• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <linux/kfence.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include <asm/uv.h>
42 #include "../kernel/entry.h"
43 
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 
48 #define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
49 #define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
50 #define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
51 #define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
52 #define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
53 
54 enum fault_type {
55 	KERNEL_FAULT,
56 	USER_FAULT,
57 	GMAP_FAULT,
58 };
59 
60 static unsigned long store_indication __read_mostly;
61 
fault_init(void)62 static int __init fault_init(void)
63 {
64 	if (test_facility(75))
65 		store_indication = 0xc00;
66 	return 0;
67 }
68 early_initcall(fault_init);
69 
70 /*
71  * Find out which address space caused the exception.
72  */
get_fault_type(struct pt_regs * regs)73 static enum fault_type get_fault_type(struct pt_regs *regs)
74 {
75 	unsigned long trans_exc_code;
76 
77 	trans_exc_code = regs->int_parm_long & 3;
78 	if (likely(trans_exc_code == 0)) {
79 		/* primary space exception */
80 		if (user_mode(regs))
81 			return USER_FAULT;
82 		if (!IS_ENABLED(CONFIG_PGSTE))
83 			return KERNEL_FAULT;
84 		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
85 			return GMAP_FAULT;
86 		return KERNEL_FAULT;
87 	}
88 	if (trans_exc_code == 2)
89 		return USER_FAULT;
90 	if (trans_exc_code == 1) {
91 		/* access register mode, not used in the kernel */
92 		return USER_FAULT;
93 	}
94 	/* home space exception -> access via kernel ASCE */
95 	return KERNEL_FAULT;
96 }
97 
bad_address(void * p)98 static int bad_address(void *p)
99 {
100 	unsigned long dummy;
101 
102 	return get_kernel_nofault(dummy, (unsigned long *)p);
103 }
104 
dump_pagetable(unsigned long asce,unsigned long address)105 static void dump_pagetable(unsigned long asce, unsigned long address)
106 {
107 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
108 
109 	pr_alert("AS:%016lx ", asce);
110 	switch (asce & _ASCE_TYPE_MASK) {
111 	case _ASCE_TYPE_REGION1:
112 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113 		if (bad_address(table))
114 			goto bad;
115 		pr_cont("R1:%016lx ", *table);
116 		if (*table & _REGION_ENTRY_INVALID)
117 			goto out;
118 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
119 		fallthrough;
120 	case _ASCE_TYPE_REGION2:
121 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122 		if (bad_address(table))
123 			goto bad;
124 		pr_cont("R2:%016lx ", *table);
125 		if (*table & _REGION_ENTRY_INVALID)
126 			goto out;
127 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
128 		fallthrough;
129 	case _ASCE_TYPE_REGION3:
130 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131 		if (bad_address(table))
132 			goto bad;
133 		pr_cont("R3:%016lx ", *table);
134 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135 			goto out;
136 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
137 		fallthrough;
138 	case _ASCE_TYPE_SEGMENT:
139 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140 		if (bad_address(table))
141 			goto bad;
142 		pr_cont("S:%016lx ", *table);
143 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144 			goto out;
145 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
146 	}
147 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148 	if (bad_address(table))
149 		goto bad;
150 	pr_cont("P:%016lx ", *table);
151 out:
152 	pr_cont("\n");
153 	return;
154 bad:
155 	pr_cont("BAD\n");
156 }
157 
dump_fault_info(struct pt_regs * regs)158 static void dump_fault_info(struct pt_regs *regs)
159 {
160 	unsigned long asce;
161 
162 	pr_alert("Failing address: %016lx TEID: %016lx\n",
163 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
164 	pr_alert("Fault in ");
165 	switch (regs->int_parm_long & 3) {
166 	case 3:
167 		pr_cont("home space ");
168 		break;
169 	case 2:
170 		pr_cont("secondary space ");
171 		break;
172 	case 1:
173 		pr_cont("access register ");
174 		break;
