1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14
15 #include "trace.h"
16 #include "trace_output.h"
17
18 #define DEFAULT_SYS_FILTER_MESSAGE \
19 "### global filter ###\n" \
20 "# Use this to set filters for multiple events.\n" \
21 "# Only events with the given fields will be affected.\n" \
22 "# If no events are modified, an error message will be displayed here"
23
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS \
26 C( OP_GLOB, "~" ), \
27 C( OP_NE, "!=" ), \
28 C( OP_EQ, "==" ), \
29 C( OP_LE, "<=" ), \
30 C( OP_LT, "<" ), \
31 C( OP_GE, ">=" ), \
32 C( OP_GT, ">" ), \
33 C( OP_BAND, "&" ), \
34 C( OP_MAX, NULL )
35
36 #undef C
37 #define C(a, b) a
38
39 enum filter_op_ids { OPS };
40
41 #undef C
42 #define C(a, b) b
43
44 static const char * ops[] = { OPS };
45
46 /*
47 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
48 * pred_funcs_##type below must match the order of them above.
49 */
50 #define PRED_FUNC_START OP_LE
51 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
52
53 #define ERRORS \
54 C(NONE, "No error"), \
55 C(INVALID_OP, "Invalid operator"), \
56 C(TOO_MANY_OPEN, "Too many '('"), \
57 C(TOO_MANY_CLOSE, "Too few '('"), \
58 C(MISSING_QUOTE, "Missing matching quote"), \
59 C(OPERAND_TOO_LONG, "Operand too long"), \
60 C(EXPECT_STRING, "Expecting string field"), \
61 C(EXPECT_DIGIT, "Expecting numeric field"), \
62 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
63 C(FIELD_NOT_FOUND, "Field not found"), \
64 C(ILLEGAL_INTVAL, "Illegal integer value"), \
65 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
66 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
67 C(INVALID_FILTER, "Meaningless filter expression"), \
68 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
69 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
70 C(ERRNO, "Error"), \
71 C(NO_FILTER, "No filter found")
72
73 #undef C
74 #define C(a, b) FILT_ERR_##a
75
76 enum { ERRORS };
77
78 #undef C
79 #define C(a, b) b
80
81 static const char *err_text[] = { ERRORS };
82
83 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)84 static bool is_not(const char *str)
85 {
86 switch (str[1]) {
87 case '=':
88 case '~':
89 return false;
90 }
91 return true;
92 }
93
94 /**
95 * prog_entry - a singe entry in the filter program
96 * @target: Index to jump to on a branch (actually one minus the index)
97 * @when_to_branch: The value of the result of the predicate to do a branch
98 * @pred: The predicate to execute.
99 */
100 struct prog_entry {
101 int target;
102 int when_to_branch;
103 struct filter_pred *pred;
104 };
105
106 /**
107 * update_preds- assign a program entry a label target
108 * @prog: The program array
109 * @N: The index of the current entry in @prog
110 * @when_to_branch: What to assign a program entry for its branch condition
111 *
112 * The program entry at @N has a target that points to the index of a program
113 * entry that can have its target and when_to_branch fields updated.
114 * Update the current program entry denoted by index @N target field to be
115 * that of the updated entry. This will denote the entry to update if
116 * we are processing an "||" after an "&&"
117 */
update_preds(struct prog_entry * prog,int N,int invert)118 static void update_preds(struct prog_entry *prog, int N, int invert)
119 {
120 int t, s;
121
122 t = prog[N].target;
123 s = prog[t].target;
124 prog[t].when_to_branch = invert;
125 prog[t].target = N;
126 prog[N].target = s;
127 }
128
129 struct filter_parse_error {
130 int lasterr;
131 int lasterr_pos;
132 };
133
parse_error(struct filter_parse_error * pe,int err,int pos)134 static void parse_error(struct filter_parse_error *pe, int err, int pos)
135 {
136 pe->lasterr = err;
137 pe->lasterr_pos = pos;
138 }
139
140 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
141 struct filter_parse_error *pe,
142 struct filter_pred **pred);
143
144 enum {
145 INVERT = 1,
146 PROCESS_AND = 2,
147 PROCESS_OR = 4,
148 };
149
150 /*
151 * Without going into a formal proof, this explains the method that is used in
152 * parsing the logical expressions.
153 *
154 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
155 * The first pass will convert it into the following program:
156 *
157 * n1: r=a; l1: if (!r) goto l4;
158 * n2: r=b; l2: if (!r) goto l4;
159 * n3: r=c; r=!r; l3: if (r) goto l4;
160 * n4: r=g; r=!r; l4: if (r) goto l5;
161 * n5: r=d; l5: if (r) goto T
162 * n6: r=e; l6: if (!r) goto l7;
163 * n7: r=f; r=!r; l7: if (!r) goto F
164 * T: return TRUE
165 * F: return FALSE
166 *
167 * To do this, we use a data structure to represent each of the above
168 * predicate and conditions that has:
169 *
170 * predicate, when_to_branch, invert, target
171 *
172 * The "predicate" will hold the function to determine the result "r".
173 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
174 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
175 * The "invert" holds whether the value should be reversed before testing.
176 * The "target" contains the label "l#" to jump to.
177 *
178 * A stack is created to hold values when parentheses are used.
179 *
180 * To simplify the logic, the labels will start at 0 and not 1.
181 *
182 * The possible invert values are 1 and 0. The number of "!"s that are in scope
183 * before the predicate determines the invert value, if the number is odd then
184 * the invert value is 1 and 0 otherwise. This means the invert value only
185 * needs to be toggled when a new "!" is introduced compared to what is stored
186 * on the stack, where parentheses were used.
187 *
188 * The top of the stack and "invert" are initialized to zero.
189 *
190 * ** FIRST PASS **
191 *
192 * #1 A loop through all the tokens is done:
193 *
194 * #2 If the token is an "(", the stack is push, and the current stack value
195 * gets the current invert value, and the loop continues to the next token.
196 * The top of the stack saves the "invert" value to keep track of what
197 * the current inversion is. As "!(a && !b || c)" would require all
198 * predicates being affected separately by the "!" before the parentheses.
199 * And that would end up being equivalent to "(!a || b) && !c"
200 *
201 * #3 If the token is an "!", the current "invert" value gets inverted, and
202 * the loop continues. Note, if the next token is a predicate, then
203 * this "invert" value is only valid for the current program entry,
204 * and does not affect other predicates later on.
205 *
206 * The only other acceptable token is the predicate string.
207 *
208 * #4 A new entry into the program is added saving: the predicate and the
209 * current value of "invert". The target is currently assigned to the
210 * previous program index (this will not be its final value).
211 *
212 * #5 We now enter another loop and look at the next token. The only valid
213 * tokens are ")", "&&", "||" or end of the input string "\0".
214 *
215 * #6 The invert variable is reset to the current value saved on the top of
216 * the stack.
217 *
218 * #7 The top of the stack holds not only the current invert value, but also
219 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
220 * precedence than "||". That is "a && b || c && d" is equivalent to
221 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
222 * to be processed. This is the case if an "&&" was the last token. If it was
223 * then we call update_preds(). This takes the program, the current index in
224 * the program, and the current value of "invert". More will be described
225 * below about this function.
226 *
227 * #8 If the next token is "&&" then we set a flag in the top of the stack
228 * that denotes that "&&" needs to be processed, break out of this loop
229 * and continue with the outer loop.
230 *
231 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
232 * This is called with the program, the current index in the program, but
233 * this time with an inverted value of "invert" (that is !invert). This is
234 * because the value taken will become the "when_to_branch" value of the
235 * program.
236 * Note, this is called when the next token is not an "&&". As stated before,
237 * "&&" takes higher precedence, and "||" should not be processed yet if the
238 * next logical operation is "&&".
239 *
240 * #10 If the next token is "||" then we set a flag in the top of the stack
241 * that denotes that "||" needs to be processed, break out of this loop
242 * and continue with the outer loop.
243 *
244 * #11 If this is the end of the input string "\0" then we break out of both
245 * loops.
246 *
247 * #12 Otherwise, the next token is ")", where we pop the stack and continue
248 * this inner loop.
249 *
250 * Now to discuss the update_pred() function, as that is key to the setting up
251 * of the program. Remember the "target" of the program is initialized to the
252 * previous index and not the "l" label. The target holds the index into the
253 * program that gets affected by the operand. Thus if we have something like
254 * "a || b && c", when we process "a" the target will be "-1" (undefined).
