• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66 
file_thp_enabled(struct vm_area_struct * vma)67 static inline bool file_thp_enabled(struct vm_area_struct *vma)
68 {
69 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 	       (vma->vm_flags & VM_EXEC);
72 }
73 
transparent_hugepage_active(struct vm_area_struct * vma)74 bool transparent_hugepage_active(struct vm_area_struct *vma)
75 {
76 	/* The addr is used to check if the vma size fits */
77 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78 
79 	if (!transhuge_vma_suitable(vma, addr))
80 		return false;
81 	if (vma_is_anonymous(vma))
82 		return __transparent_hugepage_enabled(vma);
83 	if (vma_is_shmem(vma))
84 		return shmem_huge_enabled(vma);
85 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 		return file_thp_enabled(vma);
87 
88 	return false;
89 }
90 
get_huge_zero_page(void)91 static bool get_huge_zero_page(void)
92 {
93 	struct page *zero_page;
94 retry:
95 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96 		return true;
97 
98 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99 			HPAGE_PMD_ORDER);
100 	if (!zero_page) {
101 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102 		return false;
103 	}
104 	count_vm_event(THP_ZERO_PAGE_ALLOC);
105 	preempt_disable();
106 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107 		preempt_enable();
108 		__free_pages(zero_page, compound_order(zero_page));
109 		goto retry;
110 	}
111 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112 
113 	/* We take additional reference here. It will be put back by shrinker */
114 	atomic_set(&huge_zero_refcount, 2);
115 	preempt_enable();
116 	return true;
117 }
118 
put_huge_zero_page(void)119 static void put_huge_zero_page(void)
120 {
121 	/*
122 	 * Counter should never go to zero here. Only shrinker can put
123 	 * last reference.
124 	 */
125 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 }
127 
mm_get_huge_zero_page(struct mm_struct * mm)128 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129 {
130 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 		return READ_ONCE(huge_zero_page);
132 
133 	if (!get_huge_zero_page())
134 		return NULL;
135 
136 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 		put_huge_zero_page();
138 
139 	return READ_ONCE(huge_zero_page);
140 }
141 
mm_put_huge_zero_page(struct mm_struct * mm)142 void mm_put_huge_zero_page(struct mm_struct *mm)
143 {
144 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 		put_huge_zero_page();
146 }
147 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 					struct shrink_control *sc)
150 {
151 	/* we can free zero page only if last reference remains */
152 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 }
154 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 				       struct shrink_control *sc)
157 {
158 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 		struct page *zero_page = xchg(&huge_zero_page, NULL);
160 		BUG_ON(zero_page == NULL);
161 		WRITE_ONCE(huge_zero_pfn, ~0UL);
162 		__free_pages(zero_page, compound_order(zero_page));
163 		return HPAGE_PMD_NR;
164 	}
165 
166 	return 0;
167 }
168 
169 static struct shrinker huge_zero_page_shrinker = {
170 	.count_objects = shrink_huge_zero_page_count,
171 	.scan_objects = shrink_huge_zero_page_scan,
172 	.seeks = DEFAULT_SEEKS,
173 };
174 
175 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)176 static ssize_t enabled_show(struct kobject *kobj,
177 			    struct kobj_attribute *attr, char *buf)
178 {
179 	const char *output;
180 
181 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 		output = "[always] madvise never";
183 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 			  &transparent_hugepage_flags))
185 		output = "always [madvise] never";
186 	else
187 		output = "always madvise [never]";
188 
189 	return sysfs_emit(buf, "%s\n", output);
190 }
191 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)192 static ssize_t enabled_store(struct kobject *kobj,
193 			     struct kobj_attribute *attr,
194 			     const char *buf, size_t count)
195 {
196 	ssize_t ret = count;
197 
198 	if (sysfs_streq(buf, "always")) {
199 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 	} else if (sysfs_streq(buf, "madvise")) {
202 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 	} else if (sysfs_streq(buf, "never")) {
205 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 	} else
208 		ret = -EINVAL;
209 
210 	if (ret > 0) {
211 		int err = start_stop_khugepaged();
212 		if (err)
213 			ret = err;
214 	}
215 	return ret;
216 }
217 static struct kobj_attribute enabled_attr =
218 	__ATTR(enabled, 0644, enabled_show, enabled_store);
219 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)220 ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 				  struct kobj_attribute *attr, char *buf,
222 				  enum transparent_hugepage_flag flag)
223 {
224 	return sysfs_emit(buf, "%d\n",
225 			  !!test_bit(flag, &transparent_hugepage_flags));
226 }
227 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)228 ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 				 struct kobj_attribute *attr,
230 				 const char *buf, size_t count,
231 				 enum transparent_hugepage_flag flag)
232 {
233 	unsigned long value;
234 	int ret;
235 
236 	ret = kstrtoul(buf, 10, &value);
237 	if (ret < 0)
238 		return ret;
239 	if (value > 1)
240 		return -EINVAL;
241 
242 	if (value)
243 		set_bit(flag, &transparent_hugepage_flags);
244 	else
245 		clear_bit(flag, &transparent_hugepage_flags);
246 
247 	return count;
248 }
249 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)250 static ssize_t defrag_show(struct kobject *kobj,
251 			   struct kobj_attribute *attr, char *buf)
252 {
253 	const char *output;
254 
255 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 		     &transparent_hugepage_flags))
257 		output = "[always] defer defer+madvise madvise never";
258 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 			  &transparent_hugepage_flags))
260 		output = "always [defer] defer+madvise madvise never";
261 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 			  &transparent_hugepage_flags))
263 		output = "always defer [defer+madvise] madvise never";
264 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 			  &transparent_hugepage_flags))
266 		output = "always defer defer+madvise [madvise] never";
267 	else
268 		output = "always defer defer+madvise madvise [never]";
269 
270 	return sysfs_emit(buf, "%s\n", output);
271 }
272 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)273 static ssize_t defrag_store(struct kobject *kobj,
274 			    struct kobj_attribute *attr,
275 			    const char *buf, size_t count)
276 {
277 	if (sysfs_streq(buf, "always")) {
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 	} else if (sysfs_streq(buf, "defer+madvise")) {
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 	} else if (sysfs_streq(buf, "defer")) {
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292 	} else if (sysfs_streq(buf, "madvise")) {
293 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 	} else if (sysfs_streq(buf, "never")) {
298 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 	} else
303 		return -EINVAL;
304 
305 	return count;
306 }
307 static struct kobj_attribute defrag_attr =
308 	__ATTR(defrag, 0644, defrag_show, defrag_store);
309 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)310 static ssize_t use_zero_page_show(struct kobject *kobj,
311 				  struct kobj_attribute *attr, char *buf)
312 {
313 	return single_hugepage_flag_show(kobj, attr, buf,
314 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)316 static ssize_t use_zero_page_store(struct kobject *kobj,
317 		struct kobj_attribute *attr, const char *buf, size_t count)
318 {
319 	return single_hugepage_flag_store(kobj, attr, buf, count,
320 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321 }
322 static struct kobj_attribute use_zero_page_attr =
323 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)325 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326 				   struct kobj_attribute *attr, char *buf)
327 {
328 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 }
330 static struct kobj_attribute hpage_pmd_size_attr =
331 	__ATTR_RO(hpage_pmd_size);
332 
333 static struct attribute *hugepage_attr[] = {
334 	&enabled_attr.attr,
335 	&defrag_attr.attr,
336 	&use_zero_page_attr.attr,
337 	&hpage_pmd_size_attr.attr,
338 #ifdef CONFIG_SHMEM
339 	&shmem_enabled_attr.attr,
340 #endif
341 	NULL,
342 };
343 
344 static const struct attribute_group hugepage_attr_group = {
345 	.attrs = hugepage_attr,
346 };
347 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 {
350 	int err;
351 
352 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 	if (unlikely(!*hugepage_kobj)) {
354 		pr_err("failed to create transparent hugepage kobject\n");
355 		return -ENOMEM;
356 	}
357 
358 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
359 	if (err) {
360 		pr_err("failed to register transparent hugepage group\n");
361 		goto delete_obj;
362 	}
363 
364 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
365 	if (err) {
366 		pr_err("failed to register transparent hugepage group\n");
367 		goto remove_hp_group;
368 	}
369 
370 	return 0;
371 
372 remove_hp_group:
373 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374 delete_obj:
375 	kobject_put(*hugepage_kobj);
376 	return err;
377 }
378 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 	kobject_put(hugepage_kobj);
384 }
385 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387 {
388 	return 0;
389 }
390 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 {
393 }
394 #endif /* CONFIG_SYSFS */
395 
hugepage_init(void)396 static int __init hugepage_init(void)
397 {
398 	int err;
399 	struct kobject *hugepage_kobj;
400 
401 	if (!has_transparent_hugepage()) {
402 		/*
403 		 * Hardware doesn't support hugepages, hence disable
404 		 * DAX PMD support.
405 		 */
406 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
407 		return -EINVAL;
408 	}
409 
410 	/*
411 	 * hugepages can't be allocated by the buddy allocator
412 	 */
413 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 	/*
415 	 * we use page->mapping and page->index in second tail page
416 	 * as list_head: assuming THP order >= 2
417 	 */
418 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419 
420 	err = hugepage_init_sysfs(&hugepage_kobj);
421 	if (err)
422 		goto err_sysfs;
423 
424 	err = khugepaged_init();
425 	if (err)
426 		goto err_slab;
427 
428 	err = register_shrinker(&huge_zero_page_shrinker);
429 	if (err)
430 		goto err_hzp_shrinker;
431 	err = register_shrinker(&deferred_split_shrinker);
432 	if (err)
433 		goto err_split_shrinker;
434 
435 	/*
436 	 * By default disable transparent hugepages on smaller systems,
437 	 * where the extra memory used could hurt more than TLB overhead
438 	 * is likely to save.  The admin can still enable it through /sys.
439 	 */
440 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441 		transparent_hugepage_flags = 0;
442 		return 0;
443 	}
444 
445 	err = start_stop_khugepaged();
446 	if (err)
447 		goto err_khugepaged;
448 
449 	return 0;
450 err_khugepaged:
451 	unregister_shrinker(&deferred_split_shrinker);
452 err_split_shrinker:
453 	unregister_shrinker(&huge_zero_page_shrinker);
454 err_hzp_shrinker:
455 	khugepaged_destroy();
456 err_slab:
457 	hugepage_exit_sysfs(hugepage_kobj);
458 err_sysfs:
459 	return err;
460 }
461 subsys_initcall(hugepage_init);
462 
setup_transparent_hugepage(char * str)463 static int __init setup_transparent_hugepage(char *str)
464 {
465 	int ret = 0;
466 	if (!str)
467 		goto out;
468 	if (!strcmp(str, "always")) {
469 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			&transparent_hugepage_flags);
471 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			  &transparent_hugepage_flags);
473 		ret = 1;
474 	} else if (!strcmp(str, "madvise")) {
475 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 			  &transparent_hugepage_flags);
477 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 			&transparent_hugepage_flags);
479 		ret = 1;
480 	} else if (!strcmp(str, "never")) {
481 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 			  &transparent_hugepage_flags);
483 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 			  &transparent_hugepage_flags);
485 		ret = 1;
486 	}
487 out:
488 	if (!ret)
489 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 	return ret;
491 }
492 __setup("transparent_hugepage=", setup_transparent_hugepage);
493 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495 {
496 	if (likely(vma->vm_flags & VM_WRITE))
497 		pmd = pmd_mkwrite(pmd);
498 	return pmd;
499 }
500 
501 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)502 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 {
504 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 
507 	if (memcg)
508 		return &memcg->deferred_split_queue;
509 	else
510 		return &pgdat->deferred_split_queue;
511 }
512 #else
get_deferred_split_queue(struct page * page)513 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514 {
515 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516 
517 	return &pgdat->deferred_split_queue;
518 }
519 #endif
520 
prep_transhuge_page(struct page * page)521 void prep_transhuge_page(struct page *page)
522 {
523 	/*
524 	 * we use page->mapping and page->indexlru in second tail page
525 	 * as list_head: assuming THP order >= 2
526 	 */
527 
528 	INIT_LIST_HEAD(page_deferred_list(page));
529 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 }
531 
is_transparent_hugepage(struct page * page)532 bool is_transparent_hugepage(struct page *page)
533 {
534 	if (!PageCompound(page))
535 		return false;
536 
537 	page = compound_head(page);
538 	return is_huge_zero_page(page) ||
539 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 }
541 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)543 static unsigned long __thp_get_unmapped_area(struct file *filp,
544 		unsigned long addr, unsigned long len,
545 		loff_t off, unsigned long flags, unsigned long size)
546 {
547 	loff_t off_end = off + len;
548 	loff_t off_align = round_up(off, size);
549 	unsigned long len_pad, ret;
550 
551 	if (off_end <= off_align || (off_end - off_align) < size)
552 		return 0;
553 
554 	len_pad = len + size;
555 	if (len_pad < len || (off + len_pad) < off)
556 		return 0;
557 
558 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559 					      off >> PAGE_SHIFT, flags);
560 
561 	/*
562 	 * The failure might be due to length padding. The caller will retry
563 	 * without the padding.
