• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 #include <linux/vm_event_item.h>
29 
30 #include <asm/acpi.h>
31 #include <asm/bug.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/cpufeature.h>
34 #include <asm/exception.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/kprobes.h>
39 #include <asm/mte.h>
40 #include <asm/processor.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46 
47 #include <trace/hooks/fault.h>
48 
49 struct fault_info {
50 	int	(*fn)(unsigned long far, unsigned long esr,
51 		      struct pt_regs *regs);
52 	int	sig;
53 	int	code;
54 	const char *name;
55 };
56 
57 static const struct fault_info fault_info[];
58 static struct fault_info debug_fault_info[];
59 
esr_to_fault_info(unsigned long esr)60 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
61 {
62 	return fault_info + (esr & ESR_ELx_FSC);
63 }
64 
esr_to_debug_fault_info(unsigned long esr)65 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
66 {
67 	return debug_fault_info + DBG_ESR_EVT(esr);
68 }
69 
data_abort_decode(unsigned long esr)70 static void data_abort_decode(unsigned long esr)
71 {
72 	pr_alert("Data abort info:\n");
73 
74 	if (esr & ESR_ELx_ISV) {
75 		pr_alert("  Access size = %u byte(s)\n",
76 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
77 		pr_alert("  SSE = %lu, SRT = %lu\n",
78 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
79 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
80 		pr_alert("  SF = %lu, AR = %lu\n",
81 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
82 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
83 	} else {
84 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
85 	}
86 
87 	pr_alert("  CM = %lu, WnR = %lu\n",
88 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
89 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
90 }
91 
mem_abort_decode(unsigned long esr)92 static void mem_abort_decode(unsigned long esr)
93 {
94 	pr_alert("Mem abort info:\n");
95 
96 	pr_alert("  ESR = 0x%016lx\n", esr);
97 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
98 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
99 		 (esr & ESR_ELx_IL) ? 32 : 16);
100 	pr_alert("  SET = %lu, FnV = %lu\n",
101 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
102 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
103 	pr_alert("  EA = %lu, S1PTW = %lu\n",
104 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
105 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
106 	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
107 		 esr_to_fault_info(esr)->name);
108 
109 	if (esr_is_data_abort(esr))
110 		data_abort_decode(esr);
111 }
112 
mm_to_pgd_phys(struct mm_struct * mm)113 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
114 {
115 	/* Either init_pg_dir or swapper_pg_dir */
116 	if (mm == &init_mm)
117 		return __pa_symbol(mm->pgd);
118 
119 	return (unsigned long)virt_to_phys(mm->pgd);
120 }
121 
122 /*
123  * Dump out the page tables associated with 'addr' in the currently active mm.
124  */
show_pte(unsigned long addr)125 static void show_pte(unsigned long addr)
126 {
127 	struct mm_struct *mm;
128 	pgd_t *pgdp;
129 	pgd_t pgd;
130 
131 	if (is_ttbr0_addr(addr)) {
132 		/* TTBR0 */
133 		mm = current->active_mm;
134 		if (mm == &init_mm) {
135 			pr_alert("[%016lx] user address but active_mm is swapper\n",
136 				 addr);
137 			return;
138 		}
139 	} else if (is_ttbr1_addr(addr)) {
140 		/* TTBR1 */
141 		mm = &init_mm;
142 	} else {
143 		pr_alert("[%016lx] address between user and kernel address ranges\n",
144 			 addr);
145 		return;
146 	}
147 
148 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
149 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
150 		 vabits_actual, mm_to_pgd_phys(mm));
151 	pgdp = pgd_offset(mm, addr);
152 	pgd = READ_ONCE(*pgdp);
153 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
154 
155 	do {
156 		p4d_t *p4dp, p4d;
157 		pud_t *pudp, pud;
158 		pmd_t *pmdp, pmd;
159 		pte_t *ptep, pte;
160 
161 		if (pgd_none(pgd) || pgd_bad(pgd))
162 			break;
163 
164 		p4dp = p4d_offset(pgdp, addr);
165 		p4d = READ_ONCE(*p4dp);
166 		pr_cont(", p4d=%016llx", p4d_val(p4d));
167 		if (p4d_none(p4d) || p4d_bad(p4d))
168 			break;
169 
170 		pudp = pud_offset(p4dp, addr);
171 		pud = READ_ONCE(*pudp);
172 		pr_cont(", pud=%016llx", pud_val(pud));
173 		if (pud_none(pud) || pud_bad(pud))
174 			break;
175 
176 		pmdp = pmd_offset(pudp, addr);
177 		pmd = READ_ONCE(*pmdp);
178 		pr_cont(", pmd=%016llx", pmd_val(pmd));
179 		if (pmd_none(pmd) || pmd_bad(pmd))
180 			break;
181 
182 		ptep = pte_offset_map(pmdp, addr);
183 		pte = READ_ONCE(*ptep);
184 		pr_cont(", pte=%016llx", pte_val(pte));
185 		pte_unmap(ptep);
186 	} while(0);
187 
188 	pr_cont("\n");
189 }
190 
191 /*
192  * This function sets the access flags (dirty, accessed), as well as write
193  * permission, and only to a more permissive setting.
