• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 114 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 125 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 100 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 110 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 110 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffffff, .repeat_period = 100 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 114 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 114 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 114 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 125 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74 		.scancode_bits = 0x00000fff, .repeat_period = 114 },
75 	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76 		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
77 	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
79 	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
80 };
81 
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
86 
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
89 
seek_rc_map(const char * name)90 static struct rc_map_list *seek_rc_map(const char *name)
91 {
92 	struct rc_map_list *map = NULL;
93 
94 	spin_lock(&rc_map_lock);
95 	list_for_each_entry(map, &rc_map_list, list) {
96 		if (!strcmp(name, map->map.name)) {
97 			spin_unlock(&rc_map_lock);
98 			return map;
99 		}
100 	}
101 	spin_unlock(&rc_map_lock);
102 
103 	return NULL;
104 }
105 
rc_map_get(const char * name)106 struct rc_map *rc_map_get(const char *name)
107 {
108 
109 	struct rc_map_list *map;
110 
111 	map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 	if (!map) {
114 		int rc = request_module("%s", name);
115 		if (rc < 0) {
116 			pr_err("Couldn't load IR keymap %s\n", name);
117 			return NULL;
118 		}
119 		msleep(20);	/* Give some time for IR to register */
120 
121 		map = seek_rc_map(name);
122 	}
123 #endif
124 	if (!map) {
125 		pr_err("IR keymap %s not found\n", name);
126 		return NULL;
127 	}
128 
129 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130 
131 	return &map->map;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_get);
134 
rc_map_register(struct rc_map_list * map)135 int rc_map_register(struct rc_map_list *map)
136 {
137 	spin_lock(&rc_map_lock);
138 	list_add_tail(&map->list, &rc_map_list);
139 	spin_unlock(&rc_map_lock);
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(rc_map_register);
143 
rc_map_unregister(struct rc_map_list * map)144 void rc_map_unregister(struct rc_map_list *map)
145 {
146 	spin_lock(&rc_map_lock);
147 	list_del(&map->list);
148 	spin_unlock(&rc_map_lock);
149 }
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
151 
152 
153 static struct rc_map_table empty[] = {
154 	{ 0x2a, KEY_COFFEE },
155 };
156 
157 static struct rc_map_list empty_map = {
158 	.map = {
159 		.scan     = empty,
160 		.size     = ARRAY_SIZE(empty),
161 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
162 		.name     = RC_MAP_EMPTY,
163 	}
164 };
165 
166 /**
167  * scancode_to_u64() - converts scancode in &struct input_keymap_entry
168  * @ke: keymap entry containing scancode to be converted.
169  * @scancode: pointer to the location where converted scancode should
170  *	be stored.
171  *
172  * This function is a version of input_scancode_to_scalar specialized for
173  * rc-core.
174  */
scancode_to_u64(const struct input_keymap_entry * ke,u64 * scancode)175 static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
176 {
177 	switch (ke->len) {
178 	case 1:
179 		*scancode = *((u8 *)ke->scancode);
180 		break;
181 
182 	case 2:
183 		*scancode = *((u16 *)ke->scancode);
184 		break;
185 
186 	case 4:
187 		*scancode = *((u32 *)ke->scancode);
188 		break;
189 
190 	case 8:
191 		*scancode = *((u64 *)ke->scancode);
192 		break;
193 
194 	default:
195 		return -EINVAL;
196 	}
197 
198 	return 0;
199 }
200 
201 /**
202  * ir_create_table() - initializes a scancode table
203  * @dev:	the rc_dev device
204  * @rc_map:	the rc_map to initialize
205  * @name:	name to assign to the table
206  * @rc_proto:	ir type to assign to the new table
207  * @size:	initial size of the table
208  *
209  * This routine will initialize the rc_map and will allocate
210  * memory to hold at least the specified number of elements.
211  *
212  * return:	zero on success or a negative error code
213  */
ir_create_table(struct rc_dev * dev,struct rc_map * rc_map,const char * name,u64 rc_proto,size_t size)214 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
215 			   const char *name, u64 rc_proto, size_t size)
216 {
217 	rc_map->name = kstrdup(name, GFP_KERNEL);
218 	if (!rc_map->name)
219 		return -ENOMEM;
220 	rc_map->rc_proto = rc_proto;
221 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
222 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
223 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
224 	if (!rc_map->scan) {
225 		kfree(rc_map->name);
226 		rc_map->name = NULL;
227 		return -ENOMEM;
228 	}
229 
230 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
231 		rc_map->size, rc_map->alloc);
232 	return 0;
233 }
234 
235 /**
236  * ir_free_table() - frees memory allocated by a scancode table
237  * @rc_map:	the table whose mappings need to be freed
238  *
239  * This routine will free memory alloctaed for key mappings used by given
240  * scancode table.
241  */
ir_free_table(struct rc_map * rc_map)242 static void ir_free_table(struct rc_map *rc_map)
243 {
244 	rc_map->size = 0;
245 	kfree(rc_map->name);
246 	rc_map->name = NULL;
247 	kfree(rc_map->scan);
248 	rc_map->scan = NULL;
249 }
250 
251 /**
252  * ir_resize_table() - resizes a scancode table if necessary
253  * @dev:	the rc_dev device
254  * @rc_map:	the rc_map to resize
255  * @gfp_flags:	gfp flags to use when allocating memory
256  *
257  * This routine will shrink the rc_map if it has lots of
258  * unused entries and grow it if it is full.
259  *
260  * return:	zero on success or a negative error code
261  */
ir_resize_table(struct rc_dev * dev,struct rc_map * rc_map,gfp_t gfp_flags)262 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
263 			   gfp_t gfp_flags)
264 {
265 	unsigned int oldalloc = rc_map->alloc;
266 	unsigned int newalloc = oldalloc;
267 	struct rc_map_table *oldscan = rc_map->scan;
268 	struct rc_map_table *newscan;
269 
270 	if (rc_map->size == rc_map->len) {
271 		/* All entries in use -> grow keytable */
272 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
273 			return -ENOMEM;
274 
275 		newalloc *= 2;
276 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
277 	}
278 
279 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
280 		/* Less than 1/3 of entries in use -> shrink keytable */
281 		newalloc /= 2;
282 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
283 	}
284 
285 	if (newalloc == oldalloc)
286 		return 0;
287 
288 	newscan = kmalloc(newalloc, gfp_flags);
289 	if (!newscan)
290 		return -ENOMEM;
291 
292 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
293 	rc_map->scan = newscan;
294 	rc_map->alloc = newalloc;
295 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
296 	kfree(oldscan);
297 	return 0;
298 }
299 
300 /**
301  * ir_update_mapping() - set a keycode in the scancode->keycode table
302  * @dev:	the struct rc_dev device descriptor
303  * @rc_map:	scancode table to be adjusted
304  * @index:	index of the mapping that needs to be updated
305  * @new_keycode: the desired keycode
306  *
307  * This routine is used to update scancode->keycode mapping at given
308  * position.
309  *
310  * return:	previous keycode assigned to the mapping
311  *
312  */
ir_update_mapping(struct rc_dev * dev,struct rc_map * rc_map,unsigned int index,unsigned int new_keycode)313 static unsigned int ir_update_mapping(struct rc_dev *dev,
314 				      struct rc_map *rc_map,
315 				      unsigned int index,
316 				      unsigned int new_keycode)
317 {
318 	int old_keycode = rc_map->scan[index].keycode;
319 	int i;
320 
321 	/* Did the user wish to remove the mapping? */
322 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
323 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
324 			index, rc_map->scan[index].scancode);
325 		rc_map->len--;
326 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
327 			(rc_map->len - index) * sizeof(struct rc_map_table));
328 	} else {
329 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
330 			index,
331 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
332 			rc_map->scan[index].scancode, new_keycode);
333 		rc_map->scan[index].keycode = new_keycode;
334 		__set_bit(new_keycode, dev->input_dev->keybit);
335 	}
336 
337 	if (old_keycode != KEY_RESERVED) {
338 		/* A previous mapping was updated... */
339 		__clear_bit(old_keycode, dev->input_dev->keybit);
340 		/* ... but another scancode might use the same keycode */
341 		for (i = 0; i < rc_map->len; i++) {
342 			if (rc_map->scan[i].keycode == old_keycode) {
343 				__set_bit(old_keycode, dev->input_dev->keybit);
344 				break;
345 			}
346 		}
347 
348 		/* Possibly shrink the keytable, failure is not a problem */
349 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
350 	}
351 
352 	return old_keycode;
353 }
354 
355 /**
356  * ir_establish_scancode() - set a keycode in the scancode->keycode table
357  * @dev:	the struct rc_dev device descriptor
358  * @rc_map:	scancode table to be searched
359  * @scancode:	the desired scancode
360  * @resize:	controls whether we allowed to resize the table to
361  *		accommodate not yet present scancodes
362  *
363  * This routine is used to locate given scancode in rc_map.