255 * When we process "b", its target is "0", which is the index of "a", as that's
256 * the predicate that is affected by "||". But because the next token after "b"
257 * is "&&" we don't call update_preds(). Instead continue to "c". As the
258 * next token after "c" is not "&&" but the end of input, we first process the
259 * "&&" by calling update_preds() for the "&&" then we process the "||" by
260 * calling updates_preds() with the values for processing "||".
261 *
262 * What does that mean? What update_preds() does is to first save the "target"
263 * of the program entry indexed by the current program entry's "target"
264 * (remember the "target" is initialized to previous program entry), and then
265 * sets that "target" to the current index which represents the label "l#".
266 * That entry's "when_to_branch" is set to the value passed in (the "invert"
267 * or "!invert"). Then it sets the current program entry's target to the saved
268 * "target" value (the old value of the program that had its "target" updated
269 * to the label).
270 *
271 * Looking back at "a || b && c", we have the following steps:
272 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
273 * "||" - flag that we need to process "||"; continue outer loop
274 * "b" - prog[1] = { "b", X, 0 }
275 * "&&" - flag that we need to process "&&"; continue outer loop
276 * (Notice we did not process "||")
277 * "c" - prog[2] = { "c", X, 1 }
278 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
279 * t = prog[2].target; // t = 1
280 * s = prog[t].target; // s = 0
281 * prog[t].target = 2; // Set target to "l2"
282 * prog[t].when_to_branch = 0;
283 * prog[2].target = s;
284 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
285 * t = prog[2].target; // t = 0
286 * s = prog[t].target; // s = -1
287 * prog[t].target = 2; // Set target to "l2"
288 * prog[t].when_to_branch = 1;
289 * prog[2].target = s;
290 *
291 * #13 Which brings us to the final step of the first pass, which is to set
292 * the last program entry's when_to_branch and target, which will be
293 * when_to_branch = 0; target = N; ( the label after the program entry after
294 * the last program entry processed above).
295 *
296 * If we denote "TRUE" to be the entry after the last program entry processed,
297 * and "FALSE" the program entry after that, we are now done with the first
298 * pass.
299 *
300 * Making the above "a || b && c" have a program of:
301 * prog[0] = { "a", 1, 2 }
302 * prog[1] = { "b", 0, 2 }
303 * prog[2] = { "c", 0, 3 }
304 *
305 * Which translates into:
306 * n0: r = a; l0: if (r) goto l2;
307 * n1: r = b; l1: if (!r) goto l2;
308 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
309 * T: return TRUE; l3:
310 * F: return FALSE
311 *
312 * Although, after the first pass, the program is correct, it is
313 * inefficient. The simple sample of "a || b && c" could be easily been
314 * converted into:
315 * n0: r = a; if (r) goto T
316 * n1: r = b; if (!r) goto F
317 * n2: r = c; if (!r) goto F
318 * T: return TRUE;
319 * F: return FALSE;
320 *
321 * The First Pass is over the input string. The next too passes are over
322 * the program itself.
323 *
324 * ** SECOND PASS **
325 *
326 * Which brings us to the second pass. If a jump to a label has the
327 * same condition as that label, it can instead jump to its target.
328 * The original example of "a && !(!b || (c && g)) || d || e && !f"
329 * where the first pass gives us:
330 *
331 * n1: r=a; l1: if (!r) goto l4;
332 * n2: r=b; l2: if (!r) goto l4;
333 * n3: r=c; r=!r; l3: if (r) goto l4;
334 * n4: r=g; r=!r; l4: if (r) goto l5;
335 * n5: r=d; l5: if (r) goto T
336 * n6: r=e; l6: if (!r) goto l7;
337 * n7: r=f; r=!r; l7: if (!r) goto F:
338 * T: return TRUE;
339 * F: return FALSE
340 *
341 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
342 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
343 * to go directly to T. To accomplish this, we start from the last
344 * entry in the program and work our way back. If the target of the entry
345 * has the same "when_to_branch" then we could use that entry's target.
346 * Doing this, the above would end up as:
347 *
348 * n1: r=a; l1: if (!r) goto l4;
349 * n2: r=b; l2: if (!r) goto l4;
350 * n3: r=c; r=!r; l3: if (r) goto T;
351 * n4: r=g; r=!r; l4: if (r) goto T;
352 * n5: r=d; l5: if (r) goto T;
353 * n6: r=e; l6: if (!r) goto F;
354 * n7: r=f; r=!r; l7: if (!r) goto F;
355 * T: return TRUE
356 * F: return FALSE
357 *
358 * In that same pass, if the "when_to_branch" doesn't match, we can simply
359 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
360 * where "l4: if (r) goto T;", then we can convert l2 to be:
361 * "l2: if (!r) goto n5;".
362 *
363 * This will have the second pass give us:
364 * n1: r=a; l1: if (!r) goto n5;
365 * n2: r=b; l2: if (!r) goto n5;
366 * n3: r=c; r=!r; l3: if (r) goto T;
367 * n4: r=g; r=!r; l4: if (r) goto T;
368 * n5: r=d; l5: if (r) goto T
369 * n6: r=e; l6: if (!r) goto F;
370 * n7: r=f; r=!r; l7: if (!r) goto F
371 * T: return TRUE
372 * F: return FALSE
373 *
374 * Notice, all the "l#" labels are no longer used, and they can now
375 * be discarded.
376 *
377 * ** THIRD PASS **
378 *
379 * For the third pass we deal with the inverts. As they simply just
380 * make the "when_to_branch" get inverted, a simple loop over the
381 * program to that does: "when_to_branch ^= invert;" will do the
382 * job, leaving us with:
383 * n1: r=a; if (!r) goto n5;
384 * n2: r=b; if (!r) goto n5;
385 * n3: r=c: if (!r) goto T;
386 * n4: r=g; if (!r) goto T;
387 * n5: r=d; if (r) goto T
388 * n6: r=e; if (!r) goto F;
389 * n7: r=f; if (r) goto F
390 * T: return TRUE
391 * F: return FALSE
392 *
393 * As "r = a; if (!r) goto n5;" is obviously the same as
394 * "if (!a) goto n5;" without doing anything we can interpret the
395 * program as:
396 * n1: if (!a) goto n5;
397 * n2: if (!b) goto n5;
398 * n3: if (!c) goto T;
399 * n4: if (!g) goto T;
400 * n5: if (d) goto T
401 * n6: if (!e) goto F;
402 * n7: if (f) goto F
403 * T: return TRUE
404 * F: return FALSE
405 *
406 * Since the inverts are discarded at the end, there's no reason to store
407 * them in the program array (and waste memory). A separate array to hold
408 * the inverts is used and freed at the end.
