• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 
15 #include "trace.h"
16 #include "trace_output.h"
17 
18 #define DEFAULT_SYS_FILTER_MESSAGE					\
19 	"### global filter ###\n"					\
20 	"# Use this to set filters for multiple events.\n"		\
21 	"# Only events with the given fields will be affected.\n"	\
22 	"# If no events are modified, an error message will be displayed here"
23 
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS					\
26 	C( OP_GLOB,	"~"  ),			\
27 	C( OP_NE,	"!=" ),			\
28 	C( OP_EQ,	"==" ),			\
29 	C( OP_LE,	"<=" ),			\
30 	C( OP_LT,	"<"  ),			\
31 	C( OP_GE,	">=" ),			\
32 	C( OP_GT,	">"  ),			\
33 	C( OP_BAND,	"&"  ),			\
34 	C( OP_MAX,	NULL )
35 
36 #undef C
37 #define C(a, b)	a
38 
39 enum filter_op_ids { OPS };
40 
41 #undef C
42 #define C(a, b)	b
43 
44 static const char * ops[] = { OPS };
45 
46 /*
47  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
48  * pred_funcs_##type below must match the order of them above.
49  */
50 #define PRED_FUNC_START			OP_LE
51 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
52 
53 #define ERRORS								\
54 	C(NONE,			"No error"),				\
55 	C(INVALID_OP,		"Invalid operator"),			\
56 	C(TOO_MANY_OPEN,	"Too many '('"),			\
57 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
58 	C(MISSING_QUOTE,	"Missing matching quote"),		\
59 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
60 	C(EXPECT_STRING,	"Expecting string field"),		\
61 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
62 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
63 	C(FIELD_NOT_FOUND,	"Field not found"),			\
64 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
65 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
66 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
67 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
68 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
69 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
70 	C(ERRNO,		"Error"),				\
71 	C(NO_FILTER,		"No filter found")
72 
73 #undef C
74 #define C(a, b)		FILT_ERR_##a
75 
76 enum { ERRORS };
77 
78 #undef C
79 #define C(a, b)		b
80 
81 static const char *err_text[] = { ERRORS };
82 
83 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)84 static bool is_not(const char *str)
85 {
86 	switch (str[1]) {
87 	case '=':
88 	case '~':
89 		return false;
90 	}
91 	return true;
92 }
93 
94 /**
95  * prog_entry - a singe entry in the filter program
96  * @target:	     Index to jump to on a branch (actually one minus the index)
97  * @when_to_branch:  The value of the result of the predicate to do a branch
98  * @pred:	     The predicate to execute.
99  */
100 struct prog_entry {
101 	int			target;
102 	int			when_to_branch;
103 	struct filter_pred	*pred;
104 };
105 
106 /**
107  * update_preds- assign a program entry a label target
108  * @prog: The program array
109  * @N: The index of the current entry in @prog
110  * @when_to_branch: What to assign a program entry for its branch condition
111  *
112  * The program entry at @N has a target that points to the index of a program
113  * entry that can have its target and when_to_branch fields updated.
114  * Update the current program entry denoted by index @N target field to be
115  * that of the updated entry. This will denote the entry to update if
116  * we are processing an "||" after an "&&"
117  */
update_preds(struct prog_entry * prog,int N,int invert)118 static void update_preds(struct prog_entry *prog, int N, int invert)
119 {
120 	int t, s;
121 
122 	t = prog[N].target;
123 	s = prog[t].target;
124 	prog[t].when_to_branch = invert;
125 	prog[t].target = N;
126 	prog[N].target = s;
127 }
128 
129 struct filter_parse_error {
130 	int lasterr;
131 	int lasterr_pos;
132 };
133 
parse_error(struct filter_parse_error * pe,int err,int pos)134 static void parse_error(struct filter_parse_error *pe, int err, int pos)
135 {
136 	pe->lasterr = err;
137 	pe->lasterr_pos = pos;
138 }
139 
140 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
141 			     struct filter_parse_error *pe,
142 			     struct filter_pred **pred);
143 
144 enum {
145 	INVERT		= 1,
146 	PROCESS_AND	= 2,
147 	PROCESS_OR	= 4,
148 };
149 
150 /*
151  * Without going into a formal proof, this explains the method that is used in
152  * parsing the logical expressions.
153  *
154  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
155  * The first pass will convert it into the following program:
156  *
157  * n1: r=a;       l1: if (!r) goto l4;
158  * n2: r=b;       l2: if (!r) goto l4;
159  * n3: r=c; r=!r; l3: if (r) goto l4;
160  * n4: r=g; r=!r; l4: if (r) goto l5;
161  * n5: r=d;       l5: if (r) goto T
162  * n6: r=e;       l6: if (!r) goto l7;
163  * n7: r=f; r=!r; l7: if (!r) goto F
164  * T: return TRUE
165  * F: return FALSE
166  *
167  * To do this, we use a data structure to represent each of the above
168  * predicate and conditions that has:
169  *
170  *  predicate, when_to_branch, invert, target
171  *
172  * The "predicate" will hold the function to determine the result "r".
173  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
174  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
175  * The "invert" holds whether the value should be reversed before testing.
176  * The "target" contains the label "l#" to jump to.
177  *
178  * A stack is created to hold values when parentheses are used.
179  *
180  * To simplify the logic, the labels will start at 0 and not 1.
181  *
182  * The possible invert values are 1 and 0. The number of "!"s that are in scope
183  * before the predicate determines the invert value, if the number is odd then
184  * the invert value is 1 and 0 otherwise. This means the invert value only
185  * needs to be toggled when a new "!" is introduced compared to what is stored
186  * on the stack, where parentheses were used.
187  *
188  * The top of the stack and "invert" are initialized to zero.
189  *
190  * ** FIRST PASS **
191  *
192  * #1 A loop through all the tokens is done:
193  *
194  * #2 If the token is an "(", the stack is push, and the current stack value
195  *    gets the current invert value, and the loop continues to the next token.
196  *    The top of the stack saves the "invert" value to keep track of what
197  *    the current inversion is. As "!(a && !b || c)" would require all
198  *    predicates being affected separately by the "!" before the parentheses.
199  *    And that would end up being equivalent to "(!a || b) && !c"
200  *
201  * #3 If the token is an "!", the current "invert" value gets inverted, and
202  *    the loop continues. Note, if the next token is a predicate, then
203  *    this "invert" value is only valid for the current program entry,
204  *    and does not affect other predicates later on.
205  *
206  * The only other acceptable token is the predicate string.
207  *
208  * #4 A new entry into the program is added saving: the predicate and the
209  *    current value of "invert". The target is currently assigned to the
210  *    previous program index (this will not be its final value).
211  *
212  * #5 We now enter another loop and look at the next token. The only valid
213  *    tokens are ")", "&&", "||" or end of the input string "\0".
214  *
215  * #6 The invert variable is reset to the current value saved on the top of
216  *    the stack.
217  *
218  * #7 The top of the stack holds not only the current invert value, but also
219  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
220  *    precedence than "||". That is "a && b || c && d" is equivalent to
221  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
222  *    to be processed. This is the case if an "&&" was the last token. If it was
223  *    then we call update_preds(). This takes the program, the current index in
224  *    the program, and the current value of "invert".  More will be described
225  *    below about this function.
226  *
227  * #8 If the next token is "&&" then we set a flag in the top of the stack
228  *    that denotes that "&&" needs to be processed, break out of this loop
229  *    and continue with the outer loop.
230  *
231  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
232  *    This is called with the program, the current index in the program, but
233  *    this time with an inverted value of "invert" (that is !invert). This is
234  *    because the value taken will become the "when_to_branch" value of the
235  *    program.
236  *    Note, this is called when the next token is not an "&&". As stated before,
237  *    "&&" takes higher precedence, and "||" should not be processed yet if the
238  *    next logical operation is "&&".
239  *
240  * #10 If the next token is "||" then we set a flag in the top of the stack
241  *     that denotes that "||" needs to be processed, break out of this loop
242  *     and continue with the outer loop.
243  *
244  * #11 If this is the end of the input string "\0" then we break out of both
245  *     loops.
246  *
247  * #12 Otherwise, the next token is ")", where we pop the stack and continue
248  *     this inner loop.
249  *
250  * Now to discuss the update_pred() function, as that is key to the setting up
251  * of the program. Remember the "target" of the program is initialized to the
252  * previous index and not the "l" label. The target holds the index into the
253  * program that gets affected by the operand. Thus if we have something like
254  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
255  * When we process "b", its target is "0", which is the index of "a", as that's
256  * the predicate that is affected by "||". But because the next token after "b"
257  * is "&&" we don't call update_preds(). Instead continue to "c". As the
258  * next token after "c" is not "&&" but the end of input, we first process the
259  * "&&" by calling update_preds() for the "&&" then we process the "||" by
260  * calling updates_preds() with the values for processing "||".
261  *
262  * What does that mean? What update_preds() does is to first save the "target"
263  * of the program entry indexed by the current program entry's "target"
264  * (remember the "target" is initialized to previous program entry), and then
265  * sets that "target" to the current index which represents the label "l#".