175 	case 0:
176 		pr_cont("primary space ");
177 		break;
178 	}
179 	pr_cont("mode while using ");
180 	switch (get_fault_type(regs)) {
181 	case USER_FAULT:
182 		asce = S390_lowcore.user_asce;
183 		pr_cont("user ");
184 		break;
185 	case GMAP_FAULT:
186 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
187 		pr_cont("gmap ");
188 		break;
189 	case KERNEL_FAULT:
190 		asce = S390_lowcore.kernel_asce;
191 		pr_cont("kernel ");
192 		break;
193 	default:
194 		unreachable();
195 	}
196 	pr_cont("ASCE.\n");
197 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
198 }
199 
200 int show_unhandled_signals = 1;
201 
report_user_fault(struct pt_regs * regs,long signr,int is_mm_fault)202 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
203 {
204 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
205 		return;
206 	if (!unhandled_signal(current, signr))
207 		return;
208 	if (!printk_ratelimit())
209 		return;
210 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
211 	       regs->int_code & 0xffff, regs->int_code >> 17);
212 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
213 	printk(KERN_CONT "\n");
214 	if (is_mm_fault)
215 		dump_fault_info(regs);
216 	show_regs(regs);
217 }
218 
219 /*
220  * Send SIGSEGV to task.  This is an external routine
221  * to keep the stack usage of do_page_fault small.
222  */
do_sigsegv(struct pt_regs * regs,int si_code)223 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
224 {
225 	report_user_fault(regs, SIGSEGV, 1);
226 	force_sig_fault(SIGSEGV, si_code,
227 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
228 }
229 
s390_search_extables(unsigned long addr)230 const struct exception_table_entry *s390_search_extables(unsigned long addr)
231 {
232 	const struct exception_table_entry *fixup;
233 
234 	fixup = search_extable(__start_amode31_ex_table,
235 			       __stop_amode31_ex_table - __start_amode31_ex_table,
236 			       addr);
237 	if (!fixup)
238 		fixup = search_exception_tables(addr);
239 	return fixup;
240 }
241 
do_no_context(struct pt_regs * regs)242 static noinline void do_no_context(struct pt_regs *regs)
243 {
244 	const struct exception_table_entry *fixup;
245 
246 	/* Are we prepared to handle this kernel fault?  */
247 	fixup = s390_search_extables(regs->psw.addr);
248 	if (fixup && ex_handle(fixup, regs))
249 		return;
250 
251 	/*
252 	 * Oops. The kernel tried to access some bad page. We'll have to
253 	 * terminate things with extreme prejudice.
254 	 */
255 	if (get_fault_type(regs) == KERNEL_FAULT)
256 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
257 		       " in virtual kernel address space\n");
258 	else
259 		printk(KERN_ALERT "Unable to handle kernel paging request"
260 		       " in virtual user address space\n");
261 	dump_fault_info(regs);
262 	die(regs, "Oops");
263 	do_exit(SIGKILL);
264 }
265 
do_low_address(struct pt_regs * regs)266 static noinline void do_low_address(struct pt_regs *regs)
267 {
268 	/* Low-address protection hit in kernel mode means
269 	   NULL pointer write access in kernel mode.  */
270 	if (regs->psw.mask & PSW_MASK_PSTATE) {
271 		/* Low-address protection hit in user mode 'cannot happen'. */
272 		die (regs, "Low-address protection");
273 		do_exit(SIGKILL);
274 	}
275 
276 	do_no_context(regs);
277 }
278 
do_sigbus(struct pt_regs * regs)279 static noinline void do_sigbus(struct pt_regs *regs)
280 {
281 	/*
282 	 * Send a sigbus, regardless of whether we were in kernel
283 	 * or user mode.
284 	 */
285 	force_sig_fault(SIGBUS, BUS_ADRERR,
286 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
287 }
288 
do_fault_error(struct pt_regs * regs,int access,vm_fault_t fault)289 static noinline void do_fault_error(struct pt_regs *regs, int access,
290 					vm_fault_t fault)
291 {
292 	int si_code;
293 
294 	switch (fault) {
295 	case VM_FAULT_BADACCESS:
296 	case VM_FAULT_BADMAP:
297 		/* Bad memory access. Check if it is kernel or user space. */
298 		if (user_mode(regs)) {
299 			/* User mode accesses just cause a SIGSEGV */
300 			si_code = (fault == VM_FAULT_BADMAP) ?