409 */
410 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)411 predicate_parse(const char *str, int nr_parens, int nr_preds,
412 parse_pred_fn parse_pred, void *data,
413 struct filter_parse_error *pe)
414 {
415 struct prog_entry *prog_stack;
416 struct prog_entry *prog;
417 const char *ptr = str;
418 char *inverts = NULL;
419 int *op_stack;
420 int *top;
421 int invert = 0;
422 int ret = -ENOMEM;
423 int len;
424 int N = 0;
425 int i;
426
427 nr_preds += 2; /* For TRUE and FALSE */
428
429 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
430 if (!op_stack)
431 return ERR_PTR(-ENOMEM);
432 prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
433 if (!prog_stack) {
434 parse_error(pe, -ENOMEM, 0);
435 goto out_free;
436 }
437 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
438 if (!inverts) {
439 parse_error(pe, -ENOMEM, 0);
440 goto out_free;
441 }
442
443 top = op_stack;
444 prog = prog_stack;
445 *top = 0;
446
447 /* First pass */
448 while (*ptr) { /* #1 */
449 const char *next = ptr++;
450
451 if (isspace(*next))
452 continue;
453
454 switch (*next) {
455 case '(': /* #2 */
456 if (top - op_stack > nr_parens) {
457 ret = -EINVAL;
458 goto out_free;
459 }
460 *(++top) = invert;
461 continue;
462 case '!': /* #3 */
463 if (!is_not(next))
464 break;
465 invert = !invert;
466 continue;
467 }
468
469 if (N >= nr_preds) {
470 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
471 goto out_free;
472 }
473
474 inverts[N] = invert; /* #4 */
475 prog[N].target = N-1;
476
477 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
478 if (len < 0) {
479 ret = len;
480 goto out_free;
481 }
482 ptr = next + len;
483
484 N++;
485
486 ret = -1;
487 while (1) { /* #5 */
488 next = ptr++;
489 if (isspace(*next))
490 continue;
491
492 switch (*next) {
493 case ')':
494 case '\0':
495 break;
496 case '&':
497 case '|':
498 /* accepting only "&&" or "||" */
499 if (next[1] == next[0]) {
500 ptr++;
501 break;
502 }
503 fallthrough;
504 default:
505 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
506 next - str);
507 goto out_free;
508 }
509
510 invert = *top & INVERT;
511
512 if (*top & PROCESS_AND) { /* #7 */
513 update_preds(prog, N - 1, invert);
514 *top &= ~PROCESS_AND;
515 }
516 if (*next == '&') { /* #8 */
517 *top |= PROCESS_AND;
518 break;
519 }
520 if (*top & PROCESS_OR) { /* #9 */
521 update_preds(prog, N - 1, !invert);
522 *top &= ~PROCESS_OR;
523 }
524 if (*next == '|') { /* #10 */
525 *top |= PROCESS_OR;
526 break;
527 }
528 if (!*next) /* #11 */
529 goto out;
530
531 if (top == op_stack) {
532 ret = -1;
533 /* Too few '(' */
534 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
535 goto out_free;
536 }
537 top--; /* #12 */
538 }
539 }
540 out:
541 if (top != op_stack) {
542 /* Too many '(' */
543 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
544 goto out_free;
545 }
546
547 if (!N) {
548 /* No program? */
549 ret = -EINVAL;
550 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
551 goto out_free;
552 }
553
554 prog[N].pred = NULL; /* #13 */
555 prog[N].target = 1; /* TRUE */
556 prog[N+1].pred = NULL;
557 prog[N+1].target = 0; /* FALSE */
558 prog[N-1].target = N;
559 prog[N-1].when_to_branch = false;
560
561 /* Second Pass */
562 for (i = N-1 ; i--; ) {
563 int target = prog[i].target;
564 if (prog[i].when_to_branch == prog[target].when_to_branch)
565 prog[i].target = prog[target].target;
566 }
567
568 /* Third Pass */
569 for (i = 0; i < N; i++) {
570 invert = inverts[i] ^ prog[i].when_to_branch;
571 prog[i].when_to_branch = invert;
572 /* Make sure the program always moves forward */
573 if (WARN_ON(prog[i].target <= i)) {
574 ret = -EINVAL;
575 goto out_free;
576 }
577 }
578
579 kfree(op_stack);
580 kfree(inverts);
581 return prog;
582 out_free:
583 kfree(op_stack);
584 kfree(inverts);
585 if (prog_stack) {
586 for (i = 0; prog_stack[i].pred; i++)
587 kfree(prog_stack[i].pred);
588 kfree(prog_stack);
589 }
590 return ERR_PTR(ret);
591 }
592
593 #define DEFINE_COMPARISON_PRED(type) \
594 static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
595 { \
596 type *addr = (type *)(event + pred->offset); \
597 type val = (type)pred->val; \
598 return *addr < val; \
599 } \
600 static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
601 { \
602 type *addr = (type *)(event + pred->offset); \
603 type val = (type)pred->val; \
604 return *addr <= val; \
605 } \
606 static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
607 { \
608 type *addr = (type *)(event + pred->offset); \
609 type val = (type)pred->val; \
610 return *addr > val; \
611 } \
612 static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
613 { \
614 type *addr = (type *)(event + pred->offset); \
615 type val = (type)pred->val; \
616 return *addr >= val; \
617 } \
618 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
619 { \
620 type *addr = (type *)(event + pred->offset); \
621 type val = (type)pred->val; \
622 return !!(*addr & val); \
623 } \
624 static const filter_pred_fn_t pred_funcs_##type[] = { \
625 filter_pred_LE_##type, \
626 filter_pred_LT_##type, \
627 filter_pred_GE_##type, \
628 filter_pred_GT_##type, \
629 filter_pred_BAND_##type, \
630 };
631
632 #define DEFINE_EQUALITY_PRED(size) \
633 static int filter_pred_##size(struct filter_pred *pred, void *event) \
634 { \
635 u##size *addr = (u##size *)(event + pred->offset); \
636 u##size val = (u##size)pred->val; \
637 int match; \
638 \
639 match = (val == *addr) ^ pred->not; \
640 \
641 return match; \
642 }
643
644 DEFINE_COMPARISON_PRED(s64);
645 DEFINE_COMPARISON_PRED(u64);
646 DEFINE_COMPARISON_PRED(s32);
647 DEFINE_COMPARISON_PRED(u32);
648 DEFINE_COMPARISON_PRED(s16);
649 DEFINE_COMPARISON_PRED(u16);
650 DEFINE_COMPARISON_PRED(s8);
651 DEFINE_COMPARISON_PRED(u8);
652
653 DEFINE_EQUALITY_PRED(64);
654 DEFINE_EQUALITY_PRED(32);
655 DEFINE_EQUALITY_PRED(16);
656 DEFINE_EQUALITY_PRED(8);
657
658 /* user space strings temp buffer */
659 #define USTRING_BUF_SIZE 1024
660
661 struct ustring_buffer {
662 char buffer[USTRING_BUF_SIZE];
663 };
664
665 static __percpu struct ustring_buffer *ustring_per_cpu;
666
test_string(char * str)667 static __always_inline char *test_string(char *str)
668 {
669 struct ustring_buffer *ubuf;
670 char *kstr;
671
672 if (!ustring_per_cpu)
673 return NULL;
674
675 ubuf = this_cpu_ptr(ustring_per_cpu);
676 kstr = ubuf->buffer;
677
678 /* For safety, do not trust the string pointer */
679 if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
680 return NULL;
681 return kstr;
682 }
683
test_ustring(char * str)684 static __always_inline char *test_ustring(char *str)
685 {
686 struct ustring_buffer *ubuf;
687 char __user *ustr;
688 char *kstr;
689
690 if (!ustring_per_cpu)
691 return NULL;
692
693 ubuf = this_cpu_ptr(ustring_per_cpu);
694 kstr = ubuf->buffer;
695
696 /* user space address? */
697 ustr = (char __user *)str;
698 if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
699 return NULL;
700
701 return kstr;
702 }
703
704 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)705 static int filter_pred_string(struct filter_pred *pred, void *event)
706 {
707 char *addr = (char *)(event + pred->offset);
708 int cmp, match;
709
710 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
711
712 match = cmp ^ pred->not;
713
714 return match;
715 }
716
filter_pchar(struct filter_pred * pred,char * str)717 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
718 {
719 int cmp, match;
720 int len;
721
722 len = strlen(str) + 1; /* including tailing '\0' */
723 cmp = pred->regex.match(str, &pred->regex, len);
724
725 match = cmp ^ pred->not;
726
727 return match;
728 }
729 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)730 static int filter_pred_pchar(struct filter_pred *pred, void *event)
731 {
732 char **addr = (char **)(event + pred->offset);
733 char *str;
734
735 str = test_string(*addr);
736 if (!str)
737 return 0;
738
739 return filter_pchar(pred, str);
740 }
741
742 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)743 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
744 {
745 char **addr = (char **)(event + pred->offset);
746 char *str;
747
748 str = test_ustring(*addr);
749 if (!str)
750 return 0;
751
752 return filter_pchar(pred, str);
753 }
754
755 /*
756 * Filter predicate for dynamic sized arrays of characters.
757 * These are implemented through a list of strings at the end
758 * of the entry.
759 * Also each of these strings have a field in the entry which
760 * contains its offset from the beginning of the entry.
761 * We have then first to get this field, dereference it
762 * and add it to the address of the entry, and at last we have
763 * the address of the string.
764 */
filter_pred_strloc(struct filter_pred * pred,void * event)765 static int filter_pred_strloc(struct filter_pred *pred, void *event)
766 {
767 u32 str_item = *(u32 *)(event + pred->offset);
768 int str_loc = str_item & 0xffff;
769 int str_len = str_item >> 16;
770 char *addr = (char *)(event + str_loc);
771 int cmp, match;
772
773 cmp = pred->regex.match(addr, &pred->regex, str_len);
774
775 match = cmp ^ pred->not;
776
777 return match;
778 }
779
780 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)781 static int filter_pred_cpu(struct filter_pred *pred, void *event)
782 {
783 int cpu, cmp;
784
785 cpu = raw_smp_processor_id();
786 cmp = pred->val;
787
788 switch (pred->op) {
789 case OP_EQ:
790 return cpu == cmp;
791 case OP_NE:
792 return cpu != cmp;
793 case OP_LT:
794 return cpu < cmp;
795 case OP_LE:
796 return cpu <= cmp;
797 case OP_GT:
798 return cpu > cmp;
799 case OP_GE:
800 return cpu >= cmp;
801 default:
802 return 0;
803 }
804 }
805
806 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)807 static int filter_pred_comm(struct filter_pred *pred, void *event)
808 {
809 int cmp;
810
811 cmp = pred->regex.match(current->comm, &pred->regex,
812 TASK_COMM_LEN);
813 return cmp ^ pred->not;
814 }
815
filter_pred_none(struct filter_pred * pred,void * event)816 static int filter_pred_none(struct filter_pred *pred, void *event)
817 {
818 return 0;
819 }
820
821 /*
822 * regex_match_foo - Basic regex callbacks
823 *
824 * @str: the string to be searched
825 * @r: the regex structure containing the pattern string
826 * @len: the length of the string to be searched (including '\0')
827 *
828 * Note:
829 * - @str might not be NULL-terminated if it's of type DYN_STRING
830 * or STATIC_STRING, unless @len is zero.