266  * That entry's "when_to_branch" is set to the value passed in (the "invert"
267  * or "!invert"). Then it sets the current program entry's target to the saved
268  * "target" value (the old value of the program that had its "target" updated
269  * to the label).
270  *
271  * Looking back at "a || b && c", we have the following steps:
272  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
273  *  "||" - flag that we need to process "||"; continue outer loop
274  *  "b"  - prog[1] = { "b", X, 0 }
275  *  "&&" - flag that we need to process "&&"; continue outer loop
276  * (Notice we did not process "||")
277  *  "c"  - prog[2] = { "c", X, 1 }
278  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
279  *    t = prog[2].target; // t = 1
280  *    s = prog[t].target; // s = 0
281  *    prog[t].target = 2; // Set target to "l2"
282  *    prog[t].when_to_branch = 0;
283  *    prog[2].target = s;
284  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
285  *    t = prog[2].target; // t = 0
286  *    s = prog[t].target; // s = -1
287  *    prog[t].target = 2; // Set target to "l2"
288  *    prog[t].when_to_branch = 1;
289  *    prog[2].target = s;
290  *
291  * #13 Which brings us to the final step of the first pass, which is to set
292  *     the last program entry's when_to_branch and target, which will be
293  *     when_to_branch = 0; target = N; ( the label after the program entry after
294  *     the last program entry processed above).
295  *
296  * If we denote "TRUE" to be the entry after the last program entry processed,
297  * and "FALSE" the program entry after that, we are now done with the first
298  * pass.
299  *
300  * Making the above "a || b && c" have a program of:
301  *  prog[0] = { "a", 1, 2 }
302  *  prog[1] = { "b", 0, 2 }
303  *  prog[2] = { "c", 0, 3 }
304  *
305  * Which translates into:
306  * n0: r = a; l0: if (r) goto l2;
307  * n1: r = b; l1: if (!r) goto l2;
308  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
309  * T: return TRUE; l3:
310  * F: return FALSE
311  *
312  * Although, after the first pass, the program is correct, it is
313  * inefficient. The simple sample of "a || b && c" could be easily been
314  * converted into:
315  * n0: r = a; if (r) goto T
316  * n1: r = b; if (!r) goto F
317  * n2: r = c; if (!r) goto F
318  * T: return TRUE;
319  * F: return FALSE;
320  *
321  * The First Pass is over the input string. The next too passes are over
322  * the program itself.
323  *
324  * ** SECOND PASS **
325  *
326  * Which brings us to the second pass. If a jump to a label has the
327  * same condition as that label, it can instead jump to its target.
328  * The original example of "a && !(!b || (c && g)) || d || e && !f"
329  * where the first pass gives us:
330  *
331  * n1: r=a;       l1: if (!r) goto l4;
332  * n2: r=b;       l2: if (!r) goto l4;
333  * n3: r=c; r=!r; l3: if (r) goto l4;
334  * n4: r=g; r=!r; l4: if (r) goto l5;
335  * n5: r=d;       l5: if (r) goto T
336  * n6: r=e;       l6: if (!r) goto l7;
337  * n7: r=f; r=!r; l7: if (!r) goto F:
338  * T: return TRUE;
339  * F: return FALSE
340  *
341  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
342  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
343  * to go directly to T. To accomplish this, we start from the last
344  * entry in the program and work our way back. If the target of the entry
345  * has the same "when_to_branch" then we could use that entry's target.
346  * Doing this, the above would end up as:
347  *
348  * n1: r=a;       l1: if (!r) goto l4;
349  * n2: r=b;       l2: if (!r) goto l4;
350  * n3: r=c; r=!r; l3: if (r) goto T;
351  * n4: r=g; r=!r; l4: if (r) goto T;
352  * n5: r=d;       l5: if (r) goto T;
353  * n6: r=e;       l6: if (!r) goto F;
354  * n7: r=f; r=!r; l7: if (!r) goto F;
355  * T: return TRUE
356  * F: return FALSE
357  *
358  * In that same pass, if the "when_to_branch" doesn't match, we can simply
359  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
360  * where "l4: if (r) goto T;", then we can convert l2 to be:
361  * "l2: if (!r) goto n5;".
362  *
363  * This will have the second pass give us:
364  * n1: r=a;       l1: if (!r) goto n5;
365  * n2: r=b;       l2: if (!r) goto n5;
366  * n3: r=c; r=!r; l3: if (r) goto T;
367  * n4: r=g; r=!r; l4: if (r) goto T;
368  * n5: r=d;       l5: if (r) goto T
369  * n6: r=e;       l6: if (!r) goto F;
370  * n7: r=f; r=!r; l7: if (!r) goto F
371  * T: return TRUE
372  * F: return FALSE
373  *
374  * Notice, all the "l#" labels are no longer used, and they can now
375  * be discarded.
376  *
377  * ** THIRD PASS **
378  *
379  * For the third pass we deal with the inverts. As they simply just
380  * make the "when_to_branch" get inverted, a simple loop over the
381  * program to that does: "when_to_branch ^= invert;" will do the
382  * job, leaving us with:
383  * n1: r=a; if (!r) goto n5;
384  * n2: r=b; if (!r) goto n5;
385  * n3: r=c: if (!r) goto T;
386  * n4: r=g; if (!r) goto T;
387  * n5: r=d; if (r) goto T
388  * n6: r=e; if (!r) goto F;
389  * n7: r=f; if (r) goto F
390  * T: return TRUE
391  * F: return FALSE
392  *
393  * As "r = a; if (!r) goto n5;" is obviously the same as
394  * "if (!a) goto n5;" without doing anything we can interpret the
395  * program as:
396  * n1: if (!a) goto n5;
397  * n2: if (!b) goto n5;
398  * n3: if (!c) goto T;
399  * n4: if (!g) goto T;
400  * n5: if (d) goto T
401  * n6: if (!e) goto F;
402  * n7: if (f) goto F
403  * T: return TRUE
404  * F: return FALSE
405  *
406  * Since the inverts are discarded at the end, there's no reason to store
407  * them in the program array (and waste memory). A separate array to hold
408  * the inverts is used and freed at the end.
409  */
410 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)411 predicate_parse(const char *str, int nr_parens, int nr_preds,
412 		parse_pred_fn parse_pred, void *data,
413 		struct filter_parse_error *pe)
414 {
415 	struct prog_entry *prog_stack;
416 	struct prog_entry *prog;
417 	const char *ptr = str;
418 	char *inverts = NULL;
419 	int *op_stack;
420 	int *top;
421 	int invert = 0;
422 	int ret = -ENOMEM;
423 	int len;
424 	int N = 0;
425 	int i;
426 
427 	nr_preds += 2; /* For TRUE and FALSE */
428 
429 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
430 	if (!op_stack)
431 		return ERR_PTR(-ENOMEM);
432 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
433 	if (!prog_stack) {
434 		parse_error(pe, -ENOMEM, 0);
435 		goto out_free;
436 	}
437 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
438 	if (!inverts) {
439 		parse_error(pe, -ENOMEM, 0);
440 		goto out_free;
441 	}
442 
443 	top = op_stack;
444 	prog = prog_stack;
445 	*top = 0;
446 
447 	/* First pass */
448 	while (*ptr) {						/* #1 */
449 		const char *next = ptr++;
450 
451 		if (isspace(*next))
452 			continue;
453 
454 		switch (*next) {
455 		case '(':					/* #2 */
456 			if (top - op_stack > nr_parens) {
457 				ret = -EINVAL;
458 				goto out_free;
459 			}
460 			*(++top) = invert;
461 			continue;
462 		case '!':					/* #3 */
463 			if (!is_not(next))
464 				break;
465 			invert = !invert;
466 			continue;
467 		}
468 
469 		if (N >= nr_preds) {
470 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
471 			goto out_free;
472 		}
473 
474 		inverts[N] = invert;				/* #4 */
475 		prog[N].target = N-1;
476 
477 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
478 		if (len < 0) {
479 			ret = len;
480 			goto out_free;
481 		}
482 		ptr = next + len;
483 
484 		N++;
485 
486 		ret = -1;
487 		while (1) {					/* #5 */
488 			next = ptr++;
489 			if (isspace(*next))
490 				continue;
491 
492 			switch (*next) {
493 			case ')':
494 			case '\0':
495 				break;
496 			case '&':
497 			case '|':
498 				/* accepting only "&&" or "||" */
499 				if (next[1] == next[0]) {
500 					ptr++;
501 					break;
502 				}
503 				fallthrough;
504 			default:
505 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
506 					    next - str);
507 				goto out_free;
508 			}
509 
510 			invert = *top & INVERT;
511 
512 			if (*top & PROCESS_AND) {		/* #7 */
513 				update_preds(prog, N - 1, invert);
514 				*top &= ~PROCESS_AND;
515 			}
516 			if (*next == '&') {			/* #8 */
517 				*top |= PROCESS_AND;
518 				break;
519 			}
520 			if (*top & PROCESS_OR) {		/* #9 */
521 				update_preds(prog, N - 1, !invert);
522 				*top &= ~PROCESS_OR;
523 			}
524 			if (*next == '|') {			/* #10 */