194  *
195  * It needs to cope with hardware update of the accessed/dirty state by other
196  * agents in the system and can safely skip the __sync_icache_dcache() call as,
197  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
198  *
199  * Returns whether or not the PTE actually changed.
200  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)201 int ptep_set_access_flags(struct vm_area_struct *vma,
202 			  unsigned long address, pte_t *ptep,
203 			  pte_t entry, int dirty)
204 {
205 	pteval_t old_pteval, pteval;
206 	pte_t pte = READ_ONCE(*ptep);
207 
208 	if (pte_same(pte, entry))
209 		return 0;
210 
211 	/* only preserve the access flags and write permission */
212 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
213 
214 	/*
215 	 * Setting the flags must be done atomically to avoid racing with the
216 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
217 	 * be set to the most permissive (lowest value) of *ptep and entry
218 	 * (calculated as: a & b == ~(~a | ~b)).
219 	 */
220 	pte_val(entry) ^= PTE_RDONLY;
221 	pteval = pte_val(pte);
222 	do {
223 		old_pteval = pteval;
224 		pteval ^= PTE_RDONLY;
225 		pteval |= pte_val(entry);
226 		pteval ^= PTE_RDONLY;
227 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
228 	} while (pteval != old_pteval);
229 
230 	/* Invalidate a stale read-only entry */
231 	if (dirty)
232 		flush_tlb_page(vma, address);
233 	return 1;
234 }
235 
is_el1_instruction_abort(unsigned long esr)236 static bool is_el1_instruction_abort(unsigned long esr)
237 {
238 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
239 }
240 
is_el1_data_abort(unsigned long esr)241 static bool is_el1_data_abort(unsigned long esr)
242 {
243 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
244 }
245 
is_el1_permission_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)246 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
247 					   struct pt_regs *regs)
248 {
249 	unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
250 
251 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
252 		return false;
253 
254 	if (fsc_type == ESR_ELx_FSC_PERM)
255 		return true;
256 
257 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
258 		return fsc_type == ESR_ELx_FSC_FAULT &&
259 			(regs->pstate & PSR_PAN_BIT);
260 
261 	return false;
262 }
263 
is_pkvm_stage2_abort(unsigned int esr)264 static bool is_pkvm_stage2_abort(unsigned int esr)
265 {
266 	/*
267 	 * S1PTW should only ever be set in ESR_EL1 if the pkvm hypervisor
268 	 * injected a stage-2 abort -- see host_inject_abort().
269 	 */
270 	return is_pkvm_initialized() && (esr & ESR_ELx_S1PTW);
271 }
272 
is_spurious_el1_translation_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)273 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
274 							unsigned long esr,
275 							struct pt_regs *regs)
276 {
277 	unsigned long flags;
278 	u64 par, dfsc;
279 
280 	if (!is_el1_data_abort(esr) ||
281 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
282 		return false;
283 
284 	if (is_pkvm_stage2_abort(esr))
285 		return false;
286 
287 	local_irq_save(flags);
288 	asm volatile("at s1e1r, %0" :: "r" (addr));
289 	isb();
290 	par = read_sysreg_par();
291 	local_irq_restore(flags);
292 
293 	/*
294 	 * If we now have a valid translation, treat the translation fault as
295 	 * spurious.
