• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/devfreq.h>
37 #include <linux/timer.h>
38 #include <linux/wakeup_reason.h>
39 
40 #include "../base.h"
41 #include "power.h"
42 
43 typedef int (*pm_callback_t)(struct device *);
44 
45 #define list_for_each_entry_rcu_locked(pos, head, member) \
46 	list_for_each_entry_rcu(pos, head, member, \
47 			device_links_read_lock_held())
48 
49 /*
50  * The entries in the dpm_list list are in a depth first order, simply
51  * because children are guaranteed to be discovered after parents, and
52  * are inserted at the back of the list on discovery.
53  *
54  * Since device_pm_add() may be called with a device lock held,
55  * we must never try to acquire a device lock while holding
56  * dpm_list_mutex.
57  */
58 
59 LIST_HEAD(dpm_list);
60 static LIST_HEAD(dpm_prepared_list);
61 static LIST_HEAD(dpm_suspended_list);
62 static LIST_HEAD(dpm_late_early_list);
63 static LIST_HEAD(dpm_noirq_list);
64 
65 struct suspend_stats suspend_stats;
66 static DEFINE_MUTEX(dpm_list_mtx);
67 static pm_message_t pm_transition;
68 
69 static int async_error;
70 
pm_verb(int event)71 static const char *pm_verb(int event)
72 {
73 	switch (event) {
74 	case PM_EVENT_SUSPEND:
75 		return "suspend";
76 	case PM_EVENT_RESUME:
77 		return "resume";
78 	case PM_EVENT_FREEZE:
79 		return "freeze";
80 	case PM_EVENT_QUIESCE:
81 		return "quiesce";
82 	case PM_EVENT_HIBERNATE:
83 		return "hibernate";
84 	case PM_EVENT_THAW:
85 		return "thaw";
86 	case PM_EVENT_RESTORE:
87 		return "restore";
88 	case PM_EVENT_RECOVER:
89 		return "recover";
90 	default:
91 		return "(unknown PM event)";
92 	}
93 }
94 
95 /**
96  * device_pm_sleep_init - Initialize system suspend-related device fields.
97  * @dev: Device object being initialized.
98  */
device_pm_sleep_init(struct device * dev)99 void device_pm_sleep_init(struct device *dev)
100 {
101 	dev->power.is_prepared = false;
102 	dev->power.is_suspended = false;
103 	dev->power.is_noirq_suspended = false;
104 	dev->power.is_late_suspended = false;
105 	init_completion(&dev->power.completion);
106 	complete_all(&dev->power.completion);
107 	dev->power.wakeup = NULL;
108 	INIT_LIST_HEAD(&dev->power.entry);
109 }
110 
111 /**
112  * device_pm_lock - Lock the list of active devices used by the PM core.
113  */
device_pm_lock(void)114 void device_pm_lock(void)
115 {
116 	mutex_lock(&dpm_list_mtx);
117 }
118 
119 /**
120  * device_pm_unlock - Unlock the list of active devices used by the PM core.
121  */
device_pm_unlock(void)122 void device_pm_unlock(void)
123 {
124 	mutex_unlock(&dpm_list_mtx);
125 }
126 
127 /**
128  * device_pm_add - Add a device to the PM core's list of active devices.
129  * @dev: Device to add to the list.
130  */
device_pm_add(struct device * dev)131 void device_pm_add(struct device *dev)
132 {
133 	/* Skip PM setup/initialization. */
134 	if (device_pm_not_required(dev))
135 		return;
136 
137 	pr_debug("Adding info for %s:%s\n",
138 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
139 	device_pm_check_callbacks(dev);
140 	mutex_lock(&dpm_list_mtx);
141 	if (dev->parent && dev->parent->power.is_prepared)
142 		dev_warn(dev, "parent %s should not be sleeping\n",
143 			dev_name(dev->parent));
144 	list_add_tail(&dev->power.entry, &dpm_list);
145 	dev->power.in_dpm_list = true;
146 	mutex_unlock(&dpm_list_mtx);
147 }
148 
149 /**
150  * device_pm_remove - Remove a device from the PM core's list of active devices.
151  * @dev: Device to be removed from the list.
152  */
device_pm_remove(struct device * dev)153 void device_pm_remove(struct device *dev)
154 {
155 	if (device_pm_not_required(dev))
156 		return;
157 
158 	pr_debug("Removing info for %s:%s\n",
159 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
160 	complete_all(&dev->power.completion);
161 	mutex_lock(&dpm_list_mtx);
162 	list_del_init(&dev->power.entry);
163 	dev->power.in_dpm_list = false;
164 	mutex_unlock(&dpm_list_mtx);
165 	device_wakeup_disable(dev);
166 	pm_runtime_remove(dev);
167 	device_pm_check_callbacks(dev);
168 }
169 
170 /**
171  * device_pm_move_before - Move device in the PM core's list of active devices.
172  * @deva: Device to move in dpm_list.
173  * @devb: Device @deva should come before.
174  */
device_pm_move_before(struct device * deva,struct device * devb)175 void device_pm_move_before(struct device *deva, struct device *devb)
176 {
177 	pr_debug("Moving %s:%s before %s:%s\n",
178 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 	/* Delete deva from dpm_list and reinsert before devb. */
181 	list_move_tail(&deva->power.entry, &devb->power.entry);
182 }
183 
184 /**
185  * device_pm_move_after - Move device in the PM core's list of active devices.
186  * @deva: Device to move in dpm_list.
187  * @devb: Device @deva should come after.
188  */
device_pm_move_after(struct device * deva,struct device * devb)189 void device_pm_move_after(struct device *deva, struct device *devb)
190 {
191 	pr_debug("Moving %s:%s after %s:%s\n",
192 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
193 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
194 	/* Delete deva from dpm_list and reinsert after devb. */
195 	list_move(&deva->power.entry, &devb->power.entry);
196 }
197 
198 /**
199  * device_pm_move_last - Move device to end of the PM core's list of devices.
200  * @dev: Device to move in dpm_list.
201  */
device_pm_move_last(struct device * dev)202 void device_pm_move_last(struct device *dev)
203 {
204 	pr_debug("Moving %s:%s to end of list\n",
205 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
206 	list_move_tail(&dev->power.entry, &dpm_list);
207 }
208 
initcall_debug_start(struct device * dev,void * cb)209 static ktime_t initcall_debug_start(struct device *dev, void *cb)
210 {
211 	if (!pm_print_times_enabled)
212 		return 0;
213 
214 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
215 		 task_pid_nr(current),
216 		 dev->parent ? dev_name(dev->parent) : "none");
217 	return ktime_get();
218 }
219 
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)220 static void initcall_debug_report(struct device *dev, ktime_t calltime,
221 				  void *cb, int error)
222 {
223 	ktime_t rettime;
224 
225 	if (!pm_print_times_enabled)
226 		return;
227 
228 	rettime = ktime_get();
229 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
230 		 (unsigned long long)ktime_us_delta(rettime, calltime));
231 }
232 
233 /**
234  * dpm_wait - Wait for a PM operation to complete.
235  * @dev: Device to wait for.
236  * @async: If unset, wait only if the device's power.async_suspend flag is set.
237  */
dpm_wait(struct device * dev,bool async)238 static void dpm_wait(struct device *dev, bool async)
239 {
240 	if (!dev)
241 		return;
242 
243 	if (async || (pm_async_enabled && dev->power.async_suspend))
244 		wait_for_completion(&dev->power.completion);
245 }
246 
dpm_wait_fn(struct device * dev,void * async_ptr)247 static int dpm_wait_fn(struct device *dev, void *async_ptr)
248 {
249 	dpm_wait(dev, *((bool *)async_ptr));
250 	return 0;
251 }
252 
dpm_wait_for_children(struct device * dev,bool async)253 static void dpm_wait_for_children(struct device *dev, bool async)
254 {
255        device_for_each_child(dev, &async, dpm_wait_fn);
256 }
257 
dpm_wait_for_suppliers(struct device * dev,bool async)258 static void dpm_wait_for_suppliers(struct device *dev, bool async)
259 {
260 	struct device_link *link;
261 	int idx;
262 
263 	idx = device_links_read_lock();
264 
265 	/*
266 	 * If the supplier goes away right after we've checked the link to it,
267 	 * we'll wait for its completion to change the state, but that's fine,
268 	 * because the only things that will block as a result are the SRCU
269 	 * callbacks freeing the link objects for the links in the list we're
270 	 * walking.