525 				*top |= PROCESS_OR;
526 				break;
527 			}
528 			if (!*next)				/* #11 */
529 				goto out;
530 
531 			if (top == op_stack) {
532 				ret = -1;
533 				/* Too few '(' */
534 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
535 				goto out_free;
536 			}
537 			top--;					/* #12 */
538 		}
539 	}
540  out:
541 	if (top != op_stack) {
542 		/* Too many '(' */
543 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
544 		goto out_free;
545 	}
546 
547 	if (!N) {
548 		/* No program? */
549 		ret = -EINVAL;
550 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
551 		goto out_free;
552 	}
553 
554 	prog[N].pred = NULL;					/* #13 */
555 	prog[N].target = 1;		/* TRUE */
556 	prog[N+1].pred = NULL;
557 	prog[N+1].target = 0;		/* FALSE */
558 	prog[N-1].target = N;
559 	prog[N-1].when_to_branch = false;
560 
561 	/* Second Pass */
562 	for (i = N-1 ; i--; ) {
563 		int target = prog[i].target;
564 		if (prog[i].when_to_branch == prog[target].when_to_branch)
565 			prog[i].target = prog[target].target;
566 	}
567 
568 	/* Third Pass */
569 	for (i = 0; i < N; i++) {
570 		invert = inverts[i] ^ prog[i].when_to_branch;
571 		prog[i].when_to_branch = invert;
572 		/* Make sure the program always moves forward */
573 		if (WARN_ON(prog[i].target <= i)) {
574 			ret = -EINVAL;
575 			goto out_free;
576 		}
577 	}
578 
579 	kfree(op_stack);
580 	kfree(inverts);
581 	return prog;
582 out_free:
583 	kfree(op_stack);
584 	kfree(inverts);
585 	if (prog_stack) {
586 		for (i = 0; prog_stack[i].pred; i++)
587 			kfree(prog_stack[i].pred);
588 		kfree(prog_stack);
589 	}
590 	return ERR_PTR(ret);
591 }
592 
593 #define DEFINE_COMPARISON_PRED(type)					\
594 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
595 {									\
596 	type *addr = (type *)(event + pred->offset);			\
597 	type val = (type)pred->val;					\
598 	return *addr < val;						\
599 }									\
600 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
601 {									\
602 	type *addr = (type *)(event + pred->offset);			\
603 	type val = (type)pred->val;					\
604 	return *addr <= val;						\
605 }									\
606 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
607 {									\
608 	type *addr = (type *)(event + pred->offset);			\
609 	type val = (type)pred->val;					\
610 	return *addr > val;					\
611 }									\
612 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
613 {									\
614 	type *addr = (type *)(event + pred->offset);			\
615 	type val = (type)pred->val;					\
616 	return *addr >= val;						\
617 }									\
618 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
619 {									\
620 	type *addr = (type *)(event + pred->offset);			\
621 	type val = (type)pred->val;					\
622 	return !!(*addr & val);						\
623 }									\
624 static const filter_pred_fn_t pred_funcs_##type[] = {			\
625 	filter_pred_LE_##type,						\
626 	filter_pred_LT_##type,						\
627 	filter_pred_GE_##type,						\
628 	filter_pred_GT_##type,						\
629 	filter_pred_BAND_##type,					\
630 };
631 
632 #define DEFINE_EQUALITY_PRED(size)					\
633 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
634 {									\
635 	u##size *addr = (u##size *)(event + pred->offset);		\
636 	u##size val = (u##size)pred->val;				\
637 	int match;							\
638 									\
639 	match = (val == *addr) ^ pred->not;				\
640 									\
641 	return match;							\
642 }
643 
644 DEFINE_COMPARISON_PRED(s64);
645 DEFINE_COMPARISON_PRED(u64);
646 DEFINE_COMPARISON_PRED(s32);
647 DEFINE_COMPARISON_PRED(u32);
648 DEFINE_COMPARISON_PRED(s16);
649 DEFINE_COMPARISON_PRED(u16);
650 DEFINE_COMPARISON_PRED(s8);
651 DEFINE_COMPARISON_PRED(u8);
652 
653 DEFINE_EQUALITY_PRED(64);
654 DEFINE_EQUALITY_PRED(32);
655 DEFINE_EQUALITY_PRED(16);
656 DEFINE_EQUALITY_PRED(8);
657 
658 /* user space strings temp buffer */
659 #define USTRING_BUF_SIZE	1024
660 
661 struct ustring_buffer {
662 	char		buffer[USTRING_BUF_SIZE];
663 };
664 
665 static __percpu struct ustring_buffer *ustring_per_cpu;
666 
test_string(char * str)667 static __always_inline char *test_string(char *str)
668 {
669 	struct ustring_buffer *ubuf;
670 	char *kstr;
671 
672 	if (!ustring_per_cpu)
673 		return NULL;
674 
675 	ubuf = this_cpu_ptr(ustring_per_cpu);
676 	kstr = ubuf->buffer;
677 
678 	/* For safety, do not trust the string pointer */
679 	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
680 		return NULL;
681 	return kstr;
682 }
683 
test_ustring(char * str)684 static __always_inline char *test_ustring(char *str)
685 {
686 	struct ustring_buffer *ubuf;
687 	char __user *ustr;
688 	char *kstr;
689 
690 	if (!ustring_per_cpu)
691 		return NULL;
692 
693 	ubuf = this_cpu_ptr(ustring_per_cpu);
694 	kstr = ubuf->buffer;
695 
696 	/* user space address? */
697 	ustr = (char __user *)str;
698 	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
699 		return NULL;
700 
701 	return kstr;
702 }
703 
704 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)705 static int filter_pred_string(struct filter_pred *pred, void *event)
706 {
707 	char *addr = (char *)(event + pred->offset);
708 	int cmp, match;
709 
710 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
711 
712 	match = cmp ^ pred->not;
713 
714 	return match;
715 }
716 
filter_pchar(struct filter_pred * pred,char * str)717 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
718 {
719 	int cmp, match;
720 	int len;
721 
722 	len = strlen(str) + 1;	/* including tailing '\0' */
723 	cmp = pred->regex.match(str, &pred->regex, len);
724 
725 	match = cmp ^ pred->not;
726 
727 	return match;
728 }
729 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)730 static int filter_pred_pchar(struct filter_pred *pred, void *event)
731 {
732 	char **addr = (char **)(event + pred->offset);
733 	char *str;
734 
735 	str = test_string(*addr);
736 	if (!str)
737 		return 0;
738 
739 	return filter_pchar(pred, str);
740 }
741 
742 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)743 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
744 {
745 	char **addr = (char **)(event + pred->offset);
746 	char *str;
747 
748 	str = test_ustring(*addr);
749 	if (!str)
750 		return 0;
751 
752 	return filter_pchar(pred, str);
753 }
754 
755 /*
756  * Filter predicate for dynamic sized arrays of characters.
757  * These are implemented through a list of strings at the end
758  * of the entry.
759  * Also each of these strings have a field in the entry which
760  * contains its offset from the beginning of the entry.
761  * We have then first to get this field, dereference it
762  * and add it to the address of the entry, and at last we have
763  * the address of the string.
764  */
filter_pred_strloc(struct filter_pred * pred,void * event)765 static int filter_pred_strloc(struct filter_pred *pred, void *event)
766 {
767 	u32 str_item = *(u32 *)(event + pred->offset);
768 	int str_loc = str_item & 0xffff;
769 	int str_len = str_item >> 16;
770 	char *addr = (char *)(event + str_loc);
771 	int cmp, match;
772 
773 	cmp = pred->regex.match(addr, &pred->regex, str_len);
774 
775 	match = cmp ^ pred->not;
776 
777 	return match;
778 }
779 
780 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)781 static int filter_pred_cpu(struct filter_pred *pred, void *event)
782 {
783 	int cpu, cmp;
784 
785 	cpu = raw_smp_processor_id();
786 	cmp = pred->val;
787 
788 	switch (pred->op) {
789 	case OP_EQ:
790 		return cpu == cmp;
791 	case OP_NE:
792 		return cpu != cmp;
793 	case OP_LT:
794 		return cpu < cmp;
795 	case OP_LE:
796 		return cpu <= cmp;
797 	case OP_GT:
798 		return cpu > cmp;
799 	case OP_GE:
800 		return cpu >= cmp;
801 	default:
802 		return 0;
803 	}
804 }
805 
806 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)807 static int filter_pred_comm(struct filter_pred *pred, void *event)
808 {
809 	int cmp;
810 
811 	cmp = pred->regex.match(current->comm, &pred->regex,
812 				TASK_COMM_LEN);
813 	return cmp ^ pred->not;
814 }
815 
filter_pred_none(struct filter_pred * pred,void * event)816 static int filter_pred_none(struct filter_pred *pred, void *event)
817 {
818 	return 0;
819 }
820 
821 /*
822  * regex_match_foo - Basic regex callbacks
823  *
824  * @str: the string to be searched
825  * @r:   the regex structure containing the pattern string
826  * @len: the length of the string to be searched (including '\0')
827  *
828  * Note:
829  * - @str might not be NULL-terminated if it's of type DYN_STRING
830  *   or STATIC_STRING, unless @len is zero.