296 	 */
297 	if (!(par & SYS_PAR_EL1_F))
298 		return true;
299 
300 	/*
301 	 * If we got a different type of fault from the AT instruction,
302 	 * treat the translation fault as spurious.
303 	 */
304 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
305 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
306 }
307 
die_kernel_fault(const char * msg,unsigned long addr,unsigned long esr,struct pt_regs * regs)308 static void die_kernel_fault(const char *msg, unsigned long addr,
309 			     unsigned long esr, struct pt_regs *regs)
310 {
311 	bust_spinlocks(1);
312 
313 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
314 		 addr);
315 
316 	trace_android_rvh_die_kernel_fault(msg, addr, esr, regs);
317 	mem_abort_decode(esr);
318 
319 	show_pte(addr);
320 	die("Oops", regs, esr);
321 	bust_spinlocks(0);
322 	make_task_dead(SIGKILL);
323 }
324 
325 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)326 static void report_tag_fault(unsigned long addr, unsigned long esr,
327 			     struct pt_regs *regs)
328 {
329 	/*
330 	 * SAS bits aren't set for all faults reported in EL1, so we can't
331 	 * find out access size.
332 	 */
333 	bool is_write = !!(esr & ESR_ELx_WNR);
334 	kasan_report(addr, 0, is_write, regs->pc);
335 }
336 #else
337 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)338 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
339 				    struct pt_regs *regs) { }
340 #endif
341 
do_tag_recovery(unsigned long addr,unsigned long esr,struct pt_regs * regs)342 static void do_tag_recovery(unsigned long addr, unsigned long esr,
343 			   struct pt_regs *regs)
344 {
345 
346 	report_tag_fault(addr, esr, regs);
347 
348 	/*
349 	 * Disable MTE Tag Checking on the local CPU for the current EL.
350 	 * It will be done lazily on the other CPUs when they will hit a
351 	 * tag fault.
352 	 */
353 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
354 	isb();
355 }
356 
is_el1_mte_sync_tag_check_fault(unsigned long esr)357 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
358 {
359 	unsigned long fsc = esr & ESR_ELx_FSC;
360 
361 	if (!is_el1_data_abort(esr))
362 		return false;
363 
364 	if (fsc == ESR_ELx_FSC_MTE)
365 		return true;
366 
367 	return false;
368 }
369 
is_translation_fault(unsigned long esr)370 static bool is_translation_fault(unsigned long esr)
371 {
372 	return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
373 }
374 
__do_kernel_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)375 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
376 			      struct pt_regs *regs)
377 {
378 	const char *msg;
379 
380 	/*
381 	 * Are we prepared to handle this kernel fault?
382 	 * We are almost certainly not prepared to handle instruction faults.
383 	 */
384 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
385 		return;
386 
387 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
388 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
389 		return;
390 
391 	if (is_el1_mte_sync_tag_check_fault(esr)) {
392 		do_tag_recovery(addr, esr, regs);
393 
394 		return;
395 	}
396 
397 	if (is_el1_permission_fault(addr, esr, regs)) {
398 		if (esr & ESR_ELx_WNR)
399 			msg = "write to read-only memory";
400 		else if (is_el1_instruction_abort(esr))
401 			msg = "execute from non-executable memory";
402 		else
403 			msg = "read from unreadable memory";
404 	} else if (addr < PAGE_SIZE) {
405 		msg = "NULL pointer dereference";
406 	} else if (is_pkvm_stage2_abort(esr)) {
407 		msg = "access to hypervisor-protected memory";
408 	} else {
409 		if (is_translation_fault(esr) &&
410 		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
411 			return;
412 
413 		msg = "paging request";
414 	}
415 
416 	die_kernel_fault(msg, addr, esr, regs);
417 }
418 
set_thread_esr(unsigned long address,unsigned long esr)419 static void set_thread_esr(unsigned long address, unsigned long esr)
420 {
421 	current->thread.fault_address = address;
422 
423 	/*
424 	 * If the faulting address is in the kernel, we must sanitize the ESR.