301 				SEGV_MAPERR : SEGV_ACCERR;
302 			do_sigsegv(regs, si_code);
303 			break;
304 		}
305 		fallthrough;
306 	case VM_FAULT_BADCONTEXT:
307 	case VM_FAULT_PFAULT:
308 		do_no_context(regs);
309 		break;
310 	case VM_FAULT_SIGNAL:
311 		if (!user_mode(regs))
312 			do_no_context(regs);
313 		break;
314 	default: /* fault & VM_FAULT_ERROR */
315 		if (fault & VM_FAULT_OOM) {
316 			if (!user_mode(regs))
317 				do_no_context(regs);
318 			else
319 				pagefault_out_of_memory();
320 		} else if (fault & VM_FAULT_SIGSEGV) {
321 			/* Kernel mode? Handle exceptions or die */
322 			if (!user_mode(regs))
323 				do_no_context(regs);
324 			else
325 				do_sigsegv(regs, SEGV_MAPERR);
326 		} else if (fault & VM_FAULT_SIGBUS) {
327 			/* Kernel mode? Handle exceptions or die */
328 			if (!user_mode(regs))
329 				do_no_context(regs);
330 			else
331 				do_sigbus(regs);
332 		} else
333 			BUG();
334 		break;
335 	}
336 }
337 
338 /*
339  * This routine handles page faults.  It determines the address,
340  * and the problem, and then passes it off to one of the appropriate
341  * routines.
342  *
343  * interruption code (int_code):
344  *   04       Protection           ->  Write-Protection  (suppression)
345  *   10       Segment translation  ->  Not present       (nullification)
346  *   11       Page translation     ->  Not present       (nullification)
347  *   3b       Region third trans.  ->  Not present       (nullification)
348  */
do_exception(struct pt_regs * regs,int access)349 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
350 {
351 	struct gmap *gmap;
352 	struct task_struct *tsk;
353 	struct mm_struct *mm;
354 	struct vm_area_struct *vma;
355 	enum fault_type type;
356 	unsigned long trans_exc_code;
357 	unsigned long address;
358 	unsigned int flags;
359 	vm_fault_t fault;
360 	bool is_write;
361 
362 	tsk = current;
363 	/*
364 	 * The instruction that caused the program check has
365 	 * been nullified. Don't signal single step via SIGTRAP.
366 	 */
367 	clear_thread_flag(TIF_PER_TRAP);
368 
369 	if (kprobe_page_fault(regs, 14))
370 		return 0;
371 
372 	mm = tsk->mm;
373 	trans_exc_code = regs->int_parm_long;
374 	address = trans_exc_code & __FAIL_ADDR_MASK;
375 	is_write = (trans_exc_code & store_indication) == 0x400;
376 
377 	/*
378 	 * Verify that the fault happened in user space, that
379 	 * we are not in an interrupt and that there is a
380 	 * user context.