831  */
832 
regex_match_full(char * str,struct regex * r,int len)833 static int regex_match_full(char *str, struct regex *r, int len)
834 {
835 	/* len of zero means str is dynamic and ends with '\0' */
836 	if (!len)
837 		return strcmp(str, r->pattern) == 0;
838 
839 	return strncmp(str, r->pattern, len) == 0;
840 }
841 
regex_match_front(char * str,struct regex * r,int len)842 static int regex_match_front(char *str, struct regex *r, int len)
843 {
844 	if (len && len < r->len)
845 		return 0;
846 
847 	return strncmp(str, r->pattern, r->len) == 0;
848 }
849 
regex_match_middle(char * str,struct regex * r,int len)850 static int regex_match_middle(char *str, struct regex *r, int len)
851 {
852 	if (!len)
853 		return strstr(str, r->pattern) != NULL;
854 
855 	return strnstr(str, r->pattern, len) != NULL;
856 }
857 
regex_match_end(char * str,struct regex * r,int len)858 static int regex_match_end(char *str, struct regex *r, int len)
859 {
860 	int strlen = len - 1;
861 
862 	if (strlen >= r->len &&
863 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
864 		return 1;
865 	return 0;
866 }
867 
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)868 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
869 {
870 	if (glob_match(r->pattern, str))
871 		return 1;
872 	return 0;
873 }
874 
875 /**
876  * filter_parse_regex - parse a basic regex
877  * @buff:   the raw regex
878  * @len:    length of the regex
879  * @search: will point to the beginning of the string to compare
880  * @not:    tell whether the match will have to be inverted
881  *
882  * This passes in a buffer containing a regex and this function will
883  * set search to point to the search part of the buffer and
884  * return the type of search it is (see enum above).
885  * This does modify buff.
886  *
887  * Returns enum type.
888  *  search returns the pointer to use for comparison.
889  *  not returns 1 if buff started with a '!'
890  *     0 otherwise.
891  */
filter_parse_regex(char * buff,int len,char ** search,int * not)892 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
893 {
894 	int type = MATCH_FULL;
895 	int i;
896 
897 	if (buff[0] == '!') {
898 		*not = 1;
899 		buff++;
900 		len--;
901 	} else
902 		*not = 0;
903 
904 	*search = buff;
905 
906 	if (isdigit(buff[0]))
907 		return MATCH_INDEX;
908 
909 	for (i = 0; i < len; i++) {
910 		if (buff[i] == '*') {
911 			if (!i) {
912 				type = MATCH_END_ONLY;
913 			} else if (i == len - 1) {
914 				if (type == MATCH_END_ONLY)
915 					type = MATCH_MIDDLE_ONLY;
916 				else
917 					type = MATCH_FRONT_ONLY;
918 				buff[i] = 0;
919 				break;
920 			} else {	/* pattern continues, use full glob */
921 				return MATCH_GLOB;
922 			}
923 		} else if (strchr("[?\\", buff[i])) {
924 			return MATCH_GLOB;
925 		}
926 	}
927 	if (buff[0] == '*')
928 		*search = buff + 1;
929 
930 	return type;
931 }
932 
filter_build_regex(struct filter_pred * pred)933 static void filter_build_regex(struct filter_pred *pred)
934 {
935 	struct regex *r = &pred->regex;
936 	char *search;
937 	enum regex_type type = MATCH_FULL;
938 
939 	if (pred->op == OP_GLOB) {
940 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
941 		r->len = strlen(search);
942 		memmove(r->pattern, search, r->len+1);
943 	}
944 
945 	switch (type) {
946 	/* MATCH_INDEX should not happen, but if it does, match full */
947 	case MATCH_INDEX:
948 	case MATCH_FULL:
949 		r->match = regex_match_full;
950 		break;
951 	case MATCH_FRONT_ONLY:
952 		r->match = regex_match_front;
953 		break;
954 	case MATCH_MIDDLE_ONLY:
955 		r->match = regex_match_middle;
956 		break;
957 	case MATCH_END_ONLY:
958 		r->match = regex_match_end;
959 		break;
960 	case MATCH_GLOB:
961 		r->match = regex_match_glob;
962 		break;
963 	}
964 }
965 
966 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)967 int filter_match_preds(struct event_filter *filter, void *rec)
968 {
969 	struct prog_entry *prog;
970 	int i;
971 
972 	/* no filter is considered a match */
973 	if (!filter)
974 		return 1;
975 
976 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
977 	prog = rcu_dereference_raw(filter->prog);
978 	if (!prog)
979 		return 1;
980 
981 	for (i = 0; prog[i].pred; i++) {
982 		struct filter_pred *pred = prog[i].pred;
983 		int match = pred->fn(pred, rec);
984 		if (match == prog[i].when_to_branch)
985 			i = prog[i].target;
986 	}
987 	return prog[i].target;
988 }
989 EXPORT_SYMBOL_GPL(filter_match_preds);
990 
remove_filter_string(struct event_filter * filter)991 static void remove_filter_string(struct event_filter *filter)
992 {
993 	if (!filter)
994 		return;
995 
996 	kfree(filter->filter_string);
997 	filter->filter_string = NULL;
998 }
999 
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1000 static void append_filter_err(struct trace_array *tr,
1001 			      struct filter_parse_error *pe,
1002 			      struct event_filter *filter)
1003 {
1004 	struct trace_seq *s;
1005 	int pos = pe->lasterr_pos;
1006 	char *buf;
1007 	int len;
1008 
1009 	if (WARN_ON(!filter->filter_string))
1010 		return;
1011 
1012 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1013 	if (!s)
1014 		return;
1015 	trace_seq_init(s);
1016 
1017 	len = strlen(filter->filter_string);
1018 	if (pos > len)
1019 		pos = len;
1020 
1021 	/* indexing is off by one */
1022 	if (pos)
1023 		pos++;
1024 
1025 	trace_seq_puts(s, filter->filter_string);
1026 	if (pe->lasterr > 0) {
1027 		trace_seq_printf(s, "\n%*s", pos, "^");
1028 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1029 		tracing_log_err(tr, "event filter parse error",
1030 				filter->filter_string, err_text,
1031 				pe->lasterr, pe->lasterr_pos);
1032 	} else {
1033 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1034 		tracing_log_err(tr, "event filter parse error",
1035 				filter->filter_string, err_text,
1036 				FILT_ERR_ERRNO, 0);
1037 	}
1038 	trace_seq_putc(s, 0);
1039 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1040 	if (buf) {
1041 		kfree(filter->filter_string);
1042 		filter->filter_string = buf;
1043 	}
1044 	kfree(s);
1045 }
1046 
event_filter(struct trace_event_file * file)1047 static inline struct event_filter *event_filter(struct trace_event_file *file)
1048 {
1049 	return file->filter;
1050 }
1051 
1052 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1053 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1054 {
1055 	struct event_filter *filter = event_filter(file);
1056 
1057 	if (filter && filter->filter_string)
1058 		trace_seq_printf(s, "%s\n", filter->filter_string);
1059 	else
1060 		trace_seq_puts(s, "none\n");
1061 }
1062 
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1063 void print_subsystem_event_filter(struct event_subsystem *system,
1064 				  struct trace_seq *s)
1065 {
1066 	struct event_filter *filter;
1067 
1068 	mutex_lock(&event_mutex);
1069 	filter = system->filter;
1070 	if (filter && filter->filter_string)
1071 		trace_seq_printf(s, "%s\n", filter->filter_string);
1072 	else
1073 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1074 	mutex_unlock(&event_mutex);
1075 }
1076 
free_prog(struct event_filter * filter)1077 static void free_prog(struct event_filter *filter)
1078 {
1079 	struct prog_entry *prog;
1080 	int i;
1081 
1082 	prog = rcu_access_pointer(filter->prog);
1083 	if (!prog)
1084 		return;
1085 
1086 	for (i = 0; prog[i].pred; i++)
1087 		kfree(prog[i].pred);
1088 	kfree(prog);
1089 }
1090 
filter_disable(struct trace_event_file * file)1091 static void filter_disable(struct trace_event_file *file)
1092 {
1093 	unsigned long old_flags = file->flags;
1094 
1095 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1096 
1097 	if (old_flags != file->flags)
1098 		trace_buffered_event_disable();
1099 }
1100 
__free_filter(struct event_filter * filter)1101 static void __free_filter(struct event_filter *filter)
1102 {
1103 	if (!filter)
1104 		return;
1105 
1106 	free_prog(filter);
1107 	kfree(filter->filter_string);
1108 	kfree(filter);
1109 }
1110 
free_event_filter(struct event_filter * filter)1111 void free_event_filter(struct event_filter *filter)
1112 {
1113 	__free_filter(filter);
1114 }
1115 
__remove_filter(struct trace_event_file * file)1116 static inline void __remove_filter(struct trace_event_file *file)
1117 {
1118 	filter_disable(file);
1119 	remove_filter_string(file->filter);
1120 }
1121 
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1122 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1123 					struct trace_array *tr)
1124 {
1125 	struct trace_event_file *file;
1126 
1127 	list_for_each_entry(file, &tr->events, list) {
1128 		if (file->system != dir)
1129 			continue;
1130 		__remove_filter(file);
1131 	}
1132 }
1133 
__free_subsystem_filter(struct trace_event_file * file)1134 static inline void __free_subsystem_filter(struct trace_event_file *file)
1135 {
1136 	__free_filter(file->filter);
1137 	file->filter = NULL;
1138 }
1139 
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1140 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1141 					  struct trace_array *tr)
1142 {
1143 	struct trace_event_file *file;
1144 
1145 	list_for_each_entry(file, &tr->events, list) {
