1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33
34 #include "base.h"
35 #include "power/power.h"
36
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
sysfs_deprecated_setup(char * arg)43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56
57 /**
58 * fwnode_link_add - Create a link between two fwnode_handles.
59 * @con: Consumer end of the link.
60 * @sup: Supplier end of the link.
61 *
62 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63 * represents the detail that the firmware lists @sup fwnode as supplying a
64 * resource to @con.
65 *
66 * The driver core will use the fwnode link to create a device link between the
67 * two device objects corresponding to @con and @sup when they are created. The
68 * driver core will automatically delete the fwnode link between @con and @sup
69 * after doing that.
70 *
71 * Attempts to create duplicate links between the same pair of fwnode handles
72 * are ignored and there is no reference counting.
73 */
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 struct fwnode_link *link;
77 int ret = 0;
78
79 mutex_lock(&fwnode_link_lock);
80
81 list_for_each_entry(link, &sup->consumers, s_hook)
82 if (link->consumer == con)
83 goto out;
84
85 link = kzalloc(sizeof(*link), GFP_KERNEL);
86 if (!link) {
87 ret = -ENOMEM;
88 goto out;
89 }
90
91 link->supplier = sup;
92 INIT_LIST_HEAD(&link->s_hook);
93 link->consumer = con;
94 INIT_LIST_HEAD(&link->c_hook);
95
96 list_add(&link->s_hook, &sup->consumers);
97 list_add(&link->c_hook, &con->suppliers);
98 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 con, sup);
100 out:
101 mutex_unlock(&fwnode_link_lock);
102
103 return ret;
104 }
105
106 /**
107 * __fwnode_link_del - Delete a link between two fwnode_handles.
108 * @link: the fwnode_link to be deleted
109 *
110 * The fwnode_link_lock needs to be held when this function is called.
111 */
__fwnode_link_del(struct fwnode_link * link)112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 link->consumer, link->supplier);
116 list_del(&link->s_hook);
117 list_del(&link->c_hook);
118 kfree(link);
119 }
120
121 /**
122 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123 * @fwnode: fwnode whose supplier links need to be deleted
124 *
125 * Deletes all supplier links connecting directly to @fwnode.
126 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 struct fwnode_link *link, *tmp;
130
131 mutex_lock(&fwnode_link_lock);
132 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 __fwnode_link_del(link);
134 mutex_unlock(&fwnode_link_lock);
135 }
136
137 /**
138 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139 * @fwnode: fwnode whose consumer links need to be deleted
140 *
141 * Deletes all consumer links connecting directly to @fwnode.
142 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 struct fwnode_link *link, *tmp;
146
147 mutex_lock(&fwnode_link_lock);
148 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 __fwnode_link_del(link);
150 mutex_unlock(&fwnode_link_lock);
151 }
152
153 /**
154 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155 * @fwnode: fwnode whose links needs to be deleted
156 *
157 * Deletes all links connecting directly to a fwnode.
158 */
fwnode_links_purge(struct fwnode_handle * fwnode)159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 fwnode_links_purge_suppliers(fwnode);
162 fwnode_links_purge_consumers(fwnode);
163 }
164
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 struct fwnode_handle *child;
168
169 /* Don't purge consumer links of an added child */
170 if (fwnode->dev)
171 return;
172
173 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 fwnode_links_purge_consumers(fwnode);
175
176 fwnode_for_each_available_child_node(fwnode, child)
177 fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184
device_links_write_lock(void)185 static inline void device_links_write_lock(void)
186 {
187 mutex_lock(&device_links_lock);
188 }
189
device_links_write_unlock(void)190 static inline void device_links_write_unlock(void)
191 {
192 mutex_unlock(&device_links_lock);
193 }
194
device_links_read_lock(void)195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 return srcu_read_lock(&device_links_srcu);
198 }
199
device_links_read_unlock(int idx)200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 srcu_read_unlock(&device_links_srcu, idx);
203 }
204
device_links_read_lock_held(void)205 int device_links_read_lock_held(void)
206 {
207 return srcu_read_lock_held(&device_links_srcu);
208 }
209
device_link_synchronize_removal(void)210 static void device_link_synchronize_removal(void)
211 {
212 synchronize_srcu(&device_links_srcu);
213 }
214
device_link_remove_from_lists(struct device_link * link)215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 list_del_rcu(&link->s_node);
218 list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222
device_links_write_lock(void)223 static inline void device_links_write_lock(void)
224 {
225 down_write(&device_links_lock);
226 }
227
device_links_write_unlock(void)228 static inline void device_links_write_unlock(void)
229 {
230 up_write(&device_links_lock);
231 }
232
device_links_read_lock(void)233 int device_links_read_lock(void)
234 {
235 down_read(&device_links_lock);
236 return 0;
237 }
238
device_links_read_unlock(int not_used)239 void device_links_read_unlock(int not_used)
240 {
241 up_read(&device_links_lock);
242 }
243
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)245 int device_links_read_lock_held(void)
246 {
247 return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250
device_link_synchronize_removal(void)251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254
device_link_remove_from_lists(struct device_link * link)255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 list_del(&link->s_node);
258 list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261
device_is_ancestor(struct device * dev,struct device * target)262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 while (target->parent) {
265 target = target->parent;
266 if (dev == target)
267 return true;
268 }
269 return false;
270 }
271
272 /**
273 * device_is_dependent - Check if one device depends on another one
274 * @dev: Device to check dependencies for.
275 * @target: Device to check against.
276 *
277 * Check if @target depends on @dev or any device dependent on it (its child or
278 * its consumer etc). Return 1 if that is the case or 0 otherwise.
279 */
device_is_dependent(struct device * dev,void * target)280 int device_is_dependent(struct device *dev, void *target)
281 {
282 struct device_link *link;
283 int ret;
284
285 /*
286 * The "ancestors" check is needed to catch the case when the target
287 * device has not been completely initialized yet and it is still
288 * missing from the list of children of its parent device.
289 */
290 if (dev == target || device_is_ancestor(dev, target))
291 return 1;
292
293 ret = device_for_each_child(dev, target, device_is_dependent);
294 if (ret)
295 return ret;
296
297 list_for_each_entry(link, &dev->links.consumers, s_node) {
298 if ((link->flags & ~DL_FLAG_INFERRED) ==
299 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 continue;
301
302 if (link->consumer == target)
303 return 1;
304
305 ret = device_is_dependent(link->consumer, target);
306 if (ret)
307 break;
308 }
309 return ret;
310 }
311
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)312 static void device_link_init_status(struct device_link *link,
313 struct device *consumer,
314 struct device *supplier)
315 {
316 switch (supplier->links.status) {
317 case DL_DEV_PROBING:
318 switch (consumer->links.status) {
319 case DL_DEV_PROBING:
320 /*
321 * A consumer driver can create a link to a supplier
322 * that has not completed its probing yet as long as it
323 * knows that the supplier is already functional (for
324 * example, it has just acquired some resources from the
325 * supplier).
326 */
327 link->status = DL_STATE_CONSUMER_PROBE;
328 break;
329 default:
330 link->status = DL_STATE_DORMANT;
331 break;
332 }
333 break;
334 case DL_DEV_DRIVER_BOUND:
335 switch (consumer->links.status) {
336 case DL_DEV_PROBING:
337 link->status = DL_STATE_CONSUMER_PROBE;
338 break;
339 case DL_DEV_DRIVER_BOUND:
340 link->status = DL_STATE_ACTIVE;
341 break;
342 default:
343 link->status = DL_STATE_AVAILABLE;
344 break;
345 }
346 break;
347 case DL_DEV_UNBINDING:
348 link->status = DL_STATE_SUPPLIER_UNBIND;
349 break;
350 default:
351 link->status = DL_STATE_DORMANT;
352 break;
353 }
354 }
355
device_reorder_to_tail(struct device * dev,void * not_used)356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 struct device_link *link;
359
360 /*
361 * Devices that have not been registered yet will be put to the ends
362 * of the lists during the registration, so skip them here.
363 */
364 if (device_is_registered(dev))
365 devices_kset_move_last(dev);
366
367 if (device_pm_initialized(dev))
368 device_pm_move_last(dev);
369
370 device_for_each_child(dev, NULL, device_reorder_to_tail);
371 list_for_each_entry(link, &dev->links.consumers, s_node) {
372 if ((link->flags & ~DL_FLAG_INFERRED) ==
373 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 continue;
375 device_reorder_to_tail(link->consumer, NULL);
376 }
377
378 return 0;
379 }
380
381 /**
382 * device_pm_move_to_tail - Move set of devices to the end of device lists
383 * @dev: Device to move
384 *
385 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386 *
387 * It moves the @dev along with all of its children and all of its consumers
388 * to the ends of the device_kset and dpm_list, recursively.
389 */
device_pm_move_to_tail(struct device * dev)390 void device_pm_move_to_tail(struct device *dev)
391 {
392 int idx;
393
394 idx = device_links_read_lock();
395 device_pm_lock();
396 device_reorder_to_tail(dev, NULL);
397 device_pm_unlock();
398 device_links_read_unlock(idx);
399 }
400
401 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
402
status_show(struct device * dev,struct device_attribute * attr,char * buf)403 static ssize_t status_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
405 {
406 const char *output;
407
408 switch (to_devlink(dev)->status) {
409 case DL_STATE_NONE:
410 output = "not tracked";
411 break;
412 case DL_STATE_DORMANT:
413 output = "dormant";
414 break;
415 case DL_STATE_AVAILABLE:
416 output = "available";
417 break;
418 case DL_STATE_CONSUMER_PROBE:
419 output = "consumer probing";
420 break;
421 case DL_STATE_ACTIVE:
422 output = "active";
423 break;
424 case DL_STATE_SUPPLIER_UNBIND:
425 output = "supplier unbinding";
426 break;
427 default:
428 output = "unknown";
429 break;
430 }
431
432 return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t auto_remove_on_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct device_link *link = to_devlink(dev);
440 const char *output;
441
442 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 output = "supplier unbind";
444 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 output = "consumer unbind";
446 else
447 output = "never";
448
449 return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)453 static ssize_t runtime_pm_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct device_link *link = to_devlink(dev);
457
458 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t sync_state_only_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct device_link *link = to_devlink(dev);
466
467 return sysfs_emit(buf, "%d\n",
468 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471
472 static struct attribute *devlink_attrs[] = {
473 &dev_attr_status.attr,
474 &dev_attr_auto_remove_on.attr,
475 &dev_attr_runtime_pm.attr,
476 &dev_attr_sync_state_only.attr,
477 NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480
device_link_release_fn(struct work_struct * work)481 static void device_link_release_fn(struct work_struct *work)
482 {
483 struct device_link *link = container_of(work, struct device_link, rm_work);
484
485 /* Ensure that all references to the link object have been dropped. */
486 device_link_synchronize_removal();
487
488 pm_runtime_release_supplier(link);
489 pm_request_idle(link->supplier);
490
491 put_device(link->consumer);
492 put_device(link->supplier);
493 kfree(link);
494 }
495
devlink_dev_release(struct device * dev)496 static void devlink_dev_release(struct device *dev)
497 {
498 struct device_link *link = to_devlink(dev);
499
500 INIT_WORK(&link->rm_work, device_link_release_fn);
501 /*
502 * It may take a while to complete this work because of the SRCU
503 * synchronization in device_link_release_fn() and if the consumer or
504 * supplier devices get deleted when it runs, so put it into the "long"
505 * workqueue.
506 */
507 queue_work(system_long_wq, &link->rm_work);
508 }
509
510 static struct class devlink_class = {
511 .name = "devlink",
512 .owner = THIS_MODULE,
513 .dev_groups = devlink_groups,
514 .dev_release = devlink_dev_release,
515 };
516
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)517 static int devlink_add_symlinks(struct device *dev,
518 struct class_interface *class_intf)
519 {
520 int ret;
521 size_t len;
522 struct device_link *link = to_devlink(dev);
523 struct device *sup = link->supplier;
524 struct device *con = link->consumer;
525 char *buf;
526
527 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
528 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
529 len += strlen(":");
530 len += strlen("supplier:") + 1;
531 buf = kzalloc(len, GFP_KERNEL);
532 if (!buf)
533 return -ENOMEM;
534
535 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
536 if (ret)
537 goto out;
538
539 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
540 if (ret)
541 goto err_con;
542
543 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
544 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
545 if (ret)
546 goto err_con_dev;
547
548 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
549 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
550 if (ret)
551 goto err_sup_dev;
552
553 goto out;
554
555 err_sup_dev:
556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 sysfs_remove_link(&sup->kobj, buf);
558 err_con_dev:
559 sysfs_remove_link(&link->link_dev.kobj, "consumer");
560 err_con:
561 sysfs_remove_link(&link->link_dev.kobj, "supplier");
562 out:
563 kfree(buf);
564 return ret;
565 }
566
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)567 static void devlink_remove_symlinks(struct device *dev,
568 struct class_interface *class_intf)
569 {
570 struct device_link *link = to_devlink(dev);
571 size_t len;
572 struct device *sup = link->supplier;
573 struct device *con = link->consumer;
574 char *buf;
575
576 sysfs_remove_link(&link->link_dev.kobj, "consumer");
577 sysfs_remove_link(&link->link_dev.kobj, "supplier");
578
579 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
580 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
581 len += strlen(":");
582 len += strlen("supplier:") + 1;
583 buf = kzalloc(len, GFP_KERNEL);
584 if (!buf) {
585 WARN(1, "Unable to properly free device link symlinks!\n");
586 return;
587 }
588
589 if (device_is_registered(con)) {
590 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
591 sysfs_remove_link(&con->kobj, buf);
592 }
593 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
594 sysfs_remove_link(&sup->kobj, buf);
595 kfree(buf);
596 }
597
598 static struct class_interface devlink_class_intf = {
599 .class = &devlink_class,
600 .add_dev = devlink_add_symlinks,
601 .remove_dev = devlink_remove_symlinks,
602 };
603
devlink_class_init(void)604 static int __init devlink_class_init(void)
605 {
606 int ret;
607
608 ret = class_register(&devlink_class);
609 if (ret)
610 return ret;
611
612 ret = class_interface_register(&devlink_class_intf);
613 if (ret)
614 class_unregister(&devlink_class);
615
616 return ret;
617 }
618 postcore_initcall(devlink_class_init);
619
620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
621 DL_FLAG_AUTOREMOVE_SUPPLIER | \
622 DL_FLAG_AUTOPROBE_CONSUMER | \
623 DL_FLAG_SYNC_STATE_ONLY | \
624 DL_FLAG_INFERRED)
625
626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
627 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
628
629 /**
630 * device_link_add - Create a link between two devices.
631 * @consumer: Consumer end of the link.
632 * @supplier: Supplier end of the link.
633 * @flags: Link flags.
634 *
635 * The caller is responsible for the proper synchronization of the link creation
636 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
637 * runtime PM framework to take the link into account. Second, if the
638 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
639 * be forced into the active meta state and reference-counted upon the creation
640 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
641 * ignored.
642 *
643 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
644 * expected to release the link returned by it directly with the help of either
645 * device_link_del() or device_link_remove().
646 *
647 * If that flag is not set, however, the caller of this function is handing the
648 * management of the link over to the driver core entirely and its return value
649 * can only be used to check whether or not the link is present. In that case,
650 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
651 * flags can be used to indicate to the driver core when the link can be safely
652 * deleted. Namely, setting one of them in @flags indicates to the driver core
653 * that the link is not going to be used (by the given caller of this function)
654 * after unbinding the consumer or supplier driver, respectively, from its
655 * device, so the link can be deleted at that point. If none of them is set,
656 * the link will be maintained until one of the devices pointed to by it (either
657 * the consumer or the supplier) is unregistered.
658 *
659 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
660 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
661 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
662 * be used to request the driver core to automatically probe for a consumer
663 * driver after successfully binding a driver to the supplier device.
664 *
665 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
666 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
667 * the same time is invalid and will cause NULL to be returned upfront.
668 * However, if a device link between the given @consumer and @supplier pair
669 * exists already when this function is called for them, the existing link will
670 * be returned regardless of its current type and status (the link's flags may
671 * be modified then). The caller of this function is then expected to treat
672 * the link as though it has just been created, so (in particular) if
673 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
674 * explicitly when not needed any more (as stated above).
675 *
676 * A side effect of the link creation is re-ordering of dpm_list and the
677 * devices_kset list by moving the consumer device and all devices depending
678 * on it to the ends of these lists (that does not happen to devices that have
679 * not been registered when this function is called).
680 *
681 * The supplier device is required to be registered when this function is called
682 * and NULL will be returned if that is not the case. The consumer device need
683 * not be registered, however.
684 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)685 struct device_link *device_link_add(struct device *consumer,
686 struct device *supplier, u32 flags)
687 {
688 struct device_link *link;
689
690 if (!consumer || !supplier || consumer == supplier ||
691 flags & ~DL_ADD_VALID_FLAGS ||
692 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
693 (flags & DL_FLAG_SYNC_STATE_ONLY &&
694 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
695 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
696 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
697 DL_FLAG_AUTOREMOVE_SUPPLIER)))
698 return NULL;
699
700 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
701 if (pm_runtime_get_sync(supplier) < 0) {
702 pm_runtime_put_noidle(supplier);
703 return NULL;
704 }
705 }
706
707 if (!(flags & DL_FLAG_STATELESS))
708 flags |= DL_FLAG_MANAGED;
709
710 device_links_write_lock();
711 device_pm_lock();
712
713 /*
714 * If the supplier has not been fully registered yet or there is a
715 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
716 * the supplier already in the graph, return NULL. If the link is a
717 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
718 * because it only affects sync_state() callbacks.
719 */
720 if (!device_pm_initialized(supplier)
721 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
722 device_is_dependent(consumer, supplier))) {
723 link = NULL;
724 goto out;
725 }
726
727 /*
728 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
729 * So, only create it if the consumer hasn't probed yet.