271 	 */
272 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
273 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
274 			dpm_wait(link->supplier, async);
275 
276 	device_links_read_unlock(idx);
277 }
278 
dpm_wait_for_superior(struct device * dev,bool async)279 static bool dpm_wait_for_superior(struct device *dev, bool async)
280 {
281 	struct device *parent;
282 
283 	/*
284 	 * If the device is resumed asynchronously and the parent's callback
285 	 * deletes both the device and the parent itself, the parent object may
286 	 * be freed while this function is running, so avoid that by reference
287 	 * counting the parent once more unless the device has been deleted
288 	 * already (in which case return right away).
289 	 */
290 	mutex_lock(&dpm_list_mtx);
291 
292 	if (!device_pm_initialized(dev)) {
293 		mutex_unlock(&dpm_list_mtx);
294 		return false;
295 	}
296 
297 	parent = get_device(dev->parent);
298 
299 	mutex_unlock(&dpm_list_mtx);
300 
301 	dpm_wait(parent, async);
302 	put_device(parent);
303 
304 	dpm_wait_for_suppliers(dev, async);
305 
306 	/*
307 	 * If the parent's callback has deleted the device, attempting to resume
308 	 * it would be invalid, so avoid doing that then.
309 	 */
310 	return device_pm_initialized(dev);
311 }
312 
dpm_wait_for_consumers(struct device * dev,bool async)313 static void dpm_wait_for_consumers(struct device *dev, bool async)
314 {
315 	struct device_link *link;
316 	int idx;
317 
318 	idx = device_links_read_lock();
319 
320 	/*
321 	 * The status of a device link can only be changed from "dormant" by a
322 	 * probe, but that cannot happen during system suspend/resume.  In
323 	 * theory it can change to "dormant" at that time, but then it is
324 	 * reasonable to wait for the target device anyway (eg. if it goes
325 	 * away, it's better to wait for it to go away completely and then
326 	 * continue instead of trying to continue in parallel with its
327 	 * unregistration).
328 	 */
329 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
330 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
331 			dpm_wait(link->consumer, async);
332 
333 	device_links_read_unlock(idx);
334 }
335 
dpm_wait_for_subordinate(struct device * dev,bool async)336 static void dpm_wait_for_subordinate(struct device *dev, bool async)
337 {
338 	dpm_wait_for_children(dev, async);
339 	dpm_wait_for_consumers(dev, async);
340 }
341 
342 /**
343  * pm_op - Return the PM operation appropriate for given PM event.
344  * @ops: PM operations to choose from.
345  * @state: PM transition of the system being carried out.
346  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)347 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
348 {
349 	switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 	case PM_EVENT_SUSPEND:
352 		return ops->suspend;
353 	case PM_EVENT_RESUME:
354 		return ops->resume;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 	case PM_EVENT_FREEZE:
358 	case PM_EVENT_QUIESCE:
359 		return ops->freeze;
360 	case PM_EVENT_HIBERNATE:
361 		return ops->poweroff;
362 	case PM_EVENT_THAW:
363 	case PM_EVENT_RECOVER:
364 		return ops->thaw;
365 	case PM_EVENT_RESTORE:
366 		return ops->restore;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 	}
369 
370 	return NULL;
371 }
372 
373 /**
374  * pm_late_early_op - Return the PM operation appropriate for given PM event.
375  * @ops: PM operations to choose from.
376  * @state: PM transition of the system being carried out.
377  *
378  * Runtime PM is disabled for @dev while this function is being executed.
379  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)380 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
381 				      pm_message_t state)
382 {
383 	switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 	case PM_EVENT_SUSPEND:
386 		return ops->suspend_late;
387 	case PM_EVENT_RESUME:
388 		return ops->resume_early;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 	case PM_EVENT_FREEZE:
392 	case PM_EVENT_QUIESCE:
393 		return ops->freeze_late;
394 	case PM_EVENT_HIBERNATE:
395 		return ops->poweroff_late;
396 	case PM_EVENT_THAW:
397 	case PM_EVENT_RECOVER:
398 		return ops->thaw_early;
399 	case PM_EVENT_RESTORE:
400 		return ops->restore_early;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 	}
403 
404 	return NULL;
405 }
406 
407 /**
408  * pm_noirq_op - Return the PM operation appropriate for given PM event.
409  * @ops: PM operations to choose from.
410  * @state: PM transition of the system being carried out.
411  *
412  * The driver of @dev will not receive interrupts while this function is being
413  * executed.
414  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)415 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
416 {
417 	switch (state.event) {
418 #ifdef CONFIG_SUSPEND
419 	case PM_EVENT_SUSPEND:
420 		return ops->suspend_noirq;
421 	case PM_EVENT_RESUME:
422 		return ops->resume_noirq;
423 #endif /* CONFIG_SUSPEND */
424 #ifdef CONFIG_HIBERNATE_CALLBACKS
425 	case PM_EVENT_FREEZE:
426 	case PM_EVENT_QUIESCE:
427 		return ops->freeze_noirq;
428 	case PM_EVENT_HIBERNATE:
429 		return ops->poweroff_noirq;
430 	case PM_EVENT_THAW:
431 	case PM_EVENT_RECOVER:
432 		return ops->thaw_noirq;
433 	case PM_EVENT_RESTORE:
434 		return ops->restore_noirq;
435 #endif /* CONFIG_HIBERNATE_CALLBACKS */
436 	}
437 
438 	return NULL;
439 }
440 
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)441 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
442 {
443 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
444 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
445 		", may wakeup" : "", dev->power.driver_flags);
446 }
447 
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)448 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
449 			int error)
450 {
451 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
452 		error);
453 }
454 
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)455 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
456 			  const char *info)
457 {
458 	ktime_t calltime;
459 	u64 usecs64;
460 	int usecs;
461 
462 	calltime = ktime_get();
463 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
464 	do_div(usecs64, NSEC_PER_USEC);
465 	usecs = usecs64;
466 	if (usecs == 0)
467 		usecs = 1;
468 
469 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
470 		  info ?: "", info ? " " : "", pm_verb(state.event),
471 		  error ? "aborted" : "complete",
472 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
473 }
474 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)475 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
476 			    pm_message_t state, const char *info)
477 {
478 	ktime_t calltime;
479 	int error;
480 
481 	if (!cb)
482 		return 0;
483 
484 	calltime = initcall_debug_start(dev, cb);
485 
486 	pm_dev_dbg(dev, state, info);
487 	trace_device_pm_callback_start(dev, info, state.event);
488 	error = cb(dev);
489 	trace_device_pm_callback_end(dev, error);
490 	suspend_report_result(cb, error);
491 
492 	initcall_debug_report(dev, calltime, cb, error);
493 
494 	return error;
495 }
496 
497 #ifdef CONFIG_DPM_WATCHDOG
498 struct dpm_watchdog {
499 	struct device		*dev;
500 	struct task_struct	*tsk;
501 	struct timer_list	timer;
502 };
503 
504 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
505 	struct dpm_watchdog wd
506 
507 /**
508  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
509  * @t: The timer that PM watchdog depends on.
510  *
511  * Called when a driver has timed out suspending or resuming.
512  * There's not much we can do here to recover so panic() to
513  * capture a crash-dump in pstore.
514  */
dpm_watchdog_handler(struct timer_list * t)515 static void dpm_watchdog_handler(struct timer_list *t)
516 {
517 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
518 
519 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
520 	show_stack(wd->tsk, NULL, KERN_EMERG);
521 	panic("%s %s: unrecoverable failure\n",
522 		dev_driver_string(wd->dev), dev_name(wd->dev));
523 }
524 
525 /**
526  * dpm_watchdog_set - Enable pm watchdog for given device.
527  * @wd: Watchdog. Must be allocated on the stack.
528  * @dev: Device to handle.
529  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)530 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
531 {
532 	struct timer_list *timer = &wd->timer;
533 
534 	wd->dev = dev;
535 	wd->tsk = current;
536 
537 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
538 	/* use same timeout value for both suspend and resume */
539 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
540 	add_timer(timer);
541 }
542 
543 /**
544  * dpm_watchdog_clear - Disable suspend/resume watchdog.