1146 		if (file->system != dir)
1147 			continue;
1148 		__free_subsystem_filter(file);
1149 	}
1150 }
1151 
filter_assign_type(const char * type)1152 int filter_assign_type(const char *type)
1153 {
1154 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1155 		return FILTER_DYN_STRING;
1156 
1157 	if (strchr(type, '[') && strstr(type, "char"))
1158 		return FILTER_STATIC_STRING;
1159 
1160 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1161 		return FILTER_PTR_STRING;
1162 
1163 	return FILTER_OTHER;
1164 }
1165 
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1166 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1167 					    int field_size, int field_is_signed)
1168 {
1169 	filter_pred_fn_t fn = NULL;
1170 	int pred_func_index = -1;
1171 
1172 	switch (op) {
1173 	case OP_EQ:
1174 	case OP_NE:
1175 		break;
1176 	default:
1177 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1178 			return NULL;
1179 		pred_func_index = op - PRED_FUNC_START;
1180 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1181 			return NULL;
1182 	}
1183 
1184 	switch (field_size) {
1185 	case 8:
1186 		if (pred_func_index < 0)
1187 			fn = filter_pred_64;
1188 		else if (field_is_signed)
1189 			fn = pred_funcs_s64[pred_func_index];
1190 		else
1191 			fn = pred_funcs_u64[pred_func_index];
1192 		break;
1193 	case 4:
1194 		if (pred_func_index < 0)
1195 			fn = filter_pred_32;
1196 		else if (field_is_signed)
1197 			fn = pred_funcs_s32[pred_func_index];
1198 		else
1199 			fn = pred_funcs_u32[pred_func_index];
1200 		break;
1201 	case 2:
1202 		if (pred_func_index < 0)
1203 			fn = filter_pred_16;
1204 		else if (field_is_signed)
1205 			fn = pred_funcs_s16[pred_func_index];
1206 		else
1207 			fn = pred_funcs_u16[pred_func_index];
1208 		break;
1209 	case 1:
1210 		if (pred_func_index < 0)
1211 			fn = filter_pred_8;
1212 		else if (field_is_signed)
1213 			fn = pred_funcs_s8[pred_func_index];
1214 		else
1215 			fn = pred_funcs_u8[pred_func_index];
1216 		break;
1217 	}
1218 
1219 	return fn;
1220 }
1221 
1222 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1223 static int parse_pred(const char *str, void *data,
1224 		      int pos, struct filter_parse_error *pe,
1225 		      struct filter_pred **pred_ptr)
1226 {
1227 	struct trace_event_call *call = data;
1228 	struct ftrace_event_field *field;
1229 	struct filter_pred *pred = NULL;
1230 	char num_buf[24];	/* Big enough to hold an address */
1231 	char *field_name;
1232 	bool ustring = false;
1233 	char q;
1234 	u64 val;
1235 	int len;
1236 	int ret;
1237 	int op;
1238 	int s;
1239 	int i = 0;
1240 
1241 	/* First find the field to associate to */
1242 	while (isspace(str[i]))
1243 		i++;
1244 	s = i;
1245 
1246 	while (isalnum(str[i]) || str[i] == '_')
1247 		i++;
1248 
1249 	len = i - s;
1250 
1251 	if (!len)
1252 		return -1;
1253 
1254 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1255 	if (!field_name)
1256 		return -ENOMEM;
1257 
1258 	/* Make sure that the field exists */
1259 
1260 	field = trace_find_event_field(call, field_name);
1261 	kfree(field_name);
1262 	if (!field) {
1263 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1264 		return -EINVAL;
1265 	}
1266 
1267 	/* See if the field is a user space string */
1268 	if ((len = str_has_prefix(str + i, ".ustring"))) {
1269 		ustring = true;
1270 		i += len;
1271 	}
1272 
1273 	while (isspace(str[i]))
1274 		i++;
1275 
1276 	/* Make sure this op is supported */
1277 	for (op = 0; ops[op]; op++) {
1278 		/* This is why '<=' must come before '<' in ops[] */
1279 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1280 			break;
1281 	}
1282 
1283 	if (!ops[op]) {
1284 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1285 		goto err_free;
1286 	}
1287 
1288 	i += strlen(ops[op]);
1289 
1290 	while (isspace(str[i]))
1291 		i++;
1292 
1293 	s = i;
1294 
1295 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1296 	if (!pred)
1297 		return -ENOMEM;
1298 
1299 	pred->field = field;
1300 	pred->offset = field->offset;
1301 	pred->op = op;
1302 
1303 	if (ftrace_event_is_function(call)) {
1304 		/*
1305 		 * Perf does things different with function events.
1306 		 * It only allows an "ip" field, and expects a string.
1307 		 * But the string does not need to be surrounded by quotes.
1308 		 * If it is a string, the assigned function as a nop,
1309 		 * (perf doesn't use it) and grab everything.
1310 		 */
1311 		if (strcmp(field->name, "ip") != 0) {
1312 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1313 			goto err_free;
1314 		}
1315 		pred->fn = filter_pred_none;
1316 
1317 		/*
1318 		 * Quotes are not required, but if they exist then we need
1319 		 * to read them till we hit a matching one.
1320 		 */
1321 		if (str[i] == '\'' || str[i] == '"')
1322 			q = str[i];
1323 		else
1324 			q = 0;
1325 
1326 		for (i++; str[i]; i++) {
1327 			if (q && str[i] == q)
1328 				break;
1329 			if (!q && (str[i] == ')' || str[i] == '&' ||
1330 				   str[i] == '|'))
1331 				break;
1332 		}
1333 		/* Skip quotes */
1334 		if (q)
1335 			s++;
1336 		len = i - s;
1337 		if (len >= MAX_FILTER_STR_VAL) {
1338 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1339 			goto err_free;
1340 		}
1341 
1342 		pred->regex.len = len;
1343 		strncpy(pred->regex.pattern, str + s, len);
1344 		pred->regex.pattern[len] = 0;
1345 
1346 	/* This is either a string, or an integer */
1347 	} else if (str[i] == '\'' || str[i] == '"') {
1348 		char q = str[i];
1349 
1350 		/* Make sure the op is OK for strings */
1351 		switch (op) {
1352 		case OP_NE:
1353 			pred->not = 1;
1354 			fallthrough;
1355 		case OP_GLOB:
1356 		case OP_EQ:
1357 			break;
1358 		default:
1359 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1360 			goto err_free;
1361 		}
1362 
1363 		/* Make sure the field is OK for strings */
1364 		if (!is_string_field(field)) {
1365 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1366 			goto err_free;
1367 		}
1368 
1369 		for (i++; str[i]; i++) {
1370 			if (str[i] == q)
1371 				break;
1372 		}
1373 		if (!str[i]) {
1374 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1375 			goto err_free;
1376 		}
1377 
1378 		/* Skip quotes */
1379 		s++;
1380 		len = i - s;
1381 		if (len >= MAX_FILTER_STR_VAL) {
1382 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1383 			goto err_free;
1384 		}
1385 
1386 		pred->regex.len = len;
1387 		strncpy(pred->regex.pattern, str + s, len);
1388 		pred->regex.pattern[len] = 0;
1389 
1390 		filter_build_regex(pred);
1391 
1392 		if (field->filter_type == FILTER_COMM) {
1393 			pred->fn = filter_pred_comm;
1394 
1395 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1396 			pred->fn = filter_pred_string;
1397 			pred->regex.field_len = field->size;
1398 
1399 		} else if (field->filter_type == FILTER_DYN_STRING)
1400 			pred->fn = filter_pred_strloc;
1401 		else {
1402 
1403 			if (!ustring_per_cpu) {
1404 				/* Once allocated, keep it around for good */
1405 				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1406 				if (!ustring_per_cpu)
1407 					goto err_mem;
1408 			}
1409 
1410 			if (ustring)
1411 				pred->fn = filter_pred_pchar_user;
1412 			else
1413 				pred->fn = filter_pred_pchar;
1414 		}
1415 		/* go past the last quote */
1416 		i++;
1417 
1418 	} else if (isdigit(str[i]) || str[i] == '-') {
1419 
1420 		/* Make sure the field is not a string */
1421 		if (is_string_field(field)) {
1422 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1423 			goto err_free;
1424 		}
1425 
1426 		if (op == OP_GLOB) {
1427 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1428 			goto err_free;
1429 		}
1430 
1431 		if (str[i] == '-')
1432 			i++;
1433 
1434 		/* We allow 0xDEADBEEF */
1435 		while (isalnum(str[i]))
1436 			i++;
1437 
1438 		len = i - s;
1439 		/* 0xfeedfacedeadbeef is 18 chars max */
1440 		if (len >= sizeof(num_buf)) {
1441 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1442 			goto err_free;
1443 		}
1444 
1445 		strncpy(num_buf, str + s, len);
1446 		num_buf[len] = 0;
1447 
1448 		/* Make sure it is a value */
1449 		if (field->is_signed)
1450 			ret = kstrtoll(num_buf, 0, &val);
1451 		else
1452 			ret = kstrtoull(num_buf, 0, &val);
1453 		if (ret) {
1454 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1455 			goto err_free;
1456 		}
1457 
1458 		pred->val = val;
1459 
1460 		if (field->filter_type == FILTER_CPU)
1461 			pred->fn = filter_pred_cpu;
1462 		else {
1463 			pred->fn = select_comparison_fn(pred->op, field->size,
1464 							field->is_signed);
1465 			if (pred->op == OP_NE)
1466 				pred->not = 1;
1467 		}
1468 
1469 	} else {
1470 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1471 		goto err_free;
1472 	}
1473 
1474 	*pred_ptr = pred;
1475 	return i;
1476 
1477 err_free:
1478 	kfree(pred);
1479 	return -EINVAL;
1480 err_mem:
1481 	kfree(pred);
1482 	return -ENOMEM;
1483 }
1484 
1485 enum {
1486 	TOO_MANY_CLOSE		= -1,
1487 	TOO_MANY_OPEN		= -2,
1488 	MISSING_QUOTE		= -3,
1489 };
1490 
1491 /*
1492  * Read the filter string once to calculate the number of predicates
1493  * as well as how deep the parentheses go.
