cs);
2018 if (!trialcs)
2019 return -ENOMEM;
2020
2021 if (turning_on)
2022 set_bit(bit, &trialcs->flags);
2023 else
2024 clear_bit(bit, &trialcs->flags);
2025
2026 err = validate_change(cs, trialcs);
2027 if (err < 0)
2028 goto out;
2029
2030 balance_flag_changed = (is_sched_load_balance(cs) !=
2031 is_sched_load_balance(trialcs));
2032
2033 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2034 || (is_spread_page(cs) != is_spread_page(trialcs)));
2035
2036 spin_lock_irq(&callback_lock);
2037 cs->flags = trialcs->flags;
2038 spin_unlock_irq(&callback_lock);
2039
2040 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2041 rebuild_sched_domains_locked();
2042
2043 if (spread_flag_changed)
2044 update_tasks_flags(cs);
2045 out:
2046 free_cpuset(trialcs);
2047 return err;
2048 }
2049
2050 /*
2051 * update_prstate - update partititon_root_state
2052 * cs: the cpuset to update
2053 * new_prs: new partition root state
2054 *
2055 * Call with cpuset_mutex held.
2056 */
update_prstate(struct cpuset * cs,int new_prs)2057 static int update_prstate(struct cpuset *cs, int new_prs)
2058 {
2059 int err, old_prs = cs->partition_root_state;
2060 struct cpuset *parent = parent_cs(cs);
2061 struct tmpmasks tmpmask;
2062
2063 if (old_prs == new_prs)
2064 return 0;
2065
2066 /*
2067 * Cannot force a partial or invalid partition root to a full
2068 * partition root.
2069 */
2070 if (new_prs && (old_prs == PRS_ERROR))
2071 return -EINVAL;
2072
2073 if (alloc_cpumasks(NULL, &tmpmask))
2074 return -ENOMEM;
2075
2076 err = -EINVAL;
2077 if (!old_prs) {
2078 /*
2079 * Turning on partition root requires setting the
2080 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2081 * cannot be NULL.
2082 */
2083 if (cpumask_empty(cs->cpus_allowed))
2084 goto out;
2085
2086 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2087 if (err)
2088 goto out;
2089
2090 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2091 NULL, &tmpmask);
2092 if (err) {
2093 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2094 goto out;
2095 }
2096 } else {
2097 /*
2098 * Turning off partition root will clear the
2099 * CS_CPU_EXCLUSIVE bit.
2100 */
2101 if (old_prs == PRS_ERROR) {
2102 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2103 err = 0;
2104 goto out;
2105 }
2106
2107 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2108 NULL, &tmpmask);
2109 if (err)
2110 goto out;
2111
2112 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2113 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2114 }
2115
2116 update_tasks_cpumask(parent);
2117
2118 if (parent->child_ecpus_count)
2119 update_sibling_cpumasks(parent, cs, &tmpmask);
2120
2121 rebuild_sched_domains_locked();
2122 out:
2123 if (!err) {
2124 spin_lock_irq(&callback_lock);
2125 cs->partition_root_state = new_prs;
2126 spin_unlock_irq(&callback_lock);
2127 notify_partition_change(cs, old_prs, new_prs);
2128 }
2129
2130 free_cpumasks(NULL, &tmpmask);
2131 return err;
2132 }
2133
2134 /*
2135 * Frequency meter - How fast is some event occurring?
2136 *
2137 * These routines manage a digitally filtered, constant time based,
2138 * event frequency meter. There are four routines:
2139 * fmeter_init() - initialize a frequency meter.
2140 * fmeter_markevent() - called each time the event happens.
2141 * fmeter_getrate() - returns the recent rate of such events.
2142 * fmeter_update() - internal routine used to update fmeter.
2143 *
2144 * A common data structure is passed to each of these routines,
2145 * which is used to keep track of the state required to manage the
2146 * frequency meter and its digital filter.
2147 *
2148 * The filter works on the number of events marked per unit time.
2149 * The filter is single-pole low-pass recursive (IIR). The time unit
2150 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2151 * simulate 3 decimal digits of precision (multiplied by 1000).
2152 *
2153 * With an FM_COEF of 933, and a time base of 1 second, the filter
2154 * has a half-life of 10 seconds, meaning that if the events quit
2155 * happening, then the rate returned from the fmeter_getrate()
2156 * will be cut in half each 10 seconds, until it converges to zero.
2157 *
2158 * It is not worth doing a real infinitely recursive filter. If more
2159 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2160 * just compute FM_MAXTICKS ticks worth, by which point the level
2161 * will be stable.
2162 *
2163 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2164 * arithmetic overflow in the fmeter_update() routine.
2165 *
2166 * Given the simple 32 bit integer arithmetic used, this meter works
2167 * best for reporting rates between one per millisecond (msec) and
2168 * one per 32 (approx) seconds. At constant rates faster than one
2169 * per msec it maxes out at values just under 1,000,000. At constant
2170 * rates between one per msec, and one per second it will stabilize
2171 * to a value N*1000, where N is the rate of events per second.
2172 * At constant rates between one per second and one per 32 seconds,
2173 * it will be choppy, moving up on the seconds that have an event,
2174 * and then decaying until the next event. At rates slower than
2175 * about one in 32 seconds, it decays all the way back to zero between
2176 * each event.
2177 */
2178
2179 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2180 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2181 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2182 #define FM_SCALE 1000 /* faux fixed point scale */
2183
2184 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2185 static void fmeter_init(struct fmeter *fmp)
2186 {
2187 fmp->cnt = 0;
2188 fmp->val = 0;
2189 fmp->time = 0;
2190 spin_lock_init(&fmp->lock);
2191 }
2192
2193 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2194 static void fmeter_update(struct fmeter *fmp)
2195 {
2196 time64_t now;
2197 u32 ticks;
2198
2199 now = ktime_get_seconds();
2200 ticks = now - fmp->time;
2201
2202 if (ticks == 0)
2203 return;
2204
2205 ticks = min(FM_MAXTICKS, ticks);
2206 while (ticks-- > 0)
2207 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2208 fmp->time = now;
2209
2210 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2211 fmp->cnt = 0;
2212 }
2213
2214 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2215 static void fmeter_markevent(struct fmeter *fmp)
2216 {
2217 spin_lock(&fmp->lock);
2218 fmeter_update(fmp);
2219 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2220 spin_unlock(&fmp->lock);
2221 }
2222
2223 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2224 static int fmeter_getrate(struct fmeter *fmp)
2225 {
2226 int val;
2227
2228 spin_lock(&fmp->lock);
2229 fmeter_update(fmp);
2230 val = fmp->val;
2231 spin_unlock(&fmp->lock);
2232 return val;
2233 }
2234
2235 static struct cpuset *cpuset_attach_old_cs;
2236
reset_migrate_dl_data(struct cpuset * cs)2237 static void reset_migrate_dl_data(struct cpuset *cs)
2238 {
2239 cs->nr_migrate_dl_tasks = 0;
2240 cs->sum_migrate_dl_bw = 0;
2241 }
2242
2243 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2244 static int cpuset_can_attach(struct cgroup_taskset *tset)
2245 {
2246 struct cgroup_subsys_state *css;
2247 struct cpuset *cs, *oldcs;
2248 struct task_struct *task;
2249 int ret;
2250
2251 /* used later by cpuset_attach() */
2252 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2253 oldcs = cpuset_attach_old_cs;
2254 cs = css_cs(css);
2255
2256 mutex_lock(&cpuset_mutex);
2257
2258 /* allow moving tasks into an empty cpuset if on default hierarchy */
2259 ret = -ENOSPC;
2260 if (!is_in_v2_mode() &&
2261 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2262 goto out_unlock;
2263
2264 cgroup_taskset_for_each(task, css, tset) {
2265 ret = task_can_attach(task);
2266 if (ret)
2267 goto out_unlock;
2268 ret = security_task_setscheduler(task);
2269 if (ret)
2270 goto out_unlock;
2271
2272 if (dl_task(task)) {
2273 cs->nr_migrate_dl_tasks++;
2274 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2275 }
2276 }
2277
2278 if (!cs->nr_migrate_dl_tasks)
2279 goto out_success;
2280
2281 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2282 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2283
2284 if (unlikely(cpu >= nr_cpu_ids)) {
2285 reset_migrate_dl_data(cs);
2286 ret = -EINVAL;
2287 goto out_unlock;
2288 }
2289
2290 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2291 if (ret) {
2292 reset_migrate_dl_data(cs);
2293 goto out_unlock;
2294 }
2295 }
2296
2297 out_success:
2298 /*
2299 * Mark attach is in progress. This makes validate_change() fail
2300 * changes which zero cpus/mems_allowed.