545  * @wd: Watchdog to disable.
546  */
dpm_watchdog_clear(struct dpm_watchdog * wd)547 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
548 {
549 	struct timer_list *timer = &wd->timer;
550 
551 	del_timer_sync(timer);
552 	destroy_timer_on_stack(timer);
553 }
554 #else
555 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
556 #define dpm_watchdog_set(x, y)
557 #define dpm_watchdog_clear(x)
558 #endif
559 
560 /*------------------------- Resume routines -------------------------*/
561 
562 /**
563  * dev_pm_skip_resume - System-wide device resume optimization check.
564  * @dev: Target device.
565  *
566  * Return:
567  * - %false if the transition under way is RESTORE.
568  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
569  * - The logical negation of %power.must_resume otherwise (that is, when the
570  *   transition under way is RESUME).
571  */
dev_pm_skip_resume(struct device * dev)572 bool dev_pm_skip_resume(struct device *dev)
573 {
574 	if (pm_transition.event == PM_EVENT_RESTORE)
575 		return false;
576 
577 	if (pm_transition.event == PM_EVENT_THAW)
578 		return dev_pm_skip_suspend(dev);
579 
580 	return !dev->power.must_resume;
581 }
582 
583 /**
584  * __device_resume_noirq - Execute a "noirq resume" callback for given device.
585  * @dev: Device to handle.
586  * @state: PM transition of the system being carried out.
587  * @async: If true, the device is being resumed asynchronously.
588  *
589  * The driver of @dev will not receive interrupts while this function is being
590  * executed.
591  */
__device_resume_noirq(struct device * dev,pm_message_t state,bool async)592 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async)
593 {
594 	pm_callback_t callback = NULL;
595 	const char *info = NULL;
596 	bool skip_resume;
597 	int error = 0;
598 
599 	TRACE_DEVICE(dev);
600 	TRACE_RESUME(0);
601 
602 	if (dev->power.syscore || dev->power.direct_complete)
603 		goto Out;
604 
605 	if (!dev->power.is_noirq_suspended)
606 		goto Out;
607 
608 	if (!dpm_wait_for_superior(dev, async))
609 		goto Out;
610 
611 	skip_resume = dev_pm_skip_resume(dev);
612 	/*
613 	 * If the driver callback is skipped below or by the middle layer
614 	 * callback and device_resume_early() also skips the driver callback for
615 	 * this device later, it needs to appear as "suspended" to PM-runtime,
616 	 * so change its status accordingly.
617 	 *
618 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
619 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
620 	 * to avoid confusing drivers that don't use it.
621 	 */
622 	if (skip_resume)
623 		pm_runtime_set_suspended(dev);
624 	else if (dev_pm_skip_suspend(dev))
625 		pm_runtime_set_active(dev);
626 
627 	if (dev->pm_domain) {
628 		info = "noirq power domain ";
629 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
630 	} else if (dev->type && dev->type->pm) {
631 		info = "noirq type ";
632 		callback = pm_noirq_op(dev->type->pm, state);
633 	} else if (dev->class && dev->class->pm) {
634 		info = "noirq class ";
635 		callback = pm_noirq_op(dev->class->pm, state);
636 	} else if (dev->bus && dev->bus->pm) {
637 		info = "noirq bus ";
638 		callback = pm_noirq_op(dev->bus->pm, state);
639 	}
640 	if (callback)
641 		goto Run;
642 
643 	if (skip_resume)
644 		goto Skip;
645 
646 	if (dev->driver && dev->driver->pm) {
647 		info = "noirq driver ";
648 		callback = pm_noirq_op(dev->driver->pm, state);
649 	}
650 
651 Run:
652 	error = dpm_run_callback(callback, dev, state, info);
653 
654 Skip:
655 	dev->power.is_noirq_suspended = false;
656 
657 Out:
658 	complete_all(&dev->power.completion);
659 	TRACE_RESUME(error);
660 
661 	if (error) {
662 		suspend_stats.failed_resume_noirq++;
663 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
664 		dpm_save_failed_dev(dev_name(dev));
665 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
666 	}
667 }
668 
is_async(struct device * dev)669 static bool is_async(struct device *dev)
670 {
671 	return dev->power.async_suspend && pm_async_enabled
672 		&& !pm_trace_is_enabled();
673 }
674 
dpm_async_fn(struct device * dev,async_func_t func)675 static bool dpm_async_fn(struct device *dev, async_func_t func)
676 {
677 	reinit_completion(&dev->power.completion);
678 
679 	if (!is_async(dev))
680 		return false;
681 
682 	get_device(dev);
683 
684 	if (async_schedule_dev_nocall(func, dev))
685 		return true;
686 
687 	put_device(dev);
688 
689 	return false;
690 }
691 
async_resume_noirq(void * data,async_cookie_t cookie)692 static void async_resume_noirq(void *data, async_cookie_t cookie)
693 {
694 	struct device *dev = data;
695 
696 	__device_resume_noirq(dev, pm_transition, true);
697 	put_device(dev);
698 }
699 
device_resume_noirq(struct device * dev)700 static void device_resume_noirq(struct device *dev)
701 {
702 	if (dpm_async_fn(dev, async_resume_noirq))
703 		return;
704 
705 	__device_resume_noirq(dev, pm_transition, false);
706 }
707 
dpm_noirq_resume_devices(pm_message_t state)708 static void dpm_noirq_resume_devices(pm_message_t state)
709 {
710 	struct device *dev;
711 	ktime_t starttime = ktime_get();
712 
713 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
714 	mutex_lock(&dpm_list_mtx);
715 	pm_transition = state;
716 
717 	while (!list_empty(&dpm_noirq_list)) {
718 		dev = to_device(dpm_noirq_list.next);
719 		get_device(dev);
720 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
721 
722 		mutex_unlock(&dpm_list_mtx);
723 
724 		device_resume_noirq(dev);
725 
726 		put_device(dev);
727 
728 		mutex_lock(&dpm_list_mtx);
729 	}
730 	mutex_unlock(&dpm_list_mtx);
731 	async_synchronize_full();
732 	dpm_show_time(starttime, state, 0, "noirq");
733 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
734 }
735 
736 /**
737  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
738  * @state: PM transition of the system being carried out.
739  *
740  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
741  * allow device drivers' interrupt handlers to be called.
742  */
dpm_resume_noirq(pm_message_t state)743 void dpm_resume_noirq(pm_message_t state)
744 {
745 	dpm_noirq_resume_devices(state);
746 
747 	resume_device_irqs();
748 	device_wakeup_disarm_wake_irqs();
749 
750 	cpuidle_resume();
751 }
752 
753 /**
754  * __device_resume_early - Execute an "early resume" callback for given device.
755  * @dev: Device to handle.
756  * @state: PM transition of the system being carried out.
757  * @async: If true, the device is being resumed asynchronously.
758  *
759  * Runtime PM is disabled for @dev while this function is being executed.
