1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi_bitbang.h>
22 #include <linux/types.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/property.h>
26
27 #include <linux/platform_data/dma-imx.h>
28
29 #define DRIVER_NAME "spi_imx"
30
31 static bool use_dma = true;
32 module_param(use_dma, bool, 0644);
33 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
34
35 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
36
37 #define MXC_CSPIRXDATA 0x00
38 #define MXC_CSPITXDATA 0x04
39 #define MXC_CSPICTRL 0x08
40 #define MXC_CSPIINT 0x0c
41 #define MXC_RESET 0x1c
42
43 /* generic defines to abstract from the different register layouts */
44 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
45 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
46 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
47
48 /* The maximum bytes that a sdma BD can transfer. */
49 #define MAX_SDMA_BD_BYTES (1 << 15)
50 #define MX51_ECSPI_CTRL_MAX_BURST 512
51 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
52 #define MX53_MAX_TRANSFER_BYTES 512
53
54 enum spi_imx_devtype {
55 IMX1_CSPI,
56 IMX21_CSPI,
57 IMX27_CSPI,
58 IMX31_CSPI,
59 IMX35_CSPI, /* CSPI on all i.mx except above */
60 IMX51_ECSPI, /* ECSPI on i.mx51 */
61 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
62 };
63
64 struct spi_imx_data;
65
66 struct spi_imx_devtype_data {
67 void (*intctrl)(struct spi_imx_data *, int);
68 int (*prepare_message)(struct spi_imx_data *, struct spi_message *);
69 int (*prepare_transfer)(struct spi_imx_data *, struct spi_device *);
70 void (*trigger)(struct spi_imx_data *);
71 int (*rx_available)(struct spi_imx_data *);
72 void (*reset)(struct spi_imx_data *);
73 void (*setup_wml)(struct spi_imx_data *);
74 void (*disable)(struct spi_imx_data *);
75 void (*disable_dma)(struct spi_imx_data *);
76 bool has_dmamode;
77 bool has_slavemode;
78 unsigned int fifo_size;
79 bool dynamic_burst;
80 /*
81 * ERR009165 fixed or not:
82 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
83 */
84 bool tx_glitch_fixed;
85 enum spi_imx_devtype devtype;
86 };
87
88 struct spi_imx_data {
89 struct spi_bitbang bitbang;
90 struct device *dev;
91
92 struct completion xfer_done;
93 void __iomem *base;
94 unsigned long base_phys;
95
96 struct clk *clk_per;
97 struct clk *clk_ipg;
98 unsigned long spi_clk;
99 unsigned int spi_bus_clk;
100
101 unsigned int bits_per_word;
102 unsigned int spi_drctl;
103
104 unsigned int count, remainder;
105 void (*tx)(struct spi_imx_data *);
106 void (*rx)(struct spi_imx_data *);
107 void *rx_buf;
108 const void *tx_buf;
109 unsigned int txfifo; /* number of words pushed in tx FIFO */
110 unsigned int dynamic_burst;
111
112 /* Slave mode */
113 bool slave_mode;
114 bool slave_aborted;
115 unsigned int slave_burst;
116
117 /* DMA */
118 bool usedma;
119 u32 wml;
120 struct completion dma_rx_completion;
121 struct completion dma_tx_completion;
122
123 const struct spi_imx_devtype_data *devtype_data;
124 };
125
is_imx27_cspi(struct spi_imx_data * d)126 static inline int is_imx27_cspi(struct spi_imx_data *d)
127 {
128 return d->devtype_data->devtype == IMX27_CSPI;
129 }
130
is_imx35_cspi(struct spi_imx_data * d)131 static inline int is_imx35_cspi(struct spi_imx_data *d)
132 {
133 return d->devtype_data->devtype == IMX35_CSPI;
134 }
135
is_imx51_ecspi(struct spi_imx_data * d)136 static inline int is_imx51_ecspi(struct spi_imx_data *d)
137 {
138 return d->devtype_data->devtype == IMX51_ECSPI;
139 }
140
is_imx53_ecspi(struct spi_imx_data * d)141 static inline int is_imx53_ecspi(struct spi_imx_data *d)
142 {
143 return d->devtype_data->devtype == IMX53_ECSPI;
144 }
145
146 #define MXC_SPI_BUF_RX(type) \
147 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
148 { \
149 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
150 \
151 if (spi_imx->rx_buf) { \
152 *(type *)spi_imx->rx_buf = val; \
153 spi_imx->rx_buf += sizeof(type); \
154 } \
155 \
156 spi_imx->remainder -= sizeof(type); \
157 }
158
159 #define MXC_SPI_BUF_TX(type) \
160 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
161 { \
162 type val = 0; \
163 \
164 if (spi_imx->tx_buf) { \
165 val = *(type *)spi_imx->tx_buf; \
166 spi_imx->tx_buf += sizeof(type); \
167 } \
168 \
169 spi_imx->count -= sizeof(type); \
170 \
171 writel(val, spi_imx->base + MXC_CSPITXDATA); \
172 }
173
174 MXC_SPI_BUF_RX(u8)
175 MXC_SPI_BUF_TX(u8)
176 MXC_SPI_BUF_RX(u16)
177 MXC_SPI_BUF_TX(u16)
178 MXC_SPI_BUF_RX(u32)
179 MXC_SPI_BUF_TX(u32)
180
181 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
182 * (which is currently not the case in this driver)
183 */
184 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
185 256, 384, 512, 768, 1024};
186
187 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)188 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
189 unsigned int fspi, unsigned int max, unsigned int *fres)
190 {
191 int i;
192
193 for (i = 2; i < max; i++)
194 if (fspi * mxc_clkdivs[i] >= fin)
195 break;
196
197 *fres = fin / mxc_clkdivs[i];
198 return i;
199 }
200
201 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)202 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
203 unsigned int fspi, unsigned int *fres)
204 {
205 int i, div = 4;
206
207 for (i = 0; i < 7; i++) {
208 if (fspi * div >= fin)
209 goto out;
210 div <<= 1;
211 }
212
213 out:
214 *fres = fin / div;
215 return i;
216 }
217
spi_imx_bytes_per_word(const int bits_per_word)218 static int spi_imx_bytes_per_word(const int bits_per_word)
219 {
220 if (bits_per_word <= 8)
221 return 1;
222 else if (bits_per_word <= 16)
223 return 2;
224 else
225 return 4;
226 }
227
spi_imx_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * transfer)228 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
229 struct spi_transfer *transfer)
230 {
231 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
232
233 if (!use_dma || master->fallback)
234 return false;
235
236 if (!master->dma_rx)
237 return false;
238
239 if (spi_imx->slave_mode)
240 return false;
241
242 if (transfer->len < spi_imx->devtype_data->fifo_size)
243 return false;
244
245 spi_imx->dynamic_burst = 0;
246
247 return true;
248 }
249
250 /*
251 * Note the number of natively supported chip selects for MX51 is 4. Some
252 * devices may have less actual SS pins but the register map supports 4. When
253 * using gpio chip selects the cs values passed into the macros below can go
254 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
255 * corrupting bits outside the allocated locations.