364  * If scancode is not yet present the routine will allocate a new slot
365  * for it.
366  *
367  * return:	index of the mapping containing scancode in question
368  *		or -1U in case of failure.
369  */
ir_establish_scancode(struct rc_dev * dev,struct rc_map * rc_map,u64 scancode,bool resize)370 static unsigned int ir_establish_scancode(struct rc_dev *dev,
371 					  struct rc_map *rc_map,
372 					  u64 scancode, bool resize)
373 {
374 	unsigned int i;
375 
376 	/*
377 	 * Unfortunately, some hardware-based IR decoders don't provide
378 	 * all bits for the complete IR code. In general, they provide only
379 	 * the command part of the IR code. Yet, as it is possible to replace
380 	 * the provided IR with another one, it is needed to allow loading
381 	 * IR tables from other remotes. So, we support specifying a mask to
382 	 * indicate the valid bits of the scancodes.
383 	 */
384 	if (dev->scancode_mask)
385 		scancode &= dev->scancode_mask;
386 
387 	/* First check if we already have a mapping for this ir command */
388 	for (i = 0; i < rc_map->len; i++) {
389 		if (rc_map->scan[i].scancode == scancode)
390 			return i;
391 
392 		/* Keytable is sorted from lowest to highest scancode */
393 		if (rc_map->scan[i].scancode >= scancode)
394 			break;
395 	}
396 
397 	/* No previous mapping found, we might need to grow the table */
398 	if (rc_map->size == rc_map->len) {
399 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
400 			return -1U;
401 	}
402 
403 	/* i is the proper index to insert our new keycode */
404 	if (i < rc_map->len)
405 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
406 			(rc_map->len - i) * sizeof(struct rc_map_table));
407 	rc_map->scan[i].scancode = scancode;
408 	rc_map->scan[i].keycode = KEY_RESERVED;
409 	rc_map->len++;
410 
411 	return i;
412 }
413 
414 /**
415  * ir_setkeycode() - set a keycode in the scancode->keycode table
416  * @idev:	the struct input_dev device descriptor
417  * @ke:		Input keymap entry
418  * @old_keycode: result
419  *
420  * This routine is used to handle evdev EVIOCSKEY ioctl.
421  *
422  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
423  */
ir_setkeycode(struct input_dev * idev,const struct input_keymap_entry * ke,unsigned int * old_keycode)424 static int ir_setkeycode(struct input_dev *idev,
425 			 const struct input_keymap_entry *ke,
426 			 unsigned int *old_keycode)
427 {
428 	struct rc_dev *rdev = input_get_drvdata(idev);
429 	struct rc_map *rc_map = &rdev->rc_map;
430 	unsigned int index;
431 	u64 scancode;
432 	int retval = 0;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&rc_map->lock, flags);
436 
437 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
438 		index = ke->index;
439 		if (index >= rc_map->len) {
440 			retval = -EINVAL;
441 			goto out;
442 		}
443 	} else {
444 		retval = scancode_to_u64(ke, &scancode);
445 		if (retval)
446 			goto out;
447 
448 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
449 		if (index >= rc_map->len) {
450 			retval = -ENOMEM;
451 			goto out;
452 		}
453 	}
454 
455 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
456 
457 out:
458 	spin_unlock_irqrestore(&rc_map->lock, flags);
459 	return retval;
460 }
461 
462 /**
463  * ir_setkeytable() - sets several entries in the scancode->keycode table
464  * @dev:	the struct rc_dev device descriptor
465  * @from:	the struct rc_map to copy entries from
466  *
467  * This routine is used to handle table initialization.
468  *
469  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
470  */
ir_setkeytable(struct rc_dev * dev,const struct rc_map * from)471 static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
472 {
473 	struct rc_map *rc_map = &dev->rc_map;
474 	unsigned int i, index;
475 	int rc;
476 
477 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
478 			     from->size);
479 	if (rc)
480 		return rc;
481 
482 	for (i = 0; i < from->size; i++) {
483 		index = ir_establish_scancode(dev, rc_map,
484 					      from->scan[i].scancode, false);
485 		if (index >= rc_map->len) {
486 			rc = -ENOMEM;
487 			break;
488 		}
489 
490 		ir_update_mapping(dev, rc_map, index,
491 				  from->scan[i].keycode);
492 	}
493 
494 	if (rc)
495 		ir_free_table(rc_map);
496 
497 	return rc;
498 }
499 
rc_map_cmp(const void * key,const void * elt)500 static int rc_map_cmp(const void *key, const void *elt)
501 {
502 	const u64 *scancode = key;
503 	const struct rc_map_table *e = elt;
504 
505 	if (*scancode < e->scancode)
506 		return -1;
507 	else if (*scancode > e->scancode)
508 		return 1;
509 	return 0;
510 }
511 
512 /**
513  * ir_lookup_by_scancode() - locate mapping by scancode
514  * @rc_map:	the struct rc_map to search
515  * @scancode:	scancode to look for in the table
516  *
517  * This routine performs binary search in RC keykeymap table for
518  * given scancode.
519  *
520  * return:	index in the table, -1U if not found
521  */
ir_lookup_by_scancode(const struct rc_map * rc_map,u64 scancode)522 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
523 					  u64 scancode)
524 {
525 	struct rc_map_table *res;
526 
527 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
528 		      sizeof(struct rc_map_table), rc_map_cmp);
529 	if (!res)
530 		return -1U;
531 	else
532 		return res - rc_map->scan;
533 }
534 
535 /**
536  * ir_getkeycode() - get a keycode from the scancode->keycode table
537  * @idev:	the struct input_dev device descriptor
538  * @ke:		Input keymap entry
539  *
540  * This routine is used to handle evdev EVIOCGKEY ioctl.
541  *
542  * return:	always returns zero.
543  */
ir_getkeycode(struct input_dev * idev,struct input_keymap_entry * ke)544 static int ir_getkeycode(struct input_dev *idev,
545 			 struct input_keymap_entry *ke)
546 {
547 	struct rc_dev *rdev = input_get_drvdata(idev);
548 	struct rc_map *rc_map = &rdev->rc_map;
549 	struct rc_map_table *entry;
550 	unsigned long flags;
551 	unsigned int index;
552 	u64 scancode;
553 	int retval;
554 
555 	spin_lock_irqsave(&rc_map->lock, flags);
556 
557 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
558 		index = ke->index;
559 	} else {
560 		retval = scancode_to_u64(ke, &scancode);
561 		if (retval)
562 			goto out;
563 
564 		index = ir_lookup_by_scancode(rc_map, scancode);
565 	}
566 
567 	if (index < rc_map->len) {
568 		entry = &rc_map->scan[index];
569 
570 		ke->index = index;
571 		ke->keycode = entry->keycode;
572 		ke->len = sizeof(entry->scancode);
573 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
574 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
575 		/*
576 		 * We do not really know the valid range of scancodes
577 		 * so let's respond with KEY_RESERVED to anything we
578 		 * do not have mapping for [yet].