564 	 */
565 	if (IS_ERR_VALUE(ret))
566 		return 0;
567 
568 	/*
569 	 * Do not try to align to THP boundary if allocation at the address
570 	 * hint succeeds.
571 	 */
572 	if (ret == addr)
573 		return addr;
574 
575 	ret += (off - ret) & (size - 1);
576 	return ret;
577 }
578 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 		unsigned long len, unsigned long pgoff, unsigned long flags)
581 {
582 	unsigned long ret;
583 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584 
585 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 		goto out;
587 
588 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 	if (ret)
590 		return ret;
591 out:
592 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 			struct page *page, gfp_t gfp)
598 {
599 	struct vm_area_struct *vma = vmf->vma;
600 	pgtable_t pgtable;
601 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 	vm_fault_t ret = 0;
603 
604 	VM_BUG_ON_PAGE(!PageCompound(page), page);
605 
606 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607 		put_page(page);
608 		count_vm_event(THP_FAULT_FALLBACK);
609 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 		return VM_FAULT_FALLBACK;
611 	}
612 	cgroup_throttle_swaprate(page, gfp);
613 
614 	pgtable = pte_alloc_one(vma->vm_mm);
615 	if (unlikely(!pgtable)) {
616 		ret = VM_FAULT_OOM;
617 		goto release;
618 	}
619 
620 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 	/*
622 	 * The memory barrier inside __SetPageUptodate makes sure that
623 	 * clear_huge_page writes become visible before the set_pmd_at()
624 	 * write.
625 	 */
626 	__SetPageUptodate(page);
627 
628 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 	if (unlikely(!pmd_none(*vmf->pmd))) {
630 		goto unlock_release;
631 	} else {
632 		pmd_t entry;
633 
634 		ret = check_stable_address_space(vma->vm_mm);
635 		if (ret)
636 			goto unlock_release;
637 
638 		/* Deliver the page fault to userland */
639 		if (userfaultfd_missing(vma)) {
640 			spin_unlock(vmf->ptl);
641 			put_page(page);
642 			pte_free(vma->vm_mm, pgtable);
643 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 			return ret;
646 		}
647 
648 		entry = mk_huge_pmd(page, vma->vm_page_prot);
649 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 		page_add_new_anon_rmap(page, vma, haddr, true);
651 		lru_cache_add_inactive_or_unevictable(page, vma);
652 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 		mm_inc_nr_ptes(vma->vm_mm);
657 		spin_unlock(vmf->ptl);
658 		count_vm_event(THP_FAULT_ALLOC);
659 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 	}
661 
662 	return 0;
663 unlock_release:
664 	spin_unlock(vmf->ptl);
665 release:
666 	if (pgtable)
667 		pte_free(vma->vm_mm, pgtable);
668 	put_page(page);
669 	return ret;
670 
671 }
672 
673 /*
674  * always: directly stall for all thp allocations
675  * defer: wake kswapd and fail if not immediately available
676  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677  *		  fail if not immediately available
678  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679  *	    available
680  * never: never stall for any thp allocation
681  */
vma_thp_gfp_mask(struct vm_area_struct * vma)682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685 
686 	/* Always do synchronous compaction */
687 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 
690 	/* Kick kcompactd and fail quickly */
691 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 
694 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 		return GFP_TRANSHUGE_LIGHT |
697 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
698 					__GFP_KSWAPD_RECLAIM);
699 
700 	/* Only do synchronous compaction if madvised */
701 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 		return GFP_TRANSHUGE_LIGHT |
703 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704 
705 	return GFP_TRANSHUGE_LIGHT;
706 }
707 
708 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 		struct page *zero_page)
712 {
713 	pmd_t entry;
714 	if (!pmd_none(*pmd))
715 		return;
716 	entry = mk_pmd(zero_page, vma->vm_page_prot);
717 	entry = pmd_mkhuge(entry);
718 	if (pgtable)
719 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 	set_pmd_at(mm, haddr, pmd, entry);
721 	mm_inc_nr_ptes(mm);
722 }
723 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726 	struct vm_area_struct *vma = vmf->vma;
727 	gfp_t gfp;
728 	struct page *page;
729 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730 
731 	if (!transhuge_vma_suitable(vma, haddr))
732 		return VM_FAULT_FALLBACK;
733 	if (unlikely(anon_vma_prepare(vma)))
734 		return VM_FAULT_OOM;
735 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 		return VM_FAULT_OOM;
737 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 			!mm_forbids_zeropage(vma->vm_mm) &&
739 			transparent_hugepage_use_zero_page()) {
740 		pgtable_t pgtable;
741 		struct page *zero_page;
742 		vm_fault_t ret;
743 		pgtable = pte_alloc_one(vma->vm_mm);
744 		if (unlikely(!pgtable))
745 			return VM_FAULT_OOM;
746 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 		if (unlikely(!zero_page)) {
748 			pte_free(vma->vm_mm, pgtable);
749 			count_vm_event(THP_FAULT_FALLBACK);
750 			return VM_FAULT_FALLBACK;
751 		}
752 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 		ret = 0;
754 		if (pmd_none(*vmf->pmd)) {
755 			ret = check_stable_address_space(vma->vm_mm);
756 			if (ret) {
757 				spin_unlock(vmf->ptl);
758 				pte_free(vma->vm_mm, pgtable);
759 			} else if (userfaultfd_missing(vma)) {
760 				spin_unlock(vmf->ptl);
761 				pte_free(vma->vm_mm, pgtable);
762 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 			} else {
765 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 						   haddr, vmf->pmd, zero_page);
767 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 				spin_unlock(vmf->ptl);
769 			}
770 		} else {
771 			spin_unlock(vmf->ptl);
772 			pte_free(vma->vm_mm, pgtable);
773 		}
774 		return ret;
775 	}
776 	gfp = vma_thp_gfp_mask(vma);
777 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 	if (unlikely(!page)) {
779 		count_vm_event(THP_FAULT_FALLBACK);
780 		return VM_FAULT_FALLBACK;
781 	}
782 	prep_transhuge_page(page);
783 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 		pgtable_t pgtable)
789 {
790 	struct mm_struct *mm = vma->vm_mm;
791 	pmd_t entry;
792 	spinlock_t *ptl;
793 
794 	ptl = pmd_lock(mm, pmd);
795 	if (!pmd_none(*pmd)) {
796 		if (write) {
797 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 				goto out_unlock;
800 			}
801 			entry = pmd_mkyoung(*pmd);
802 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 				update_mmu_cache_pmd(vma, addr, pmd);
805 		}
806 
807 		goto out_unlock;
808 	}
809 
810 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 	if (pfn_t_devmap(pfn))
812 		entry = pmd_mkdevmap(entry);
813 	if (write) {
814 		entry = pmd_mkyoung(pmd_mkdirty(entry));
815 		entry = maybe_pmd_mkwrite(entry, vma);
816 	}
817 
818 	if (pgtable) {
819 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 		mm_inc_nr_ptes(mm);
821 		pgtable = NULL;
822 	}
823 
824 	set_pmd_at(mm, addr, pmd, entry);
825 	update_mmu_cache_pmd(vma, addr, pmd);
826 
827 out_unlock:
828 	spin_unlock(ptl);
829 	if (pgtable)
830 		pte_free(mm, pgtable);
831 }
832 
833 /**
834  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835  * @vmf: Structure describing the fault
836  * @pfn: pfn to insert
837  * @pgprot: page protection to use
838  * @write: whether it's a write fault
839  *
840  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841  * also consult the vmf_insert_mixed_prot() documentation when
842  * @pgprot != @vmf->vma->vm_page_prot.
843  *
844  * Return: vm_fault_t value.
845  */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 				   pgprot_t pgprot, bool write)
848 {
849 	unsigned long addr = vmf->address & PMD_MASK;
850 	struct vm_area_struct *vma = vmf->vma;
851 	pgtable_t pgtable = NULL;
852 
853 	/*
854 	 * If we had pmd_special, we could avoid all these restrictions,
855 	 * but we need to be consistent with PTEs and architectures that
856 	 * can't support a 'special' bit.
857 	 */
858 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 			!pfn_t_devmap(pfn));
860 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 						(VM_PFNMAP|VM_MIXEDMAP));
862 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863 
864 	if (addr < vma->vm_start || addr >= vma->vm_end)
865 		return VM_FAULT_SIGBUS;
866 
867 	if (arch_needs_pgtable_deposit()) {
868 		pgtable = pte_alloc_one(vma->vm_mm);
869 		if (!pgtable)
870 			return VM_FAULT_OOM;
871 	}
872 
873 	track_pfn_insert(vma, &pgprot, pfn);
874 
875 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 	return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879 
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883 	if (likely(vma->vm_flags & VM_WRITE))
884 		pud = pud_mkwrite(pud);
885 	return pud;
886 }
887 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891 	struct mm_struct *mm = vma->vm_mm;
892 	pud_t entry;
893 	spinlock_t *ptl;
894 
895 	ptl = pud_lock(mm, pud);
896 	if (!pud_none(*pud)) {
897 		if (write) {
898 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 				goto out_unlock;
901 			}
902 			entry = pud_mkyoung(*pud);
903 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 				update_mmu_cache_pud(vma, addr, pud);
906 		}
907 		goto out_unlock;
908 	}
909 
910 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 	if (pfn_t_devmap(pfn))
912 		entry = pud_mkdevmap(entry);
913 	if (write) {
914 		entry = pud_mkyoung(pud_mkdirty(entry));
915 		entry = maybe_pud_mkwrite(entry, vma);
916 	}
917 	set_pud_at(mm, addr, pud, entry);
918 	update_mmu_cache_pud(vma, addr, pud);
919 
920 out_unlock:
921 	spin_unlock(ptl);
922 }
923 
924 /**
925  * vmf_insert_pfn_pud_prot - insert a pud size pfn
926  * @vmf: Structure describing the fault
927  * @pfn: pfn to insert
928  * @pgprot: page protection to use
929  * @write: whether it's a write fault
930  *
931  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932  * also consult the vmf_insert_mixed_prot() documentation when
933  * @pgprot != @vmf->vma->vm_page_prot.
934  *
935  * Return: vm_fault_t value.
936  */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 				   pgprot_t pgprot, bool write)
939 {
940 	unsigned long addr = vmf->address & PUD_MASK;
941 	struct vm_area_struct *vma = vmf->vma;
942 
943 	/*
944 	 * If we had pud_special, we could avoid all these restrictions,
945 	 * but we need to be consistent with PTEs and architectures that
946 	 * can't support a 'special' bit.