256 *
257 * The simplest way to do this is to just mask the cs bits to 2 bits. This
258 * still allows all 4 native chip selects to work as well as gpio chip selects
259 * (which can use any of the 4 chip select configurations).
260 */
261
262 #define MX51_ECSPI_CTRL 0x08
263 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
264 #define MX51_ECSPI_CTRL_XCH (1 << 2)
265 #define MX51_ECSPI_CTRL_SMC (1 << 3)
266 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
267 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
268 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
269 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
270 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
271 #define MX51_ECSPI_CTRL_BL_OFFSET 20
272 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
273
274 #define MX51_ECSPI_CONFIG 0x0c
275 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
276 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
277 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
278 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
279 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
280
281 #define MX51_ECSPI_INT 0x10
282 #define MX51_ECSPI_INT_TEEN (1 << 0)
283 #define MX51_ECSPI_INT_RREN (1 << 3)
284 #define MX51_ECSPI_INT_RDREN (1 << 4)
285
286 #define MX51_ECSPI_DMA 0x14
287 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
288 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
289 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
290
291 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
292 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
293 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
294
295 #define MX51_ECSPI_STAT 0x18
296 #define MX51_ECSPI_STAT_RR (1 << 3)
297
298 #define MX51_ECSPI_TESTREG 0x20
299 #define MX51_ECSPI_TESTREG_LBC BIT(31)
300
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)301 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
302 {
303 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
304 #ifdef __LITTLE_ENDIAN
305 unsigned int bytes_per_word;
306 #endif
307
308 if (spi_imx->rx_buf) {
309 #ifdef __LITTLE_ENDIAN
310 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
311 if (bytes_per_word == 1)
312 val = cpu_to_be32(val);
313 else if (bytes_per_word == 2)
314 val = (val << 16) | (val >> 16);
315 #endif
316 *(u32 *)spi_imx->rx_buf = val;
317 spi_imx->rx_buf += sizeof(u32);
318 }
319
320 spi_imx->remainder -= sizeof(u32);
321 }
322
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)323 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
324 {
325 int unaligned;
326 u32 val;
327
328 unaligned = spi_imx->remainder % 4;
329
330 if (!unaligned) {
331 spi_imx_buf_rx_swap_u32(spi_imx);
332 return;
333 }
334
335 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
336 spi_imx_buf_rx_u16(spi_imx);
337 return;
338 }
339
340 val = readl(spi_imx->base + MXC_CSPIRXDATA);
341
342 while (unaligned--) {
343 if (spi_imx->rx_buf) {
344 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
345 spi_imx->rx_buf++;
346 }
347 spi_imx->remainder--;
348 }
349 }
350
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)351 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
352 {
353 u32 val = 0;
354 #ifdef __LITTLE_ENDIAN
355 unsigned int bytes_per_word;
356 #endif
357
358 if (spi_imx->tx_buf) {
359 val = *(u32 *)spi_imx->tx_buf;
360 spi_imx->tx_buf += sizeof(u32);
361 }
362
363 spi_imx->count -= sizeof(u32);
364 #ifdef __LITTLE_ENDIAN
365 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
366
367 if (bytes_per_word == 1)
368 val = cpu_to_be32(val);
369 else if (bytes_per_word == 2)
370 val = (val << 16) | (val >> 16);
371 #endif
372 writel(val, spi_imx->base + MXC_CSPITXDATA);
373 }
374
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)375 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
376 {
377 int unaligned;
378 u32 val = 0;
379
380 unaligned = spi_imx->count % 4;
381
382 if (!unaligned) {
383 spi_imx_buf_tx_swap_u32(spi_imx);
384 return;
385 }
386
387 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
388 spi_imx_buf_tx_u16(spi_imx);
389 return;
390 }
391
392 while (unaligned--) {
393 if (spi_imx->tx_buf) {
394 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
395 spi_imx->tx_buf++;
396 }
397 spi_imx->count--;
398 }
399
400 writel(val, spi_imx->base + MXC_CSPITXDATA);
401 }
402
mx53_ecspi_rx_slave(struct spi_imx_data * spi_imx)403 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
404 {
405 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
406
407 if (spi_imx->rx_buf) {
408 int n_bytes = spi_imx->slave_burst % sizeof(val);
409
410 if (!n_bytes)
411 n_bytes = sizeof(val);
412
413 memcpy(spi_imx->rx_buf,
414 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
415
416 spi_imx->rx_buf += n_bytes;
417 spi_imx->slave_burst -= n_bytes;
418 }
419
420 spi_imx->remainder -= sizeof(u32);
421 }
422
mx53_ecspi_tx_slave(struct spi_imx_data * spi_imx)423 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
424 {
425 u32 val = 0;
426 int n_bytes = spi_imx->count % sizeof(val);
427
428 if (!n_bytes)
429 n_bytes = sizeof(val);
430
431 if (spi_imx->tx_buf) {
432 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
433 spi_imx->tx_buf, n_bytes);
434 val = cpu_to_be32(val);
435 spi_imx->tx_buf += n_bytes;
436 }
437
438 spi_imx->count -= n_bytes;
439
440 writel(val, spi_imx->base + MXC_CSPITXDATA);
441 }
442
443 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)444 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
445 unsigned int fspi, unsigned int *fres)
446 {
447 /*
448 * there are two 4-bit dividers, the pre-divider divides by
449 * $pre, the post-divider by 2^$post
450 */
451 unsigned int pre, post;
452 unsigned int fin = spi_imx->spi_clk;
453
454 fspi = min(fspi, fin);
455
456 post = fls(fin) - fls(fspi);
457 if (fin > fspi << post)
458 post++;
459
460 /* now we have: (fin <= fspi << post) with post being minimal */
461
462 post = max(4U, post) - 4;
463 if (unlikely(post > 0xf)) {
464 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
465 fspi, fin);
466 return 0xff;
467 }
468
469 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
470
471 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
472 __func__, fin, fspi, post, pre);
473
474 /* Resulting frequency for the SCLK line. */
475 *fres = (fin / (pre + 1)) >> post;
476
477 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
478 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
479 }
480
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)481 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
482 {
483 unsigned val = 0;
484
485 if (enable & MXC_INT_TE)
486 val |= MX51_ECSPI_INT_TEEN;
487
488 if (enable & MXC_INT_RR)
489 val |= MX51_ECSPI_INT_RREN;
490
491 if (enable & MXC_INT_RDR)
492 val |= MX51_ECSPI_INT_RDREN;
493
494 writel(val, spi_imx->base + MX51_ECSPI_INT);
495 }
496
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)497 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
498 {
499 u32 reg;
500
501 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
502 reg |= MX51_ECSPI_CTRL_XCH;
503 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
504 }
505
mx51_disable_dma(struct spi_imx_data * spi_imx)506 static void mx51_disable_dma(struct spi_imx_data *spi_imx)
507 {
508 writel(0, spi_imx->base + MX51_ECSPI_DMA);
509 }
510
mx51_ecspi_disable(struct spi_imx_data * spi_imx)511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
512 {
513 u32 ctrl;
514
515 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
516 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
517 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
518 }
519
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)520 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
521 struct spi_message *msg)
522 {
523 struct spi_device *spi = msg->spi;
524 struct spi_transfer *xfer;
525 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
526 u32 min_speed_hz = ~0U;
527 u32 testreg, delay;
528 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
529
530 /* set Master or Slave mode */
531 if (spi_imx->slave_mode)
532 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
533 else
534 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
535
536 /*
537 * Enable SPI_RDY handling (falling edge/level triggered).