425 	 * From userspace's point of view, kernel-only mappings don't exist
426 	 * at all, so we report them as level 0 translation faults.
427 	 * (This is not quite the way that "no mapping there at all" behaves:
428 	 * an alignment fault not caused by the memory type would take
429 	 * precedence over translation fault for a real access to empty
430 	 * space. Unfortunately we can't easily distinguish "alignment fault
431 	 * not caused by memory type" from "alignment fault caused by memory
432 	 * type", so we ignore this wrinkle and just return the translation
433 	 * fault.)
434 	 */
435 	if (!is_ttbr0_addr(current->thread.fault_address)) {
436 		switch (ESR_ELx_EC(esr)) {
437 		case ESR_ELx_EC_DABT_LOW:
438 			/*
439 			 * These bits provide only information about the
440 			 * faulting instruction, which userspace knows already.
441 			 * We explicitly clear bits which are architecturally
442 			 * RES0 in case they are given meanings in future.
443 			 * We always report the ESR as if the fault was taken
444 			 * to EL1 and so ISV and the bits in ISS[23:14] are
445 			 * clear. (In fact it always will be a fault to EL1.)
446 			 */
447 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
448 				ESR_ELx_CM | ESR_ELx_WNR;
449 			esr |= ESR_ELx_FSC_FAULT;
450 			break;
451 		case ESR_ELx_EC_IABT_LOW:
452 			/*
453 			 * Claim a level 0 translation fault.
454 			 * All other bits are architecturally RES0 for faults
455 			 * reported with that DFSC value, so we clear them.
456 			 */
457 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
458 			esr |= ESR_ELx_FSC_FAULT;
459 			break;
460 		default:
461 			/*
462 			 * This should never happen (entry.S only brings us
463 			 * into this code for insn and data aborts from a lower
464 			 * exception level). Fail safe by not providing an ESR
465 			 * context record at all.
466 			 */
467 			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
468 			esr = 0;
469 			break;
470 		}
471 	}
472 
473 	current->thread.fault_code = esr;
474 }
475 
do_bad_area(unsigned long far,unsigned long esr,struct pt_regs * regs)476 static void do_bad_area(unsigned long far, unsigned long esr,
477 			struct pt_regs *regs)
478 {
479 	unsigned long addr = untagged_addr(far);
480 
481 	/*
482 	 * If we are in kernel mode at this point, we have no context to
483 	 * handle this fault with.
484 	 */
485 	if (user_mode(regs)) {
486 		const struct fault_info *inf = esr_to_fault_info(esr);
487 
488 		set_thread_esr(addr, esr);
489 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
490 	} else {
491 		__do_kernel_fault(addr, esr, regs);
492 	}
493 }
494 
495 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
496 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
497 
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct pt_regs * regs)498 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
499 				  unsigned int mm_flags, unsigned long vm_flags,
500 				  struct pt_regs *regs)
501 {
502 	struct vm_area_struct *vma = find_vma(mm, addr);
503 
504 	if (unlikely(!vma))
505 		return VM_FAULT_BADMAP;
506 
507 	/*
508 	 * Ok, we have a good vm_area for this memory access, so we can handle
509 	 * it.
510 	 */
511 	if (unlikely(vma->vm_start > addr)) {
512 		if (!(vma->vm_flags & VM_GROWSDOWN))
513 			return VM_FAULT_BADMAP;
514 		if (expand_stack(vma, addr))
515 			return VM_FAULT_BADMAP;
516 	}
517 
518 	/*
519 	 * Check that the permissions on the VMA allow for the fault which
520 	 * occurred.