1494  *
1495  * Returns:
1496  *   0 - everything is fine (err is undefined)
1497  *  -1 - too many ')'
1498  *  -2 - too many '('
1499  *  -3 - No matching quote
1500  */
calc_stack(const char * str,int * parens,int * preds,int * err)1501 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1502 {
1503 	bool is_pred = false;
1504 	int nr_preds = 0;
1505 	int open = 1; /* Count the expression as "(E)" */
1506 	int last_quote = 0;
1507 	int max_open = 1;
1508 	int quote = 0;
1509 	int i;
1510 
1511 	*err = 0;
1512 
1513 	for (i = 0; str[i]; i++) {
1514 		if (isspace(str[i]))
1515 			continue;
1516 		if (quote) {
1517 			if (str[i] == quote)
1518 			       quote = 0;
1519 			continue;
1520 		}
1521 
1522 		switch (str[i]) {
1523 		case '\'':
1524 		case '"':
1525 			quote = str[i];
1526 			last_quote = i;
1527 			break;
1528 		case '|':
1529 		case '&':
1530 			if (str[i+1] != str[i])
1531 				break;
1532 			is_pred = false;
1533 			continue;
1534 		case '(':
1535 			is_pred = false;
1536 			open++;
1537 			if (open > max_open)
1538 				max_open = open;
1539 			continue;
1540 		case ')':
1541 			is_pred = false;
1542 			if (open == 1) {
1543 				*err = i;
1544 				return TOO_MANY_CLOSE;
1545 			}
1546 			open--;
1547 			continue;
1548 		}
1549 		if (!is_pred) {
1550 			nr_preds++;
1551 			is_pred = true;
1552 		}
1553 	}
1554 
1555 	if (quote) {
1556 		*err = last_quote;
1557 		return MISSING_QUOTE;
1558 	}
1559 
1560 	if (open != 1) {
1561 		int level = open;
1562 
1563 		/* find the bad open */
1564 		for (i--; i; i--) {
1565 			if (quote) {
1566 				if (str[i] == quote)
1567 					quote = 0;
1568 				continue;
1569 			}
1570 			switch (str[i]) {
1571 			case '(':
1572 				if (level == open) {
1573 					*err = i;
1574 					return TOO_MANY_OPEN;
1575 				}
1576 				level--;
1577 				break;
1578 			case ')':
1579 				level++;
1580 				break;
1581 			case '\'':
1582 			case '"':
1583 				quote = str[i];
1584 				break;
1585 			}
1586 		}
1587 		/* First character is the '(' with missing ')' */
1588 		*err = 0;
1589 		return TOO_MANY_OPEN;
1590 	}
1591 
1592 	/* Set the size of the required stacks */
1593 	*parens = max_open;
1594 	*preds = nr_preds;
1595 	return 0;
1596 }
1597 
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)1598 static int process_preds(struct trace_event_call *call,
1599 			 const char *filter_string,
1600 			 struct event_filter *filter,
1601 			 struct filter_parse_error *pe)
1602 {
1603 	struct prog_entry *prog;
1604 	int nr_parens;
1605 	int nr_preds;
1606 	int index;
1607 	int ret;
1608 
1609 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1610 	if (ret < 0) {
1611 		switch (ret) {
1612 		case MISSING_QUOTE:
1613 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1614 			break;
1615 		case TOO_MANY_OPEN:
1616 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1617 			break;
1618 		default:
1619 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1620 		}
1621 		return ret;
1622 	}
1623 
1624 	if (!nr_preds)
1625 		return -EINVAL;
1626 
1627 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1628 			       parse_pred, call, pe);
1629 	if (IS_ERR(prog))
1630 		return PTR_ERR(prog);
1631 
1632 	rcu_assign_pointer(filter->prog, prog);
1633 	return 0;
1634 }
1635 
event_set_filtered_flag(struct trace_event_file * file)1636 static inline void event_set_filtered_flag(struct trace_event_file *file)
1637 {
1638 	unsigned long old_flags = file->flags;
1639 
1640 	file->flags |= EVENT_FILE_FL_FILTERED;
1641 
1642 	if (old_flags != file->flags)
1643 		trace_buffered_event_enable();
1644 }
1645 
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1646 static inline void event_set_filter(struct trace_event_file *file,
1647 				    struct event_filter *filter)
1648 {
1649 	rcu_assign_pointer(file->filter, filter);
1650 }
1651 
event_clear_filter(struct trace_event_file * file)1652 static inline void event_clear_filter(struct trace_event_file *file)
1653 {
1654 	RCU_INIT_POINTER(file->filter, NULL);
1655 }
1656 
1657 struct filter_list {
1658 	struct list_head	list;
1659 	struct event_filter	*filter;
1660 };
1661 
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)1662 static int process_system_preds(struct trace_subsystem_dir *dir,
1663 				struct trace_array *tr,
1664 				struct filter_parse_error *pe,
1665 				char *filter_string)
1666 {
1667 	struct trace_event_file *file;
1668 	struct filter_list *filter_item;
1669 	struct event_filter *filter = NULL;
1670 	struct filter_list *tmp;
1671 	LIST_HEAD(filter_list);
1672 	bool fail = true;
1673 	int err;
1674 
1675 	list_for_each_entry(file, &tr->events, list) {
1676 
1677 		if (file->system != dir)
1678 			continue;
1679 
1680 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1681 		if (!filter)
1682 			goto fail_mem;
1683 
1684 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1685 		if (!filter->filter_string)
1686 			goto fail_mem;
1687 
1688 		err = process_preds(file->event_call, filter_string, filter, pe);
1689 		if (err) {
1690 			filter_disable(file);
1691 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1692 			append_filter_err(tr, pe, filter);
1693 		} else
1694 			event_set_filtered_flag(file);
1695 
1696 
1697 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1698 		if (!filter_item)
1699 			goto fail_mem;
1700 
1701 		list_add_tail(&filter_item->list, &filter_list);
1702 		/*
1703 		 * Regardless of if this returned an error, we still
1704 		 * replace the filter for the call.
1705 		 */
1706 		filter_item->filter = event_filter(file);
1707 		event_set_filter(file, filter);
1708 		filter = NULL;
1709 
1710 		fail = false;
1711 	}
1712 
1713 	if (fail)
1714 		goto fail;
1715 
1716 	/*
1717 	 * The calls can still be using the old filters.
1718 	 * Do a synchronize_rcu() and to ensure all calls are
1719 	 * done with them before we free them.