730 */
731 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
732 consumer->links.status != DL_DEV_NO_DRIVER &&
733 consumer->links.status != DL_DEV_PROBING) {
734 link = NULL;
735 goto out;
736 }
737
738 /*
739 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
740 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
741 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
742 */
743 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
744 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
745
746 list_for_each_entry(link, &supplier->links.consumers, s_node) {
747 if (link->consumer != consumer)
748 continue;
749
750 if (link->flags & DL_FLAG_INFERRED &&
751 !(flags & DL_FLAG_INFERRED))
752 link->flags &= ~DL_FLAG_INFERRED;
753
754 if (flags & DL_FLAG_PM_RUNTIME) {
755 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
756 pm_runtime_new_link(consumer);
757 link->flags |= DL_FLAG_PM_RUNTIME;
758 }
759 if (flags & DL_FLAG_RPM_ACTIVE)
760 refcount_inc(&link->rpm_active);
761 }
762
763 if (flags & DL_FLAG_STATELESS) {
764 kref_get(&link->kref);
765 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
766 !(link->flags & DL_FLAG_STATELESS)) {
767 link->flags |= DL_FLAG_STATELESS;
768 goto reorder;
769 } else {
770 link->flags |= DL_FLAG_STATELESS;
771 goto out;
772 }
773 }
774
775 /*
776 * If the life time of the link following from the new flags is
777 * longer than indicated by the flags of the existing link,
778 * update the existing link to stay around longer.
779 */
780 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
781 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
782 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
783 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
784 }
785 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
786 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
787 DL_FLAG_AUTOREMOVE_SUPPLIER);
788 }
789 if (!(link->flags & DL_FLAG_MANAGED)) {
790 kref_get(&link->kref);
791 link->flags |= DL_FLAG_MANAGED;
792 device_link_init_status(link, consumer, supplier);
793 }
794 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
795 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
796 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
797 goto reorder;
798 }
799
800 goto out;
801 }
802
803 link = kzalloc(sizeof(*link), GFP_KERNEL);
804 if (!link)
805 goto out;
806
807 refcount_set(&link->rpm_active, 1);
808
809 get_device(supplier);
810 link->supplier = supplier;
811 INIT_LIST_HEAD(&link->s_node);
812 get_device(consumer);
813 link->consumer = consumer;
814 INIT_LIST_HEAD(&link->c_node);
815 link->flags = flags;
816 kref_init(&link->kref);
817
818 link->link_dev.class = &devlink_class;
819 device_set_pm_not_required(&link->link_dev);
820 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
821 dev_bus_name(supplier), dev_name(supplier),
822 dev_bus_name(consumer), dev_name(consumer));
823 if (device_register(&link->link_dev)) {
824 put_device(&link->link_dev);
825 link = NULL;
826 goto out;
827 }
828
829 if (flags & DL_FLAG_PM_RUNTIME) {
830 if (flags & DL_FLAG_RPM_ACTIVE)
831 refcount_inc(&link->rpm_active);
832
833 pm_runtime_new_link(consumer);
834 }
835
836 /* Determine the initial link state. */
837 if (flags & DL_FLAG_STATELESS)
838 link->status = DL_STATE_NONE;
839 else
840 device_link_init_status(link, consumer, supplier);
841
842 /*
843 * Some callers expect the link creation during consumer driver probe to
844 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
845 */
846 if (link->status == DL_STATE_CONSUMER_PROBE &&
847 flags & DL_FLAG_PM_RUNTIME)
848 pm_runtime_resume(supplier);
849
850 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
851 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
852
853 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
854 dev_dbg(consumer,
855 "Linked as a sync state only consumer to %s\n",
856 dev_name(supplier));
857 goto out;
858 }
859
860 reorder:
861 /*
862 * Move the consumer and all of the devices depending on it to the end
863 * of dpm_list and the devices_kset list.
864 *
865 * It is necessary to hold dpm_list locked throughout all that or else
866 * we may end up suspending with a wrong ordering of it.
867 */
868 device_reorder_to_tail(consumer, NULL);
869
870 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
871
872 out:
873 device_pm_unlock();
874 device_links_write_unlock();
875
876 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
877 pm_runtime_put(supplier);
878
879 return link;
880 }
881 EXPORT_SYMBOL_GPL(device_link_add);
882
__device_link_del(struct kref * kref)883 static void __device_link_del(struct kref *kref)
884 {
885 struct device_link *link = container_of(kref, struct device_link, kref);
886
887 dev_dbg(link->consumer, "Dropping the link to %s\n",
888 dev_name(link->supplier));
889
890 pm_runtime_drop_link(link);
891
892 device_link_remove_from_lists(link);
893 device_unregister(&link->link_dev);
894 }
895
device_link_put_kref(struct device_link * link)896 static void device_link_put_kref(struct device_link *link)
897 {
898 if (link->flags & DL_FLAG_STATELESS)
899 kref_put(&link->kref, __device_link_del);
900 else if (!device_is_registered(link->consumer))
901 __device_link_del(&link->kref);
902 else
903 WARN(1, "Unable to drop a managed device link reference\n");
904 }
905
906 /**
907 * device_link_del - Delete a stateless link between two devices.
908 * @link: Device link to delete.
909 *
910 * The caller must ensure proper synchronization of this function with runtime
911 * PM. If the link was added multiple times, it needs to be deleted as often.
912 * Care is required for hotplugged devices: Their links are purged on removal
913 * and calling device_link_del() is then no longer allowed.
914 */
device_link_del(struct device_link * link)915 void device_link_del(struct device_link *link)
916 {
917 device_links_write_lock();
918 device_link_put_kref(link);
919 device_links_write_unlock();
920 }
921 EXPORT_SYMBOL_GPL(device_link_del);
922
923 /**
924 * device_link_remove - Delete a stateless link between two devices.
925 * @consumer: Consumer end of the link.
926 * @supplier: Supplier end of the link.
927 *
928 * The caller must ensure proper synchronization of this function with runtime
929 * PM.
930 */
device_link_remove(void * consumer,struct device * supplier)931 void device_link_remove(void *consumer, struct device *supplier)
932 {
933 struct device_link *link;
934
935 if (WARN_ON(consumer == supplier))
936 return;
937
938 device_links_write_lock();
939
940 list_for_each_entry(link, &supplier->links.consumers, s_node) {
941 if (link->consumer == consumer) {
942 device_link_put_kref(link);
943 break;
944 }
945 }
946
947 device_links_write_unlock();
948 }
949 EXPORT_SYMBOL_GPL(device_link_remove);
950
device_links_missing_supplier(struct device * dev)951 static void device_links_missing_supplier(struct device *dev)
952 {
953 struct device_link *link;
954
955 list_for_each_entry(link, &dev->links.suppliers, c_node) {
956 if (link->status != DL_STATE_CONSUMER_PROBE)
957 continue;
958
959 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
960 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
961 } else {
962 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
963 WRITE_ONCE(link->status, DL_STATE_DORMANT);
964 }
965 }
966 }
967
968 /**
969 * device_links_check_suppliers - Check presence of supplier drivers.
970 * @dev: Consumer device.
971 *
972 * Check links from this device to any suppliers. Walk the list of the device's
973 * links to suppliers and see if all of them are available. If not, simply
974 * return -EPROBE_DEFER.
975 *
976 * We need to guarantee that the supplier will not go away after the check has
977 * been positive here. It only can go away in __device_release_driver() and
978 * that function checks the device's links to consumers. This means we need to
979 * mark the link as "consumer probe in progress" to make the supplier removal
980 * wait for us to complete (or bad things may happen).
981 *
982 * Links without the DL_FLAG_MANAGED flag set are ignored.
983 */
device_links_check_suppliers(struct device * dev)984 int device_links_check_suppliers(struct device *dev)
985 {
986 struct device_link *link;
987 int ret = 0;
988 struct fwnode_handle *sup_fw;
989
990 /*
991 * Device waiting for supplier to become available is not allowed to
992 * probe.
993 */
994 mutex_lock(&fwnode_link_lock);
995 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
996 !fw_devlink_is_permissive()) {
997 sup_fw = list_first_entry(&dev->fwnode->suppliers,
998 struct fwnode_link,
999 c_hook)->supplier;
1000 dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1001 sup_fw);
1002 mutex_unlock(&fwnode_link_lock);
1003 return -EPROBE_DEFER;
1004 }
1005 mutex_unlock(&fwnode_link_lock);
1006
1007 device_links_write_lock();
1008
1009 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1010 if (!(link->flags & DL_FLAG_MANAGED))
1011 continue;
1012
1013 if (link->status != DL_STATE_AVAILABLE &&
1014 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1015 device_links_missing_supplier(dev);
1016 dev_err_probe(dev, -EPROBE_DEFER,
1017 "supplier %s not ready\n",
1018 dev_name(link->supplier));
1019 ret = -EPROBE_DEFER;
1020 break;
1021 }
1022 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1023 }
1024 dev->links.status = DL_DEV_PROBING;
1025
1026 device_links_write_unlock();
1027 return ret;
1028 }
1029
1030 /**
1031 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1032 * @dev: Device to call sync_state() on
1033 * @list: List head to queue the @dev on
1034 *
1035 * Queues a device for a sync_state() callback when the device links write lock
1036 * isn't held. This allows the sync_state() execution flow to use device links
1037 * APIs. The caller must ensure this function is called with
1038 * device_links_write_lock() held.
1039 *
1040 * This function does a get_device() to make sure the device is not freed while
1041 * on this list.
1042 *
1043 * So the caller must also ensure that device_links_flush_sync_list() is called
1044 * as soon as the caller releases device_links_write_lock(). This is necessary
1045 * to make sure the sync_state() is called in a timely fashion and the
1046 * put_device() is called on this device.
1047 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1048 static void __device_links_queue_sync_state(struct device *dev,
1049 struct list_head *list)
1050 {
1051 struct device_link *link;
1052
1053 if (!dev_has_sync_state(dev))
1054 return;
1055 if (dev->state_synced)
1056 return;
1057
1058 list_for_each_entry(link, &dev->links.consumers, s_node) {
1059 if (!(link->flags & DL_FLAG_MANAGED))
1060 continue;
1061 if (link->status != DL_STATE_ACTIVE)
1062 return;
1063 }
1064
1065 /*
1066 * Set the flag here to avoid adding the same device to a list more
1067 * than once. This can happen if new consumers get added to the device
1068 * and probed before the list is flushed.
1069 */
1070 dev->state_synced = true;
1071
1072 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1073 return;
1074
1075 get_device(dev);
1076 list_add_tail(&dev->links.defer_sync, list);
1077 }
1078
1079 /**
1080 * device_links_flush_sync_list - Call sync_state() on a list of devices
1081 * @list: List of devices to call sync_state() on
1082 * @dont_lock_dev: Device for which lock is already held by the caller
1083 *
1084 * Calls sync_state() on all the devices that have been queued for it. This
1085 * function is used in conjunction with __device_links_queue_sync_state(). The
1086 * @dont_lock_dev parameter is useful when this function is called from a
1087 * context where a device lock is already held.
1088 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1089 static void device_links_flush_sync_list(struct list_head *list,
1090 struct device *dont_lock_dev)
1091 {
1092 struct device *dev, *tmp;
1093
1094 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1095 list_del_init(&dev->links.defer_sync);
1096
1097 if (dev != dont_lock_dev)
1098 device_lock(dev);
1099
1100 if (dev->bus->sync_state)
1101 dev->bus->sync_state(dev);
1102 else if (dev->driver && dev->driver->sync_state)
1103 dev->driver->sync_state(dev);
1104
1105 if (dev != dont_lock_dev)
1106 device_unlock(dev);
1107
1108 put_device(dev);
1109 }
1110 }
1111
device_links_supplier_sync_state_pause(void)1112 void device_links_supplier_sync_state_pause(void)
1113 {
1114 device_links_write_lock();
1115 defer_sync_state_count++;
1116 device_links_write_unlock();
1117 }
1118
device_links_supplier_sync_state_resume(void)1119 void device_links_supplier_sync_state_resume(void)
1120 {
1121 struct device *dev, *tmp;
1122 LIST_HEAD(sync_list);
1123
1124 device_links_write_lock();
1125 if (!defer_sync_state_count) {
1126 WARN(true, "Unmatched sync_state pause/resume!");
1127 goto out;
1128 }
1129 defer_sync_state_count--;
1130 if (defer_sync_state_count)
1131 goto out;
1132
1133 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1134 /*
1135 * Delete from deferred_sync list before queuing it to
1136 * sync_list because defer_sync is used for both lists.
1137 */
1138 list_del_init(&dev->links.defer_sync);
1139 __device_links_queue_sync_state(dev, &sync_list);
1140 }
1141 out:
1142 device_links_write_unlock();
1143
1144 device_links_flush_sync_list(&sync_list, NULL);
1145 }
1146
sync_state_resume_initcall(void)1147 static int sync_state_resume_initcall(void)
1148 {
1149 device_links_supplier_sync_state_resume();
1150 return 0;
1151 }
1152 late_initcall(sync_state_resume_initcall);
1153
__device_links_supplier_defer_sync(struct device * sup)1154 static void __device_links_supplier_defer_sync(struct device *sup)
1155 {
1156 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1157 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1158 }
1159
device_link_drop_managed(struct device_link * link)1160 static void device_link_drop_managed(struct device_link *link)
1161 {
1162 link->flags &= ~DL_FLAG_MANAGED;
1163 WRITE_ONCE(link->status, DL_STATE_NONE);
1164 kref_put(&link->kref, __device_link_del);
1165 }
1166
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1167 static ssize_t waiting_for_supplier_show(struct device *dev,
1168 struct device_attribute *attr,
1169 char *buf)
1170 {
1171 bool val;
1172
1173 device_lock(dev);
1174 val = !list_empty(&dev->fwnode->suppliers);
1175 device_unlock(dev);
1176 return sysfs_emit(buf, "%u\n", val);
1177 }
1178 static DEVICE_ATTR_RO(waiting_for_supplier);
1179
1180 /**
1181 * device_links_force_bind - Prepares device to be force bound
1182 * @dev: Consumer device.
1183 *
1184 * device_bind_driver() force binds a device to a driver without calling any
1185 * driver probe functions. So the consumer really isn't going to wait for any
1186 * supplier before it's bound to the driver. We still want the device link
1187 * states to be sensible when this happens.
1188 *
1189 * In preparation for device_bind_driver(), this function goes through each
1190 * supplier device links and checks if the supplier is bound. If it is, then
1191 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1192 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1193 */
device_links_force_bind(struct device * dev)1194 void device_links_force_bind(struct device *dev)
1195 {
1196 struct device_link *link, *ln;
1197
1198 device_links_write_lock();
1199
1200 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1201 if (!(link->flags & DL_FLAG_MANAGED))
1202 continue;
1203
1204 if (link->status != DL_STATE_AVAILABLE) {
1205 device_link_drop_managed(link);
1206 continue;
1207 }
1208 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1209 }
1210 dev->links.status = DL_DEV_PROBING;
1211
1212 device_links_write_unlock();
1213 }
1214
1215 /**
1216 * device_links_driver_bound - Update device links after probing its driver.
1217 * @dev: Device to update the links for.
1218 *
1219 * The probe has been successful, so update links from this device to any
1220 * consumers by changing their status to "available".
1221 *
1222 * Also change the status of @dev's links to suppliers to "active".
1223 *
1224 * Links without the DL_FLAG_MANAGED flag set are ignored.
1225 */
device_links_driver_bound(struct device * dev)1226 void device_links_driver_bound(struct device *dev)
1227 {
1228 struct device_link *link, *ln;
1229 LIST_HEAD(sync_list);
1230
1231 /*
1232 * If a device binds successfully, it's expected to have created all
1233 * the device links it needs to or make new device links as it needs
1234 * them. So, fw_devlink no longer needs to create device links to any
1235 * of the device's suppliers.
1236 *
1237 * Also, if a child firmware node of this bound device is not added as
1238 * a device by now, assume it is never going to be added and make sure
1239 * other devices don't defer probe indefinitely by waiting for such a
1240 * child device.
1241 */
1242 if (dev->fwnode && dev->fwnode->dev == dev) {
1243 struct fwnode_handle *child;
1244 fwnode_links_purge_suppliers(dev->fwnode);
1245 fwnode_for_each_available_child_node(dev->fwnode, child)
1246 fw_devlink_purge_absent_suppliers(child);
1247 }
1248 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1249
1250 device_links_write_lock();
1251
1252 list_for_each_entry(link, &dev->links.consumers, s_node) {
1253 if (!(link->flags & DL_FLAG_MANAGED))
1254 continue;
1255
1256 /*
1257 * Links created during consumer probe may be in the "consumer
1258 * probe" state to start with if the supplier is still probing
1259 * when they are created and they may become "active" if the
1260 * consumer probe returns first. Skip them here.
1261 */
1262 if (link->status == DL_STATE_CONSUMER_PROBE ||
1263 link->status == DL_STATE_ACTIVE)
1264 continue;
1265
1266 WARN_ON(link->status != DL_STATE_DORMANT);
1267 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1268
1269 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1270 driver_deferred_probe_add(link->consumer);
1271 }
1272
1273 if (defer_sync_state_count)
1274 __device_links_supplier_defer_sync(dev);
1275 else
1276 __device_links_queue_sync_state(dev, &sync_list);
1277
1278 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1279 struct device *supplier;
1280
1281 if (!(link->flags & DL_FLAG_MANAGED))
1282 continue;
1283
1284 supplier = link->supplier;
1285 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1286 /*
1287 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1288 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1289 * save to drop the managed link completely.
1290 */
1291 device_link_drop_managed(link);
1292 } else {
1293 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1294 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1295 }
1296
1297 /*
1298 * This needs to be done even for the deleted
1299 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1300 * device link that was preventing the supplier from getting a
1301 * sync_state() call.
1302 */
1303 if (defer_sync_state_count)
1304 __device_links_supplier_defer_sync(supplier);
1305 else
1306 __device_links_queue_sync_state(supplier, &sync_list);
1307 }
1308
1309 dev->links.status = DL_DEV_DRIVER_BOUND;
1310
1311 device_links_write_unlock();
1312
1313 device_links_flush_sync_list(&sync_list, dev);
1314 }
1315
1316 /**
1317 * __device_links_no_driver - Update links of a device without a driver.
1318 * @dev: Device without a drvier.
1319 *
1320 * Delete all non-persistent links from this device to any suppliers.
1321 *
1322 * Persistent links stay around, but their status is changed to "available",
1323 * unless they already are in the "supplier unbind in progress" state in which
1324 * case they need not be updated.
1325 *
1326 * Links without the DL_FLAG_MANAGED flag set are ignored.
1327 */
__device_links_no_driver(struct device * dev)1328 static void __device_links_no_driver(struct device *dev)
1329 {
1330 struct device_link *link, *ln;
1331
1332 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1333 if (!(link->flags & DL_FLAG_MANAGED))
1334 continue;
1335
1336 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1337 device_link_drop_managed(link);
1338 continue;
1339 }
1340
1341 if (link->status != DL_STATE_CONSUMER_PROBE &&
1342 link->status != DL_STATE_ACTIVE)
1343 continue;
1344
1345 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 } else {
1348 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1349 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1350 }
1351 }
1352
1353 dev->links.status = DL_DEV_NO_DRIVER;
1354 }
1355
1356 /**
1357 * device_links_no_driver - Update links after failing driver probe.