947 	 */
948 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 			!pfn_t_devmap(pfn));
950 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 						(VM_PFNMAP|VM_MIXEDMAP));
952 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953 
954 	if (addr < vma->vm_start || addr >= vma->vm_end)
955 		return VM_FAULT_SIGBUS;
956 
957 	track_pfn_insert(vma, &pgprot, pfn);
958 
959 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 	return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 		pmd_t *pmd, int flags)
967 {
968 	pmd_t _pmd;
969 
970 	_pmd = pmd_mkyoung(*pmd);
971 	if (flags & FOLL_WRITE)
972 		_pmd = pmd_mkdirty(_pmd);
973 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 				pmd, _pmd, flags & FOLL_WRITE))
975 		update_mmu_cache_pmd(vma, addr, pmd);
976 }
977 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981 	unsigned long pfn = pmd_pfn(*pmd);
982 	struct mm_struct *mm = vma->vm_mm;
983 	struct page *page;
984 
985 	assert_spin_locked(pmd_lockptr(mm, pmd));
986 
987 	/*
988 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 	 * not be in this function with `flags & FOLL_COW` set.
990 	 */
991 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992 
993 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 			 (FOLL_PIN | FOLL_GET)))
996 		return NULL;
997 
998 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 		return NULL;
1000 
1001 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 		/* pass */;
1003 	else
1004 		return NULL;
1005 
1006 	if (flags & FOLL_TOUCH)
1007 		touch_pmd(vma, addr, pmd, flags);
1008 
1009 	/*
1010 	 * device mapped pages can only be returned if the
1011 	 * caller will manage the page reference count.
1012 	 */
1013 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 		return ERR_PTR(-EEXIST);
1015 
1016 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1018 	if (!*pgmap)
1019 		return ERR_PTR(-EFAULT);
1020 	page = pfn_to_page(pfn);
1021 	if (!try_grab_page(page, flags))
1022 		page = ERR_PTR(-ENOMEM);
1023 
1024 	return page;
1025 }
1026 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030 {
1031 	spinlock_t *dst_ptl, *src_ptl;
1032 	struct page *src_page;
1033 	pmd_t pmd;
1034 	pgtable_t pgtable = NULL;
1035 	int ret = -ENOMEM;
1036 
1037 	/* Skip if can be re-fill on fault */
1038 	if (!vma_is_anonymous(dst_vma))
1039 		return 0;
1040 
1041 	pgtable = pte_alloc_one(dst_mm);
1042 	if (unlikely(!pgtable))
1043 		goto out;
1044 
1045 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 
1049 	ret = -EAGAIN;
1050 	pmd = *src_pmd;
1051 
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 	if (unlikely(is_swap_pmd(pmd))) {
1054 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055 
1056 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 		if (is_writable_migration_entry(entry)) {
1058 			entry = make_readable_migration_entry(
1059 							swp_offset(entry));
1060 			pmd = swp_entry_to_pmd(entry);
1061 			if (pmd_swp_soft_dirty(*src_pmd))
1062 				pmd = pmd_swp_mksoft_dirty(pmd);
1063 			if (pmd_swp_uffd_wp(*src_pmd))
1064 				pmd = pmd_swp_mkuffd_wp(pmd);
1065 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 		}
1067 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 		mm_inc_nr_ptes(dst_mm);
1069 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 		if (!userfaultfd_wp(dst_vma))
1071 			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073 		ret = 0;
1074 		goto out_unlock;
1075 	}
1076 #endif
1077 
1078 	if (unlikely(!pmd_trans_huge(pmd))) {
1079 		pte_free(dst_mm, pgtable);
1080 		goto out_unlock;
1081 	}
1082 	/*
1083 	 * When page table lock is held, the huge zero pmd should not be
1084 	 * under splitting since we don't split the page itself, only pmd to
1085 	 * a page table.
1086 	 */
1087 	if (is_huge_zero_pmd(pmd)) {
1088 		/*
1089 		 * get_huge_zero_page() will never allocate a new page here,
1090 		 * since we already have a zero page to copy. It just takes a
1091 		 * reference.
1092 		 */
1093 		mm_get_huge_zero_page(dst_mm);
1094 		goto out_zero_page;
1095 	}
1096 
1097 	src_page = pmd_page(pmd);
1098 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 
1100 	/*
1101 	 * If this page is a potentially pinned page, split and retry the fault
1102 	 * with smaller page size.  Normally this should not happen because the
1103 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104 	 * best effort that the pinned pages won't be replaced by another
1105 	 * random page during the coming copy-on-write.
1106 	 */
1107 	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 		pte_free(dst_mm, pgtable);
1109 		spin_unlock(src_ptl);
1110 		spin_unlock(dst_ptl);
1111 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 		return -EAGAIN;
1113 	}
1114 
1115 	get_page(src_page);
1116 	page_dup_rmap(src_page, true);
1117 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 out_zero_page:
1119 	mm_inc_nr_ptes(dst_mm);
1120 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 	if (!userfaultfd_wp(dst_vma))
1123 		pmd = pmd_clear_uffd_wp(pmd);
1124 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1125 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126 
1127 	ret = 0;
1128 out_unlock:
1129 	spin_unlock(src_ptl);
1130 	spin_unlock(dst_ptl);
1131 out:
1132 	return ret;
1133 }
1134 
1135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1136 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137 		pud_t *pud, int flags)
1138 {
1139 	pud_t _pud;
1140 
1141 	_pud = pud_mkyoung(*pud);
1142 	if (flags & FOLL_WRITE)
1143 		_pud = pud_mkdirty(_pud);
1144 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145 				pud, _pud, flags & FOLL_WRITE))
1146 		update_mmu_cache_pud(vma, addr, pud);
1147 }
1148 
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1149 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 {
1152 	unsigned long pfn = pud_pfn(*pud);
1153 	struct mm_struct *mm = vma->vm_mm;
1154 	struct page *page;
1155 
1156 	assert_spin_locked(pud_lockptr(mm, pud));
1157 
1158 	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 		return NULL;
1160 
1161 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163 			 (FOLL_PIN | FOLL_GET)))
1164 		return NULL;
1165 
1166 	if (pud_present(*pud) && pud_devmap(*pud))
1167 		/* pass */;
1168 	else
1169 		return NULL;
1170 
1171 	if (flags & FOLL_TOUCH)
1172 		touch_pud(vma, addr, pud, flags);
1173 
1174 	/*
1175 	 * device mapped pages can only be returned if the
1176 	 * caller will manage the page reference count.
1177 	 *
1178 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179 	 */
1180 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 		return ERR_PTR(-EEXIST);
1182 
1183 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1185 	if (!*pgmap)
1186 		return ERR_PTR(-EFAULT);
1187 	page = pfn_to_page(pfn);
1188 	if (!try_grab_page(page, flags))
1189 		page = ERR_PTR(-ENOMEM);
1190 
1191 	return page;
1192 }
1193 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1194 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196 		  struct vm_area_struct *vma)
1197 {
1198 	spinlock_t *dst_ptl, *src_ptl;
1199 	pud_t pud;
1200 	int ret;
1201 
1202 	dst_ptl = pud_lock(dst_mm, dst_pud);
1203 	src_ptl = pud_lockptr(src_mm, src_pud);
1204 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205 
1206 	ret = -EAGAIN;
1207 	pud = *src_pud;
1208 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209 		goto out_unlock;
1210 
1211 	/*
1212 	 * When page table lock is held, the huge zero pud should not be
1213 	 * under splitting since we don't split the page itself, only pud to
1214 	 * a page table.
1215 	 */
1216 	if (is_huge_zero_pud(pud)) {
1217 		/* No huge zero pud yet */
1218 	}
1219 
1220 	/* Please refer to comments in copy_huge_pmd() */
1221 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 		spin_unlock(src_ptl);
1223 		spin_unlock(dst_ptl);
1224 		__split_huge_pud(vma, src_pud, addr);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	pudp_set_wrprotect(src_mm, addr, src_pud);
1229 	pud = pud_mkold(pud_wrprotect(pud));
1230 	set_pud_at(dst_mm, addr, dst_pud, pud);
1231 
1232 	ret = 0;
1233 out_unlock:
1234 	spin_unlock(src_ptl);
1235 	spin_unlock(dst_ptl);
1236 	return ret;
1237 }
1238 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1239 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240 {
1241 	pud_t entry;
1242 	unsigned long haddr;
1243 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1244 
1245 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247 		goto unlock;
1248 
1249 	entry = pud_mkyoung(orig_pud);
1250 	if (write)
1251 		entry = pud_mkdirty(entry);
1252 	haddr = vmf->address & HPAGE_PUD_MASK;
1253 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255 
1256 unlock:
1257 	spin_unlock(vmf->ptl);
1258 }
1259 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260 
huge_pmd_set_accessed(struct vm_fault * vmf)1261 void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 {
1263 	pmd_t entry;
1264 	unsigned long haddr;
1265 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266 	pmd_t orig_pmd = vmf->orig_pmd;
1267 
1268 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 		goto unlock;
1271 
1272 	entry = pmd_mkyoung(orig_pmd);
1273 	if (write)
1274 		entry = pmd_mkdirty(entry);
1275 	haddr = vmf->address & HPAGE_PMD_MASK;
1276 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 
1279 unlock:
1280 	spin_unlock(vmf->ptl);
1281 }
1282 
do_huge_pmd_wp_page(struct vm_fault * vmf)1283 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284 {
1285 	struct vm_area_struct *vma = vmf->vma;
1286 	struct page *page;
1287 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288 	pmd_t orig_pmd = vmf->orig_pmd;
1289 
1290 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292 
1293 	if (is_huge_zero_pmd(orig_pmd))
1294 		goto fallback;
1295 
1296 	spin_lock(vmf->ptl);
1297 
1298 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 		spin_unlock(vmf->ptl);
1300 		return 0;
1301 	}
1302 
1303 	page = pmd_page(orig_pmd);
1304 	VM_BUG_ON_PAGE(!PageHead(page), page);
1305 
1306 	/* Lock page for reuse_swap_page() */
1307 	if (!trylock_page(page)) {
1308 		get_page(page);
1309 		spin_unlock(vmf->ptl);
1310 		lock_page(page);
1311 		spin_lock(vmf->ptl);
1312 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313 			spin_unlock(vmf->ptl);
1314 			unlock_page(page);
1315 			put_page(page);
1316 			return 0;
1317 		}
1318 		put_page(page);
1319 	}
1320 
1321 	/*
1322 	 * We can only reuse the page if nobody else maps the huge page or it's
1323 	 * part.
1324 	 */
1325 	if (reuse_swap_page(page, NULL)) {
1326 		pmd_t entry;
1327 		entry = pmd_mkyoung(orig_pmd);
1328 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331 		unlock_page(page);
1332 		spin_unlock(vmf->ptl);
1333 		return VM_FAULT_WRITE;
1334 	}
1335 
1336 	unlock_page(page);
1337 	spin_unlock(vmf->ptl);
1338 fallback:
1339 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340 	return VM_FAULT_FALLBACK;
1341 }
1342 
1343 /*
1344  * FOLL_FORCE can write to even unwritable pmd's, but only
1345  * after we've gone through a COW cycle and they are dirty.
1346  */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1347 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348 {
1349 	return pmd_write(pmd) ||
1350 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351 }
1352 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1353 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354 				   unsigned long addr,
1355 				   pmd_t *pmd,
1356 				   unsigned int flags)
1357 {
1358 	struct mm_struct *mm = vma->vm_mm;
1359 	struct page *page = NULL;
1360 
1361 	assert_spin_locked(pmd_lockptr(mm, pmd));
1362 
1363 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364 		goto out;
1365 
1366 	/* Avoid dumping huge zero page */
1367 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368 		return ERR_PTR(-EFAULT);
1369 
1370 	/* Full NUMA hinting faults to serialise migration in fault paths */
1371 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372 		goto out;
1373 
1374 	page = pmd_page(*pmd);
1375 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376 
1377 	if (!try_grab_page(page, flags))
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	if (flags & FOLL_TOUCH)
1381 		touch_pmd(vma, addr, pmd, flags);
1382 
1383 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384 		/*
1385 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1386 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387 		 *
1388 		 * For anon THP:
1389 		 *
1390 		 * In most cases the pmd is the only mapping of the page as we
1391 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392 		 * writable private mappings in populate_vma_page_range().