579 		 */
580 		ke->index = index;
581 		ke->keycode = KEY_RESERVED;
582 	} else {
583 		retval = -EINVAL;
584 		goto out;
585 	}
586 
587 	retval = 0;
588 
589 out:
590 	spin_unlock_irqrestore(&rc_map->lock, flags);
591 	return retval;
592 }
593 
594 /**
595  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
596  * @dev:	the struct rc_dev descriptor of the device
597  * @scancode:	the scancode to look for
598  *
599  * This routine is used by drivers which need to convert a scancode to a
600  * keycode. Normally it should not be used since drivers should have no
601  * interest in keycodes.
602  *
603  * return:	the corresponding keycode, or KEY_RESERVED
604  */
rc_g_keycode_from_table(struct rc_dev * dev,u64 scancode)605 u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
606 {
607 	struct rc_map *rc_map = &dev->rc_map;
608 	unsigned int keycode;
609 	unsigned int index;
610 	unsigned long flags;
611 
612 	spin_lock_irqsave(&rc_map->lock, flags);
613 
614 	index = ir_lookup_by_scancode(rc_map, scancode);
615 	keycode = index < rc_map->len ?
616 			rc_map->scan[index].keycode : KEY_RESERVED;
617 
618 	spin_unlock_irqrestore(&rc_map->lock, flags);
619 
620 	if (keycode != KEY_RESERVED)
621 		dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
622 			dev->device_name, scancode, keycode);
623 
624 	return keycode;
625 }
626 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
627 
628 /**
629  * ir_do_keyup() - internal function to signal the release of a keypress
630  * @dev:	the struct rc_dev descriptor of the device
631  * @sync:	whether or not to call input_sync
632  *
633  * This function is used internally to release a keypress, it must be
634  * called with keylock held.
635  */
ir_do_keyup(struct rc_dev * dev,bool sync)636 static void ir_do_keyup(struct rc_dev *dev, bool sync)
637 {
638 	if (!dev->keypressed)
639 		return;
640 
641 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
642 	del_timer(&dev->timer_repeat);
643 	input_report_key(dev->input_dev, dev->last_keycode, 0);
644 	led_trigger_event(led_feedback, LED_OFF);
645 	if (sync)
646 		input_sync(dev->input_dev);
647 	dev->keypressed = false;
648 }
649 
650 /**
651  * rc_keyup() - signals the release of a keypress
652  * @dev:	the struct rc_dev descriptor of the device
653  *
654  * This routine is used to signal that a key has been released on the
655  * remote control.
656  */
rc_keyup(struct rc_dev * dev)657 void rc_keyup(struct rc_dev *dev)
658 {
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&dev->keylock, flags);
662 	ir_do_keyup(dev, true);
663 	spin_unlock_irqrestore(&dev->keylock, flags);
664 }
665 EXPORT_SYMBOL_GPL(rc_keyup);
666 
667 /**
668  * ir_timer_keyup() - generates a keyup event after a timeout
669  *
670  * @t:		a pointer to the struct timer_list
671  *
672  * This routine will generate a keyup event some time after a keydown event
673  * is generated when no further activity has been detected.
674  */
ir_timer_keyup(struct timer_list * t)675 static void ir_timer_keyup(struct timer_list *t)
676 {
677 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
678 	unsigned long flags;
679 
680 	/*
681 	 * ir->keyup_jiffies is used to prevent a race condition if a
682 	 * hardware interrupt occurs at this point and the keyup timer
683 	 * event is moved further into the future as a result.
684 	 *
685 	 * The timer will then be reactivated and this function called
686 	 * again in the future. We need to exit gracefully in that case
687 	 * to allow the input subsystem to do its auto-repeat magic or
688 	 * a keyup event might follow immediately after the keydown.
689 	 */
690 	spin_lock_irqsave(&dev->keylock, flags);
691 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
692 		ir_do_keyup(dev, true);
693 	spin_unlock_irqrestore(&dev->keylock, flags);
694 }
695 
696 /**
697  * ir_timer_repeat() - generates a repeat event after a timeout
698  *
699  * @t:		a pointer to the struct timer_list
700  *
701  * This routine will generate a soft repeat event every REP_PERIOD
702  * milliseconds.
703  */
ir_timer_repeat(struct timer_list * t)704 static void ir_timer_repeat(struct timer_list *t)
705 {
706 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
707 	struct input_dev *input = dev->input_dev;
708 	unsigned long flags;
709 
710 	spin_lock_irqsave(&dev->keylock, flags);
711 	if (dev->keypressed) {
712 		input_event(input, EV_KEY, dev->last_keycode, 2);
713 		input_sync(input);
714 		if (input->rep[REP_PERIOD])
715 			mod_timer(&dev->timer_repeat, jiffies +
716 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
717 	}
718 	spin_unlock_irqrestore(&dev->keylock, flags);
719 }
720 
repeat_period(int protocol)721 static unsigned int repeat_period(int protocol)
722 {
723 	if (protocol >= ARRAY_SIZE(protocols))
724 		return 100;
725 
726 	return protocols[protocol].repeat_period;
727 }
728 
729 /**
730  * rc_repeat() - signals that a key is still pressed
731  * @dev:	the struct rc_dev descriptor of the device
732  *
733  * This routine is used by IR decoders when a repeat message which does
734  * not include the necessary bits to reproduce the scancode has been
735  * received.
736  */
rc_repeat(struct rc_dev * dev)737 void rc_repeat(struct rc_dev *dev)
738 {
739 	unsigned long flags;
740 	unsigned int timeout = usecs_to_jiffies(dev->timeout) +
741 		msecs_to_jiffies(repeat_period(dev->last_protocol));
742 	struct lirc_scancode sc = {
743 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
744 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
745 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
746 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
747 	};
748 
749 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
750 		lirc_scancode_event(dev, &sc);
751 
752 	spin_lock_irqsave(&dev->keylock, flags);
753 
754 	if (dev->last_scancode <= U32_MAX) {
755 		input_event(dev->input_dev, EV_MSC, MSC_SCAN,
756 			    dev->last_scancode);
757 		input_sync(dev->input_dev);
758 	}
759 
760 	if (dev->keypressed) {
761 		dev->keyup_jiffies = jiffies + timeout;
762 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
763 	}
764 
765 	spin_unlock_irqrestore(&dev->keylock, flags);
766 }
767 EXPORT_SYMBOL_GPL(rc_repeat);
768 
769 /**
770  * ir_do_keydown() - internal function to process a keypress
771  * @dev:	the struct rc_dev descriptor of the device
772  * @protocol:	the protocol of the keypress
773  * @scancode:   the scancode of the keypress
774  * @keycode:    the keycode of the keypress
775  * @toggle:     the toggle value of the keypress
776  *
777  * This function is used internally to register a keypress, it must be
778  * called with keylock held.
779  */
ir_do_keydown(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u32 keycode,u8 toggle)780 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
781 			  u64 scancode, u32 keycode, u8 toggle)
782 {
783 	bool new_event = (!dev->keypressed		 ||
784 			  dev->last_protocol != protocol ||
785 			  dev->last_scancode != scancode ||
786 			  dev->last_toggle   != toggle);
787 	struct lirc_scancode sc = {
788 		.scancode = scancode, .rc_proto = protocol,
789 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
790 		.keycode = keycode
791 	};
792 
793 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
794 		lirc_scancode_event(dev, &sc);
795 
796 	if (new_event && dev->keypressed)
797 		ir_do_keyup(dev, false);
798 
799 	if (scancode <= U32_MAX)
800 		input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
801 
802 	dev->last_protocol = protocol;
803 	dev->last_scancode = scancode;
804 	dev->last_toggle = toggle;
805 	dev->last_keycode = keycode;
806 
807 	if (new_event && keycode != KEY_RESERVED) {
808 		/* Register a keypress */
809 		dev->keypressed = true;
810 
811 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
812 			dev->device_name, keycode, protocol, scancode);
813 		input_report_key(dev->input_dev, keycode, 1);
814 
815 		led_trigger_event(led_feedback, LED_FULL);
816 	}
817 
818 	/*
819 	 * For CEC, start sending repeat messages as soon as the first
820 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
821 	 * is non-zero. Otherwise, the input layer will generate repeat
822 	 * messages.