1358 * @dev: Device whose driver has just failed to probe.
1359 *
1360 * Clean up leftover links to consumers for @dev and invoke
1361 * %__device_links_no_driver() to update links to suppliers for it as
1362 * appropriate.
1363 *
1364 * Links without the DL_FLAG_MANAGED flag set are ignored.
1365 */
device_links_no_driver(struct device * dev)1366 void device_links_no_driver(struct device *dev)
1367 {
1368 struct device_link *link;
1369
1370 device_links_write_lock();
1371
1372 list_for_each_entry(link, &dev->links.consumers, s_node) {
1373 if (!(link->flags & DL_FLAG_MANAGED))
1374 continue;
1375
1376 /*
1377 * The probe has failed, so if the status of the link is
1378 * "consumer probe" or "active", it must have been added by
1379 * a probing consumer while this device was still probing.
1380 * Change its state to "dormant", as it represents a valid
1381 * relationship, but it is not functionally meaningful.
1382 */
1383 if (link->status == DL_STATE_CONSUMER_PROBE ||
1384 link->status == DL_STATE_ACTIVE)
1385 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1386 }
1387
1388 __device_links_no_driver(dev);
1389
1390 device_links_write_unlock();
1391 }
1392
1393 /**
1394 * device_links_driver_cleanup - Update links after driver removal.
1395 * @dev: Device whose driver has just gone away.
1396 *
1397 * Update links to consumers for @dev by changing their status to "dormant" and
1398 * invoke %__device_links_no_driver() to update links to suppliers for it as
1399 * appropriate.
1400 *
1401 * Links without the DL_FLAG_MANAGED flag set are ignored.
1402 */
device_links_driver_cleanup(struct device * dev)1403 void device_links_driver_cleanup(struct device *dev)
1404 {
1405 struct device_link *link, *ln;
1406
1407 device_links_write_lock();
1408
1409 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1410 if (!(link->flags & DL_FLAG_MANAGED))
1411 continue;
1412
1413 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1414 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1415
1416 /*
1417 * autoremove the links between this @dev and its consumer
1418 * devices that are not active, i.e. where the link state
1419 * has moved to DL_STATE_SUPPLIER_UNBIND.
1420 */
1421 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1422 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1423 device_link_drop_managed(link);
1424
1425 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1426 }
1427
1428 list_del_init(&dev->links.defer_sync);
1429 __device_links_no_driver(dev);
1430
1431 device_links_write_unlock();
1432 }
1433
1434 /**
1435 * device_links_busy - Check if there are any busy links to consumers.
1436 * @dev: Device to check.
1437 *
1438 * Check each consumer of the device and return 'true' if its link's status
1439 * is one of "consumer probe" or "active" (meaning that the given consumer is
1440 * probing right now or its driver is present). Otherwise, change the link
1441 * state to "supplier unbind" to prevent the consumer from being probed
1442 * successfully going forward.
1443 *
1444 * Return 'false' if there are no probing or active consumers.
1445 *
1446 * Links without the DL_FLAG_MANAGED flag set are ignored.
1447 */
device_links_busy(struct device * dev)1448 bool device_links_busy(struct device *dev)
1449 {
1450 struct device_link *link;
1451 bool ret = false;
1452
1453 device_links_write_lock();
1454
1455 list_for_each_entry(link, &dev->links.consumers, s_node) {
1456 if (!(link->flags & DL_FLAG_MANAGED))
1457 continue;
1458
1459 if (link->status == DL_STATE_CONSUMER_PROBE
1460 || link->status == DL_STATE_ACTIVE) {
1461 ret = true;
1462 break;
1463 }
1464 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1465 }
1466
1467 dev->links.status = DL_DEV_UNBINDING;
1468
1469 device_links_write_unlock();
1470 return ret;
1471 }
1472
1473 /**
1474 * device_links_unbind_consumers - Force unbind consumers of the given device.
1475 * @dev: Device to unbind the consumers of.
1476 *
1477 * Walk the list of links to consumers for @dev and if any of them is in the
1478 * "consumer probe" state, wait for all device probes in progress to complete
1479 * and start over.
1480 *
1481 * If that's not the case, change the status of the link to "supplier unbind"
1482 * and check if the link was in the "active" state. If so, force the consumer
1483 * driver to unbind and start over (the consumer will not re-probe as we have
1484 * changed the state of the link already).
1485 *
1486 * Links without the DL_FLAG_MANAGED flag set are ignored.
1487 */
device_links_unbind_consumers(struct device * dev)1488 void device_links_unbind_consumers(struct device *dev)
1489 {
1490 struct device_link *link;
1491
1492 start:
1493 device_links_write_lock();
1494
1495 list_for_each_entry(link, &dev->links.consumers, s_node) {
1496 enum device_link_state status;
1497
1498 if (!(link->flags & DL_FLAG_MANAGED) ||
1499 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1500 continue;
1501
1502 status = link->status;
1503 if (status == DL_STATE_CONSUMER_PROBE) {
1504 device_links_write_unlock();
1505
1506 wait_for_device_probe();
1507 goto start;
1508 }
1509 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510 if (status == DL_STATE_ACTIVE) {
1511 struct device *consumer = link->consumer;
1512
1513 get_device(consumer);
1514
1515 device_links_write_unlock();
1516
1517 device_release_driver_internal(consumer, NULL,
1518 consumer->parent);
1519 put_device(consumer);
1520 goto start;
1521 }
1522 }
1523
1524 device_links_write_unlock();
1525 }
1526
1527 /**
1528 * device_links_purge - Delete existing links to other devices.
1529 * @dev: Target device.
1530 */
device_links_purge(struct device * dev)1531 static void device_links_purge(struct device *dev)
1532 {
1533 struct device_link *link, *ln;
1534
1535 if (dev->class == &devlink_class)
1536 return;
1537
1538 /*
1539 * Delete all of the remaining links from this device to any other
1540 * devices (either consumers or suppliers).
1541 */
1542 device_links_write_lock();
1543
1544 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1545 WARN_ON(link->status == DL_STATE_ACTIVE);
1546 __device_link_del(&link->kref);
1547 }
1548
1549 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1550 WARN_ON(link->status != DL_STATE_DORMANT &&
1551 link->status != DL_STATE_NONE);
1552 __device_link_del(&link->kref);
1553 }
1554
1555 device_links_write_unlock();
1556 }
1557
1558 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1559 DL_FLAG_SYNC_STATE_ONLY)
1560 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1561 DL_FLAG_AUTOPROBE_CONSUMER)
1562 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1563 DL_FLAG_PM_RUNTIME)
1564
1565 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1566 static int __init fw_devlink_setup(char *arg)
1567 {
1568 if (!arg)
1569 return -EINVAL;
1570
1571 if (strcmp(arg, "off") == 0) {
1572 fw_devlink_flags = 0;
1573 } else if (strcmp(arg, "permissive") == 0) {
1574 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1575 } else if (strcmp(arg, "on") == 0) {
1576 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1577 } else if (strcmp(arg, "rpm") == 0) {
1578 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1579 }
1580 return 0;
1581 }
1582 early_param("fw_devlink", fw_devlink_setup);
1583
1584 static bool fw_devlink_strict = true;
fw_devlink_strict_setup(char * arg)1585 static int __init fw_devlink_strict_setup(char *arg)
1586 {
1587 return strtobool(arg, &fw_devlink_strict);
1588 }
1589 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1590
fw_devlink_get_flags(void)1591 u32 fw_devlink_get_flags(void)
1592 {
1593 return fw_devlink_flags;
1594 }
1595
fw_devlink_is_permissive(void)1596 static bool fw_devlink_is_permissive(void)
1597 {
1598 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1599 }
1600
fw_devlink_is_strict(void)1601 bool fw_devlink_is_strict(void)
1602 {
1603 return fw_devlink_strict && !fw_devlink_is_permissive();
1604 }
1605
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1606 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1607 {
1608 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1609 return;
1610
1611 fwnode_call_int_op(fwnode, add_links);
1612 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1613 }
1614
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1615 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1616 {
1617 struct fwnode_handle *child = NULL;
1618
1619 fw_devlink_parse_fwnode(fwnode);
1620
1621 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1622 fw_devlink_parse_fwtree(child);
1623 }
1624
fw_devlink_relax_link(struct device_link * link)1625 static void fw_devlink_relax_link(struct device_link *link)
1626 {
1627 if (!(link->flags & DL_FLAG_INFERRED))
1628 return;
1629
1630 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1631 return;
1632
1633 pm_runtime_drop_link(link);
1634 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1635 dev_dbg(link->consumer, "Relaxing link with %s\n",
1636 dev_name(link->supplier));
1637 }
1638
fw_devlink_no_driver(struct device * dev,void * data)1639 static int fw_devlink_no_driver(struct device *dev, void *data)
1640 {
1641 struct device_link *link = to_devlink(dev);
1642
1643 if (!link->supplier->can_match)
1644 fw_devlink_relax_link(link);
1645
1646 return 0;
1647 }
1648
fw_devlink_drivers_done(void)1649 void fw_devlink_drivers_done(void)
1650 {
1651 fw_devlink_drv_reg_done = true;
1652 device_links_write_lock();
1653 class_for_each_device(&devlink_class, NULL, NULL,
1654 fw_devlink_no_driver);
1655 device_links_write_unlock();
1656 }
1657
fw_devlink_unblock_consumers(struct device * dev)1658 static void fw_devlink_unblock_consumers(struct device *dev)
1659 {
1660 struct device_link *link;
1661
1662 if (!fw_devlink_flags || fw_devlink_is_permissive())
1663 return;
1664
1665 device_links_write_lock();
1666 list_for_each_entry(link, &dev->links.consumers, s_node)
1667 fw_devlink_relax_link(link);
1668 device_links_write_unlock();
1669 }
1670
1671 /**
1672 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1673 * @con: Device to check dependencies for.
1674 * @sup: Device to check against.
1675 *
1676 * Check if @sup depends on @con or any device dependent on it (its child or
1677 * its consumer etc). When such a cyclic dependency is found, convert all
1678 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1679 * This is the equivalent of doing fw_devlink=permissive just between the
1680 * devices in the cycle. We need to do this because, at this point, fw_devlink
1681 * can't tell which of these dependencies is not a real dependency.
1682 *
1683 * Return 1 if a cycle is found. Otherwise, return 0.
1684 */
fw_devlink_relax_cycle(struct device * con,void * sup)1685 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1686 {
1687 struct device_link *link;
1688 int ret;
1689
1690 if (con == sup)
1691 return 1;
1692
1693 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1694 if (ret)
1695 return ret;
1696
1697 list_for_each_entry(link, &con->links.consumers, s_node) {
1698 if ((link->flags & ~DL_FLAG_INFERRED) ==
1699 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1700 continue;
1701
1702 if (!fw_devlink_relax_cycle(link->consumer, sup))
1703 continue;
1704
1705 ret = 1;
1706
1707 fw_devlink_relax_link(link);
1708 }
1709 return ret;
1710 }
1711
1712 /**
1713 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1714 * @con: consumer device for the device link
1715 * @sup_handle: fwnode handle of supplier
1716 * @flags: devlink flags
1717 *
1718 * This function will try to create a device link between the consumer device
1719 * @con and the supplier device represented by @sup_handle.
1720 *
1721 * The supplier has to be provided as a fwnode because incorrect cycles in
1722 * fwnode links can sometimes cause the supplier device to never be created.
1723 * This function detects such cases and returns an error if it cannot create a
1724 * device link from the consumer to a missing supplier.
1725 *
1726 * Returns,
1727 * 0 on successfully creating a device link
1728 * -EINVAL if the device link cannot be created as expected
1729 * -EAGAIN if the device link cannot be created right now, but it may be
1730 * possible to do that in the future
1731 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,u32 flags)1732 static int fw_devlink_create_devlink(struct device *con,
1733 struct fwnode_handle *sup_handle, u32 flags)
1734 {
1735 struct device *sup_dev;
1736 int ret = 0;
1737
1738 /*
1739 * In some cases, a device P might also be a supplier to its child node
1740 * C. However, this would defer the probe of C until the probe of P
1741 * completes successfully. This is perfectly fine in the device driver
1742 * model. device_add() doesn't guarantee probe completion of the device
1743 * by the time it returns.
1744 *
1745 * However, there are a few drivers that assume C will finish probing
1746 * as soon as it's added and before P finishes probing. So, we provide
1747 * a flag to let fw_devlink know not to delay the probe of C until the
1748 * probe of P completes successfully.
1749 *
1750 * When such a flag is set, we can't create device links where P is the
1751 * supplier of C as that would delay the probe of C.
1752 */
1753 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1754 fwnode_is_ancestor_of(sup_handle, con->fwnode))
1755 return -EINVAL;
1756
1757 sup_dev = get_dev_from_fwnode(sup_handle);
1758 if (sup_dev) {
1759 /*
1760 * If it's one of those drivers that don't actually bind to
1761 * their device using driver core, then don't wait on this
1762 * supplier device indefinitely.
1763 */
1764 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1765 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1766 ret = -EINVAL;
1767 goto out;
1768 }
1769
1770 /*
1771 * If this fails, it is due to cycles in device links. Just
1772 * give up on this link and treat it as invalid.
1773 */
1774 if (!device_link_add(con, sup_dev, flags) &&
1775 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1776 dev_info(con, "Fixing up cyclic dependency with %s\n",
1777 dev_name(sup_dev));
1778 device_links_write_lock();
1779 fw_devlink_relax_cycle(con, sup_dev);
1780 device_links_write_unlock();
1781 device_link_add(con, sup_dev,
1782 FW_DEVLINK_FLAGS_PERMISSIVE);
1783 ret = -EINVAL;
1784 }
1785
1786 goto out;
1787 }
1788
1789 /* Supplier that's already initialized without a struct device. */
1790 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1791 return -EINVAL;
1792
1793 /*
1794 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1795 * cycles. So cycle detection isn't necessary and shouldn't be
1796 * done.
1797 */
1798 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1799 return -EAGAIN;
1800
1801 /*
1802 * If we can't find the supplier device from its fwnode, it might be
1803 * due to a cyclic dependency between fwnodes. Some of these cycles can
1804 * be broken by applying logic. Check for these types of cycles and
1805 * break them so that devices in the cycle probe properly.
1806 *
1807 * If the supplier's parent is dependent on the consumer, then the
1808 * consumer and supplier have a cyclic dependency. Since fw_devlink
1809 * can't tell which of the inferred dependencies are incorrect, don't
1810 * enforce probe ordering between any of the devices in this cyclic
1811 * dependency. Do this by relaxing all the fw_devlink device links in
1812 * this cycle and by treating the fwnode link between the consumer and
1813 * the supplier as an invalid dependency.
1814 */
1815 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1816 if (sup_dev && device_is_dependent(con, sup_dev)) {
1817 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1818 sup_handle, dev_name(sup_dev));
1819 device_links_write_lock();
1820 fw_devlink_relax_cycle(con, sup_dev);
1821 device_links_write_unlock();
1822 ret = -EINVAL;
1823 } else {
1824 /*
1825 * Can't check for cycles or no cycles. So let's try
1826 * again later.
1827 */
1828 ret = -EAGAIN;
1829 }
1830
1831 out:
1832 put_device(sup_dev);
1833 return ret;
1834 }
1835
1836 /**
1837 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1838 * @dev: Device that needs to be linked to its consumers
1839 *
1840 * This function looks at all the consumer fwnodes of @dev and creates device
1841 * links between the consumer device and @dev (supplier).
1842 *
1843 * If the consumer device has not been added yet, then this function creates a
1844 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1845 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1846 * sync_state() callback before the real consumer device gets to be added and
1847 * then probed.
1848 *
1849 * Once device links are created from the real consumer to @dev (supplier), the
1850 * fwnode links are deleted.
1851 */
__fw_devlink_link_to_consumers(struct device * dev)1852 static void __fw_devlink_link_to_consumers(struct device *dev)
1853 {
1854 struct fwnode_handle *fwnode = dev->fwnode;
1855 struct fwnode_link *link, *tmp;
1856
1857 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1858 u32 dl_flags = fw_devlink_get_flags();
1859 struct device *con_dev;
1860 bool own_link = true;
1861 int ret;
1862
1863 con_dev = get_dev_from_fwnode(link->consumer);
1864 /*
1865 * If consumer device is not available yet, make a "proxy"
1866 * SYNC_STATE_ONLY link from the consumer's parent device to
1867 * the supplier device. This is necessary to make sure the
1868 * supplier doesn't get a sync_state() callback before the real
1869 * consumer can create a device link to the supplier.
1870 *
1871 * This proxy link step is needed to handle the case where the
1872 * consumer's parent device is added before the supplier.
1873 */
1874 if (!con_dev) {
1875 con_dev = fwnode_get_next_parent_dev(link->consumer);
1876 /*
1877 * However, if the consumer's parent device is also the
1878 * parent of the supplier, don't create a
1879 * consumer-supplier link from the parent to its child
1880 * device. Such a dependency is impossible.
1881 */
1882 if (con_dev &&
1883 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1884 put_device(con_dev);
1885 con_dev = NULL;
1886 } else {
1887 own_link = false;
1888 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1889 }
1890 }
1891
1892 if (!con_dev)
1893 continue;
1894
1895 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1896 put_device(con_dev);
1897 if (!own_link || ret == -EAGAIN)
1898 continue;
1899
1900 __fwnode_link_del(link);
1901 }
1902 }
1903
1904 /**
1905 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1906 * @dev: The consumer device that needs to be linked to its suppliers
1907 * @fwnode: Root of the fwnode tree that is used to create device links
1908 *
1909 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1910 * @fwnode and creates device links between @dev (consumer) and all the
1911 * supplier devices of the entire fwnode tree at @fwnode.
1912 *
1913 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1914 * and the real suppliers of @dev. Once these device links are created, the
1915 * fwnode links are deleted. When such device links are successfully created,
1916 * this function is called recursively on those supplier devices. This is
1917 * needed to detect and break some invalid cycles in fwnode links. See
1918 * fw_devlink_create_devlink() for more details.