2301 */
2302 cs->attach_in_progress++;
2303 ret = 0;
2304 out_unlock:
2305 mutex_unlock(&cpuset_mutex);
2306 return ret;
2307 }
2308
cpuset_cancel_attach(struct cgroup_taskset * tset)2309 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2310 {
2311 struct cgroup_subsys_state *css;
2312 struct cpuset *cs;
2313
2314 cgroup_taskset_first(tset, &css);
2315 cs = css_cs(css);
2316
2317 mutex_lock(&cpuset_mutex);
2318 cs->attach_in_progress--;
2319 if (!cs->attach_in_progress)
2320 wake_up(&cpuset_attach_wq);
2321
2322 if (cs->nr_migrate_dl_tasks) {
2323 int cpu = cpumask_any(cs->effective_cpus);
2324
2325 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2326 reset_migrate_dl_data(cs);
2327 }
2328
2329 mutex_unlock(&cpuset_mutex);
2330 }
2331
2332 /*
2333 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2334 * but we can't allocate it dynamically there. Define it global and
2335 * allocate from cpuset_init().
2336 */
2337 static cpumask_var_t cpus_attach;
2338
cpuset_attach(struct cgroup_taskset * tset)2339 static void cpuset_attach(struct cgroup_taskset *tset)
2340 {
2341 /* static buf protected by cpuset_mutex */
2342 static nodemask_t cpuset_attach_nodemask_to;
2343 struct task_struct *task;
2344 struct task_struct *leader;
2345 struct cgroup_subsys_state *css;
2346 struct cpuset *cs;
2347 struct cpuset *oldcs = cpuset_attach_old_cs;
2348
2349 cgroup_taskset_first(tset, &css);
2350 cs = css_cs(css);
2351
2352 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2353 mutex_lock(&cpuset_mutex);
2354
2355 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2356
2357 cgroup_taskset_for_each(task, css, tset) {
2358 if (cs != &top_cpuset)
2359 guarantee_online_cpus(task, cpus_attach);
2360 else
2361 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2362 /*
2363 * can_attach beforehand should guarantee that this doesn't
2364 * fail. TODO: have a better way to handle failure here
2365 */
2366 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
2367
2368 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2369 cpuset_update_task_spread_flag(cs, task);
2370 }
2371
2372 /*
2373 * Change mm for all threadgroup leaders. This is expensive and may
2374 * sleep and should be moved outside migration path proper.
2375 */
2376 cpuset_attach_nodemask_to = cs->effective_mems;
2377 cgroup_taskset_for_each_leader(leader, css, tset) {
2378 struct mm_struct *mm = get_task_mm(leader);
2379
2380 if (mm) {
2381 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2382
2383 /*
2384 * old_mems_allowed is the same with mems_allowed
2385 * here, except if this task is being moved
2386 * automatically due to hotplug. In that case
2387 * @mems_allowed has been updated and is empty, so
2388 * @old_mems_allowed is the right nodesets that we
2389 * migrate mm from.
2390 */
2391 if (is_memory_migrate(cs))
2392 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2393 &cpuset_attach_nodemask_to);
2394 else
2395 mmput(mm);
2396 }
2397 }
2398
2399 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2400
2401 if (cs->nr_migrate_dl_tasks) {
2402 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2403 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2404 reset_migrate_dl_data(cs);
2405 }
2406
2407 cs->attach_in_progress--;
2408 if (!cs->attach_in_progress)
2409 wake_up(&cpuset_attach_wq);
2410
2411 mutex_unlock(&cpuset_mutex);
2412 }
2413
2414 /* The various types of files and directories in a cpuset file system */
2415
2416 typedef enum {
2417 FILE_MEMORY_MIGRATE,
2418 FILE_CPULIST,
2419 FILE_MEMLIST,
2420 FILE_EFFECTIVE_CPULIST,
2421 FILE_EFFECTIVE_MEMLIST,
2422 FILE_SUBPARTS_CPULIST,
2423 FILE_CPU_EXCLUSIVE,
2424 FILE_MEM_EXCLUSIVE,
2425 FILE_MEM_HARDWALL,
2426 FILE_SCHED_LOAD_BALANCE,
2427 FILE_PARTITION_ROOT,
2428 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2429 FILE_MEMORY_PRESSURE_ENABLED,
2430 FILE_MEMORY_PRESSURE,
2431 FILE_SPREAD_PAGE,
2432 FILE_SPREAD_SLAB,
2433 } cpuset_filetype_t;
2434
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2435 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2436 u64 val)
2437 {
2438 struct cpuset *cs = css_cs(css);
2439 cpuset_filetype_t type = cft->private;
2440 int retval = 0;
2441
2442 cpus_read_lock();
2443 mutex_lock(&cpuset_mutex);
2444 if (!is_cpuset_online(cs)) {
2445 retval = -ENODEV;
2446 goto out_unlock;
2447 }
2448
2449 switch (type) {
2450 case FILE_CPU_EXCLUSIVE:
2451 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2452 break;
2453 case FILE_MEM_EXCLUSIVE:
2454 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2455 break;
2456 case FILE_MEM_HARDWALL:
2457 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2458 break;
2459 case FILE_SCHED_LOAD_BALANCE:
2460 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2461 break;
2462 case FILE_MEMORY_MIGRATE:
2463 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2464 break;
2465 case FILE_MEMORY_PRESSURE_ENABLED:
2466 cpuset_memory_pressure_enabled = !!val;
2467 break;
2468 case FILE_SPREAD_PAGE:
2469 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2470 break;
2471 case FILE_SPREAD_SLAB:
2472 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2473 break;
2474 default:
2475 retval = -EINVAL;
2476 break;
2477 }
2478 out_unlock:
2479 mutex_unlock(&cpuset_mutex);
2480 cpus_read_unlock();
2481 return retval;
2482 }
2483
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2484 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2485 s64 val)
2486 {
2487 struct cpuset *cs = css_cs(css);
2488 cpuset_filetype_t type = cft->private;
2489 int retval = -ENODEV;
2490
2491 cpus_read_lock();
2492 mutex_lock(&cpuset_mutex);
2493 if (!is_cpuset_online(cs))
2494 goto out_unlock;
2495
2496 switch (type) {
2497 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2498 retval = update_relax_domain_level(cs, val);
2499 break;
2500 default:
2501 retval = -EINVAL;
2502 break;
2503 }
2504 out_unlock:
2505 mutex_unlock(&cpuset_mutex);
2506 cpus_read_unlock();
2507 return retval;
2508 }
2509
2510 /*
2511 * Common handling for a write to a "cpus" or "mems" file.