381 	 */
382 	fault = VM_FAULT_BADCONTEXT;
383 	type = get_fault_type(regs);
384 	switch (type) {
385 	case KERNEL_FAULT:
386 		if (kfence_handle_page_fault(address, is_write, regs))
387 			return 0;
388 		goto out;
389 	case USER_FAULT:
390 	case GMAP_FAULT:
391 		if (faulthandler_disabled() || !mm)
392 			goto out;
393 		break;
394 	}
395 
396 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
397 	flags = FAULT_FLAG_DEFAULT;
398 	if (user_mode(regs))
399 		flags |= FAULT_FLAG_USER;
400 	if (is_write)
401 		access = VM_WRITE;
402 	if (access == VM_WRITE)
403 		flags |= FAULT_FLAG_WRITE;
404 	mmap_read_lock(mm);
405 
406 	gmap = NULL;
407 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
408 		gmap = (struct gmap *) S390_lowcore.gmap;
409 		current->thread.gmap_addr = address;
410 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
411 		current->thread.gmap_int_code = regs->int_code & 0xffff;
412 		address = __gmap_translate(gmap, address);
413 		if (address == -EFAULT) {
414 			fault = VM_FAULT_BADMAP;
415 			goto out_up;
416 		}
417 		if (gmap->pfault_enabled)
418 			flags |= FAULT_FLAG_RETRY_NOWAIT;
419 	}
420 
421 retry:
422 	fault = VM_FAULT_BADMAP;
423 	vma = find_vma(mm, address);
424 	if (!vma)
425 		goto out_up;
426 
427 	if (unlikely(vma->vm_start > address)) {
428 		if (!(vma->vm_flags & VM_GROWSDOWN))
429 			goto out_up;
430 		if (expand_stack(vma, address))
431 			goto out_up;
432 	}
433 
434 	/*
435 	 * Ok, we have a good vm_area for this memory access, so
436 	 * we can handle it..
437 	 */
438 	fault = VM_FAULT_BADACCESS;
439 	if (unlikely(!(vma->vm_flags & access)))
440 		goto out_up;
441 
442 	if (is_vm_hugetlb_page(vma))
443 		address &= HPAGE_MASK;
444 	/*
445 	 * If for any reason at all we couldn't handle the fault,
446 	 * make sure we exit gracefully rather than endlessly redo
447 	 * the fault.
448 	 */
449 	fault = handle_mm_fault(vma, address, flags, regs);
450 	if (fault_signal_pending(fault, regs)) {
451 		fault = VM_FAULT_SIGNAL;
452 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
453 			goto out_up;
454 		goto out;
455 	}
456 	if (unlikely(fault & VM_FAULT_ERROR))
457 		goto out_up;
458 
459 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
460 		if (fault & VM_FAULT_RETRY) {
461 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
462 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
463 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
464 				 * mmap_lock has not been released */
465 				current->thread.gmap_pfault = 1;
466 				fault = VM_FAULT_PFAULT;
467 				goto out_up;
468 			}
469 			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
470 			flags |= FAULT_FLAG_TRIED;
471 			mmap_read_lock(mm);
472 			goto retry;
473 		}
474 	}
475 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
476 		address =  __gmap_link(gmap, current->thread.gmap_addr,
477 				       address);
478 		if (address == -EFAULT) {
479 			fault = VM_FAULT_BADMAP;
480 			goto out_up;
481 		}
482 		if (address == -ENOMEM) {
483 			fault = VM_FAULT_OOM;
484 			goto out_up;
485 		}
486 	}
487 	fault = 0;
488 out_up:
489 	mmap_read_unlock(mm);
490 out:
491 	return fault;
492 }
493 
do_protection_exception(struct pt_regs * regs)494 void do_protection_exception(struct pt_regs *regs)
495 {
496 	unsigned long trans_exc_code;
497 	int access;
498 	vm_fault_t fault;
499 
500 	trans_exc_code = regs->int_parm_long;
501 	/*
502 	 * Protection exceptions are suppressing, decrement psw address.
503 	 * The exception to this rule are aborted transactions, for these
504 	 * the PSW already points to the correct location.
505 	 */
506 	if (!(regs->int_code & 0x200))
507 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
508 	/*
509 	 * Check for low-address protection.  This needs to be treated
510 	 * as a special case because the translation exception code
511 	 * field is not guaranteed to contain valid data in this case.
