1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
22 */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27 {
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31 }
32
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35 {
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49 {
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52 /*
53 * Optimistically try the zone that the physical address mask falls
54 * into first. If that returns memory that isn't actually addressable
55 * we will fallback to the next lower zone and try again.
56 *
57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 * zones.
59 */
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 return GFP_DMA;
63 if (*phys_limit <= DMA_BIT_MASK(32) &&
64 !zone_dma32_are_empty())
65 return GFP_DMA32;
66 return 0;
67 }
68
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)69 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73 if (dma_addr == DMA_MAPPING_ERROR)
74 return false;
75 return dma_addr + size - 1 <=
76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80 {
81 if (!force_dma_unencrypted(dev))
82 return 0;
83 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
84 }
85
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87 {
88 int ret;
89
90 if (!force_dma_unencrypted(dev))
91 return 0;
92 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
93 if (ret)
94 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95 return ret;
96 }
97
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)98 static void __dma_direct_free_pages(struct device *dev, struct page *page,
99 size_t size)
100 {
101 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
102 swiotlb_free(dev, page, size))
103 return;
104 dma_free_contiguous(dev, page, size);
105 }
106
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)107 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
108 gfp_t gfp, bool allow_highmem)
109 {
110 int node = dev_to_node(dev);
111 struct page *page = NULL;
112 u64 phys_limit;
113
114 WARN_ON_ONCE(!PAGE_ALIGNED(size));
115
116 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
117 &phys_limit);
118 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
119 is_swiotlb_for_alloc(dev)) {
120 page = swiotlb_alloc(dev, size);
121 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
122 __dma_direct_free_pages(dev, page, size);
123 return NULL;
124 }
125 return page;
126 }
127
128 page = dma_alloc_contiguous(dev, size, gfp);
129 if (page) {
130 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
131 (!allow_highmem && PageHighMem(page))) {
132 dma_free_contiguous(dev, page, size);
133 page = NULL;
134 }
135 }
136 again:
137 if (!page)
138 page = alloc_pages_node(node, gfp, get_order(size));
139 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
140 dma_free_contiguous(dev, page, size);
141 page = NULL;
142
143 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
144 phys_limit < DMA_BIT_MASK(64) &&
145 !(gfp & (GFP_DMA32 | GFP_DMA)) &&
146 !zone_dma32_are_empty()) {
147 gfp |= GFP_DMA32;
148 goto again;
149 }
150
151 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
152 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
153 goto again;
154 }
155 }
156
157 return page;
158 }
159
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)160 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
161 dma_addr_t *dma_handle, gfp_t gfp)
162 {
163 struct page *page;
164 u64 phys_mask;
165 void *ret;
166
167 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
168 &phys_mask);
169 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
170 if (!page)
171 return NULL;
172 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
173 return ret;
174 }
175
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)176 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
177 dma_addr_t *dma_handle, gfp_t gfp)
178 {
179 struct page *page;
180
181 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
182 if (!page)
183 return NULL;
184
185 /* remove any dirty cache lines on the kernel alias */
186 if (!PageHighMem(page))
187 arch_dma_prep_coherent(page, size);
188
189 /* return the page pointer as the opaque cookie */
190 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
191 return page;
192 }
193
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)194 void *dma_direct_alloc(struct device *dev, size_t size,
195 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
196 {
197 struct page *page;
198 void *ret;
199
200 size = PAGE_ALIGN(size);
201 if (attrs & DMA_ATTR_NO_WARN)
202 gfp |= __GFP_NOWARN;
203
204 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
205 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
206 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
207
208 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
209 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
210 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
211 !dev_is_dma_coherent(dev) &&
212 !is_swiotlb_for_alloc(dev))
213 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
214
215 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
216 !dev_is_dma_coherent(dev))
217 return dma_alloc_from_global_coherent(dev, size, dma_handle);
218
219 /*
220 * Remapping or decrypting memory may block. If either is required and
221 * we can't block, allocate the memory from the atomic pools.
222 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
223 * set up another device coherent pool by shared-dma-pool and use
224 * dma_alloc_from_dev_coherent instead.
225 */
226 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
227 !gfpflags_allow_blocking(gfp) &&
228 (force_dma_unencrypted(dev) ||
229 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230 !dev_is_dma_coherent(dev))) &&
231 !is_swiotlb_for_alloc(dev))
232 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
233
234 /* we always manually zero the memory once we are done */
235 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
236 if (!page)
237 return NULL;
238
239 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
240 !dev_is_dma_coherent(dev)) ||
241 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
242 /* remove any dirty cache lines on the kernel alias */
243 arch_dma_prep_coherent(page, size);
244
245 /* create a coherent mapping */
246 ret = dma_common_contiguous_remap(page, size,
247 dma_pgprot(dev, PAGE_KERNEL, attrs),
248 __builtin_return_address(0));
249 if (!ret)
250 goto out_free_pages;
251 memset(ret, 0, size);
252 goto done;
253 }
254
255 if (PageHighMem(page)) {
256 /*
257 * Depending on the cma= arguments and per-arch setup
258 * dma_alloc_contiguous could return highmem pages.