1393 		 *
1394 		 * The only scenario when we have the page shared here is if we
1395 		 * mlocking read-only mapping shared over fork(). We skip
1396 		 * mlocking such pages.
1397 		 *
1398 		 * For file THP:
1399 		 *
1400 		 * We can expect PageDoubleMap() to be stable under page lock:
1401 		 * for file pages we set it in page_add_file_rmap(), which
1402 		 * requires page to be locked.
1403 		 */
1404 
1405 		if (PageAnon(page) && compound_mapcount(page) != 1)
1406 			goto skip_mlock;
1407 		if (PageDoubleMap(page) || !page->mapping)
1408 			goto skip_mlock;
1409 		if (!trylock_page(page))
1410 			goto skip_mlock;
1411 		if (page->mapping && !PageDoubleMap(page))
1412 			mlock_vma_page(page);
1413 		unlock_page(page);
1414 	}
1415 skip_mlock:
1416 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1418 
1419 out:
1420 	return page;
1421 }
1422 
1423 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1424 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425 {
1426 	struct vm_area_struct *vma = vmf->vma;
1427 	pmd_t oldpmd = vmf->orig_pmd;
1428 	pmd_t pmd;
1429 	struct page *page;
1430 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431 	int page_nid = NUMA_NO_NODE;
1432 	int target_nid, last_cpupid = -1;
1433 	bool migrated = false;
1434 	bool was_writable = pmd_savedwrite(oldpmd);
1435 	int flags = 0;
1436 
1437 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1439 		spin_unlock(vmf->ptl);
1440 		goto out;
1441 	}
1442 
1443 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1444 	page = vm_normal_page_pmd(vma, haddr, pmd);
1445 	if (!page)
1446 		goto out_map;
1447 
1448 	/* See similar comment in do_numa_page for explanation */
1449 	if (!was_writable)
1450 		flags |= TNF_NO_GROUP;
1451 
1452 	page_nid = page_to_nid(page);
1453 	last_cpupid = page_cpupid_last(page);
1454 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1455 				       &flags);
1456 
1457 	if (target_nid == NUMA_NO_NODE) {
1458 		put_page(page);
1459 		goto out_map;
1460 	}
1461 
1462 	spin_unlock(vmf->ptl);
1463 
1464 	migrated = migrate_misplaced_page(page, vma, target_nid);
1465 	if (migrated) {
1466 		flags |= TNF_MIGRATED;
1467 		page_nid = target_nid;
1468 	} else {
1469 		flags |= TNF_MIGRATE_FAIL;
1470 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1472 			spin_unlock(vmf->ptl);
1473 			goto out;
1474 		}
1475 		goto out_map;
1476 	}
1477 
1478 out:
1479 	if (page_nid != NUMA_NO_NODE)
1480 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1481 				flags);
1482 
1483 	return 0;
1484 
1485 out_map:
1486 	/* Restore the PMD */
1487 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1488 	pmd = pmd_mkyoung(pmd);
1489 	if (was_writable)
1490 		pmd = pmd_mkwrite(pmd);
1491 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1492 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1493 	spin_unlock(vmf->ptl);
1494 	goto out;
1495 }
1496 
1497 /*
1498  * Return true if we do MADV_FREE successfully on entire pmd page.
1499  * Otherwise, return false.
1500  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1501 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1502 		pmd_t *pmd, unsigned long addr, unsigned long next)
1503 {
1504 	spinlock_t *ptl;
1505 	pmd_t orig_pmd;
1506 	struct page *page;
1507 	struct mm_struct *mm = tlb->mm;
1508 	bool ret = false;
1509 
1510 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1511 
1512 	ptl = pmd_trans_huge_lock(pmd, vma);
1513 	if (!ptl)
1514 		goto out_unlocked;
1515 
1516 	orig_pmd = *pmd;
1517 	if (is_huge_zero_pmd(orig_pmd))
1518 		goto out;
1519 
1520 	if (unlikely(!pmd_present(orig_pmd))) {
1521 		VM_BUG_ON(thp_migration_supported() &&
1522 				  !is_pmd_migration_entry(orig_pmd));
1523 		goto out;
1524 	}
1525 
1526 	page = pmd_page(orig_pmd);
1527 	/*
1528 	 * If other processes are mapping this page, we couldn't discard
1529 	 * the page unless they all do MADV_FREE so let's skip the page.
1530 	 */
1531 	if (total_mapcount(page) != 1)
1532 		goto out;
1533 
1534 	if (!trylock_page(page))
1535 		goto out;
1536 
1537 	/*
1538 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1539 	 * will deactivate only them.
1540 	 */
1541 	if (next - addr != HPAGE_PMD_SIZE) {
1542 		get_page(page);
1543 		spin_unlock(ptl);
1544 		split_huge_page(page);
1545 		unlock_page(page);
1546 		put_page(page);
1547 		goto out_unlocked;
1548 	}
1549 
1550 	if (PageDirty(page))
1551 		ClearPageDirty(page);
1552 	unlock_page(page);
1553 
1554 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1555 		pmdp_invalidate(vma, addr, pmd);
1556 		orig_pmd = pmd_mkold(orig_pmd);
1557 		orig_pmd = pmd_mkclean(orig_pmd);
1558 
1559 		set_pmd_at(mm, addr, pmd, orig_pmd);
1560 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1561 	}
1562 
1563 	mark_page_lazyfree(page);
1564 	ret = true;
1565 out:
1566 	spin_unlock(ptl);
1567 out_unlocked:
1568 	return ret;
1569 }
1570 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1571 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1572 {
1573 	pgtable_t pgtable;
1574 
1575 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1576 	pte_free(mm, pgtable);
1577 	mm_dec_nr_ptes(mm);
1578 }
1579 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1580 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 		 pmd_t *pmd, unsigned long addr)
1582 {
1583 	pmd_t orig_pmd;
1584 	spinlock_t *ptl;
1585 
1586 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587 
1588 	ptl = __pmd_trans_huge_lock(pmd, vma);
1589 	if (!ptl)
1590 		return 0;
1591 	/*
1592 	 * For architectures like ppc64 we look at deposited pgtable
1593 	 * when calling pmdp_huge_get_and_clear. So do the
1594 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1595 	 * operations.
1596 	 */
1597 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1598 						tlb->fullmm);
1599 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1600 	if (vma_is_special_huge(vma)) {
1601 		if (arch_needs_pgtable_deposit())
1602 			zap_deposited_table(tlb->mm, pmd);
1603 		spin_unlock(ptl);
1604 	} else if (is_huge_zero_pmd(orig_pmd)) {
1605 		zap_deposited_table(tlb->mm, pmd);
1606 		spin_unlock(ptl);
1607 	} else {
1608 		struct page *page = NULL;
1609 		int flush_needed = 1;
1610 
1611 		if (pmd_present(orig_pmd)) {
1612 			page = pmd_page(orig_pmd);
1613 			page_remove_rmap(page, true);
1614 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1615 			VM_BUG_ON_PAGE(!PageHead(page), page);
1616 		} else if (thp_migration_supported()) {
1617 			swp_entry_t entry;
1618 
1619 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1620 			entry = pmd_to_swp_entry(orig_pmd);
1621 			page = pfn_swap_entry_to_page(entry);
1622 			flush_needed = 0;
1623 		} else
1624 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1625 
1626 		if (PageAnon(page)) {
1627 			zap_deposited_table(tlb->mm, pmd);
1628 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1629 		} else {
1630 			if (arch_needs_pgtable_deposit())
1631 				zap_deposited_table(tlb->mm, pmd);
1632 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1633 		}
1634 
1635 		spin_unlock(ptl);
1636 		if (flush_needed)
1637 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1638 	}
1639 	return 1;
1640 }
1641 
1642 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1643 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1644 					 spinlock_t *old_pmd_ptl,
1645 					 struct vm_area_struct *vma)
1646 {
1647 	/*
1648 	 * With split pmd lock we also need to move preallocated
1649 	 * PTE page table if new_pmd is on different PMD page table.
1650 	 *
1651 	 * We also don't deposit and withdraw tables for file pages.
1652 	 */
1653 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1654 }
1655 #endif
1656 
move_soft_dirty_pmd(pmd_t pmd)1657 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1658 {
1659 #ifdef CONFIG_MEM_SOFT_DIRTY
1660 	if (unlikely(is_pmd_migration_entry(pmd)))
1661 		pmd = pmd_swp_mksoft_dirty(pmd);
1662 	else if (pmd_present(pmd))
1663 		pmd = pmd_mksoft_dirty(pmd);
1664 #endif
1665 	return pmd;
1666 }
1667 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1668 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1669 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1670 {
1671 	spinlock_t *old_ptl, *new_ptl;
1672 	pmd_t pmd;
1673 	struct mm_struct *mm = vma->vm_mm;
1674 	bool force_flush = false;
1675 
1676 	/*
1677 	 * The destination pmd shouldn't be established, free_pgtables()
1678 	 * should have release it.
1679 	 */
1680 	if (WARN_ON(!pmd_none(*new_pmd))) {
1681 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1682 		return false;
1683 	}
1684 
1685 	/*
1686 	 * We don't have to worry about the ordering of src and dst
1687 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1688 	 */
1689 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1690 	if (old_ptl) {
1691 		new_ptl = pmd_lockptr(mm, new_pmd);
1692 		if (new_ptl != old_ptl)
1693 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1694 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1695 		if (pmd_present(pmd))
1696 			force_flush = true;
1697 		VM_BUG_ON(!pmd_none(*new_pmd));
1698 
1699 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1700 			pgtable_t pgtable;
1701 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1702 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1703 		}
1704 		pmd = move_soft_dirty_pmd(pmd);
1705 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1706 		if (force_flush)
1707 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1708 		if (new_ptl != old_ptl)
1709 			spin_unlock(new_ptl);
1710 		spin_unlock(old_ptl);
1711 		return true;
1712 	}
1713 	return false;
1714 }
1715 
1716 /*
1717  * Returns
1718  *  - 0 if PMD could not be locked
1719  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1720  *      or if prot_numa but THP migration is not supported
1721  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1722  */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1723 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1724 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1725 {
1726 	struct mm_struct *mm = vma->vm_mm;
1727 	spinlock_t *ptl;
1728 	pmd_t entry;
1729 	bool preserve_write;
1730 	int ret;
1731 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1732 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1733 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1734 
1735 	if (prot_numa && !thp_migration_supported())
1736 		return 1;
1737 
1738 	ptl = __pmd_trans_huge_lock(pmd, vma);
1739 	if (!ptl)
1740 		return 0;
1741 
1742 	preserve_write = prot_numa && pmd_write(*pmd);
1743 	ret = 1;
1744 
1745 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1746 	if (is_swap_pmd(*pmd)) {
1747 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1748 
1749 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1750 		if (is_writable_migration_entry(entry)) {
1751 			pmd_t newpmd;
1752 			/*
1753 			 * A protection check is difficult so
1754 			 * just be safe and disable write
1755 			 */
1756 			entry = make_readable_migration_entry(
1757 							swp_offset(entry));
1758 			newpmd = swp_entry_to_pmd(entry);
1759 			if (pmd_swp_soft_dirty(*pmd))
1760 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1761 			if (pmd_swp_uffd_wp(*pmd))
1762 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1763 			set_pmd_at(mm, addr, pmd, newpmd);
1764 		}
1765 		goto unlock;
1766 	}
1767 #endif
1768 
1769 	/*
1770 	 * Avoid trapping faults against the zero page. The read-only
1771 	 * data is likely to be read-cached on the local CPU and
1772 	 * local/remote hits to the zero page are not interesting.