1919 *
1920 * In addition, it also looks at all the suppliers of the entire fwnode tree
1921 * because some of the child devices of @dev that have not been added yet
1922 * (because @dev hasn't probed) might already have their suppliers added to
1923 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1924 * @dev (consumer) and these suppliers to make sure they don't execute their
1925 * sync_state() callbacks before these child devices have a chance to create
1926 * their device links. The fwnode links that correspond to the child devices
1927 * aren't delete because they are needed later to create the device links
1928 * between the real consumer and supplier devices.
1929 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)1930 static void __fw_devlink_link_to_suppliers(struct device *dev,
1931 struct fwnode_handle *fwnode)
1932 {
1933 bool own_link = (dev->fwnode == fwnode);
1934 struct fwnode_link *link, *tmp;
1935 struct fwnode_handle *child = NULL;
1936 u32 dl_flags;
1937
1938 if (own_link)
1939 dl_flags = fw_devlink_get_flags();
1940 else
1941 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1942
1943 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1944 int ret;
1945 struct device *sup_dev;
1946 struct fwnode_handle *sup = link->supplier;
1947
1948 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1949 if (!own_link || ret == -EAGAIN)
1950 continue;
1951
1952 __fwnode_link_del(link);
1953
1954 /* If no device link was created, nothing more to do. */
1955 if (ret)
1956 continue;
1957
1958 /*
1959 * If a device link was successfully created to a supplier, we
1960 * now need to try and link the supplier to all its suppliers.
1961 *
1962 * This is needed to detect and delete false dependencies in
1963 * fwnode links that haven't been converted to a device link
1964 * yet. See comments in fw_devlink_create_devlink() for more
1965 * details on the false dependency.
1966 *
1967 * Without deleting these false dependencies, some devices will
1968 * never probe because they'll keep waiting for their false
1969 * dependency fwnode links to be converted to device links.
1970 */
1971 sup_dev = get_dev_from_fwnode(sup);
1972 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1973 put_device(sup_dev);
1974 }
1975
1976 /*
1977 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1978 * all the descendants. This proxy link step is needed to handle the
1979 * case where the supplier is added before the consumer's parent device
1980 * (@dev).
1981 */
1982 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1983 __fw_devlink_link_to_suppliers(dev, child);
1984 }
1985
fw_devlink_link_device(struct device * dev)1986 static void fw_devlink_link_device(struct device *dev)
1987 {
1988 struct fwnode_handle *fwnode = dev->fwnode;
1989
1990 if (!fw_devlink_flags)
1991 return;
1992
1993 fw_devlink_parse_fwtree(fwnode);
1994
1995 mutex_lock(&fwnode_link_lock);
1996 __fw_devlink_link_to_consumers(dev);
1997 __fw_devlink_link_to_suppliers(dev, fwnode);
1998 mutex_unlock(&fwnode_link_lock);
1999 }
2000
2001 /* Device links support end. */
2002
2003 int (*platform_notify)(struct device *dev) = NULL;
2004 int (*platform_notify_remove)(struct device *dev) = NULL;
2005 static struct kobject *dev_kobj;
2006 struct kobject *sysfs_dev_char_kobj;
2007 struct kobject *sysfs_dev_block_kobj;
2008
2009 static DEFINE_MUTEX(device_hotplug_lock);
2010
lock_device_hotplug(void)2011 void lock_device_hotplug(void)
2012 {
2013 mutex_lock(&device_hotplug_lock);
2014 }
2015
unlock_device_hotplug(void)2016 void unlock_device_hotplug(void)
2017 {
2018 mutex_unlock(&device_hotplug_lock);
2019 }
2020
lock_device_hotplug_sysfs(void)2021 int lock_device_hotplug_sysfs(void)
2022 {
2023 if (mutex_trylock(&device_hotplug_lock))
2024 return 0;
2025
2026 /* Avoid busy looping (5 ms of sleep should do). */
2027 msleep(5);
2028 return restart_syscall();
2029 }
2030
2031 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2032 static inline int device_is_not_partition(struct device *dev)
2033 {
2034 return !(dev->type == &part_type);
2035 }
2036 #else
device_is_not_partition(struct device * dev)2037 static inline int device_is_not_partition(struct device *dev)
2038 {
2039 return 1;
2040 }
2041 #endif
2042
device_platform_notify(struct device * dev)2043 static void device_platform_notify(struct device *dev)
2044 {
2045 acpi_device_notify(dev);
2046
2047 software_node_notify(dev);
2048
2049 if (platform_notify)
2050 platform_notify(dev);
2051 }
2052
device_platform_notify_remove(struct device * dev)2053 static void device_platform_notify_remove(struct device *dev)
2054 {
2055 acpi_device_notify_remove(dev);
2056
2057 software_node_notify_remove(dev);
2058
2059 if (platform_notify_remove)
2060 platform_notify_remove(dev);
2061 }
2062
2063 /**
2064 * dev_driver_string - Return a device's driver name, if at all possible
2065 * @dev: struct device to get the name of
2066 *
2067 * Will return the device's driver's name if it is bound to a device. If
2068 * the device is not bound to a driver, it will return the name of the bus
2069 * it is attached to. If it is not attached to a bus either, an empty
2070 * string will be returned.
2071 */
dev_driver_string(const struct device * dev)2072 const char *dev_driver_string(const struct device *dev)
2073 {
2074 struct device_driver *drv;
2075
2076 /* dev->driver can change to NULL underneath us because of unbinding,
2077 * so be careful about accessing it. dev->bus and dev->class should
2078 * never change once they are set, so they don't need special care.
2079 */
2080 drv = READ_ONCE(dev->driver);
2081 return drv ? drv->name : dev_bus_name(dev);
2082 }
2083 EXPORT_SYMBOL(dev_driver_string);
2084
2085 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2086
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2087 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2088 char *buf)
2089 {
2090 struct device_attribute *dev_attr = to_dev_attr(attr);
2091 struct device *dev = kobj_to_dev(kobj);
2092 ssize_t ret = -EIO;
2093
2094 if (dev_attr->show)
2095 ret = dev_attr->show(dev, dev_attr, buf);
2096 if (ret >= (ssize_t)PAGE_SIZE) {
2097 printk("dev_attr_show: %pS returned bad count\n",
2098 dev_attr->show);
2099 }
2100 return ret;
2101 }
2102
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2103 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2104 const char *buf, size_t count)
2105 {
2106 struct device_attribute *dev_attr = to_dev_attr(attr);
2107 struct device *dev = kobj_to_dev(kobj);
2108 ssize_t ret = -EIO;
2109
2110 if (dev_attr->store)
2111 ret = dev_attr->store(dev, dev_attr, buf, count);
2112 return ret;
2113 }
2114
2115 static const struct sysfs_ops dev_sysfs_ops = {
2116 .show = dev_attr_show,
2117 .store = dev_attr_store,
2118 };
2119
2120 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2121
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2122 ssize_t device_store_ulong(struct device *dev,
2123 struct device_attribute *attr,
2124 const char *buf, size_t size)
2125 {
2126 struct dev_ext_attribute *ea = to_ext_attr(attr);
2127 int ret;
2128 unsigned long new;
2129
2130 ret = kstrtoul(buf, 0, &new);
2131 if (ret)
2132 return ret;
2133 *(unsigned long *)(ea->var) = new;
2134 /* Always return full write size even if we didn't consume all */
2135 return size;
2136 }
2137 EXPORT_SYMBOL_GPL(device_store_ulong);
2138
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2139 ssize_t device_show_ulong(struct device *dev,
2140 struct device_attribute *attr,
2141 char *buf)
2142 {
2143 struct dev_ext_attribute *ea = to_ext_attr(attr);
2144 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2145 }
2146 EXPORT_SYMBOL_GPL(device_show_ulong);
2147
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2148 ssize_t device_store_int(struct device *dev,
2149 struct device_attribute *attr,
2150 const char *buf, size_t size)
2151 {
2152 struct dev_ext_attribute *ea = to_ext_attr(attr);
2153 int ret;
2154 long new;
2155
2156 ret = kstrtol(buf, 0, &new);
2157 if (ret)
2158 return ret;
2159
2160 if (new > INT_MAX || new < INT_MIN)
2161 return -EINVAL;
2162 *(int *)(ea->var) = new;
2163 /* Always return full write size even if we didn't consume all */
2164 return size;
2165 }
2166 EXPORT_SYMBOL_GPL(device_store_int);
2167
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2168 ssize_t device_show_int(struct device *dev,
2169 struct device_attribute *attr,
2170 char *buf)
2171 {
2172 struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2175 }
2176 EXPORT_SYMBOL_GPL(device_show_int);
2177
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2178 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2179 const char *buf, size_t size)
2180 {
2181 struct dev_ext_attribute *ea = to_ext_attr(attr);
2182
2183 if (strtobool(buf, ea->var) < 0)
2184 return -EINVAL;
2185
2186 return size;
2187 }
2188 EXPORT_SYMBOL_GPL(device_store_bool);
2189
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2190 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2191 char *buf)
2192 {
2193 struct dev_ext_attribute *ea = to_ext_attr(attr);
2194
2195 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2196 }
2197 EXPORT_SYMBOL_GPL(device_show_bool);
2198
2199 /**
2200 * device_release - free device structure.
2201 * @kobj: device's kobject.
2202 *
2203 * This is called once the reference count for the object
2204 * reaches 0. We forward the call to the device's release
2205 * method, which should handle actually freeing the structure.
2206 */
device_release(struct kobject * kobj)2207 static void device_release(struct kobject *kobj)
2208 {
2209 struct device *dev = kobj_to_dev(kobj);
2210 struct device_private *p = dev->p;
2211
2212 /*
2213 * Some platform devices are driven without driver attached
2214 * and managed resources may have been acquired. Make sure
2215 * all resources are released.
2216 *
2217 * Drivers still can add resources into device after device
2218 * is deleted but alive, so release devres here to avoid
2219 * possible memory leak.
2220 */
2221 devres_release_all(dev);
2222
2223 kfree(dev->dma_range_map);
2224
2225 if (dev->release)
2226 dev->release(dev);
2227 else if (dev->type && dev->type->release)
2228 dev->type->release(dev);
2229 else if (dev->class && dev->class->dev_release)
2230 dev->class->dev_release(dev);
2231 else
2232 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2233 dev_name(dev));
2234 kfree(p);
2235 }
2236
device_namespace(struct kobject * kobj)2237 static const void *device_namespace(struct kobject *kobj)
2238 {
2239 struct device *dev = kobj_to_dev(kobj);
2240 const void *ns = NULL;
2241
2242 if (dev->class && dev->class->ns_type)
2243 ns = dev->class->namespace(dev);
2244
2245 return ns;
2246 }
2247
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)2248 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2249 {
2250 struct device *dev = kobj_to_dev(kobj);
2251
2252 if (dev->class && dev->class->get_ownership)
2253 dev->class->get_ownership(dev, uid, gid);
2254 }
2255
2256 static struct kobj_type device_ktype = {
2257 .release = device_release,
2258 .sysfs_ops = &dev_sysfs_ops,
2259 .namespace = device_namespace,
2260 .get_ownership = device_get_ownership,
2261 };
2262
2263
dev_uevent_filter(struct kset * kset,struct kobject * kobj)2264 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2265 {
2266 struct kobj_type *ktype = get_ktype(kobj);
2267
2268 if (ktype == &device_ktype) {
2269 struct device *dev = kobj_to_dev(kobj);
2270 if (dev->bus)
2271 return 1;
2272 if (dev->class)
2273 return 1;
2274 }
2275 return 0;
2276 }
2277
dev_uevent_name(struct kset * kset,struct kobject * kobj)2278 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2279 {
2280 struct device *dev = kobj_to_dev(kobj);
2281
2282 if (dev->bus)
2283 return dev->bus->name;
2284 if (dev->class)
2285 return dev->class->name;
2286 return NULL;
2287 }
2288
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)2289 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2290 struct kobj_uevent_env *env)
2291 {
2292 struct device *dev = kobj_to_dev(kobj);
2293 int retval = 0;
2294
2295 /* add device node properties if present */
2296 if (MAJOR(dev->devt)) {
2297 const char *tmp;
2298 const char *name;
2299 umode_t mode = 0;
2300 kuid_t uid = GLOBAL_ROOT_UID;
2301 kgid_t gid = GLOBAL_ROOT_GID;
2302
2303 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2304 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2305 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2306 if (name) {
2307 add_uevent_var(env, "DEVNAME=%s", name);
2308 if (mode)
2309 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2310 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2311 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2312 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2313 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2314 kfree(tmp);
2315 }
2316 }
2317
2318 if (dev->type && dev->type->name)
2319 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2320
2321 if (dev->driver)
2322 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2323
2324 /* Add common DT information about the device */
2325 of_device_uevent(dev, env);
2326
2327 /* have the bus specific function add its stuff */
2328 if (dev->bus && dev->bus->uevent) {
2329 retval = dev->bus->uevent(dev, env);
2330 if (retval)
2331 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2332 dev_name(dev), __func__, retval);
2333 }
2334
2335 /* have the class specific function add its stuff */
2336 if (dev->class && dev->class->dev_uevent) {
2337 retval = dev->class->dev_uevent(dev, env);
2338 if (retval)
2339 pr_debug("device: '%s': %s: class uevent() "
2340 "returned %d\n", dev_name(dev),
2341 __func__, retval);
2342 }
2343
2344 /* have the device type specific function add its stuff */
2345 if (dev->type && dev->type->uevent) {
2346 retval = dev->type->uevent(dev, env);
2347 if (retval)
2348 pr_debug("device: '%s': %s: dev_type uevent() "
2349 "returned %d\n", dev_name(dev),
2350 __func__, retval);
2351 }
2352
2353 return retval;
2354 }
2355
2356 static const struct kset_uevent_ops device_uevent_ops = {
2357 .filter = dev_uevent_filter,
2358 .name = dev_uevent_name,
2359 .uevent = dev_uevent,
2360 };
2361
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2362 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2363 char *buf)
2364 {
2365 struct kobject *top_kobj;
2366 struct kset *kset;
2367 struct kobj_uevent_env *env = NULL;
2368 int i;
2369 int len = 0;
2370 int retval;
2371
2372 /* search the kset, the device belongs to */
2373 top_kobj = &dev->kobj;
2374 while (!top_kobj->kset && top_kobj->parent)
2375 top_kobj = top_kobj->parent;
2376 if (!top_kobj->kset)
2377 goto out;
2378
2379 kset = top_kobj->kset;
2380 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2381 goto out;
2382
2383 /* respect filter */
2384 if (kset->uevent_ops && kset->uevent_ops->filter)
2385 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2386 goto out;
2387
2388 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2389 if (!env)
2390 return -ENOMEM;
2391
2392 /* let the kset specific function add its keys */
2393 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2394 if (retval)
2395 goto out;
2396
2397 /* copy keys to file */
2398 for (i = 0; i < env->envp_idx; i++)
2399 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2400 out:
2401 kfree(env);
2402 return len;
2403 }
2404
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2405 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2406 const char *buf, size_t count)
2407 {
2408 int rc;
2409
2410 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2411
2412 if (rc) {
2413 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2414 return rc;
2415 }
2416
2417 return count;
2418 }
2419 static DEVICE_ATTR_RW(uevent);
2420
online_show(struct device * dev,struct device_attribute * attr,char * buf)2421 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2422 char *buf)
2423 {
2424 bool val;
2425
2426 device_lock(dev);
2427 val = !dev->offline;
2428 device_unlock(dev);
2429 return sysfs_emit(buf, "%u\n", val);
2430 }
2431
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2432 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2433 const char *buf, size_t count)
2434 {
2435 bool val;
2436 int ret;
2437
2438 ret = strtobool(buf, &val);
2439 if (ret < 0)
2440 return ret;
2441
2442 ret = lock_device_hotplug_sysfs();
2443 if (ret)
2444 return ret;
2445
2446 ret = val ? device_online(dev) : device_offline(dev);
2447 unlock_device_hotplug();
2448 return ret < 0 ? ret : count;
2449 }
2450 static DEVICE_ATTR_RW(online);
2451
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2452 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2453 char *buf)
2454 {
2455 const char *loc;
2456
2457 switch (dev->removable) {
2458 case DEVICE_REMOVABLE:
2459 loc = "removable";
2460 break;
2461 case DEVICE_FIXED:
2462 loc = "fixed";
2463 break;
2464 default:
2465 loc = "unknown";
2466 }
2467 return sysfs_emit(buf, "%s\n", loc);
2468 }
2469 static DEVICE_ATTR_RO(removable);
2470
device_add_groups(struct device * dev,const struct attribute_group ** groups)2471 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2472 {
2473 return sysfs_create_groups(&dev->kobj, groups);
2474 }
2475 EXPORT_SYMBOL_GPL(device_add_groups);
2476
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2477 void device_remove_groups(struct device *dev,
2478 const struct attribute_group **groups)
2479 {
2480 sysfs_remove_groups(&dev->kobj, groups);
2481 }
2482 EXPORT_SYMBOL_GPL(device_remove_groups);
2483
2484 union device_attr_group_devres {
2485 const struct attribute_group *group;
2486 const struct attribute_group **groups;
2487 };
2488
devm_attr_group_match(struct device * dev,void * res,void * data)2489 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2490 {
2491 return ((union device_attr_group_devres *)res)->group == data;
2492 }
2493
devm_attr_group_remove(struct device * dev,void * res)2494 static void devm_attr_group_remove(struct device *dev, void *res)
2495 {
2496 union device_attr_group_devres *devres = res;
2497 const struct attribute_group *group = devres->group;
2498
2499 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2500 sysfs_remove_group(&dev->kobj, group);
2501 }
2502
devm_attr_groups_remove(struct device * dev,void * res)2503 static void devm_attr_groups_remove(struct device *dev, void *res)
2504 {
2505 union device_attr_group_devres *devres = res;
2506 const struct attribute_group **groups = devres->groups;
2507
2508 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2509 sysfs_remove_groups(&dev->kobj, groups);
2510 }
2511
2512 /**
2513 * devm_device_add_group - given a device, create a managed attribute group
2514 * @dev: The device to create the group for
2515 * @grp: The attribute group to create
2516 *
2517 * This function creates a group for the first time. It will explicitly
2518 * warn and error if any of the attribute files being created already exist.
2519 *
2520 * Returns 0 on success or error code on failure.
