• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_timing_generator.h"
36 #include "dce/dce_hwseq.h"
37 #include "gpio_service_interface.h"
38 
39 #include "dce110_compressor.h"
40 
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_hwss.h"
50 #include "dc_link_dp.h"
51 #if defined(CONFIG_DRM_AMD_DC_DCN)
52 #include "dccg.h"
53 #endif
54 #include "clock_source.h"
55 #include "clk_mgr.h"
56 #include "abm.h"
57 #include "audio.h"
58 #include "reg_helper.h"
59 #include "panel_cntl.h"
60 
61 /* include DCE11 register header files */
62 #include "dce/dce_11_0_d.h"
63 #include "dce/dce_11_0_sh_mask.h"
64 #include "custom_float.h"
65 
66 #include "atomfirmware.h"
67 
68 #include "dcn10/dcn10_hw_sequencer.h"
69 
70 #define GAMMA_HW_POINTS_NUM 256
71 
72 /*
73  * All values are in milliseconds;
74  * For eDP, after power-up/power/down,
75  * 300/500 msec max. delay from LCDVCC to black video generation
76  */
77 #define PANEL_POWER_UP_TIMEOUT 300
78 #define PANEL_POWER_DOWN_TIMEOUT 500
79 #define HPD_CHECK_INTERVAL 10
80 #define OLED_POST_T7_DELAY 100
81 #define OLED_PRE_T11_DELAY 150
82 
83 #define CTX \
84 	hws->ctx
85 
86 #define DC_LOGGER_INIT()
87 
88 #define REG(reg)\
89 	hws->regs->reg
90 
91 #undef FN
92 #define FN(reg_name, field_name) \
93 	hws->shifts->field_name, hws->masks->field_name
94 
95 struct dce110_hw_seq_reg_offsets {
96 	uint32_t crtc;
97 };
98 
99 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
100 {
101 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
102 },
103 {
104 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 },
109 {
110 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
111 }
112 };
113 
114 #define HW_REG_BLND(reg, id)\
115 	(reg + reg_offsets[id].blnd)
116 
117 #define HW_REG_CRTC(reg, id)\
118 	(reg + reg_offsets[id].crtc)
119 
120 #define MAX_WATERMARK 0xFFFF
121 #define SAFE_NBP_MARK 0x7FFF
122 
123 /*******************************************************************************
124  * Private definitions
125  ******************************************************************************/
126 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)127 static void dce110_init_pte(struct dc_context *ctx)
128 {
129 	uint32_t addr;
130 	uint32_t value = 0;
131 	uint32_t chunk_int = 0;
132 	uint32_t chunk_mul = 0;
133 
134 	addr = mmUNP_DVMM_PTE_CONTROL;
135 	value = dm_read_reg(ctx, addr);
136 
137 	set_reg_field_value(
138 		value,
139 		0,
140 		DVMM_PTE_CONTROL,
141 		DVMM_USE_SINGLE_PTE);
142 
143 	set_reg_field_value(
144 		value,
145 		1,
146 		DVMM_PTE_CONTROL,
147 		DVMM_PTE_BUFFER_MODE0);
148 
149 	set_reg_field_value(
150 		value,
151 		1,
152 		DVMM_PTE_CONTROL,
153 		DVMM_PTE_BUFFER_MODE1);
154 
155 	dm_write_reg(ctx, addr, value);
156 
157 	addr = mmDVMM_PTE_REQ;
158 	value = dm_read_reg(ctx, addr);
159 
160 	chunk_int = get_reg_field_value(
161 		value,
162 		DVMM_PTE_REQ,
163 		HFLIP_PTEREQ_PER_CHUNK_INT);
164 
165 	chunk_mul = get_reg_field_value(
166 		value,
167 		DVMM_PTE_REQ,
168 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
169 
170 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
171 
172 		set_reg_field_value(
173 			value,
174 			255,
175 			DVMM_PTE_REQ,
176 			MAX_PTEREQ_TO_ISSUE);
177 
178 		set_reg_field_value(
179 			value,
180 			4,
181 			DVMM_PTE_REQ,
182 			HFLIP_PTEREQ_PER_CHUNK_INT);
183 
184 		set_reg_field_value(
185 			value,
186 			4,
187 			DVMM_PTE_REQ,
188 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
189 
190 		dm_write_reg(ctx, addr, value);
191 	}
192 }
193 /**************************************************************************/
194 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)195 static void enable_display_pipe_clock_gating(
196 	struct dc_context *ctx,
197 	bool clock_gating)
198 {
199 	/*TODO*/
200 }
201 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)202 static bool dce110_enable_display_power_gating(
203 	struct dc *dc,
204 	uint8_t controller_id,
205 	struct dc_bios *dcb,
206 	enum pipe_gating_control power_gating)
207 {
208 	enum bp_result bp_result = BP_RESULT_OK;
209 	enum bp_pipe_control_action cntl;
210 	struct dc_context *ctx = dc->ctx;
211 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
212 
213 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
214 		return true;
215 
216 	if (power_gating == PIPE_GATING_CONTROL_INIT)
217 		cntl = ASIC_PIPE_INIT;
218 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
219 		cntl = ASIC_PIPE_ENABLE;
220 	else
221 		cntl = ASIC_PIPE_DISABLE;
222 
223 	if (controller_id == underlay_idx)
224 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
225 
226 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
227 
228 		bp_result = dcb->funcs->enable_disp_power_gating(
229 						dcb, controller_id + 1, cntl);
230 
231 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
232 		 * by default when command table is called
233 		 *
234 		 * Bios parser accepts controller_id = 6 as indicative of
235 		 * underlay pipe in dce110. But we do not support more
236 		 * than 3.
237 		 */
238 		if (controller_id < CONTROLLER_ID_MAX - 1)
239 			dm_write_reg(ctx,
240 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
241 				0);
242 	}
243 
244 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
245 		dce110_init_pte(ctx);
246 
247 	if (bp_result == BP_RESULT_OK)
248 		return true;
249 	else
250 		return false;
251 }
252 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)253 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
254 		const struct dc_plane_state *plane_state)
255 {
256 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
257 
258 	switch (plane_state->format) {
259 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
260 		prescale_params->scale = 0x2082;
261 		break;
262 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
263 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
264 		prescale_params->scale = 0x2020;
265 		break;
266 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
267 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
268 		prescale_params->scale = 0x2008;
269 		break;
270 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
271 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
273 		prescale_params->scale = 0x2000;
274 		break;
275 	default:
276 		ASSERT(false);
277 		break;
278 	}
279 }
280 
281 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)282 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
283 			       const struct dc_plane_state *plane_state)
284 {
285 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
286 	const struct dc_transfer_func *tf = NULL;
287 	struct ipp_prescale_params prescale_params = { 0 };
288 	bool result = true;
289 
290 	if (ipp == NULL)
291 		return false;
292 
293 	if (plane_state->in_transfer_func)
294 		tf = plane_state->in_transfer_func;
295 
296 	build_prescale_params(&prescale_params, plane_state);
297 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298 
299 	if (plane_state->gamma_correction &&
300 			!plane_state->gamma_correction->is_identity &&
301 			dce_use_lut(plane_state->format))
302 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
303 
304 	if (tf == NULL) {
305 		/* Default case if no input transfer function specified */
306 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 	} else if (tf->type == TF_TYPE_PREDEFINED) {
308 		switch (tf->tf) {
309 		case TRANSFER_FUNCTION_SRGB:
310 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
311 			break;
312 		case TRANSFER_FUNCTION_BT709:
313 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
314 			break;
315 		case TRANSFER_FUNCTION_LINEAR:
316 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
317 			break;
318 		case TRANSFER_FUNCTION_PQ:
319 		default:
320 			result = false;
321 			break;
322 		}
323 	} else if (tf->type == TF_TYPE_BYPASS) {
324 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
325 	} else {
326 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
327 		result = false;
328 	}
329 
330 	return result;
331 }
332 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)333 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
334 				    struct curve_points *arr_points,
335 				    uint32_t hw_points_num)
336 {
337 	struct custom_float_format fmt;
338 
339 	struct pwl_result_data *rgb = rgb_resulted;
340 
341 	uint32_t i = 0;
342 
343 	fmt.exponenta_bits = 6;
344 	fmt.mantissa_bits = 12;
345 	fmt.sign = true;
346 
347 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
348 					    &arr_points[0].custom_float_x)) {
349 		BREAK_TO_DEBUGGER();
350 		return false;
351 	}
352 
353 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
354 					    &arr_points[0].custom_float_offset)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
360 					    &arr_points[0].custom_float_slope)) {
361 		BREAK_TO_DEBUGGER();
362 		return false;
363 	}
364 
365 	fmt.mantissa_bits = 10;
366 	fmt.sign = false;
367 
368 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
369 					    &arr_points[1].custom_float_x)) {
370 		BREAK_TO_DEBUGGER();
371 		return false;
372 	}
373 
374 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
375 					    &arr_points[1].custom_float_y)) {
376 		BREAK_TO_DEBUGGER();
377 		return false;
378 	}
379 
380 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
381 					    &arr_points[1].custom_float_slope)) {
382 		BREAK_TO_DEBUGGER();
383 		return false;
384 	}
385 
386 	fmt.mantissa_bits = 12;
387 	fmt.sign = true;
388 
389 	while (i != hw_points_num) {
390 		if (!convert_to_custom_float_format(rgb->red, &fmt,
391 						    &rgb->red_reg)) {
392 			BREAK_TO_DEBUGGER();
393 			return false;
394 		}
395 
396 		if (!convert_to_custom_float_format(rgb->green, &fmt,
397 						    &rgb->green_reg)) {
398 			BREAK_TO_DEBUGGER();
399 			return false;
400 		}
401 
402 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
403 						    &rgb->blue_reg)) {
404 			BREAK_TO_DEBUGGER();
405 			return false;
406 		}
407 
408 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
409 						    &rgb->delta_red_reg)) {
410 			BREAK_TO_DEBUGGER();
411 			return false;
412 		}
413 
414 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
415 						    &rgb->delta_green_reg)) {
416 			BREAK_TO_DEBUGGER();
417 			return false;
418 		}
419 
420 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
421 						    &rgb->delta_blue_reg)) {
422 			BREAK_TO_DEBUGGER();
423 			return false;
424 		}
425 
426 		++rgb;
427 		++i;
428 	}
429 
430 	return true;
431 }
432 
433 #define MAX_LOW_POINT      25
434 #define NUMBER_REGIONS     16
435 #define NUMBER_SW_SEGMENTS 16
436 
437 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)438 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
439 				      struct pwl_params *regamma_params)
440 {
441 	struct curve_points *arr_points;
442 	struct pwl_result_data *rgb_resulted;
443 	struct pwl_result_data *rgb;
444 	struct pwl_result_data *rgb_plus_1;
445 	struct fixed31_32 y_r;
446 	struct fixed31_32 y_g;
447 	struct fixed31_32 y_b;
448 	struct fixed31_32 y1_min;
449 	struct fixed31_32 y3_max;
450 
451 	int32_t region_start, region_end;
452 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
453 
454 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
455 		return false;
456 
457 	arr_points = regamma_params->arr_points;
458 	rgb_resulted = regamma_params->rgb_resulted;
459 	hw_points = 0;
460 
461 	memset(regamma_params, 0, sizeof(struct pwl_params));
462 
463 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
464 		/* 16 segments
465 		 * segments are from 2^-11 to 2^5
466 		 */
467 		region_start = -11;
468 		region_end = region_start + NUMBER_REGIONS;
469 
470 		for (i = 0; i < NUMBER_REGIONS; i++)
471 			seg_distr[i] = 4;
472 
473 	} else {
474 		/* 10 segments
475 		 * segment is from 2^-10 to 2^1
476 		 * We include an extra segment for range [2^0, 2^1). This is to
477 		 * ensure that colors with normalized values of 1 don't miss the
478 		 * LUT.