1773 	 */
1774 	if (prot_numa && is_huge_zero_pmd(*pmd))
1775 		goto unlock;
1776 
1777 	if (prot_numa && pmd_protnone(*pmd))
1778 		goto unlock;
1779 
1780 	/*
1781 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1782 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1783 	 * which is also under mmap_read_lock(mm):
1784 	 *
1785 	 *	CPU0:				CPU1:
1786 	 *				change_huge_pmd(prot_numa=1)
1787 	 *				 pmdp_huge_get_and_clear_notify()
1788 	 * madvise_dontneed()
1789 	 *  zap_pmd_range()
1790 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1791 	 *   // skip the pmd
1792 	 *				 set_pmd_at();
1793 	 *				 // pmd is re-established
1794 	 *
1795 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1796 	 * which may break userspace.
1797 	 *
1798 	 * pmdp_invalidate() is required to make sure we don't miss
1799 	 * dirty/young flags set by hardware.
1800 	 */
1801 	entry = pmdp_invalidate(vma, addr, pmd);
1802 
1803 	entry = pmd_modify(entry, newprot);
1804 	if (preserve_write)
1805 		entry = pmd_mk_savedwrite(entry);
1806 	if (uffd_wp) {
1807 		entry = pmd_wrprotect(entry);
1808 		entry = pmd_mkuffd_wp(entry);
1809 	} else if (uffd_wp_resolve) {
1810 		/*
1811 		 * Leave the write bit to be handled by PF interrupt
1812 		 * handler, then things like COW could be properly
1813 		 * handled.
1814 		 */
1815 		entry = pmd_clear_uffd_wp(entry);
1816 	}
1817 	ret = HPAGE_PMD_NR;
1818 	set_pmd_at(mm, addr, pmd, entry);
1819 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1820 unlock:
1821 	spin_unlock(ptl);
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1827  *
1828  * Note that if it returns page table lock pointer, this routine returns without
1829  * unlocking page table lock. So callers must unlock it.
1830  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1831 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1832 {
1833 	spinlock_t *ptl;
1834 	ptl = pmd_lock(vma->vm_mm, pmd);
1835 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1836 			pmd_devmap(*pmd)))
1837 		return ptl;
1838 	spin_unlock(ptl);
1839 	return NULL;
1840 }
1841 
1842 /*
1843  * Returns true if a given pud maps a thp, false otherwise.
1844  *
1845  * Note that if it returns true, this routine returns without unlocking page
1846  * table lock. So callers must unlock it.
1847  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1848 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1849 {
1850 	spinlock_t *ptl;
1851 
1852 	ptl = pud_lock(vma->vm_mm, pud);
1853 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1854 		return ptl;
1855 	spin_unlock(ptl);
1856 	return NULL;
1857 }
1858 
1859 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1860 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1861 		 pud_t *pud, unsigned long addr)
1862 {
1863 	spinlock_t *ptl;
1864 
1865 	ptl = __pud_trans_huge_lock(pud, vma);
1866 	if (!ptl)
1867 		return 0;
1868 	/*
1869 	 * For architectures like ppc64 we look at deposited pgtable
1870 	 * when calling pudp_huge_get_and_clear. So do the
1871 	 * pgtable_trans_huge_withdraw after finishing pudp related
1872 	 * operations.
1873 	 */
1874 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1875 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1876 	if (vma_is_special_huge(vma)) {
1877 		spin_unlock(ptl);
1878 		/* No zero page support yet */
1879 	} else {
1880 		/* No support for anonymous PUD pages yet */
1881 		BUG();
1882 	}
1883 	return 1;
1884 }
1885 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1886 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1887 		unsigned long haddr)
1888 {
1889 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1890 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1891 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1892 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1893 
1894 	count_vm_event(THP_SPLIT_PUD);
1895 
1896 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1897 }
1898 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1899 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1900 		unsigned long address)
1901 {
1902 	spinlock_t *ptl;
1903 	struct mmu_notifier_range range;
1904 
1905 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1906 				address & HPAGE_PUD_MASK,
1907 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1908 	mmu_notifier_invalidate_range_start(&range);
1909 	ptl = pud_lock(vma->vm_mm, pud);
1910 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1911 		goto out;
1912 	__split_huge_pud_locked(vma, pud, range.start);
1913 
1914 out:
1915 	spin_unlock(ptl);
1916 	/*
1917 	 * No need to double call mmu_notifier->invalidate_range() callback as
1918 	 * the above pudp_huge_clear_flush_notify() did already call it.
1919 	 */
1920 	mmu_notifier_invalidate_range_only_end(&range);
1921 }
1922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1923 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1924 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1925 		unsigned long haddr, pmd_t *pmd)
1926 {
1927 	struct mm_struct *mm = vma->vm_mm;
1928 	pgtable_t pgtable;
1929 	pmd_t _pmd, old_pmd;
1930 	int i;
1931 
1932 	/*
1933 	 * Leave pmd empty until pte is filled note that it is fine to delay
1934 	 * notification until mmu_notifier_invalidate_range_end() as we are
1935 	 * replacing a zero pmd write protected page with a zero pte write
1936 	 * protected page.
1937 	 *
1938 	 * See Documentation/vm/mmu_notifier.rst
1939 	 */
1940 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
1941 
1942 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1943 	pmd_populate(mm, &_pmd, pgtable);
1944 
1945 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1946 		pte_t *pte, entry;
1947 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1948 		entry = pte_mkspecial(entry);
1949 		if (pmd_uffd_wp(old_pmd))
1950 			entry = pte_mkuffd_wp(entry);
1951 		pte = pte_offset_map(&_pmd, haddr);
1952 		VM_BUG_ON(!pte_none(*pte));
1953 		set_pte_at(mm, haddr, pte, entry);
1954 		pte_unmap(pte);
1955 	}
1956 	smp_wmb(); /* make pte visible before pmd */
1957 	pmd_populate(mm, pmd, pgtable);
1958 }
1959 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)1960 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1961 		unsigned long haddr, bool freeze)
1962 {
1963 	struct mm_struct *mm = vma->vm_mm;
1964 	struct page *page;
1965 	pgtable_t pgtable;
1966 	pmd_t old_pmd, _pmd;
1967 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1968 	unsigned long addr;
1969 	int i;
1970 
1971 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1972 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1973 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1974 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1975 				&& !pmd_devmap(*pmd));
1976 
1977 	count_vm_event(THP_SPLIT_PMD);
1978 
1979 	if (!vma_is_anonymous(vma)) {
1980 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1981 		/*
1982 		 * We are going to unmap this huge page. So
1983 		 * just go ahead and zap it
1984 		 */
1985 		if (arch_needs_pgtable_deposit())
1986 			zap_deposited_table(mm, pmd);
1987 		if (vma_is_special_huge(vma))
1988 			return;
1989 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
1990 			swp_entry_t entry;
1991 
1992 			entry = pmd_to_swp_entry(old_pmd);
1993 			page = pfn_swap_entry_to_page(entry);
1994 		} else {
1995 			page = pmd_page(old_pmd);
1996 			if (!PageDirty(page) && pmd_dirty(old_pmd))
1997 				set_page_dirty(page);
1998 			if (!PageReferenced(page) && pmd_young(old_pmd))
1999 				SetPageReferenced(page);
2000 			page_remove_rmap(page, true);
2001 			put_page(page);
2002 		}
2003 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2004 		return;
2005 	}
2006 
2007 	if (is_huge_zero_pmd(*pmd)) {
2008 		/*
2009 		 * FIXME: Do we want to invalidate secondary mmu by calling
2010 		 * mmu_notifier_invalidate_range() see comments below inside
2011 		 * __split_huge_pmd() ?
2012 		 *
2013 		 * We are going from a zero huge page write protected to zero
2014 		 * small page also write protected so it does not seems useful
2015 		 * to invalidate secondary mmu at this time.
2016 		 */
2017 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2018 	}
2019 
2020 	/*
2021 	 * Up to this point the pmd is present and huge and userland has the
2022 	 * whole access to the hugepage during the split (which happens in
2023 	 * place). If we overwrite the pmd with the not-huge version pointing
2024 	 * to the pte here (which of course we could if all CPUs were bug
2025 	 * free), userland could trigger a small page size TLB miss on the
2026 	 * small sized TLB while the hugepage TLB entry is still established in
2027 	 * the huge TLB. Some CPU doesn't like that.
2028 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2029 	 * 383 on page 105. Intel should be safe but is also warns that it's
2030 	 * only safe if the permission and cache attributes of the two entries
2031 	 * loaded in the two TLB is identical (which should be the case here).
2032 	 * But it is generally safer to never allow small and huge TLB entries
2033 	 * for the same virtual address to be loaded simultaneously. So instead
2034 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2035 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2036 	 * must remain set at all times on the pmd until the split is complete
2037 	 * for this pmd), then we flush the SMP TLB and finally we write the
2038 	 * non-huge version of the pmd entry with pmd_populate.
2039 	 */
2040 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2041 
2042 	pmd_migration = is_pmd_migration_entry(old_pmd);
2043 	if (unlikely(pmd_migration)) {
2044 		swp_entry_t entry;
2045 
2046 		entry = pmd_to_swp_entry(old_pmd);
2047 		page = pfn_swap_entry_to_page(entry);
2048 		write = is_writable_migration_entry(entry);
2049 		young = false;
2050 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2051 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2052 	} else {
2053 		page = pmd_page(old_pmd);
2054 		if (pmd_dirty(old_pmd))
2055 			SetPageDirty(page);
2056 		write = pmd_write(old_pmd);
2057 		young = pmd_young(old_pmd);
2058 		soft_dirty = pmd_soft_dirty(old_pmd);
2059 		uffd_wp = pmd_uffd_wp(old_pmd);
2060 	}
2061 	VM_BUG_ON_PAGE(!page_count(page), page);
2062 	page_ref_add(page, HPAGE_PMD_NR - 1);
2063 
2064 	/*
2065 	 * Withdraw the table only after we mark the pmd entry invalid.
2066 	 * This's critical for some architectures (Power).
2067 	 */
2068 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2069 	pmd_populate(mm, &_pmd, pgtable);
2070 
2071 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2072 		pte_t entry, *pte;
2073 		/*
2074 		 * Note that NUMA hinting access restrictions are not
2075 		 * transferred to avoid any possibility of altering
2076 		 * permissions across VMAs.
2077 		 */
2078 		if (freeze || pmd_migration) {
2079 			swp_entry_t swp_entry;
2080 			if (write)
2081 				swp_entry = make_writable_migration_entry(
2082 							page_to_pfn(page + i));
2083 			else
2084 				swp_entry = make_readable_migration_entry(
2085 							page_to_pfn(page + i));
2086 			entry = swp_entry_to_pte(swp_entry);
2087 			if (soft_dirty)
2088 				entry = pte_swp_mksoft_dirty(entry);
2089 			if (uffd_wp)
2090 				entry = pte_swp_mkuffd_wp(entry);
2091 		} else {
2092 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2093 			entry = maybe_mkwrite(entry, vma);
2094 			if (!write)
2095 				entry = pte_wrprotect(entry);
2096 			if (!young)
2097 				entry = pte_mkold(entry);
2098 			if (soft_dirty)
2099 				entry = pte_mksoft_dirty(entry);
2100 			if (uffd_wp)
2101 				entry = pte_mkuffd_wp(entry);
2102 		}
2103 		pte = pte_offset_map(&_pmd, addr);
2104 		BUG_ON(!pte_none(*pte));
2105 		set_pte_at(mm, addr, pte, entry);
2106 		if (!pmd_migration)
2107 			atomic_inc(&page[i]._mapcount);
2108 		pte_unmap(pte);
2109 	}
2110 
2111 	if (!pmd_migration) {
2112 		/*
2113 		 * Set PG_double_map before dropping compound_mapcount to avoid
2114 		 * false-negative page_mapped().