760  */
__device_resume_early(struct device * dev,pm_message_t state,bool async)761 static void __device_resume_early(struct device *dev, pm_message_t state, bool async)
762 {
763 	pm_callback_t callback = NULL;
764 	const char *info = NULL;
765 	int error = 0;
766 
767 	TRACE_DEVICE(dev);
768 	TRACE_RESUME(0);
769 
770 	if (dev->power.syscore || dev->power.direct_complete)
771 		goto Out;
772 
773 	if (!dev->power.is_late_suspended)
774 		goto Out;
775 
776 	if (!dpm_wait_for_superior(dev, async))
777 		goto Out;
778 
779 	if (dev->pm_domain) {
780 		info = "early power domain ";
781 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
782 	} else if (dev->type && dev->type->pm) {
783 		info = "early type ";
784 		callback = pm_late_early_op(dev->type->pm, state);
785 	} else if (dev->class && dev->class->pm) {
786 		info = "early class ";
787 		callback = pm_late_early_op(dev->class->pm, state);
788 	} else if (dev->bus && dev->bus->pm) {
789 		info = "early bus ";
790 		callback = pm_late_early_op(dev->bus->pm, state);
791 	}
792 	if (callback)
793 		goto Run;
794 
795 	if (dev_pm_skip_resume(dev))
796 		goto Skip;
797 
798 	if (dev->driver && dev->driver->pm) {
799 		info = "early driver ";
800 		callback = pm_late_early_op(dev->driver->pm, state);
801 	}
802 
803 Run:
804 	error = dpm_run_callback(callback, dev, state, info);
805 
806 Skip:
807 	dev->power.is_late_suspended = false;
808 
809 Out:
810 	TRACE_RESUME(error);
811 
812 	pm_runtime_enable(dev);
813 	complete_all(&dev->power.completion);
814 
815 	if (error) {
816 		suspend_stats.failed_resume_early++;
817 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
818 		dpm_save_failed_dev(dev_name(dev));
819 		pm_dev_err(dev, state, async ? " async early" : " early", error);
820 	}
821 }
822 
async_resume_early(void * data,async_cookie_t cookie)823 static void async_resume_early(void *data, async_cookie_t cookie)
824 {
825 	struct device *dev = data;
826 
827 	__device_resume_early(dev, pm_transition, true);
828 	put_device(dev);
829 }
830 
device_resume_early(struct device * dev)831 static void device_resume_early(struct device *dev)
832 {
833 	if (dpm_async_fn(dev, async_resume_early))
834 		return;
835 
836 	__device_resume_early(dev, pm_transition, false);
837 }
838 
839 /**
840  * dpm_resume_early - Execute "early resume" callbacks for all devices.
841  * @state: PM transition of the system being carried out.
842  */
dpm_resume_early(pm_message_t state)843 void dpm_resume_early(pm_message_t state)
844 {
845 	struct device *dev;
846 	ktime_t starttime = ktime_get();
847 
848 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
849 	mutex_lock(&dpm_list_mtx);
850 	pm_transition = state;
851 
852 	while (!list_empty(&dpm_late_early_list)) {
853 		dev = to_device(dpm_late_early_list.next);
854 		get_device(dev);
855 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
856 
857 		mutex_unlock(&dpm_list_mtx);
858 
859 		device_resume_early(dev);
860 
861 		put_device(dev);
862 
863 		mutex_lock(&dpm_list_mtx);
864 	}
865 	mutex_unlock(&dpm_list_mtx);
866 	async_synchronize_full();
867 	dpm_show_time(starttime, state, 0, "early");
868 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
869 }
870 
871 /**
872  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
873  * @state: PM transition of the system being carried out.
874  */
dpm_resume_start(pm_message_t state)875 void dpm_resume_start(pm_message_t state)
876 {
877 	dpm_resume_noirq(state);
878 	dpm_resume_early(state);
879 }
880 EXPORT_SYMBOL_GPL(dpm_resume_start);
881 
882 /**
883  * __device_resume - Execute "resume" callbacks for given device.
884  * @dev: Device to handle.
885  * @state: PM transition of the system being carried out.
886  * @async: If true, the device is being resumed asynchronously.
887  */
__device_resume(struct device * dev,pm_message_t state,bool async)888 static void __device_resume(struct device *dev, pm_message_t state, bool async)
889 {
890 	pm_callback_t callback = NULL;
891 	const char *info = NULL;
892 	int error = 0;
893 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
894 
895 	TRACE_DEVICE(dev);
896 	TRACE_RESUME(0);
897 
898 	if (dev->power.syscore)
899 		goto Complete;
900 
901 	if (dev->power.direct_complete) {
902 		/* Match the pm_runtime_disable() in __device_suspend(). */
903 		pm_runtime_enable(dev);
904 		goto Complete;
905 	}
906 
907 	if (!dpm_wait_for_superior(dev, async))
908 		goto Complete;
909 
910 	dpm_watchdog_set(&wd, dev);
911 	device_lock(dev);
912 
913 	/*
914 	 * This is a fib.  But we'll allow new children to be added below
915 	 * a resumed device, even if the device hasn't been completed yet.
916 	 */
917 	dev->power.is_prepared = false;
918 
919 	if (!dev->power.is_suspended)
920 		goto Unlock;
921 
922 	if (dev->pm_domain) {
923 		info = "power domain ";
924 		callback = pm_op(&dev->pm_domain->ops, state);
925 		goto Driver;
926 	}
927 
928 	if (dev->type && dev->type->pm) {
929 		info = "type ";
930 		callback = pm_op(dev->type->pm, state);
931 		goto Driver;
932 	}
933 
934 	if (dev->class && dev->class->pm) {
935 		info = "class ";
936 		callback = pm_op(dev->class->pm, state);
937 		goto Driver;
938 	}
939 
940 	if (dev->bus) {
941 		if (dev->bus->pm) {
942 			info = "bus ";
943 			callback = pm_op(dev->bus->pm, state);
944 		} else if (dev->bus->resume) {
945 			info = "legacy bus ";
946 			callback = dev->bus->resume;
947 			goto End;
948 		}
949 	}
950 
951  Driver:
952 	if (!callback && dev->driver && dev->driver->pm) {
953 		info = "driver ";
954 		callback = pm_op(dev->driver->pm, state);
955 	}
956 
957  End:
958 	error = dpm_run_callback(callback, dev, state, info);
959 	dev->power.is_suspended = false;
960 
961  Unlock:
962 	device_unlock(dev);
963 	dpm_watchdog_clear(&wd);
964 
965  Complete:
966 	complete_all(&dev->power.completion);
967 
968 	TRACE_RESUME(error);
969 
970 	if (error) {
971 		suspend_stats.failed_resume++;
972 		dpm_save_failed_step(SUSPEND_RESUME);
973 		dpm_save_failed_dev(dev_name(dev));
974 		pm_dev_err(dev, state, async ? " async" : "", error);
975 	}
976 }
977 
async_resume(void * data,async_cookie_t cookie)978 static void async_resume(void *data, async_cookie_t cookie)
979 {
980 	struct device *dev = data;
981 
982 	__device_resume(dev, pm_transition, true);
983 	put_device(dev);
984 }
985 
device_resume(struct device * dev)986 static void device_resume(struct device *dev)
987 {
988 	if (dpm_async_fn(dev, async_resume))
989 		return;
990 
991 	__device_resume(dev, pm_transition, false);
992 }
993 
994 /**
995  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
996  * @state: PM transition of the system being carried out.
997  *
998  * Execute the appropriate "resume" callback for all devices whose status
999  * indicates that they are suspended.
1000  */
dpm_resume(pm_message_t state)1001 void dpm_resume(pm_message_t state)
1002 {
1003 	struct device *dev;
1004 	ktime_t starttime = ktime_get();
1005 
1006 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1007 	might_sleep();
1008 
1009 	mutex_lock(&dpm_list_mtx);
1010 	pm_transition = state;
1011 	async_error = 0;
1012 
1013 	while (!list_empty(&dpm_suspended_list)) {
1014 		dev = to_device(dpm_suspended_list.next);
1015 
1016 		get_device(dev);
1017 
1018 		mutex_unlock(&dpm_list_mtx);
1019 
1020 		device_resume(dev);
1021 
1022 		mutex_lock(&dpm_list_mtx);
1023 
1024 		if (!list_empty(&dev->power.entry))
1025 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1026 
1027 		mutex_unlock(&dpm_list_mtx);
1028 
1029 		put_device(dev);
1030 
1031 		mutex_lock(&dpm_list_mtx);
1032 	}
1033 	mutex_unlock(&dpm_list_mtx);
1034 	async_synchronize_full();
1035 	dpm_show_time(starttime, state, 0, NULL);
1036 
1037 	cpufreq_resume();
1038 	devfreq_resume();
1039 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1040 }
1041 
1042 /**
1043  * device_complete - Complete a PM transition for given device.
1044  * @dev: Device to handle.
1045  * @state: PM transition of the system being carried out.