479 		 */
480 		region_start = -10;
481 		region_end = 1;
482 
483 		seg_distr[0] = 4;
484 		seg_distr[1] = 4;
485 		seg_distr[2] = 4;
486 		seg_distr[3] = 4;
487 		seg_distr[4] = 4;
488 		seg_distr[5] = 4;
489 		seg_distr[6] = 4;
490 		seg_distr[7] = 4;
491 		seg_distr[8] = 4;
492 		seg_distr[9] = 4;
493 		seg_distr[10] = 0;
494 		seg_distr[11] = -1;
495 		seg_distr[12] = -1;
496 		seg_distr[13] = -1;
497 		seg_distr[14] = -1;
498 		seg_distr[15] = -1;
499 	}
500 
501 	for (k = 0; k < 16; k++) {
502 		if (seg_distr[k] != -1)
503 			hw_points += (1 << seg_distr[k]);
504 	}
505 
506 	j = 0;
507 	for (k = 0; k < (region_end - region_start); k++) {
508 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
509 		start_index = (region_start + k + MAX_LOW_POINT) *
510 				NUMBER_SW_SEGMENTS;
511 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
512 				i += increment) {
513 			if (j == hw_points - 1)
514 				break;
515 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
516 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
517 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
518 			j++;
519 		}
520 	}
521 
522 	/* last point */
523 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
524 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
525 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
526 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
527 
528 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
529 					     dc_fixpt_from_int(region_start));
530 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
531 					     dc_fixpt_from_int(region_end));
532 
533 	y_r = rgb_resulted[0].red;
534 	y_g = rgb_resulted[0].green;
535 	y_b = rgb_resulted[0].blue;
536 
537 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
538 
539 	arr_points[0].y = y1_min;
540 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
541 						 arr_points[0].x);
542 
543 	y_r = rgb_resulted[hw_points - 1].red;
544 	y_g = rgb_resulted[hw_points - 1].green;
545 	y_b = rgb_resulted[hw_points - 1].blue;
546 
547 	/* see comment above, m_arrPoints[1].y should be the Y value for the
548 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
549 	 */
550 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
551 
552 	arr_points[1].y = y3_max;
553 
554 	arr_points[1].slope = dc_fixpt_zero;
555 
556 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
557 		/* for PQ, we want to have a straight line from last HW X point,
558 		 * and the slope to be such that we hit 1.0 at 10000 nits.
559 		 */
560 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
561 
562 		arr_points[1].slope = dc_fixpt_div(
563 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
564 				dc_fixpt_sub(end_value, arr_points[1].x));
565 	}
566 
567 	regamma_params->hw_points_num = hw_points;
568 
569 	k = 0;
570 	for (i = 1; i < 16; i++) {
571 		if (seg_distr[k] != -1) {
572 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
573 			regamma_params->arr_curve_points[i].offset =
574 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
575 		}
576 		k++;
577 	}
578 
579 	if (seg_distr[k] != -1)
580 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
581 
582 	rgb = rgb_resulted;
583 	rgb_plus_1 = rgb_resulted + 1;
584 
585 	i = 1;
586 
587 	while (i != hw_points + 1) {
588 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
589 			rgb_plus_1->red = rgb->red;
590 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
591 			rgb_plus_1->green = rgb->green;
592 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
593 			rgb_plus_1->blue = rgb->blue;
594 
595 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
596 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
597 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
598 
599 		++rgb_plus_1;
600 		++rgb;
601 		++i;
602 	}
603 
604 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
605 
606 	return true;
607 }
608 
609 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)610 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
611 				const struct dc_stream_state *stream)
612 {
613 	struct transform *xfm = pipe_ctx->plane_res.xfm;
614 
615 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
616 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
617 
618 	if (stream->out_transfer_func &&
619 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
620 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
622 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
623 							 &xfm->regamma_params)) {
624 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
625 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
626 	} else {
627 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
628 	}
629 
630 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
631 
632 	return true;
633 }
634 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)635 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
636 {
637 	bool is_hdmi_tmds;
638 	bool is_dp;
639 
640 	ASSERT(pipe_ctx->stream);
641 
642 	if (pipe_ctx->stream_res.stream_enc == NULL)
643 		return;  /* this is not root pipe */
644 
645 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
646 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
647 
648 	if (!is_hdmi_tmds && !is_dp)
649 		return;
650 
651 	if (is_hdmi_tmds)
652 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
653 			pipe_ctx->stream_res.stream_enc,
654 			&pipe_ctx->stream_res.encoder_info_frame);
655 	else
656 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 			pipe_ctx->stream_res.stream_enc,
658 			&pipe_ctx->stream_res.encoder_info_frame);
659 }
660 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)661 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
662 {
663 	enum dc_lane_count lane_count =
664 		pipe_ctx->stream->link->cur_link_settings.lane_count;
665 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
666 	struct dc_link *link = pipe_ctx->stream->link;
667 	const struct dc *dc = link->dc;
668 
669 	uint32_t active_total_with_borders;
670 	uint32_t early_control = 0;
671 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
672 
673 	/* For MST, there are multiply stream go to only one link.
674 	 * connect DIG back_end to front_end while enable_stream and
675 	 * disconnect them during disable_stream
676 	 * BY this, it is logic clean to separate stream and link */
677 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
678 						    pipe_ctx->stream_res.stream_enc->id, true);
679 
680 	dc->hwss.update_info_frame(pipe_ctx);
681 
682 	/* enable early control to avoid corruption on DP monitor*/
683 	active_total_with_borders =
684 			timing->h_addressable
685 				+ timing->h_border_left
686 				+ timing->h_border_right;
687 
688 	if (lane_count != 0)
689 		early_control = active_total_with_borders % lane_count;
690 
691 	if (early_control == 0)
692 		early_control = lane_count;
693 
694 	tg->funcs->set_early_control(tg, early_control);
695 
696 	/* enable audio only within mode set */
697 	if (pipe_ctx->stream_res.audio != NULL) {
698 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
699 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
700 	}
701 
702 
703 
704 
705 }
706 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)707 static enum bp_result link_transmitter_control(
708 		struct dc_bios *bios,
709 	struct bp_transmitter_control *cntl)
710 {
711 	enum bp_result result;
712 
713 	result = bios->funcs->transmitter_control(bios, cntl);
714 
715 	return result;
716 }
717 
718 /*
719  * @brief
720  * eDP only.
721  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)722 void dce110_edp_wait_for_hpd_ready(
723 		struct dc_link *link,
724 		bool power_up)
725 {
726 	struct dc_context *ctx = link->ctx;
727 	struct graphics_object_id connector = link->link_enc->connector;
728 	struct gpio *hpd;
729 	struct dc_sink *sink = link->local_sink;
730 	bool edp_hpd_high = false;
731 	uint32_t time_elapsed = 0;
732 	uint32_t timeout = power_up ?
733 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
734 
735 	if (dal_graphics_object_id_get_connector_id(connector)
736 			!= CONNECTOR_ID_EDP) {
737 		BREAK_TO_DEBUGGER();
738 		return;
739 	}
740 
741 	if (!power_up)
742 		/*
743 		 * From KV, we will not HPD low after turning off VCC -
744 		 * instead, we will check the SW timer in power_up().
745 		 */
746 		return;
747 
748 	/*
749 	 * When we power on/off the eDP panel,
750 	 * we need to wait until SENSE bit is high/low.
751 	 */
752 
753 	/* obtain HPD */
754 	/* TODO what to do with this? */
755 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
756 
757 	if (!hpd) {
758 		BREAK_TO_DEBUGGER();
759 		return;
760 	}
761 
762 	if (sink != NULL) {
763 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
764 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
765 
766 			msleep(extra_t3_in_ms);
767 		}
768 	}
769 
770 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
771 
772 	/* wait until timeout or panel detected */
773 
774 	do {
775 		uint32_t detected = 0;
776 
777 		dal_gpio_get_value(hpd, &detected);
778 
779 		if (!(detected ^ power_up)) {
780 			edp_hpd_high = true;
781 			break;
782 		}
783 
784 		msleep(HPD_CHECK_INTERVAL);
785 
786 		time_elapsed += HPD_CHECK_INTERVAL;
787 	} while (time_elapsed < timeout);
788 
789 	dal_gpio_close(hpd);
790 
791 	dal_gpio_destroy_irq(&hpd);
792 
793 	if (false == edp_hpd_high) {
794 		DC_LOG_ERROR(
795 				"%s: wait timed out!\n", __func__);
796 	}
797 }
798 
dce110_edp_power_control(struct dc_link * link,bool power_up)799 void dce110_edp_power_control(
800 		struct dc_link *link,
801 		bool power_up)
802 {
803 	struct dc_context *ctx = link->ctx;
804 	struct bp_transmitter_control cntl = { 0 };
805 	enum bp_result bp_result;
806 	uint8_t panel_instance;
807 
808 
809 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
810 			!= CONNECTOR_ID_EDP) {
811 		BREAK_TO_DEBUGGER();
812 		return;
813 	}
814 
815 	if (!link->panel_cntl)
816 		return;
817 	if (power_up !=
818 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
819 
820 		unsigned long long current_ts = dm_get_timestamp(ctx);
821 		unsigned long long time_since_edp_poweroff_ms =
822 				div64_u64(dm_get_elapse_time_in_ns(
823 						ctx,
824 						current_ts,
825 						link->link_trace.time_stamp.edp_poweroff), 1000000);
826 		unsigned long long time_since_edp_poweron_ms =
827 				div64_u64(dm_get_elapse_time_in_ns(
828 						ctx,
829 						current_ts,
830 						link->link_trace.time_stamp.edp_poweron), 1000000);
831 		DC_LOG_HW_RESUME_S3(
832 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
833 				__func__,
834 				power_up,
835 				current_ts,
836 				link->link_trace.time_stamp.edp_poweroff,
837 				link->link_trace.time_stamp.edp_poweron,
838 				time_since_edp_poweroff_ms,
839 				time_since_edp_poweron_ms);
840 
841 		/* Send VBIOS command to prompt eDP panel power */
842 		if (power_up) {
843 			/* edp requires a min of 500ms from LCDVDD off to on */
844 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
845 
846 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
847 			if (link->local_sink != NULL)
848 				remaining_min_edp_poweroff_time_ms +=
849 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
850 
851 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
852 			if (link->link_trace.time_stamp.edp_poweroff != 0) {
853 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
854 					remaining_min_edp_poweroff_time_ms =
855 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
856 				else
857 					remaining_min_edp_poweroff_time_ms = 0;
858 			}
859 
860 			if (remaining_min_edp_poweroff_time_ms) {
861 				DC_LOG_HW_RESUME_S3(
862 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
863 						__func__, remaining_min_edp_poweroff_time_ms);
864 				msleep(remaining_min_edp_poweroff_time_ms);
865 				DC_LOG_HW_RESUME_S3(
866 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
867 						__func__, remaining_min_edp_poweroff_time_ms);
868 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
869 						__func__, remaining_min_edp_poweroff_time_ms);
870 			} else {
871 				DC_LOG_HW_RESUME_S3(
872 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
873 						__func__, remaining_min_edp_poweroff_time_ms);
874 			}
875 		}
876 
877 		DC_LOG_HW_RESUME_S3(
878 				"%s: BEGIN: Panel Power action: %s\n",
879 				__func__, (power_up ? "On":"Off"));
880 
881 		cntl.action = power_up ?