538 */
539 if (spi->mode & SPI_READY)
540 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
541
542 /* set chip select to use */
543 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
544
545 /*
546 * The ctrl register must be written first, with the EN bit set other
547 * registers must not be written to.
548 */
549 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
550
551 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
552 if (spi->mode & SPI_LOOP)
553 testreg |= MX51_ECSPI_TESTREG_LBC;
554 else
555 testreg &= ~MX51_ECSPI_TESTREG_LBC;
556 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
557
558 /*
559 * eCSPI burst completion by Chip Select signal in Slave mode
560 * is not functional for imx53 Soc, config SPI burst completed when
561 * BURST_LENGTH + 1 bits are received
562 */
563 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
564 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
565 else
566 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
567
568 if (spi->mode & SPI_CPHA)
569 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
570 else
571 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
572
573 if (spi->mode & SPI_CPOL) {
574 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
575 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
576 } else {
577 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
578 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
579 }
580
581 if (spi->mode & SPI_CS_HIGH)
582 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
583 else
584 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
585
586 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
587
588 /*
589 * Wait until the changes in the configuration register CONFIGREG
590 * propagate into the hardware. It takes exactly one tick of the
591 * SCLK clock, but we will wait two SCLK clock just to be sure. The
592 * effect of the delay it takes for the hardware to apply changes
593 * is noticable if the SCLK clock run very slow. In such a case, if
594 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
595 * be asserted before the SCLK polarity changes, which would disrupt
596 * the SPI communication as the device on the other end would consider
597 * the change of SCLK polarity as a clock tick already.
598 *
599 * Because spi_imx->spi_bus_clk is only set in bitbang prepare_message
600 * callback, iterate over all the transfers in spi_message, find the
601 * one with lowest bus frequency, and use that bus frequency for the
602 * delay calculation. In case all transfers have speed_hz == 0, then
603 * min_speed_hz is ~0 and the resulting delay is zero.
604 */
605 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
606 if (!xfer->speed_hz)
607 continue;
608 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
609 }
610
611 delay = (2 * 1000000) / min_speed_hz;
612 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
613 udelay(delay);
614 else /* SCLK is _very_ slow */
615 usleep_range(delay, delay + 10);
616
617 return 0;
618 }
619
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)620 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
621 struct spi_device *spi)
622 {
623 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
624 u32 clk;
625
626 /* Clear BL field and set the right value */
627 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
628 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
629 ctrl |= (spi_imx->slave_burst * 8 - 1)
630 << MX51_ECSPI_CTRL_BL_OFFSET;
631 else
632 ctrl |= (spi_imx->bits_per_word - 1)
633 << MX51_ECSPI_CTRL_BL_OFFSET;
634
635 /* set clock speed */
636 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
637 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
638 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
639 spi_imx->spi_bus_clk = clk;
640
641 /*
642 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
643 * before i.mx6ul.
644 */
645 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
646 ctrl |= MX51_ECSPI_CTRL_SMC;
647 else
648 ctrl &= ~MX51_ECSPI_CTRL_SMC;
649
650 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
651
652 return 0;
653 }
654
mx51_setup_wml(struct spi_imx_data * spi_imx)655 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
656 {
657 u32 tx_wml = 0;
658
659 if (spi_imx->devtype_data->tx_glitch_fixed)
660 tx_wml = spi_imx->wml;
661 /*
662 * Configure the DMA register: setup the watermark
663 * and enable DMA request.
664 */
665 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
666 MX51_ECSPI_DMA_TX_WML(tx_wml) |
667 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
668 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
669 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
670 }
671
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)672 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
673 {
674 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
675 }
676
mx51_ecspi_reset(struct spi_imx_data * spi_imx)677 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
678 {
679 /* drain receive buffer */
680 while (mx51_ecspi_rx_available(spi_imx))
681 readl(spi_imx->base + MXC_CSPIRXDATA);
682 }
683
684 #define MX31_INTREG_TEEN (1 << 0)
685 #define MX31_INTREG_RREN (1 << 3)
686
687 #define MX31_CSPICTRL_ENABLE (1 << 0)
688 #define MX31_CSPICTRL_MASTER (1 << 1)
689 #define MX31_CSPICTRL_XCH (1 << 2)
690 #define MX31_CSPICTRL_SMC (1 << 3)
691 #define MX31_CSPICTRL_POL (1 << 4)
692 #define MX31_CSPICTRL_PHA (1 << 5)
693 #define MX31_CSPICTRL_SSCTL (1 << 6)
694 #define MX31_CSPICTRL_SSPOL (1 << 7)
695 #define MX31_CSPICTRL_BC_SHIFT 8
696 #define MX35_CSPICTRL_BL_SHIFT 20
697 #define MX31_CSPICTRL_CS_SHIFT 24
698 #define MX35_CSPICTRL_CS_SHIFT 12
699 #define MX31_CSPICTRL_DR_SHIFT 16
700
701 #define MX31_CSPI_DMAREG 0x10
702 #define MX31_DMAREG_RH_DEN (1<<4)
703 #define MX31_DMAREG_TH_DEN (1<<1)
704
705 #define MX31_CSPISTATUS 0x14
706 #define MX31_STATUS_RR (1 << 3)
707
708 #define MX31_CSPI_TESTREG 0x1C
709 #define MX31_TEST_LBC (1 << 14)
710
711 /* These functions also work for the i.MX35, but be aware that
712 * the i.MX35 has a slightly different register layout for bits
713 * we do not use here.