831 */
832
regex_match_full(char * str,struct regex * r,int len)833 static int regex_match_full(char *str, struct regex *r, int len)
834 {
835 /* len of zero means str is dynamic and ends with '\0' */
836 if (!len)
837 return strcmp(str, r->pattern) == 0;
838
839 return strncmp(str, r->pattern, len) == 0;
840 }
841
regex_match_front(char * str,struct regex * r,int len)842 static int regex_match_front(char *str, struct regex *r, int len)
843 {
844 if (len && len < r->len)
845 return 0;
846
847 return strncmp(str, r->pattern, r->len) == 0;
848 }
849
regex_match_middle(char * str,struct regex * r,int len)850 static int regex_match_middle(char *str, struct regex *r, int len)
851 {
852 if (!len)
853 return strstr(str, r->pattern) != NULL;
854
855 return strnstr(str, r->pattern, len) != NULL;
856 }
857
regex_match_end(char * str,struct regex * r,int len)858 static int regex_match_end(char *str, struct regex *r, int len)
859 {
860 int strlen = len - 1;
861
862 if (strlen >= r->len &&
863 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
864 return 1;
865 return 0;
866 }
867
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)868 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
869 {
870 if (glob_match(r->pattern, str))
871 return 1;
872 return 0;
873 }
874
875 /**
876 * filter_parse_regex - parse a basic regex
877 * @buff: the raw regex
878 * @len: length of the regex
879 * @search: will point to the beginning of the string to compare
880 * @not: tell whether the match will have to be inverted
881 *
882 * This passes in a buffer containing a regex and this function will
883 * set search to point to the search part of the buffer and
884 * return the type of search it is (see enum above).
885 * This does modify buff.
886 *
887 * Returns enum type.
888 * search returns the pointer to use for comparison.
889 * not returns 1 if buff started with a '!'
890 * 0 otherwise.
891 */
filter_parse_regex(char * buff,int len,char ** search,int * not)892 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
893 {
894 int type = MATCH_FULL;
895 int i;
896
897 if (buff[0] == '!') {
898 *not = 1;
899 buff++;
900 len--;
901 } else
902 *not = 0;
903
904 *search = buff;
905
906 if (isdigit(buff[0]))
907 return MATCH_INDEX;
908
909 for (i = 0; i < len; i++) {
910 if (buff[i] == '*') {
911 if (!i) {
912 type = MATCH_END_ONLY;
913 } else if (i == len - 1) {
914 if (type == MATCH_END_ONLY)
915 type = MATCH_MIDDLE_ONLY;
916 else
917 type = MATCH_FRONT_ONLY;
918 buff[i] = 0;
919 break;
920 } else { /* pattern continues, use full glob */
921 return MATCH_GLOB;
922 }
923 } else if (strchr("[?\\", buff[i])) {
924 return MATCH_GLOB;
925 }
926 }
927 if (buff[0] == '*')
928 *search = buff + 1;
929
930 return type;
931 }
932
filter_build_regex(struct filter_pred * pred)933 static void filter_build_regex(struct filter_pred *pred)
934 {
935 struct regex *r = &pred->regex;
936 char *search;
937 enum regex_type type = MATCH_FULL;
938
939 if (pred->op == OP_GLOB) {
940 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
941 r->len = strlen(search);
942 memmove(r->pattern, search, r->len+1);
943 }
944
945 switch (type) {
946 /* MATCH_INDEX should not happen, but if it does, match full */
947 case MATCH_INDEX:
948 case MATCH_FULL:
949 r->match = regex_match_full;
950 break;
951 case MATCH_FRONT_ONLY:
952 r->match = regex_match_front;
953 break;
954 case MATCH_MIDDLE_ONLY:
955 r->match = regex_match_middle;
956 break;
957 case MATCH_END_ONLY:
958 r->match = regex_match_end;
959 break;
960 case MATCH_GLOB:
961 r->match = regex_match_glob;
962 break;
963 }
964 }
965
966 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)967 int filter_match_preds(struct event_filter *filter, void *rec)
968 {
969 struct prog_entry *prog;
970 int i;
971
972 /* no filter is considered a match */
973 if (!filter)
974 return 1;
975
976 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
977 prog = rcu_dereference_raw(filter->prog);
978 if (!prog)
979 return 1;
980
981 for (i = 0; prog[i].pred; i++) {
982 struct filter_pred *pred = prog[i].pred;
983 int match = pred->fn(pred, rec);
984 if (match == prog[i].when_to_branch)
985 i = prog[i].target;
986 }
987 return prog[i].target;
988 }
989 EXPORT_SYMBOL_GPL(filter_match_preds);
990
remove_filter_string(struct event_filter * filter)991 static void remove_filter_string(struct event_filter *filter)
992 {
993 if (!filter)
994 return;
995
996 kfree(filter->filter_string);
997 filter->filter_string = NULL;
998 }
999
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1000 static void append_filter_err(struct trace_array *tr,
1001 struct filter_parse_error *pe,
1002 struct event_filter *filter)
1003 {
1004 struct trace_seq *s;
1005 int pos = pe->lasterr_pos;
1006 char *buf;
1007 int len;
1008
1009 if (WARN_ON(!filter->filter_string))
1010 return;
1011
1012 s = kmalloc(sizeof(*s), GFP_KERNEL);
1013 if (!s)
1014 return;
1015 trace_seq_init(s);
1016
1017 len = strlen(filter->filter_string);
1018 if (pos > len)
1019 pos = len;
1020
1021 /* indexing is off by one */
1022 if (pos)
1023 pos++;
1024
1025 trace_seq_puts(s, filter->filter_string);
1026 if (pe->lasterr > 0) {
1027 trace_seq_printf(s, "\n%*s", pos, "^");
1028 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1029 tracing_log_err(tr, "event filter parse error",
1030 filter->filter_string, err_text,
1031 pe->lasterr, pe->lasterr_pos);
1032 } else {
1033 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1034 tracing_log_err(tr, "event filter parse error",
1035 filter->filter_string, err_text,
1036 FILT_ERR_ERRNO, 0);
1037 }
1038 trace_seq_putc(s, 0);
1039 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1040 if (buf) {
1041 kfree(filter->filter_string);
1042 filter->filter_string = buf;
1043 }
1044 kfree(s);
1045 }
1046
event_filter(struct trace_event_file * file)1047 static inline struct event_filter *event_filter(struct trace_event_file *file)
1048 {
1049 return file->filter;
1050 }
1051
1052 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1053 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1054 {
1055 struct event_filter *filter = event_filter(file);
1056
1057 if (filter && filter->filter_string)
1058 trace_seq_printf(s, "%s\n", filter->filter_string);
1059 else
1060 trace_seq_puts(s, "none\n");
1061 }
1062
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1063 void print_subsystem_event_filter(struct event_subsystem *system,
1064 struct trace_seq *s)
1065 {
1066 struct event_filter *filter;
1067
1068 mutex_lock(&event_mutex);
1069 filter = system->filter;
1070 if (filter && filter->filter_string)
1071 trace_seq_printf(s, "%s\n", filter->filter_string);
1072 else
1073 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1074 mutex_unlock(&event_mutex);
1075 }
1076
free_prog(struct event_filter * filter)1077 static void free_prog(struct event_filter *filter)
1078 {
1079 struct prog_entry *prog;
1080 int i;
1081
1082 prog = rcu_access_pointer(filter->prog);
1083 if (!prog)
1084 return;
1085
1086 for (i = 0; prog[i].pred; i++)
1087 kfree(prog[i].pred);
1088 kfree(prog);
1089 }
1090
filter_disable(struct trace_event_file * file)1091 static void filter_disable(struct trace_event_file *file)
1092 {
1093 unsigned long old_flags = file->flags;
1094
1095 file->flags &= ~EVENT_FILE_FL_FILTERED;
1096
1097 if (old_flags != file->flags)
1098 trace_buffered_event_disable();
1099 }
1100
__free_filter(struct event_filter * filter)1101 static void __free_filter(struct event_filter *filter)
1102 {
1103 if (!filter)
1104 return;
1105
1106 free_prog(filter);
1107 kfree(filter->filter_string);
1108 kfree(filter);
1109 }
1110
free_event_filter(struct event_filter * filter)1111 void free_event_filter(struct event_filter *filter)
1112 {
1113 __free_filter(filter);
1114 }
1115
__remove_filter(struct trace_event_file * file)1116 static inline void __remove_filter(struct trace_event_file *file)
1117 {
1118 filter_disable(file);
1119 remove_filter_string(file->filter);
1120 }
1121
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1122 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1123 struct trace_array *tr)
1124 {
1125 struct trace_event_file *file;
1126
1127 list_for_each_entry(file, &tr->events, list) {
1128 if (file->system != dir)
1129 continue;
1130 __remove_filter(file);
1131 }
1132 }
1133
__free_subsystem_filter(struct trace_event_file * file)1134 static inline void __free_subsystem_filter(struct trace_event_file *file)
1135 {
1136 __free_filter(file->filter);
1137 file->filter = NULL;
1138 }
1139
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1140 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1141 struct trace_array *tr)