2115 		 */
2116 		if (compound_mapcount(page) > 1 &&
2117 		    !TestSetPageDoubleMap(page)) {
2118 			for (i = 0; i < HPAGE_PMD_NR; i++)
2119 				atomic_inc(&page[i]._mapcount);
2120 		}
2121 
2122 		lock_page_memcg(page);
2123 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2124 			/* Last compound_mapcount is gone. */
2125 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2126 						-HPAGE_PMD_NR);
2127 			if (TestClearPageDoubleMap(page)) {
2128 				/* No need in mapcount reference anymore */
2129 				for (i = 0; i < HPAGE_PMD_NR; i++)
2130 					atomic_dec(&page[i]._mapcount);
2131 			}
2132 		}
2133 		unlock_page_memcg(page);
2134 	}
2135 
2136 	smp_wmb(); /* make pte visible before pmd */
2137 	pmd_populate(mm, pmd, pgtable);
2138 
2139 	if (freeze) {
2140 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2141 			page_remove_rmap(page + i, false);
2142 			put_page(page + i);
2143 		}
2144 	}
2145 }
2146 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2147 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2148 		unsigned long address, bool freeze, struct page *page)
2149 {
2150 	spinlock_t *ptl;
2151 	struct mmu_notifier_range range;
2152 	bool do_unlock_page = false;
2153 	pmd_t _pmd;
2154 
2155 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2156 				address & HPAGE_PMD_MASK,
2157 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2158 	mmu_notifier_invalidate_range_start(&range);
2159 	ptl = pmd_lock(vma->vm_mm, pmd);
2160 
2161 	/*
2162 	 * If caller asks to setup a migration entries, we need a page to check
2163 	 * pmd against. Otherwise we can end up replacing wrong page.
2164 	 */
2165 	VM_BUG_ON(freeze && !page);
2166 	if (page) {
2167 		VM_WARN_ON_ONCE(!PageLocked(page));
2168 		if (page != pmd_page(*pmd))
2169 			goto out;
2170 	}
2171 
2172 repeat:
2173 	if (pmd_trans_huge(*pmd)) {
2174 		if (!page) {
2175 			page = pmd_page(*pmd);
2176 			/*
2177 			 * An anonymous page must be locked, to ensure that a
2178 			 * concurrent reuse_swap_page() sees stable mapcount;
2179 			 * but reuse_swap_page() is not used on shmem or file,
2180 			 * and page lock must not be taken when zap_pmd_range()
2181 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2182 			 */
2183 			if (PageAnon(page)) {
2184 				if (unlikely(!trylock_page(page))) {
2185 					get_page(page);
2186 					_pmd = *pmd;
2187 					spin_unlock(ptl);
2188 					lock_page(page);
2189 					spin_lock(ptl);
2190 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2191 						unlock_page(page);
2192 						put_page(page);
2193 						page = NULL;
2194 						goto repeat;
2195 					}
2196 					put_page(page);
2197 				}
2198 				do_unlock_page = true;
2199 			}
2200 		}
2201 		if (PageMlocked(page))
2202 			clear_page_mlock(page);
2203 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2204 		goto out;
2205 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2206 out:
2207 	spin_unlock(ptl);
2208 	if (do_unlock_page)
2209 		unlock_page(page);
2210 	/*
2211 	 * No need to double call mmu_notifier->invalidate_range() callback.
2212 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2213 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2214 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2215 	 *    fault will trigger a flush_notify before pointing to a new page
2216 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2217 	 *    page in the meantime)
2218 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2219 	 *     to invalidate secondary tlb entry they are all still valid.
2220 	 *     any further changes to individual pte will notify. So no need
2221 	 *     to call mmu_notifier->invalidate_range()
2222 	 */
2223 	mmu_notifier_invalidate_range_only_end(&range);
2224 }
2225 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2226 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2227 		bool freeze, struct page *page)
2228 {
2229 	pgd_t *pgd;
2230 	p4d_t *p4d;
2231 	pud_t *pud;
2232 	pmd_t *pmd;
2233 
2234 	pgd = pgd_offset(vma->vm_mm, address);
2235 	if (!pgd_present(*pgd))
2236 		return;
2237 
2238 	p4d = p4d_offset(pgd, address);
2239 	if (!p4d_present(*p4d))
2240 		return;
2241 
2242 	pud = pud_offset(p4d, address);
2243 	if (!pud_present(*pud))
2244 		return;
2245 
2246 	pmd = pmd_offset(pud, address);
2247 
2248 	__split_huge_pmd(vma, pmd, address, freeze, page);
2249 }
2250 
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2251 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2252 {
2253 	/*
2254 	 * If the new address isn't hpage aligned and it could previously
2255 	 * contain an hugepage: check if we need to split an huge pmd.
2256 	 */
2257 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2258 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2259 			 ALIGN(address, HPAGE_PMD_SIZE)))
2260 		split_huge_pmd_address(vma, address, false, NULL);
2261 }
2262 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2263 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2264 			     unsigned long start,
2265 			     unsigned long end,
2266 			     long adjust_next)
2267 {
2268 	/* Check if we need to split start first. */
2269 	split_huge_pmd_if_needed(vma, start);
2270 
2271 	/* Check if we need to split end next. */
2272 	split_huge_pmd_if_needed(vma, end);
2273 
2274 	/*
2275 	 * If we're also updating the vma->vm_next->vm_start,
2276 	 * check if we need to split it.
2277 	 */
2278 	if (adjust_next > 0) {
2279 		struct vm_area_struct *next = vma->vm_next;
2280 		unsigned long nstart = next->vm_start;
2281 		nstart += adjust_next;
2282 		split_huge_pmd_if_needed(next, nstart);
2283 	}
2284 }
2285 
unmap_page(struct page * page)2286 static void unmap_page(struct page *page)
2287 {
2288 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2289 		TTU_SYNC;
2290 
2291 	VM_BUG_ON_PAGE(!PageHead(page), page);
2292 
2293 	/*
2294 	 * Anon pages need migration entries to preserve them, but file
2295 	 * pages can simply be left unmapped, then faulted back on demand.
2296 	 * If that is ever changed (perhaps for mlock), update remap_page().
2297 	 */
2298 	if (PageAnon(page))
2299 		try_to_migrate(page, ttu_flags);
2300 	else
2301 		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2302 
2303 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2304 }
2305 
remap_page(struct page * page,unsigned int nr)2306 static void remap_page(struct page *page, unsigned int nr)
2307 {
2308 	int i;
2309 
2310 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2311 	if (!PageAnon(page))
2312 		return;
2313 	if (PageTransHuge(page)) {
2314 		remove_migration_ptes(page, page, true);
2315 	} else {
2316 		for (i = 0; i < nr; i++)
2317 			remove_migration_ptes(page + i, page + i, true);
2318 	}
2319 }
2320 
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2321 static void lru_add_page_tail(struct page *head, struct page *tail,
2322 		struct lruvec *lruvec, struct list_head *list)
2323 {
2324 	VM_BUG_ON_PAGE(!PageHead(head), head);
2325 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2326 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2327 	lockdep_assert_held(&lruvec->lru_lock);
2328 
2329 	if (list) {
2330 		/* page reclaim is reclaiming a huge page */
2331 		VM_WARN_ON(PageLRU(head));
2332 		get_page(tail);
2333 		list_add_tail(&tail->lru, list);
2334 	} else {
2335 		/* head is still on lru (and we have it frozen) */
2336 		VM_WARN_ON(!PageLRU(head));
2337 		SetPageLRU(tail);
2338 		list_add_tail(&tail->lru, &head->lru);
2339 	}
2340 }
2341 
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2342 static void __split_huge_page_tail(struct page *head, int tail,
2343 		struct lruvec *lruvec, struct list_head *list)
2344 {
2345 	struct page *page_tail = head + tail;
2346 
2347 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2348 
2349 	/*
2350 	 * Clone page flags before unfreezing refcount.
2351 	 *
2352 	 * After successful get_page_unless_zero() might follow flags change,
2353 	 * for example lock_page() which set PG_waiters.
2354 	 */
2355 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2356 	page_tail->flags |= (head->flags &
2357 			((1L << PG_referenced) |
2358 			 (1L << PG_swapbacked) |
2359 			 (1L << PG_swapcache) |
2360 			 (1L << PG_mlocked) |
2361 			 (1L << PG_uptodate) |
2362 			 (1L << PG_active) |
2363 			 (1L << PG_workingset) |
2364 			 (1L << PG_locked) |
2365 			 (1L << PG_unevictable) |
2366 #ifdef CONFIG_64BIT
2367 			 (1L << PG_arch_2) |
2368 #endif
2369 			 (1L << PG_dirty) |
2370 			 LRU_GEN_MASK | LRU_REFS_MASK));
2371 
2372 	/* ->mapping in first tail page is compound_mapcount */
2373 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2374 			page_tail);
2375 	page_tail->mapping = head->mapping;
2376 	page_tail->index = head->index + tail;
2377 
2378 	/* Page flags must be visible before we make the page non-compound. */
2379 	smp_wmb();
2380 
2381 	/*
2382 	 * Clear PageTail before unfreezing page refcount.
2383 	 *
2384 	 * After successful get_page_unless_zero() might follow put_page()
2385 	 * which needs correct compound_head().
2386 	 */
2387 	clear_compound_head(page_tail);
2388 
2389 	/* Finally unfreeze refcount. Additional reference from page cache. */
2390 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2391 					  PageSwapCache(head)));
2392 
2393 	if (page_is_young(head))
2394 		set_page_young(page_tail);
2395 	if (page_is_idle(head))
2396 		set_page_idle(page_tail);
2397 
2398 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2399 
2400 	/*
2401 	 * always add to the tail because some iterators expect new
2402 	 * pages to show after the currently processed elements - e.g.
2403 	 * migrate_pages
2404 	 */
2405 	lru_add_page_tail(head, page_tail, lruvec, list);
2406 }
2407 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2408 static void __split_huge_page(struct page *page, struct list_head *list,
2409 		pgoff_t end)
2410 {
2411 	struct page *head = compound_head(page);
2412 	struct lruvec *lruvec;
2413 	struct address_space *swap_cache = NULL;
2414 	unsigned long offset = 0;
2415 	unsigned int nr = thp_nr_pages(head);
2416 	int i;
2417 
2418 	/* complete memcg works before add pages to LRU */
2419 	split_page_memcg(head, nr);
2420 
2421 	if (PageAnon(head) && PageSwapCache(head)) {
2422 		swp_entry_t entry = { .val = page_private(head) };
2423 
2424 		offset = swp_offset(entry);
2425 		swap_cache = swap_address_space(entry);
2426 		xa_lock(&swap_cache->i_pages);
2427 	}
2428 
2429 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2430 	lruvec = lock_page_lruvec(head);
2431 
2432 	ClearPageHasHWPoisoned(head);
2433 
2434 	for (i = nr - 1; i >= 1; i--) {
2435 		__split_huge_page_tail(head, i, lruvec, list);
2436 		/* Some pages can be beyond EOF: drop them from page cache */
2437 		if (head[i].index >= end) {
2438 			ClearPageDirty(head + i);
2439 			__delete_from_page_cache(head + i, NULL);
2440 			if (shmem_mapping(head->mapping))
2441 				shmem_uncharge(head->mapping->host, 1);
2442 			put_page(head + i);
2443 		} else if (!PageAnon(page)) {
2444 			__xa_store(&head->mapping->i_pages, head[i].index,
2445 					head + i, 0);
2446 		} else if (swap_cache) {
2447 			__xa_store(&swap_cache->i_pages, offset + i,
2448 					head + i, 0);
2449 		}
2450 	}
2451 
2452 	ClearPageCompound(head);
2453 	unlock_page_lruvec(lruvec);
2454 	/* Caller disabled irqs, so they are still disabled here */
2455 
2456 	split_page_owner(head, nr);
2457 
2458 	/* See comment in __split_huge_page_tail() */
2459 	if (PageAnon(head)) {
2460 		/* Additional pin to swap cache */
2461 		if (PageSwapCache(head)) {
2462 			page_ref_add(head, 2);
2463 			xa_unlock(&swap_cache->i_pages);
2464 		} else {
2465 			page_ref_inc(head);
2466 		}
2467 	} else {
2468 		/* Additional pin to page cache */
2469 		page_ref_add(head, 2);
2470 		xa_unlock(&head->mapping->i_pages);
2471 	}
2472 	local_irq_enable();
2473 
2474 	remap_page(head, nr);
2475 
2476 	if (PageSwapCache(head)) {
2477 		swp_entry_t entry = { .val = page_private(head) };
2478 
2479 		split_swap_cluster(entry);
2480 	}
2481 
2482 	for (i = 0; i < nr; i++) {
2483 		struct page *subpage = head + i;
2484 		if (subpage == page)
2485 			continue;
2486 		unlock_page(subpage);
2487 
2488 		/*
2489 		 * Subpages may be freed if there wasn't any mapping
2490 		 * like if add_to_swap() is running on a lru page that
2491 		 * had its mapping zapped. And freeing these pages
2492 		 * requires taking the lru_lock so we do the put_page
2493 		 * of the tail pages after the split is complete.