714 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)715 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
716 {
717 unsigned int val = 0;
718
719 if (enable & MXC_INT_TE)
720 val |= MX31_INTREG_TEEN;
721 if (enable & MXC_INT_RR)
722 val |= MX31_INTREG_RREN;
723
724 writel(val, spi_imx->base + MXC_CSPIINT);
725 }
726
mx31_trigger(struct spi_imx_data * spi_imx)727 static void mx31_trigger(struct spi_imx_data *spi_imx)
728 {
729 unsigned int reg;
730
731 reg = readl(spi_imx->base + MXC_CSPICTRL);
732 reg |= MX31_CSPICTRL_XCH;
733 writel(reg, spi_imx->base + MXC_CSPICTRL);
734 }
735
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)736 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
737 struct spi_message *msg)
738 {
739 return 0;
740 }
741
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)742 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
743 struct spi_device *spi)
744 {
745 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
746 unsigned int clk;
747
748 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
749 MX31_CSPICTRL_DR_SHIFT;
750 spi_imx->spi_bus_clk = clk;
751
752 if (is_imx35_cspi(spi_imx)) {
753 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
754 reg |= MX31_CSPICTRL_SSCTL;
755 } else {
756 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
757 }
758
759 if (spi->mode & SPI_CPHA)
760 reg |= MX31_CSPICTRL_PHA;
761 if (spi->mode & SPI_CPOL)
762 reg |= MX31_CSPICTRL_POL;
763 if (spi->mode & SPI_CS_HIGH)
764 reg |= MX31_CSPICTRL_SSPOL;
765 if (!spi->cs_gpiod)
766 reg |= (spi->chip_select) <<
767 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
768 MX31_CSPICTRL_CS_SHIFT);
769
770 if (spi_imx->usedma)
771 reg |= MX31_CSPICTRL_SMC;
772
773 writel(reg, spi_imx->base + MXC_CSPICTRL);
774
775 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
776 if (spi->mode & SPI_LOOP)
777 reg |= MX31_TEST_LBC;
778 else
779 reg &= ~MX31_TEST_LBC;
780 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
781
782 if (spi_imx->usedma) {
783 /*
784 * configure DMA requests when RXFIFO is half full and
785 * when TXFIFO is half empty
786 */
787 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
788 spi_imx->base + MX31_CSPI_DMAREG);
789 }
790
791 return 0;
792 }
793
mx31_rx_available(struct spi_imx_data * spi_imx)794 static int mx31_rx_available(struct spi_imx_data *spi_imx)
795 {
796 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
797 }
798
mx31_reset(struct spi_imx_data * spi_imx)799 static void mx31_reset(struct spi_imx_data *spi_imx)
800 {
801 /* drain receive buffer */
802 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
803 readl(spi_imx->base + MXC_CSPIRXDATA);
804 }
805
806 #define MX21_INTREG_RR (1 << 4)
807 #define MX21_INTREG_TEEN (1 << 9)
808 #define MX21_INTREG_RREN (1 << 13)
809
810 #define MX21_CSPICTRL_POL (1 << 5)
811 #define MX21_CSPICTRL_PHA (1 << 6)
812 #define MX21_CSPICTRL_SSPOL (1 << 8)
813 #define MX21_CSPICTRL_XCH (1 << 9)
814 #define MX21_CSPICTRL_ENABLE (1 << 10)
815 #define MX21_CSPICTRL_MASTER (1 << 11)
816 #define MX21_CSPICTRL_DR_SHIFT 14
817 #define MX21_CSPICTRL_CS_SHIFT 19
818
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)819 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
820 {
821 unsigned int val = 0;
822
823 if (enable & MXC_INT_TE)
824 val |= MX21_INTREG_TEEN;
825 if (enable & MXC_INT_RR)
826 val |= MX21_INTREG_RREN;
827
828 writel(val, spi_imx->base + MXC_CSPIINT);
829 }
830
mx21_trigger(struct spi_imx_data * spi_imx)831 static void mx21_trigger(struct spi_imx_data *spi_imx)
832 {
833 unsigned int reg;
834
835 reg = readl(spi_imx->base + MXC_CSPICTRL);
836 reg |= MX21_CSPICTRL_XCH;
837 writel(reg, spi_imx->base + MXC_CSPICTRL);
838 }
839
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)840 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
841 struct spi_message *msg)
842 {
843 return 0;
844 }
845
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)846 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
847 struct spi_device *spi)
848 {
849 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
850 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
851 unsigned int clk;
852
853 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
854 << MX21_CSPICTRL_DR_SHIFT;
855 spi_imx->spi_bus_clk = clk;
856
857 reg |= spi_imx->bits_per_word - 1;
858
859 if (spi->mode & SPI_CPHA)
860 reg |= MX21_CSPICTRL_PHA;
861 if (spi->mode & SPI_CPOL)
862 reg |= MX21_CSPICTRL_POL;
863 if (spi->mode & SPI_CS_HIGH)
864 reg |= MX21_CSPICTRL_SSPOL;
865 if (!spi->cs_gpiod)
866 reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
867
868 writel(reg, spi_imx->base + MXC_CSPICTRL);
869
870 return 0;
871 }
872
mx21_rx_available(struct spi_imx_data * spi_imx)873 static int mx21_rx_available(struct spi_imx_data *spi_imx)
874 {
875 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
876 }
877
mx21_reset(struct spi_imx_data * spi_imx)878 static void mx21_reset(struct spi_imx_data *spi_imx)
879 {
880 writel(1, spi_imx->base + MXC_RESET);
881 }
882
883 #define MX1_INTREG_RR (1 << 3)
884 #define MX1_INTREG_TEEN (1 << 8)
885 #define MX1_INTREG_RREN (1 << 11)
886
887 #define MX1_CSPICTRL_POL (1 << 4)
888 #define MX1_CSPICTRL_PHA (1 << 5)
889 #define MX1_CSPICTRL_XCH (1 << 8)
890 #define MX1_CSPICTRL_ENABLE (1 << 9)
891 #define MX1_CSPICTRL_MASTER (1 << 10)
892 #define MX1_CSPICTRL_DR_SHIFT 13
893
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)894 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
895 {
896 unsigned int val = 0;
897
898 if (enable & MXC_INT_TE)
899 val |= MX1_INTREG_TEEN;
900 if (enable & MXC_INT_RR)
901 val |= MX1_INTREG_RREN;
902
903 writel(val, spi_imx->base + MXC_CSPIINT);
904 }
905
mx1_trigger(struct spi_imx_data * spi_imx)906 static void mx1_trigger(struct spi_imx_data *spi_imx)
907 {
908 unsigned int reg;
909
910 reg = readl(spi_imx->base + MXC_CSPICTRL);
911 reg |= MX1_CSPICTRL_XCH;
912 writel(reg, spi_imx->base + MXC_CSPICTRL);
913 }
914
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)915 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
916 struct spi_message *msg)
917 {
918 return 0;
919 }
920
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)921 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
922 struct spi_device *spi)
923 {
924 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
925 unsigned int clk;
926
927 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
928 MX1_CSPICTRL_DR_SHIFT;
929 spi_imx->spi_bus_clk = clk;
930
931 reg |= spi_imx->bits_per_word - 1;
932
933 if (spi->mode & SPI_CPHA)
934 reg |= MX1_CSPICTRL_PHA;
935 if (spi->mode & SPI_CPOL)
936 reg |= MX1_CSPICTRL_POL;
937
938 writel(reg, spi_imx->base + MXC_CSPICTRL);
939
940 return 0;
941 }
942
mx1_rx_available(struct spi_imx_data * spi_imx)943 static int mx1_rx_available(struct spi_imx_data *spi_imx)
944 {
945 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
946 }
947
mx1_reset(struct spi_imx_data * spi_imx)948 static void mx1_reset(struct spi_imx_data *spi_imx)
949 {
950 writel(1, spi_imx->base + MXC_RESET);
951 }
952
953 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
954 .intctrl = mx1_intctrl,
955 .prepare_message = mx1_prepare_message,
956 .prepare_transfer = mx1_prepare_transfer,
957 .trigger = mx1_trigger,
958 .rx_available = mx1_rx_available,
959 .reset = mx1_reset,
960 .fifo_size = 8,
961 .has_dmamode = false,
962 .dynamic_burst = false,
963 .has_slavemode = false,
964 .devtype = IMX1_CSPI,
965 };
966
967 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
968 .intctrl = mx21_intctrl,
969 .prepare_message = mx21_prepare_message,
970 .prepare_transfer = mx21_prepare_transfer,
971 .trigger = mx21_trigger,
972 .rx_available = mx21_rx_available,
973 .reset = mx21_reset,
974 .fifo_size = 8,
975 .has_dmamode = false,
976 .dynamic_burst = false,
977 .has_slavemode = false,
978 .devtype = IMX21_CSPI,
979 };
980
981 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