1046  */
device_complete(struct device * dev,pm_message_t state)1047 static void device_complete(struct device *dev, pm_message_t state)
1048 {
1049 	void (*callback)(struct device *) = NULL;
1050 	const char *info = NULL;
1051 
1052 	if (dev->power.syscore)
1053 		goto out;
1054 
1055 	device_lock(dev);
1056 
1057 	if (dev->pm_domain) {
1058 		info = "completing power domain ";
1059 		callback = dev->pm_domain->ops.complete;
1060 	} else if (dev->type && dev->type->pm) {
1061 		info = "completing type ";
1062 		callback = dev->type->pm->complete;
1063 	} else if (dev->class && dev->class->pm) {
1064 		info = "completing class ";
1065 		callback = dev->class->pm->complete;
1066 	} else if (dev->bus && dev->bus->pm) {
1067 		info = "completing bus ";
1068 		callback = dev->bus->pm->complete;
1069 	}
1070 
1071 	if (!callback && dev->driver && dev->driver->pm) {
1072 		info = "completing driver ";
1073 		callback = dev->driver->pm->complete;
1074 	}
1075 
1076 	if (callback) {
1077 		pm_dev_dbg(dev, state, info);
1078 		callback(dev);
1079 	}
1080 
1081 	device_unlock(dev);
1082 
1083 out:
1084 	pm_runtime_put(dev);
1085 }
1086 
1087 /**
1088  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1089  * @state: PM transition of the system being carried out.
1090  *
1091  * Execute the ->complete() callbacks for all devices whose PM status is not
1092  * DPM_ON (this allows new devices to be registered).
1093  */
dpm_complete(pm_message_t state)1094 void dpm_complete(pm_message_t state)
1095 {
1096 	struct list_head list;
1097 
1098 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1099 	might_sleep();
1100 
1101 	INIT_LIST_HEAD(&list);
1102 	mutex_lock(&dpm_list_mtx);
1103 	while (!list_empty(&dpm_prepared_list)) {
1104 		struct device *dev = to_device(dpm_prepared_list.prev);
1105 
1106 		get_device(dev);
1107 		dev->power.is_prepared = false;
1108 		list_move(&dev->power.entry, &list);
1109 
1110 		mutex_unlock(&dpm_list_mtx);
1111 
1112 		trace_device_pm_callback_start(dev, "", state.event);
1113 		device_complete(dev, state);
1114 		trace_device_pm_callback_end(dev, 0);
1115 
1116 		put_device(dev);
1117 
1118 		mutex_lock(&dpm_list_mtx);
1119 	}
1120 	list_splice(&list, &dpm_list);
1121 	mutex_unlock(&dpm_list_mtx);
1122 
1123 	/* Allow device probing and trigger re-probing of deferred devices */
1124 	device_unblock_probing();
1125 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1126 }
1127 
1128 /**
1129  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1130  * @state: PM transition of the system being carried out.
1131  *
1132  * Execute "resume" callbacks for all devices and complete the PM transition of
1133  * the system.
1134  */
dpm_resume_end(pm_message_t state)1135 void dpm_resume_end(pm_message_t state)
1136 {
1137 	dpm_resume(state);
1138 	dpm_complete(state);
1139 }
1140 EXPORT_SYMBOL_GPL(dpm_resume_end);
1141 
1142 
1143 /*------------------------- Suspend routines -------------------------*/
1144 
1145 /**
1146  * resume_event - Return a "resume" message for given "suspend" sleep state.
1147  * @sleep_state: PM message representing a sleep state.
1148  *
1149  * Return a PM message representing the resume event corresponding to given
1150  * sleep state.
1151  */
resume_event(pm_message_t sleep_state)1152 static pm_message_t resume_event(pm_message_t sleep_state)
1153 {
1154 	switch (sleep_state.event) {
1155 	case PM_EVENT_SUSPEND:
1156 		return PMSG_RESUME;
1157 	case PM_EVENT_FREEZE:
1158 	case PM_EVENT_QUIESCE:
1159 		return PMSG_RECOVER;
1160 	case PM_EVENT_HIBERNATE:
1161 		return PMSG_RESTORE;
1162 	}
1163 	return PMSG_ON;
1164 }
1165 
dpm_superior_set_must_resume(struct device * dev)1166 static void dpm_superior_set_must_resume(struct device *dev)
1167 {
1168 	struct device_link *link;
1169 	int idx;
1170 
1171 	if (dev->parent)
1172 		dev->parent->power.must_resume = true;
1173 
1174 	idx = device_links_read_lock();
1175 
1176 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1177 		link->supplier->power.must_resume = true;
1178 
1179 	device_links_read_unlock(idx);
1180 }
1181 
1182 /**
1183  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1184  * @dev: Device to handle.
1185  * @state: PM transition of the system being carried out.
1186  * @async: If true, the device is being suspended asynchronously.
1187  *
1188  * The driver of @dev will not receive interrupts while this function is being
1189  * executed.
1190  */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1191 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1192 {
1193 	pm_callback_t callback = NULL;
1194 	const char *info = NULL;
1195 	int error = 0;
1196 
1197 	TRACE_DEVICE(dev);
1198 	TRACE_SUSPEND(0);
1199 
1200 	dpm_wait_for_subordinate(dev, async);
1201 
1202 	if (async_error)
1203 		goto Complete;
1204 
1205 	if (dev->power.syscore || dev->power.direct_complete)
1206 		goto Complete;
1207 
1208 	if (dev->pm_domain) {
1209 		info = "noirq power domain ";
1210 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1211 	} else if (dev->type && dev->type->pm) {
1212 		info = "noirq type ";
1213 		callback = pm_noirq_op(dev->type->pm, state);
1214 	} else if (dev->class && dev->class->pm) {
1215 		info = "noirq class ";
1216 		callback = pm_noirq_op(dev->class->pm, state);
1217 	} else if (dev->bus && dev->bus->pm) {
1218 		info = "noirq bus ";
1219 		callback = pm_noirq_op(dev->bus->pm, state);
1220 	}
1221 	if (callback)
1222 		goto Run;
1223 
1224 	if (dev_pm_skip_suspend(dev))
1225 		goto Skip;
1226 
1227 	if (dev->driver && dev->driver->pm) {
1228 		info = "noirq driver ";
1229 		callback = pm_noirq_op(dev->driver->pm, state);
1230 	}
1231 
1232 Run:
1233 	error = dpm_run_callback(callback, dev, state, info);
1234 	if (error) {
1235 		async_error = error;
1236 		log_suspend_abort_reason("Device %s failed to %s noirq: error %d",
1237 					 dev_name(dev), pm_verb(state.event), error);
1238 		goto Complete;
1239 	}
1240 
1241 Skip:
1242 	dev->power.is_noirq_suspended = true;
1243 
1244 	/*
1245 	 * Skipping the resume of devices that were in use right before the
1246 	 * system suspend (as indicated by their PM-runtime usage counters)
1247 	 * would be suboptimal.  Also resume them if doing that is not allowed
1248 	 * to be skipped.
1249 	 */
1250 	if (atomic_read(&dev->power.usage_count) > 1 ||
1251 	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1252 	      dev->power.may_skip_resume))
1253 		dev->power.must_resume = true;
1254 
1255 	if (dev->power.must_resume)
1256 		dpm_superior_set_must_resume(dev);
1257 
1258 Complete:
1259 	complete_all(&dev->power.completion);
1260 	TRACE_SUSPEND(error);
1261 	return error;
1262 }
1263 
async_suspend_noirq(void * data,async_cookie_t cookie)1264 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1265 {
1266 	struct device *dev = data;
1267 	int error;
1268 
1269 	error = __device_suspend_noirq(dev, pm_transition, true);
1270 	if (error) {
1271 		dpm_save_failed_dev(dev_name(dev));
1272 		pm_dev_err(dev, pm_transition, " async", error);
1273 	}
1274 
1275 	put_device(dev);
1276 }
1277 
device_suspend_noirq(struct device * dev)1278 static int device_suspend_noirq(struct device *dev)
1279 {
1280 	if (dpm_async_fn(dev, async_suspend_noirq))
1281 		return 0;
1282 
1283 	return __device_suspend_noirq(dev, pm_transition, false);
1284 }
1285 
dpm_noirq_suspend_devices(pm_message_t state)1286 static int dpm_noirq_suspend_devices(pm_message_t state)
1287 {
1288 	ktime_t starttime = ktime_get();
1289 	int error = 0;
1290 
1291 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1292 	mutex_lock(&dpm_list_mtx);
1293 	pm_transition = state;
1294 	async_error = 0;
1295 
1296 	while (!list_empty(&dpm_late_early_list)) {
1297 		struct device *dev = to_device(dpm_late_early_list.prev);
1298 
1299 		get_device(dev);
1300 		mutex_unlock(&dpm_list_mtx);
1301 
1302 		error = device_suspend_noirq(dev);
1303 
1304 		mutex_lock(&dpm_list_mtx);
1305 
1306 		if (error) {
1307 			pm_dev_err(dev, state, " noirq", error);
1308 			dpm_save_failed_dev(dev_name(dev));
1309 		} else if (!list_empty(&dev->power.entry)) {
1310 			list_move(&dev->power.entry, &dpm_noirq_list);
1311 		}
1312 
1313 		mutex_unlock(&dpm_list_mtx);
1314 
1315 		put_device(dev);
1316 
1317 		mutex_lock(&dpm_list_mtx);
1318 
1319 		if (error || async_error)
1320 			break;
1321 	}
1322 	mutex_unlock(&dpm_list_mtx);
1323 	async_synchronize_full();
1324 	if (!error)
1325 		error = async_error;
1326 
1327 	if (error) {
1328 		suspend_stats.failed_suspend_noirq++;
1329 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1330 	}
1331 	dpm_show_time(starttime, state, error, "noirq");
1332 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1333 	return error;
1334 }
1335 
1336 /**
1337  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1338  * @state: PM transition of the system being carried out.