521 	 */
522 	if (!(vma->vm_flags & vm_flags))
523 		return VM_FAULT_BADACCESS;
524 	return handle_mm_fault(vma, addr, mm_flags, regs);
525 }
526 
is_el0_instruction_abort(unsigned long esr)527 static bool is_el0_instruction_abort(unsigned long esr)
528 {
529 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
530 }
531 
532 /*
533  * Note: not valid for EL1 DC IVAC, but we never use that such that it
534  * should fault. EL0 cannot issue DC IVAC (undef).
535  */
is_write_abort(unsigned long esr)536 static bool is_write_abort(unsigned long esr)
537 {
538 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
539 }
540 
do_page_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)541 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
542 				   struct pt_regs *regs)
543 {
544 	const struct fault_info *inf;
545 	struct mm_struct *mm = current->mm;
546 	vm_fault_t fault;
547 	unsigned long vm_flags;
548 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
549 	unsigned long addr = untagged_addr(far);
550 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
551 	struct vm_area_struct *vma;
552 	struct vm_area_struct pvma;
553 	unsigned long seq;
554 #endif
555 
556 	if (kprobe_page_fault(regs, esr))
557 		return 0;
558 
559 	/*
560 	 * If we're in an interrupt or have no user context, we must not take
561 	 * the fault.
562 	 */
563 	if (faulthandler_disabled() || !mm)
564 		goto no_context;
565 
566 	if (user_mode(regs))
567 		mm_flags |= FAULT_FLAG_USER;
568 
569 	/*
570 	 * vm_flags tells us what bits we must have in vma->vm_flags
571 	 * for the fault to be benign, __do_page_fault() would check
572 	 * vma->vm_flags & vm_flags and returns an error if the
573 	 * intersection is empty
574 	 */
575 	if (is_el0_instruction_abort(esr)) {
576 		/* It was exec fault */
577 		vm_flags = VM_EXEC;
578 		mm_flags |= FAULT_FLAG_INSTRUCTION;
579 	} else if (is_write_abort(esr)) {
580 		/* It was write fault */
581 		vm_flags = VM_WRITE;
582 		mm_flags |= FAULT_FLAG_WRITE;
583 	} else {
584 		/* It was read fault */
585 		vm_flags = VM_READ;
586 		/* Write implies read */
587 		vm_flags |= VM_WRITE;
588 		/* If EPAN is absent then exec implies read */
589 		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
590 			vm_flags |= VM_EXEC;
591 	}
592 
593 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
594 		if (is_el1_instruction_abort(esr))
595 			die_kernel_fault("execution of user memory",
596 					 addr, esr, regs);
597 
598 		if (!search_exception_tables(regs->pc))
599 			die_kernel_fault("access to user memory outside uaccess routines",
600 					 addr, esr, regs);
601 	}
602 
603 	if (is_pkvm_stage2_abort(esr)) {
604 		if (!user_mode(regs))
605 			goto no_context;
606 		arm64_force_sig_fault(SIGSEGV, SEGV_ACCERR, far, "stage-2 fault");
607 		return 0;
608 	}
609 
610 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
611 
612 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
613 	/*
614 	 * No need to try speculative faults for kernel or
615 	 * single threaded user space.