2512 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2513 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2514 char *buf, size_t nbytes, loff_t off)
2515 {
2516 struct cpuset *cs = css_cs(of_css(of));
2517 struct cpuset *trialcs;
2518 int retval = -ENODEV;
2519
2520 buf = strstrip(buf);
2521
2522 /*
2523 * CPU or memory hotunplug may leave @cs w/o any execution
2524 * resources, in which case the hotplug code asynchronously updates
2525 * configuration and transfers all tasks to the nearest ancestor
2526 * which can execute.
2527 *
2528 * As writes to "cpus" or "mems" may restore @cs's execution
2529 * resources, wait for the previously scheduled operations before
2530 * proceeding, so that we don't end up keep removing tasks added
2531 * after execution capability is restored.
2532 *
2533 * cpuset_hotplug_work calls back into cgroup core via
2534 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2535 * operation like this one can lead to a deadlock through kernfs
2536 * active_ref protection. Let's break the protection. Losing the
2537 * protection is okay as we check whether @cs is online after
2538 * grabbing cpuset_mutex anyway. This only happens on the legacy
2539 * hierarchies.
2540 */
2541 css_get(&cs->css);
2542 kernfs_break_active_protection(of->kn);
2543 flush_work(&cpuset_hotplug_work);
2544
2545 cpus_read_lock();
2546 mutex_lock(&cpuset_mutex);
2547 if (!is_cpuset_online(cs))
2548 goto out_unlock;
2549
2550 trialcs = alloc_trial_cpuset(cs);
2551 if (!trialcs) {
2552 retval = -ENOMEM;
2553 goto out_unlock;
2554 }
2555
2556 switch (of_cft(of)->private) {
2557 case FILE_CPULIST:
2558 retval = update_cpumask(cs, trialcs, buf);
2559 break;
2560 case FILE_MEMLIST:
2561 retval = update_nodemask(cs, trialcs, buf);
2562 break;
2563 default:
2564 retval = -EINVAL;
2565 break;
2566 }
2567
2568 free_cpuset(trialcs);
2569 out_unlock:
2570 mutex_unlock(&cpuset_mutex);
2571 cpus_read_unlock();
2572 kernfs_unbreak_active_protection(of->kn);
2573 css_put(&cs->css);
2574 flush_workqueue(cpuset_migrate_mm_wq);
2575 return retval ?: nbytes;
2576 }
2577
2578 /*
2579 * These ascii lists should be read in a single call, by using a user
2580 * buffer large enough to hold the entire map. If read in smaller
2581 * chunks, there is no guarantee of atomicity. Since the display format
2582 * used, list of ranges of sequential numbers, is variable length,
2583 * and since these maps can change value dynamically, one could read
2584 * gibberish by doing partial reads while a list was changing.
2585 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2586 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2587 {
2588 struct cpuset *cs = css_cs(seq_css(sf));
2589 cpuset_filetype_t type = seq_cft(sf)->private;
2590 int ret = 0;
2591
2592 spin_lock_irq(&callback_lock);
2593
2594 switch (type) {
2595 case FILE_CPULIST:
2596 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2597 break;
2598 case FILE_MEMLIST:
2599 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2600 break;
2601 case FILE_EFFECTIVE_CPULIST:
2602 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2603 break;
2604 case FILE_EFFECTIVE_MEMLIST:
2605 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2606 break;
2607 case FILE_SUBPARTS_CPULIST:
2608 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2609 break;
2610 default:
2611 ret = -EINVAL;
2612 }
2613
2614 spin_unlock_irq(&callback_lock);
2615 return ret;
2616 }
2617
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2618 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2619 {
2620 struct cpuset *cs = css_cs(css);
2621 cpuset_filetype_t type = cft->private;
2622 switch (type) {
2623 case FILE_CPU_EXCLUSIVE:
2624 return is_cpu_exclusive(cs);
2625 case FILE_MEM_EXCLUSIVE:
2626 return is_mem_exclusive(cs);
2627 case FILE_MEM_HARDWALL:
2628 return is_mem_hardwall(cs);
2629 case FILE_SCHED_LOAD_BALANCE:
2630 return is_sched_load_balance(cs);
2631 case FILE_MEMORY_MIGRATE:
2632 return is_memory_migrate(cs);
2633 case FILE_MEMORY_PRESSURE_ENABLED:
2634 return cpuset_memory_pressure_enabled;
2635 case FILE_MEMORY_PRESSURE:
2636 return fmeter_getrate(&cs->fmeter);
2637 case FILE_SPREAD_PAGE:
2638 return is_spread_page(cs);
2639 case FILE_SPREAD_SLAB:
2640 return is_spread_slab(cs);
2641 default:
2642 BUG();
2643 }
2644
2645 /* Unreachable but makes gcc happy */
2646 return 0;
2647 }
2648
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2649 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2650 {
2651 struct cpuset *cs = css_cs(css);
2652 cpuset_filetype_t type = cft->private;
2653 switch (type) {
2654 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2655 return cs->relax_domain_level;
2656 default:
2657 BUG();
2658 }
2659
2660 /* Unreachable but makes gcc happy */
2661 return 0;
2662 }
2663
sched_partition_show(struct seq_file * seq,void * v)2664 static int sched_partition_show(struct seq_file *seq, void *v)
2665 {
2666 struct cpuset *cs = css_cs(seq_css(seq));
2667
2668 switch (cs->partition_root_state) {
2669 case PRS_ENABLED:
2670 seq_puts(seq, "root\n");
2671 break;
2672 case PRS_DISABLED:
2673 seq_puts(seq, "member\n");
2674 break;
2675 case PRS_ERROR:
2676 seq_puts(seq, "root invalid\n");
2677 break;
2678 }
2679 return 0;
2680 }
2681
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2682 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2683 size_t nbytes, loff_t off)
2684 {
2685 struct cpuset *cs = css_cs(of_css(of));
2686 int val;
2687 int retval = -ENODEV;
2688
2689 buf = strstrip(buf);
2690
2691 /*
2692 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2693 */
2694 if (!strcmp(buf, "root"))
2695 val = PRS_ENABLED;
2696 else if (!strcmp(buf, "member"))
2697 val = PRS_DISABLED;
2698 else
2699 return -EINVAL;
2700
2701 css_get(&cs->css);
2702 cpus_read_lock();
2703 mutex_lock(&cpuset_mutex);
2704 if (!is_cpuset_online(cs))
2705 goto out_unlock;
2706
2707 retval = update_prstate(cs, val);
2708 out_unlock:
2709 mutex_unlock(&cpuset_mutex);
2710 cpus_read_unlock();