1142 {
1143 struct trace_event_file *file;
1144
1145 list_for_each_entry(file, &tr->events, list) {
1146 if (file->system != dir)
1147 continue;
1148 __free_subsystem_filter(file);
1149 }
1150 }
1151
filter_assign_type(const char * type)1152 int filter_assign_type(const char *type)
1153 {
1154 if (strstr(type, "__data_loc") && strstr(type, "char"))
1155 return FILTER_DYN_STRING;
1156
1157 if (strchr(type, '[') && strstr(type, "char"))
1158 return FILTER_STATIC_STRING;
1159
1160 if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1161 return FILTER_PTR_STRING;
1162
1163 return FILTER_OTHER;
1164 }
1165
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1166 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1167 int field_size, int field_is_signed)
1168 {
1169 filter_pred_fn_t fn = NULL;
1170 int pred_func_index = -1;
1171
1172 switch (op) {
1173 case OP_EQ:
1174 case OP_NE:
1175 break;
1176 default:
1177 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1178 return NULL;
1179 pred_func_index = op - PRED_FUNC_START;
1180 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1181 return NULL;
1182 }
1183
1184 switch (field_size) {
1185 case 8:
1186 if (pred_func_index < 0)
1187 fn = filter_pred_64;
1188 else if (field_is_signed)
1189 fn = pred_funcs_s64[pred_func_index];
1190 else
1191 fn = pred_funcs_u64[pred_func_index];
1192 break;
1193 case 4:
1194 if (pred_func_index < 0)
1195 fn = filter_pred_32;
1196 else if (field_is_signed)
1197 fn = pred_funcs_s32[pred_func_index];
1198 else
1199 fn = pred_funcs_u32[pred_func_index];
1200 break;
1201 case 2:
1202 if (pred_func_index < 0)
1203 fn = filter_pred_16;
1204 else if (field_is_signed)
1205 fn = pred_funcs_s16[pred_func_index];
1206 else
1207 fn = pred_funcs_u16[pred_func_index];
1208 break;
1209 case 1:
1210 if (pred_func_index < 0)
1211 fn = filter_pred_8;
1212 else if (field_is_signed)
1213 fn = pred_funcs_s8[pred_func_index];
1214 else
1215 fn = pred_funcs_u8[pred_func_index];
1216 break;
1217 }
1218
1219 return fn;
1220 }
1221
1222 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1223 static int parse_pred(const char *str, void *data,
1224 int pos, struct filter_parse_error *pe,
1225 struct filter_pred **pred_ptr)
1226 {
1227 struct trace_event_call *call = data;
1228 struct ftrace_event_field *field;
1229 struct filter_pred *pred = NULL;
1230 char num_buf[24]; /* Big enough to hold an address */
1231 char *field_name;
1232 bool ustring = false;
1233 char q;
1234 u64 val;
1235 int len;
1236 int ret;
1237 int op;
1238 int s;
1239 int i = 0;
1240
1241 /* First find the field to associate to */
1242 while (isspace(str[i]))
1243 i++;
1244 s = i;
1245
1246 while (isalnum(str[i]) || str[i] == '_')
1247 i++;
1248
1249 len = i - s;
1250
1251 if (!len)
1252 return -1;
1253
1254 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1255 if (!field_name)
1256 return -ENOMEM;
1257
1258 /* Make sure that the field exists */
1259
1260 field = trace_find_event_field(call, field_name);
1261 kfree(field_name);
1262 if (!field) {
1263 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1264 return -EINVAL;
1265 }
1266
1267 /* See if the field is a user space string */
1268 if ((len = str_has_prefix(str + i, ".ustring"))) {
1269 ustring = true;
1270 i += len;
1271 }
1272
1273 while (isspace(str[i]))
1274 i++;
1275
1276 /* Make sure this op is supported */
1277 for (op = 0; ops[op]; op++) {
1278 /* This is why '<=' must come before '<' in ops[] */
1279 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1280 break;
1281 }
1282
1283 if (!ops[op]) {
1284 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1285 goto err_free;
1286 }
1287
1288 i += strlen(ops[op]);
1289
1290 while (isspace(str[i]))
1291 i++;
1292
1293 s = i;
1294
1295 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1296 if (!pred)
1297 return -ENOMEM;
1298
1299 pred->field = field;
1300 pred->offset = field->offset;
1301 pred->op = op;
1302
1303 if (ftrace_event_is_function(call)) {
1304 /*
1305 * Perf does things different with function events.
1306 * It only allows an "ip" field, and expects a string.
1307 * But the string does not need to be surrounded by quotes.
1308 * If it is a string, the assigned function as a nop,
1309 * (perf doesn't use it) and grab everything.
1310 */
1311 if (strcmp(field->name, "ip") != 0) {
1312 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1313 goto err_free;
1314 }
1315 pred->fn = filter_pred_none;
1316
1317 /*
1318 * Quotes are not required, but if they exist then we need
1319 * to read them till we hit a matching one.
1320 */
1321 if (str[i] == '\'' || str[i] == '"')
1322 q = str[i];
1323 else
1324 q = 0;
1325
1326 for (i++; str[i]; i++) {
1327 if (q && str[i] == q)
1328 break;
1329 if (!q && (str[i] == ')' || str[i] == '&' ||
1330 str[i] == '|'))
1331 break;
1332 }
1333 /* Skip quotes */
1334 if (q)
1335 s++;
1336 len = i - s;
1337 if (len >= MAX_FILTER_STR_VAL) {
1338 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1339 goto err_free;
1340 }
1341
1342 pred->regex.len = len;
1343 strncpy(pred->regex.pattern, str + s, len);
1344 pred->regex.pattern[len] = 0;
1345
1346 /* This is either a string, or an integer */
1347 } else if (str[i] == '\'' || str[i] == '"') {
1348 char q = str[i];
1349
1350 /* Make sure the op is OK for strings */
1351 switch (op) {
1352 case OP_NE:
1353 pred->not = 1;
1354 fallthrough;
1355 case OP_GLOB:
1356 case OP_EQ:
1357 break;
1358 default:
1359 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1360 goto err_free;
1361 }
1362
1363 /* Make sure the field is OK for strings */
1364 if (!is_string_field(field)) {
1365 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1366 goto err_free;
1367 }
1368
1369 for (i++; str[i]; i++) {
1370 if (str[i] == q)
1371 break;
1372 }
1373 if (!str[i]) {
1374 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1375 goto err_free;
1376 }
1377
1378 /* Skip quotes */
1379 s++;
1380 len = i - s;
1381 if (len >= MAX_FILTER_STR_VAL) {
1382 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1383 goto err_free;
1384 }
1385
1386 pred->regex.len = len;
1387 strncpy(pred->regex.pattern, str + s, len);
1388 pred->regex.pattern[len] = 0;
1389
1390 filter_build_regex(pred);
1391
1392 if (field->filter_type == FILTER_COMM) {
1393 pred->fn = filter_pred_comm;
1394
1395 } else if (field->filter_type == FILTER_STATIC_STRING) {
1396 pred->fn = filter_pred_string;
1397 pred->regex.field_len = field->size;
1398
1399 } else if (field->filter_type == FILTER_DYN_STRING)
1400 pred->fn = filter_pred_strloc;
1401 else {
1402
1403 if (!ustring_per_cpu) {
1404 /* Once allocated, keep it around for good */
1405 ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1406 if (!ustring_per_cpu)
1407 goto err_mem;
1408 }
1409
1410 if (ustring)
1411 pred->fn = filter_pred_pchar_user;
1412 else
1413 pred->fn = filter_pred_pchar;
1414 }
1415 /* go past the last quote */
1416 i++;
1417
1418 } else if (isdigit(str[i]) || str[i] == '-') {
1419
1420 /* Make sure the field is not a string */
1421 if (is_string_field(field)) {
1422 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1423 goto err_free;
1424 }
1425
1426 if (op == OP_GLOB) {
1427 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1428 goto err_free;
1429 }
1430
1431 if (str[i] == '-')
1432 i++;
1433
1434 /* We allow 0xDEADBEEF */
1435 while (isalnum(str[i]))
1436 i++;
1437
1438 len = i - s;
1439 /* 0xfeedfacedeadbeef is 18 chars max */
1440 if (len >= sizeof(num_buf)) {
1441 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1442 goto err_free;
1443 }
1444
1445 strncpy(num_buf, str + s, len);
1446 num_buf[len] = 0;
1447
1448 /* Make sure it is a value */
1449 if (field->is_signed)
1450 ret = kstrtoll(num_buf, 0, &val);
1451 else
1452 ret = kstrtoull(num_buf, 0, &val);
1453 if (ret) {
1454 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1455 goto err_free;
1456 }
1457
1458 pred->val = val;
1459
1460 if (field->filter_type == FILTER_CPU)
1461 pred->fn = filter_pred_cpu;
1462 else {
1463 pred->fn = select_comparison_fn(pred->op, field->size,
1464 field->is_signed);
1465 if (pred->op == OP_NE)
1466 pred->not = 1;
1467 }
1468
1469 } else {
1470 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1471 goto err_free;
1472 }
1473
1474 *pred_ptr = pred;
1475 return i;
1476
1477 err_free:
1478 kfree(pred);
1479 return -EINVAL;
1480 err_mem:
1481 kfree(pred);
1482 return -ENOMEM;
1483 }
1484
1485 enum {
1486 TOO_MANY_CLOSE = -1,
1487 TOO_MANY_OPEN = -2,
1488 MISSING_QUOTE = -3,
1489 };
1490
1491 /*
1492 * Read the filter string once to calculate the number of predicates
1493 * as well as how deep the parentheses go.