259 * Without remapping there is no way to return them here,
260 * so log an error and fail.
261 */
262 dev_info(dev, "Rejecting highmem page from CMA.\n");
263 goto out_free_pages;
264 }
265
266 ret = page_address(page);
267 if (dma_set_decrypted(dev, ret, size))
268 goto out_free_pages;
269 memset(ret, 0, size);
270
271 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
272 !dev_is_dma_coherent(dev)) {
273 arch_dma_prep_coherent(page, size);
274 ret = arch_dma_set_uncached(ret, size);
275 if (IS_ERR(ret))
276 goto out_encrypt_pages;
277 }
278 done:
279 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
280 return ret;
281
282 out_encrypt_pages:
283 if (dma_set_encrypted(dev, page_address(page), size))
284 return NULL;
285 out_free_pages:
286 __dma_direct_free_pages(dev, page, size);
287 return NULL;
288 }
289
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)290 void dma_direct_free(struct device *dev, size_t size,
291 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
292 {
293 unsigned int page_order = get_order(size);
294
295 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
296 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
297 /* cpu_addr is a struct page cookie, not a kernel address */
298 dma_free_contiguous(dev, cpu_addr, size);
299 return;
300 }
301
302 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
303 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
304 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
305 !dev_is_dma_coherent(dev) &&
306 !is_swiotlb_for_alloc(dev)) {
307 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
308 return;
309 }
310
311 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
312 !dev_is_dma_coherent(dev)) {
313 if (!dma_release_from_global_coherent(page_order, cpu_addr))
314 WARN_ON_ONCE(1);
315 return;
316 }
317
318 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
319 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
320 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
321 return;
322
323 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
324 vunmap(cpu_addr);
325 } else {
326 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
327 arch_dma_clear_uncached(cpu_addr, size);
328 if (dma_set_encrypted(dev, cpu_addr, size))
329 return;
330 }
331
332 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
333 }
334
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)335 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
336 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
337 {
338 struct page *page;
339 void *ret;
340
341 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
343 !is_swiotlb_for_alloc(dev))
344 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
345
346 page = __dma_direct_alloc_pages(dev, size, gfp, false);
347 if (!page)
348 return NULL;
349
350 ret = page_address(page);
351 if (dma_set_decrypted(dev, ret, size))
352 goto out_free_pages;
353 memset(ret, 0, size);
354 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
355 return page;
356 out_free_pages:
357 __dma_direct_free_pages(dev, page, size);
358 return NULL;
359 }
360
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)361 void dma_direct_free_pages(struct device *dev, size_t size,
362 struct page *page, dma_addr_t dma_addr,
363 enum dma_data_direction dir)
364 {
365 void *vaddr = page_address(page);
366
367 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
368 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
369 dma_free_from_pool(dev, vaddr, size))
370 return;
371
372 if (dma_set_encrypted(dev, vaddr, size))
373 return;
374 __dma_direct_free_pages(dev, page, size);
375 }
376
377 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
378 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)379 void dma_direct_sync_sg_for_device(struct device *dev,
380 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
381 {
382 struct scatterlist *sg;
383 int i;
384
385 for_each_sg(sgl, sg, nents, i) {
386 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
387
388 if (unlikely(is_swiotlb_buffer(dev, paddr)))
389 swiotlb_sync_single_for_device(dev, paddr, sg->length,
390 dir);
391
392 if (!dev_is_dma_coherent(dev))
393 arch_sync_dma_for_device(paddr, sg->length,
394 dir);
395 }
396 }
397 #endif
398
399 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
400 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
401 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)402 void dma_direct_sync_sg_for_cpu(struct device *dev,
403 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
404 {
405 struct scatterlist *sg;
406 int i;
407
408 for_each_sg(sgl, sg, nents, i) {
409 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
410
411 if (!dev_is_dma_coherent(dev))
412 arch_sync_dma_for_cpu(paddr, sg->length, dir);
413
414 if (unlikely(is_swiotlb_buffer(dev, paddr)))
415 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
416 dir);
417
418 if (dir == DMA_FROM_DEVICE)
419 arch_dma_mark_clean(paddr, sg->length);
420 }
421
422 if (!dev_is_dma_coherent(dev))
423 arch_sync_dma_for_cpu_all();
424 }
425
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)426 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
427 int nents, enum dma_data_direction dir, unsigned long attrs)
428 {
429 struct scatterlist *sg;
430 int i;
431
432 for_each_sg(sgl, sg, nents, i)