2494 		 */
2495 		put_page(subpage);
2496 	}
2497 }
2498 
total_mapcount(struct page * page)2499 int total_mapcount(struct page *page)
2500 {
2501 	int i, compound, nr, ret;
2502 
2503 	VM_BUG_ON_PAGE(PageTail(page), page);
2504 
2505 	if (likely(!PageCompound(page)))
2506 		return atomic_read(&page->_mapcount) + 1;
2507 
2508 	compound = compound_mapcount(page);
2509 	nr = compound_nr(page);
2510 	if (PageHuge(page))
2511 		return compound;
2512 	ret = compound;
2513 	for (i = 0; i < nr; i++)
2514 		ret += atomic_read(&page[i]._mapcount) + 1;
2515 	/* File pages has compound_mapcount included in _mapcount */
2516 	if (!PageAnon(page))
2517 		return ret - compound * nr;
2518 	if (PageDoubleMap(page))
2519 		ret -= nr;
2520 	return ret;
2521 }
2522 
2523 /*
2524  * This calculates accurately how many mappings a transparent hugepage
2525  * has (unlike page_mapcount() which isn't fully accurate). This full
2526  * accuracy is primarily needed to know if copy-on-write faults can
2527  * reuse the page and change the mapping to read-write instead of
2528  * copying them. At the same time this returns the total_mapcount too.
2529  *
2530  * The function returns the highest mapcount any one of the subpages
2531  * has. If the return value is one, even if different processes are
2532  * mapping different subpages of the transparent hugepage, they can
2533  * all reuse it, because each process is reusing a different subpage.
2534  *
2535  * The total_mapcount is instead counting all virtual mappings of the
2536  * subpages. If the total_mapcount is equal to "one", it tells the
2537  * caller all mappings belong to the same "mm" and in turn the
2538  * anon_vma of the transparent hugepage can become the vma->anon_vma
2539  * local one as no other process may be mapping any of the subpages.
2540  *
2541  * It would be more accurate to replace page_mapcount() with
2542  * page_trans_huge_mapcount(), however we only use
2543  * page_trans_huge_mapcount() in the copy-on-write faults where we
2544  * need full accuracy to avoid breaking page pinning, because
2545  * page_trans_huge_mapcount() is slower than page_mapcount().
2546  */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2547 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2548 {
2549 	int i, ret, _total_mapcount, mapcount;
2550 
2551 	/* hugetlbfs shouldn't call it */
2552 	VM_BUG_ON_PAGE(PageHuge(page), page);
2553 
2554 	if (likely(!PageTransCompound(page))) {
2555 		mapcount = atomic_read(&page->_mapcount) + 1;
2556 		if (total_mapcount)
2557 			*total_mapcount = mapcount;
2558 		return mapcount;
2559 	}
2560 
2561 	page = compound_head(page);
2562 
2563 	_total_mapcount = ret = 0;
2564 	for (i = 0; i < thp_nr_pages(page); i++) {
2565 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2566 		ret = max(ret, mapcount);
2567 		_total_mapcount += mapcount;
2568 	}
2569 	if (PageDoubleMap(page)) {
2570 		ret -= 1;
2571 		_total_mapcount -= thp_nr_pages(page);
2572 	}
2573 	mapcount = compound_mapcount(page);
2574 	ret += mapcount;
2575 	_total_mapcount += mapcount;
2576 	if (total_mapcount)
2577 		*total_mapcount = _total_mapcount;
2578 	return ret;
2579 }
2580 
2581 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2582 bool can_split_huge_page(struct page *page, int *pextra_pins)
2583 {
2584 	int extra_pins;
2585 
2586 	/* Additional pins from page cache */
2587 	if (PageAnon(page))
2588 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2589 	else
2590 		extra_pins = thp_nr_pages(page);
2591 	if (pextra_pins)
2592 		*pextra_pins = extra_pins;
2593 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2594 }
2595 
2596 /*
2597  * This function splits huge page into normal pages. @page can point to any
2598  * subpage of huge page to split. Split doesn't change the position of @page.
2599  *
2600  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2601  * The huge page must be locked.
2602  *
2603  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2604  *
2605  * Both head page and tail pages will inherit mapping, flags, and so on from
2606  * the hugepage.
2607  *
2608  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2609  * they are not mapped.
2610  *
2611  * Returns 0 if the hugepage is split successfully.
2612  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2613  * us.
2614  */
split_huge_page_to_list(struct page * page,struct list_head * list)2615 int split_huge_page_to_list(struct page *page, struct list_head *list)
2616 {
2617 	struct page *head = compound_head(page);
2618 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2619 	struct anon_vma *anon_vma = NULL;
2620 	struct address_space *mapping = NULL;
2621 	int extra_pins, ret;
2622 	pgoff_t end;
2623 	bool is_hzp;
2624 
2625 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2626 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2627 
2628 	is_hzp = is_huge_zero_page(head);
2629 	VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2630 	if (is_hzp)
2631 		return -EBUSY;
2632 
2633 	if (PageWriteback(head))
2634 		return -EBUSY;
2635 
2636 	if (PageAnon(head)) {
2637 		/*
2638 		 * The caller does not necessarily hold an mmap_lock that would
2639 		 * prevent the anon_vma disappearing so we first we take a
2640 		 * reference to it and then lock the anon_vma for write. This
2641 		 * is similar to page_lock_anon_vma_read except the write lock
2642 		 * is taken to serialise against parallel split or collapse
2643 		 * operations.
2644 		 */
2645 		anon_vma = page_get_anon_vma(head);
2646 		if (!anon_vma) {
2647 			ret = -EBUSY;
2648 			goto out;
2649 		}
2650 		end = -1;
2651 		mapping = NULL;
2652 		anon_vma_lock_write(anon_vma);
2653 	} else {
2654 		mapping = head->mapping;
2655 
2656 		/* Truncated ? */
2657 		if (!mapping) {
2658 			ret = -EBUSY;
2659 			goto out;
2660 		}
2661 
2662 		anon_vma = NULL;
2663 		i_mmap_lock_read(mapping);
2664 
2665 		/*
2666 		 *__split_huge_page() may need to trim off pages beyond EOF:
2667 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2668 		 * which cannot be nested inside the page tree lock. So note
2669 		 * end now: i_size itself may be changed at any moment, but
2670 		 * head page lock is good enough to serialize the trimming.
2671 		 */
2672 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2673 		if (shmem_mapping(mapping))
2674 			end = shmem_fallocend(mapping->host, end);
2675 	}
2676 
2677 	/*
2678 	 * Racy check if we can split the page, before unmap_page() will
2679 	 * split PMDs
2680 	 */
2681 	if (!can_split_huge_page(head, &extra_pins)) {
2682 		ret = -EBUSY;
2683 		goto out_unlock;
2684 	}
2685 
2686 	unmap_page(head);
2687 
2688 	/* block interrupt reentry in xa_lock and spinlock */
2689 	local_irq_disable();
2690 	if (mapping) {
2691 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2692 
2693 		/*
2694 		 * Check if the head page is present in page cache.
2695 		 * We assume all tail are present too, if head is there.
2696 		 */
2697 		xa_lock(&mapping->i_pages);
2698 		if (xas_load(&xas) != head)
2699 			goto fail;
2700 	}
2701 
2702 	/* Prevent deferred_split_scan() touching ->_refcount */
2703 	spin_lock(&ds_queue->split_queue_lock);
2704 	if (page_ref_freeze(head, 1 + extra_pins)) {
2705 		if (!list_empty(page_deferred_list(head))) {
2706 			ds_queue->split_queue_len--;
2707 			list_del(page_deferred_list(head));
2708 		}
2709 		spin_unlock(&ds_queue->split_queue_lock);
2710 		if (mapping) {
2711 			int nr = thp_nr_pages(head);
2712 
2713 			if (PageSwapBacked(head)) {
2714 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2715 							-nr);
2716 			} else {
2717 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2718 							-nr);
2719 				filemap_nr_thps_dec(mapping);
2720 			}
2721 		}
2722 
2723 		__split_huge_page(page, list, end);
2724 		ret = 0;
2725 	} else {
2726 		spin_unlock(&ds_queue->split_queue_lock);
2727 fail:
2728 		if (mapping)
2729 			xa_unlock(&mapping->i_pages);
2730 		local_irq_enable();
2731 		remap_page(head, thp_nr_pages(head));
2732 		ret = -EBUSY;
2733 	}
2734 
2735 out_unlock:
2736 	if (anon_vma) {
2737 		anon_vma_unlock_write(anon_vma);
2738 		put_anon_vma(anon_vma);
2739 	}
2740 	if (mapping)
2741 		i_mmap_unlock_read(mapping);
2742 out:
2743 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2744 	return ret;
2745 }
2746 
free_transhuge_page(struct page * page)2747 void free_transhuge_page(struct page *page)
2748 {
2749 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2750 	unsigned long flags;
2751 
2752 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2753 	if (!list_empty(page_deferred_list(page))) {
2754 		ds_queue->split_queue_len--;
2755 		list_del(page_deferred_list(page));
2756 	}
2757 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2758 	free_compound_page(page);
2759 }
2760 
deferred_split_huge_page(struct page * page)2761 void deferred_split_huge_page(struct page *page)
2762 {
2763 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2764 #ifdef CONFIG_MEMCG
2765 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2766 #endif
2767 	unsigned long flags;
2768 
2769 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2770 
2771 	/*
2772 	 * The try_to_unmap() in page reclaim path might reach here too,
2773 	 * this may cause a race condition to corrupt deferred split queue.
2774 	 * And, if page reclaim is already handling the same page, it is
2775 	 * unnecessary to handle it again in shrinker.
2776 	 *
2777 	 * Check PageSwapCache to determine if the page is being
2778 	 * handled by page reclaim since THP swap would add the page into
2779 	 * swap cache before calling try_to_unmap().