1339  *
1340  * Prevent device drivers' interrupt handlers from being called and invoke
1341  * "noirq" suspend callbacks for all non-sysdev devices.
1342  */
dpm_suspend_noirq(pm_message_t state)1343 int dpm_suspend_noirq(pm_message_t state)
1344 {
1345 	int ret;
1346 
1347 	cpuidle_pause();
1348 
1349 	device_wakeup_arm_wake_irqs();
1350 	suspend_device_irqs();
1351 
1352 	ret = dpm_noirq_suspend_devices(state);
1353 	if (ret)
1354 		dpm_resume_noirq(resume_event(state));
1355 
1356 	return ret;
1357 }
1358 
dpm_propagate_wakeup_to_parent(struct device * dev)1359 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1360 {
1361 	struct device *parent = dev->parent;
1362 
1363 	if (!parent)
1364 		return;
1365 
1366 	spin_lock_irq(&parent->power.lock);
1367 
1368 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1369 		parent->power.wakeup_path = true;
1370 
1371 	spin_unlock_irq(&parent->power.lock);
1372 }
1373 
1374 /**
1375  * __device_suspend_late - Execute a "late suspend" callback for given device.
1376  * @dev: Device to handle.
1377  * @state: PM transition of the system being carried out.
1378  * @async: If true, the device is being suspended asynchronously.
1379  *
1380  * Runtime PM is disabled for @dev while this function is being executed.
1381  */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1382 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1383 {
1384 	pm_callback_t callback = NULL;
1385 	const char *info = NULL;
1386 	int error = 0;
1387 
1388 	TRACE_DEVICE(dev);
1389 	TRACE_SUSPEND(0);
1390 
1391 	__pm_runtime_disable(dev, false);
1392 
1393 	dpm_wait_for_subordinate(dev, async);
1394 
1395 	if (async_error)
1396 		goto Complete;
1397 
1398 	if (pm_wakeup_pending()) {
1399 		async_error = -EBUSY;
1400 		goto Complete;
1401 	}
1402 
1403 	if (dev->power.syscore || dev->power.direct_complete)
1404 		goto Complete;
1405 
1406 	if (dev->pm_domain) {
1407 		info = "late power domain ";
1408 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1409 	} else if (dev->type && dev->type->pm) {
1410 		info = "late type ";
1411 		callback = pm_late_early_op(dev->type->pm, state);
1412 	} else if (dev->class && dev->class->pm) {
1413 		info = "late class ";
1414 		callback = pm_late_early_op(dev->class->pm, state);
1415 	} else if (dev->bus && dev->bus->pm) {
1416 		info = "late bus ";
1417 		callback = pm_late_early_op(dev->bus->pm, state);
1418 	}
1419 	if (callback)
1420 		goto Run;
1421 
1422 	if (dev_pm_skip_suspend(dev))
1423 		goto Skip;
1424 
1425 	if (dev->driver && dev->driver->pm) {
1426 		info = "late driver ";
1427 		callback = pm_late_early_op(dev->driver->pm, state);
1428 	}
1429 
1430 Run:
1431 	error = dpm_run_callback(callback, dev, state, info);
1432 	if (error) {
1433 		async_error = error;
1434 		log_suspend_abort_reason("Device %s failed to %s late: error %d",
1435 					 dev_name(dev), pm_verb(state.event), error);
1436 		goto Complete;
1437 	}
1438 	dpm_propagate_wakeup_to_parent(dev);
1439 
1440 Skip:
1441 	dev->power.is_late_suspended = true;
1442 
1443 Complete:
1444 	TRACE_SUSPEND(error);
1445 	complete_all(&dev->power.completion);
1446 	return error;
1447 }
1448 
async_suspend_late(void * data,async_cookie_t cookie)1449 static void async_suspend_late(void *data, async_cookie_t cookie)
1450 {
1451 	struct device *dev = data;
1452 	int error;
1453 
1454 	error = __device_suspend_late(dev, pm_transition, true);
1455 	if (error) {
1456 		dpm_save_failed_dev(dev_name(dev));
1457 		pm_dev_err(dev, pm_transition, " async", error);
1458 	}
1459 	put_device(dev);
1460 }
1461 
device_suspend_late(struct device * dev)1462 static int device_suspend_late(struct device *dev)
1463 {
1464 	if (dpm_async_fn(dev, async_suspend_late))
1465 		return 0;
1466 
1467 	return __device_suspend_late(dev, pm_transition, false);
1468 }
1469 
1470 /**
1471  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1472  * @state: PM transition of the system being carried out.
1473  */
dpm_suspend_late(pm_message_t state)1474 int dpm_suspend_late(pm_message_t state)
1475 {
1476 	ktime_t starttime = ktime_get();
1477 	int error = 0;
1478 
1479 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1480 	mutex_lock(&dpm_list_mtx);
1481 	pm_transition = state;
1482 	async_error = 0;
1483 
1484 	while (!list_empty(&dpm_suspended_list)) {
1485 		struct device *dev = to_device(dpm_suspended_list.prev);
1486 
1487 		get_device(dev);
1488 
1489 		mutex_unlock(&dpm_list_mtx);
1490 
1491 		error = device_suspend_late(dev);
1492 
1493 		mutex_lock(&dpm_list_mtx);
1494 
1495 		if (!list_empty(&dev->power.entry))
1496 			list_move(&dev->power.entry, &dpm_late_early_list);
1497 
1498 		if (error) {
1499 			pm_dev_err(dev, state, " late", error);
1500 			dpm_save_failed_dev(dev_name(dev));
1501 		}
1502 
1503 		mutex_unlock(&dpm_list_mtx);
1504 
1505 		put_device(dev);
1506 
1507 		mutex_lock(&dpm_list_mtx);
1508 
1509 		if (error || async_error)
1510 			break;
1511 	}
1512 	mutex_unlock(&dpm_list_mtx);
1513 	async_synchronize_full();
1514 	if (!error)
1515 		error = async_error;
1516 	if (error) {
1517 		suspend_stats.failed_suspend_late++;
1518 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1519 		dpm_resume_early(resume_event(state));
1520 	}
1521 	dpm_show_time(starttime, state, error, "late");
1522 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1523 	return error;
1524 }
1525 
1526 /**
1527  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1528  * @state: PM transition of the system being carried out.
1529  */
dpm_suspend_end(pm_message_t state)1530 int dpm_suspend_end(pm_message_t state)
1531 {
1532 	ktime_t starttime = ktime_get();
1533 	int error;
1534 
1535 	error = dpm_suspend_late(state);
1536 	if (error)
1537 		goto out;
1538 
1539 	error = dpm_suspend_noirq(state);
1540 	if (error)
1541 		dpm_resume_early(resume_event(state));
1542 
1543 out:
1544 	dpm_show_time(starttime, state, error, "end");
1545 	return error;
1546 }
1547 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1548 
1549 /**
1550  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1551  * @dev: Device to suspend.
1552  * @state: PM transition of the system being carried out.
1553  * @cb: Suspend callback to execute.
1554  * @info: string description of caller.