616 	 */
617 	if (!(mm_flags & FAULT_FLAG_USER) || atomic_read(&mm->mm_users) == 1)
618 		goto no_spf;
619 
620 	count_vm_event(SPF_ATTEMPT);
621 	seq = mmap_seq_read_start(mm);
622 	if (seq & 1) {
623 		count_vm_spf_event(SPF_ABORT_ODD);
624 		goto spf_abort;
625 	}
626 	vma = get_vma(mm, addr);
627 	if (!vma) {
628 		count_vm_spf_event(SPF_ABORT_UNMAPPED);
629 		goto spf_abort;
630 	}
631 	if (!vma_can_speculate(vma, mm_flags)) {
632 		put_vma(vma);
633 		count_vm_spf_event(SPF_ABORT_NO_SPECULATE);
634 		goto spf_abort;
635 	}
636 	pvma = *vma;
637 	if (!mmap_seq_read_check(mm, seq, SPF_ABORT_VMA_COPY)) {
638 		put_vma(vma);
639 		goto spf_abort;
640 	}
641 	if (!(pvma.vm_flags & vm_flags)) {
642 		put_vma(vma);
643 		count_vm_spf_event(SPF_ABORT_ACCESS_ERROR);
644 		goto spf_abort;
645 	}
646 	fault = do_handle_mm_fault(&pvma, addr & PAGE_MASK,
647 			mm_flags | FAULT_FLAG_SPECULATIVE, seq, regs);
648 	put_vma(vma);
649 
650 	/* Quick path to respond to signals */
651 	if (fault_signal_pending(fault, regs)) {
652 		if (!user_mode(regs))
653 			goto no_context;
654 		return 0;
655 	}
656 	if (!(fault & VM_FAULT_RETRY))
657 		goto done;
658 
659 spf_abort:
660 	count_vm_event(SPF_ABORT);
661 no_spf:
662 
663 #endif	/* CONFIG_SPECULATIVE_PAGE_FAULT */
664 
665 	/*
666 	 * As per x86, we may deadlock here. However, since the kernel only
667 	 * validly references user space from well defined areas of the code,
668 	 * we can bug out early if this is from code which shouldn't.
669 	 */
670 	if (!mmap_read_trylock(mm)) {
671 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
672 			goto no_context;
673 retry:
674 		mmap_read_lock(mm);
675 	} else {
676 		/*
677 		 * The above mmap_read_trylock() might have succeeded in which
678 		 * case, we'll have missed the might_sleep() from down_read().
679 		 */
680 		might_sleep();
681 #ifdef CONFIG_DEBUG_VM
682 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
683 			mmap_read_unlock(mm);
684 			goto no_context;
685 		}
686 #endif
687 	}
688 
689 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
690 
691 	/* Quick path to respond to signals */
692 	if (fault_signal_pending(fault, regs)) {
693 		if (!user_mode(regs))
694 			goto no_context;
695 		return 0;
696 	}
697 
698 	if (fault & VM_FAULT_RETRY) {
699 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
700 			mm_flags |= FAULT_FLAG_TRIED;
701 			goto retry;
702 		}
703 	}
704 	mmap_read_unlock(mm);
705 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
706 done:
707 #endif
708 
709 	/*
710 	 * Handle the "normal" (no error) case first.
711 	 */
712 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
713 			      VM_FAULT_BADACCESS))))
714 		return 0;
715 
716 	/*
717 	 * If we are in kernel mode at this point, we have no context to
718 	 * handle this fault with.
719 	 */
720 	if (!user_mode(regs))
721 		goto no_context;
722 
723 	if (fault & VM_FAULT_OOM) {
724 		/*
725 		 * We ran out of memory, call the OOM killer, and return to
726 		 * userspace (which will retry the fault, or kill us if we got
727 		 * oom-killed).
728 		 */
729 		pagefault_out_of_memory();
730 		return 0;
731 	}
732 
733 	inf = esr_to_fault_info(esr);
734 	set_thread_esr(addr, esr);
735 	if (fault & VM_FAULT_SIGBUS) {
736 		/*
737 		 * We had some memory, but were unable to successfully fix up
738 		 * this page fault.
739 		 */
740 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
741 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
742 		unsigned int lsb;
743 
744 		lsb = PAGE_SHIFT;
745 		if (fault & VM_FAULT_HWPOISON_LARGE)
746 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
747 
748 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
749 	} else {
750 		/*
751 		 * Something tried to access memory that isn't in our memory
752 		 * map.