2521 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2522 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2523 {
2524 union device_attr_group_devres *devres;
2525 int error;
2526
2527 devres = devres_alloc(devm_attr_group_remove,
2528 sizeof(*devres), GFP_KERNEL);
2529 if (!devres)
2530 return -ENOMEM;
2531
2532 error = sysfs_create_group(&dev->kobj, grp);
2533 if (error) {
2534 devres_free(devres);
2535 return error;
2536 }
2537
2538 devres->group = grp;
2539 devres_add(dev, devres);
2540 return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(devm_device_add_group);
2543
2544 /**
2545 * devm_device_remove_group: remove a managed group from a device
2546 * @dev: device to remove the group from
2547 * @grp: group to remove
2548 *
2549 * This function removes a group of attributes from a device. The attributes
2550 * previously have to have been created for this group, otherwise it will fail.
2551 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2552 void devm_device_remove_group(struct device *dev,
2553 const struct attribute_group *grp)
2554 {
2555 WARN_ON(devres_release(dev, devm_attr_group_remove,
2556 devm_attr_group_match,
2557 /* cast away const */ (void *)grp));
2558 }
2559 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2560
2561 /**
2562 * devm_device_add_groups - create a bunch of managed attribute groups
2563 * @dev: The device to create the group for
2564 * @groups: The attribute groups to create, NULL terminated
2565 *
2566 * This function creates a bunch of managed attribute groups. If an error
2567 * occurs when creating a group, all previously created groups will be
2568 * removed, unwinding everything back to the original state when this
2569 * function was called. It will explicitly warn and error if any of the
2570 * attribute files being created already exist.
2571 *
2572 * Returns 0 on success or error code from sysfs_create_group on failure.
2573 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2574 int devm_device_add_groups(struct device *dev,
2575 const struct attribute_group **groups)
2576 {
2577 union device_attr_group_devres *devres;
2578 int error;
2579
2580 devres = devres_alloc(devm_attr_groups_remove,
2581 sizeof(*devres), GFP_KERNEL);
2582 if (!devres)
2583 return -ENOMEM;
2584
2585 error = sysfs_create_groups(&dev->kobj, groups);
2586 if (error) {
2587 devres_free(devres);
2588 return error;
2589 }
2590
2591 devres->groups = groups;
2592 devres_add(dev, devres);
2593 return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2596
2597 /**
2598 * devm_device_remove_groups - remove a list of managed groups
2599 *
2600 * @dev: The device for the groups to be removed from
2601 * @groups: NULL terminated list of groups to be removed
2602 *
2603 * If groups is not NULL, remove the specified groups from the device.
2604 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2605 void devm_device_remove_groups(struct device *dev,
2606 const struct attribute_group **groups)
2607 {
2608 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2609 devm_attr_group_match,
2610 /* cast away const */ (void *)groups));
2611 }
2612 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2613
device_add_attrs(struct device * dev)2614 static int device_add_attrs(struct device *dev)
2615 {
2616 struct class *class = dev->class;
2617 const struct device_type *type = dev->type;
2618 int error;
2619
2620 if (class) {
2621 error = device_add_groups(dev, class->dev_groups);
2622 if (error)
2623 return error;
2624 }
2625
2626 if (type) {
2627 error = device_add_groups(dev, type->groups);
2628 if (error)
2629 goto err_remove_class_groups;
2630 }
2631
2632 error = device_add_groups(dev, dev->groups);
2633 if (error)
2634 goto err_remove_type_groups;
2635
2636 if (device_supports_offline(dev) && !dev->offline_disabled) {
2637 error = device_create_file(dev, &dev_attr_online);
2638 if (error)
2639 goto err_remove_dev_groups;
2640 }
2641
2642 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2643 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2644 if (error)
2645 goto err_remove_dev_online;
2646 }
2647
2648 if (dev_removable_is_valid(dev)) {
2649 error = device_create_file(dev, &dev_attr_removable);
2650 if (error)
2651 goto err_remove_dev_waiting_for_supplier;
2652 }
2653
2654 return 0;
2655
2656 err_remove_dev_waiting_for_supplier:
2657 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2658 err_remove_dev_online:
2659 device_remove_file(dev, &dev_attr_online);
2660 err_remove_dev_groups:
2661 device_remove_groups(dev, dev->groups);
2662 err_remove_type_groups:
2663 if (type)
2664 device_remove_groups(dev, type->groups);
2665 err_remove_class_groups:
2666 if (class)
2667 device_remove_groups(dev, class->dev_groups);
2668
2669 return error;
2670 }
2671
device_remove_attrs(struct device * dev)2672 static void device_remove_attrs(struct device *dev)
2673 {
2674 struct class *class = dev->class;
2675 const struct device_type *type = dev->type;
2676
2677 device_remove_file(dev, &dev_attr_removable);
2678 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2679 device_remove_file(dev, &dev_attr_online);
2680 device_remove_groups(dev, dev->groups);
2681
2682 if (type)
2683 device_remove_groups(dev, type->groups);
2684
2685 if (class)
2686 device_remove_groups(dev, class->dev_groups);
2687 }
2688
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2689 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2690 char *buf)
2691 {
2692 return print_dev_t(buf, dev->devt);
2693 }
2694 static DEVICE_ATTR_RO(dev);
2695
2696 /* /sys/devices/ */
2697 struct kset *devices_kset;
2698
2699 /**
2700 * devices_kset_move_before - Move device in the devices_kset's list.
2701 * @deva: Device to move.
2702 * @devb: Device @deva should come before.
2703 */
devices_kset_move_before(struct device * deva,struct device * devb)2704 static void devices_kset_move_before(struct device *deva, struct device *devb)
2705 {
2706 if (!devices_kset)
2707 return;
2708 pr_debug("devices_kset: Moving %s before %s\n",
2709 dev_name(deva), dev_name(devb));
2710 spin_lock(&devices_kset->list_lock);
2711 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2712 spin_unlock(&devices_kset->list_lock);
2713 }
2714
2715 /**
2716 * devices_kset_move_after - Move device in the devices_kset's list.
2717 * @deva: Device to move
2718 * @devb: Device @deva should come after.
2719 */
devices_kset_move_after(struct device * deva,struct device * devb)2720 static void devices_kset_move_after(struct device *deva, struct device *devb)
2721 {
2722 if (!devices_kset)
2723 return;
2724 pr_debug("devices_kset: Moving %s after %s\n",
2725 dev_name(deva), dev_name(devb));
2726 spin_lock(&devices_kset->list_lock);
2727 list_move(&deva->kobj.entry, &devb->kobj.entry);
2728 spin_unlock(&devices_kset->list_lock);
2729 }
2730
2731 /**
2732 * devices_kset_move_last - move the device to the end of devices_kset's list.
2733 * @dev: device to move
2734 */
devices_kset_move_last(struct device * dev)2735 void devices_kset_move_last(struct device *dev)
2736 {
2737 if (!devices_kset)
2738 return;
2739 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2740 spin_lock(&devices_kset->list_lock);
2741 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2742 spin_unlock(&devices_kset->list_lock);
2743 }
2744
2745 /**
2746 * device_create_file - create sysfs attribute file for device.
2747 * @dev: device.
2748 * @attr: device attribute descriptor.
2749 */
device_create_file(struct device * dev,const struct device_attribute * attr)2750 int device_create_file(struct device *dev,
2751 const struct device_attribute *attr)
2752 {
2753 int error = 0;
2754
2755 if (dev) {
2756 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2757 "Attribute %s: write permission without 'store'\n",
2758 attr->attr.name);
2759 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2760 "Attribute %s: read permission without 'show'\n",
2761 attr->attr.name);
2762 error = sysfs_create_file(&dev->kobj, &attr->attr);
2763 }
2764
2765 return error;
2766 }
2767 EXPORT_SYMBOL_GPL(device_create_file);
2768
2769 /**
2770 * device_remove_file - remove sysfs attribute file.
2771 * @dev: device.
2772 * @attr: device attribute descriptor.
2773 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2774 void device_remove_file(struct device *dev,
2775 const struct device_attribute *attr)
2776 {
2777 if (dev)
2778 sysfs_remove_file(&dev->kobj, &attr->attr);
2779 }
2780 EXPORT_SYMBOL_GPL(device_remove_file);
2781
2782 /**
2783 * device_remove_file_self - remove sysfs attribute file from its own method.
2784 * @dev: device.
2785 * @attr: device attribute descriptor.
2786 *
2787 * See kernfs_remove_self() for details.
2788 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2789 bool device_remove_file_self(struct device *dev,
2790 const struct device_attribute *attr)
2791 {
2792 if (dev)
2793 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2794 else
2795 return false;
2796 }
2797 EXPORT_SYMBOL_GPL(device_remove_file_self);
2798
2799 /**
2800 * device_create_bin_file - create sysfs binary attribute file for device.
2801 * @dev: device.
2802 * @attr: device binary attribute descriptor.
2803 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2804 int device_create_bin_file(struct device *dev,
2805 const struct bin_attribute *attr)
2806 {
2807 int error = -EINVAL;
2808 if (dev)
2809 error = sysfs_create_bin_file(&dev->kobj, attr);
2810 return error;
2811 }
2812 EXPORT_SYMBOL_GPL(device_create_bin_file);
2813
2814 /**
2815 * device_remove_bin_file - remove sysfs binary attribute file
2816 * @dev: device.
2817 * @attr: device binary attribute descriptor.
2818 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2819 void device_remove_bin_file(struct device *dev,
2820 const struct bin_attribute *attr)
2821 {
2822 if (dev)
2823 sysfs_remove_bin_file(&dev->kobj, attr);
2824 }
2825 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2826
klist_children_get(struct klist_node * n)2827 static void klist_children_get(struct klist_node *n)
2828 {
2829 struct device_private *p = to_device_private_parent(n);
2830 struct device *dev = p->device;
2831
2832 get_device(dev);
2833 }
2834
klist_children_put(struct klist_node * n)2835 static void klist_children_put(struct klist_node *n)
2836 {
2837 struct device_private *p = to_device_private_parent(n);
2838 struct device *dev = p->device;
2839
2840 put_device(dev);
2841 }
2842
2843 /**
2844 * device_initialize - init device structure.
2845 * @dev: device.
2846 *
2847 * This prepares the device for use by other layers by initializing
2848 * its fields.
2849 * It is the first half of device_register(), if called by
2850 * that function, though it can also be called separately, so one
2851 * may use @dev's fields. In particular, get_device()/put_device()
2852 * may be used for reference counting of @dev after calling this
2853 * function.
2854 *
2855 * All fields in @dev must be initialized by the caller to 0, except
2856 * for those explicitly set to some other value. The simplest
2857 * approach is to use kzalloc() to allocate the structure containing
2858 * @dev.
2859 *
2860 * NOTE: Use put_device() to give up your reference instead of freeing
2861 * @dev directly once you have called this function.
2862 */
device_initialize(struct device * dev)2863 void device_initialize(struct device *dev)
2864 {
2865 dev->kobj.kset = devices_kset;
2866 kobject_init(&dev->kobj, &device_ktype);
2867 INIT_LIST_HEAD(&dev->dma_pools);
2868 mutex_init(&dev->mutex);
2869 #ifdef CONFIG_PROVE_LOCKING
2870 mutex_init(&dev->lockdep_mutex);
2871 #endif
2872 lockdep_set_novalidate_class(&dev->mutex);
2873 spin_lock_init(&dev->devres_lock);
2874 INIT_LIST_HEAD(&dev->devres_head);
2875 device_pm_init(dev);
2876 set_dev_node(dev, -1);
2877 #ifdef CONFIG_GENERIC_MSI_IRQ
2878 raw_spin_lock_init(&dev->msi_lock);
2879 INIT_LIST_HEAD(&dev->msi_list);
2880 #endif
2881 INIT_LIST_HEAD(&dev->links.consumers);
2882 INIT_LIST_HEAD(&dev->links.suppliers);
2883 INIT_LIST_HEAD(&dev->links.defer_sync);
2884 dev->links.status = DL_DEV_NO_DRIVER;
2885 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2886 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2887 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2888 dev->dma_coherent = dma_default_coherent;
2889 #endif
2890 #ifdef CONFIG_SWIOTLB
2891 dev->dma_io_tlb_mem = &io_tlb_default_mem;
2892 #endif
2893 }
2894 EXPORT_SYMBOL_GPL(device_initialize);
2895
virtual_device_parent(struct device * dev)2896 struct kobject *virtual_device_parent(struct device *dev)
2897 {
2898 static struct kobject *virtual_dir = NULL;
2899
2900 if (!virtual_dir)
2901 virtual_dir = kobject_create_and_add("virtual",
2902 &devices_kset->kobj);
2903
2904 return virtual_dir;
2905 }
2906
2907 struct class_dir {
2908 struct kobject kobj;
2909 struct class *class;
2910 };
2911
2912 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2913
class_dir_release(struct kobject * kobj)2914 static void class_dir_release(struct kobject *kobj)
2915 {
2916 struct class_dir *dir = to_class_dir(kobj);
2917 kfree(dir);
2918 }
2919
2920 static const
class_dir_child_ns_type(struct kobject * kobj)2921 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2922 {
2923 struct class_dir *dir = to_class_dir(kobj);
2924 return dir->class->ns_type;
2925 }
2926
2927 static struct kobj_type class_dir_ktype = {
2928 .release = class_dir_release,
2929 .sysfs_ops = &kobj_sysfs_ops,
2930 .child_ns_type = class_dir_child_ns_type
2931 };
2932
2933 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2934 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2935 {
2936 struct class_dir *dir;
2937 int retval;
2938
2939 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2940 if (!dir)
2941 return ERR_PTR(-ENOMEM);
2942
2943 dir->class = class;
2944 kobject_init(&dir->kobj, &class_dir_ktype);
2945
2946 dir->kobj.kset = &class->p->glue_dirs;
2947
2948 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2949 if (retval < 0) {
2950 kobject_put(&dir->kobj);
2951 return ERR_PTR(retval);
2952 }
2953 return &dir->kobj;
2954 }
2955
2956 static DEFINE_MUTEX(gdp_mutex);
2957
get_device_parent(struct device * dev,struct device * parent)2958 static struct kobject *get_device_parent(struct device *dev,
2959 struct device *parent)
2960 {
2961 if (dev->class) {
2962 struct kobject *kobj = NULL;
2963 struct kobject *parent_kobj;
2964 struct kobject *k;
2965
2966 #ifdef CONFIG_BLOCK
2967 /* block disks show up in /sys/block */
2968 if (sysfs_deprecated && dev->class == &block_class) {
2969 if (parent && parent->class == &block_class)
2970 return &parent->kobj;
2971 return &block_class.p->subsys.kobj;
2972 }
2973 #endif
2974
2975 /*
2976 * If we have no parent, we live in "virtual".
2977 * Class-devices with a non class-device as parent, live
2978 * in a "glue" directory to prevent namespace collisions.
2979 */
2980 if (parent == NULL)
2981 parent_kobj = virtual_device_parent(dev);
2982 else if (parent->class && !dev->class->ns_type)
2983 return &parent->kobj;
2984 else
2985 parent_kobj = &parent->kobj;
2986
2987 mutex_lock(&gdp_mutex);
2988
2989 /* find our class-directory at the parent and reference it */
2990 spin_lock(&dev->class->p->glue_dirs.list_lock);
2991 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2992 if (k->parent == parent_kobj) {
2993 kobj = kobject_get(k);
2994 break;
2995 }
2996 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2997 if (kobj) {
2998 mutex_unlock(&gdp_mutex);
2999 return kobj;
3000 }
3001
3002 /* or create a new class-directory at the parent device */
3003 k = class_dir_create_and_add(dev->class, parent_kobj);
3004 /* do not emit an uevent for this simple "glue" directory */
3005 mutex_unlock(&gdp_mutex);
3006 return k;
3007 }
3008
3009 /* subsystems can specify a default root directory for their devices */
3010 if (!parent && dev->bus && dev->bus->dev_root)
3011 return &dev->bus->dev_root->kobj;
3012
3013 if (parent)
3014 return &parent->kobj;
3015 return NULL;
3016 }
3017
live_in_glue_dir(struct kobject * kobj,struct device * dev)3018 static inline bool live_in_glue_dir(struct kobject *kobj,
3019 struct device *dev)
3020 {
3021 if (!kobj || !dev->class ||
3022 kobj->kset != &dev->class->p->glue_dirs)
3023 return false;
3024 return true;
3025 }
3026
get_glue_dir(struct device * dev)3027 static inline struct kobject *get_glue_dir(struct device *dev)
3028 {
3029 return dev->kobj.parent;
3030 }
3031
3032 /*
3033 * make sure cleaning up dir as the last step, we need to make
3034 * sure .release handler of kobject is run with holding the
3035 * global lock
3036 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3037 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3038 {
3039 unsigned int ref;
3040
3041 /* see if we live in a "glue" directory */
3042 if (!live_in_glue_dir(glue_dir, dev))
3043 return;
3044
3045 mutex_lock(&gdp_mutex);
3046 /**
3047 * There is a race condition between removing glue directory
3048 * and adding a new device under the glue directory.
3049 *
3050 * CPU1: CPU2:
3051 *
3052 * device_add()
3053 * get_device_parent()
3054 * class_dir_create_and_add()
3055 * kobject_add_internal()
3056 * create_dir() // create glue_dir
3057 *
3058 * device_add()
3059 * get_device_parent()
3060 * kobject_get() // get glue_dir
3061 *
3062 * device_del()
3063 * cleanup_glue_dir()
3064 * kobject_del(glue_dir)
3065 *
3066 * kobject_add()
3067 * kobject_add_internal()
3068 * create_dir() // in glue_dir
3069 * sysfs_create_dir_ns()
3070 * kernfs_create_dir_ns(sd)
3071 *
3072 * sysfs_remove_dir() // glue_dir->sd=NULL
3073 * sysfs_put() // free glue_dir->sd
3074 *
3075 * // sd is freed
3076 * kernfs_new_node(sd)
3077 * kernfs_get(glue_dir)
3078 * kernfs_add_one()
3079 * kernfs_put()
3080 *
3081 * Before CPU1 remove last child device under glue dir, if CPU2 add
3082 * a new device under glue dir, the glue_dir kobject reference count
3083 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3084 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3085 * and sysfs_put(). This result in glue_dir->sd is freed.
3086 *
3087 * Then the CPU2 will see a stale "empty" but still potentially used
3088 * glue dir around in kernfs_new_node().
3089 *
3090 * In order to avoid this happening, we also should make sure that
3091 * kernfs_node for glue_dir is released in CPU1 only when refcount
3092 * for glue_dir kobj is 1.