882 			TRANSMITTER_CONTROL_POWER_ON :
883 			TRANSMITTER_CONTROL_POWER_OFF;
884 		cntl.transmitter = link->link_enc->transmitter;
885 		cntl.connector_obj_id = link->link_enc->connector;
886 		cntl.coherent = false;
887 		cntl.lanes_number = LANE_COUNT_FOUR;
888 		cntl.hpd_sel = link->link_enc->hpd_source;
889 		panel_instance = link->panel_cntl->inst;
890 
891 		if (ctx->dc->ctx->dmub_srv &&
892 				ctx->dc->debug.dmub_command_table) {
893 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
894 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
895 						LVTMA_CONTROL_POWER_ON,
896 						panel_instance);
897 			else
898 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
899 						LVTMA_CONTROL_POWER_OFF,
900 						panel_instance);
901 		}
902 
903 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
904 
905 		DC_LOG_HW_RESUME_S3(
906 				"%s: END: Panel Power action: %s bp_result=%u\n",
907 				__func__, (power_up ? "On":"Off"),
908 				bp_result);
909 
910 		if (!power_up)
911 			/*save driver power off time stamp*/
912 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
913 		else
914 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
915 
916 		DC_LOG_HW_RESUME_S3(
917 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
918 				__func__,
919 				link->link_trace.time_stamp.edp_poweroff,
920 				link->link_trace.time_stamp.edp_poweron);
921 
922 		if (bp_result != BP_RESULT_OK)
923 			DC_LOG_ERROR(
924 					"%s: Panel Power bp_result: %d\n",
925 					__func__, bp_result);
926 	} else {
927 		DC_LOG_HW_RESUME_S3(
928 				"%s: Skipping Panel Power action: %s\n",
929 				__func__, (power_up ? "On":"Off"));
930 	}
931 }
932 
dce110_edp_wait_for_T12(struct dc_link * link)933 void dce110_edp_wait_for_T12(
934 		struct dc_link *link)
935 {
936 	struct dc_context *ctx = link->ctx;
937 
938 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
939 			!= CONNECTOR_ID_EDP) {
940 		BREAK_TO_DEBUGGER();
941 		return;
942 	}
943 
944 	if (!link->panel_cntl)
945 		return;
946 
947 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
948 			link->link_trace.time_stamp.edp_poweroff != 0) {
949 		unsigned int t12_duration = 500; // Default T12 as per spec
950 		unsigned long long current_ts = dm_get_timestamp(ctx);
951 		unsigned long long time_since_edp_poweroff_ms =
952 				div64_u64(dm_get_elapse_time_in_ns(
953 						ctx,
954 						current_ts,
955 						link->link_trace.time_stamp.edp_poweroff), 1000000);
956 
957 		t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
958 
959 		if (time_since_edp_poweroff_ms < t12_duration)
960 			msleep(t12_duration - time_since_edp_poweroff_ms);
961 	}
962 }
963 
964 /*todo: cloned in stream enc, fix*/
965 /*
966  * @brief
967  * eDP only. Control the backlight of the eDP panel
968  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)969 void dce110_edp_backlight_control(
970 		struct dc_link *link,
971 		bool enable)
972 {
973 	struct dc_context *ctx = link->ctx;
974 	struct bp_transmitter_control cntl = { 0 };
975 	uint8_t panel_instance;
976 
977 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
978 		!= CONNECTOR_ID_EDP) {
979 		BREAK_TO_DEBUGGER();
980 		return;
981 	}
982 
983 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
984 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
985 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
986 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
987 
988 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
989 			DC_LOG_HW_RESUME_S3(
990 				"%s: panel already powered up/off. Do nothing.\n",
991 				__func__);
992 			return;
993 		}
994 	}
995 
996 	/* Send VBIOS command to control eDP panel backlight */
997 
998 	DC_LOG_HW_RESUME_S3(
999 			"%s: backlight action: %s\n",
1000 			__func__, (enable ? "On":"Off"));
1001 
1002 	cntl.action = enable ?
1003 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
1004 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
1005 
1006 	/*cntl.engine_id = ctx->engine;*/
1007 	cntl.transmitter = link->link_enc->transmitter;
1008 	cntl.connector_obj_id = link->link_enc->connector;
1009 	/*todo: unhardcode*/
1010 	cntl.lanes_number = LANE_COUNT_FOUR;
1011 	cntl.hpd_sel = link->link_enc->hpd_source;
1012 	cntl.signal = SIGNAL_TYPE_EDP;
1013 
1014 	/* For eDP, the following delays might need to be considered
1015 	 * after link training completed:
1016 	 * idle period - min. accounts for required BS-Idle pattern,
1017 	 * max. allows for source frame synchronization);
1018 	 * 50 msec max. delay from valid video data from source
1019 	 * to video on dislpay or backlight enable.
1020 	 *
1021 	 * Disable the delay for now.
1022 	 * Enable it in the future if necessary.
1023 	 */
1024 	/* dc_service_sleep_in_milliseconds(50); */
1025 		/*edp 1.2*/
1026 	panel_instance = link->panel_cntl->inst;
1027 
1028 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1029 		if (!link->dc->config.edp_no_power_sequencing)
1030 		/*
1031 		 * Sometimes, DP receiver chip power-controlled externally by an
1032 		 * Embedded Controller could be treated and used as eDP,
1033 		 * if it drives mobile display. In this case,
1034 		 * we shouldn't be doing power-sequencing, hence we can skip
1035 		 * waiting for T7-ready.
1036 		 */
1037 			edp_receiver_ready_T7(link);
1038 		else
1039 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1040 	}
1041 
1042 	if (ctx->dc->ctx->dmub_srv &&
1043 			ctx->dc->debug.dmub_command_table) {
1044 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1045 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1046 					LVTMA_CONTROL_LCD_BLON,
1047 					panel_instance);
1048 		else
1049 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1050 					LVTMA_CONTROL_LCD_BLOFF,
1051 					panel_instance);
1052 	}
1053 
1054 	link_transmitter_control(ctx->dc_bios, &cntl);
1055 
1056 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
1057 		msleep(OLED_POST_T7_DELAY);
1058 
1059 	if (link->dpcd_sink_ext_caps.bits.oled ||
1060 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1061 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1062 		dc_link_backlight_enable_aux(link, enable);
1063 
1064 	/*edp 1.2*/
1065 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1066 		if (!link->dc->config.edp_no_power_sequencing)
1067 		/*
1068 		 * Sometimes, DP receiver chip power-controlled externally by an
1069 		 * Embedded Controller could be treated and used as eDP,
1070 		 * if it drives mobile display. In this case,
1071 		 * we shouldn't be doing power-sequencing, hence we can skip
1072 		 * waiting for T9-ready.
1073 		 */
1074 			edp_add_delay_for_T9(link);
1075 		else
1076 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1077 	}
1078 
1079 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1080 		msleep(OLED_PRE_T11_DELAY);
1081 }
1082 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1083 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1084 {
1085 	/* notify audio driver for audio modes of monitor */
1086 	struct dc *dc;
1087 	struct clk_mgr *clk_mgr;
1088 	unsigned int i, num_audio = 1;
1089 
1090 	if (!pipe_ctx->stream)
1091 		return;
1092 
1093 	dc = pipe_ctx->stream->ctx->dc;
1094 	clk_mgr = dc->clk_mgr;
1095 
1096 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1097 		return;
1098 
1099 	if (pipe_ctx->stream_res.audio) {
1100 		for (i = 0; i < MAX_PIPES; i++) {
1101 			/*current_state not updated yet*/
1102 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1103 				num_audio++;
1104 		}
1105 
1106 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1107 
1108 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1109 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1110 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1111 		/* un-mute audio */
1112 		/* TODO: audio should be per stream rather than per link */
1113 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1114 					pipe_ctx->stream_res.stream_enc, false);
1115 		if (pipe_ctx->stream_res.audio)
1116 			pipe_ctx->stream_res.audio->enabled = true;
1117 	}
1118 }
1119 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1120 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1121 {
1122 	struct dc *dc;
1123 	struct clk_mgr *clk_mgr;
1124 
1125 	if (!pipe_ctx || !pipe_ctx->stream)
1126 		return;
1127 
1128 	dc = pipe_ctx->stream->ctx->dc;
1129 	clk_mgr = dc->clk_mgr;
1130 
1131 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1132 		return;
1133 
1134 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1135 			pipe_ctx->stream_res.stream_enc, true);
1136 	if (pipe_ctx->stream_res.audio) {
1137 		pipe_ctx->stream_res.audio->enabled = false;
1138 
1139 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1140 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1141 					pipe_ctx->stream_res.stream_enc);
1142 		else
1143 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1144 					pipe_ctx->stream_res.stream_enc);
1145 
1146 		if (clk_mgr->funcs->enable_pme_wa)
1147 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1148 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1149 
1150 		/* TODO: notify audio driver for if audio modes list changed
1151 		 * add audio mode list change flag */
1152 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1153 		 * stream->stream_engine_id);
1154 		 */
1155 	}
1156 }
1157 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1158 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1159 {
1160 	struct dc_stream_state *stream = pipe_ctx->stream;
1161 	struct dc_link *link = stream->link;
1162 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1163 
1164 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1165 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1166 			pipe_ctx->stream_res.stream_enc);
1167 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1168 			pipe_ctx->stream_res.stream_enc);
1169 	}
1170 
1171 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1172 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1173 			pipe_ctx->stream_res.stream_enc);
1174 
1175 	dc->hwss.disable_audio_stream(pipe_ctx);
1176 
1177 	link->link_enc->funcs->connect_dig_be_to_fe(
1178 			link->link_enc,
1179 			pipe_ctx->stream_res.stream_enc->id,
1180 			false);
1181 
1182 }
1183 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1184 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1185 		struct dc_link_settings *link_settings)
1186 {
1187 	struct encoder_unblank_param params = { { 0 } };
1188 	struct dc_stream_state *stream = pipe_ctx->stream;
1189 	struct dc_link *link = stream->link;
1190 	struct dce_hwseq *hws = link->dc->hwseq;
1191 
1192 	/* only 3 items below are used by unblank */
1193 	params.timing = pipe_ctx->stream->timing;
1194 	params.link_settings.link_rate = link_settings->link_rate;
1195 
1196 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1197 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1198 
1199 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1200 		hws->funcs.edp_backlight_control(link, true);
1201 	}
1202 }
1203 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1204 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1205 {
1206 	struct dc_stream_state *stream = pipe_ctx->stream;
1207 	struct dc_link *link = stream->link;
1208 	struct dce_hwseq *hws = link->dc->hwseq;
1209 
1210 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1211 		hws->funcs.edp_backlight_control(link, false);
1212 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1213 	}
1214 
1215 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1216 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1217 
1218 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1219 			/*
1220 			 * After output is idle pattern some sinks need time to recognize the stream
1221 			 * has changed or they enter protection state and hang.