1494 *
1495 * Returns:
1496 * 0 - everything is fine (err is undefined)
1497 * -1 - too many ')'
1498 * -2 - too many '('
1499 * -3 - No matching quote
1500 */
calc_stack(const char * str,int * parens,int * preds,int * err)1501 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1502 {
1503 bool is_pred = false;
1504 int nr_preds = 0;
1505 int open = 1; /* Count the expression as "(E)" */
1506 int last_quote = 0;
1507 int max_open = 1;
1508 int quote = 0;
1509 int i;
1510
1511 *err = 0;
1512
1513 for (i = 0; str[i]; i++) {
1514 if (isspace(str[i]))
1515 continue;
1516 if (quote) {
1517 if (str[i] == quote)
1518 quote = 0;
1519 continue;
1520 }
1521
1522 switch (str[i]) {
1523 case '\'':
1524 case '"':
1525 quote = str[i];
1526 last_quote = i;
1527 break;
1528 case '|':
1529 case '&':
1530 if (str[i+1] != str[i])
1531 break;
1532 is_pred = false;
1533 continue;
1534 case '(':
1535 is_pred = false;
1536 open++;
1537 if (open > max_open)
1538 max_open = open;
1539 continue;
1540 case ')':
1541 is_pred = false;
1542 if (open == 1) {
1543 *err = i;
1544 return TOO_MANY_CLOSE;
1545 }
1546 open--;
1547 continue;
1548 }
1549 if (!is_pred) {
1550 nr_preds++;
1551 is_pred = true;
1552 }
1553 }
1554
1555 if (quote) {
1556 *err = last_quote;
1557 return MISSING_QUOTE;
1558 }
1559
1560 if (open != 1) {
1561 int level = open;
1562
1563 /* find the bad open */
1564 for (i--; i; i--) {
1565 if (quote) {
1566 if (str[i] == quote)
1567 quote = 0;
1568 continue;
1569 }
1570 switch (str[i]) {
1571 case '(':
1572 if (level == open) {
1573 *err = i;
1574 return TOO_MANY_OPEN;
1575 }
1576 level--;
1577 break;
1578 case ')':
1579 level++;
1580 break;
1581 case '\'':
1582 case '"':
1583 quote = str[i];
1584 break;
1585 }
1586 }
1587 /* First character is the '(' with missing ')' */
1588 *err = 0;
1589 return TOO_MANY_OPEN;
1590 }
1591
1592 /* Set the size of the required stacks */
1593 *parens = max_open;
1594 *preds = nr_preds;
1595 return 0;
1596 }
1597
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)1598 static int process_preds(struct trace_event_call *call,
1599 const char *filter_string,
1600 struct event_filter *filter,
1601 struct filter_parse_error *pe)
1602 {
1603 struct prog_entry *prog;
1604 int nr_parens;
1605 int nr_preds;
1606 int index;
1607 int ret;
1608
1609 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1610 if (ret < 0) {
1611 switch (ret) {
1612 case MISSING_QUOTE:
1613 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1614 break;
1615 case TOO_MANY_OPEN:
1616 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1617 break;
1618 default:
1619 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1620 }
1621 return ret;
1622 }
1623
1624 if (!nr_preds)
1625 return -EINVAL;
1626
1627 prog = predicate_parse(filter_string, nr_parens, nr_preds,
1628 parse_pred, call, pe);
1629 if (IS_ERR(prog))
1630 return PTR_ERR(prog);
1631
1632 rcu_assign_pointer(filter->prog, prog);
1633 return 0;
1634 }
1635
event_set_filtered_flag(struct trace_event_file * file)1636 static inline void event_set_filtered_flag(struct trace_event_file *file)
1637 {
1638 unsigned long old_flags = file->flags;
1639
1640 file->flags |= EVENT_FILE_FL_FILTERED;
1641
1642 if (old_flags != file->flags)
1643 trace_buffered_event_enable();
1644 }
1645
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1646 static inline void event_set_filter(struct trace_event_file *file,
1647 struct event_filter *filter)
1648 {
1649 rcu_assign_pointer(file->filter, filter);
1650 }
1651
event_clear_filter(struct trace_event_file * file)1652 static inline void event_clear_filter(struct trace_event_file *file)
1653 {
1654 RCU_INIT_POINTER(file->filter, NULL);
1655 }
1656
1657 struct filter_list {
1658 struct list_head list;
1659 struct event_filter *filter;
1660 };
1661
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)1662 static int process_system_preds(struct trace_subsystem_dir *dir,
1663 struct trace_array *tr,
1664 struct filter_parse_error *pe,
1665 char *filter_string)
1666 {
1667 struct trace_event_file *file;
1668 struct filter_list *filter_item;
1669 struct event_filter *filter = NULL;
1670 struct filter_list *tmp;
1671 LIST_HEAD(filter_list);
1672 bool fail = true;
1673 int err;
1674
1675 list_for_each_entry(file, &tr->events, list) {
1676
1677 if (file->system != dir)
1678 continue;
1679
1680 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1681 if (!filter)
1682 goto fail_mem;
1683
1684 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1685 if (!filter->filter_string)
1686 goto fail_mem;
1687
1688 err = process_preds(file->event_call, filter_string, filter, pe);
1689 if (err) {
1690 filter_disable(file);
1691 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1692 append_filter_err(tr, pe, filter);
1693 } else
1694 event_set_filtered_flag(file);
1695
1696
1697 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1698 if (!filter_item)
1699 goto fail_mem;
1700
1701 list_add_tail(&filter_item->list, &filter_list);
1702 /*
1703 * Regardless of if this returned an error, we still
1704 * replace the filter for the call.
1705 */
1706 filter_item->filter = event_filter(file);
1707 event_set_filter(file, filter);
1708 filter = NULL;
1709
1710 fail = false;
1711 }
1712
1713 if (fail)
1714 goto fail;
1715
1716 /*
1717 * The calls can still be using the old filters.
1718 * Do a synchronize_rcu() and to ensure all calls are
1719 * done with them before we free them.