2711 css_put(&cs->css);
2712 return retval ?: nbytes;
2713 }
2714
2715 /*
2716 * for the common functions, 'private' gives the type of file
2717 */
2718
2719 static struct cftype legacy_files[] = {
2720 {
2721 .name = "cpus",
2722 .seq_show = cpuset_common_seq_show,
2723 .write = cpuset_write_resmask,
2724 .max_write_len = (100U + 6 * NR_CPUS),
2725 .private = FILE_CPULIST,
2726 },
2727
2728 {
2729 .name = "mems",
2730 .seq_show = cpuset_common_seq_show,
2731 .write = cpuset_write_resmask,
2732 .max_write_len = (100U + 6 * MAX_NUMNODES),
2733 .private = FILE_MEMLIST,
2734 },
2735
2736 {
2737 .name = "effective_cpus",
2738 .seq_show = cpuset_common_seq_show,
2739 .private = FILE_EFFECTIVE_CPULIST,
2740 },
2741
2742 {
2743 .name = "effective_mems",
2744 .seq_show = cpuset_common_seq_show,
2745 .private = FILE_EFFECTIVE_MEMLIST,
2746 },
2747
2748 {
2749 .name = "cpu_exclusive",
2750 .read_u64 = cpuset_read_u64,
2751 .write_u64 = cpuset_write_u64,
2752 .private = FILE_CPU_EXCLUSIVE,
2753 },
2754
2755 {
2756 .name = "mem_exclusive",
2757 .read_u64 = cpuset_read_u64,
2758 .write_u64 = cpuset_write_u64,
2759 .private = FILE_MEM_EXCLUSIVE,
2760 },
2761
2762 {
2763 .name = "mem_hardwall",
2764 .read_u64 = cpuset_read_u64,
2765 .write_u64 = cpuset_write_u64,
2766 .private = FILE_MEM_HARDWALL,
2767 },
2768
2769 {
2770 .name = "sched_load_balance",
2771 .read_u64 = cpuset_read_u64,
2772 .write_u64 = cpuset_write_u64,
2773 .private = FILE_SCHED_LOAD_BALANCE,
2774 },
2775
2776 {
2777 .name = "sched_relax_domain_level",
2778 .read_s64 = cpuset_read_s64,
2779 .write_s64 = cpuset_write_s64,
2780 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2781 },
2782
2783 {
2784 .name = "memory_migrate",
2785 .read_u64 = cpuset_read_u64,
2786 .write_u64 = cpuset_write_u64,
2787 .private = FILE_MEMORY_MIGRATE,
2788 },
2789
2790 {
2791 .name = "memory_pressure",
2792 .read_u64 = cpuset_read_u64,
2793 .private = FILE_MEMORY_PRESSURE,
2794 },
2795
2796 {
2797 .name = "memory_spread_page",
2798 .read_u64 = cpuset_read_u64,
2799 .write_u64 = cpuset_write_u64,
2800 .private = FILE_SPREAD_PAGE,
2801 },
2802
2803 {
2804 .name = "memory_spread_slab",
2805 .read_u64 = cpuset_read_u64,
2806 .write_u64 = cpuset_write_u64,
2807 .private = FILE_SPREAD_SLAB,
2808 },
2809
2810 {
2811 .name = "memory_pressure_enabled",
2812 .flags = CFTYPE_ONLY_ON_ROOT,
2813 .read_u64 = cpuset_read_u64,
2814 .write_u64 = cpuset_write_u64,
2815 .private = FILE_MEMORY_PRESSURE_ENABLED,
2816 },
2817
2818 { } /* terminate */
2819 };
2820
2821 /*
2822 * This is currently a minimal set for the default hierarchy. It can be
2823 * expanded later on by migrating more features and control files from v1.
2824 */
2825 static struct cftype dfl_files[] = {
2826 {
2827 .name = "cpus",
2828 .seq_show = cpuset_common_seq_show,
2829 .write = cpuset_write_resmask,
2830 .max_write_len = (100U + 6 * NR_CPUS),
2831 .private = FILE_CPULIST,
2832 .flags = CFTYPE_NOT_ON_ROOT,
2833 },
2834
2835 {
2836 .name = "mems",
2837 .seq_show = cpuset_common_seq_show,
2838 .write = cpuset_write_resmask,
2839 .max_write_len = (100U + 6 * MAX_NUMNODES),
2840 .private = FILE_MEMLIST,
2841 .flags = CFTYPE_NOT_ON_ROOT,
2842 },
2843
2844 {
2845 .name = "cpus.effective",
2846 .seq_show = cpuset_common_seq_show,
2847 .private = FILE_EFFECTIVE_CPULIST,
2848 },
2849
2850 {
2851 .name = "mems.effective",
2852 .seq_show = cpuset_common_seq_show,
2853 .private = FILE_EFFECTIVE_MEMLIST,
2854 },
2855
2856 {
2857 .name = "cpus.partition",
2858 .seq_show = sched_partition_show,
2859 .write = sched_partition_write,
2860 .private = FILE_PARTITION_ROOT,
2861 .flags = CFTYPE_NOT_ON_ROOT,
2862 .file_offset = offsetof(struct cpuset, partition_file),
2863 },
2864
2865 {
2866 .name = "cpus.subpartitions",
2867 .seq_show = cpuset_common_seq_show,
2868 .private = FILE_SUBPARTS_CPULIST,
2869 .flags = CFTYPE_DEBUG,
2870 },
2871
2872 { } /* terminate */
2873 };
2874
2875
2876 /*
2877 * cpuset_css_alloc - allocate a cpuset css
2878 * cgrp: control group that the new cpuset will be part of
2879 */
2880
2881 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2882 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2883 {
2884 struct cpuset *cs;
2885
2886 if (!parent_css)
2887 return &top_cpuset.css;
2888
2889 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2890 if (!cs)
2891 return ERR_PTR(-ENOMEM);
2892
2893 if (alloc_cpumasks(cs, NULL)) {
2894 kfree(cs);
2895 return ERR_PTR(-ENOMEM);
2896 }
2897
2898 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2899 nodes_clear(cs->mems_allowed);
2900 nodes_clear(cs->effective_mems);
2901 fmeter_init(&cs->fmeter);
2902 cs->relax_domain_level = -1;
2903
2904 /* Set CS_MEMORY_MIGRATE for default hierarchy */
2905 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2906 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2907
2908 return &cs->css;
2909 }
2910
cpuset_css_online(struct cgroup_subsys_state * css)2911 static int cpuset_css_online(struct cgroup_subsys_state *css)
2912 {
2913 struct cpuset *cs = css_cs(css);
2914 struct cpuset *parent = parent_cs(cs);
2915 struct cpuset *tmp_cs;
2916 struct cgroup_subsys_state *pos_css;
2917
2918 if (!parent)
2919 return 0;
2920
2921 cpus_read_lock();
2922 mutex_lock(&cpuset_mutex);
2923
2924 set_bit(CS_ONLINE, &cs->flags);
2925 if (is_spread_page(parent))
2926 set_bit(CS_SPREAD_PAGE, &cs->flags);
2927 if (is_spread_slab(parent))
2928 set_bit(CS_SPREAD_SLAB, &cs->flags);
2929
2930 cpuset_inc();
2931
2932 spin_lock_irq(&callback_lock);
2933 if (is_in_v2_mode()) {
2934 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2935 cs->effective_mems = parent->effective_mems;
2936 cs->use_parent_ecpus = true;
2937 parent->child_ecpus_count++;
2938 }
2939 spin_unlock_irq(&callback_lock);
2940
2941 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2942 goto out_unlock;
2943
2944 /*
2945 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2946 * set. This flag handling is implemented in cgroup core for
2947 * histrical reasons - the flag may be specified during mount.