512 	 */
513 	if (unlikely(!(trans_exc_code & 4))) {
514 		do_low_address(regs);
515 		return;
516 	}
517 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
518 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
519 					(regs->psw.addr & PAGE_MASK);
520 		access = VM_EXEC;
521 		fault = VM_FAULT_BADACCESS;
522 	} else {
523 		access = VM_WRITE;
524 		fault = do_exception(regs, access);
525 	}
526 	if (unlikely(fault))
527 		do_fault_error(regs, access, fault);
528 }
529 NOKPROBE_SYMBOL(do_protection_exception);
530 
do_dat_exception(struct pt_regs * regs)531 void do_dat_exception(struct pt_regs *regs)
532 {
533 	int access;
534 	vm_fault_t fault;
535 
536 	access = VM_ACCESS_FLAGS;
537 	fault = do_exception(regs, access);
538 	if (unlikely(fault))
539 		do_fault_error(regs, access, fault);
540 }
541 NOKPROBE_SYMBOL(do_dat_exception);
542 
543 #ifdef CONFIG_PFAULT
544 /*
545  * 'pfault' pseudo page faults routines.
546  */
547 static int pfault_disable;
548 
nopfault(char * str)549 static int __init nopfault(char *str)
550 {
551 	pfault_disable = 1;
552 	return 1;
553 }
554 
555 __setup("nopfault", nopfault);
556 
557 struct pfault_refbk {
558 	u16 refdiagc;
559 	u16 reffcode;
560 	u16 refdwlen;
561 	u16 refversn;
562 	u64 refgaddr;
563 	u64 refselmk;
564 	u64 refcmpmk;
565 	u64 reserved;
566 } __attribute__ ((packed, aligned(8)));
567 
568 static struct pfault_refbk pfault_init_refbk = {
569 	.refdiagc = 0x258,
570 	.reffcode = 0,
571 	.refdwlen = 5,
572 	.refversn = 2,
573 	.refgaddr = __LC_LPP,
574 	.refselmk = 1ULL << 48,
575 	.refcmpmk = 1ULL << 48,
576 	.reserved = __PF_RES_FIELD
577 };
578 
pfault_init(void)579 int pfault_init(void)
580 {
581         int rc;
582 
583 	if (pfault_disable)
584 		return -1;
585 	diag_stat_inc(DIAG_STAT_X258);
586 	asm volatile(
587 		"	diag	%1,%0,0x258\n"
588 		"0:	j	2f\n"
589 		"1:	la	%0,8\n"
590 		"2:\n"
591 		EX_TABLE(0b,1b)
592 		: "=d" (rc)
593 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
594         return rc;
595 }
596 
597 static struct pfault_refbk pfault_fini_refbk = {
598 	.refdiagc = 0x258,
599 	.reffcode = 1,
600 	.refdwlen = 5,
601 	.refversn = 2,
602 };
603 
pfault_fini(void)604 void pfault_fini(void)
605 {
606 
607 	if (pfault_disable)
608 		return;
609 	diag_stat_inc(DIAG_STAT_X258);
610 	asm volatile(
611 		"	diag	%0,0,0x258\n"
612 		"0:	nopr	%%r7\n"
613 		EX_TABLE(0b,0b)
614 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
615 }
616 
617 static DEFINE_SPINLOCK(pfault_lock);
618 static LIST_HEAD(pfault_list);
619 
620 #define PF_COMPLETE	0x0080
621 
622 /*
623  * The mechanism of our pfault code: if Linux is running as guest, runs a user
624  * space process and the user space process accesses a page that the host has
625  * paged out we get a pfault interrupt.
626  *
627  * This allows us, within the guest, to schedule a different process. Without
628  * this mechanism the host would have to suspend the whole virtual cpu until
629  * the page has been paged in.
630  *
631  * So when we get such an interrupt then we set the state of the current task
632  * to uninterruptible and also set the need_resched flag. Both happens within
633  * interrupt context(!). If we later on want to return to user space we
634  * recognize the need_resched flag and then call schedule().  It's not very
635  * obvious how this works...
636  *
637  * Of course we have a lot of additional fun with the completion interrupt (->
638  * host signals that a page of a process has been paged in and the process can
639  * continue to run). This interrupt can arrive on any cpu and, since we have
640  * virtual cpus, actually appear before the interrupt that signals that a page
641  * is missing.
642  */
pfault_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)643 static void pfault_interrupt(struct ext_code ext_code,
644 			     unsigned int param32, unsigned long param64)
645 {
646 	struct task_struct *tsk;
647 	__u16 subcode;
648 	pid_t pid;
649 
650 	/*
651 	 * Get the external interruption subcode & pfault initial/completion
652 	 * signal bit. VM stores this in the 'cpu address' field associated
653 	 * with the external interrupt.