823 	 */
824 	if (!new_event && keycode != KEY_RESERVED &&
825 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
826 	    !timer_pending(&dev->timer_repeat) &&
827 	    dev->input_dev->rep[REP_PERIOD] &&
828 	    !dev->input_dev->rep[REP_DELAY]) {
829 		input_event(dev->input_dev, EV_KEY, keycode, 2);
830 		mod_timer(&dev->timer_repeat, jiffies +
831 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
832 	}
833 
834 	input_sync(dev->input_dev);
835 }
836 
837 /**
838  * rc_keydown() - generates input event for a key press
839  * @dev:	the struct rc_dev descriptor of the device
840  * @protocol:	the protocol for the keypress
841  * @scancode:	the scancode for the keypress
842  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
843  *              support toggle values, this should be set to zero)
844  *
845  * This routine is used to signal that a key has been pressed on the
846  * remote control.
847  */
rc_keydown(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u8 toggle)848 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
849 		u8 toggle)
850 {
851 	unsigned long flags;
852 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
853 
854 	spin_lock_irqsave(&dev->keylock, flags);
855 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
856 
857 	if (dev->keypressed) {
858 		dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
859 			msecs_to_jiffies(repeat_period(protocol));
860 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
861 	}
862 	spin_unlock_irqrestore(&dev->keylock, flags);
863 }
864 EXPORT_SYMBOL_GPL(rc_keydown);
865 
866 /**
867  * rc_keydown_notimeout() - generates input event for a key press without
868  *                          an automatic keyup event at a later time
869  * @dev:	the struct rc_dev descriptor of the device
870  * @protocol:	the protocol for the keypress
871  * @scancode:	the scancode for the keypress
872  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
873  *              support toggle values, this should be set to zero)
874  *
875  * This routine is used to signal that a key has been pressed on the
876  * remote control. The driver must manually call rc_keyup() at a later stage.
877  */
rc_keydown_notimeout(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u8 toggle)878 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
879 			  u64 scancode, u8 toggle)
880 {
881 	unsigned long flags;
882 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
883 
884 	spin_lock_irqsave(&dev->keylock, flags);
885 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
886 	spin_unlock_irqrestore(&dev->keylock, flags);
887 }
888 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
889 
890 /**
891  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
892  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
893  * @proto:	protocol
894  * @scancode:	scancode
895  */
rc_validate_scancode(enum rc_proto proto,u32 scancode)896 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
897 {
898 	switch (proto) {
899 	/*
900 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
901 	 * 8 bits inverted, then the address would match regular nec.
902 	 */
903 	case RC_PROTO_NECX:
904 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
905 			return false;
906 		break;
907 	/*
908 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
909 	 * of the command match the upper 8 bits inverted, then it would
910 	 * be either NEC or NECX.
911 	 */
912 	case RC_PROTO_NEC32:
913 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
914 			return false;
915 		break;
916 	/*
917 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
918 	 * is regular mode-6a 32 bit
919 	 */
920 	case RC_PROTO_RC6_MCE:
921 		if ((scancode & 0xffff0000) != 0x800f0000)
922 			return false;
923 		break;
924 	case RC_PROTO_RC6_6A_32:
925 		if ((scancode & 0xffff0000) == 0x800f0000)
926 			return false;
927 		break;
928 	default:
929 		break;
930 	}
931 
932 	return true;
933 }
934 
935 /**
936  * rc_validate_filter() - checks that the scancode and mask are valid and
937  *			  provides sensible defaults
938  * @dev:	the struct rc_dev descriptor of the device
939  * @filter:	the scancode and mask
940  *
941  * return:	0 or -EINVAL if the filter is not valid
942  */
rc_validate_filter(struct rc_dev * dev,struct rc_scancode_filter * filter)943 static int rc_validate_filter(struct rc_dev *dev,
944 			      struct rc_scancode_filter *filter)
945 {
946 	u32 mask, s = filter->data;
947 	enum rc_proto protocol = dev->wakeup_protocol;
948 
949 	if (protocol >= ARRAY_SIZE(protocols))
950 		return -EINVAL;
951 
952 	mask = protocols[protocol].scancode_bits;
953 
954 	if (!rc_validate_scancode(protocol, s))
955 		return -EINVAL;
956 
957 	filter->data &= mask;
958 	filter->mask &= mask;
959 
960 	/*
961 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
962 	 */
963 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
964 		return -EINVAL;
965 
966 	return 0;
967 }
968 
rc_open(struct rc_dev * rdev)969 int rc_open(struct rc_dev *rdev)
970 {
971 	int rval = 0;
972 
973 	if (!rdev)
974 		return -EINVAL;
975 
976 	mutex_lock(&rdev->lock);
977 
978 	if (!rdev->registered) {
979 		rval = -ENODEV;
980 	} else {
981 		if (!rdev->users++ && rdev->open)
982 			rval = rdev->open(rdev);
983 
984 		if (rval)
985 			rdev->users--;
986 	}
987 
988 	mutex_unlock(&rdev->lock);
989 
990 	return rval;
991 }
992 
ir_open(struct input_dev * idev)993 static int ir_open(struct input_dev *idev)
994 {
995 	struct rc_dev *rdev = input_get_drvdata(idev);
996 
997 	return rc_open(rdev);
998 }
999 
rc_close(struct rc_dev * rdev)1000 void rc_close(struct rc_dev *rdev)
1001 {
1002 	if (rdev) {
1003 		mutex_lock(&rdev->lock);
1004 
1005 		if (!--rdev->users && rdev->close && rdev->registered)
1006 			rdev->close(rdev);
1007 
1008 		mutex_unlock(&rdev->lock);
1009 	}
1010 }
1011 
ir_close(struct input_dev * idev)1012 static void ir_close(struct input_dev *idev)
1013 {
1014 	struct rc_dev *rdev = input_get_drvdata(idev);
1015 	rc_close(rdev);
1016 }
1017 
1018 /* class for /sys/class/rc */
rc_devnode(struct device * dev,umode_t * mode)1019 static char *rc_devnode(struct device *dev, umode_t *mode)
1020 {
1021 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1022 }
1023 
1024 static struct class rc_class = {
1025 	.name		= "rc",
1026 	.devnode	= rc_devnode,
1027 };
1028 
1029 /*
1030  * These are the protocol textual descriptions that are
1031  * used by the sysfs protocols file. Note that the order
1032  * of the entries is relevant.
1033  */
1034 static const struct {
1035 	u64	type;
1036 	const char	*name;
1037 	const char	*module_name;
1038 } proto_names[] = {
1039 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1040 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1041 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1042 	{ RC_PROTO_BIT_RC5 |
1043 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1044 	{ RC_PROTO_BIT_NEC |
1045 	  RC_PROTO_BIT_NECX |
1046 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1047 	{ RC_PROTO_BIT_RC6_0 |
1048 	  RC_PROTO_BIT_RC6_6A_20 |
1049 	  RC_PROTO_BIT_RC6_6A_24 |
1050 	  RC_PROTO_BIT_RC6_6A_32 |
1051 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1052 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1053 	{ RC_PROTO_BIT_SONY12 |
1054 	  RC_PROTO_BIT_SONY15 |
1055 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1056 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1057 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1058 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1059 	{ RC_PROTO_BIT_MCIR2_KBD |
1060 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1061 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1062 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1063 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1064 	{ RC_PROTO_BIT_RCMM12 |
1065 	  RC_PROTO_BIT_RCMM24 |
1066 	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1067 	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1068 };
1069 
1070 /**
1071  * struct rc_filter_attribute - Device attribute relating to a filter type.
1072  * @attr:	Device attribute.
1073  * @type:	Filter type.
1074  * @mask:	false for filter value, true for filter mask.
1075  */
1076 struct rc_filter_attribute {
1077 	struct device_attribute		attr;
1078 	enum rc_filter_type		type;
1079 	bool				mask;
1080 };
1081 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1082 
1083 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1084 	struct rc_filter_attribute dev_attr_##_name = {			\
1085 		.attr = __ATTR(_name, _mode, _show, _store),		\
1086 		.type = (_type),					\
1087 		.mask = (_mask),					\
1088 	}
1089 
1090 /**
1091  * show_protocols() - shows the current IR protocol(s)
1092  * @device:	the device descriptor
1093  * @mattr:	the device attribute struct
1094  * @buf:	a pointer to the output buffer
1095  *
1096  * This routine is a callback routine for input read the IR protocol type(s).