1222 			 */
1223 			msleep(60);
1224 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP)
1225 			edp_receiver_ready_T9(link);
1226 	}
1227 
1228 }
1229 
1230 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1231 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1232 {
1233 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1234 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1235 }
1236 
translate_to_dto_source(enum controller_id crtc_id)1237 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1238 {
1239 	switch (crtc_id) {
1240 	case CONTROLLER_ID_D0:
1241 		return DTO_SOURCE_ID0;
1242 	case CONTROLLER_ID_D1:
1243 		return DTO_SOURCE_ID1;
1244 	case CONTROLLER_ID_D2:
1245 		return DTO_SOURCE_ID2;
1246 	case CONTROLLER_ID_D3:
1247 		return DTO_SOURCE_ID3;
1248 	case CONTROLLER_ID_D4:
1249 		return DTO_SOURCE_ID4;
1250 	case CONTROLLER_ID_D5:
1251 		return DTO_SOURCE_ID5;
1252 	default:
1253 		return DTO_SOURCE_UNKNOWN;
1254 	}
1255 }
1256 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1257 static void build_audio_output(
1258 	struct dc_state *state,
1259 	const struct pipe_ctx *pipe_ctx,
1260 	struct audio_output *audio_output)
1261 {
1262 	const struct dc_stream_state *stream = pipe_ctx->stream;
1263 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1264 
1265 	audio_output->signal = pipe_ctx->stream->signal;
1266 
1267 	/* audio_crtc_info  */
1268 
1269 	audio_output->crtc_info.h_total =
1270 		stream->timing.h_total;
1271 
1272 	/*
1273 	 * Audio packets are sent during actual CRTC blank physical signal, we
1274 	 * need to specify actual active signal portion
1275 	 */
1276 	audio_output->crtc_info.h_active =
1277 			stream->timing.h_addressable
1278 			+ stream->timing.h_border_left
1279 			+ stream->timing.h_border_right;
1280 
1281 	audio_output->crtc_info.v_active =
1282 			stream->timing.v_addressable
1283 			+ stream->timing.v_border_top
1284 			+ stream->timing.v_border_bottom;
1285 
1286 	audio_output->crtc_info.pixel_repetition = 1;
1287 
1288 	audio_output->crtc_info.interlaced =
1289 			stream->timing.flags.INTERLACE;
1290 
1291 	audio_output->crtc_info.refresh_rate =
1292 		(stream->timing.pix_clk_100hz*100)/
1293 		(stream->timing.h_total*stream->timing.v_total);
1294 
1295 	audio_output->crtc_info.color_depth =
1296 		stream->timing.display_color_depth;
1297 
1298 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1299 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1300 
1301 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1302 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1303 
1304 /*for HDMI, audio ACR is with deep color ratio factor*/
1305 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1306 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1307 				(stream->timing.pix_clk_100hz)) {
1308 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1309 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1310 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1311 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1312 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1313 
1314 		}
1315 	}
1316 
1317 	if (state->clk_mgr &&
1318 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1319 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1320 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1321 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1322 						state->clk_mgr);
1323 	}
1324 
1325 	audio_output->pll_info.feed_back_divider =
1326 			pipe_ctx->pll_settings.feedback_divider;
1327 
1328 	audio_output->pll_info.dto_source =
1329 		translate_to_dto_source(
1330 			pipe_ctx->stream_res.tg->inst + 1);
1331 
1332 	/* TODO hard code to enable for now. Need get from stream */
1333 	audio_output->pll_info.ss_enabled = true;
1334 
1335 	audio_output->pll_info.ss_percentage =
1336 			pipe_ctx->pll_settings.ss_percentage;
1337 }
1338 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1339 static void program_scaler(const struct dc *dc,
1340 		const struct pipe_ctx *pipe_ctx)
1341 {
1342 	struct tg_color color = {0};
1343 
1344 #if defined(CONFIG_DRM_AMD_DC_DCN)
1345 	/* TOFPGA */
1346 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1347 		return;
1348 #endif
1349 
1350 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1351 		get_surface_visual_confirm_color(pipe_ctx, &color);
1352 	else
1353 		color_space_to_black_color(dc,
1354 				pipe_ctx->stream->output_color_space,
1355 				&color);
1356 
1357 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1358 		pipe_ctx->plane_res.xfm,
1359 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1360 		&pipe_ctx->stream->bit_depth_params);
1361 
1362 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1363 		/*
1364 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1365 		 * alternate between Cb and Cr, so both channels need the pixel
1366 		 * value for Y
1367 		 */
1368 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1369 			color.color_r_cr = color.color_g_y;
1370 
1371 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1372 				pipe_ctx->stream_res.tg,
1373 				&color);
1374 	}
1375 
1376 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1377 		&pipe_ctx->plane_res.scl_data);
1378 }
1379 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1380 static enum dc_status dce110_enable_stream_timing(
1381 		struct pipe_ctx *pipe_ctx,
1382 		struct dc_state *context,
1383 		struct dc *dc)
1384 {
1385 	struct dc_stream_state *stream = pipe_ctx->stream;
1386 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1387 			pipe_ctx[pipe_ctx->pipe_idx];
1388 	struct tg_color black_color = {0};
1389 
1390 	if (!pipe_ctx_old->stream) {
1391 
1392 		/* program blank color */
1393 		color_space_to_black_color(dc,
1394 				stream->output_color_space, &black_color);
1395 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1396 				pipe_ctx->stream_res.tg,
1397 				&black_color);
1398 
1399 		/*
1400 		 * Must blank CRTC after disabling power gating and before any
1401 		 * programming, otherwise CRTC will be hung in bad state
1402 		 */
1403 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1404 
1405 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1406 				pipe_ctx->clock_source,
1407 				&pipe_ctx->stream_res.pix_clk_params,
1408 				&pipe_ctx->pll_settings)) {
1409 			BREAK_TO_DEBUGGER();
1410 			return DC_ERROR_UNEXPECTED;
1411 		}
1412 
1413 		pipe_ctx->stream_res.tg->funcs->program_timing(
1414 				pipe_ctx->stream_res.tg,
1415 				&stream->timing,
1416 				0,
1417 				0,
1418 				0,
1419 				0,
1420 				pipe_ctx->stream->signal,
1421 				true);
1422 	}
1423 
1424 	if (!pipe_ctx_old->stream) {
1425 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1426 				pipe_ctx->stream_res.tg)) {
1427 			BREAK_TO_DEBUGGER();
1428 			return DC_ERROR_UNEXPECTED;
1429 		}
1430 	}
1431 
1432 	return DC_OK;
1433 }
1434 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1435 static enum dc_status apply_single_controller_ctx_to_hw(
1436 		struct pipe_ctx *pipe_ctx,
1437 		struct dc_state *context,
1438 		struct dc *dc)
1439 {
1440 	struct dc_stream_state *stream = pipe_ctx->stream;
1441 	struct drr_params params = {0};
1442 	unsigned int event_triggers = 0;
1443 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1444 	struct dce_hwseq *hws = dc->hwseq;
1445 
1446 	if (hws->funcs.disable_stream_gating) {
1447 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1448 	}
1449 
1450 	if (pipe_ctx->stream_res.audio != NULL) {
1451 		struct audio_output audio_output;
1452 
1453 		build_audio_output(context, pipe_ctx, &audio_output);
1454 
1455 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1456 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1457 					pipe_ctx->stream_res.stream_enc,
1458 					pipe_ctx->stream_res.audio->inst,
1459 					&pipe_ctx->stream->audio_info);
1460 		else
1461 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1462 					pipe_ctx->stream_res.stream_enc,
1463 					pipe_ctx->stream_res.audio->inst,
1464 					&pipe_ctx->stream->audio_info,
1465 					&audio_output.crtc_info);
1466 
1467 		pipe_ctx->stream_res.audio->funcs->az_configure(
1468 				pipe_ctx->stream_res.audio,
1469 				pipe_ctx->stream->signal,
1470 				&audio_output.crtc_info,
1471 				&pipe_ctx->stream->audio_info);
1472 	}
1473 
1474 	/*  */
1475 	/* Do not touch stream timing on seamless boot optimization. */
1476 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1477 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1478 
1479 	if (hws->funcs.setup_vupdate_interrupt)
1480 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1481 
1482 	params.vertical_total_min = stream->adjust.v_total_min;
1483 	params.vertical_total_max = stream->adjust.v_total_max;
1484 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1485 		pipe_ctx->stream_res.tg->funcs->set_drr(
1486 			pipe_ctx->stream_res.tg, &params);
1487 
1488 	// DRR should set trigger event to monitor surface update event
1489 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1490 		event_triggers = 0x80;
1491 	/* Event triggers and num frames initialized for DRR, but can be
1492 	 * later updated for PSR use. Note DRR trigger events are generated
1493 	 * regardless of whether num frames met.