2780 	 */
2781 	if (PageSwapCache(page))
2782 		return;
2783 
2784 	if (!list_empty(page_deferred_list(page)))
2785 		return;
2786 
2787 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2788 	if (list_empty(page_deferred_list(page))) {
2789 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2790 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2791 		ds_queue->split_queue_len++;
2792 #ifdef CONFIG_MEMCG
2793 		if (memcg)
2794 			set_shrinker_bit(memcg, page_to_nid(page),
2795 					 deferred_split_shrinker.id);
2796 #endif
2797 	}
2798 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799 }
2800 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2801 static unsigned long deferred_split_count(struct shrinker *shrink,
2802 		struct shrink_control *sc)
2803 {
2804 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2805 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2806 
2807 #ifdef CONFIG_MEMCG
2808 	if (sc->memcg)
2809 		ds_queue = &sc->memcg->deferred_split_queue;
2810 #endif
2811 	return READ_ONCE(ds_queue->split_queue_len);
2812 }
2813 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2814 static unsigned long deferred_split_scan(struct shrinker *shrink,
2815 		struct shrink_control *sc)
2816 {
2817 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2818 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2819 	unsigned long flags;
2820 	LIST_HEAD(list), *pos, *next;
2821 	struct page *page;
2822 	int split = 0;
2823 
2824 #ifdef CONFIG_MEMCG
2825 	if (sc->memcg)
2826 		ds_queue = &sc->memcg->deferred_split_queue;
2827 #endif
2828 
2829 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2830 	/* Take pin on all head pages to avoid freeing them under us */
2831 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2832 		page = list_entry((void *)pos, struct page, deferred_list);
2833 		page = compound_head(page);
2834 		if (get_page_unless_zero(page)) {
2835 			list_move(page_deferred_list(page), &list);
2836 		} else {
2837 			/* We lost race with put_compound_page() */
2838 			list_del_init(page_deferred_list(page));
2839 			ds_queue->split_queue_len--;
2840 		}
2841 		if (!--sc->nr_to_scan)
2842 			break;
2843 	}
2844 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2845 
2846 	list_for_each_safe(pos, next, &list) {
2847 		page = list_entry((void *)pos, struct page, deferred_list);
2848 		if (!trylock_page(page))
2849 			goto next;
2850 		/* split_huge_page() removes page from list on success */
2851 		if (!split_huge_page(page))
2852 			split++;
2853 		unlock_page(page);
2854 next:
2855 		put_page(page);
2856 	}
2857 
2858 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2859 	list_splice_tail(&list, &ds_queue->split_queue);
2860 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2861 
2862 	/*
2863 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2864 	 * This can happen if pages were freed under us.
2865 	 */
2866 	if (!split && list_empty(&ds_queue->split_queue))
2867 		return SHRINK_STOP;
2868 	return split;
2869 }
2870 
2871 static struct shrinker deferred_split_shrinker = {
2872 	.count_objects = deferred_split_count,
2873 	.scan_objects = deferred_split_scan,
2874 	.seeks = DEFAULT_SEEKS,
2875 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2876 		 SHRINKER_NONSLAB,
2877 };
2878 
2879 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2880 static void split_huge_pages_all(void)
2881 {
2882 	struct zone *zone;
2883 	struct page *page;
2884 	unsigned long pfn, max_zone_pfn;
2885 	unsigned long total = 0, split = 0;
2886 
2887 	pr_debug("Split all THPs\n");
2888 	for_each_zone(zone) {
2889 		if (!managed_zone(zone))
2890 			continue;
2891 		max_zone_pfn = zone_end_pfn(zone);
2892 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2893 			int nr_pages;
2894 
2895 			page = pfn_to_online_page(pfn);
2896 			if (!page || !get_page_unless_zero(page))
2897 				continue;
2898 
2899 			if (zone != page_zone(page))
2900 				goto next;
2901 
2902 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2903 				goto next;
2904 
2905 			total++;
2906 			lock_page(page);
2907 			nr_pages = thp_nr_pages(page);
2908 			if (!split_huge_page(page))
2909 				split++;
2910 			pfn += nr_pages - 1;
2911 			unlock_page(page);
2912 next:
2913 			put_page(page);
2914 			cond_resched();
2915 		}
2916 	}
2917 
2918 	pr_debug("%lu of %lu THP split\n", split, total);
2919 }
2920 
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2921 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2922 {
2923 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2924 		    is_vm_hugetlb_page(vma);
2925 }
2926 
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2927 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2928 				unsigned long vaddr_end)
2929 {
2930 	int ret = 0;
2931 	struct task_struct *task;
2932 	struct mm_struct *mm;
2933 	unsigned long total = 0, split = 0;
2934 	unsigned long addr;
2935 
2936 	vaddr_start &= PAGE_MASK;
2937 	vaddr_end &= PAGE_MASK;
2938 
2939 	/* Find the task_struct from pid */
2940 	rcu_read_lock();
2941 	task = find_task_by_vpid(pid);
2942 	if (!task) {
2943 		rcu_read_unlock();
2944 		ret = -ESRCH;
2945 		goto out;
2946 	}
2947 	get_task_struct(task);
2948 	rcu_read_unlock();
2949 
2950 	/* Find the mm_struct */
2951 	mm = get_task_mm(task);
2952 	put_task_struct(task);
2953 
2954 	if (!mm) {
2955 		ret = -EINVAL;
2956 		goto out;
2957 	}
2958 
2959 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2960 		 pid, vaddr_start, vaddr_end);
2961 
2962 	mmap_read_lock(mm);
2963 	/*
2964 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2965 	 * table filled with PTE-mapped THPs, each of which is distinct.
2966 	 */
2967 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2968 		struct vm_area_struct *vma = find_vma(mm, addr);
2969 		unsigned int follflags;
2970 		struct page *page;
2971 
2972 		if (!vma || addr < vma->vm_start)
2973 			break;
2974 
2975 		/* skip special VMA and hugetlb VMA */
2976 		if (vma_not_suitable_for_thp_split(vma)) {
2977 			addr = vma->vm_end;
2978 			continue;
2979 		}
2980 
2981 		/* FOLL_DUMP to ignore special (like zero) pages */
2982 		follflags = FOLL_GET | FOLL_DUMP;
2983 		page = follow_page(vma, addr, follflags);
2984 
2985 		if (IS_ERR(page))
2986 			continue;
2987 		if (!page)
2988 			continue;
2989 
2990 		if (!is_transparent_hugepage(page))
2991 			goto next;
2992 
2993 		total++;
2994 		if (!can_split_huge_page(compound_head(page), NULL))
2995 			goto next;
2996 
2997 		if (!trylock_page(page))
2998 			goto next;
2999 
3000 		if (!split_huge_page(page))
3001 			split++;
3002 
3003 		unlock_page(page);
3004 next:
3005 		put_page(page);
3006 		cond_resched();
3007 	}
3008 	mmap_read_unlock(mm);
3009 	mmput(mm);
3010 
3011 	pr_debug("%lu of %lu THP split\n", split, total);
3012 
3013 out:
3014 	return ret;
3015 }
3016 
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3017 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3018 				pgoff_t off_end)
3019 {
3020 	struct filename *file;
3021 	struct file *candidate;
3022 	struct address_space *mapping;
3023 	int ret = -EINVAL;
3024 	pgoff_t index;
3025 	int nr_pages = 1;
3026 	unsigned long total = 0, split = 0;
3027 
3028 	file = getname_kernel(file_path);
3029 	if (IS_ERR(file))
3030 		return ret;
3031 
3032 	candidate = file_open_name(file, O_RDONLY, 0);
3033 	if (IS_ERR(candidate))
3034 		goto out;
3035 
3036 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3037 		 file_path, off_start, off_end);
3038 
3039 	mapping = candidate->f_mapping;
3040 
3041 	for (index = off_start; index < off_end; index += nr_pages) {
3042 		struct page *fpage = pagecache_get_page(mapping, index,
3043 						FGP_ENTRY | FGP_HEAD, 0);
3044 
3045 		nr_pages = 1;
3046 		if (xa_is_value(fpage) || !fpage)
3047 			continue;
3048 
3049 		if (!is_transparent_hugepage(fpage))
3050 			goto next;
3051 
3052 		total++;
3053 		nr_pages = thp_nr_pages(fpage);
3054 
3055 		if (!trylock_page(fpage))
3056 			goto next;
3057 
3058 		if (!split_huge_page(fpage))
3059 			split++;
3060 
3061 		unlock_page(fpage);
3062 next:
3063 		put_page(fpage);
3064 		cond_resched();
3065 	}
3066 
3067 	filp_close(candidate, NULL);
3068 	ret = 0;
3069 
3070 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3071 out:
3072 	putname(file);
3073 	return ret;
3074 }
3075 
3076 #define MAX_INPUT_BUF_SZ 255
3077 
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3078 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3079 				size_t count, loff_t *ppops)
3080 {
3081 	static DEFINE_MUTEX(split_debug_mutex);
3082 	ssize_t ret;
3083 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3084 	char input_buf[MAX_INPUT_BUF_SZ];
3085 	int pid;
3086 	unsigned long vaddr_start, vaddr_end;
3087 
3088 	ret = mutex_lock_interruptible(&split_debug_mutex);
3089 	if (ret)
3090 		return ret;
3091 
3092 	ret = -EFAULT;
3093 
3094 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3095 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3096 		goto out;
3097 
3098 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3099 
3100 	if (input_buf[0] == '/') {
3101 		char *tok;
3102 		char *buf = input_buf;
3103 		char file_path[MAX_INPUT_BUF_SZ];
3104 		pgoff_t off_start = 0, off_end = 0;
3105 		size_t input_len = strlen(input_buf);
3106 
3107 		tok = strsep(&buf, ",");
3108 		if (tok) {
3109 			strcpy(file_path, tok);
3110 		} else {
3111 			ret = -EINVAL;
3112 			goto out;
3113 		}
3114 
3115 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3116 		if (ret != 2) {
3117 			ret = -EINVAL;
3118 			goto out;
3119 		}
3120 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3121 		if (!ret)
3122 			ret = input_len;
3123 
3124 		goto out;
3125 	}
3126 
3127 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3128 	if (ret == 1 && pid == 1) {
3129 		split_huge_pages_all();
3130 		ret = strlen(input_buf);
3131 		goto out;
3132 	} else if (ret != 3) {
3133 		ret = -EINVAL;
3134 		goto out;
3135 	}
3136 
3137 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3138 	if (!ret)
3139 		ret = strlen(input_buf);
3140 out:
3141 	mutex_unlock(&split_debug_mutex);
3142 	return ret;
3143 
3144 }
3145 
3146 static const struct file_operations split_huge_pages_fops = {
3147 	.owner	 = THIS_MODULE,
3148 	.write	 = split_huge_pages_write,
3149 	.llseek  = no_llseek,
3150 };
3151 
split_huge_pages_debugfs(void)3152 static int __init split_huge_pages_debugfs(void)
3153 {
3154 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3155 			    &split_huge_pages_fops);
3156 	return 0;
3157 }
3158 late_initcall(split_huge_pages_debugfs);
3159 #endif
3160 
3161 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3162 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3163 		struct page *page)
3164 {
3165 	struct vm_area_struct *vma = pvmw->vma;
3166 	struct mm_struct *mm = vma->vm_mm;
3167 	unsigned long address = pvmw->address;
3168 	pmd_t pmdval;
3169 	swp_entry_t entry;
3170 	pmd_t pmdswp;
3171 
3172 	if (!(pvmw->pmd && !pvmw->pte))
3173 		return;
3174 
3175 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3176 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3177 	if (pmd_dirty(pmdval))
3178 		set_page_dirty(page);
3179 	if (pmd_write(pmdval))
3180 		entry = make_writable_migration_entry(page_to_pfn(page));
3181 	else
3182 		entry = make_readable_migration_entry(page_to_pfn(page));
3183 	pmdswp = swp_entry_to_pmd(entry);
3184 	if (pmd_soft_dirty(pmdval))
3185 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3186 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3187 	page_remove_rmap(page, true);
3188 	put_page(page);
3189 }
3190 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3191 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3192 {
3193 	struct vm_area_struct *vma = pvmw->vma;
3194 	struct mm_struct *mm = vma->vm_mm;
3195 	unsigned long address = pvmw->address;
3196 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3197 	pmd_t pmde;
3198 	swp_entry_t entry;
3199 
3200 	if (!(pvmw->pmd && !pvmw->pte))
3201 		return;
3202 
3203 	entry = pmd_to_swp_entry(*pvmw->pmd);
3204 	get_page(new);
3205 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3206 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3207 		pmde = pmd_mksoft_dirty(pmde);
3208 	if (is_writable_migration_entry(entry))
3209 		pmde = maybe_pmd_mkwrite(pmde, vma);
3210 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3211 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3212 
3213 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3214 	if (PageAnon(new))
3215 		page_add_anon_rmap(new, vma, mmun_start, true);
3216 	else
3217 		page_add_file_rmap(new, true);
3218 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3219 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3220 		mlock_vma_page(new);
3221 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3222 }
3223 #endif
3224