3093 */
3094 ref = kref_read(&glue_dir->kref);
3095 if (!kobject_has_children(glue_dir) && !--ref)
3096 kobject_del(glue_dir);
3097 kobject_put(glue_dir);
3098 mutex_unlock(&gdp_mutex);
3099 }
3100
device_add_class_symlinks(struct device * dev)3101 static int device_add_class_symlinks(struct device *dev)
3102 {
3103 struct device_node *of_node = dev_of_node(dev);
3104 int error;
3105
3106 if (of_node) {
3107 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3108 if (error)
3109 dev_warn(dev, "Error %d creating of_node link\n",error);
3110 /* An error here doesn't warrant bringing down the device */
3111 }
3112
3113 if (!dev->class)
3114 return 0;
3115
3116 error = sysfs_create_link(&dev->kobj,
3117 &dev->class->p->subsys.kobj,
3118 "subsystem");
3119 if (error)
3120 goto out_devnode;
3121
3122 if (dev->parent && device_is_not_partition(dev)) {
3123 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3124 "device");
3125 if (error)
3126 goto out_subsys;
3127 }
3128
3129 #ifdef CONFIG_BLOCK
3130 /* /sys/block has directories and does not need symlinks */
3131 if (sysfs_deprecated && dev->class == &block_class)
3132 return 0;
3133 #endif
3134
3135 /* link in the class directory pointing to the device */
3136 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3137 &dev->kobj, dev_name(dev));
3138 if (error)
3139 goto out_device;
3140
3141 return 0;
3142
3143 out_device:
3144 sysfs_remove_link(&dev->kobj, "device");
3145
3146 out_subsys:
3147 sysfs_remove_link(&dev->kobj, "subsystem");
3148 out_devnode:
3149 sysfs_remove_link(&dev->kobj, "of_node");
3150 return error;
3151 }
3152
device_remove_class_symlinks(struct device * dev)3153 static void device_remove_class_symlinks(struct device *dev)
3154 {
3155 if (dev_of_node(dev))
3156 sysfs_remove_link(&dev->kobj, "of_node");
3157
3158 if (!dev->class)
3159 return;
3160
3161 if (dev->parent && device_is_not_partition(dev))
3162 sysfs_remove_link(&dev->kobj, "device");
3163 sysfs_remove_link(&dev->kobj, "subsystem");
3164 #ifdef CONFIG_BLOCK
3165 if (sysfs_deprecated && dev->class == &block_class)
3166 return;
3167 #endif
3168 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3169 }
3170
3171 /**
3172 * dev_set_name - set a device name
3173 * @dev: device
3174 * @fmt: format string for the device's name
3175 */
dev_set_name(struct device * dev,const char * fmt,...)3176 int dev_set_name(struct device *dev, const char *fmt, ...)
3177 {
3178 va_list vargs;
3179 int err;
3180
3181 va_start(vargs, fmt);
3182 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3183 va_end(vargs);
3184 return err;
3185 }
3186 EXPORT_SYMBOL_GPL(dev_set_name);
3187
3188 /**
3189 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3190 * @dev: device
3191 *
3192 * By default we select char/ for new entries. Setting class->dev_obj
3193 * to NULL prevents an entry from being created. class->dev_kobj must
3194 * be set (or cleared) before any devices are registered to the class
3195 * otherwise device_create_sys_dev_entry() and
3196 * device_remove_sys_dev_entry() will disagree about the presence of
3197 * the link.
3198 */
device_to_dev_kobj(struct device * dev)3199 static struct kobject *device_to_dev_kobj(struct device *dev)
3200 {
3201 struct kobject *kobj;
3202
3203 if (dev->class)
3204 kobj = dev->class->dev_kobj;
3205 else
3206 kobj = sysfs_dev_char_kobj;
3207
3208 return kobj;
3209 }
3210
device_create_sys_dev_entry(struct device * dev)3211 static int device_create_sys_dev_entry(struct device *dev)
3212 {
3213 struct kobject *kobj = device_to_dev_kobj(dev);
3214 int error = 0;
3215 char devt_str[15];
3216
3217 if (kobj) {
3218 format_dev_t(devt_str, dev->devt);
3219 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3220 }
3221
3222 return error;
3223 }
3224
device_remove_sys_dev_entry(struct device * dev)3225 static void device_remove_sys_dev_entry(struct device *dev)
3226 {
3227 struct kobject *kobj = device_to_dev_kobj(dev);
3228 char devt_str[15];
3229
3230 if (kobj) {
3231 format_dev_t(devt_str, dev->devt);
3232 sysfs_remove_link(kobj, devt_str);
3233 }
3234 }
3235
device_private_init(struct device * dev)3236 static int device_private_init(struct device *dev)
3237 {
3238 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3239 if (!dev->p)
3240 return -ENOMEM;
3241 dev->p->device = dev;
3242 klist_init(&dev->p->klist_children, klist_children_get,
3243 klist_children_put);
3244 INIT_LIST_HEAD(&dev->p->deferred_probe);
3245 return 0;
3246 }
3247
3248 /**
3249 * device_add - add device to device hierarchy.
3250 * @dev: device.
3251 *
3252 * This is part 2 of device_register(), though may be called
3253 * separately _iff_ device_initialize() has been called separately.
3254 *
3255 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3256 * to the global and sibling lists for the device, then
3257 * adds it to the other relevant subsystems of the driver model.
3258 *
3259 * Do not call this routine or device_register() more than once for
3260 * any device structure. The driver model core is not designed to work
3261 * with devices that get unregistered and then spring back to life.
3262 * (Among other things, it's very hard to guarantee that all references
3263 * to the previous incarnation of @dev have been dropped.) Allocate
3264 * and register a fresh new struct device instead.
3265 *
3266 * NOTE: _Never_ directly free @dev after calling this function, even
3267 * if it returned an error! Always use put_device() to give up your
3268 * reference instead.
3269 *
3270 * Rule of thumb is: if device_add() succeeds, you should call
3271 * device_del() when you want to get rid of it. If device_add() has
3272 * *not* succeeded, use *only* put_device() to drop the reference
3273 * count.
3274 */
device_add(struct device * dev)3275 int device_add(struct device *dev)
3276 {
3277 struct device *parent;
3278 struct kobject *kobj;
3279 struct class_interface *class_intf;
3280 int error = -EINVAL;
3281 struct kobject *glue_dir = NULL;
3282
3283 dev = get_device(dev);
3284 if (!dev)
3285 goto done;
3286
3287 if (!dev->p) {
3288 error = device_private_init(dev);
3289 if (error)
3290 goto done;
3291 }
3292
3293 /*
3294 * for statically allocated devices, which should all be converted
3295 * some day, we need to initialize the name. We prevent reading back
3296 * the name, and force the use of dev_name()
3297 */
3298 if (dev->init_name) {
3299 dev_set_name(dev, "%s", dev->init_name);
3300 dev->init_name = NULL;
3301 }
3302
3303 /* subsystems can specify simple device enumeration */
3304 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3305 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3306
3307 if (!dev_name(dev)) {
3308 error = -EINVAL;
3309 goto name_error;
3310 }
3311
3312 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3313
3314 parent = get_device(dev->parent);
3315 kobj = get_device_parent(dev, parent);
3316 if (IS_ERR(kobj)) {
3317 error = PTR_ERR(kobj);
3318 goto parent_error;
3319 }
3320 if (kobj)
3321 dev->kobj.parent = kobj;
3322
3323 /* use parent numa_node */
3324 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3325 set_dev_node(dev, dev_to_node(parent));
3326
3327 /* first, register with generic layer. */
3328 /* we require the name to be set before, and pass NULL */
3329 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3330 if (error) {
3331 glue_dir = kobj;
3332 goto Error;
3333 }
3334
3335 /* notify platform of device entry */
3336 device_platform_notify(dev);
3337
3338 error = device_create_file(dev, &dev_attr_uevent);
3339 if (error)
3340 goto attrError;
3341
3342 error = device_add_class_symlinks(dev);
3343 if (error)
3344 goto SymlinkError;
3345 error = device_add_attrs(dev);
3346 if (error)
3347 goto AttrsError;
3348 error = bus_add_device(dev);
3349 if (error)
3350 goto BusError;
3351 error = dpm_sysfs_add(dev);
3352 if (error)
3353 goto DPMError;
3354 device_pm_add(dev);
3355
3356 if (MAJOR(dev->devt)) {
3357 error = device_create_file(dev, &dev_attr_dev);
3358 if (error)
3359 goto DevAttrError;
3360
3361 error = device_create_sys_dev_entry(dev);
3362 if (error)
3363 goto SysEntryError;
3364
3365 devtmpfs_create_node(dev);
3366 }
3367
3368 /* Notify clients of device addition. This call must come
3369 * after dpm_sysfs_add() and before kobject_uevent().
3370 */
3371 if (dev->bus)
3372 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3373 BUS_NOTIFY_ADD_DEVICE, dev);
3374
3375 kobject_uevent(&dev->kobj, KOBJ_ADD);
3376
3377 /*
3378 * Check if any of the other devices (consumers) have been waiting for
3379 * this device (supplier) to be added so that they can create a device
3380 * link to it.
3381 *
3382 * This needs to happen after device_pm_add() because device_link_add()
3383 * requires the supplier be registered before it's called.
3384 *
3385 * But this also needs to happen before bus_probe_device() to make sure
3386 * waiting consumers can link to it before the driver is bound to the
3387 * device and the driver sync_state callback is called for this device.
3388 */
3389 if (dev->fwnode && !dev->fwnode->dev) {
3390 dev->fwnode->dev = dev;
3391 fw_devlink_link_device(dev);
3392 }
3393
3394 bus_probe_device(dev);
3395
3396 /*
3397 * If all driver registration is done and a newly added device doesn't
3398 * match with any driver, don't block its consumers from probing in
3399 * case the consumer device is able to operate without this supplier.
3400 */
3401 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3402 fw_devlink_unblock_consumers(dev);
3403
3404 if (parent)
3405 klist_add_tail(&dev->p->knode_parent,
3406 &parent->p->klist_children);
3407
3408 if (dev->class) {
3409 mutex_lock(&dev->class->p->mutex);
3410 /* tie the class to the device */
3411 klist_add_tail(&dev->p->knode_class,
3412 &dev->class->p->klist_devices);
3413
3414 /* notify any interfaces that the device is here */
3415 list_for_each_entry(class_intf,
3416 &dev->class->p->interfaces, node)
3417 if (class_intf->add_dev)
3418 class_intf->add_dev(dev, class_intf);
3419 mutex_unlock(&dev->class->p->mutex);
3420 }
3421 done:
3422 put_device(dev);
3423 return error;
3424 SysEntryError:
3425 if (MAJOR(dev->devt))
3426 device_remove_file(dev, &dev_attr_dev);
3427 DevAttrError:
3428 device_pm_remove(dev);
3429 dpm_sysfs_remove(dev);
3430 DPMError:
3431 dev->driver = NULL;
3432 bus_remove_device(dev);
3433 BusError:
3434 device_remove_attrs(dev);
3435 AttrsError:
3436 device_remove_class_symlinks(dev);
3437 SymlinkError:
3438 device_remove_file(dev, &dev_attr_uevent);
3439 attrError:
3440 device_platform_notify_remove(dev);
3441 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3442 glue_dir = get_glue_dir(dev);
3443 kobject_del(&dev->kobj);
3444 Error:
3445 cleanup_glue_dir(dev, glue_dir);
3446 parent_error:
3447 put_device(parent);
3448 name_error:
3449 kfree(dev->p);
3450 dev->p = NULL;
3451 goto done;
3452 }
3453 EXPORT_SYMBOL_GPL(device_add);
3454
3455 /**
3456 * device_register - register a device with the system.
3457 * @dev: pointer to the device structure
3458 *
3459 * This happens in two clean steps - initialize the device
3460 * and add it to the system. The two steps can be called
3461 * separately, but this is the easiest and most common.
3462 * I.e. you should only call the two helpers separately if
3463 * have a clearly defined need to use and refcount the device
3464 * before it is added to the hierarchy.
3465 *
3466 * For more information, see the kerneldoc for device_initialize()
3467 * and device_add().
3468 *
3469 * NOTE: _Never_ directly free @dev after calling this function, even
3470 * if it returned an error! Always use put_device() to give up the
3471 * reference initialized in this function instead.
3472 */
device_register(struct device * dev)3473 int device_register(struct device *dev)
3474 {
3475 device_initialize(dev);
3476 return device_add(dev);
3477 }
3478 EXPORT_SYMBOL_GPL(device_register);
3479
3480 /**
3481 * get_device - increment reference count for device.
3482 * @dev: device.
3483 *
3484 * This simply forwards the call to kobject_get(), though
3485 * we do take care to provide for the case that we get a NULL
3486 * pointer passed in.
3487 */
get_device(struct device * dev)3488 struct device *get_device(struct device *dev)
3489 {
3490 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3491 }
3492 EXPORT_SYMBOL_GPL(get_device);
3493
3494 /**
3495 * put_device - decrement reference count.
3496 * @dev: device in question.
3497 */
put_device(struct device * dev)3498 void put_device(struct device *dev)
3499 {
3500 /* might_sleep(); */
3501 if (dev)
3502 kobject_put(&dev->kobj);
3503 }
3504 EXPORT_SYMBOL_GPL(put_device);
3505
kill_device(struct device * dev)3506 bool kill_device(struct device *dev)
3507 {
3508 /*
3509 * Require the device lock and set the "dead" flag to guarantee that
3510 * the update behavior is consistent with the other bitfields near
3511 * it and that we cannot have an asynchronous probe routine trying
3512 * to run while we are tearing out the bus/class/sysfs from
3513 * underneath the device.
3514 */
3515 device_lock_assert(dev);
3516
3517 if (dev->p->dead)
3518 return false;
3519 dev->p->dead = true;
3520 return true;
3521 }
3522 EXPORT_SYMBOL_GPL(kill_device);
3523
3524 /**
3525 * device_del - delete device from system.
3526 * @dev: device.
3527 *
3528 * This is the first part of the device unregistration
3529 * sequence. This removes the device from the lists we control
3530 * from here, has it removed from the other driver model
3531 * subsystems it was added to in device_add(), and removes it
3532 * from the kobject hierarchy.
3533 *
3534 * NOTE: this should be called manually _iff_ device_add() was
3535 * also called manually.
3536 */
device_del(struct device * dev)3537 void device_del(struct device *dev)
3538 {
3539 struct device *parent = dev->parent;
3540 struct kobject *glue_dir = NULL;
3541 struct class_interface *class_intf;
3542 unsigned int noio_flag;
3543
3544 device_lock(dev);
3545 kill_device(dev);
3546 device_unlock(dev);
3547
3548 if (dev->fwnode && dev->fwnode->dev == dev)
3549 dev->fwnode->dev = NULL;
3550
3551 /* Notify clients of device removal. This call must come
3552 * before dpm_sysfs_remove().
3553 */
3554 noio_flag = memalloc_noio_save();
3555 if (dev->bus)
3556 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3557 BUS_NOTIFY_DEL_DEVICE, dev);
3558
3559 dpm_sysfs_remove(dev);
3560 if (parent)
3561 klist_del(&dev->p->knode_parent);
3562 if (MAJOR(dev->devt)) {
3563 devtmpfs_delete_node(dev);
3564 device_remove_sys_dev_entry(dev);
3565 device_remove_file(dev, &dev_attr_dev);
3566 }
3567 if (dev->class) {
3568 device_remove_class_symlinks(dev);
3569
3570 mutex_lock(&dev->class->p->mutex);
3571 /* notify any interfaces that the device is now gone */
3572 list_for_each_entry(class_intf,
3573 &dev->class->p->interfaces, node)
3574 if (class_intf->remove_dev)
3575 class_intf->remove_dev(dev, class_intf);
3576 /* remove the device from the class list */
3577 klist_del(&dev->p->knode_class);
3578 mutex_unlock(&dev->class->p->mutex);
3579 }
3580 device_remove_file(dev, &dev_attr_uevent);
3581 device_remove_attrs(dev);
3582 bus_remove_device(dev);
3583 device_pm_remove(dev);
3584 driver_deferred_probe_del(dev);
3585 device_platform_notify_remove(dev);
3586 device_remove_properties(dev);
3587 device_links_purge(dev);
3588
3589 if (dev->bus)
3590 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3591 BUS_NOTIFY_REMOVED_DEVICE, dev);
3592 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3593 glue_dir = get_glue_dir(dev);
3594 kobject_del(&dev->kobj);
3595 cleanup_glue_dir(dev, glue_dir);
3596 memalloc_noio_restore(noio_flag);
3597 put_device(parent);
3598 }
3599 EXPORT_SYMBOL_GPL(device_del);
3600
3601 /**
3602 * device_unregister - unregister device from system.
3603 * @dev: device going away.
3604 *
3605 * We do this in two parts, like we do device_register(). First,
3606 * we remove it from all the subsystems with device_del(), then
3607 * we decrement the reference count via put_device(). If that
3608 * is the final reference count, the device will be cleaned up
3609 * via device_release() above. Otherwise, the structure will
3610 * stick around until the final reference to the device is dropped.
3611 */
device_unregister(struct device * dev)3612 void device_unregister(struct device *dev)
3613 {
3614 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3615 device_del(dev);
3616 put_device(dev);
3617 }
3618 EXPORT_SYMBOL_GPL(device_unregister);
3619
prev_device(struct klist_iter * i)3620 static struct device *prev_device(struct klist_iter *i)
3621 {
3622 struct klist_node *n = klist_prev(i);
3623 struct device *dev = NULL;
3624 struct device_private *p;
3625
3626 if (n) {
3627 p = to_device_private_parent(n);
3628 dev = p->device;
3629 }
3630 return dev;
3631 }
3632
next_device(struct klist_iter * i)3633 static struct device *next_device(struct klist_iter *i)
3634 {
3635 struct klist_node *n = klist_next(i);
3636 struct device *dev = NULL;
3637 struct device_private *p;
3638
3639 if (n) {
3640 p = to_device_private_parent(n);
3641 dev = p->device;
3642 }
3643 return dev;
3644 }
3645
3646 /**
3647 * device_get_devnode - path of device node file
3648 * @dev: device
3649 * @mode: returned file access mode
3650 * @uid: returned file owner
3651 * @gid: returned file group
3652 * @tmp: possibly allocated string
3653 *
3654 * Return the relative path of a possible device node.
3655 * Non-default names may need to allocate a memory to compose
3656 * a name. This memory is returned in tmp and needs to be
3657 * freed by the caller.