1097  * it is triggered by reading /sys/class/rc/rc?/protocols.
1098  * It returns the protocol names of supported protocols.
1099  * Enabled protocols are printed in brackets.
1100  *
1101  * dev->lock is taken to guard against races between
1102  * store_protocols and show_protocols.
1103  */
show_protocols(struct device * device,struct device_attribute * mattr,char * buf)1104 static ssize_t show_protocols(struct device *device,
1105 			      struct device_attribute *mattr, char *buf)
1106 {
1107 	struct rc_dev *dev = to_rc_dev(device);
1108 	u64 allowed, enabled;
1109 	char *tmp = buf;
1110 	int i;
1111 
1112 	mutex_lock(&dev->lock);
1113 
1114 	enabled = dev->enabled_protocols;
1115 	allowed = dev->allowed_protocols;
1116 	if (dev->raw && !allowed)
1117 		allowed = ir_raw_get_allowed_protocols();
1118 
1119 	mutex_unlock(&dev->lock);
1120 
1121 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1122 		__func__, (long long)allowed, (long long)enabled);
1123 
1124 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1125 		if (allowed & enabled & proto_names[i].type)
1126 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1127 		else if (allowed & proto_names[i].type)
1128 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1129 
1130 		if (allowed & proto_names[i].type)
1131 			allowed &= ~proto_names[i].type;
1132 	}
1133 
1134 #ifdef CONFIG_LIRC
1135 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1136 		tmp += sprintf(tmp, "[lirc] ");
1137 #endif
1138 
1139 	if (tmp != buf)
1140 		tmp--;
1141 	*tmp = '\n';
1142 
1143 	return tmp + 1 - buf;
1144 }
1145 
1146 /**
1147  * parse_protocol_change() - parses a protocol change request
1148  * @dev:	rc_dev device
1149  * @protocols:	pointer to the bitmask of current protocols
1150  * @buf:	pointer to the buffer with a list of changes
1151  *
1152  * Writing "+proto" will add a protocol to the protocol mask.
1153  * Writing "-proto" will remove a protocol from protocol mask.
1154  * Writing "proto" will enable only "proto".
1155  * Writing "none" will disable all protocols.
1156  * Returns the number of changes performed or a negative error code.
1157  */
parse_protocol_change(struct rc_dev * dev,u64 * protocols,const char * buf)1158 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1159 				 const char *buf)
1160 {
1161 	const char *tmp;
1162 	unsigned count = 0;
1163 	bool enable, disable;
1164 	u64 mask;
1165 	int i;
1166 
1167 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1168 		if (!*tmp)
1169 			break;
1170 
1171 		if (*tmp == '+') {
1172 			enable = true;
1173 			disable = false;
1174 			tmp++;
1175 		} else if (*tmp == '-') {
1176 			enable = false;
1177 			disable = true;
1178 			tmp++;
1179 		} else {
1180 			enable = false;
1181 			disable = false;
1182 		}
1183 
1184 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1185 			if (!strcasecmp(tmp, proto_names[i].name)) {
1186 				mask = proto_names[i].type;
1187 				break;
1188 			}
1189 		}
1190 
1191 		if (i == ARRAY_SIZE(proto_names)) {
1192 			if (!strcasecmp(tmp, "lirc"))
1193 				mask = 0;
1194 			else {
1195 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1196 					tmp);
1197 				return -EINVAL;
1198 			}
1199 		}
1200 
1201 		count++;
1202 
1203 		if (enable)
1204 			*protocols |= mask;
1205 		else if (disable)
1206 			*protocols &= ~mask;
1207 		else
1208 			*protocols = mask;
1209 	}
1210 
1211 	if (!count) {
1212 		dev_dbg(&dev->dev, "Protocol not specified\n");
1213 		return -EINVAL;
1214 	}
1215 
1216 	return count;
1217 }
1218 
ir_raw_load_modules(u64 * protocols)1219 void ir_raw_load_modules(u64 *protocols)
1220 {
1221 	u64 available;
1222 	int i, ret;
1223 
1224 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1225 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1226 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1227 					   RC_PROTO_BIT_UNKNOWN))
1228 			continue;
1229 
1230 		available = ir_raw_get_allowed_protocols();
1231 		if (!(*protocols & proto_names[i].type & ~available))
1232 			continue;
1233 
1234 		if (!proto_names[i].module_name) {
1235 			pr_err("Can't enable IR protocol %s\n",
1236 			       proto_names[i].name);
1237 			*protocols &= ~proto_names[i].type;
1238 			continue;
1239 		}
1240 
1241 		ret = request_module("%s", proto_names[i].module_name);
1242 		if (ret < 0) {
1243 			pr_err("Couldn't load IR protocol module %s\n",
1244 			       proto_names[i].module_name);
1245 			*protocols &= ~proto_names[i].type;
1246 			continue;
1247 		}
1248 		msleep(20);
1249 		available = ir_raw_get_allowed_protocols();
1250 		if (!(*protocols & proto_names[i].type & ~available))
1251 			continue;
1252 
1253 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1254 		       proto_names[i].module_name,
1255 		       proto_names[i].name);
1256 		*protocols &= ~proto_names[i].type;
1257 	}
1258 }
1259 
1260 /**
1261  * store_protocols() - changes the current/wakeup IR protocol(s)
1262  * @device:	the device descriptor
1263  * @mattr:	the device attribute struct
1264  * @buf:	a pointer to the input buffer
1265  * @len:	length of the input buffer
1266  *
1267  * This routine is for changing the IR protocol type.
1268  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1269  * See parse_protocol_change() for the valid commands.
1270  * Returns @len on success or a negative error code.
1271  *
1272  * dev->lock is taken to guard against races between
1273  * store_protocols and show_protocols.
1274  */
store_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1275 static ssize_t store_protocols(struct device *device,
1276 			       struct device_attribute *mattr,
1277 			       const char *buf, size_t len)
1278 {
1279 	struct rc_dev *dev = to_rc_dev(device);
1280 	u64 *current_protocols;
1281 	struct rc_scancode_filter *filter;
1282 	u64 old_protocols, new_protocols;
1283 	ssize_t rc;
1284 
1285 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1286 	current_protocols = &dev->enabled_protocols;
1287 	filter = &dev->scancode_filter;
1288 
1289 	if (!dev->change_protocol) {
1290 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1291 		return -EINVAL;
1292 	}
1293 
1294 	mutex_lock(&dev->lock);
1295 	if (!dev->registered) {
1296 		mutex_unlock(&dev->lock);
1297 		return -ENODEV;
1298 	}
1299 
1300 	old_protocols = *current_protocols;
1301 	new_protocols = old_protocols;
1302 	rc = parse_protocol_change(dev, &new_protocols, buf);
1303 	if (rc < 0)
1304 		goto out;
1305 
1306 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1307 		ir_raw_load_modules(&new_protocols);
1308 
1309 	rc = dev->change_protocol(dev, &new_protocols);
1310 	if (rc < 0) {
1311 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1312 			(long long)new_protocols);
1313 		goto out;
1314 	}
1315 
1316 	if (new_protocols != old_protocols) {
1317 		*current_protocols = new_protocols;
1318 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1319 			(long long)new_protocols);
1320 	}
1321 
1322 	/*
1323 	 * If a protocol change was attempted the filter may need updating, even
1324 	 * if the actual protocol mask hasn't changed (since the driver may have
1325 	 * cleared the filter).
1326 	 * Try setting the same filter with the new protocol (if any).
1327 	 * Fall back to clearing the filter.