1720 */
1721 tracepoint_synchronize_unregister();
1722 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1723 __free_filter(filter_item->filter);
1724 list_del(&filter_item->list);
1725 kfree(filter_item);
1726 }
1727 return 0;
1728 fail:
1729 /* No call succeeded */
1730 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1731 list_del(&filter_item->list);
1732 kfree(filter_item);
1733 }
1734 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1735 return -EINVAL;
1736 fail_mem:
1737 __free_filter(filter);
1738 /* If any call succeeded, we still need to sync */
1739 if (!fail)
1740 tracepoint_synchronize_unregister();
1741 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1742 __free_filter(filter_item->filter);
1743 list_del(&filter_item->list);
1744 kfree(filter_item);
1745 }
1746 return -ENOMEM;
1747 }
1748
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)1749 static int create_filter_start(char *filter_string, bool set_str,
1750 struct filter_parse_error **pse,
1751 struct event_filter **filterp)
1752 {
1753 struct event_filter *filter;
1754 struct filter_parse_error *pe = NULL;
1755 int err = 0;
1756
1757 if (WARN_ON_ONCE(*pse || *filterp))
1758 return -EINVAL;
1759
1760 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1761 if (filter && set_str) {
1762 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1763 if (!filter->filter_string)
1764 err = -ENOMEM;
1765 }
1766
1767 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1768
1769 if (!filter || !pe || err) {
1770 kfree(pe);
1771 __free_filter(filter);
1772 return -ENOMEM;
1773 }
1774
1775 /* we're committed to creating a new filter */
1776 *filterp = filter;
1777 *pse = pe;
1778
1779 return 0;
1780 }
1781
create_filter_finish(struct filter_parse_error * pe)1782 static void create_filter_finish(struct filter_parse_error *pe)
1783 {
1784 kfree(pe);
1785 }
1786
1787 /**
1788 * create_filter - create a filter for a trace_event_call
1789 * @tr: the trace array associated with these events
1790 * @call: trace_event_call to create a filter for
1791 * @filter_str: filter string
1792 * @set_str: remember @filter_str and enable detailed error in filter
1793 * @filterp: out param for created filter (always updated on return)
1794 * Must be a pointer that references a NULL pointer.
1795 *
1796 * Creates a filter for @call with @filter_str. If @set_str is %true,
1797 * @filter_str is copied and recorded in the new filter.
1798 *
1799 * On success, returns 0 and *@filterp points to the new filter. On
1800 * failure, returns -errno and *@filterp may point to %NULL or to a new
1801 * filter. In the latter case, the returned filter contains error
1802 * information if @set_str is %true and the caller is responsible for
1803 * freeing it.
1804 */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)1805 static int create_filter(struct trace_array *tr,
1806 struct trace_event_call *call,
1807 char *filter_string, bool set_str,
1808 struct event_filter **filterp)
1809 {
1810 struct filter_parse_error *pe = NULL;
1811 int err;
1812
1813 /* filterp must point to NULL */
1814 if (WARN_ON(*filterp))
1815 *filterp = NULL;
1816
1817 err = create_filter_start(filter_string, set_str, &pe, filterp);
1818 if (err)
1819 return err;
1820
1821 err = process_preds(call, filter_string, *filterp, pe);
1822 if (err && set_str)
1823 append_filter_err(tr, pe, *filterp);
1824 create_filter_finish(pe);
1825
1826 return err;
1827 }
1828
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)1829 int create_event_filter(struct trace_array *tr,
1830 struct trace_event_call *call,
1831 char *filter_str, bool set_str,
1832 struct event_filter **filterp)
1833 {
1834 return create_filter(tr, call, filter_str, set_str, filterp);
1835 }
1836
1837 /**
1838 * create_system_filter - create a filter for an event subsystem
1839 * @dir: the descriptor for the subsystem directory
1840 * @filter_str: filter string
1841 * @filterp: out param for created filter (always updated on return)
1842 *
1843 * Identical to create_filter() except that it creates a subsystem filter
1844 * and always remembers @filter_str.
1845 */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)1846 static int create_system_filter(struct trace_subsystem_dir *dir,
1847 char *filter_str, struct event_filter **filterp)
1848 {
1849 struct filter_parse_error *pe = NULL;
1850 int err;
1851
1852 err = create_filter_start(filter_str, true, &pe, filterp);
1853 if (!err) {
1854 err = process_system_preds(dir, dir->tr, pe, filter_str);
1855 if (!err) {
1856 /* System filters just show a default message */
1857 kfree((*filterp)->filter_string);
1858 (*filterp)->filter_string = NULL;
1859 } else {
1860 append_filter_err(dir->tr, pe, *filterp);
1861 }
1862 }
1863 create_filter_finish(pe);
1864
1865 return err;
1866 }
1867
1868 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)1869 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1870 {
1871 struct trace_event_call *call = file->event_call;
1872 struct event_filter *filter = NULL;
1873 int err;
1874
1875 if (!strcmp(strstrip(filter_string), "0")) {
1876 filter_disable(file);
1877 filter = event_filter(file);
1878
1879 if (!filter)
1880 return 0;
1881
1882 event_clear_filter(file);
1883
1884 /* Make sure the filter is not being used */
1885 tracepoint_synchronize_unregister();
1886 __free_filter(filter);
1887
1888 return 0;
1889 }
1890
1891 err = create_filter(file->tr, call, filter_string, true, &filter);
1892
1893 /*
1894 * Always swap the call filter with the new filter
1895 * even if there was an error. If there was an error
1896 * in the filter, we disable the filter and show the error
1897 * string
1898 */
1899 if (filter) {
1900 struct event_filter *tmp;
1901
1902 tmp = event_filter(file);
1903 if (!err)
1904 event_set_filtered_flag(file);
1905 else
1906 filter_disable(file);
1907
1908 event_set_filter(file, filter);
1909
1910 if (tmp) {
1911 /* Make sure the call is done with the filter */
1912 tracepoint_synchronize_unregister();
1913 __free_filter(tmp);
1914 }
1915 }
1916
1917 return err;
1918 }
1919
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)1920 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1921 char *filter_string)
1922 {
1923 struct event_subsystem *system = dir->subsystem;
1924 struct trace_array *tr = dir->tr;
1925 struct event_filter *filter = NULL;
1926 int err = 0;
1927
1928 mutex_lock(&event_mutex);
1929
1930 /* Make sure the system still has events */
1931 if (!dir->nr_events) {
1932 err = -ENODEV;
1933 goto out_unlock;
1934 }
1935
1936 if (!strcmp(strstrip(filter_string), "0")) {
1937 filter_free_subsystem_preds(dir, tr);
1938 remove_filter_string(system->filter);
1939 filter = system->filter;
1940 system->filter = NULL;
1941 /* Ensure all filters are no longer used */
1942 tracepoint_synchronize_unregister();
1943 filter_free_subsystem_filters(dir, tr);
1944 __free_filter(filter);
1945 goto out_unlock;
1946 }
1947
1948 err = create_system_filter(dir, filter_string, &filter);
1949 if (filter) {
1950 /*
1951 * No event actually uses the system filter
1952 * we can free it without synchronize_rcu().
1953 */
1954 __free_filter(system->filter);
1955 system->filter = filter;
1956 }
1957 out_unlock:
1958 mutex_unlock(&event_mutex);
1959
1960 return err;
1961 }
1962
1963 #ifdef CONFIG_PERF_EVENTS
1964
ftrace_profile_free_filter(struct perf_event * event)1965 void ftrace_profile_free_filter(struct perf_event *event)
1966 {
1967 struct event_filter *filter = event->filter;
1968
1969 event->filter = NULL;
1970 __free_filter(filter);
1971 }
1972
1973 struct function_filter_data {
1974 struct ftrace_ops *ops;
1975 int first_filter;
1976 int first_notrace;
1977 };
1978
1979 #ifdef CONFIG_FUNCTION_TRACER
1980 static char **
ftrace_function_filter_re(char * buf,int len,int * count)1981 ftrace_function_filter_re(char *buf, int len, int *count)
1982 {
1983 char *str, **re;
1984
1985 str = kstrndup(buf, len, GFP_KERNEL);
1986 if (!str)
1987 return NULL;
1988
1989 /*
1990 * The argv_split function takes white space
1991 * as a separator, so convert ',' into spaces.
1992 */
1993 strreplace(str, ',', ' ');
1994
1995 re = argv_split(GFP_KERNEL, str, count);
1996 kfree(str);
1997 return re;
1998 }
1999
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2000 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2001 int reset, char *re, int len)
2002 {
2003 int ret;
2004
2005 if (filter)
2006 ret = ftrace_set_filter(ops, re, len, reset);
2007 else
2008 ret = ftrace_set_notrace(ops, re, len, reset);
2009
2010 return ret;
2011 }
2012
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2013 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2014 struct function_filter_data *data)
2015 {
2016 int i, re_cnt, ret = -EINVAL;
2017 int *reset;
2018 char **re;
2019
2020 reset = filter ? &data->first_filter : &data->first_notrace;
2021
2022 /*
2023 * The 'ip' field could have multiple filters set, separated
2024 * either by space or comma. We first cut the filter and apply
2025 * all pieces separately.