2948 *
2949 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2950 * refuse to clone the configuration - thereby refusing the task to
2951 * be entered, and as a result refusing the sys_unshare() or
2952 * clone() which initiated it. If this becomes a problem for some
2953 * users who wish to allow that scenario, then this could be
2954 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2955 * (and likewise for mems) to the new cgroup.
2956 */
2957 rcu_read_lock();
2958 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2959 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2960 rcu_read_unlock();
2961 goto out_unlock;
2962 }
2963 }
2964 rcu_read_unlock();
2965
2966 spin_lock_irq(&callback_lock);
2967 cs->mems_allowed = parent->mems_allowed;
2968 cs->effective_mems = parent->mems_allowed;
2969 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2970 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2971 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2972 spin_unlock_irq(&callback_lock);
2973 out_unlock:
2974 mutex_unlock(&cpuset_mutex);
2975 cpus_read_unlock();
2976 return 0;
2977 }
2978
2979 /*
2980 * If the cpuset being removed has its flag 'sched_load_balance'
2981 * enabled, then simulate turning sched_load_balance off, which
2982 * will call rebuild_sched_domains_locked(). That is not needed
2983 * in the default hierarchy where only changes in partition
2984 * will cause repartitioning.
2985 *
2986 * If the cpuset has the 'sched.partition' flag enabled, simulate
2987 * turning 'sched.partition" off.
2988 */
2989
cpuset_css_offline(struct cgroup_subsys_state * css)2990 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2991 {
2992 struct cpuset *cs = css_cs(css);
2993
2994 cpus_read_lock();
2995 mutex_lock(&cpuset_mutex);
2996
2997 if (is_partition_root(cs))
2998 update_prstate(cs, 0);
2999
3000 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3001 is_sched_load_balance(cs))
3002 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3003
3004 if (cs->use_parent_ecpus) {
3005 struct cpuset *parent = parent_cs(cs);
3006
3007 cs->use_parent_ecpus = false;
3008 parent->child_ecpus_count--;
3009 }
3010
3011 cpuset_dec();
3012 clear_bit(CS_ONLINE, &cs->flags);
3013
3014 mutex_unlock(&cpuset_mutex);
3015 cpus_read_unlock();
3016 }
3017
cpuset_css_free(struct cgroup_subsys_state * css)3018 static void cpuset_css_free(struct cgroup_subsys_state *css)
3019 {
3020 struct cpuset *cs = css_cs(css);
3021
3022 free_cpuset(cs);
3023 }
3024
cpuset_bind(struct cgroup_subsys_state * root_css)3025 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3026 {
3027 mutex_lock(&cpuset_mutex);
3028 spin_lock_irq(&callback_lock);
3029
3030 if (is_in_v2_mode()) {
3031 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3032 top_cpuset.mems_allowed = node_possible_map;
3033 } else {
3034 cpumask_copy(top_cpuset.cpus_allowed,
3035 top_cpuset.effective_cpus);
3036 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3037 }
3038
3039 spin_unlock_irq(&callback_lock);
3040 mutex_unlock(&cpuset_mutex);
3041 }
3042
3043 /*
3044 * Make sure the new task conform to the current state of its parent,
3045 * which could have been changed by cpuset just after it inherits the
3046 * state from the parent and before it sits on the cgroup's task list.
3047 */
cpuset_fork(struct task_struct * task)3048 static void cpuset_fork(struct task_struct *task)
3049 {
3050 bool inherit_cpus = false;
3051 if (task_css_is_root(task, cpuset_cgrp_id))
3052 return;
3053
3054 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
3055 if (!inherit_cpus)
3056 set_cpus_allowed_ptr(task, current->cpus_ptr);
3057 task->mems_allowed = current->mems_allowed;
3058 }
3059
3060 struct cgroup_subsys cpuset_cgrp_subsys = {
3061 .css_alloc = cpuset_css_alloc,
3062 .css_online = cpuset_css_online,
3063 .css_offline = cpuset_css_offline,
3064 .css_free = cpuset_css_free,
3065 .can_attach = cpuset_can_attach,
3066 .cancel_attach = cpuset_cancel_attach,
3067 .attach = cpuset_attach,
3068 .post_attach = cpuset_post_attach,
3069 .bind = cpuset_bind,
3070 .fork = cpuset_fork,
3071 .legacy_cftypes = legacy_files,
3072 .dfl_cftypes = dfl_files,
3073 .early_init = true,
3074 .threaded = true,
3075 };
3076
3077 /**
3078 * cpuset_init - initialize cpusets at system boot
3079 *
3080 * Description: Initialize top_cpuset
3081 **/
3082
cpuset_init(void)3083 int __init cpuset_init(void)
3084 {
3085 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3086 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3087 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3088 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
3089
3090 cpumask_setall(top_cpuset.cpus_allowed);
3091 cpumask_setall(top_cpuset.cpus_requested);
3092 nodes_setall(top_cpuset.mems_allowed);
3093 cpumask_setall(top_cpuset.effective_cpus);
3094 nodes_setall(top_cpuset.effective_mems);
3095
3096 fmeter_init(&top_cpuset.fmeter);
3097 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3098 top_cpuset.relax_domain_level = -1;
3099
3100 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3101
3102 return 0;
3103 }
3104
3105 /*
3106 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3107 * or memory nodes, we need to walk over the cpuset hierarchy,
3108 * removing that CPU or node from all cpusets. If this removes the
3109 * last CPU or node from a cpuset, then move the tasks in the empty
3110 * cpuset to its next-highest non-empty parent.
3111 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3112 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3113 {
3114 struct cpuset *parent;
3115
3116 /*
3117 * Find its next-highest non-empty parent, (top cpuset
3118 * has online cpus, so can't be empty).
3119 */
3120 parent = parent_cs(cs);
3121 while (cpumask_empty(parent->cpus_allowed) ||
3122 nodes_empty(parent->mems_allowed))
3123 parent = parent_cs(parent);
3124
3125 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3126 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3127 pr_cont_cgroup_name(cs->css.cgroup);
3128 pr_cont("\n");
3129 }
3130 }
3131
3132 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3133 hotplug_update_tasks_legacy(struct cpuset *cs,
3134 struct cpumask *new_cpus, nodemask_t *new_mems,
3135 bool cpus_updated, bool mems_updated)
3136 {
3137 bool is_empty;
3138
3139 spin_lock_irq(&callback_lock);
3140 cpumask_copy(cs->cpus_allowed, new_cpus);
3141 cpumask_copy(cs->effective_cpus, new_cpus);
3142 cs->mems_allowed = *new_mems;
3143 cs->effective_mems = *new_mems;
3144 spin_unlock_irq(&callback_lock);
3145
3146 /*
3147 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3148 * as the tasks will be migratecd to an ancestor.
3149 */
3150 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3151 update_tasks_cpumask(cs);
3152 if (mems_updated && !nodes_empty(cs->mems_allowed))
3153 update_tasks_nodemask(cs);
3154
3155 is_empty = cpumask_empty(cs->cpus_allowed) ||
3156 nodes_empty(cs->mems_allowed);
3157
3158 mutex_unlock(&cpuset_mutex);
3159
3160 /*
3161 * Move tasks to the nearest ancestor with execution resources,
3162 * This is full cgroup operation which will also call back into
3163 * cpuset. Should be done outside any lock.