1720 	 */
1721 	tracepoint_synchronize_unregister();
1722 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1723 		__free_filter(filter_item->filter);
1724 		list_del(&filter_item->list);
1725 		kfree(filter_item);
1726 	}
1727 	return 0;
1728  fail:
1729 	/* No call succeeded */
1730 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1731 		list_del(&filter_item->list);
1732 		kfree(filter_item);
1733 	}
1734 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1735 	return -EINVAL;
1736  fail_mem:
1737 	__free_filter(filter);
1738 	/* If any call succeeded, we still need to sync */
1739 	if (!fail)
1740 		tracepoint_synchronize_unregister();
1741 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1742 		__free_filter(filter_item->filter);
1743 		list_del(&filter_item->list);
1744 		kfree(filter_item);
1745 	}
1746 	return -ENOMEM;
1747 }
1748 
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)1749 static int create_filter_start(char *filter_string, bool set_str,
1750 			       struct filter_parse_error **pse,
1751 			       struct event_filter **filterp)
1752 {
1753 	struct event_filter *filter;
1754 	struct filter_parse_error *pe = NULL;
1755 	int err = 0;
1756 
1757 	if (WARN_ON_ONCE(*pse || *filterp))
1758 		return -EINVAL;
1759 
1760 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1761 	if (filter && set_str) {
1762 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1763 		if (!filter->filter_string)
1764 			err = -ENOMEM;
1765 	}
1766 
1767 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1768 
1769 	if (!filter || !pe || err) {
1770 		kfree(pe);
1771 		__free_filter(filter);
1772 		return -ENOMEM;
1773 	}
1774 
1775 	/* we're committed to creating a new filter */
1776 	*filterp = filter;
1777 	*pse = pe;
1778 
1779 	return 0;
1780 }
1781 
create_filter_finish(struct filter_parse_error * pe)1782 static void create_filter_finish(struct filter_parse_error *pe)
1783 {
1784 	kfree(pe);
1785 }
1786 
1787 /**
1788  * create_filter - create a filter for a trace_event_call
1789  * @tr: the trace array associated with these events
1790  * @call: trace_event_call to create a filter for
1791  * @filter_str: filter string
1792  * @set_str: remember @filter_str and enable detailed error in filter
1793  * @filterp: out param for created filter (always updated on return)
1794  *           Must be a pointer that references a NULL pointer.
1795  *
1796  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1797  * @filter_str is copied and recorded in the new filter.
1798  *
1799  * On success, returns 0 and *@filterp points to the new filter.  On
1800  * failure, returns -errno and *@filterp may point to %NULL or to a new
1801  * filter.  In the latter case, the returned filter contains error
1802  * information if @set_str is %true and the caller is responsible for
1803  * freeing it.
1804  */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)1805 static int create_filter(struct trace_array *tr,
1806 			 struct trace_event_call *call,
1807 			 char *filter_string, bool set_str,
1808 			 struct event_filter **filterp)
1809 {
1810 	struct filter_parse_error *pe = NULL;
1811 	int err;
1812 
1813 	/* filterp must point to NULL */
1814 	if (WARN_ON(*filterp))
1815 		*filterp = NULL;
1816 
1817 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1818 	if (err)
1819 		return err;
1820 
1821 	err = process_preds(call, filter_string, *filterp, pe);
1822 	if (err && set_str)
1823 		append_filter_err(tr, pe, *filterp);
1824 	create_filter_finish(pe);
1825 
1826 	return err;
1827 }
1828 
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)1829 int create_event_filter(struct trace_array *tr,
1830 			struct trace_event_call *call,
1831 			char *filter_str, bool set_str,
1832 			struct event_filter **filterp)
1833 {
1834 	return create_filter(tr, call, filter_str, set_str, filterp);
1835 }
1836 
1837 /**
1838  * create_system_filter - create a filter for an event subsystem
1839  * @dir: the descriptor for the subsystem directory
1840  * @filter_str: filter string
1841  * @filterp: out param for created filter (always updated on return)
1842  *
1843  * Identical to create_filter() except that it creates a subsystem filter
1844  * and always remembers @filter_str.
1845  */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)1846 static int create_system_filter(struct trace_subsystem_dir *dir,
1847 				char *filter_str, struct event_filter **filterp)
1848 {
1849 	struct filter_parse_error *pe = NULL;
1850 	int err;
1851 
1852 	err = create_filter_start(filter_str, true, &pe, filterp);
1853 	if (!err) {
1854 		err = process_system_preds(dir, dir->tr, pe, filter_str);
1855 		if (!err) {
1856 			/* System filters just show a default message */
1857 			kfree((*filterp)->filter_string);
1858 			(*filterp)->filter_string = NULL;
1859 		} else {
1860 			append_filter_err(dir->tr, pe, *filterp);
1861 		}
1862 	}
1863 	create_filter_finish(pe);
1864 
1865 	return err;
1866 }
1867 
1868 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)1869 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1870 {
1871 	struct trace_event_call *call = file->event_call;
1872 	struct event_filter *filter = NULL;
1873 	int err;
1874 
1875 	if (!strcmp(strstrip(filter_string), "0")) {
1876 		filter_disable(file);
1877 		filter = event_filter(file);
1878 
1879 		if (!filter)
1880 			return 0;
1881 
1882 		event_clear_filter(file);
1883 
1884 		/* Make sure the filter is not being used */
1885 		tracepoint_synchronize_unregister();
1886 		__free_filter(filter);
1887 
1888 		return 0;
1889 	}
1890 
1891 	err = create_filter(file->tr, call, filter_string, true, &filter);
1892 
1893 	/*
1894 	 * Always swap the call filter with the new filter
1895 	 * even if there was an error. If there was an error
1896 	 * in the filter, we disable the filter and show the error
1897 	 * string
1898 	 */
1899 	if (filter) {
1900 		struct event_filter *tmp;
1901 
1902 		tmp = event_filter(file);
1903 		if (!err)
1904 			event_set_filtered_flag(file);
1905 		else
1906 			filter_disable(file);
1907 
1908 		event_set_filter(file, filter);
1909 
1910 		if (tmp) {
1911 			/* Make sure the call is done with the filter */
1912 			tracepoint_synchronize_unregister();
1913 			__free_filter(tmp);
1914 		}
1915 	}
1916 
1917 	return err;
1918 }
1919 
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)1920 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1921 				 char *filter_string)
1922 {
1923 	struct event_subsystem *system = dir->subsystem;
1924 	struct trace_array *tr = dir->tr;
1925 	struct event_filter *filter = NULL;
1926 	int err = 0;
1927 
1928 	mutex_lock(&event_mutex);
1929 
1930 	/* Make sure the system still has events */
1931 	if (!dir->nr_events) {
1932 		err = -ENODEV;
1933 		goto out_unlock;
1934 	}
1935 
1936 	if (!strcmp(strstrip(filter_string), "0")) {
1937 		filter_free_subsystem_preds(dir, tr);
1938 		remove_filter_string(system->filter);
1939 		filter = system->filter;
1940 		system->filter = NULL;
1941 		/* Ensure all filters are no longer used */
1942 		tracepoint_synchronize_unregister();
1943 		filter_free_subsystem_filters(dir, tr);
1944 		__free_filter(filter);
1945 		goto out_unlock;
1946 	}
1947 
1948 	err = create_system_filter(dir, filter_string, &filter);
1949 	if (filter) {
1950 		/*
1951 		 * No event actually uses the system filter
1952 		 * we can free it without synchronize_rcu().
1953 		 */
1954 		__free_filter(system->filter);
1955 		system->filter = filter;
1956 	}
1957 out_unlock:
1958 	mutex_unlock(&event_mutex);
1959 
1960 	return err;
1961 }
1962 
1963 #ifdef CONFIG_PERF_EVENTS
1964 
ftrace_profile_free_filter(struct perf_event * event)1965 void ftrace_profile_free_filter(struct perf_event *event)
1966 {
1967 	struct event_filter *filter = event->filter;
1968 
1969 	event->filter = NULL;
1970 	__free_filter(filter);
1971 }
1972 
1973 struct function_filter_data {
1974 	struct ftrace_ops *ops;
1975 	int first_filter;
1976 	int first_notrace;
1977 };
1978 
1979 #ifdef CONFIG_FUNCTION_TRACER
1980 static char **
ftrace_function_filter_re(char * buf,int len,int * count)1981 ftrace_function_filter_re(char *buf, int len, int *count)
1982 {
1983 	char *str, **re;
1984 
1985 	str = kstrndup(buf, len, GFP_KERNEL);
1986 	if (!str)
1987 		return NULL;
1988 
1989 	/*
1990 	 * The argv_split function takes white space
1991 	 * as a separator, so convert ',' into spaces.
1992 	 */
1993 	strreplace(str, ',', ' ');
1994 
1995 	re = argv_split(GFP_KERNEL, str, count);
1996 	kfree(str);
1997 	return re;
1998 }
1999 
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2000 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2001 				      int reset, char *re, int len)
2002 {
2003 	int ret;
2004 
2005 	if (filter)
2006 		ret = ftrace_set_filter(ops, re, len, reset);
2007 	else
2008 		ret = ftrace_set_notrace(ops, re, len, reset);
2009 
2010 	return ret;
2011 }
2012 
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2013 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2014 					struct function_filter_data *data)
2015 {
2016 	int i, re_cnt, ret = -EINVAL;
2017 	int *reset;
2018 	char **re;
2019 
2020 	reset = filter ? &data->first_filter : &data->first_notrace;
2021 
2022 	/*
2023 	 * The 'ip' field could have multiple filters set, separated
2024 	 * either by space or comma. We first cut the filter and apply
2025 	 * all pieces separately.