1494 	 */
1495 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1496 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1497 				pipe_ctx->stream_res.tg, event_triggers, 2);
1498 
1499 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1500 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1501 			pipe_ctx->stream_res.stream_enc,
1502 			pipe_ctx->stream_res.tg->inst);
1503 
1504 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1505 			pipe_ctx->stream_res.opp,
1506 			COLOR_SPACE_YCBCR601,
1507 			stream->timing.display_color_depth,
1508 			stream->signal);
1509 
1510 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1511 		pipe_ctx->stream_res.opp,
1512 		&stream->bit_depth_params,
1513 		&stream->clamping);
1514 	while (odm_pipe) {
1515 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1516 				odm_pipe->stream_res.opp,
1517 				COLOR_SPACE_YCBCR601,
1518 				stream->timing.display_color_depth,
1519 				stream->signal);
1520 
1521 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1522 				odm_pipe->stream_res.opp,
1523 				&stream->bit_depth_params,
1524 				&stream->clamping);
1525 		odm_pipe = odm_pipe->next_odm_pipe;
1526 	}
1527 
1528 	if (!stream->dpms_off)
1529 		core_link_enable_stream(context, pipe_ctx);
1530 
1531 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1532 
1533 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1534 
1535 	return DC_OK;
1536 }
1537 
1538 /******************************************************************************/
1539 
power_down_encoders(struct dc * dc)1540 static void power_down_encoders(struct dc *dc)
1541 {
1542 	int i;
1543 
1544 	/* do not know BIOS back-front mapping, simply blank all. It will not
1545 	 * hurt for non-DP
1546 	 */
1547 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1548 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1549 					dc->res_pool->stream_enc[i]);
1550 	}
1551 
1552 	for (i = 0; i < dc->link_count; i++) {
1553 		enum signal_type signal = dc->links[i]->connector_signal;
1554 
1555 		if ((signal == SIGNAL_TYPE_EDP) ||
1556 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1557 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1558 				dp_receiver_power_ctrl(dc->links[i], false);
1559 
1560 		if (signal != SIGNAL_TYPE_EDP)
1561 			signal = SIGNAL_TYPE_NONE;
1562 
1563 		dc->links[i]->link_enc->funcs->disable_output(
1564 				dc->links[i]->link_enc, signal);
1565 
1566 		dc->links[i]->link_status.link_active = false;
1567 		memset(&dc->links[i]->cur_link_settings, 0,
1568 				sizeof(dc->links[i]->cur_link_settings));
1569 	}
1570 }
1571 
power_down_controllers(struct dc * dc)1572 static void power_down_controllers(struct dc *dc)
1573 {
1574 	int i;
1575 
1576 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1577 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1578 				dc->res_pool->timing_generators[i]);
1579 	}
1580 }
1581 
power_down_clock_sources(struct dc * dc)1582 static void power_down_clock_sources(struct dc *dc)
1583 {
1584 	int i;
1585 
1586 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1587 		dc->res_pool->dp_clock_source) == false)
1588 		dm_error("Failed to power down pll! (dp clk src)\n");
1589 
1590 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1591 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1592 				dc->res_pool->clock_sources[i]) == false)
1593 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1594 	}
1595 }
1596 
power_down_all_hw_blocks(struct dc * dc)1597 static void power_down_all_hw_blocks(struct dc *dc)
1598 {
1599 	power_down_encoders(dc);
1600 
1601 	power_down_controllers(dc);
1602 
1603 	power_down_clock_sources(dc);
1604 
1605 	if (dc->fbc_compressor)
1606 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1607 }
1608 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1609 static void disable_vga_and_power_gate_all_controllers(
1610 		struct dc *dc)
1611 {
1612 	int i;
1613 	struct timing_generator *tg;
1614 	struct dc_context *ctx = dc->ctx;
1615 
1616 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1617 		tg = dc->res_pool->timing_generators[i];
1618 
1619 		if (tg->funcs->disable_vga)
1620 			tg->funcs->disable_vga(tg);
1621 	}
1622 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1623 		/* Enable CLOCK gating for each pipe BEFORE controller
1624 		 * powergating. */
1625 		enable_display_pipe_clock_gating(ctx,
1626 				true);
1627 
1628 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1629 		dc->hwss.disable_plane(dc,
1630 			&dc->current_state->res_ctx.pipe_ctx[i]);
1631 	}
1632 }
1633 
1634 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1635 static void get_edp_streams(struct dc_state *context,
1636 		struct dc_stream_state **edp_streams,
1637 		int *edp_stream_num)
1638 {
1639 	int i;
1640 
1641 	*edp_stream_num = 0;
1642 	for (i = 0; i < context->stream_count; i++) {
1643 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1644 			edp_streams[*edp_stream_num] = context->streams[i];
1645 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1646 				return;
1647 		}
1648 	}
1649 }
1650 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1651 static void get_edp_links_with_sink(
1652 		struct dc *dc,
1653 		struct dc_link **edp_links_with_sink,
1654 		int *edp_with_sink_num)
1655 {
1656 	int i;
1657 
1658 	/* check if there is an eDP panel not in use */
1659 	*edp_with_sink_num = 0;
1660 	for (i = 0; i < dc->link_count; i++) {
1661 		if (dc->links[i]->local_sink &&
1662 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1663 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1664 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1665 				return;
1666 		}
1667 	}
1668 }
1669 
1670 /*
1671  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1672  *  1. Power down all DC HW blocks
1673  *  2. Disable VGA engine on all controllers
1674  *  3. Enable power gating for controller
1675  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1676  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1677 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1678 {
1679 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1680 	struct dc_link *edp_links[MAX_NUM_EDP];
1681 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1682 	struct dc_link *edp_link_with_sink = NULL;
1683 	struct dc_link *edp_link = NULL;
1684 	struct dc_stream_state *edp_stream = NULL;
1685 	struct dce_hwseq *hws = dc->hwseq;
1686 	int edp_with_sink_num;
1687 	int edp_num;
1688 	int edp_stream_num;
1689 	int i;
1690 	bool can_apply_edp_fast_boot = false;
1691 	bool can_apply_seamless_boot = false;
1692 	bool keep_edp_vdd_on = false;
1693 	DC_LOGGER_INIT();
1694 
1695 
1696 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1697 	get_edp_links(dc, edp_links, &edp_num);
1698 
1699 	if (hws->funcs.init_pipes)
1700 		hws->funcs.init_pipes(dc, context);
1701 
1702 	get_edp_streams(context, edp_streams, &edp_stream_num);
1703 
1704 	// Check fastboot support, disable on DCE8 because of blank screens
1705 	if (edp_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1706 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1707 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1708 		for (i = 0; i < edp_num; i++) {
1709 			edp_link = edp_links[i];
1710 			// enable fastboot if backend is enabled on eDP
1711 			if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1712 				/* Set optimization flag on eDP stream*/
1713 				if (edp_stream_num && edp_link->link_status.link_active) {
1714 					edp_stream = edp_streams[0];
1715 					can_apply_edp_fast_boot = !is_edp_ilr_optimization_required(edp_stream->link, &edp_stream->timing);
1716 					edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1717 					if (can_apply_edp_fast_boot)
1718 						DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1719 
1720 					break;
1721 				}
1722 			}
1723 		}
1724 		// We are trying to enable eDP, don't power down VDD
1725 		if (edp_stream_num)
1726 			keep_edp_vdd_on = true;
1727 	}
1728 
1729 	// Check seamless boot support
1730 	for (i = 0; i < context->stream_count; i++) {
1731 		if (context->streams[i]->apply_seamless_boot_optimization) {
1732 			can_apply_seamless_boot = true;
1733 			break;
1734 		}
1735 	}
1736 
1737 	/* eDP should not have stream in resume from S4 and so even with VBios post
1738 	 * it should get turned off
1739 	 */
1740 	if (edp_with_sink_num)
1741 		edp_link_with_sink = edp_links_with_sink[0];
1742 
1743 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1744 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1745 			/*turn off backlight before DP_blank and encoder powered down*/
1746 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1747 		}
1748 		/*resume from S3, no vbios posting, no need to power down again*/
1749 		clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1750 
1751 		power_down_all_hw_blocks(dc);
1752 		disable_vga_and_power_gate_all_controllers(dc);
1753 		if (edp_link_with_sink && !keep_edp_vdd_on)
1754 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1755 		clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1756 	}
1757 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1758 }
1759 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1760 static uint32_t compute_pstate_blackout_duration(
1761 	struct bw_fixed blackout_duration,
1762 	const struct dc_stream_state *stream)
1763 {
1764 	uint32_t total_dest_line_time_ns;
1765 	uint32_t pstate_blackout_duration_ns;
1766 
1767 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1768 
1769 	total_dest_line_time_ns = 1000000UL *
1770 		(stream->timing.h_total * 10) /
1771 		stream->timing.pix_clk_100hz +
1772 		pstate_blackout_duration_ns;
1773 
1774 	return total_dest_line_time_ns;
1775 }
1776 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1777 static void dce110_set_displaymarks(
1778 	const struct dc *dc,
1779 	struct dc_state *context)
1780 {
1781 	uint8_t i, num_pipes;
1782 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1783 
1784 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1785 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1786 		uint32_t total_dest_line_time_ns;
1787 
1788 		if (pipe_ctx->stream == NULL)
1789 			continue;
1790 
1791 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1792 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1793 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1794 			pipe_ctx->plane_res.mi,
1795 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1796 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1797 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1798 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1799 			total_dest_line_time_ns);
1800 		if (i == underlay_idx) {
1801 			num_pipes++;
1802 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1803 				pipe_ctx->plane_res.mi,
1804 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1805 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1806 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1807 				total_dest_line_time_ns);
1808 		}
1809 		num_pipes++;
1810 	}
1811 }
1812 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1813 void dce110_set_safe_displaymarks(
1814 		struct resource_context *res_ctx,
1815 		const struct resource_pool *pool)
1816 {
1817 	int i;
1818 	int underlay_idx = pool->underlay_pipe_index;
1819 	struct dce_watermarks max_marks = {
1820 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1821 	struct dce_watermarks nbp_marks = {
1822 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1823 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1824 
1825 	for (i = 0; i < MAX_PIPES; i++) {
1826 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1827 			continue;
1828 
1829 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1830 				res_ctx->pipe_ctx[i].plane_res.mi,
1831 				nbp_marks,
1832 				max_marks,
1833 				min_marks,
1834 				max_marks,
1835 				MAX_WATERMARK);
1836 
1837 		if (i == underlay_idx)
1838 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1839 				res_ctx->pipe_ctx[i].plane_res.mi,
1840 				nbp_marks,
1841 				max_marks,
1842 				max_marks,
1843 				MAX_WATERMARK);
1844 
1845 	}
1846 }
1847 
1848 /*******************************************************************************
1849  * Public functions
1850  ******************************************************************************/
1851 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1852 static void set_drr(struct pipe_ctx **pipe_ctx,
1853 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1854 {
1855 	int i = 0;
1856 	struct drr_params params = {0};
1857 	// DRR should set trigger event to monitor surface update event
1858 	unsigned int event_triggers = 0x80;
1859 	// Note DRR trigger events are generated regardless of whether num frames met.
1860 	unsigned int num_frames = 2;
1861 
1862 	params.vertical_total_max = adjust.v_total_max;
1863 	params.vertical_total_min = adjust.v_total_min;
1864 
1865 	/* TODO: If multiple pipes are to be supported, you need
1866 	 * some GSL stuff. Static screen triggers may be programmed differently
1867 	 * as well.