3164 */
3165 if (is_empty)
3166 remove_tasks_in_empty_cpuset(cs);
3167
3168 mutex_lock(&cpuset_mutex);
3169 }
3170
3171 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3172 hotplug_update_tasks(struct cpuset *cs,
3173 struct cpumask *new_cpus, nodemask_t *new_mems,
3174 bool cpus_updated, bool mems_updated)
3175 {
3176 if (cpumask_empty(new_cpus))
3177 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3178 if (nodes_empty(*new_mems))
3179 *new_mems = parent_cs(cs)->effective_mems;
3180
3181 spin_lock_irq(&callback_lock);
3182 cpumask_copy(cs->effective_cpus, new_cpus);
3183 cs->effective_mems = *new_mems;
3184 spin_unlock_irq(&callback_lock);
3185
3186 if (cpus_updated)
3187 update_tasks_cpumask(cs);
3188 if (mems_updated)
3189 update_tasks_nodemask(cs);
3190 }
3191
3192 static bool force_rebuild;
3193
cpuset_force_rebuild(void)3194 void cpuset_force_rebuild(void)
3195 {
3196 force_rebuild = true;
3197 }
3198
3199 /**
3200 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3201 * @cs: cpuset in interest
3202 * @tmp: the tmpmasks structure pointer
3203 *
3204 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3205 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3206 * all its tasks are moved to the nearest ancestor with both resources.
3207 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3208 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3209 {
3210 static cpumask_t new_cpus;
3211 static nodemask_t new_mems;
3212 bool cpus_updated;
3213 bool mems_updated;
3214 struct cpuset *parent;
3215 retry:
3216 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3217
3218 mutex_lock(&cpuset_mutex);
3219
3220 /*
3221 * We have raced with task attaching. We wait until attaching
3222 * is finished, so we won't attach a task to an empty cpuset.
3223 */
3224 if (cs->attach_in_progress) {
3225 mutex_unlock(&cpuset_mutex);
3226 goto retry;
3227 }
3228
3229 parent = parent_cs(cs);
3230 compute_effective_cpumask(&new_cpus, cs, parent);
3231 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3232
3233 if (cs->nr_subparts_cpus)
3234 /*
3235 * Make sure that CPUs allocated to child partitions
3236 * do not show up in effective_cpus.
3237 */
3238 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3239
3240 if (!tmp || !cs->partition_root_state)
3241 goto update_tasks;
3242
3243 /*
3244 * In the unlikely event that a partition root has empty
3245 * effective_cpus or its parent becomes erroneous, we have to
3246 * transition it to the erroneous state.
3247 */
3248 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3249 (parent->partition_root_state == PRS_ERROR))) {
3250 if (cs->nr_subparts_cpus) {
3251 spin_lock_irq(&callback_lock);
3252 cs->nr_subparts_cpus = 0;
3253 cpumask_clear(cs->subparts_cpus);
3254 spin_unlock_irq(&callback_lock);
3255 compute_effective_cpumask(&new_cpus, cs, parent);
3256 }
3257
3258 /*
3259 * If the effective_cpus is empty because the child
3260 * partitions take away all the CPUs, we can keep
3261 * the current partition and let the child partitions
3262 * fight for available CPUs.
3263 */
3264 if ((parent->partition_root_state == PRS_ERROR) ||
3265 cpumask_empty(&new_cpus)) {
3266 int old_prs;
3267
3268 update_parent_subparts_cpumask(cs, partcmd_disable,
3269 NULL, tmp);
3270 old_prs = cs->partition_root_state;
3271 if (old_prs != PRS_ERROR) {
3272 spin_lock_irq(&callback_lock);
3273 cs->partition_root_state = PRS_ERROR;
3274 spin_unlock_irq(&callback_lock);
3275 notify_partition_change(cs, old_prs, PRS_ERROR);
3276 }
3277 }
3278 cpuset_force_rebuild();
3279 }
3280
3281 /*
3282 * On the other hand, an erroneous partition root may be transitioned
3283 * back to a regular one or a partition root with no CPU allocated
3284 * from the parent may change to erroneous.
3285 */
3286 if (is_partition_root(parent) &&
3287 ((cs->partition_root_state == PRS_ERROR) ||
3288 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3289 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3290 cpuset_force_rebuild();
3291
3292 update_tasks:
3293 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3294 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3295
3296 if (is_in_v2_mode())
3297 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3298 cpus_updated, mems_updated);
3299 else
3300 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3301 cpus_updated, mems_updated);
3302
3303 mutex_unlock(&cpuset_mutex);
3304 }
3305
3306 /**
3307 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3308 *
3309 * This function is called after either CPU or memory configuration has
3310 * changed and updates cpuset accordingly. The top_cpuset is always
3311 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3312 * order to make cpusets transparent (of no affect) on systems that are
3313 * actively using CPU hotplug but making no active use of cpusets.
3314 *
3315 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3316 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3317 * all descendants.
3318 *
3319 * Note that CPU offlining during suspend is ignored. We don't modify
3320 * cpusets across suspend/resume cycles at all.
3321 */
cpuset_hotplug_workfn(struct work_struct * work)3322 static void cpuset_hotplug_workfn(struct work_struct *work)
3323 {
3324 static cpumask_t new_cpus;
3325 static nodemask_t new_mems;
3326 bool cpus_updated, mems_updated;
3327 bool on_dfl = is_in_v2_mode();
3328 struct tmpmasks tmp, *ptmp = NULL;
3329
3330 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3331 ptmp = &tmp;
3332
3333 mutex_lock(&cpuset_mutex);
3334
3335 /* fetch the available cpus/mems and find out which changed how */
3336 cpumask_copy(&new_cpus, cpu_active_mask);
3337 new_mems = node_states[N_MEMORY];
3338
3339 /*
3340 * If subparts_cpus is populated, it is likely that the check below
3341 * will produce a false positive on cpus_updated when the cpu list
3342 * isn't changed. It is extra work, but it is better to be safe.
3343 */
3344 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3345 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3346
3347 /*
3348 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3349 * we assumed that cpus are updated.
3350 */
3351 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3352 cpus_updated = true;
3353
3354 /* synchronize cpus_allowed to cpu_active_mask */
3355 if (cpus_updated) {
3356 spin_lock_irq(&callback_lock);
3357 if (!on_dfl)
3358 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3359 /*
3360 * Make sure that CPUs allocated to child partitions
3361 * do not show up in effective_cpus. If no CPU is left,
3362 * we clear the subparts_cpus & let the child partitions
3363 * fight for the CPUs again.