1328 	 */
1329 	if (dev->s_filter && filter->mask) {
1330 		if (new_protocols)
1331 			rc = dev->s_filter(dev, filter);
1332 		else
1333 			rc = -1;
1334 
1335 		if (rc < 0) {
1336 			filter->data = 0;
1337 			filter->mask = 0;
1338 			dev->s_filter(dev, filter);
1339 		}
1340 	}
1341 
1342 	rc = len;
1343 
1344 out:
1345 	mutex_unlock(&dev->lock);
1346 	return rc;
1347 }
1348 
1349 /**
1350  * show_filter() - shows the current scancode filter value or mask
1351  * @device:	the device descriptor
1352  * @attr:	the device attribute struct
1353  * @buf:	a pointer to the output buffer
1354  *
1355  * This routine is a callback routine to read a scancode filter value or mask.
1356  * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1357  * It prints the current scancode filter value or mask of the appropriate filter
1358  * type in hexadecimal into @buf and returns the size of the buffer.
1359  *
1360  * Bits of the filter value corresponding to set bits in the filter mask are
1361  * compared against input scancodes and non-matching scancodes are discarded.
1362  *
1363  * dev->lock is taken to guard against races between
1364  * store_filter and show_filter.
1365  */
show_filter(struct device * device,struct device_attribute * attr,char * buf)1366 static ssize_t show_filter(struct device *device,
1367 			   struct device_attribute *attr,
1368 			   char *buf)
1369 {
1370 	struct rc_dev *dev = to_rc_dev(device);
1371 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1372 	struct rc_scancode_filter *filter;
1373 	u32 val;
1374 
1375 	mutex_lock(&dev->lock);
1376 
1377 	if (fattr->type == RC_FILTER_NORMAL)
1378 		filter = &dev->scancode_filter;
1379 	else
1380 		filter = &dev->scancode_wakeup_filter;
1381 
1382 	if (fattr->mask)
1383 		val = filter->mask;
1384 	else
1385 		val = filter->data;
1386 	mutex_unlock(&dev->lock);
1387 
1388 	return sprintf(buf, "%#x\n", val);
1389 }
1390 
1391 /**
1392  * store_filter() - changes the scancode filter value
1393  * @device:	the device descriptor
1394  * @attr:	the device attribute struct
1395  * @buf:	a pointer to the input buffer
1396  * @len:	length of the input buffer
1397  *
1398  * This routine is for changing a scancode filter value or mask.
1399  * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1400  * Returns -EINVAL if an invalid filter value for the current protocol was
1401  * specified or if scancode filtering is not supported by the driver, otherwise
1402  * returns @len.
1403  *
1404  * Bits of the filter value corresponding to set bits in the filter mask are
1405  * compared against input scancodes and non-matching scancodes are discarded.
1406  *
1407  * dev->lock is taken to guard against races between
1408  * store_filter and show_filter.
1409  */
store_filter(struct device * device,struct device_attribute * attr,const char * buf,size_t len)1410 static ssize_t store_filter(struct device *device,
1411 			    struct device_attribute *attr,
1412 			    const char *buf, size_t len)
1413 {
1414 	struct rc_dev *dev = to_rc_dev(device);
1415 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1416 	struct rc_scancode_filter new_filter, *filter;
1417 	int ret;
1418 	unsigned long val;
1419 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1420 
1421 	ret = kstrtoul(buf, 0, &val);
1422 	if (ret < 0)
1423 		return ret;
1424 
1425 	if (fattr->type == RC_FILTER_NORMAL) {
1426 		set_filter = dev->s_filter;
1427 		filter = &dev->scancode_filter;
1428 	} else {
1429 		set_filter = dev->s_wakeup_filter;
1430 		filter = &dev->scancode_wakeup_filter;
1431 	}
1432 
1433 	if (!set_filter)
1434 		return -EINVAL;
1435 
1436 	mutex_lock(&dev->lock);
1437 	if (!dev->registered) {
1438 		mutex_unlock(&dev->lock);
1439 		return -ENODEV;
1440 	}
1441 
1442 	new_filter = *filter;
1443 	if (fattr->mask)
1444 		new_filter.mask = val;
1445 	else
1446 		new_filter.data = val;
1447 
1448 	if (fattr->type == RC_FILTER_WAKEUP) {
1449 		/*
1450 		 * Refuse to set a filter unless a protocol is enabled
1451 		 * and the filter is valid for that protocol
1452 		 */
1453 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1454 			ret = rc_validate_filter(dev, &new_filter);
1455 		else
1456 			ret = -EINVAL;
1457 
1458 		if (ret != 0)
1459 			goto unlock;
1460 	}
1461 
1462 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1463 	    val) {
1464 		/* refuse to set a filter unless a protocol is enabled */
1465 		ret = -EINVAL;
1466 		goto unlock;
1467 	}
1468 
1469 	ret = set_filter(dev, &new_filter);
1470 	if (ret < 0)
1471 		goto unlock;
1472 
1473 	*filter = new_filter;
1474 
1475 unlock:
1476 	mutex_unlock(&dev->lock);
1477 	return (ret < 0) ? ret : len;
1478 }
1479 
1480 /**
1481  * show_wakeup_protocols() - shows the wakeup IR protocol
1482  * @device:	the device descriptor
1483  * @mattr:	the device attribute struct
1484  * @buf:	a pointer to the output buffer
1485  *
1486  * This routine is a callback routine for input read the IR protocol type(s).
1487  * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1488  * It returns the protocol names of supported protocols.
1489  * The enabled protocols are printed in brackets.
1490  *
1491  * dev->lock is taken to guard against races between
1492  * store_wakeup_protocols and show_wakeup_protocols.
1493  */
show_wakeup_protocols(struct device * device,struct device_attribute * mattr,char * buf)1494 static ssize_t show_wakeup_protocols(struct device *device,
1495 				     struct device_attribute *mattr,
1496 				     char *buf)
1497 {
1498 	struct rc_dev *dev = to_rc_dev(device);
1499 	u64 allowed;
1500 	enum rc_proto enabled;
1501 	char *tmp = buf;
1502 	int i;
1503 
1504 	mutex_lock(&dev->lock);
1505 
1506 	allowed = dev->allowed_wakeup_protocols;
1507 	enabled = dev->wakeup_protocol;
1508 
1509 	mutex_unlock(&dev->lock);
1510 
1511 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1512 		__func__, (long long)allowed, enabled);
1513 
1514 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1515 		if (allowed & (1ULL << i)) {
1516 			if (i == enabled)
1517 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1518 			else
1519 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1520 		}
1521 	}
1522 
1523 	if (tmp != buf)
1524 		tmp--;
1525 	*tmp = '\n';
1526 
1527 	return tmp + 1 - buf;
1528 }
1529 
1530 /**
1531  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1532  * @device:	the device descriptor
1533  * @mattr:	the device attribute struct
1534  * @buf:	a pointer to the input buffer
1535  * @len:	length of the input buffer
1536  *
1537  * This routine is for changing the IR protocol type.
1538  * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1539  * Returns @len on success or a negative error code.
1540  *
1541  * dev->lock is taken to guard against races between
1542  * store_wakeup_protocols and show_wakeup_protocols.