2026 	 */
2027 	re = ftrace_function_filter_re(buf, len, &re_cnt);
2028 	if (!re)
2029 		return -EINVAL;
2030 
2031 	for (i = 0; i < re_cnt; i++) {
2032 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2033 						 re[i], strlen(re[i]));
2034 		if (ret)
2035 			break;
2036 
2037 		if (*reset)
2038 			*reset = 0;
2039 	}
2040 
2041 	argv_free(re);
2042 	return ret;
2043 }
2044 
ftrace_function_check_pred(struct filter_pred * pred)2045 static int ftrace_function_check_pred(struct filter_pred *pred)
2046 {
2047 	struct ftrace_event_field *field = pred->field;
2048 
2049 	/*
2050 	 * Check the predicate for function trace, verify:
2051 	 *  - only '==' and '!=' is used
2052 	 *  - the 'ip' field is used
2053 	 */
2054 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2055 		return -EINVAL;
2056 
2057 	if (strcmp(field->name, "ip"))
2058 		return -EINVAL;
2059 
2060 	return 0;
2061 }
2062 
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2063 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2064 					   struct function_filter_data *data)
2065 {
2066 	int ret;
2067 
2068 	/* Checking the node is valid for function trace. */
2069 	ret = ftrace_function_check_pred(pred);
2070 	if (ret)
2071 		return ret;
2072 
2073 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2074 					    pred->regex.pattern,
2075 					    pred->regex.len,
2076 					    data);
2077 }
2078 
is_or(struct prog_entry * prog,int i)2079 static bool is_or(struct prog_entry *prog, int i)
2080 {
2081 	int target;
2082 
2083 	/*
2084 	 * Only "||" is allowed for function events, thus,
2085 	 * all true branches should jump to true, and any
2086 	 * false branch should jump to false.
2087 	 */
2088 	target = prog[i].target + 1;
2089 	/* True and false have NULL preds (all prog entries should jump to one */
2090 	if (prog[target].pred)
2091 		return false;
2092 
2093 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2094 	return prog[i].when_to_branch == prog[target].target;
2095 }
2096 
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2097 static int ftrace_function_set_filter(struct perf_event *event,
2098 				      struct event_filter *filter)
2099 {
2100 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2101 						lockdep_is_held(&event_mutex));
2102 	struct function_filter_data data = {
2103 		.first_filter  = 1,
2104 		.first_notrace = 1,
2105 		.ops           = &event->ftrace_ops,
2106 	};
2107 	int i;
2108 
2109 	for (i = 0; prog[i].pred; i++) {
2110 		struct filter_pred *pred = prog[i].pred;
2111 
2112 		if (!is_or(prog, i))
2113 			return -EINVAL;
2114 
2115 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2116 			return -EINVAL;
2117 	}
2118 	return 0;
2119 }
2120 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2121 static int ftrace_function_set_filter(struct perf_event *event,
2122 				      struct event_filter *filter)
2123 {
2124 	return -ENODEV;
2125 }
2126 #endif /* CONFIG_FUNCTION_TRACER */
2127 
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2128 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2129 			      char *filter_str)
2130 {
2131 	int err;
2132 	struct event_filter *filter = NULL;
2133 	struct trace_event_call *call;
2134 
2135 	mutex_lock(&event_mutex);
2136 
2137 	call = event->tp_event;
2138 
2139 	err = -EINVAL;
2140 	if (!call)
2141 		goto out_unlock;
2142 
2143 	err = -EEXIST;
2144 	if (event->filter)
2145 		goto out_unlock;
2146 
2147 	err = create_filter(NULL, call, filter_str, false, &filter);
2148 	if (err)
2149 		goto free_filter;
2150 
2151 	if (ftrace_event_is_function(call))
2152 		err = ftrace_function_set_filter(event, filter);
2153 	else
2154 		event->filter = filter;
2155 
2156 free_filter:
2157 	if (err || ftrace_event_is_function(call))
2158 		__free_filter(filter);
2159 
2160 out_unlock:
2161 	mutex_unlock(&event_mutex);
2162 
2163 	return err;
2164 }
2165 
2166 #endif /* CONFIG_PERF_EVENTS */
2167 
2168 #ifdef CONFIG_FTRACE_STARTUP_TEST
2169 
2170 #include <linux/types.h>
2171 #include <linux/tracepoint.h>
2172 
2173 #define CREATE_TRACE_POINTS
2174 #include "trace_events_filter_test.h"
2175 
2176 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2177 { \
2178 	.filter = FILTER, \
2179 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2180 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2181 	.match  = m, \
2182 	.not_visited = nvisit, \
2183 }
2184 #define YES 1
2185 #define NO  0
2186 
2187 static struct test_filter_data_t {
2188 	char *filter;
2189 	struct trace_event_raw_ftrace_test_filter rec;
2190 	int match;
2191 	char *not_visited;
2192 } test_filter_data[] = {
2193 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2194 	       "e == 1 && f == 1 && g == 1 && h == 1"
2195 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2196 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2197 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2198 #undef FILTER
2199 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2200 	       "e == 1 || f == 1 || g == 1 || h == 1"
2201 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2202 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2203 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2204 #undef FILTER
2205 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2206 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2207 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2208 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2209 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2210 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2211 #undef FILTER
2212 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2213 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2214 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2215 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2216 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2217 #undef FILTER
2218 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2219 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2220 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2221 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2222 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2223 #undef FILTER
2224 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2225 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2226 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2227 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2228 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2229 #undef FILTER
2230 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2231 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2232 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2233 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2234 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2235 #undef FILTER
2236 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2237 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2238 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2239 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2240 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2241 };
2242 
2243 #undef DATA_REC
2244 #undef FILTER
2245 #undef YES
2246 #undef NO
2247 
2248 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2249 
2250 static int test_pred_visited;
2251 
test_pred_visited_fn(struct filter_pred * pred,void * event)2252 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2253 {
2254 	struct ftrace_event_field *field = pred->field;
2255 
2256 	test_pred_visited = 1;
2257 	printk(KERN_INFO "\npred visited %s\n", field->name);
2258 	return 1;
2259 }
2260 
update_pred_fn(struct event_filter * filter,char * fields)2261 static void update_pred_fn(struct event_filter *filter, char *fields)
2262 {
2263 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2264 						lockdep_is_held(&event_mutex));
2265 	int i;
2266 
2267 	for (i = 0; prog[i].pred; i++) {
2268 		struct filter_pred *pred = prog[i].pred;
2269 		struct ftrace_event_field *field = pred->field;
2270 
2271 		WARN_ON_ONCE(!pred->fn);
2272 
2273 		if (!field) {
2274 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2275 			continue;
2276 		}
2277 
2278 		if (!strchr(fields, *field->name))
2279 			continue;
2280 
2281 		pred->fn = test_pred_visited_fn;
2282 	}
2283 }
2284 
ftrace_test_event_filter(void)2285 static __init int ftrace_test_event_filter(void)
2286 {
2287 	int i;
2288 
2289 	printk(KERN_INFO "Testing ftrace filter: ");
2290 
2291 	for (i = 0; i < DATA_CNT; i++) {
2292 		struct event_filter *filter = NULL;
2293 		struct test_filter_data_t *d = &test_filter_data[i];
2294 		int err;
2295 
2296 		err = create_filter(NULL, &event_ftrace_test_filter,
2297 				    d->filter, false, &filter);
2298 		if (err) {
2299 			printk(KERN_INFO
2300 			       "Failed to get filter for '%s', err %d\n",
2301 			       d->filter, err);
2302 			__free_filter(filter);
2303 			break;
2304 		}
2305 
2306 		/* Needed to dereference filter->prog */
2307 		mutex_lock(&event_mutex);
2308 		/*
2309 		 * The preemption disabling is not really needed for self
2310 		 * tests, but the rcu dereference will complain without it.
2311 		 */
2312 		preempt_disable();
2313 		if (*d->not_visited)
2314 			update_pred_fn(filter, d->not_visited);
2315 
2316 		test_pred_visited = 0;
2317 		err = filter_match_preds(filter, &d->rec);
2318 		preempt_enable();
2319 
2320 		mutex_unlock(&event_mutex);
2321 
2322 		__free_filter(filter);
2323 
2324 		if (test_pred_visited) {
2325 			printk(KERN_INFO
2326 			       "Failed, unwanted pred visited for filter %s\n",
2327 			       d->filter);
2328 			break;
2329 		}
2330 
2331 		if (err != d->match) {
2332 			printk(KERN_INFO
2333 			       "Failed to match filter '%s', expected %d\n",
2334 			       d->filter, d->match);
2335 			break;
2336 		}
2337 	}
2338 
2339 	if (i == DATA_CNT)
2340 		printk(KERN_CONT "OK\n");
2341 
2342 	return 0;
2343 }
2344 
2345 late_initcall(ftrace_test_event_filter);
2346 
2347 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2348