982 /* i.mx27 cspi shares the functions with i.mx21 one */
983 .intctrl = mx21_intctrl,
984 .prepare_message = mx21_prepare_message,
985 .prepare_transfer = mx21_prepare_transfer,
986 .trigger = mx21_trigger,
987 .rx_available = mx21_rx_available,
988 .reset = mx21_reset,
989 .fifo_size = 8,
990 .has_dmamode = false,
991 .dynamic_burst = false,
992 .has_slavemode = false,
993 .devtype = IMX27_CSPI,
994 };
995
996 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
997 .intctrl = mx31_intctrl,
998 .prepare_message = mx31_prepare_message,
999 .prepare_transfer = mx31_prepare_transfer,
1000 .trigger = mx31_trigger,
1001 .rx_available = mx31_rx_available,
1002 .reset = mx31_reset,
1003 .fifo_size = 8,
1004 .has_dmamode = false,
1005 .dynamic_burst = false,
1006 .has_slavemode = false,
1007 .devtype = IMX31_CSPI,
1008 };
1009
1010 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1011 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1012 .intctrl = mx31_intctrl,
1013 .prepare_message = mx31_prepare_message,
1014 .prepare_transfer = mx31_prepare_transfer,
1015 .trigger = mx31_trigger,
1016 .rx_available = mx31_rx_available,
1017 .reset = mx31_reset,
1018 .fifo_size = 8,
1019 .has_dmamode = true,
1020 .dynamic_burst = false,
1021 .has_slavemode = false,
1022 .devtype = IMX35_CSPI,
1023 };
1024
1025 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1026 .intctrl = mx51_ecspi_intctrl,
1027 .prepare_message = mx51_ecspi_prepare_message,
1028 .prepare_transfer = mx51_ecspi_prepare_transfer,
1029 .trigger = mx51_ecspi_trigger,
1030 .rx_available = mx51_ecspi_rx_available,
1031 .reset = mx51_ecspi_reset,
1032 .setup_wml = mx51_setup_wml,
1033 .disable_dma = mx51_disable_dma,
1034 .fifo_size = 64,
1035 .has_dmamode = true,
1036 .dynamic_burst = true,
1037 .has_slavemode = true,
1038 .disable = mx51_ecspi_disable,
1039 .devtype = IMX51_ECSPI,
1040 };
1041
1042 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1043 .intctrl = mx51_ecspi_intctrl,
1044 .prepare_message = mx51_ecspi_prepare_message,
1045 .prepare_transfer = mx51_ecspi_prepare_transfer,
1046 .trigger = mx51_ecspi_trigger,
1047 .rx_available = mx51_ecspi_rx_available,
1048 .disable_dma = mx51_disable_dma,
1049 .reset = mx51_ecspi_reset,
1050 .fifo_size = 64,
1051 .has_dmamode = true,
1052 .has_slavemode = true,
1053 .disable = mx51_ecspi_disable,
1054 .devtype = IMX53_ECSPI,
1055 };
1056
1057 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1058 .intctrl = mx51_ecspi_intctrl,
1059 .prepare_message = mx51_ecspi_prepare_message,
1060 .prepare_transfer = mx51_ecspi_prepare_transfer,
1061 .trigger = mx51_ecspi_trigger,
1062 .rx_available = mx51_ecspi_rx_available,
1063 .reset = mx51_ecspi_reset,
1064 .setup_wml = mx51_setup_wml,
1065 .fifo_size = 64,
1066 .has_dmamode = true,
1067 .dynamic_burst = true,
1068 .has_slavemode = true,
1069 .tx_glitch_fixed = true,
1070 .disable = mx51_ecspi_disable,
1071 .devtype = IMX51_ECSPI,
1072 };
1073
1074 static const struct of_device_id spi_imx_dt_ids[] = {
1075 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1076 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1077 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1078 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1079 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1080 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1081 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1082 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1083 { /* sentinel */ }
1084 };
1085 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1086
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1087 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1088 {
1089 u32 ctrl;
1090
1091 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1092 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1093 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1094 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1095 }
1096
spi_imx_push(struct spi_imx_data * spi_imx)1097 static void spi_imx_push(struct spi_imx_data *spi_imx)
1098 {
1099 unsigned int burst_len;
1100
1101 /*
1102 * Reload the FIFO when the remaining bytes to be transferred in the
1103 * current burst is 0. This only applies when bits_per_word is a
1104 * multiple of 8.
1105 */
1106 if (!spi_imx->remainder) {
1107 if (spi_imx->dynamic_burst) {
1108
1109 /* We need to deal unaligned data first */
1110 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1111
1112 if (!burst_len)
1113 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1114
1115 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1116
1117 spi_imx->remainder = burst_len;
1118 } else {
1119 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1120 }
1121 }
1122
1123 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1124 if (!spi_imx->count)
1125 break;
1126 if (spi_imx->dynamic_burst &&
1127 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1128 break;
1129 spi_imx->tx(spi_imx);
1130 spi_imx->txfifo++;
1131 }
1132
1133 if (!spi_imx->slave_mode)
1134 spi_imx->devtype_data->trigger(spi_imx);
1135 }
1136
spi_imx_isr(int irq,void * dev_id)1137 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1138 {
1139 struct spi_imx_data *spi_imx = dev_id;
1140
1141 while (spi_imx->txfifo &&
1142 spi_imx->devtype_data->rx_available(spi_imx)) {
1143 spi_imx->rx(spi_imx);
1144 spi_imx->txfifo--;
1145 }
1146
1147 if (spi_imx->count) {
1148 spi_imx_push(spi_imx);
1149 return IRQ_HANDLED;
1150 }
1151
1152 if (spi_imx->txfifo) {
1153 /* No data left to push, but still waiting for rx data,
1154 * enable receive data available interrupt.
1155 */
1156 spi_imx->devtype_data->intctrl(
1157 spi_imx, MXC_INT_RR);
1158 return IRQ_HANDLED;
1159 }
1160
1161 spi_imx->devtype_data->intctrl(spi_imx, 0);
1162 complete(&spi_imx->xfer_done);
1163
1164 return IRQ_HANDLED;
1165 }
1166
spi_imx_dma_configure(struct spi_master * master)1167 static int spi_imx_dma_configure(struct spi_master *master)
1168 {
1169 int ret;
1170 enum dma_slave_buswidth buswidth;
1171 struct dma_slave_config rx = {}, tx = {};
1172 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1173
1174 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1175 case 4:
1176 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1177 break;
1178 case 2:
1179 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1180 break;
1181 case 1:
1182 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1183 break;
1184 default:
1185 return -EINVAL;
1186 }
1187
1188 tx.direction = DMA_MEM_TO_DEV;
1189 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1190 tx.dst_addr_width = buswidth;
1191 tx.dst_maxburst = spi_imx->wml;
1192 ret = dmaengine_slave_config(master->dma_tx, &tx);
1193 if (ret) {
1194 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1195 return ret;
1196 }
1197
1198 rx.direction = DMA_DEV_TO_MEM;
1199 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1200 rx.src_addr_width = buswidth;
1201 rx.src_maxburst = spi_imx->wml;
1202 ret = dmaengine_slave_config(master->dma_rx, &rx);
1203 if (ret) {
1204 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1205 return ret;
1206 }
1207
1208 return 0;
1209 }
1210
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1211 static int spi_imx_setupxfer(struct spi_device *spi,
1212 struct spi_transfer *t)
1213 {
1214 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1215
1216 if (!t)
1217 return 0;
1218
1219 if (!t->speed_hz) {
1220 if (!spi->max_speed_hz) {
1221 dev_err(&spi->dev, "no speed_hz provided!\n");
1222 return -EINVAL;
1223 }
1224 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1225 spi_imx->spi_bus_clk = spi->max_speed_hz;
1226 } else
1227 spi_imx->spi_bus_clk = t->speed_hz;
1228
1229 spi_imx->bits_per_word = t->bits_per_word;
1230
1231 /*
1232 * Initialize the functions for transfer. To transfer non byte-aligned
1233 * words, we have to use multiple word-size bursts, we can't use
1234 * dynamic_burst in that case.