1868 	 */
1869 	for (i = 0; i < num_pipes; i++) {
1870 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1871 			pipe_ctx[i]->stream_res.tg, &params);
1872 
1873 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1874 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1875 					pipe_ctx[i]->stream_res.tg,
1876 					event_triggers, num_frames);
1877 	}
1878 }
1879 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1880 static void get_position(struct pipe_ctx **pipe_ctx,
1881 		int num_pipes,
1882 		struct crtc_position *position)
1883 {
1884 	int i = 0;
1885 
1886 	/* TODO: handle pipes > 1
1887 	 */
1888 	for (i = 0; i < num_pipes; i++)
1889 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1890 }
1891 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1892 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1893 		int num_pipes, const struct dc_static_screen_params *params)
1894 {
1895 	unsigned int i;
1896 	unsigned int triggers = 0;
1897 
1898 	if (params->triggers.overlay_update)
1899 		triggers |= 0x100;
1900 	if (params->triggers.surface_update)
1901 		triggers |= 0x80;
1902 	if (params->triggers.cursor_update)
1903 		triggers |= 0x2;
1904 	if (params->triggers.force_trigger)
1905 		triggers |= 0x1;
1906 
1907 	if (num_pipes) {
1908 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1909 
1910 		if (dc->fbc_compressor)
1911 			triggers |= 0x84;
1912 	}
1913 
1914 	for (i = 0; i < num_pipes; i++)
1915 		pipe_ctx[i]->stream_res.tg->funcs->
1916 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1917 					triggers, params->num_frames);
1918 }
1919 
1920 /*
1921  *  Check if FBC can be enabled
1922  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1923 static bool should_enable_fbc(struct dc *dc,
1924 		struct dc_state *context,
1925 		uint32_t *pipe_idx)
1926 {
1927 	uint32_t i;
1928 	struct pipe_ctx *pipe_ctx = NULL;
1929 	struct resource_context *res_ctx = &context->res_ctx;
1930 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1931 
1932 
1933 	ASSERT(dc->fbc_compressor);
1934 
1935 	/* FBC memory should be allocated */
1936 	if (!dc->ctx->fbc_gpu_addr)
1937 		return false;
1938 
1939 	/* Only supports single display */
1940 	if (context->stream_count != 1)
1941 		return false;
1942 
1943 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1944 		if (res_ctx->pipe_ctx[i].stream) {
1945 
1946 			pipe_ctx = &res_ctx->pipe_ctx[i];
1947 
1948 			if (!pipe_ctx)
1949 				continue;
1950 
1951 			/* fbc not applicable on underlay pipe */
1952 			if (pipe_ctx->pipe_idx != underlay_idx) {
1953 				*pipe_idx = i;
1954 				break;
1955 			}
1956 		}
1957 	}
1958 
1959 	if (i == dc->res_pool->pipe_count)
1960 		return false;
1961 
1962 	if (!pipe_ctx->stream->link)
1963 		return false;
1964 
1965 	/* Only supports eDP */
1966 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1967 		return false;
1968 
1969 	/* PSR should not be enabled */
1970 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
1971 		return false;
1972 
1973 	/* Nothing to compress */
1974 	if (!pipe_ctx->plane_state)
1975 		return false;
1976 
1977 	/* Only for non-linear tiling */
1978 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1979 		return false;
1980 
1981 	return true;
1982 }
1983 
1984 /*
1985  *  Enable FBC
1986  */
enable_fbc(struct dc * dc,struct dc_state * context)1987 static void enable_fbc(
1988 		struct dc *dc,
1989 		struct dc_state *context)
1990 {
1991 	uint32_t pipe_idx = 0;
1992 
1993 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1994 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1995 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1996 		struct compressor *compr = dc->fbc_compressor;
1997 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1998 
1999 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2000 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2001 		params.inst = pipe_ctx->stream_res.tg->inst;
2002 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2003 
2004 		compr->funcs->surface_address_and_pitch(compr, &params);
2005 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2006 
2007 		compr->funcs->enable_fbc(compr, &params);
2008 	}
2009 }
2010 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2011 static void dce110_reset_hw_ctx_wrap(
2012 		struct dc *dc,
2013 		struct dc_state *context)
2014 {
2015 	int i;
2016 
2017 	/* Reset old context */
2018 	/* look up the targets that have been removed since last commit */
2019 	for (i = 0; i < MAX_PIPES; i++) {
2020 		struct pipe_ctx *pipe_ctx_old =
2021 			&dc->current_state->res_ctx.pipe_ctx[i];
2022 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2023 
2024 		/* Note: We need to disable output if clock sources change,
2025 		 * since bios does optimization and doesn't apply if changing
2026 		 * PHY when not already disabled.
2027 		 */
2028 
2029 		/* Skip underlay pipe since it will be handled in commit surface*/
2030 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2031 			continue;
2032 
2033 		if (!pipe_ctx->stream ||
2034 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2035 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2036 
2037 			/* Disable if new stream is null. O/w, if stream is
2038 			 * disabled already, no need to disable again.
2039 			 */
2040 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2041 				core_link_disable_stream(pipe_ctx_old);
2042 
2043 				/* free acquired resources*/
2044 				if (pipe_ctx_old->stream_res.audio) {
2045 					/*disable az_endpoint*/
2046 					pipe_ctx_old->stream_res.audio->funcs->
2047 							az_disable(pipe_ctx_old->stream_res.audio);
2048 
2049 					/*free audio*/
2050 					if (dc->caps.dynamic_audio == true) {
2051 						/*we have to dynamic arbitrate the audio endpoints*/
2052 						/*we free the resource, need reset is_audio_acquired*/
2053 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2054 								pipe_ctx_old->stream_res.audio, false);
2055 						pipe_ctx_old->stream_res.audio = NULL;
2056 					}
2057 				}
2058 			}
2059 
2060 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2061 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2062 				dm_error("DC: failed to blank crtc!\n");
2063 				BREAK_TO_DEBUGGER();
2064 			}
2065 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2066 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2067 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2068 
2069 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2070 										dc->res_pool,
2071 										old_clk))
2072 				old_clk->funcs->cs_power_down(old_clk);
2073 
2074 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2075 
2076 			pipe_ctx_old->stream = NULL;
2077 		}
2078 	}
2079 }
2080 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2081 static void dce110_setup_audio_dto(
2082 		struct dc *dc,
2083 		struct dc_state *context)
2084 {
2085 	int i;
2086 
2087 	/* program audio wall clock. use HDMI as clock source if HDMI
2088 	 * audio active. Otherwise, use DP as clock source
2089 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2090 	 */
2091 	/* Setup audio rate clock source */
2092 	/* Issue:
2093 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2094 	*
2095 	* Cause:
2096 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2097 	* is set to either dto0 or dto1, audio should work fine.
2098 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2099 	* set to dto0 will cause audio lag.
2100 	*
2101 	* Solution:
2102 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2103 	* find first available pipe with audio, setup audio wall DTO per topology
2104 	* instead of per pipe.
2105 	*/
2106 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2107 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2108 
2109 		if (pipe_ctx->stream == NULL)
2110 			continue;
2111 
2112 		if (pipe_ctx->top_pipe)
2113 			continue;
2114 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2115 			continue;
2116 		if (pipe_ctx->stream_res.audio != NULL &&
2117 			pipe_ctx->stream_res.audio->enabled == false) {
2118 			struct audio_output audio_output;
2119 
2120 			build_audio_output(context, pipe_ctx, &audio_output);
2121 
2122 #if defined(CONFIG_DRM_AMD_DC_DCN)
2123 			/* For DCN3.1, audio to HPO FRL encoder is using audio DTBCLK DTO */
2124 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2125 				/* disable audio DTBCLK DTO */
2126 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2127 					dc->res_pool->dccg, 0);
2128 
2129 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2130 						pipe_ctx->stream_res.audio,
2131 						pipe_ctx->stream->signal,
2132 						&audio_output.crtc_info,
2133 						&audio_output.pll_info);
2134 			} else
2135 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2136 					pipe_ctx->stream_res.audio,
2137 					pipe_ctx->stream->signal,
2138 					&audio_output.crtc_info,
2139 					&audio_output.pll_info);
2140 #else
2141 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2142 				pipe_ctx->stream_res.audio,
2143 				pipe_ctx->stream->signal,
2144 				&audio_output.crtc_info,
2145 				&audio_output.pll_info);
2146 #endif
2147 			break;
2148 		}
2149 	}
2150 
2151 	/* no HDMI audio is found, try DP audio */
2152 	if (i == dc->res_pool->pipe_count) {
2153 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2154 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2155 
2156 			if (pipe_ctx->stream == NULL)
2157 				continue;
2158 
2159 			if (pipe_ctx->top_pipe)
2160 				continue;
2161 
2162 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2163 				continue;
2164 
2165 			if (pipe_ctx->stream_res.audio != NULL &&
2166 				pipe_ctx->stream_res.audio->enabled == false) {
2167 				struct audio_output audio_output;
2168 
2169 				build_audio_output(context, pipe_ctx, &audio_output);
2170 
2171 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2172 					pipe_ctx->stream_res.audio,
2173 					pipe_ctx->stream->signal,
2174 					&audio_output.crtc_info,
2175 					&audio_output.pll_info);
2176 				break;
2177 			}
2178 		}
2179 	}
2180 }
2181 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2182 enum dc_status dce110_apply_ctx_to_hw(
2183 		struct dc *dc,
2184 		struct dc_state *context)
2185 {
2186 	struct dce_hwseq *hws = dc->hwseq;
2187 	struct dc_bios *dcb = dc->ctx->dc_bios;
2188 	enum dc_status status;
2189 	int i;
2190 
2191 	/* Reset old context */
2192 	/* look up the targets that have been removed since last commit */
2193 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2194 
2195 	/* Skip applying if no targets */
2196 	if (context->stream_count <= 0)
2197 		return DC_OK;
2198 
2199 	/* Apply new context */
2200 	dcb->funcs->set_scratch_critical_state(dcb, true);
2201 
2202 	/* below is for real asic only */
2203 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2204 		struct pipe_ctx *pipe_ctx_old =
2205 					&dc->current_state->res_ctx.pipe_ctx[i];
2206 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2207 
2208 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2209 			continue;
2210 
2211 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2212 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2213 				dce_crtc_switch_to_clk_src(dc->hwseq,
2214 						pipe_ctx->clock_source, i);
2215 			continue;
2216 		}
2217 
2218 		hws->funcs.enable_display_power_gating(
2219 				dc, i, dc->ctx->dc_bios,
2220 				PIPE_GATING_CONTROL_DISABLE);
2221 	}
2222 
2223 	if (dc->fbc_compressor)
2224 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2225 
2226 	dce110_setup_audio_dto(dc, context);
2227 
2228 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2229 		struct pipe_ctx *pipe_ctx_old =
2230 					&dc->current_state->res_ctx.pipe_ctx[i];
2231 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2232 
2233 		if (pipe_ctx->stream == NULL)
2234 			continue;
2235 
2236 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2237 			pipe_ctx->stream->link->link_state_valid) {
2238 			continue;
2239 		}
2240 
2241 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2242 			continue;
2243 
2244 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2245 			continue;
2246 
2247 		status = apply_single_controller_ctx_to_hw(
2248 				pipe_ctx,
2249 				context,
2250 				dc);
2251 
2252 		if (DC_OK != status)
2253 			return status;
2254 	}
2255 
2256 	if (dc->fbc_compressor)
2257 		enable_fbc(dc, dc->current_state);
2258 
2259 	dcb->funcs->set_scratch_critical_state(dcb, false);
2260 
2261 	return DC_OK;
2262 }
2263 
2264 /*******************************************************************************
2265  * Front End programming
2266  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2267 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2268 {
2269 	struct default_adjustment default_adjust = { 0 };
2270 
2271 	default_adjust.force_hw_default = false;
2272 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2273 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2274 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2275 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2276 