654 	 */
655 	subcode = ext_code.subcode;
656 	if ((subcode & 0xff00) != __SUBCODE_MASK)
657 		return;
658 	inc_irq_stat(IRQEXT_PFL);
659 	/* Get the token (= pid of the affected task). */
660 	pid = param64 & LPP_PID_MASK;
661 	rcu_read_lock();
662 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
663 	if (tsk)
664 		get_task_struct(tsk);
665 	rcu_read_unlock();
666 	if (!tsk)
667 		return;
668 	spin_lock(&pfault_lock);
669 	if (subcode & PF_COMPLETE) {
670 		/* signal bit is set -> a page has been swapped in by VM */
671 		if (tsk->thread.pfault_wait == 1) {
672 			/* Initial interrupt was faster than the completion
673 			 * interrupt. pfault_wait is valid. Set pfault_wait
674 			 * back to zero and wake up the process. This can
675 			 * safely be done because the task is still sleeping
676 			 * and can't produce new pfaults. */
677 			tsk->thread.pfault_wait = 0;
678 			list_del(&tsk->thread.list);
679 			wake_up_process(tsk);
680 			put_task_struct(tsk);
681 		} else {
682 			/* Completion interrupt was faster than initial
683 			 * interrupt. Set pfault_wait to -1 so the initial
684 			 * interrupt doesn't put the task to sleep.
685 			 * If the task is not running, ignore the completion
686 			 * interrupt since it must be a leftover of a PFAULT
687 			 * CANCEL operation which didn't remove all pending
688 			 * completion interrupts. */
689 			if (task_is_running(tsk))
690 				tsk->thread.pfault_wait = -1;
691 		}
692 	} else {
693 		/* signal bit not set -> a real page is missing. */
694 		if (WARN_ON_ONCE(tsk != current))
695 			goto out;
696 		if (tsk->thread.pfault_wait == 1) {
697 			/* Already on the list with a reference: put to sleep */
698 			goto block;
699 		} else if (tsk->thread.pfault_wait == -1) {
700 			/* Completion interrupt was faster than the initial
701 			 * interrupt (pfault_wait == -1). Set pfault_wait
702 			 * back to zero and exit. */
703 			tsk->thread.pfault_wait = 0;
704 		} else {
705 			/* Initial interrupt arrived before completion
706 			 * interrupt. Let the task sleep.
707 			 * An extra task reference is needed since a different
708 			 * cpu may set the task state to TASK_RUNNING again
709 			 * before the scheduler is reached. */
710 			get_task_struct(tsk);
711 			tsk->thread.pfault_wait = 1;
712 			list_add(&tsk->thread.list, &pfault_list);
713 block:
714 			/* Since this must be a userspace fault, there
715 			 * is no kernel task state to trample. Rely on the
716 			 * return to userspace schedule() to block. */
717 			__set_current_state(TASK_UNINTERRUPTIBLE);
718 			set_tsk_need_resched(tsk);
719 			set_preempt_need_resched();
720 		}
721 	}
722 out:
723 	spin_unlock(&pfault_lock);
724 	put_task_struct(tsk);
725 }
726 
pfault_cpu_dead(unsigned int cpu)727 static int pfault_cpu_dead(unsigned int cpu)
728 {
729 	struct thread_struct *thread, *next;
730 	struct task_struct *tsk;
731 
732 	spin_lock_irq(&pfault_lock);
733 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
734 		thread->pfault_wait = 0;
735 		list_del(&thread->list);
736 		tsk = container_of(thread, struct task_struct, thread);
737 		wake_up_process(tsk);
738 		put_task_struct(tsk);
739 	}
740 	spin_unlock_irq(&pfault_lock);
741 	return 0;
742 }
743 
pfault_irq_init(void)744 static int __init pfault_irq_init(void)
745 {
746 	int rc;
747 
748 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
749 	if (rc)
750 		goto out_extint;
751 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
752 	if (rc)
753 		goto out_pfault;
754 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
755 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
756 				  NULL, pfault_cpu_dead);
757 	return 0;
758 
759 out_pfault:
760 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
761 out_extint:
762 	pfault_disable = 1;
763 	return rc;
764 }
765 early_initcall(pfault_irq_init);
766 
767 #endif /* CONFIG_PFAULT */
768 
769 #if IS_ENABLED(CONFIG_PGSTE)
770 
do_secure_storage_access(struct pt_regs * regs)771 void do_secure_storage_access(struct pt_regs *regs)
772 {
773 	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
774 	struct vm_area_struct *vma;
775 	struct mm_struct *mm;
776 	struct page *page;
777 	int rc;
778 
779 	/*
780 	 * bit 61 tells us if the address is valid, if it's not we
781 	 * have a major problem and should stop the kernel or send a
782 	 * SIGSEGV to the process. Unfortunately bit 61 is not
783 	 * reliable without the misc UV feature so we need to check
784 	 * for that as well.