1543  */
store_wakeup_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1544 static ssize_t store_wakeup_protocols(struct device *device,
1545 				      struct device_attribute *mattr,
1546 				      const char *buf, size_t len)
1547 {
1548 	struct rc_dev *dev = to_rc_dev(device);
1549 	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1550 	ssize_t rc;
1551 	u64 allowed;
1552 	int i;
1553 
1554 	mutex_lock(&dev->lock);
1555 	if (!dev->registered) {
1556 		mutex_unlock(&dev->lock);
1557 		return -ENODEV;
1558 	}
1559 
1560 	allowed = dev->allowed_wakeup_protocols;
1561 
1562 	if (!sysfs_streq(buf, "none")) {
1563 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1564 			if ((allowed & (1ULL << i)) &&
1565 			    sysfs_streq(buf, protocols[i].name)) {
1566 				protocol = i;
1567 				break;
1568 			}
1569 		}
1570 
1571 		if (i == ARRAY_SIZE(protocols)) {
1572 			rc = -EINVAL;
1573 			goto out;
1574 		}
1575 
1576 		if (dev->encode_wakeup) {
1577 			u64 mask = 1ULL << protocol;
1578 
1579 			ir_raw_load_modules(&mask);
1580 			if (!mask) {
1581 				rc = -EINVAL;
1582 				goto out;
1583 			}
1584 		}
1585 	}
1586 
1587 	if (dev->wakeup_protocol != protocol) {
1588 		dev->wakeup_protocol = protocol;
1589 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1590 
1591 		if (protocol == RC_PROTO_RC6_MCE)
1592 			dev->scancode_wakeup_filter.data = 0x800f0000;
1593 		else
1594 			dev->scancode_wakeup_filter.data = 0;
1595 		dev->scancode_wakeup_filter.mask = 0;
1596 
1597 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1598 		if (rc == 0)
1599 			rc = len;
1600 	} else {
1601 		rc = len;
1602 	}
1603 
1604 out:
1605 	mutex_unlock(&dev->lock);
1606 	return rc;
1607 }
1608 
rc_dev_release(struct device * device)1609 static void rc_dev_release(struct device *device)
1610 {
1611 	struct rc_dev *dev = to_rc_dev(device);
1612 
1613 	kfree(dev);
1614 }
1615 
rc_dev_uevent(struct device * device,struct kobj_uevent_env * env)1616 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1617 {
1618 	struct rc_dev *dev = to_rc_dev(device);
1619 	int ret = 0;
1620 
1621 	mutex_lock(&dev->lock);
1622 
1623 	if (!dev->registered)
1624 		ret = -ENODEV;
1625 	if (ret == 0 && dev->rc_map.name)
1626 		ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1627 	if (ret == 0 && dev->driver_name)
1628 		ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1629 	if (ret == 0 && dev->device_name)
1630 		ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1631 
1632 	mutex_unlock(&dev->lock);
1633 
1634 	return ret;
1635 }
1636 
1637 /*
1638  * Static device attribute struct with the sysfs attributes for IR's
1639  */
1640 static struct device_attribute dev_attr_ro_protocols =
1641 __ATTR(protocols, 0444, show_protocols, NULL);
1642 static struct device_attribute dev_attr_rw_protocols =
1643 __ATTR(protocols, 0644, show_protocols, store_protocols);
1644 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1645 		   store_wakeup_protocols);
1646 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1647 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1648 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1649 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1650 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1651 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1652 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1653 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1654 
1655 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1656 	&dev_attr_rw_protocols.attr,
1657 	NULL,
1658 };
1659 
1660 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1661 	.attrs	= rc_dev_rw_protocol_attrs,
1662 };
1663 
1664 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1665 	&dev_attr_ro_protocols.attr,
1666 	NULL,
1667 };
1668 
1669 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1670 	.attrs	= rc_dev_ro_protocol_attrs,
1671 };
1672 
1673 static struct attribute *rc_dev_filter_attrs[] = {
1674 	&dev_attr_filter.attr.attr,
1675 	&dev_attr_filter_mask.attr.attr,
1676 	NULL,
1677 };
1678 
1679 static const struct attribute_group rc_dev_filter_attr_grp = {
1680 	.attrs	= rc_dev_filter_attrs,
1681 };
1682 
1683 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1684 	&dev_attr_wakeup_filter.attr.attr,
1685 	&dev_attr_wakeup_filter_mask.attr.attr,
1686 	&dev_attr_wakeup_protocols.attr,
1687 	NULL,
1688 };
1689 
1690 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1691 	.attrs	= rc_dev_wakeup_filter_attrs,
1692 };
1693 
1694 static const struct device_type rc_dev_type = {
1695 	.release	= rc_dev_release,
1696 	.uevent		= rc_dev_uevent,
1697 };
1698 
rc_allocate_device(enum rc_driver_type type)1699 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1700 {
1701 	struct rc_dev *dev;
1702 
1703 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1704 	if (!dev)
1705 		return NULL;
1706 
1707 	if (type != RC_DRIVER_IR_RAW_TX) {
1708 		dev->input_dev = input_allocate_device();
1709 		if (!dev->input_dev) {
1710 			kfree(dev);
1711 			return NULL;
1712 		}
1713 
1714 		dev->input_dev->getkeycode = ir_getkeycode;
1715 		dev->input_dev->setkeycode = ir_setkeycode;
1716 		input_set_drvdata(dev->input_dev, dev);
1717 
1718 		dev->timeout = IR_DEFAULT_TIMEOUT;
1719 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1720 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1721 
1722 		spin_lock_init(&dev->rc_map.lock);
1723 		spin_lock_init(&dev->keylock);
1724 	}
1725 	mutex_init(&dev->lock);
1726 
1727 	dev->dev.type = &rc_dev_type;
1728 	dev->dev.class = &rc_class;
1729 	device_initialize(&dev->dev);
1730 
1731 	dev->driver_type = type;
1732 
1733 	__module_get(THIS_MODULE);
1734 	return dev;
1735 }
1736 EXPORT_SYMBOL_GPL(rc_allocate_device);
1737 
rc_free_device(struct rc_dev * dev)1738 void rc_free_device(struct rc_dev *dev)
1739 {
1740 	if (!dev)
1741 		return;
1742 
1743 	input_free_device(dev->input_dev);
1744 
1745 	put_device(&dev->dev);
1746 
1747 	/* kfree(dev) will be called by the callback function
1748 	   rc_dev_release() */
1749 
1750 	module_put(THIS_MODULE);
1751 }
1752 EXPORT_SYMBOL_GPL(rc_free_device);
1753 
devm_rc_alloc_release(struct device * dev,void * res)1754 static void devm_rc_alloc_release(struct device *dev, void *res)
1755 {
1756 	rc_free_device(*(struct rc_dev **)res);
1757 }
1758 
devm_rc_allocate_device(struct device * dev,enum rc_driver_type type)1759 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1760 				       enum rc_driver_type type)
1761 {
1762 	struct rc_dev **dr, *rc;
1763 
1764 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1765 	if (!dr)
1766 		return NULL;
1767 
1768 	rc = rc_allocate_device(type);
1769 	if (!rc) {
1770 		devres_free(dr);
1771 		return NULL;
1772 	}
1773 
1774 	rc->dev.parent = dev;
1775 	rc->managed_alloc = true;
1776 	*dr = rc;
1777 	devres_add(dev, dr);
1778 
1779 	return rc;
1780 }
1781 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1782 
rc_prepare_rx_device(struct rc_dev * dev)1783 static int rc_prepare_rx_device(struct rc_dev *dev)
1784 {
1785 	int rc;
1786 	struct rc_map *rc_map;
1787 	u64 rc_proto;
1788 
1789 	if (!dev->map_name)
1790 		return -EINVAL;
1791 
1792 	rc_map = rc_map_get(dev->map_name);
1793 	if (!rc_map)
1794 		rc_map = rc_map_get(RC_MAP_EMPTY);
1795 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1796 		return -EINVAL;
1797 
1798 	rc = ir_setkeytable(dev, rc_map);
1799 	if (rc)
1800 		return rc;
1801 
1802 	rc_proto = BIT_ULL(rc_map->rc_proto);
1803 
1804 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1805 		dev->enabled_protocols = dev->allowed_protocols;
1806 
1807 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1808 		ir_raw_load_modules(&rc_proto);
1809 
1810 	if (dev->change_protocol) {
1811 		rc = dev->change_protocol(dev, &rc_proto);
1812 		if (rc < 0)
1813 			goto out_table;
1814 		dev->enabled_protocols = rc_proto;
1815 	}
1816 
1817 	/* Keyboard events */
1818 	set_bit(EV_KEY, dev->input_dev->evbit);
1819 	set_bit(EV_REP, dev->input_dev->evbit);
1820 	set_bit(EV_MSC, dev->input_dev->evbit);
1821 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1822 
1823 	/* Pointer/mouse events */
1824 	set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1825 	set_bit(EV_REL, dev->input_dev->evbit);
1826 	set_bit(REL_X, dev->input_dev->relbit);
1827 	set_bit(REL_Y, dev->input_dev->relbit);
1828 
1829 	if (dev->open)
1830 		dev->input_dev->open = ir_open;
1831 	if (dev->close)
1832 		dev->input_dev->close = ir_close;
1833 
1834 	dev->input_dev->dev.parent = &dev->dev;
1835 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1836 	dev->input_dev->phys = dev->input_phys;
1837 	dev->input_dev->name = dev->device_name;
1838 
1839 	return 0;
1840 
1841 out_table:
1842 	ir_free_table(&dev->rc_map);
1843 
1844 	return rc;
1845 }
1846 
rc_setup_rx_device(struct rc_dev * dev)1847 static int rc_setup_rx_device(struct rc_dev *dev)
1848 {
1849 	int rc;
1850 
1851 	/* rc_open will be called here */
1852 	rc = input_register_device(dev->input_dev);
1853 	if (rc)
1854 		return rc;
1855 
1856 	/*
1857 	 * Default delay of 250ms is too short for some protocols, especially
1858 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1859 	 * to avoid wrong repetition of the keycodes. Note that this must be
1860 	 * set after the call to input_register_device().