2277 	/* display color depth */
2278 	default_adjust.color_depth =
2279 		pipe_ctx->stream->timing.display_color_depth;
2280 
2281 	/* Lb color depth */
2282 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2283 
2284 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2285 					pipe_ctx->plane_res.xfm, &default_adjust);
2286 }
2287 
2288 
2289 /*******************************************************************************
2290  * In order to turn on/off specific surface we will program
2291  * Blender + CRTC
2292  *
2293  * In case that we have two surfaces and they have a different visibility
2294  * we can't turn off the CRTC since it will turn off the entire display
2295  *
2296  * |----------------------------------------------- |
2297  * |bottom pipe|curr pipe  |              |         |
2298  * |Surface    |Surface    | Blender      |  CRCT   |
2299  * |visibility |visibility | Configuration|         |
2300  * |------------------------------------------------|
2301  * |   off     |    off    | CURRENT_PIPE | blank   |
2302  * |   off     |    on     | CURRENT_PIPE | unblank |
2303  * |   on      |    off    | OTHER_PIPE   | unblank |
2304  * |   on      |    on     | BLENDING     | unblank |
2305  * -------------------------------------------------|
2306  *
2307  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2308 static void program_surface_visibility(const struct dc *dc,
2309 		struct pipe_ctx *pipe_ctx)
2310 {
2311 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2312 	bool blank_target = false;
2313 
2314 	if (pipe_ctx->bottom_pipe) {
2315 
2316 		/* For now we are supporting only two pipes */
2317 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2318 
2319 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2320 			if (pipe_ctx->plane_state->visible)
2321 				blender_mode = BLND_MODE_BLENDING;
2322 			else
2323 				blender_mode = BLND_MODE_OTHER_PIPE;
2324 
2325 		} else if (!pipe_ctx->plane_state->visible)
2326 			blank_target = true;
2327 
2328 	} else if (!pipe_ctx->plane_state->visible)
2329 		blank_target = true;
2330 
2331 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2332 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2333 
2334 }
2335 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2336 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2337 {
2338 	int i = 0;
2339 	struct xfm_grph_csc_adjustment adjust;
2340 	memset(&adjust, 0, sizeof(adjust));
2341 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2342 
2343 
2344 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2345 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2346 
2347 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2348 			adjust.temperature_matrix[i] =
2349 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2350 	}
2351 
2352 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2353 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2354 static void update_plane_addr(const struct dc *dc,
2355 		struct pipe_ctx *pipe_ctx)
2356 {
2357 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2358 
2359 	if (plane_state == NULL)
2360 		return;
2361 
2362 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2363 			pipe_ctx->plane_res.mi,
2364 			&plane_state->address,
2365 			plane_state->flip_immediate);
2366 
2367 	plane_state->status.requested_address = plane_state->address;
2368 }
2369 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2370 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2371 {
2372 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2373 
2374 	if (plane_state == NULL)
2375 		return;
2376 
2377 	plane_state->status.is_flip_pending =
2378 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2379 					pipe_ctx->plane_res.mi);
2380 
2381 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2382 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2383 
2384 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2385 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2386 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2387 		plane_state->status.is_right_eye =\
2388 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2389 	}
2390 }
2391 
dce110_power_down(struct dc * dc)2392 void dce110_power_down(struct dc *dc)
2393 {
2394 	power_down_all_hw_blocks(dc);
2395 	disable_vga_and_power_gate_all_controllers(dc);
2396 }
2397 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2398 static bool wait_for_reset_trigger_to_occur(
2399 	struct dc_context *dc_ctx,
2400 	struct timing_generator *tg)
2401 {
2402 	bool rc = false;
2403 
2404 	/* To avoid endless loop we wait at most
2405 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2406 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2407 	uint32_t i;
2408 
2409 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2410 
2411 		if (!tg->funcs->is_counter_moving(tg)) {
2412 			DC_ERROR("TG counter is not moving!\n");
2413 			break;
2414 		}
2415 
2416 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2417 			rc = true;
2418 			/* usually occurs at i=1 */
2419 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2420 					i);
2421 			break;
2422 		}
2423 
2424 		/* Wait for one frame. */
2425 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2426 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2427 	}
2428 
2429 	if (false == rc)
2430 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2431 
2432 	return rc;
2433 }
2434 
2435 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2436 static void dce110_enable_timing_synchronization(
2437 		struct dc *dc,
2438 		int group_index,
2439 		int group_size,
2440 		struct pipe_ctx *grouped_pipes[])
2441 {
2442 	struct dc_context *dc_ctx = dc->ctx;
2443 	struct dcp_gsl_params gsl_params = { 0 };
2444 	int i;
2445 
2446 	DC_SYNC_INFO("GSL: Setting-up...\n");
2447 
2448 	/* Designate a single TG in the group as a master.
2449 	 * Since HW doesn't care which one, we always assign
2450 	 * the 1st one in the group. */
2451 	gsl_params.gsl_group = 0;
2452 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2453 
2454 	for (i = 0; i < group_size; i++)
2455 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2456 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2457 
2458 	/* Reset slave controllers on master VSync */
2459 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2460 
2461 	for (i = 1 /* skip the master */; i < group_size; i++)
2462 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2463 				grouped_pipes[i]->stream_res.tg,
2464 				gsl_params.gsl_group);
2465 
2466 	for (i = 1 /* skip the master */; i < group_size; i++) {
2467 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2468 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2469 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2470 				grouped_pipes[i]->stream_res.tg);
2471 	}
2472 
2473 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2474 	 * is that the sync'ed displays will not drift out of sync over time*/
2475 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2476 	for (i = 0; i < group_size; i++)
2477 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2478 
2479 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2480 }
2481 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2482 static void dce110_enable_per_frame_crtc_position_reset(
2483 		struct dc *dc,
2484 		int group_size,
2485 		struct pipe_ctx *grouped_pipes[])
2486 {
2487 	struct dc_context *dc_ctx = dc->ctx;
2488 	struct dcp_gsl_params gsl_params = { 0 };
2489 	int i;
2490 
2491 	gsl_params.gsl_group = 0;
2492 	gsl_params.gsl_master = 0;
2493 
2494 	for (i = 0; i < group_size; i++)
2495 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2496 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2497 
2498 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2499 
2500 	for (i = 1; i < group_size; i++)
2501 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2502 				grouped_pipes[i]->stream_res.tg,
2503 				gsl_params.gsl_master,
2504 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2505 
2506 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2507 	for (i = 1; i < group_size; i++)
2508 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2509 
2510 	for (i = 0; i < group_size; i++)
2511 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2512 
2513 }
2514 
init_pipes(struct dc * dc,struct dc_state * context)2515 static void init_pipes(struct dc *dc, struct dc_state *context)
2516 {
2517 	// Do nothing
2518 }
2519 
init_hw(struct dc * dc)2520 static void init_hw(struct dc *dc)
2521 {
2522 	int i;
2523 	struct dc_bios *bp;
2524 	struct transform *xfm;
2525 	struct abm *abm;
2526 	struct dmcu *dmcu;
2527 	struct dce_hwseq *hws = dc->hwseq;
2528 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2529 
2530 	bp = dc->ctx->dc_bios;
2531 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2532 		xfm = dc->res_pool->transforms[i];
2533 		xfm->funcs->transform_reset(xfm);
2534 
2535 		hws->funcs.enable_display_power_gating(
2536 				dc, i, bp,
2537 				PIPE_GATING_CONTROL_INIT);
2538 		hws->funcs.enable_display_power_gating(
2539 				dc, i, bp,
2540 				PIPE_GATING_CONTROL_DISABLE);
2541 		hws->funcs.enable_display_pipe_clock_gating(
2542 			dc->ctx,
2543 			true);
2544 	}
2545 
2546 	dce_clock_gating_power_up(dc->hwseq, false);
2547 	/***************************************/
2548 
2549 	for (i = 0; i < dc->link_count; i++) {
2550 		/****************************************/
2551 		/* Power up AND update implementation according to the
2552 		 * required signal (which may be different from the
2553 		 * default signal on connector). */
2554 		struct dc_link *link = dc->links[i];
2555 
2556 		link->link_enc->funcs->hw_init(link->link_enc);
2557 	}
2558 
2559 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2560 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2561 
2562 		tg->funcs->disable_vga(tg);
2563 
2564 		/* Blank controller using driver code instead of
2565 		 * command table. */
2566 		tg->funcs->set_blank(tg, true);
2567 		hwss_wait_for_blank_complete(tg);
2568 	}
2569 
2570 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2571 		struct audio *audio = dc->res_pool->audios[i];
2572 		audio->funcs->hw_init(audio);
2573 	}
2574 
2575 	for (i = 0; i < dc->link_count; i++) {
2576 		struct dc_link *link = dc->links[i];
2577 
2578 		if (link->panel_cntl)
2579 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2580 	}
2581 
2582 	abm = dc->res_pool->abm;
2583 	if (abm != NULL)
2584 		abm->funcs->abm_init(abm, backlight);
2585 
2586 	dmcu = dc->res_pool->dmcu;
2587 	if (dmcu != NULL && abm != NULL)
2588 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2589 
2590 	if (dc->fbc_compressor)
2591 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2592 
2593 }
2594 
2595 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2596 void dce110_prepare_bandwidth(
2597 		struct dc *dc,
2598 		struct dc_state *context)
2599 {
2600 	struct clk_mgr *dccg = dc->clk_mgr;
2601 
2602 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2603 
2604 	dccg->funcs->update_clocks(
2605 			dccg,
2606 			context,
2607 			false);
2608 }
2609 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2610 void dce110_optimize_bandwidth(
2611 		struct dc *dc,
2612 		struct dc_state *context)
2613 {
2614 	struct clk_mgr *dccg = dc->clk_mgr;
2615 
2616 	dce110_set_displaymarks(dc, context);
2617 
2618 	dccg->funcs->update_clocks(
2619 			dccg,
2620 			context,
2621 			true);
2622 }
2623 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2624 static void dce110_program_front_end_for_pipe(
2625 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2626 {
2627 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2628 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2629 	struct xfm_grph_csc_adjustment adjust;
2630 	struct out_csc_color_matrix tbl_entry;
2631 	unsigned int i;
2632 	struct dce_hwseq *hws = dc->hwseq;
2633 
2634 	DC_LOGGER_INIT();
2635 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2636 
2637 	memset(&adjust, 0, sizeof(adjust));
2638 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2639 
2640 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2641 
2642 	set_default_colors(pipe_ctx);
2643 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2644 			== true) {
2645 		tbl_entry.color_space =
2646 			pipe_ctx->stream->output_color_space;
2647 
2648 		for (i = 0; i < 12; i++)
2649 			tbl_entry.regval[i] =
2650 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2651 
2652 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2653 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2654 	}
2655 
2656 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2657 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2658 
2659 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2660 			adjust.temperature_matrix[i] =
2661 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2662 	}
2663 
2664 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2665 