3658 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3659 const char *device_get_devnode(struct device *dev,
3660 umode_t *mode, kuid_t *uid, kgid_t *gid,
3661 const char **tmp)
3662 {
3663 char *s;
3664
3665 *tmp = NULL;
3666
3667 /* the device type may provide a specific name */
3668 if (dev->type && dev->type->devnode)
3669 *tmp = dev->type->devnode(dev, mode, uid, gid);
3670 if (*tmp)
3671 return *tmp;
3672
3673 /* the class may provide a specific name */
3674 if (dev->class && dev->class->devnode)
3675 *tmp = dev->class->devnode(dev, mode);
3676 if (*tmp)
3677 return *tmp;
3678
3679 /* return name without allocation, tmp == NULL */
3680 if (strchr(dev_name(dev), '!') == NULL)
3681 return dev_name(dev);
3682
3683 /* replace '!' in the name with '/' */
3684 s = kstrdup(dev_name(dev), GFP_KERNEL);
3685 if (!s)
3686 return NULL;
3687 strreplace(s, '!', '/');
3688 return *tmp = s;
3689 }
3690
3691 /**
3692 * device_for_each_child - device child iterator.
3693 * @parent: parent struct device.
3694 * @fn: function to be called for each device.
3695 * @data: data for the callback.
3696 *
3697 * Iterate over @parent's child devices, and call @fn for each,
3698 * passing it @data.
3699 *
3700 * We check the return of @fn each time. If it returns anything
3701 * other than 0, we break out and return that value.
3702 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3703 int device_for_each_child(struct device *parent, void *data,
3704 int (*fn)(struct device *dev, void *data))
3705 {
3706 struct klist_iter i;
3707 struct device *child;
3708 int error = 0;
3709
3710 if (!parent->p)
3711 return 0;
3712
3713 klist_iter_init(&parent->p->klist_children, &i);
3714 while (!error && (child = next_device(&i)))
3715 error = fn(child, data);
3716 klist_iter_exit(&i);
3717 return error;
3718 }
3719 EXPORT_SYMBOL_GPL(device_for_each_child);
3720
3721 /**
3722 * device_for_each_child_reverse - device child iterator in reversed order.
3723 * @parent: parent struct device.
3724 * @fn: function to be called for each device.
3725 * @data: data for the callback.
3726 *
3727 * Iterate over @parent's child devices, and call @fn for each,
3728 * passing it @data.
3729 *
3730 * We check the return of @fn each time. If it returns anything
3731 * other than 0, we break out and return that value.
3732 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3733 int device_for_each_child_reverse(struct device *parent, void *data,
3734 int (*fn)(struct device *dev, void *data))
3735 {
3736 struct klist_iter i;
3737 struct device *child;
3738 int error = 0;
3739
3740 if (!parent->p)
3741 return 0;
3742
3743 klist_iter_init(&parent->p->klist_children, &i);
3744 while ((child = prev_device(&i)) && !error)
3745 error = fn(child, data);
3746 klist_iter_exit(&i);
3747 return error;
3748 }
3749 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3750
3751 /**
3752 * device_find_child - device iterator for locating a particular device.
3753 * @parent: parent struct device
3754 * @match: Callback function to check device
3755 * @data: Data to pass to match function
3756 *
3757 * This is similar to the device_for_each_child() function above, but it
3758 * returns a reference to a device that is 'found' for later use, as
3759 * determined by the @match callback.
3760 *
3761 * The callback should return 0 if the device doesn't match and non-zero
3762 * if it does. If the callback returns non-zero and a reference to the
3763 * current device can be obtained, this function will return to the caller
3764 * and not iterate over any more devices.
3765 *
3766 * NOTE: you will need to drop the reference with put_device() after use.
3767 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3768 struct device *device_find_child(struct device *parent, void *data,
3769 int (*match)(struct device *dev, void *data))
3770 {
3771 struct klist_iter i;
3772 struct device *child;
3773
3774 if (!parent)
3775 return NULL;
3776
3777 klist_iter_init(&parent->p->klist_children, &i);
3778 while ((child = next_device(&i)))
3779 if (match(child, data) && get_device(child))
3780 break;
3781 klist_iter_exit(&i);
3782 return child;
3783 }
3784 EXPORT_SYMBOL_GPL(device_find_child);
3785
3786 /**
3787 * device_find_child_by_name - device iterator for locating a child device.
3788 * @parent: parent struct device
3789 * @name: name of the child device
3790 *
3791 * This is similar to the device_find_child() function above, but it
3792 * returns a reference to a device that has the name @name.
3793 *
3794 * NOTE: you will need to drop the reference with put_device() after use.
3795 */
device_find_child_by_name(struct device * parent,const char * name)3796 struct device *device_find_child_by_name(struct device *parent,
3797 const char *name)
3798 {
3799 struct klist_iter i;
3800 struct device *child;
3801
3802 if (!parent)
3803 return NULL;
3804
3805 klist_iter_init(&parent->p->klist_children, &i);
3806 while ((child = next_device(&i)))
3807 if (sysfs_streq(dev_name(child), name) && get_device(child))
3808 break;
3809 klist_iter_exit(&i);
3810 return child;
3811 }
3812 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3813
devices_init(void)3814 int __init devices_init(void)
3815 {
3816 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3817 if (!devices_kset)
3818 return -ENOMEM;
3819 dev_kobj = kobject_create_and_add("dev", NULL);
3820 if (!dev_kobj)
3821 goto dev_kobj_err;
3822 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3823 if (!sysfs_dev_block_kobj)
3824 goto block_kobj_err;
3825 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3826 if (!sysfs_dev_char_kobj)
3827 goto char_kobj_err;
3828
3829 return 0;
3830
3831 char_kobj_err:
3832 kobject_put(sysfs_dev_block_kobj);
3833 block_kobj_err:
3834 kobject_put(dev_kobj);
3835 dev_kobj_err:
3836 kset_unregister(devices_kset);
3837 return -ENOMEM;
3838 }
3839
device_check_offline(struct device * dev,void * not_used)3840 static int device_check_offline(struct device *dev, void *not_used)
3841 {
3842 int ret;
3843
3844 ret = device_for_each_child(dev, NULL, device_check_offline);
3845 if (ret)
3846 return ret;
3847
3848 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3849 }
3850
3851 /**
3852 * device_offline - Prepare the device for hot-removal.
3853 * @dev: Device to be put offline.
3854 *
3855 * Execute the device bus type's .offline() callback, if present, to prepare
3856 * the device for a subsequent hot-removal. If that succeeds, the device must
3857 * not be used until either it is removed or its bus type's .online() callback
3858 * is executed.
3859 *
3860 * Call under device_hotplug_lock.
3861 */
device_offline(struct device * dev)3862 int device_offline(struct device *dev)
3863 {
3864 int ret;
3865
3866 if (dev->offline_disabled)
3867 return -EPERM;
3868
3869 ret = device_for_each_child(dev, NULL, device_check_offline);
3870 if (ret)
3871 return ret;
3872
3873 device_lock(dev);
3874 if (device_supports_offline(dev)) {
3875 if (dev->offline) {
3876 ret = 1;
3877 } else {
3878 ret = dev->bus->offline(dev);
3879 if (!ret) {
3880 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3881 dev->offline = true;
3882 }
3883 }
3884 }
3885 device_unlock(dev);
3886
3887 return ret;
3888 }
3889
3890 /**
3891 * device_online - Put the device back online after successful device_offline().
3892 * @dev: Device to be put back online.
3893 *
3894 * If device_offline() has been successfully executed for @dev, but the device
3895 * has not been removed subsequently, execute its bus type's .online() callback
3896 * to indicate that the device can be used again.
3897 *
3898 * Call under device_hotplug_lock.
3899 */
device_online(struct device * dev)3900 int device_online(struct device *dev)
3901 {
3902 int ret = 0;
3903
3904 device_lock(dev);
3905 if (device_supports_offline(dev)) {
3906 if (dev->offline) {
3907 ret = dev->bus->online(dev);
3908 if (!ret) {
3909 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3910 dev->offline = false;
3911 }
3912 } else {
3913 ret = 1;
3914 }
3915 }
3916 device_unlock(dev);
3917
3918 return ret;
3919 }
3920
3921 struct root_device {
3922 struct device dev;
3923 struct module *owner;
3924 };
3925
to_root_device(struct device * d)3926 static inline struct root_device *to_root_device(struct device *d)
3927 {
3928 return container_of(d, struct root_device, dev);
3929 }
3930
root_device_release(struct device * dev)3931 static void root_device_release(struct device *dev)
3932 {
3933 kfree(to_root_device(dev));
3934 }
3935
3936 /**
3937 * __root_device_register - allocate and register a root device
3938 * @name: root device name
3939 * @owner: owner module of the root device, usually THIS_MODULE
3940 *
3941 * This function allocates a root device and registers it
3942 * using device_register(). In order to free the returned
3943 * device, use root_device_unregister().
3944 *
3945 * Root devices are dummy devices which allow other devices
3946 * to be grouped under /sys/devices. Use this function to
3947 * allocate a root device and then use it as the parent of
3948 * any device which should appear under /sys/devices/{name}
3949 *
3950 * The /sys/devices/{name} directory will also contain a
3951 * 'module' symlink which points to the @owner directory
3952 * in sysfs.
3953 *
3954 * Returns &struct device pointer on success, or ERR_PTR() on error.
3955 *
3956 * Note: You probably want to use root_device_register().
3957 */
__root_device_register(const char * name,struct module * owner)3958 struct device *__root_device_register(const char *name, struct module *owner)
3959 {
3960 struct root_device *root;
3961 int err = -ENOMEM;
3962
3963 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3964 if (!root)
3965 return ERR_PTR(err);
3966
3967 err = dev_set_name(&root->dev, "%s", name);
3968 if (err) {
3969 kfree(root);
3970 return ERR_PTR(err);
3971 }
3972
3973 root->dev.release = root_device_release;
3974
3975 err = device_register(&root->dev);
3976 if (err) {
3977 put_device(&root->dev);
3978 return ERR_PTR(err);
3979 }
3980
3981 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3982 if (owner) {
3983 struct module_kobject *mk = &owner->mkobj;
3984
3985 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3986 if (err) {
3987 device_unregister(&root->dev);
3988 return ERR_PTR(err);
3989 }
3990 root->owner = owner;
3991 }
3992 #endif
3993
3994 return &root->dev;
3995 }
3996 EXPORT_SYMBOL_GPL(__root_device_register);
3997
3998 /**
3999 * root_device_unregister - unregister and free a root device
4000 * @dev: device going away
4001 *
4002 * This function unregisters and cleans up a device that was created by
4003 * root_device_register().
4004 */
root_device_unregister(struct device * dev)4005 void root_device_unregister(struct device *dev)
4006 {
4007 struct root_device *root = to_root_device(dev);
4008
4009 if (root->owner)
4010 sysfs_remove_link(&root->dev.kobj, "module");
4011
4012 device_unregister(dev);
4013 }
4014 EXPORT_SYMBOL_GPL(root_device_unregister);
4015
4016
device_create_release(struct device * dev)4017 static void device_create_release(struct device *dev)
4018 {
4019 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4020 kfree(dev);
4021 }
4022
4023 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4024 device_create_groups_vargs(struct class *class, struct device *parent,
4025 dev_t devt, void *drvdata,
4026 const struct attribute_group **groups,
4027 const char *fmt, va_list args)
4028 {
4029 struct device *dev = NULL;
4030 int retval = -ENODEV;
4031
4032 if (class == NULL || IS_ERR(class))
4033 goto error;
4034
4035 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4036 if (!dev) {
4037 retval = -ENOMEM;
4038 goto error;
4039 }
4040
4041 device_initialize(dev);
4042 dev->devt = devt;
4043 dev->class = class;
4044 dev->parent = parent;
4045 dev->groups = groups;
4046 dev->release = device_create_release;
4047 dev_set_drvdata(dev, drvdata);
4048
4049 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4050 if (retval)
4051 goto error;
4052
4053 retval = device_add(dev);
4054 if (retval)
4055 goto error;
4056
4057 return dev;
4058
4059 error:
4060 put_device(dev);
4061 return ERR_PTR(retval);
4062 }
4063
4064 /**
4065 * device_create - creates a device and registers it with sysfs
4066 * @class: pointer to the struct class that this device should be registered to
4067 * @parent: pointer to the parent struct device of this new device, if any
4068 * @devt: the dev_t for the char device to be added
4069 * @drvdata: the data to be added to the device for callbacks
4070 * @fmt: string for the device's name
4071 *
4072 * This function can be used by char device classes. A struct device
4073 * will be created in sysfs, registered to the specified class.
4074 *
4075 * A "dev" file will be created, showing the dev_t for the device, if
4076 * the dev_t is not 0,0.
4077 * If a pointer to a parent struct device is passed in, the newly created
4078 * struct device will be a child of that device in sysfs.
4079 * The pointer to the struct device will be returned from the call.
4080 * Any further sysfs files that might be required can be created using this
4081 * pointer.
4082 *
4083 * Returns &struct device pointer on success, or ERR_PTR() on error.
4084 *
4085 * Note: the struct class passed to this function must have previously
4086 * been created with a call to class_create().
4087 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4088 struct device *device_create(struct class *class, struct device *parent,
4089 dev_t devt, void *drvdata, const char *fmt, ...)
4090 {
4091 va_list vargs;
4092 struct device *dev;
4093
4094 va_start(vargs, fmt);
4095 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4096 fmt, vargs);
4097 va_end(vargs);
4098 return dev;
4099 }
4100 EXPORT_SYMBOL_GPL(device_create);
4101
4102 /**
4103 * device_create_with_groups - creates a device and registers it with sysfs
4104 * @class: pointer to the struct class that this device should be registered to
4105 * @parent: pointer to the parent struct device of this new device, if any
4106 * @devt: the dev_t for the char device to be added
4107 * @drvdata: the data to be added to the device for callbacks
4108 * @groups: NULL-terminated list of attribute groups to be created
4109 * @fmt: string for the device's name
4110 *
4111 * This function can be used by char device classes. A struct device
4112 * will be created in sysfs, registered to the specified class.
4113 * Additional attributes specified in the groups parameter will also
4114 * be created automatically.
4115 *
4116 * A "dev" file will be created, showing the dev_t for the device, if
4117 * the dev_t is not 0,0.
4118 * If a pointer to a parent struct device is passed in, the newly created
4119 * struct device will be a child of that device in sysfs.
4120 * The pointer to the struct device will be returned from the call.
4121 * Any further sysfs files that might be required can be created using this
4122 * pointer.
4123 *
4124 * Returns &struct device pointer on success, or ERR_PTR() on error.
4125 *
4126 * Note: the struct class passed to this function must have previously
4127 * been created with a call to class_create().
4128 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4129 struct device *device_create_with_groups(struct class *class,
4130 struct device *parent, dev_t devt,
4131 void *drvdata,
4132 const struct attribute_group **groups,
4133 const char *fmt, ...)
4134 {
4135 va_list vargs;
4136 struct device *dev;
4137
4138 va_start(vargs, fmt);
4139 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4140 fmt, vargs);
4141 va_end(vargs);
4142 return dev;
4143 }
4144 EXPORT_SYMBOL_GPL(device_create_with_groups);
4145
4146 /**
4147 * device_destroy - removes a device that was created with device_create()
4148 * @class: pointer to the struct class that this device was registered with
4149 * @devt: the dev_t of the device that was previously registered
4150 *
4151 * This call unregisters and cleans up a device that was created with a
4152 * call to device_create().
4153 */
device_destroy(struct class * class,dev_t devt)4154 void device_destroy(struct class *class, dev_t devt)
4155 {
4156 struct device *dev;
4157
4158 dev = class_find_device_by_devt(class, devt);
4159 if (dev) {
4160 put_device(dev);
4161 device_unregister(dev);
4162 }
4163 }
4164 EXPORT_SYMBOL_GPL(device_destroy);
4165
4166 /**
4167 * device_rename - renames a device
4168 * @dev: the pointer to the struct device to be renamed
4169 * @new_name: the new name of the device
4170 *
4171 * It is the responsibility of the caller to provide mutual
4172 * exclusion between two different calls of device_rename
4173 * on the same device to ensure that new_name is valid and
4174 * won't conflict with other devices.
4175 *
4176 * Note: Don't call this function. Currently, the networking layer calls this
4177 * function, but that will change. The following text from Kay Sievers offers
4178 * some insight:
4179 *
4180 * Renaming devices is racy at many levels, symlinks and other stuff are not
4181 * replaced atomically, and you get a "move" uevent, but it's not easy to
4182 * connect the event to the old and new device. Device nodes are not renamed at
4183 * all, there isn't even support for that in the kernel now.
4184 *
4185 * In the meantime, during renaming, your target name might be taken by another
4186 * driver, creating conflicts. Or the old name is taken directly after you
4187 * renamed it -- then you get events for the same DEVPATH, before you even see
4188 * the "move" event. It's just a mess, and nothing new should ever rely on
4189 * kernel device renaming. Besides that, it's not even implemented now for
4190 * other things than (driver-core wise very simple) network devices.
4191 *
4192 * We are currently about to change network renaming in udev to completely
4193 * disallow renaming of devices in the same namespace as the kernel uses,
4194 * because we can't solve the problems properly, that arise with swapping names
4195 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4196 * be allowed to some other name than eth[0-9]*, for the aforementioned
4197 * reasons.