1861 	 */
1862 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1863 		dev->input_dev->rep[REP_DELAY] = 0;
1864 	else
1865 		dev->input_dev->rep[REP_DELAY] = 500;
1866 
1867 	/*
1868 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1869 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1870 	 * to do.
1871 	 */
1872 	dev->input_dev->rep[REP_PERIOD] = 125;
1873 
1874 	return 0;
1875 }
1876 
rc_free_rx_device(struct rc_dev * dev)1877 static void rc_free_rx_device(struct rc_dev *dev)
1878 {
1879 	if (!dev)
1880 		return;
1881 
1882 	if (dev->input_dev) {
1883 		input_unregister_device(dev->input_dev);
1884 		dev->input_dev = NULL;
1885 	}
1886 
1887 	ir_free_table(&dev->rc_map);
1888 }
1889 
rc_register_device(struct rc_dev * dev)1890 int rc_register_device(struct rc_dev *dev)
1891 {
1892 	const char *path;
1893 	int attr = 0;
1894 	int minor;
1895 	int rc;
1896 
1897 	if (!dev)
1898 		return -EINVAL;
1899 
1900 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1901 	if (minor < 0)
1902 		return minor;
1903 
1904 	dev->minor = minor;
1905 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1906 	dev_set_drvdata(&dev->dev, dev);
1907 
1908 	dev->dev.groups = dev->sysfs_groups;
1909 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1910 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1911 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1912 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1913 	if (dev->s_filter)
1914 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1915 	if (dev->s_wakeup_filter)
1916 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1917 	dev->sysfs_groups[attr++] = NULL;
1918 
1919 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1920 		rc = ir_raw_event_prepare(dev);
1921 		if (rc < 0)
1922 			goto out_minor;
1923 	}
1924 
1925 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1926 		rc = rc_prepare_rx_device(dev);
1927 		if (rc)
1928 			goto out_raw;
1929 	}
1930 
1931 	dev->registered = true;
1932 
1933 	rc = device_add(&dev->dev);
1934 	if (rc)
1935 		goto out_rx_free;
1936 
1937 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1938 	dev_info(&dev->dev, "%s as %s\n",
1939 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1940 	kfree(path);
1941 
1942 	/*
1943 	 * once the input device is registered in rc_setup_rx_device,
1944 	 * userspace can open the input device and rc_open() will be called
1945 	 * as a result. This results in driver code being allowed to submit
1946 	 * keycodes with rc_keydown, so lirc must be registered first.
1947 	 */
1948 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1949 		rc = lirc_register(dev);
1950 		if (rc < 0)
1951 			goto out_dev;
1952 	}
1953 
1954 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1955 		rc = rc_setup_rx_device(dev);
1956 		if (rc)
1957 			goto out_lirc;
1958 	}
1959 
1960 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1961 		rc = ir_raw_event_register(dev);
1962 		if (rc < 0)
1963 			goto out_rx;
1964 	}
1965 
1966 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1967 		dev->driver_name ? dev->driver_name : "unknown");
1968 
1969 	return 0;
1970 
1971 out_rx:
1972 	rc_free_rx_device(dev);
1973 out_lirc:
1974 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1975 		lirc_unregister(dev);
1976 out_dev:
1977 	device_del(&dev->dev);
1978 out_rx_free:
1979 	ir_free_table(&dev->rc_map);
1980 out_raw:
1981 	ir_raw_event_free(dev);
1982 out_minor:
1983 	ida_simple_remove(&rc_ida, minor);
1984 	return rc;
1985 }
1986 EXPORT_SYMBOL_GPL(rc_register_device);
1987 
devm_rc_release(struct device * dev,void * res)1988 static void devm_rc_release(struct device *dev, void *res)
1989 {
1990 	rc_unregister_device(*(struct rc_dev **)res);
1991 }
1992 
devm_rc_register_device(struct device * parent,struct rc_dev * dev)1993 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1994 {
1995 	struct rc_dev **dr;
1996 	int ret;
1997 
1998 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1999 	if (!dr)
2000 		return -ENOMEM;
2001 
2002 	ret = rc_register_device(dev);
2003 	if (ret) {
2004 		devres_free(dr);
2005 		return ret;
2006 	}
2007 
2008 	*dr = dev;
2009 	devres_add(parent, dr);
2010 
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(devm_rc_register_device);
2014 
rc_unregister_device(struct rc_dev * dev)2015 void rc_unregister_device(struct rc_dev *dev)
2016 {
2017 	if (!dev)
2018 		return;
2019 
2020 	if (dev->driver_type == RC_DRIVER_IR_RAW)
2021 		ir_raw_event_unregister(dev);
2022 
2023 	del_timer_sync(&dev->timer_keyup);
2024 	del_timer_sync(&dev->timer_repeat);
2025 
2026 	mutex_lock(&dev->lock);
2027 	if (dev->users && dev->close)
2028 		dev->close(dev);
2029 	dev->registered = false;
2030 	mutex_unlock(&dev->lock);
2031 
2032 	rc_free_rx_device(dev);
2033 
2034 	/*
2035 	 * lirc device should be freed with dev->registered = false, so
2036 	 * that userspace polling will get notified.
2037 	 */
2038 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2039 		lirc_unregister(dev);
2040 
2041 	device_del(&dev->dev);
2042 
2043 	ida_simple_remove(&rc_ida, dev->minor);
2044 
2045 	if (!dev->managed_alloc)
2046 		rc_free_device(dev);
2047 }
2048 
2049 EXPORT_SYMBOL_GPL(rc_unregister_device);
2050 
2051 /*
2052  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2053  */
2054 
rc_core_init(void)2055 static int __init rc_core_init(void)
2056 {
2057 	int rc = class_register(&rc_class);
2058 	if (rc) {
2059 		pr_err("rc_core: unable to register rc class\n");
2060 		return rc;
2061 	}
2062 
2063 	rc = lirc_dev_init();
2064 	if (rc) {
2065 		pr_err("rc_core: unable to init lirc\n");
2066 		class_unregister(&rc_class);
2067 		return rc;
2068 	}
2069 
2070 	led_trigger_register_simple("rc-feedback", &led_feedback);
2071 	rc_map_register(&empty_map);
2072 #ifdef CONFIG_MEDIA_CEC_RC
2073 	rc_map_register(&cec_map);
2074 #endif
2075 
2076 	return 0;
2077 }
2078 
rc_core_exit(void)2079 static void __exit rc_core_exit(void)
2080 {
2081 	lirc_dev_exit();
2082 	class_unregister(&rc_class);
2083 	led_trigger_unregister_simple(led_feedback);
2084 #ifdef CONFIG_MEDIA_CEC_RC
2085 	rc_map_unregister(&cec_map);
2086 #endif
2087 	rc_map_unregister(&empty_map);
2088 }
2089 
2090 subsys_initcall(rc_core_init);
2091 module_exit(rc_core_exit);
2092 
2093 MODULE_AUTHOR("Mauro Carvalho Chehab");
2094 MODULE_LICENSE("GPL v2");
2095