433 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
434 attrs);
435 }
436 #endif
437
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)438 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
439 enum dma_data_direction dir, unsigned long attrs)
440 {
441 int i;
442 struct scatterlist *sg;
443
444 for_each_sg(sgl, sg, nents, i) {
445 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
446 sg->offset, sg->length, dir, attrs);
447 if (sg->dma_address == DMA_MAPPING_ERROR)
448 goto out_unmap;
449 sg_dma_len(sg) = sg->length;
450 }
451
452 return nents;
453
454 out_unmap:
455 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
456 return -EIO;
457 }
458
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)459 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
460 size_t size, enum dma_data_direction dir, unsigned long attrs)
461 {
462 dma_addr_t dma_addr = paddr;
463
464 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
465 dev_err_once(dev,
466 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
467 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
468 WARN_ON_ONCE(1);
469 return DMA_MAPPING_ERROR;
470 }
471
472 return dma_addr;
473 }
474
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)475 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
476 void *cpu_addr, dma_addr_t dma_addr, size_t size,
477 unsigned long attrs)
478 {
479 struct page *page = dma_direct_to_page(dev, dma_addr);
480 int ret;
481
482 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
483 if (!ret)
484 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
485 return ret;
486 }
487
dma_direct_can_mmap(struct device * dev)488 bool dma_direct_can_mmap(struct device *dev)
489 {
490 return dev_is_dma_coherent(dev) ||
491 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
492 }
493
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)494 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
495 void *cpu_addr, dma_addr_t dma_addr, size_t size,
496 unsigned long attrs)
497 {
498 unsigned long user_count = vma_pages(vma);
499 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
500 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
501 int ret = -ENXIO;
502
503 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
504
505 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
506 return ret;
507 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
508 return ret;
509
510 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
511 return -ENXIO;
512 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
513 user_count << PAGE_SHIFT, vma->vm_page_prot);
514 }
515
dma_direct_supported(struct device * dev,u64 mask)516 int dma_direct_supported(struct device *dev, u64 mask)
517 {
518 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
519
520 /*
521 * Because 32-bit DMA masks are so common we expect every architecture
522 * to be able to satisfy them - either by not supporting more physical
523 * memory, or by providing a ZONE_DMA32. If neither is the case, the
524 * architecture needs to use an IOMMU instead of the direct mapping.
525 */
526 if (mask >= DMA_BIT_MASK(32))
527 return 1;
528
529 /*
530 * This check needs to be against the actual bit mask value, so use
531 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
532 * part of the check.
533 */
534 if (IS_ENABLED(CONFIG_ZONE_DMA))
535 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
536 return mask >= phys_to_dma_unencrypted(dev, min_mask);
537 }
538
dma_direct_max_mapping_size(struct device * dev)539 size_t dma_direct_max_mapping_size(struct device *dev)
540 {
541 /* If SWIOTLB is active, use its maximum mapping size */
542 if (is_swiotlb_active(dev) &&
543 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
544 return swiotlb_max_mapping_size(dev);
545 return SIZE_MAX;
546 }
547
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)548 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
549 {
550 return !dev_is_dma_coherent(dev) ||
551 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
552 }
553
554 /**
555 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
556 * @dev: device pointer; needed to "own" the alloced memory.
557 * @cpu_start: beginning of memory region covered by this offset.
558 * @dma_start: beginning of DMA/PCI region covered by this offset.
559 * @size: size of the region.
560 *
561 * This is for the simple case of a uniform offset which cannot
562 * be discovered by "dma-ranges".
563 *
564 * It returns -ENOMEM if out of memory, -EINVAL if a map
565 * already exists, 0 otherwise.
566 *
567 * Note: any call to this from a driver is a bug. The mapping needs
568 * to be described by the device tree or other firmware interfaces.
569 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)570 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
571 dma_addr_t dma_start, u64 size)
572 {
573 struct bus_dma_region *map;
574 u64 offset = (u64)cpu_start - (u64)dma_start;
575
576 if (dev->dma_range_map) {
577 dev_err(dev, "attempt to add DMA range to existing map\n");
578 return -EINVAL;
579 }
580
581 if (!offset)
582 return 0;
583
584 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
585 if (!map)
586 return -ENOMEM;
587 map[0].cpu_start = cpu_start;
588 map[0].dma_start = dma_start;
589 map[0].offset = offset;
590 map[0].size = size;
591 dev->dma_range_map = map;
592 return 0;
593 }
594