3364 */
3365 if (top_cpuset.nr_subparts_cpus) {
3366 if (cpumask_subset(&new_cpus,
3367 top_cpuset.subparts_cpus)) {
3368 top_cpuset.nr_subparts_cpus = 0;
3369 cpumask_clear(top_cpuset.subparts_cpus);
3370 } else {
3371 cpumask_andnot(&new_cpus, &new_cpus,
3372 top_cpuset.subparts_cpus);
3373 }
3374 }
3375 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3376 spin_unlock_irq(&callback_lock);
3377 /* we don't mess with cpumasks of tasks in top_cpuset */
3378 }
3379
3380 /* synchronize mems_allowed to N_MEMORY */
3381 if (mems_updated) {
3382 spin_lock_irq(&callback_lock);
3383 if (!on_dfl)
3384 top_cpuset.mems_allowed = new_mems;
3385 top_cpuset.effective_mems = new_mems;
3386 spin_unlock_irq(&callback_lock);
3387 update_tasks_nodemask(&top_cpuset);
3388 }
3389
3390 mutex_unlock(&cpuset_mutex);
3391
3392 /* if cpus or mems changed, we need to propagate to descendants */
3393 if (cpus_updated || mems_updated) {
3394 struct cpuset *cs;
3395 struct cgroup_subsys_state *pos_css;
3396
3397 rcu_read_lock();
3398 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3399 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3400 continue;
3401 rcu_read_unlock();
3402
3403 cpuset_hotplug_update_tasks(cs, ptmp);
3404
3405 rcu_read_lock();
3406 css_put(&cs->css);
3407 }
3408 rcu_read_unlock();
3409 }
3410
3411 /* rebuild sched domains if cpus_allowed has changed */
3412 if (cpus_updated || force_rebuild) {
3413 force_rebuild = false;
3414 rebuild_sched_domains();
3415 }
3416
3417 free_cpumasks(NULL, ptmp);
3418 }
3419
cpuset_update_active_cpus(void)3420 void cpuset_update_active_cpus(void)
3421 {
3422 /*
3423 * We're inside cpu hotplug critical region which usually nests
3424 * inside cgroup synchronization. Bounce actual hotplug processing
3425 * to a work item to avoid reverse locking order.
3426 */
3427 schedule_work(&cpuset_hotplug_work);
3428 }
3429
cpuset_wait_for_hotplug(void)3430 void cpuset_wait_for_hotplug(void)
3431 {
3432 flush_work(&cpuset_hotplug_work);
3433 }
3434
3435 /*
3436 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3437 * Call this routine anytime after node_states[N_MEMORY] changes.
3438 * See cpuset_update_active_cpus() for CPU hotplug handling.
3439 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3440 static int cpuset_track_online_nodes(struct notifier_block *self,
3441 unsigned long action, void *arg)
3442 {
3443 schedule_work(&cpuset_hotplug_work);
3444 return NOTIFY_OK;
3445 }
3446
3447 static struct notifier_block cpuset_track_online_nodes_nb = {
3448 .notifier_call = cpuset_track_online_nodes,
3449 .priority = 10, /* ??! */
3450 };
3451
3452 /**
3453 * cpuset_init_smp - initialize cpus_allowed
3454 *
3455 * Description: Finish top cpuset after cpu, node maps are initialized
3456 */
cpuset_init_smp(void)3457 void __init cpuset_init_smp(void)
3458 {
3459 /*
3460 * cpus_allowd/mems_allowed set to v2 values in the initial
3461 * cpuset_bind() call will be reset to v1 values in another
3462 * cpuset_bind() call when v1 cpuset is mounted.
3463 */
3464 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3465
3466 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3467 top_cpuset.effective_mems = node_states[N_MEMORY];
3468
3469 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3470
3471 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3472 BUG_ON(!cpuset_migrate_mm_wq);
3473 }
3474
3475 /**
3476 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3477 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3478 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3479 *
3480 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3481 * attached to the specified @tsk. Guaranteed to return some non-empty
3482 * subset of cpu_online_mask, even if this means going outside the
3483 * tasks cpuset.
3484 **/
3485
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3486 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3487 {
3488 unsigned long flags;
3489
3490 spin_lock_irqsave(&callback_lock, flags);
3491 guarantee_online_cpus(tsk, pmask);
3492 spin_unlock_irqrestore(&callback_lock, flags);
3493 }
3494 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
3495 /**
3496 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3497 * @tsk: pointer to task_struct with which the scheduler is struggling
3498 *
3499 * Description: In the case that the scheduler cannot find an allowed cpu in
3500 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3501 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3502 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3503 * This is the absolute last resort for the scheduler and it is only used if
3504 * _every_ other avenue has been traveled.
3505 *
3506 * Returns true if the affinity of @tsk was changed, false otherwise.
3507 **/
3508
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3509 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3510 {
3511 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3512 const struct cpumask *cs_mask;
3513 bool changed = false;
3514
3515 rcu_read_lock();
3516 cs_mask = task_cs(tsk)->cpus_allowed;
3517 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3518 do_set_cpus_allowed(tsk, cs_mask);
3519 changed = true;
3520 }
3521 rcu_read_unlock();
3522
3523 /*
3524 * We own tsk->cpus_allowed, nobody can change it under us.
3525 *
3526 * But we used cs && cs->cpus_allowed lockless and thus can
3527 * race with cgroup_attach_task() or update_cpumask() and get
3528 * the wrong tsk->cpus_allowed. However, both cases imply the
3529 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3530 * which takes task_rq_lock().
3531 *
3532 * If we are called after it dropped the lock we must see all
3533 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3534 * set any mask even if it is not right from task_cs() pov,
3535 * the pending set_cpus_allowed_ptr() will fix things.
3536 *
3537 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3538 * if required.
3539 */
3540 return changed;
3541 }
3542
cpuset_init_current_mems_allowed(void)3543 void __init cpuset_init_current_mems_allowed(void)
3544 {
3545 nodes_setall(current->mems_allowed);
3546 }
3547
3548 /**
3549 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3550 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3551 *
3552 * Description: Returns the nodemask_t mems_allowed of the cpuset
3553 * attached to the specified @tsk. Guaranteed to return some non-empty
3554 * subset of node_states[N_MEMORY], even if this means going outside the
3555 * tasks cpuset.
3556 **/
3557
cpuset_mems_allowed(struct task_struct * tsk)3558 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3559 {
3560 nodemask_t mask;
3561 unsigned long flags;
3562
3563 spin_lock_irqsave(&callback_lock, flags);
3564 rcu_read_lock();
3565 guarantee_online_mems(task_cs(tsk), &mask);
3566 rcu_read_unlock();
3567 spin_unlock_irqrestore(&callback_lock, flags);
3568
3569 return mask;
3570 }
3571
3572 /**
3573 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3574 * @nodemask: the nodemask to be checked
3575 *
3576 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3577 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3578 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3579 {
3580 return nodes_intersects(*nodemask, current->mems_allowed);
3581 }
3582
3583 /*
3584 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3585 * mem_hardwall ancestor to the specified cpuset. Call holding
3586 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3587 * (an unusual configuration), then returns the root cpuset.
3588 */
nearest_hardwall_ancestor(struct cpuset * cs)3589 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3590 {
3591 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3592 cs = parent_cs(cs);
3593 return cs;
3594 }
3595
3596 /**
3597 * cpuset_node_allowed - Can we allocate on a memory node?
3598 * @node: is this an allowed node?
3599 * @gfp_mask: memory allocation flags
3600 *
3601 * If we're in interrupt, yes, we can always allocate. If @node is set in
3602 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3603 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3604 * yes. If current has access to memory reserves as an oom victim, yes.
3605 * Otherwise, no.
3606 *
3607 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3608 * and do not allow allocations outside the current tasks cpuset
3609 * unless the task has been OOM killed.
3610 * GFP_KERNEL allocations are not so marked, so can escape to the
3611 * nearest enclosing hardwalled ancestor cpuset.
3612 *
3613 * Scanning up parent cpusets requires callback_lock. The
3614 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3615 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3616 * current tasks mems_allowed came up empty on the first pass over
3617 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3618 * cpuset are short of memory, might require taking the callback_lock.