2026 */
2027 re = ftrace_function_filter_re(buf, len, &re_cnt);
2028 if (!re)
2029 return -EINVAL;
2030
2031 for (i = 0; i < re_cnt; i++) {
2032 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2033 re[i], strlen(re[i]));
2034 if (ret)
2035 break;
2036
2037 if (*reset)
2038 *reset = 0;
2039 }
2040
2041 argv_free(re);
2042 return ret;
2043 }
2044
ftrace_function_check_pred(struct filter_pred * pred)2045 static int ftrace_function_check_pred(struct filter_pred *pred)
2046 {
2047 struct ftrace_event_field *field = pred->field;
2048
2049 /*
2050 * Check the predicate for function trace, verify:
2051 * - only '==' and '!=' is used
2052 * - the 'ip' field is used
2053 */
2054 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2055 return -EINVAL;
2056
2057 if (strcmp(field->name, "ip"))
2058 return -EINVAL;
2059
2060 return 0;
2061 }
2062
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2063 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2064 struct function_filter_data *data)
2065 {
2066 int ret;
2067
2068 /* Checking the node is valid for function trace. */
2069 ret = ftrace_function_check_pred(pred);
2070 if (ret)
2071 return ret;
2072
2073 return __ftrace_function_set_filter(pred->op == OP_EQ,
2074 pred->regex.pattern,
2075 pred->regex.len,
2076 data);
2077 }
2078
is_or(struct prog_entry * prog,int i)2079 static bool is_or(struct prog_entry *prog, int i)
2080 {
2081 int target;
2082
2083 /*
2084 * Only "||" is allowed for function events, thus,
2085 * all true branches should jump to true, and any
2086 * false branch should jump to false.
2087 */
2088 target = prog[i].target + 1;
2089 /* True and false have NULL preds (all prog entries should jump to one */
2090 if (prog[target].pred)
2091 return false;
2092
2093 /* prog[target].target is 1 for TRUE, 0 for FALSE */
2094 return prog[i].when_to_branch == prog[target].target;
2095 }
2096
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2097 static int ftrace_function_set_filter(struct perf_event *event,
2098 struct event_filter *filter)
2099 {
2100 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2101 lockdep_is_held(&event_mutex));
2102 struct function_filter_data data = {
2103 .first_filter = 1,
2104 .first_notrace = 1,
2105 .ops = &event->ftrace_ops,
2106 };
2107 int i;
2108
2109 for (i = 0; prog[i].pred; i++) {
2110 struct filter_pred *pred = prog[i].pred;
2111
2112 if (!is_or(prog, i))
2113 return -EINVAL;
2114
2115 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2116 return -EINVAL;
2117 }
2118 return 0;
2119 }
2120 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2121 static int ftrace_function_set_filter(struct perf_event *event,
2122 struct event_filter *filter)
2123 {
2124 return -ENODEV;
2125 }
2126 #endif /* CONFIG_FUNCTION_TRACER */
2127
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2128 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2129 char *filter_str)
2130 {
2131 int err;
2132 struct event_filter *filter = NULL;
2133 struct trace_event_call *call;
2134
2135 mutex_lock(&event_mutex);
2136
2137 call = event->tp_event;
2138
2139 err = -EINVAL;
2140 if (!call)
2141 goto out_unlock;
2142
2143 err = -EEXIST;
2144 if (event->filter)
2145 goto out_unlock;
2146
2147 err = create_filter(NULL, call, filter_str, false, &filter);
2148 if (err)
2149 goto free_filter;
2150
2151 if (ftrace_event_is_function(call))
2152 err = ftrace_function_set_filter(event, filter);
2153 else
2154 event->filter = filter;
2155
2156 free_filter:
2157 if (err || ftrace_event_is_function(call))
2158 __free_filter(filter);
2159
2160 out_unlock:
2161 mutex_unlock(&event_mutex);
2162
2163 return err;
2164 }
2165
2166 #endif /* CONFIG_PERF_EVENTS */
2167
2168 #ifdef CONFIG_FTRACE_STARTUP_TEST
2169
2170 #include <linux/types.h>
2171 #include <linux/tracepoint.h>
2172
2173 #define CREATE_TRACE_POINTS
2174 #include "trace_events_filter_test.h"
2175
2176 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2177 { \
2178 .filter = FILTER, \
2179 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2180 .e = ve, .f = vf, .g = vg, .h = vh }, \
2181 .match = m, \
2182 .not_visited = nvisit, \
2183 }
2184 #define YES 1
2185 #define NO 0
2186
2187 static struct test_filter_data_t {
2188 char *filter;
2189 struct trace_event_raw_ftrace_test_filter rec;
2190 int match;
2191 char *not_visited;
2192 } test_filter_data[] = {
2193 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2194 "e == 1 && f == 1 && g == 1 && h == 1"
2195 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2196 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2197 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2198 #undef FILTER
2199 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2200 "e == 1 || f == 1 || g == 1 || h == 1"
2201 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2202 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2203 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2204 #undef FILTER
2205 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2206 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2207 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2208 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2209 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2210 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2211 #undef FILTER
2212 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2213 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2214 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2215 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2216 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2217 #undef FILTER
2218 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2219 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2220 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2221 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2222 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2223 #undef FILTER
2224 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2225 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2226 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2227 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2228 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2229 #undef FILTER
2230 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2231 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2232 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2233 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2234 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2235 #undef FILTER
2236 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2237 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2238 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2239 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2240 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2241 };
2242
2243 #undef DATA_REC
2244 #undef FILTER
2245 #undef YES
2246 #undef NO
2247
2248 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2249
2250 static int test_pred_visited;
2251
test_pred_visited_fn(struct filter_pred * pred,void * event)2252 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2253 {
2254 struct ftrace_event_field *field = pred->field;
2255
2256 test_pred_visited = 1;
2257 printk(KERN_INFO "\npred visited %s\n", field->name);
2258 return 1;
2259 }
2260
update_pred_fn(struct event_filter * filter,char * fields)2261 static void update_pred_fn(struct event_filter *filter, char *fields)
2262 {
2263 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2264 lockdep_is_held(&event_mutex));
2265 int i;
2266
2267 for (i = 0; prog[i].pred; i++) {
2268 struct filter_pred *pred = prog[i].pred;
2269 struct ftrace_event_field *field = pred->field;
2270
2271 WARN_ON_ONCE(!pred->fn);
2272
2273 if (!field) {
2274 WARN_ONCE(1, "all leafs should have field defined %d", i);
2275 continue;
2276 }
2277
2278 if (!strchr(fields, *field->name))
2279 continue;
2280
2281 pred->fn = test_pred_visited_fn;
2282 }
2283 }
2284
ftrace_test_event_filter(void)2285 static __init int ftrace_test_event_filter(void)
2286 {
2287 int i;
2288
2289 printk(KERN_INFO "Testing ftrace filter: ");
2290
2291 for (i = 0; i < DATA_CNT; i++) {
2292 struct event_filter *filter = NULL;
2293 struct test_filter_data_t *d = &test_filter_data[i];
2294 int err;
2295
2296 err = create_filter(NULL, &event_ftrace_test_filter,
2297 d->filter, false, &filter);
2298 if (err) {
2299 printk(KERN_INFO
2300 "Failed to get filter for '%s', err %d\n",
2301 d->filter, err);
2302 __free_filter(filter);
2303 break;
2304 }
2305
2306 /* Needed to dereference filter->prog */
2307 mutex_lock(&event_mutex);
2308 /*
2309 * The preemption disabling is not really needed for self
2310 * tests, but the rcu dereference will complain without it.
2311 */
2312 preempt_disable();
2313 if (*d->not_visited)
2314 update_pred_fn(filter, d->not_visited);
2315
2316 test_pred_visited = 0;
2317 err = filter_match_preds(filter, &d->rec);
2318 preempt_enable();
2319
2320 mutex_unlock(&event_mutex);
2321
2322 __free_filter(filter);
2323
2324 if (test_pred_visited) {
2325 printk(KERN_INFO
2326 "Failed, unwanted pred visited for filter %s\n",
2327 d->filter);
2328 break;
2329 }
2330
2331 if (err != d->match) {
2332 printk(KERN_INFO
2333 "Failed to match filter '%s', expected %d\n",
2334 d->filter, d->match);
2335 break;
2336 }
2337 }
2338
2339 if (i == DATA_CNT)
2340 printk(KERN_CONT "OK\n");
2341
2342 return 0;
2343 }
2344
2345 late_initcall(ftrace_test_event_filter);
2346
2347 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2348