1235 */
1236 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1237 !(spi->mode & SPI_CS_WORD) &&
1238 (spi_imx->bits_per_word == 8 ||
1239 spi_imx->bits_per_word == 16 ||
1240 spi_imx->bits_per_word == 32)) {
1241
1242 spi_imx->rx = spi_imx_buf_rx_swap;
1243 spi_imx->tx = spi_imx_buf_tx_swap;
1244 spi_imx->dynamic_burst = 1;
1245
1246 } else {
1247 if (spi_imx->bits_per_word <= 8) {
1248 spi_imx->rx = spi_imx_buf_rx_u8;
1249 spi_imx->tx = spi_imx_buf_tx_u8;
1250 } else if (spi_imx->bits_per_word <= 16) {
1251 spi_imx->rx = spi_imx_buf_rx_u16;
1252 spi_imx->tx = spi_imx_buf_tx_u16;
1253 } else {
1254 spi_imx->rx = spi_imx_buf_rx_u32;
1255 spi_imx->tx = spi_imx_buf_tx_u32;
1256 }
1257 spi_imx->dynamic_burst = 0;
1258 }
1259
1260 if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
1261 spi_imx->usedma = true;
1262 else
1263 spi_imx->usedma = false;
1264
1265 if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1266 spi_imx->rx = mx53_ecspi_rx_slave;
1267 spi_imx->tx = mx53_ecspi_tx_slave;
1268 spi_imx->slave_burst = t->len;
1269 }
1270
1271 spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1272
1273 return 0;
1274 }
1275
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1276 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1277 {
1278 struct spi_master *master = spi_imx->bitbang.master;
1279
1280 if (master->dma_rx) {
1281 dma_release_channel(master->dma_rx);
1282 master->dma_rx = NULL;
1283 }
1284
1285 if (master->dma_tx) {
1286 dma_release_channel(master->dma_tx);
1287 master->dma_tx = NULL;
1288 }
1289 }
1290
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_master * master)1291 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1292 struct spi_master *master)
1293 {
1294 int ret;
1295
1296 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1297
1298 /* Prepare for TX DMA: */
1299 master->dma_tx = dma_request_chan(dev, "tx");
1300 if (IS_ERR(master->dma_tx)) {
1301 ret = PTR_ERR(master->dma_tx);
1302 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1303 master->dma_tx = NULL;
1304 goto err;
1305 }
1306
1307 /* Prepare for RX : */
1308 master->dma_rx = dma_request_chan(dev, "rx");
1309 if (IS_ERR(master->dma_rx)) {
1310 ret = PTR_ERR(master->dma_rx);
1311 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1312 master->dma_rx = NULL;
1313 goto err;
1314 }
1315
1316 init_completion(&spi_imx->dma_rx_completion);
1317 init_completion(&spi_imx->dma_tx_completion);
1318 master->can_dma = spi_imx_can_dma;
1319 master->max_dma_len = MAX_SDMA_BD_BYTES;
1320 spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
1321 SPI_MASTER_MUST_TX;
1322
1323 return 0;
1324 err:
1325 spi_imx_sdma_exit(spi_imx);
1326 return ret;
1327 }
1328
spi_imx_dma_rx_callback(void * cookie)1329 static void spi_imx_dma_rx_callback(void *cookie)
1330 {
1331 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1332
1333 complete(&spi_imx->dma_rx_completion);
1334 }
1335
spi_imx_dma_tx_callback(void * cookie)1336 static void spi_imx_dma_tx_callback(void *cookie)
1337 {
1338 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1339
1340 complete(&spi_imx->dma_tx_completion);
1341 }
1342
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1343 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1344 {
1345 unsigned long timeout = 0;
1346
1347 /* Time with actual data transfer and CS change delay related to HW */
1348 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1349
1350 /* Add extra second for scheduler related activities */
1351 timeout += 1;
1352
1353 /* Double calculated timeout */
1354 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1355 }
1356
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1357 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1358 struct spi_transfer *transfer)
1359 {
1360 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1361 unsigned long transfer_timeout;
1362 unsigned long timeout;
1363 struct spi_master *master = spi_imx->bitbang.master;
1364 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1365 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1366 unsigned int bytes_per_word, i;
1367 int ret;
1368
1369 /* Get the right burst length from the last sg to ensure no tail data */
1370 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1371 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1372 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1373 break;
1374 }
1375 /* Use 1 as wml in case no available burst length got */
1376 if (i == 0)
1377 i = 1;
1378
1379 spi_imx->wml = i;
1380
1381 ret = spi_imx_dma_configure(master);
1382 if (ret)
1383 goto dma_failure_no_start;
1384
1385 if (!spi_imx->devtype_data->setup_wml) {
1386 dev_err(spi_imx->dev, "No setup_wml()?\n");
1387 ret = -EINVAL;
1388 goto dma_failure_no_start;
1389 }
1390 spi_imx->devtype_data->setup_wml(spi_imx);
1391
1392 /*
1393 * The TX DMA setup starts the transfer, so make sure RX is configured
1394 * before TX.