4198 *
4199 * Make up a "real" name in the driver before you register anything, or add
4200 * some other attributes for userspace to find the device, or use udev to add
4201 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4202 * don't even want to get into that and try to implement the missing pieces in
4203 * the core. We really have other pieces to fix in the driver core mess. :)
4204 */
device_rename(struct device * dev,const char * new_name)4205 int device_rename(struct device *dev, const char *new_name)
4206 {
4207 struct kobject *kobj = &dev->kobj;
4208 char *old_device_name = NULL;
4209 int error;
4210
4211 dev = get_device(dev);
4212 if (!dev)
4213 return -EINVAL;
4214
4215 dev_dbg(dev, "renaming to %s\n", new_name);
4216
4217 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4218 if (!old_device_name) {
4219 error = -ENOMEM;
4220 goto out;
4221 }
4222
4223 if (dev->class) {
4224 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4225 kobj, old_device_name,
4226 new_name, kobject_namespace(kobj));
4227 if (error)
4228 goto out;
4229 }
4230
4231 error = kobject_rename(kobj, new_name);
4232 if (error)
4233 goto out;
4234
4235 out:
4236 put_device(dev);
4237
4238 kfree(old_device_name);
4239
4240 return error;
4241 }
4242 EXPORT_SYMBOL_GPL(device_rename);
4243
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4244 static int device_move_class_links(struct device *dev,
4245 struct device *old_parent,
4246 struct device *new_parent)
4247 {
4248 int error = 0;
4249
4250 if (old_parent)
4251 sysfs_remove_link(&dev->kobj, "device");
4252 if (new_parent)
4253 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4254 "device");
4255 return error;
4256 }
4257
4258 /**
4259 * device_move - moves a device to a new parent
4260 * @dev: the pointer to the struct device to be moved
4261 * @new_parent: the new parent of the device (can be NULL)
4262 * @dpm_order: how to reorder the dpm_list
4263 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4264 int device_move(struct device *dev, struct device *new_parent,
4265 enum dpm_order dpm_order)
4266 {
4267 int error;
4268 struct device *old_parent;
4269 struct kobject *new_parent_kobj;
4270
4271 dev = get_device(dev);
4272 if (!dev)
4273 return -EINVAL;
4274
4275 device_pm_lock();
4276 new_parent = get_device(new_parent);
4277 new_parent_kobj = get_device_parent(dev, new_parent);
4278 if (IS_ERR(new_parent_kobj)) {
4279 error = PTR_ERR(new_parent_kobj);
4280 put_device(new_parent);
4281 goto out;
4282 }
4283
4284 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4285 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4286 error = kobject_move(&dev->kobj, new_parent_kobj);
4287 if (error) {
4288 cleanup_glue_dir(dev, new_parent_kobj);
4289 put_device(new_parent);
4290 goto out;
4291 }
4292 old_parent = dev->parent;
4293 dev->parent = new_parent;
4294 if (old_parent)
4295 klist_remove(&dev->p->knode_parent);
4296 if (new_parent) {
4297 klist_add_tail(&dev->p->knode_parent,
4298 &new_parent->p->klist_children);
4299 set_dev_node(dev, dev_to_node(new_parent));
4300 }
4301
4302 if (dev->class) {
4303 error = device_move_class_links(dev, old_parent, new_parent);
4304 if (error) {
4305 /* We ignore errors on cleanup since we're hosed anyway... */
4306 device_move_class_links(dev, new_parent, old_parent);
4307 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4308 if (new_parent)
4309 klist_remove(&dev->p->knode_parent);
4310 dev->parent = old_parent;
4311 if (old_parent) {
4312 klist_add_tail(&dev->p->knode_parent,
4313 &old_parent->p->klist_children);
4314 set_dev_node(dev, dev_to_node(old_parent));
4315 }
4316 }
4317 cleanup_glue_dir(dev, new_parent_kobj);
4318 put_device(new_parent);
4319 goto out;
4320 }
4321 }
4322 switch (dpm_order) {
4323 case DPM_ORDER_NONE:
4324 break;
4325 case DPM_ORDER_DEV_AFTER_PARENT:
4326 device_pm_move_after(dev, new_parent);
4327 devices_kset_move_after(dev, new_parent);
4328 break;
4329 case DPM_ORDER_PARENT_BEFORE_DEV:
4330 device_pm_move_before(new_parent, dev);
4331 devices_kset_move_before(new_parent, dev);
4332 break;
4333 case DPM_ORDER_DEV_LAST:
4334 device_pm_move_last(dev);
4335 devices_kset_move_last(dev);
4336 break;
4337 }
4338
4339 put_device(old_parent);
4340 out:
4341 device_pm_unlock();
4342 put_device(dev);
4343 return error;
4344 }
4345 EXPORT_SYMBOL_GPL(device_move);
4346
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4347 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4348 kgid_t kgid)
4349 {
4350 struct kobject *kobj = &dev->kobj;
4351 struct class *class = dev->class;
4352 const struct device_type *type = dev->type;
4353 int error;
4354
4355 if (class) {
4356 /*
4357 * Change the device groups of the device class for @dev to
4358 * @kuid/@kgid.
4359 */
4360 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4361 kgid);
4362 if (error)
4363 return error;
4364 }
4365
4366 if (type) {
4367 /*
4368 * Change the device groups of the device type for @dev to
4369 * @kuid/@kgid.
4370 */
4371 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4372 kgid);
4373 if (error)
4374 return error;
4375 }
4376
4377 /* Change the device groups of @dev to @kuid/@kgid. */
4378 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4379 if (error)
4380 return error;
4381
4382 if (device_supports_offline(dev) && !dev->offline_disabled) {
4383 /* Change online device attributes of @dev to @kuid/@kgid. */
4384 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4385 kuid, kgid);
4386 if (error)
4387 return error;
4388 }
4389
4390 return 0;
4391 }
4392
4393 /**
4394 * device_change_owner - change the owner of an existing device.
4395 * @dev: device.
4396 * @kuid: new owner's kuid
4397 * @kgid: new owner's kgid
4398 *
4399 * This changes the owner of @dev and its corresponding sysfs entries to
4400 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4401 * core.
4402 *
4403 * Returns 0 on success or error code on failure.
4404 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4405 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4406 {
4407 int error;
4408 struct kobject *kobj = &dev->kobj;
4409
4410 dev = get_device(dev);
4411 if (!dev)
4412 return -EINVAL;
4413
4414 /*
4415 * Change the kobject and the default attributes and groups of the
4416 * ktype associated with it to @kuid/@kgid.
4417 */
4418 error = sysfs_change_owner(kobj, kuid, kgid);
4419 if (error)
4420 goto out;
4421
4422 /*
4423 * Change the uevent file for @dev to the new owner. The uevent file
4424 * was created in a separate step when @dev got added and we mirror
4425 * that step here.
4426 */
4427 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4428 kgid);
4429 if (error)
4430 goto out;
4431
4432 /*
4433 * Change the device groups, the device groups associated with the
4434 * device class, and the groups associated with the device type of @dev
4435 * to @kuid/@kgid.
4436 */
4437 error = device_attrs_change_owner(dev, kuid, kgid);
4438 if (error)
4439 goto out;
4440
4441 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4442 if (error)
4443 goto out;
4444
4445 #ifdef CONFIG_BLOCK
4446 if (sysfs_deprecated && dev->class == &block_class)
4447 goto out;
4448 #endif
4449
4450 /*
4451 * Change the owner of the symlink located in the class directory of
4452 * the device class associated with @dev which points to the actual
4453 * directory entry for @dev to @kuid/@kgid. This ensures that the
4454 * symlink shows the same permissions as its target.
4455 */
4456 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4457 dev_name(dev), kuid, kgid);
4458 if (error)
4459 goto out;
4460
4461 out:
4462 put_device(dev);
4463 return error;
4464 }
4465 EXPORT_SYMBOL_GPL(device_change_owner);
4466
4467 /**
4468 * device_shutdown - call ->shutdown() on each device to shutdown.
4469 */
device_shutdown(void)4470 void device_shutdown(void)
4471 {
4472 struct device *dev, *parent;
4473
4474 wait_for_device_probe();
4475 device_block_probing();
4476
4477 cpufreq_suspend();
4478
4479 spin_lock(&devices_kset->list_lock);
4480 /*
4481 * Walk the devices list backward, shutting down each in turn.
4482 * Beware that device unplug events may also start pulling
4483 * devices offline, even as the system is shutting down.
4484 */
4485 while (!list_empty(&devices_kset->list)) {
4486 dev = list_entry(devices_kset->list.prev, struct device,
4487 kobj.entry);
4488
4489 /*
4490 * hold reference count of device's parent to
4491 * prevent it from being freed because parent's
4492 * lock is to be held
4493 */
4494 parent = get_device(dev->parent);
4495 get_device(dev);
4496 /*
4497 * Make sure the device is off the kset list, in the
4498 * event that dev->*->shutdown() doesn't remove it.
4499 */
4500 list_del_init(&dev->kobj.entry);
4501 spin_unlock(&devices_kset->list_lock);
4502
4503 /* hold lock to avoid race with probe/release */
4504 if (parent)
4505 device_lock(parent);
4506 device_lock(dev);
4507
4508 /* Don't allow any more runtime suspends */
4509 pm_runtime_get_noresume(dev);
4510 pm_runtime_barrier(dev);
4511
4512 if (dev->class && dev->class->shutdown_pre) {
4513 if (initcall_debug)
4514 dev_info(dev, "shutdown_pre\n");
4515 dev->class->shutdown_pre(dev);
4516 }
4517 if (dev->bus && dev->bus->shutdown) {
4518 if (initcall_debug)
4519 dev_info(dev, "shutdown\n");
4520 dev->bus->shutdown(dev);
4521 } else if (dev->driver && dev->driver->shutdown) {
4522 if (initcall_debug)
4523 dev_info(dev, "shutdown\n");
4524 dev->driver->shutdown(dev);
4525 }
4526
4527 device_unlock(dev);
4528 if (parent)
4529 device_unlock(parent);
4530
4531 put_device(dev);
4532 put_device(parent);
4533
4534 spin_lock(&devices_kset->list_lock);
4535 }
4536 spin_unlock(&devices_kset->list_lock);
4537 }
4538
4539 /*
4540 * Device logging functions
4541 */
4542
4543 #ifdef CONFIG_PRINTK
4544 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4545 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4546 {
4547 const char *subsys;
4548
4549 memset(dev_info, 0, sizeof(*dev_info));
4550
4551 if (dev->class)
4552 subsys = dev->class->name;
4553 else if (dev->bus)
4554 subsys = dev->bus->name;
4555 else
4556 return;
4557
4558 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4559
4560 /*
4561 * Add device identifier DEVICE=:
4562 * b12:8 block dev_t
4563 * c127:3 char dev_t
4564 * n8 netdev ifindex
4565 * +sound:card0 subsystem:devname
4566 */
4567 if (MAJOR(dev->devt)) {
4568 char c;
4569
4570 if (strcmp(subsys, "block") == 0)
4571 c = 'b';
4572 else
4573 c = 'c';
4574
4575 snprintf(dev_info->device, sizeof(dev_info->device),
4576 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4577 } else if (strcmp(subsys, "net") == 0) {
4578 struct net_device *net = to_net_dev(dev);
4579
4580 snprintf(dev_info->device, sizeof(dev_info->device),
4581 "n%u", net->ifindex);
4582 } else {
4583 snprintf(dev_info->device, sizeof(dev_info->device),
4584 "+%s:%s", subsys, dev_name(dev));
4585 }
4586 }
4587
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4588 int dev_vprintk_emit(int level, const struct device *dev,
4589 const char *fmt, va_list args)
4590 {
4591 struct dev_printk_info dev_info;
4592
4593 set_dev_info(dev, &dev_info);
4594
4595 return vprintk_emit(0, level, &dev_info, fmt, args);
4596 }
4597 EXPORT_SYMBOL(dev_vprintk_emit);
4598
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4599 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4600 {
4601 va_list args;
4602 int r;
4603
4604 va_start(args, fmt);
4605
4606 r = dev_vprintk_emit(level, dev, fmt, args);
4607
4608 va_end(args);
4609
4610 return r;
4611 }
4612 EXPORT_SYMBOL(dev_printk_emit);
4613
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4614 static void __dev_printk(const char *level, const struct device *dev,
4615 struct va_format *vaf)
4616 {
4617 if (dev)
4618 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4619 dev_driver_string(dev), dev_name(dev), vaf);
4620 else
4621 printk("%s(NULL device *): %pV", level, vaf);
4622 }
4623
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4624 void _dev_printk(const char *level, const struct device *dev,
4625 const char *fmt, ...)
4626 {
4627 struct va_format vaf;
4628 va_list args;
4629
4630 va_start(args, fmt);
4631
4632 vaf.fmt = fmt;
4633 vaf.va = &args;
4634
4635 __dev_printk(level, dev, &vaf);
4636
4637 va_end(args);
4638 }
4639 EXPORT_SYMBOL(_dev_printk);
4640
4641 #define define_dev_printk_level(func, kern_level) \
4642 void func(const struct device *dev, const char *fmt, ...) \
4643 { \
4644 struct va_format vaf; \
4645 va_list args; \
4646 \
4647 va_start(args, fmt); \
4648 \
4649 vaf.fmt = fmt; \
4650 vaf.va = &args; \
4651 \
4652 __dev_printk(kern_level, dev, &vaf); \
4653 \
4654 va_end(args); \
4655 } \
4656 EXPORT_SYMBOL(func);
4657
4658 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4659 define_dev_printk_level(_dev_alert, KERN_ALERT);
4660 define_dev_printk_level(_dev_crit, KERN_CRIT);
4661 define_dev_printk_level(_dev_err, KERN_ERR);
4662 define_dev_printk_level(_dev_warn, KERN_WARNING);
4663 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4664 define_dev_printk_level(_dev_info, KERN_INFO);
4665
4666 #endif
4667
4668 /**
4669 * dev_err_probe - probe error check and log helper
4670 * @dev: the pointer to the struct device
4671 * @err: error value to test
4672 * @fmt: printf-style format string
4673 * @...: arguments as specified in the format string
4674 *
4675 * This helper implements common pattern present in probe functions for error
4676 * checking: print debug or error message depending if the error value is
4677 * -EPROBE_DEFER and propagate error upwards.
4678 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4679 * checked later by reading devices_deferred debugfs attribute.
4680 * It replaces code sequence::
4681 *
4682 * if (err != -EPROBE_DEFER)
4683 * dev_err(dev, ...);
4684 * else
4685 * dev_dbg(dev, ...);
4686 * return err;
4687 *
4688 * with::
4689 *
4690 * return dev_err_probe(dev, err, ...);
4691 *
4692 * Returns @err.
4693 *
4694 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4695 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4696 {
4697 struct va_format vaf;
4698 va_list args;
4699
4700 va_start(args, fmt);
4701 vaf.fmt = fmt;
4702 vaf.va = &args;
4703
4704 if (err != -EPROBE_DEFER) {
4705 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4706 } else {
4707 device_set_deferred_probe_reason(dev, &vaf);
4708 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4709 }
4710
4711 va_end(args);
4712
4713 return err;
4714 }
4715 EXPORT_SYMBOL_GPL(dev_err_probe);
4716
fwnode_is_primary(struct fwnode_handle * fwnode)4717 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4718 {
4719 return fwnode && !IS_ERR(fwnode->secondary);
4720 }
4721
4722 /**
4723 * set_primary_fwnode - Change the primary firmware node of a given device.
4724 * @dev: Device to handle.
4725 * @fwnode: New primary firmware node of the device.
4726 *
4727 * Set the device's firmware node pointer to @fwnode, but if a secondary
4728 * firmware node of the device is present, preserve it.
4729 *
4730 * Valid fwnode cases are:
4731 * - primary --> secondary --> -ENODEV
4732 * - primary --> NULL
4733 * - secondary --> -ENODEV
4734 * - NULL
4735 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4736 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4737 {
4738 struct device *parent = dev->parent;
4739 struct fwnode_handle *fn = dev->fwnode;
4740
4741 if (fwnode) {
4742 if (fwnode_is_primary(fn))
4743 fn = fn->secondary;
4744
4745 if (fn) {
4746 WARN_ON(fwnode->secondary);
4747 fwnode->secondary = fn;
4748 }
4749 dev->fwnode = fwnode;
4750 } else {
4751 if (fwnode_is_primary(fn)) {
4752 dev->fwnode = fn->secondary;
4753 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4754 if (!(parent && fn == parent->fwnode))
4755 fn->secondary = NULL;
4756 } else {
4757 dev->fwnode = NULL;
4758 }
4759 }
4760 }
4761 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4762
4763 /**
4764 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4765 * @dev: Device to handle.
4766 * @fwnode: New secondary firmware node of the device.
4767 *
4768 * If a primary firmware node of the device is present, set its secondary
4769 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4770 * @fwnode.
4771 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4772 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4773 {
4774 if (fwnode)
4775 fwnode->secondary = ERR_PTR(-ENODEV);
4776
4777 if (fwnode_is_primary(dev->fwnode))
4778 dev->fwnode->secondary = fwnode;
4779 else
4780 dev->fwnode = fwnode;
4781 }
4782 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4783
4784 /**
4785 * device_set_of_node_from_dev - reuse device-tree node of another device
4786 * @dev: device whose device-tree node is being set
4787 * @dev2: device whose device-tree node is being reused
4788 *
4789 * Takes another reference to the new device-tree node after first dropping
4790 * any reference held to the old node.
4791 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4792 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4793 {
4794 of_node_put(dev->of_node);
4795 dev->of_node = of_node_get(dev2->of_node);
4796 dev->of_node_reused = true;
4797 }
4798 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4799
device_set_node(struct device * dev,struct fwnode_handle * fwnode)4800 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4801 {
4802 dev->fwnode = fwnode;
4803 dev->of_node = to_of_node(fwnode);
4804 }
4805 EXPORT_SYMBOL_GPL(device_set_node);
4806
device_match_name(struct device * dev,const void * name)4807 int device_match_name(struct device *dev, const void *name)
4808 {
4809 return sysfs_streq(dev_name(dev), name);
4810 }
4811 EXPORT_SYMBOL_GPL(device_match_name);
4812
device_match_of_node(struct device * dev,const void * np)4813 int device_match_of_node(struct device *dev, const void *np)
4814 {
4815 return dev->of_node == np;
4816 }
4817 EXPORT_SYMBOL_GPL(device_match_of_node);
4818
device_match_fwnode(struct device * dev,const void * fwnode)4819 int device_match_fwnode(struct device *dev, const void *fwnode)
4820 {
4821 return dev_fwnode(dev) == fwnode;
4822 }
4823 EXPORT_SYMBOL_GPL(device_match_fwnode);
4824
device_match_devt(struct device * dev,const void * pdevt)4825 int device_match_devt(struct device *dev, const void *pdevt)
4826 {
4827 return dev->devt == *(dev_t *)pdevt;
4828 }
4829 EXPORT_SYMBOL_GPL(device_match_devt);
4830
device_match_acpi_dev(struct device * dev,const void * adev)4831 int device_match_acpi_dev(struct device *dev, const void *adev)
4832 {
4833 return ACPI_COMPANION(dev) == adev;
4834 }
4835 EXPORT_SYMBOL(device_match_acpi_dev);
4836
device_match_any(struct device * dev,const void * unused)4837 int device_match_any(struct device *dev, const void *unused)
4838 {
4839 return 1;
4840 }
4841 EXPORT_SYMBOL_GPL(device_match_any);
4842