1555  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1556 static int legacy_suspend(struct device *dev, pm_message_t state,
1557 			  int (*cb)(struct device *dev, pm_message_t state),
1558 			  const char *info)
1559 {
1560 	int error;
1561 	ktime_t calltime;
1562 
1563 	calltime = initcall_debug_start(dev, cb);
1564 
1565 	trace_device_pm_callback_start(dev, info, state.event);
1566 	error = cb(dev, state);
1567 	trace_device_pm_callback_end(dev, error);
1568 	suspend_report_result(cb, error);
1569 
1570 	initcall_debug_report(dev, calltime, cb, error);
1571 
1572 	return error;
1573 }
1574 
dpm_clear_superiors_direct_complete(struct device * dev)1575 static void dpm_clear_superiors_direct_complete(struct device *dev)
1576 {
1577 	struct device_link *link;
1578 	int idx;
1579 
1580 	if (dev->parent) {
1581 		spin_lock_irq(&dev->parent->power.lock);
1582 		dev->parent->power.direct_complete = false;
1583 		spin_unlock_irq(&dev->parent->power.lock);
1584 	}
1585 
1586 	idx = device_links_read_lock();
1587 
1588 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1589 		spin_lock_irq(&link->supplier->power.lock);
1590 		link->supplier->power.direct_complete = false;
1591 		spin_unlock_irq(&link->supplier->power.lock);
1592 	}
1593 
1594 	device_links_read_unlock(idx);
1595 }
1596 
1597 /**
1598  * __device_suspend - Execute "suspend" callbacks for given device.
1599  * @dev: Device to handle.
1600  * @state: PM transition of the system being carried out.
1601  * @async: If true, the device is being suspended asynchronously.
1602  */
__device_suspend(struct device * dev,pm_message_t state,bool async)1603 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1604 {
1605 	pm_callback_t callback = NULL;
1606 	const char *info = NULL;
1607 	int error = 0;
1608 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1609 
1610 	TRACE_DEVICE(dev);
1611 	TRACE_SUSPEND(0);
1612 
1613 	dpm_wait_for_subordinate(dev, async);
1614 
1615 	if (async_error) {
1616 		dev->power.direct_complete = false;
1617 		goto Complete;
1618 	}
1619 
1620 	/*
1621 	 * Wait for possible runtime PM transitions of the device in progress
1622 	 * to complete and if there's a runtime resume request pending for it,
1623 	 * resume it before proceeding with invoking the system-wide suspend
1624 	 * callbacks for it.
1625 	 *
1626 	 * If the system-wide suspend callbacks below change the configuration
1627 	 * of the device, they must disable runtime PM for it or otherwise
1628 	 * ensure that its runtime-resume callbacks will not be confused by that
1629 	 * change in case they are invoked going forward.
1630 	 */
1631 	pm_runtime_barrier(dev);
1632 
1633 	if (pm_wakeup_pending()) {
1634 		dev->power.direct_complete = false;
1635 		async_error = -EBUSY;
1636 		goto Complete;
1637 	}
1638 
1639 	if (dev->power.syscore)
1640 		goto Complete;
1641 
1642 	/* Avoid direct_complete to let wakeup_path propagate. */
1643 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1644 		dev->power.direct_complete = false;
1645 
1646 	if (dev->power.direct_complete) {
1647 		if (pm_runtime_status_suspended(dev)) {
1648 			pm_runtime_disable(dev);
1649 			if (pm_runtime_status_suspended(dev)) {
1650 				pm_dev_dbg(dev, state, "direct-complete ");
1651 				goto Complete;
1652 			}
1653 
1654 			pm_runtime_enable(dev);
1655 		}
1656 		dev->power.direct_complete = false;
1657 	}
1658 
1659 	dev->power.may_skip_resume = true;
1660 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1661 
1662 	dpm_watchdog_set(&wd, dev);
1663 	device_lock(dev);
1664 
1665 	if (dev->pm_domain) {
1666 		info = "power domain ";
1667 		callback = pm_op(&dev->pm_domain->ops, state);
1668 		goto Run;
1669 	}
1670 
1671 	if (dev->type && dev->type->pm) {
1672 		info = "type ";
1673 		callback = pm_op(dev->type->pm, state);
1674 		goto Run;
1675 	}
1676 
1677 	if (dev->class && dev->class->pm) {
1678 		info = "class ";
1679 		callback = pm_op(dev->class->pm, state);
1680 		goto Run;
1681 	}
1682 
1683 	if (dev->bus) {
1684 		if (dev->bus->pm) {
1685 			info = "bus ";
1686 			callback = pm_op(dev->bus->pm, state);
1687 		} else if (dev->bus->suspend) {
1688 			pm_dev_dbg(dev, state, "legacy bus ");
1689 			error = legacy_suspend(dev, state, dev->bus->suspend,
1690 						"legacy bus ");
1691 			goto End;
1692 		}
1693 	}
1694 
1695  Run:
1696 	if (!callback && dev->driver && dev->driver->pm) {
1697 		info = "driver ";
1698 		callback = pm_op(dev->driver->pm, state);
1699 	}
1700 
1701 	error = dpm_run_callback(callback, dev, state, info);
1702 
1703  End:
1704 	if (!error) {
1705 		dev->power.is_suspended = true;
1706 		if (device_may_wakeup(dev))
1707 			dev->power.wakeup_path = true;
1708 
1709 		dpm_propagate_wakeup_to_parent(dev);
1710 		dpm_clear_superiors_direct_complete(dev);
1711 	} else {
1712 		log_suspend_abort_reason("Device %s failed to %s: error %d",
1713 					 dev_name(dev), pm_verb(state.event), error);
1714 	}
1715 
1716 	device_unlock(dev);
1717 	dpm_watchdog_clear(&wd);
1718 
1719  Complete:
1720 	if (error)
1721 		async_error = error;
1722 
1723 	complete_all(&dev->power.completion);
1724 	TRACE_SUSPEND(error);
1725 	return error;
1726 }
1727 
async_suspend(void * data,async_cookie_t cookie)1728 static void async_suspend(void *data, async_cookie_t cookie)
1729 {
1730 	struct device *dev = data;
1731 	int error;
1732 
1733 	error = __device_suspend(dev, pm_transition, true);
1734 	if (error) {
1735 		dpm_save_failed_dev(dev_name(dev));
1736 		pm_dev_err(dev, pm_transition, " async", error);
1737 	}
1738 
1739 	put_device(dev);
1740 }
1741 
device_suspend(struct device * dev)1742 static int device_suspend(struct device *dev)
1743 {
1744 	if (dpm_async_fn(dev, async_suspend))
1745 		return 0;
1746 
1747 	return __device_suspend(dev, pm_transition, false);
1748 }
1749 
1750 /**
1751  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1752  * @state: PM transition of the system being carried out.
1753  */
dpm_suspend(pm_message_t state)1754 int dpm_suspend(pm_message_t state)
1755 {
1756 	ktime_t starttime = ktime_get();
1757 	int error = 0;
1758 
1759 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1760 	might_sleep();
1761 
1762 	devfreq_suspend();
1763 	cpufreq_suspend();
1764 
1765 	mutex_lock(&dpm_list_mtx);
1766 	pm_transition = state;
1767 	async_error = 0;
1768 	while (!list_empty(&dpm_prepared_list)) {
1769 		struct device *dev = to_device(dpm_prepared_list.prev);
1770 
1771 		get_device(dev);
1772 
1773 		mutex_unlock(&dpm_list_mtx);
1774 
1775 		error = device_suspend(dev);
1776 
1777 		mutex_lock(&dpm_list_mtx);
1778 
1779 		if (error) {
1780 			pm_dev_err(dev, state, "", error);
1781 			dpm_save_failed_dev(dev_name(dev));
1782 		} else if (!list_empty(&dev->power.entry)) {
1783 			list_move(&dev->power.entry, &dpm_suspended_list);
1784 		}
1785 
1786 		mutex_unlock(&dpm_list_mtx);
1787 
1788 		put_device(dev);
1789 
1790 		mutex_lock(&dpm_list_mtx);
1791 
1792 		if (error || async_error)
1793 			break;
1794 	}
1795 	mutex_unlock(&dpm_list_mtx);
1796 	async_synchronize_full();
1797 	if (!error)
1798 		error = async_error;
1799 	if (error) {
1800 		suspend_stats.failed_suspend++;
1801 		dpm_save_failed_step(SUSPEND_SUSPEND);
1802 	}
1803 	dpm_show_time(starttime, state, error, NULL);
1804 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1805 	return error;
1806 }
1807 
1808 /**
1809  * device_prepare - Prepare a device for system power transition.