785 	 */
786 	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications) &&
787 	    !test_bit_inv(61, &regs->int_parm_long)) {
788 		/*
789 		 * When this happens, userspace did something that it
790 		 * was not supposed to do, e.g. branching into secure
791 		 * memory. Trigger a segmentation fault.
792 		 */
793 		if (user_mode(regs)) {
794 			send_sig(SIGSEGV, current, 0);
795 			return;
796 		}
797 
798 		/*
799 		 * The kernel should never run into this case and we
800 		 * have no way out of this situation.
801 		 */
802 		panic("Unexpected PGM 0x3d with TEID bit 61=0");
803 	}
804 
805 	switch (get_fault_type(regs)) {
806 	case USER_FAULT:
807 		mm = current->mm;
808 		mmap_read_lock(mm);
809 		vma = find_vma(mm, addr);
810 		if (!vma) {
811 			mmap_read_unlock(mm);
812 			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
813 			break;
814 		}
815 		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
816 		if (IS_ERR_OR_NULL(page)) {
817 			mmap_read_unlock(mm);
818 			break;
819 		}
820 		if (arch_make_page_accessible(page))
821 			send_sig(SIGSEGV, current, 0);
822 		put_page(page);
823 		mmap_read_unlock(mm);
824 		break;
825 	case KERNEL_FAULT:
826 		page = phys_to_page(addr);
827 		if (unlikely(!try_get_page(page)))
828 			break;
829 		rc = arch_make_page_accessible(page);
830 		put_page(page);
831 		if (rc)
832 			BUG();
833 		break;
834 	case GMAP_FAULT:
835 	default:
836 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
837 		WARN_ON_ONCE(1);
838 	}
839 }
840 NOKPROBE_SYMBOL(do_secure_storage_access);
841 
do_non_secure_storage_access(struct pt_regs * regs)842 void do_non_secure_storage_access(struct pt_regs *regs)
843 {
844 	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
845 	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
846 
847 	if (get_fault_type(regs) != GMAP_FAULT) {
848 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
849 		WARN_ON_ONCE(1);
850 		return;
851 	}
852 
853 	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
854 		send_sig(SIGSEGV, current, 0);
855 }
856 NOKPROBE_SYMBOL(do_non_secure_storage_access);
857 
do_secure_storage_violation(struct pt_regs * regs)858 void do_secure_storage_violation(struct pt_regs *regs)
859 {
860 	/*
861 	 * Either KVM messed up the secure guest mapping or the same
862 	 * page is mapped into multiple secure guests.
863 	 *
864 	 * This exception is only triggered when a guest 2 is running
865 	 * and can therefore never occur in kernel context.
866 	 */
867 	printk_ratelimited(KERN_WARNING
868 			   "Secure storage violation in task: %s, pid %d\n",
869 			   current->comm, current->pid);
870 	send_sig(SIGSEGV, current, 0);
871 }
872 
873 #endif /* CONFIG_PGSTE */
874