2666 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2667 
2668 	program_scaler(dc, pipe_ctx);
2669 
2670 	mi->funcs->mem_input_program_surface_config(
2671 			mi,
2672 			plane_state->format,
2673 			&plane_state->tiling_info,
2674 			&plane_state->plane_size,
2675 			plane_state->rotation,
2676 			NULL,
2677 			false);
2678 	if (mi->funcs->set_blank)
2679 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2680 
2681 	if (dc->config.gpu_vm_support)
2682 		mi->funcs->mem_input_program_pte_vm(
2683 				pipe_ctx->plane_res.mi,
2684 				plane_state->format,
2685 				&plane_state->tiling_info,
2686 				plane_state->rotation);
2687 
2688 	/* Moved programming gamma from dc to hwss */
2689 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2690 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2691 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2692 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2693 
2694 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2695 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2696 
2697 	DC_LOG_SURFACE(
2698 			"Pipe:%d %p: addr hi:0x%x, "
2699 			"addr low:0x%x, "
2700 			"src: %d, %d, %d,"
2701 			" %d; dst: %d, %d, %d, %d;"
2702 			"clip: %d, %d, %d, %d\n",
2703 			pipe_ctx->pipe_idx,
2704 			(void *) pipe_ctx->plane_state,
2705 			pipe_ctx->plane_state->address.grph.addr.high_part,
2706 			pipe_ctx->plane_state->address.grph.addr.low_part,
2707 			pipe_ctx->plane_state->src_rect.x,
2708 			pipe_ctx->plane_state->src_rect.y,
2709 			pipe_ctx->plane_state->src_rect.width,
2710 			pipe_ctx->plane_state->src_rect.height,
2711 			pipe_ctx->plane_state->dst_rect.x,
2712 			pipe_ctx->plane_state->dst_rect.y,
2713 			pipe_ctx->plane_state->dst_rect.width,
2714 			pipe_ctx->plane_state->dst_rect.height,
2715 			pipe_ctx->plane_state->clip_rect.x,
2716 			pipe_ctx->plane_state->clip_rect.y,
2717 			pipe_ctx->plane_state->clip_rect.width,
2718 			pipe_ctx->plane_state->clip_rect.height);
2719 
2720 	DC_LOG_SURFACE(
2721 			"Pipe %d: width, height, x, y\n"
2722 			"viewport:%d, %d, %d, %d\n"
2723 			"recout:  %d, %d, %d, %d\n",
2724 			pipe_ctx->pipe_idx,
2725 			pipe_ctx->plane_res.scl_data.viewport.width,
2726 			pipe_ctx->plane_res.scl_data.viewport.height,
2727 			pipe_ctx->plane_res.scl_data.viewport.x,
2728 			pipe_ctx->plane_res.scl_data.viewport.y,
2729 			pipe_ctx->plane_res.scl_data.recout.width,
2730 			pipe_ctx->plane_res.scl_data.recout.height,
2731 			pipe_ctx->plane_res.scl_data.recout.x,
2732 			pipe_ctx->plane_res.scl_data.recout.y);
2733 }
2734 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2735 static void dce110_apply_ctx_for_surface(
2736 		struct dc *dc,
2737 		const struct dc_stream_state *stream,
2738 		int num_planes,
2739 		struct dc_state *context)
2740 {
2741 	int i;
2742 
2743 	if (num_planes == 0)
2744 		return;
2745 
2746 	if (dc->fbc_compressor)
2747 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2748 
2749 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2750 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2751 
2752 		if (pipe_ctx->stream != stream)
2753 			continue;
2754 
2755 		/* Need to allocate mem before program front end for Fiji */
2756 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2757 				pipe_ctx->plane_res.mi,
2758 				pipe_ctx->stream->timing.h_total,
2759 				pipe_ctx->stream->timing.v_total,
2760 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2761 				context->stream_count);
2762 
2763 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2764 
2765 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2766 
2767 		program_surface_visibility(dc, pipe_ctx);
2768 
2769 	}
2770 
2771 	if (dc->fbc_compressor)
2772 		enable_fbc(dc, context);
2773 }
2774 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2775 static void dce110_post_unlock_program_front_end(
2776 		struct dc *dc,
2777 		struct dc_state *context)
2778 {
2779 }
2780 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2781 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2782 {
2783 	struct dce_hwseq *hws = dc->hwseq;
2784 	int fe_idx = pipe_ctx->plane_res.mi ?
2785 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2786 
2787 	/* Do not power down fe when stream is active on dce*/
2788 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2789 		return;
2790 
2791 	hws->funcs.enable_display_power_gating(
2792 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2793 
2794 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2795 				dc->res_pool->transforms[fe_idx]);
2796 }
2797 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2798 static void dce110_wait_for_mpcc_disconnect(
2799 		struct dc *dc,
2800 		struct resource_pool *res_pool,
2801 		struct pipe_ctx *pipe_ctx)
2802 {
2803 	/* do nothing*/
2804 }
2805 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2806 static void program_output_csc(struct dc *dc,
2807 		struct pipe_ctx *pipe_ctx,
2808 		enum dc_color_space colorspace,
2809 		uint16_t *matrix,
2810 		int opp_id)
2811 {
2812 	int i;
2813 	struct out_csc_color_matrix tbl_entry;
2814 
2815 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2816 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2817 
2818 		for (i = 0; i < 12; i++)
2819 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2820 
2821 		tbl_entry.color_space = color_space;
2822 
2823 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2824 				pipe_ctx->plane_res.xfm, &tbl_entry);
2825 	}
2826 }
2827 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2828 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2829 {
2830 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2831 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2832 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2833 	struct dc_cursor_mi_param param = {
2834 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2835 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2836 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2837 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2838 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2839 		.rotation = pipe_ctx->plane_state->rotation,
2840 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2841 	};
2842 
2843 	/**
2844 	 * If the cursor's source viewport is clipped then we need to
2845 	 * translate the cursor to appear in the correct position on
2846 	 * the screen.
2847 	 *
2848 	 * This translation isn't affected by scaling so it needs to be
2849 	 * done *after* we adjust the position for the scale factor.
2850 	 *
2851 	 * This is only done by opt-in for now since there are still
2852 	 * some usecases like tiled display that might enable the
2853 	 * cursor on both streams while expecting dc to clip it.
2854 	 */
2855 	if (pos_cpy.translate_by_source) {
2856 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2857 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2858 	}
2859 
2860 	if (pipe_ctx->plane_state->address.type
2861 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2862 		pos_cpy.enable = false;
2863 
2864 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2865 		pos_cpy.enable = false;
2866 
2867 	if (ipp->funcs->ipp_cursor_set_position)
2868 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2869 	if (mi->funcs->set_cursor_position)
2870 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2871 }
2872 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2873 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2874 {
2875 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2876 
2877 	if (pipe_ctx->plane_res.ipp &&
2878 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2879 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2880 				pipe_ctx->plane_res.ipp, attributes);
2881 
2882 	if (pipe_ctx->plane_res.mi &&
2883 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2884 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2885 				pipe_ctx->plane_res.mi, attributes);
2886 
2887 	if (pipe_ctx->plane_res.xfm &&
2888 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2889 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2890 				pipe_ctx->plane_res.xfm, attributes);
2891 }
2892 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2893 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2894 		uint32_t backlight_pwm_u16_16,
2895 		uint32_t frame_ramp)
2896 {
2897 	struct dc_link *link = pipe_ctx->stream->link;
2898 	struct dc  *dc = link->ctx->dc;
2899 	struct abm *abm = pipe_ctx->stream_res.abm;
2900 	struct panel_cntl *panel_cntl = link->panel_cntl;
2901 	struct dmcu *dmcu = dc->res_pool->dmcu;
2902 	bool fw_set_brightness = true;
2903 	/* DMCU -1 for all controller id values,
2904 	 * therefore +1 here
2905 	 */
2906 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2907 
2908 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2909 		return false;
2910 
2911 	if (dmcu)
2912 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2913 
2914 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2915 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2916 	else
2917 		abm->funcs->set_backlight_level_pwm(
2918 				abm,
2919 				backlight_pwm_u16_16,
2920 				frame_ramp,
2921 				controller_id,
2922 				link->panel_cntl->inst);
2923 
2924 	return true;
2925 }
2926 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2927 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2928 {
2929 	struct abm *abm = pipe_ctx->stream_res.abm;
2930 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2931 
2932 	if (abm)
2933 		abm->funcs->set_abm_immediate_disable(abm,
2934 				pipe_ctx->stream->link->panel_cntl->inst);
2935 
2936 	if (panel_cntl)
2937 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2938 }
2939 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2940 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2941 {
2942 	struct abm *abm = pipe_ctx->stream_res.abm;
2943 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2944 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2945 
2946 	if (abm && panel_cntl)
2947 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2948 }
2949 
2950 static const struct hw_sequencer_funcs dce110_funcs = {
2951 	.program_gamut_remap = program_gamut_remap,
2952 	.program_output_csc = program_output_csc,
2953 	.init_hw = init_hw,
2954 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2955 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2956 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
2957 	.update_plane_addr = update_plane_addr,
2958 	.update_pending_status = dce110_update_pending_status,
2959 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2960 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2961 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2962 	.update_info_frame = dce110_update_info_frame,
2963 	.enable_stream = dce110_enable_stream,
2964 	.disable_stream = dce110_disable_stream,
2965 	.unblank_stream = dce110_unblank_stream,
2966 	.blank_stream = dce110_blank_stream,
2967 	.enable_audio_stream = dce110_enable_audio_stream,
2968 	.disable_audio_stream = dce110_disable_audio_stream,
2969 	.disable_plane = dce110_power_down_fe,
2970 	.pipe_control_lock = dce_pipe_control_lock,
2971 	.interdependent_update_lock = NULL,
2972 	.cursor_lock = dce_pipe_control_lock,
2973 	.prepare_bandwidth = dce110_prepare_bandwidth,
2974 	.optimize_bandwidth = dce110_optimize_bandwidth,
2975 	.set_drr = set_drr,
2976 	.get_position = get_position,
2977 	.set_static_screen_control = set_static_screen_control,
2978 	.setup_stereo = NULL,
2979 	.set_avmute = dce110_set_avmute,
2980 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2981 	.edp_backlight_control = dce110_edp_backlight_control,
2982 	.edp_power_control = dce110_edp_power_control,
2983 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2984 	.set_cursor_position = dce110_set_cursor_position,
2985 	.set_cursor_attribute = dce110_set_cursor_attribute,
2986 	.set_backlight_level = dce110_set_backlight_level,
2987 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
2988 	.set_pipe = dce110_set_pipe,
2989 };
2990 
2991 static const struct hwseq_private_funcs dce110_private_funcs = {
2992 	.init_pipes = init_pipes,
2993 	.update_plane_addr = update_plane_addr,
2994 	.set_input_transfer_func = dce110_set_input_transfer_func,
2995 	.set_output_transfer_func = dce110_set_output_transfer_func,
2996 	.power_down = dce110_power_down,
2997 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2998 	.enable_display_power_gating = dce110_enable_display_power_gating,
2999 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3000 	.enable_stream_timing = dce110_enable_stream_timing,
3001 	.disable_stream_gating = NULL,
3002 	.enable_stream_gating = NULL,
3003 	.edp_backlight_control = dce110_edp_backlight_control,
3004 };
3005 
dce110_hw_sequencer_construct(struct dc * dc)3006 void dce110_hw_sequencer_construct(struct dc *dc)
3007 {
3008 	dc->hwss = dce110_funcs;
3009 	dc->hwseq->funcs = dce110_private_funcs;
3010 }
3011 
3012