1810  * @dev: Device to handle.
1811  * @state: PM transition of the system being carried out.
1812  *
1813  * Execute the ->prepare() callback(s) for given device.  No new children of the
1814  * device may be registered after this function has returned.
1815  */
device_prepare(struct device * dev,pm_message_t state)1816 static int device_prepare(struct device *dev, pm_message_t state)
1817 {
1818 	int (*callback)(struct device *) = NULL;
1819 	int ret = 0;
1820 
1821 	/*
1822 	 * If a device's parent goes into runtime suspend at the wrong time,
1823 	 * it won't be possible to resume the device.  To prevent this we
1824 	 * block runtime suspend here, during the prepare phase, and allow
1825 	 * it again during the complete phase.
1826 	 */
1827 	pm_runtime_get_noresume(dev);
1828 
1829 	if (dev->power.syscore)
1830 		return 0;
1831 
1832 	device_lock(dev);
1833 
1834 	dev->power.wakeup_path = false;
1835 
1836 	if (dev->power.no_pm_callbacks)
1837 		goto unlock;
1838 
1839 	if (dev->pm_domain)
1840 		callback = dev->pm_domain->ops.prepare;
1841 	else if (dev->type && dev->type->pm)
1842 		callback = dev->type->pm->prepare;
1843 	else if (dev->class && dev->class->pm)
1844 		callback = dev->class->pm->prepare;
1845 	else if (dev->bus && dev->bus->pm)
1846 		callback = dev->bus->pm->prepare;
1847 
1848 	if (!callback && dev->driver && dev->driver->pm)
1849 		callback = dev->driver->pm->prepare;
1850 
1851 	if (callback)
1852 		ret = callback(dev);
1853 
1854 unlock:
1855 	device_unlock(dev);
1856 
1857 	if (ret < 0) {
1858 		suspend_report_result(callback, ret);
1859 		pm_runtime_put(dev);
1860 		return ret;
1861 	}
1862 	/*
1863 	 * A positive return value from ->prepare() means "this device appears
1864 	 * to be runtime-suspended and its state is fine, so if it really is
1865 	 * runtime-suspended, you can leave it in that state provided that you
1866 	 * will do the same thing with all of its descendants".  This only
1867 	 * applies to suspend transitions, however.
1868 	 */
1869 	spin_lock_irq(&dev->power.lock);
1870 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1871 		(ret > 0 || dev->power.no_pm_callbacks) &&
1872 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1873 	spin_unlock_irq(&dev->power.lock);
1874 	return 0;
1875 }
1876 
1877 /**
1878  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1879  * @state: PM transition of the system being carried out.
1880  *
1881  * Execute the ->prepare() callback(s) for all devices.
1882  */
dpm_prepare(pm_message_t state)1883 int dpm_prepare(pm_message_t state)
1884 {
1885 	int error = 0;
1886 
1887 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1888 	might_sleep();
1889 
1890 	/*
1891 	 * Give a chance for the known devices to complete their probes, before
1892 	 * disable probing of devices. This sync point is important at least
1893 	 * at boot time + hibernation restore.
1894 	 */
1895 	wait_for_device_probe();
1896 	/*
1897 	 * It is unsafe if probing of devices will happen during suspend or
1898 	 * hibernation and system behavior will be unpredictable in this case.
1899 	 * So, let's prohibit device's probing here and defer their probes
1900 	 * instead. The normal behavior will be restored in dpm_complete().
1901 	 */
1902 	device_block_probing();
1903 
1904 	mutex_lock(&dpm_list_mtx);
1905 	while (!list_empty(&dpm_list) && !error) {
1906 		struct device *dev = to_device(dpm_list.next);
1907 
1908 		get_device(dev);
1909 
1910 		mutex_unlock(&dpm_list_mtx);
1911 
1912 		trace_device_pm_callback_start(dev, "", state.event);
1913 		error = device_prepare(dev, state);
1914 		trace_device_pm_callback_end(dev, error);
1915 
1916 		mutex_lock(&dpm_list_mtx);
1917 
1918 		if (!error) {
1919 			dev->power.is_prepared = true;
1920 			if (!list_empty(&dev->power.entry))
1921 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
1922 		} else if (error == -EAGAIN) {
1923 			error = 0;
1924 		} else {
1925 			dev_info(dev, "not prepared for power transition: code %d\n",
1926 				 error);
1927 			log_suspend_abort_reason("Device %s not prepared for power transition: code %d",
1928 						 dev_name(dev), error);
1929 			dpm_save_failed_dev(dev_name(dev));
1930 		}
1931 
1932 		mutex_unlock(&dpm_list_mtx);
1933 
1934 		put_device(dev);
1935 
1936 		mutex_lock(&dpm_list_mtx);
1937 	}
1938 	mutex_unlock(&dpm_list_mtx);
1939 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1940 	return error;
1941 }
1942 
1943 /**
1944  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1945  * @state: PM transition of the system being carried out.
1946  *
1947  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1948  * callbacks for them.
1949  */
dpm_suspend_start(pm_message_t state)1950 int dpm_suspend_start(pm_message_t state)
1951 {
1952 	ktime_t starttime = ktime_get();
1953 	int error;
1954 
1955 	error = dpm_prepare(state);
1956 	if (error) {
1957 		suspend_stats.failed_prepare++;
1958 		dpm_save_failed_step(SUSPEND_PREPARE);
1959 	} else
1960 		error = dpm_suspend(state);
1961 	dpm_show_time(starttime, state, error, "start");
1962 	return error;
1963 }
1964 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1965 
__suspend_report_result(const char * function,void * fn,int ret)1966 void __suspend_report_result(const char *function, void *fn, int ret)
1967 {
1968 	if (ret)
1969 		pr_err("%s(): %pS returns %d\n", function, fn, ret);
1970 }
1971 EXPORT_SYMBOL_GPL(__suspend_report_result);
1972 
1973 /**
1974  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1975  * @subordinate: Device that needs to wait for @dev.
1976  * @dev: Device to wait for.
1977  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1978 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1979 {
1980 	dpm_wait(dev, subordinate->power.async_suspend);
1981 	return async_error;
1982 }
1983 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1984 
1985 /**
1986  * dpm_for_each_dev - device iterator.
1987  * @data: data for the callback.
1988  * @fn: function to be called for each device.
1989  *
1990  * Iterate over devices in dpm_list, and call @fn for each device,
1991  * passing it @data.
1992  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1993 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1994 {
1995 	struct device *dev;
1996 
1997 	if (!fn)
1998 		return;
1999 
2000 	device_pm_lock();
2001 	list_for_each_entry(dev, &dpm_list, power.entry)
2002 		fn(dev, data);
2003 	device_pm_unlock();
2004 }
2005 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2006 
pm_ops_is_empty(const struct dev_pm_ops * ops)2007 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2008 {
2009 	if (!ops)
2010 		return true;
2011 
2012 	return !ops->prepare &&
2013 	       !ops->suspend &&
2014 	       !ops->suspend_late &&
2015 	       !ops->suspend_noirq &&
2016 	       !ops->resume_noirq &&
2017 	       !ops->resume_early &&
2018 	       !ops->resume &&
2019 	       !ops->complete;
2020 }
2021 
device_pm_check_callbacks(struct device * dev)2022 void device_pm_check_callbacks(struct device *dev)
2023 {
2024 	unsigned long flags;
2025 
2026 	spin_lock_irqsave(&dev->power.lock, flags);
2027 	dev->power.no_pm_callbacks =
2028 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2029 		 !dev->bus->suspend && !dev->bus->resume)) &&
2030 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2031 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2032 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2033 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2034 		 !dev->driver->suspend && !dev->driver->resume));
2035 	spin_unlock_irqrestore(&dev->power.lock, flags);
2036 }
2037 
dev_pm_skip_suspend(struct device * dev)2038 bool dev_pm_skip_suspend(struct device *dev)
2039 {
2040 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2041 		pm_runtime_status_suspended(dev);
2042 }
2043