1395 */
1396 desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
1397 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1398 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1399 if (!desc_rx) {
1400 ret = -EINVAL;
1401 goto dma_failure_no_start;
1402 }
1403
1404 desc_rx->callback = spi_imx_dma_rx_callback;
1405 desc_rx->callback_param = (void *)spi_imx;
1406 dmaengine_submit(desc_rx);
1407 reinit_completion(&spi_imx->dma_rx_completion);
1408 dma_async_issue_pending(master->dma_rx);
1409
1410 desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
1411 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1412 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1413 if (!desc_tx) {
1414 dmaengine_terminate_all(master->dma_tx);
1415 dmaengine_terminate_all(master->dma_rx);
1416 return -EINVAL;
1417 }
1418
1419 desc_tx->callback = spi_imx_dma_tx_callback;
1420 desc_tx->callback_param = (void *)spi_imx;
1421 dmaengine_submit(desc_tx);
1422 reinit_completion(&spi_imx->dma_tx_completion);
1423 dma_async_issue_pending(master->dma_tx);
1424
1425 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1426
1427 /* Wait SDMA to finish the data transfer.*/
1428 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1429 transfer_timeout);
1430 if (!timeout) {
1431 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1432 dmaengine_terminate_all(master->dma_tx);
1433 dmaengine_terminate_all(master->dma_rx);
1434 return -ETIMEDOUT;
1435 }
1436
1437 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1438 transfer_timeout);
1439 if (!timeout) {
1440 dev_err(&master->dev, "I/O Error in DMA RX\n");
1441 spi_imx->devtype_data->reset(spi_imx);
1442 dmaengine_terminate_all(master->dma_rx);
1443 return -ETIMEDOUT;
1444 }
1445
1446 return transfer->len;
1447 /* fallback to pio */
1448 dma_failure_no_start:
1449 transfer->error |= SPI_TRANS_FAIL_NO_START;
1450 return ret;
1451 }
1452
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1453 static int spi_imx_pio_transfer(struct spi_device *spi,
1454 struct spi_transfer *transfer)
1455 {
1456 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1457 unsigned long transfer_timeout;
1458 unsigned long timeout;
1459
1460 spi_imx->tx_buf = transfer->tx_buf;
1461 spi_imx->rx_buf = transfer->rx_buf;
1462 spi_imx->count = transfer->len;
1463 spi_imx->txfifo = 0;
1464 spi_imx->remainder = 0;
1465
1466 reinit_completion(&spi_imx->xfer_done);
1467
1468 spi_imx_push(spi_imx);
1469
1470 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1471
1472 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1473
1474 timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1475 transfer_timeout);
1476 if (!timeout) {
1477 dev_err(&spi->dev, "I/O Error in PIO\n");
1478 spi_imx->devtype_data->reset(spi_imx);
1479 return -ETIMEDOUT;
1480 }
1481
1482 return transfer->len;
1483 }
1484
spi_imx_pio_transfer_slave(struct spi_device * spi,struct spi_transfer * transfer)1485 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1486 struct spi_transfer *transfer)
1487 {
1488 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1489 int ret = transfer->len;
1490
1491 if (is_imx53_ecspi(spi_imx) &&
1492 transfer->len > MX53_MAX_TRANSFER_BYTES) {
1493 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1494 MX53_MAX_TRANSFER_BYTES);
1495 return -EMSGSIZE;
1496 }
1497
1498 spi_imx->tx_buf = transfer->tx_buf;
1499 spi_imx->rx_buf = transfer->rx_buf;
1500 spi_imx->count = transfer->len;
1501 spi_imx->txfifo = 0;
1502 spi_imx->remainder = 0;
1503
1504 reinit_completion(&spi_imx->xfer_done);
1505 spi_imx->slave_aborted = false;
1506
1507 spi_imx_push(spi_imx);
1508
1509 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1510
1511 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1512 spi_imx->slave_aborted) {
1513 dev_dbg(&spi->dev, "interrupted\n");
1514 ret = -EINTR;
1515 }
1516
1517 /* ecspi has a HW issue when works in Slave mode,
1518 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1519 * ECSPI_TXDATA keeps shift out the last word data,
1520 * so we have to disable ECSPI when in slave mode after the
1521 * transfer completes
1522 */
1523 if (spi_imx->devtype_data->disable)
1524 spi_imx->devtype_data->disable(spi_imx);
1525
1526 return ret;
1527 }
1528
spi_imx_transfer(struct spi_device * spi,struct spi_transfer * transfer)1529 static int spi_imx_transfer(struct spi_device *spi,
1530 struct spi_transfer *transfer)
1531 {
1532 struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1533
1534 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1535
1536 /* flush rxfifo before transfer */
1537 while (spi_imx->devtype_data->rx_available(spi_imx))
1538 readl(spi_imx->base + MXC_CSPIRXDATA);
1539
1540 if (spi_imx->slave_mode)
1541 return spi_imx_pio_transfer_slave(spi, transfer);
1542
1543 if (spi_imx->usedma)
1544 return spi_imx_dma_transfer(spi_imx, transfer);
1545
1546 return spi_imx_pio_transfer(spi, transfer);
1547 }
1548
spi_imx_setup(struct spi_device * spi)1549 static int spi_imx_setup(struct spi_device *spi)
1550 {
1551 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1552 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1553
1554 return 0;
1555 }
1556
spi_imx_cleanup(struct spi_device * spi)1557 static void spi_imx_cleanup(struct spi_device *spi)
1558 {
1559 }
1560
1561 static int
spi_imx_prepare_message(struct spi_master * master,struct spi_message * msg)1562 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
1563 {
1564 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1565 int ret;
1566
1567 ret = pm_runtime_resume_and_get(spi_imx->dev);
1568 if (ret < 0) {
1569 dev_err(spi_imx->dev, "failed to enable clock\n");
1570 return ret;
1571 }
1572
1573 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1574 if (ret) {
1575 pm_runtime_mark_last_busy(spi_imx->dev);
1576 pm_runtime_put_autosuspend(spi_imx->dev);
1577 }
1578
1579 return ret;
1580 }
1581
1582 static int
spi_imx_unprepare_message(struct spi_master * master,struct spi_message * msg)1583 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
1584 {
1585 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1586
1587 pm_runtime_mark_last_busy(spi_imx->dev);
1588 pm_runtime_put_autosuspend(spi_imx->dev);
1589 return 0;
1590 }
1591
spi_imx_slave_abort(struct spi_master * master)1592 static int spi_imx_slave_abort(struct spi_master *master)
1593 {
1594 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1595
1596 spi_imx->slave_aborted = true;
1597 complete(&spi_imx->xfer_done);
1598
1599 return 0;
1600 }
1601
spi_imx_probe(struct platform_device * pdev)1602 static int spi_imx_probe(struct platform_device *pdev)
1603 {
1604 struct device_node *np = pdev->dev.of_node;
1605 struct spi_master *master;
1606 struct spi_imx_data *spi_imx;
1607 struct resource *res;
1608 int ret, irq, spi_drctl;
1609 const struct spi_imx_devtype_data *devtype_data =
1610 of_device_get_match_data(&pdev->dev);
1611 bool slave_mode;
1612 u32 val;
1613
1614 slave_mode = devtype_data->has_slavemode &&
1615 of_property_read_bool(np, "spi-slave");
1616 if (slave_mode)
1617 master = spi_alloc_slave(&pdev->dev,
1618 sizeof(struct spi_imx_data));
1619 else
1620 master = spi_alloc_master(&pdev->dev,
1621 sizeof(struct spi_imx_data));
1622 if (!master)
1623 return -ENOMEM;
1624
1625 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1626 if ((ret < 0) || (spi_drctl >= 0x3)) {
1627 /* '11' is reserved */
1628 spi_drctl = 0;
1629 }
1630
1631 platform_set_drvdata(pdev, master);
1632
1633 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1634 master->bus_num = np ? -1 : pdev->id;
1635 master->use_gpio_descriptors = true;
1636
1637 spi_imx = spi_master_get_devdata(master);
1638 spi_imx->bitbang.master = master;
1639 spi_imx->dev = &pdev->dev;
1640 spi_imx->slave_mode = slave_mode;
1641
1642 spi_imx->devtype_data = devtype_data;
1643
1644 /*
1645 * Get number of chip selects from device properties. This can be
1646 * coming from device tree or boardfiles, if it is not defined,
1647 * a default value of 3 chip selects will be used, as all the legacy
1648 * board files have <= 3 chip selects.