3619 *
3620 * The first call here from mm/page_alloc:get_page_from_freelist()
3621 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3622 * so no allocation on a node outside the cpuset is allowed (unless
3623 * in interrupt, of course).
3624 *
3625 * The second pass through get_page_from_freelist() doesn't even call
3626 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3627 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3628 * in alloc_flags. That logic and the checks below have the combined
3629 * affect that:
3630 * in_interrupt - any node ok (current task context irrelevant)
3631 * GFP_ATOMIC - any node ok
3632 * tsk_is_oom_victim - any node ok
3633 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3634 * GFP_USER - only nodes in current tasks mems allowed ok.
3635 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3636 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3637 {
3638 struct cpuset *cs; /* current cpuset ancestors */
3639 int allowed; /* is allocation in zone z allowed? */
3640 unsigned long flags;
3641
3642 if (in_interrupt())
3643 return true;
3644 if (node_isset(node, current->mems_allowed))
3645 return true;
3646 /*
3647 * Allow tasks that have access to memory reserves because they have
3648 * been OOM killed to get memory anywhere.
3649 */
3650 if (unlikely(tsk_is_oom_victim(current)))
3651 return true;
3652 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3653 return false;
3654
3655 if (current->flags & PF_EXITING) /* Let dying task have memory */
3656 return true;
3657
3658 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3659 spin_lock_irqsave(&callback_lock, flags);
3660
3661 rcu_read_lock();
3662 cs = nearest_hardwall_ancestor(task_cs(current));
3663 allowed = node_isset(node, cs->mems_allowed);
3664 rcu_read_unlock();
3665
3666 spin_unlock_irqrestore(&callback_lock, flags);
3667 return allowed;
3668 }
3669
3670 /**
3671 * cpuset_mem_spread_node() - On which node to begin search for a file page
3672 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3673 *
3674 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3675 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3676 * and if the memory allocation used cpuset_mem_spread_node()
3677 * to determine on which node to start looking, as it will for
3678 * certain page cache or slab cache pages such as used for file
3679 * system buffers and inode caches, then instead of starting on the
3680 * local node to look for a free page, rather spread the starting
3681 * node around the tasks mems_allowed nodes.
3682 *
3683 * We don't have to worry about the returned node being offline
3684 * because "it can't happen", and even if it did, it would be ok.
3685 *
3686 * The routines calling guarantee_online_mems() are careful to
3687 * only set nodes in task->mems_allowed that are online. So it
3688 * should not be possible for the following code to return an
3689 * offline node. But if it did, that would be ok, as this routine
3690 * is not returning the node where the allocation must be, only
3691 * the node where the search should start. The zonelist passed to
3692 * __alloc_pages() will include all nodes. If the slab allocator
3693 * is passed an offline node, it will fall back to the local node.
3694 * See kmem_cache_alloc_node().
3695 */
3696
cpuset_spread_node(int * rotor)3697 static int cpuset_spread_node(int *rotor)
3698 {
3699 return *rotor = next_node_in(*rotor, current->mems_allowed);
3700 }
3701
cpuset_mem_spread_node(void)3702 int cpuset_mem_spread_node(void)
3703 {
3704 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3705 current->cpuset_mem_spread_rotor =
3706 node_random(¤t->mems_allowed);
3707
3708 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3709 }
3710
cpuset_slab_spread_node(void)3711 int cpuset_slab_spread_node(void)
3712 {
3713 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3714 current->cpuset_slab_spread_rotor =
3715 node_random(¤t->mems_allowed);
3716
3717 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3718 }
3719
3720 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3721
3722 /**
3723 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3724 * @tsk1: pointer to task_struct of some task.
3725 * @tsk2: pointer to task_struct of some other task.
3726 *
3727 * Description: Return true if @tsk1's mems_allowed intersects the
3728 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3729 * one of the task's memory usage might impact the memory available
3730 * to the other.
3731 **/
3732
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3733 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3734 const struct task_struct *tsk2)
3735 {
3736 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3737 }
3738
3739 /**
3740 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3741 *
3742 * Description: Prints current's name, cpuset name, and cached copy of its
3743 * mems_allowed to the kernel log.
3744 */
cpuset_print_current_mems_allowed(void)3745 void cpuset_print_current_mems_allowed(void)
3746 {
3747 struct cgroup *cgrp;
3748
3749 rcu_read_lock();
3750
3751 cgrp = task_cs(current)->css.cgroup;
3752 pr_cont(",cpuset=");
3753 pr_cont_cgroup_name(cgrp);
3754 pr_cont(",mems_allowed=%*pbl",
3755 nodemask_pr_args(¤t->mems_allowed));
3756
3757 rcu_read_unlock();
3758 }
3759
3760 /*
3761 * Collection of memory_pressure is suppressed unless
3762 * this flag is enabled by writing "1" to the special
3763 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3764 */
3765
3766 int cpuset_memory_pressure_enabled __read_mostly;
3767
3768 /**
3769 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3770 *
3771 * Keep a running average of the rate of synchronous (direct)
3772 * page reclaim efforts initiated by tasks in each cpuset.
3773 *
3774 * This represents the rate at which some task in the cpuset
3775 * ran low on memory on all nodes it was allowed to use, and
3776 * had to enter the kernels page reclaim code in an effort to
3777 * create more free memory by tossing clean pages or swapping
3778 * or writing dirty pages.
3779 *
3780 * Display to user space in the per-cpuset read-only file
3781 * "memory_pressure". Value displayed is an integer
3782 * representing the recent rate of entry into the synchronous
3783 * (direct) page reclaim by any task attached to the cpuset.
3784 **/
3785
__cpuset_memory_pressure_bump(void)3786 void __cpuset_memory_pressure_bump(void)
3787 {
3788 rcu_read_lock();
3789 fmeter_markevent(&task_cs(current)->fmeter);
3790 rcu_read_unlock();
3791 }
3792
3793 #ifdef CONFIG_PROC_PID_CPUSET
3794 /*
3795 * proc_cpuset_show()
3796 * - Print tasks cpuset path into seq_file.
3797 * - Used for /proc/<pid>/cpuset.
3798 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3799 * doesn't really matter if tsk->cpuset changes after we read it,
3800 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3801 * anyway.
3802 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3803 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3804 struct pid *pid, struct task_struct *tsk)
3805 {
3806 char *buf;
3807 struct cgroup_subsys_state *css;
3808 int retval;
3809
3810 retval = -ENOMEM;
3811 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3812 if (!buf)
3813 goto out;
3814
3815 css = task_get_css(tsk, cpuset_cgrp_id);
3816 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3817 current->nsproxy->cgroup_ns);
3818 css_put(css);
3819 if (retval >= PATH_MAX)
3820 retval = -ENAMETOOLONG;
3821 if (retval < 0)
3822 goto out_free;
3823 seq_puts(m, buf);
3824 seq_putc(m, '\n');
3825 retval = 0;
3826 out_free:
3827 kfree(buf);
3828 out:
3829 return retval;
3830 }
3831 #endif /* CONFIG_PROC_PID_CPUSET */
3832
3833 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3834 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3835 {
3836 seq_printf(m, "Mems_allowed:\t%*pb\n",
3837 nodemask_pr_args(&task->mems_allowed));
3838 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3839 nodemask_pr_args(&task->mems_allowed));
3840 }
3841