1649 */
1650 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1651 master->num_chipselect = val;
1652 else
1653 master->num_chipselect = 3;
1654
1655 spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
1656 spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
1657 spi_imx->bitbang.master->setup = spi_imx_setup;
1658 spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
1659 spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
1660 spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
1661 spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort;
1662 spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1663 | SPI_NO_CS;
1664 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1665 is_imx53_ecspi(spi_imx))
1666 spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY;
1667
1668 if (is_imx51_ecspi(spi_imx) &&
1669 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1670 /*
1671 * When using HW-CS implementing SPI_CS_WORD can be done by just
1672 * setting the burst length to the word size. This is
1673 * considerably faster than manually controlling the CS.
1674 */
1675 spi_imx->bitbang.master->mode_bits |= SPI_CS_WORD;
1676
1677 spi_imx->spi_drctl = spi_drctl;
1678
1679 init_completion(&spi_imx->xfer_done);
1680
1681 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1683 if (IS_ERR(spi_imx->base)) {
1684 ret = PTR_ERR(spi_imx->base);
1685 goto out_master_put;
1686 }
1687 spi_imx->base_phys = res->start;
1688
1689 irq = platform_get_irq(pdev, 0);
1690 if (irq < 0) {
1691 ret = irq;
1692 goto out_master_put;
1693 }
1694
1695 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1696 dev_name(&pdev->dev), spi_imx);
1697 if (ret) {
1698 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1699 goto out_master_put;
1700 }
1701
1702 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1703 if (IS_ERR(spi_imx->clk_ipg)) {
1704 ret = PTR_ERR(spi_imx->clk_ipg);
1705 goto out_master_put;
1706 }
1707
1708 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1709 if (IS_ERR(spi_imx->clk_per)) {
1710 ret = PTR_ERR(spi_imx->clk_per);
1711 goto out_master_put;
1712 }
1713
1714 ret = clk_prepare_enable(spi_imx->clk_per);
1715 if (ret)
1716 goto out_master_put;
1717
1718 ret = clk_prepare_enable(spi_imx->clk_ipg);
1719 if (ret)
1720 goto out_put_per;
1721
1722 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1723 pm_runtime_use_autosuspend(spi_imx->dev);
1724 pm_runtime_get_noresume(spi_imx->dev);
1725 pm_runtime_set_active(spi_imx->dev);
1726 pm_runtime_enable(spi_imx->dev);
1727
1728 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1729 /*
1730 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1731 * if validated on other chips.
1732 */
1733 if (spi_imx->devtype_data->has_dmamode) {
1734 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
1735 if (ret == -EPROBE_DEFER)
1736 goto out_runtime_pm_put;
1737
1738 if (ret < 0)
1739 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1740 ret);
1741 }
1742
1743 spi_imx->devtype_data->reset(spi_imx);
1744
1745 spi_imx->devtype_data->intctrl(spi_imx, 0);
1746
1747 master->dev.of_node = pdev->dev.of_node;
1748 ret = spi_bitbang_start(&spi_imx->bitbang);
1749 if (ret) {
1750 dev_err_probe(&pdev->dev, ret, "bitbang start failed\n");
1751 goto out_bitbang_start;
1752 }
1753
1754 pm_runtime_mark_last_busy(spi_imx->dev);
1755 pm_runtime_put_autosuspend(spi_imx->dev);
1756
1757 return ret;
1758
1759 out_bitbang_start:
1760 if (spi_imx->devtype_data->has_dmamode)
1761 spi_imx_sdma_exit(spi_imx);
1762 out_runtime_pm_put:
1763 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1764 pm_runtime_set_suspended(&pdev->dev);
1765 pm_runtime_disable(spi_imx->dev);
1766
1767 clk_disable_unprepare(spi_imx->clk_ipg);
1768 out_put_per:
1769 clk_disable_unprepare(spi_imx->clk_per);
1770 out_master_put:
1771 spi_master_put(master);
1772
1773 return ret;
1774 }
1775
spi_imx_remove(struct platform_device * pdev)1776 static int spi_imx_remove(struct platform_device *pdev)
1777 {
1778 struct spi_master *master = platform_get_drvdata(pdev);
1779 struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1780 int ret;
1781
1782 spi_bitbang_stop(&spi_imx->bitbang);
1783
1784 ret = pm_runtime_get_sync(spi_imx->dev);
1785 if (ret >= 0)
1786 writel(0, spi_imx->base + MXC_CSPICTRL);
1787 else
1788 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1789
1790 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1791 pm_runtime_put_sync(spi_imx->dev);
1792 pm_runtime_disable(spi_imx->dev);
1793
1794 spi_imx_sdma_exit(spi_imx);
1795 spi_master_put(master);
1796
1797 return 0;
1798 }
1799
spi_imx_runtime_resume(struct device * dev)1800 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1801 {
1802 struct spi_master *master = dev_get_drvdata(dev);
1803 struct spi_imx_data *spi_imx;
1804 int ret;
1805
1806 spi_imx = spi_master_get_devdata(master);
1807
1808 ret = clk_prepare_enable(spi_imx->clk_per);
1809 if (ret)
1810 return ret;
1811
1812 ret = clk_prepare_enable(spi_imx->clk_ipg);
1813 if (ret) {
1814 clk_disable_unprepare(spi_imx->clk_per);
1815 return ret;
1816 }
1817
1818 return 0;
1819 }
1820
spi_imx_runtime_suspend(struct device * dev)1821 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1822 {
1823 struct spi_master *master = dev_get_drvdata(dev);
1824 struct spi_imx_data *spi_imx;
1825
1826 spi_imx = spi_master_get_devdata(master);
1827
1828 clk_disable_unprepare(spi_imx->clk_per);
1829 clk_disable_unprepare(spi_imx->clk_ipg);
1830
1831 return 0;
1832 }
1833
spi_imx_suspend(struct device * dev)1834 static int __maybe_unused spi_imx_suspend(struct device *dev)
1835 {
1836 pinctrl_pm_select_sleep_state(dev);
1837 return 0;
1838 }
1839
spi_imx_resume(struct device * dev)1840 static int __maybe_unused spi_imx_resume(struct device *dev)
1841 {
1842 pinctrl_pm_select_default_state(dev);
1843 return 0;
1844 }
1845
1846 static const struct dev_pm_ops imx_spi_pm = {
1847 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1848 spi_imx_runtime_resume, NULL)
1849 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1850 };
1851
1852 static struct platform_driver spi_imx_driver = {
1853 .driver = {
1854 .name = DRIVER_NAME,
1855 .of_match_table = spi_imx_dt_ids,
1856 .pm = &imx_spi_pm,
1857 },
1858 .probe = spi_imx_probe,
1859 .remove = spi_imx_remove,
1860 };
1861 module_platform_driver(spi_imx_driver);
1862
1863 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1864 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1865 MODULE_LICENSE("GPL");
1866 MODULE_ALIAS("platform:" DRIVER_NAME);
1867