753 		 */
754 		arm64_force_sig_fault(SIGSEGV,
755 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
756 				      far, inf->name);
757 	}
758 
759 	return 0;
760 
761 no_context:
762 	__do_kernel_fault(addr, esr, regs);
763 	return 0;
764 }
765 
do_translation_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)766 static int __kprobes do_translation_fault(unsigned long far,
767 					  unsigned long esr,
768 					  struct pt_regs *regs)
769 {
770 	unsigned long addr = untagged_addr(far);
771 
772 	if (is_ttbr0_addr(addr))
773 		return do_page_fault(far, esr, regs);
774 
775 	do_bad_area(far, esr, regs);
776 	return 0;
777 }
778 
do_alignment_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)779 static int do_alignment_fault(unsigned long far, unsigned long esr,
780 			      struct pt_regs *regs)
781 {
782 	do_bad_area(far, esr, regs);
783 	return 0;
784 }
785 
do_bad(unsigned long far,unsigned long esr,struct pt_regs * regs)786 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
787 {
788 	unsigned long addr = untagged_addr(far);
789 	int ret = 1;
790 
791 	trace_android_vh_handle_tlb_conf(addr, esr, &ret);
792 	return ret;
793 }
794 
do_sea(unsigned long far,unsigned long esr,struct pt_regs * regs)795 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
796 {
797 	const struct fault_info *inf;
798 	unsigned long siaddr;
799 
800 	inf = esr_to_fault_info(esr);
801 
802 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
803 		/*
804 		 * APEI claimed this as a firmware-first notification.
805 		 * Some processing deferred to task_work before ret_to_user().
806 		 */
807 		return 0;
808 	}
809 
810 	if (esr & ESR_ELx_FnV) {
811 		siaddr = 0;
812 	} else {
813 		/*
814 		 * The architecture specifies that the tag bits of FAR_EL1 are
815 		 * UNKNOWN for synchronous external aborts. Mask them out now
816 		 * so that userspace doesn't see them.
817 		 */
818 		siaddr  = untagged_addr(far);
819 	}
820 	trace_android_rvh_do_sea(siaddr, esr, regs);
821 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
822 
823 	return 0;
824 }
825 
do_tag_check_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)826 static int do_tag_check_fault(unsigned long far, unsigned long esr,
827 			      struct pt_regs *regs)
828 {
829 	/*
830 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
831 	 * for tag check faults. Set them to corresponding bits in the untagged
832 	 * address.
833 	 */
834 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
835 	do_bad_area(far, esr, regs);
836 	return 0;
837 }
838 
839 static const struct fault_info fault_info[] = {
840 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
841 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
842 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
843 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
844 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
845 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
846 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
847 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
848 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
849 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
850 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
851 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
852 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
853 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
854 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
855 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
856 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
857 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
858 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
859 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
860 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
861 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
862 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
863 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
864 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
865 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
866 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
867 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
868 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
869 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
870 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
871 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
872 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
873 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
874 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
875 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
876 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
877 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
878 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
879 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
880 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
881 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
882 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
883 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
884 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
885 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
886 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
887 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
888 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
889 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
890 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
891 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
892 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
893 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
894 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
895 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
896 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
897 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
898 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
899 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
900 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
901 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
902 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
903 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
904 };
905 
do_mem_abort(unsigned long far,unsigned long esr,struct pt_regs * regs)906 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
907 {
908 	const struct fault_info *inf = esr_to_fault_info(esr);
909 	unsigned long addr = untagged_addr(far);
910 
911 	if (!inf->fn(far, esr, regs))
912 		return;
913 
914 	if (!user_mode(regs)) {
915 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
916 		trace_android_rvh_do_mem_abort(addr, esr, regs);
917 		mem_abort_decode(esr);
918 		show_pte(addr);
919 	}
920 
921 	/*
922 	 * At this point we have an unrecognized fault type whose tag bits may
923 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
924 	 * address to the signal handler.
925 	 */
926 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
927 }
928 NOKPROBE_SYMBOL(do_mem_abort);
929 
do_sp_pc_abort(unsigned long addr,unsigned long esr,struct pt_regs * regs)930 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
931 {
932 	trace_android_rvh_do_sp_pc_abort(addr, esr, regs);
933 
934 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
935 			 addr, esr);
936 }
937 NOKPROBE_SYMBOL(do_sp_pc_abort);
938 
939 int __init early_brk64(unsigned long addr, unsigned long esr,
940 		       struct pt_regs *regs);
941 
942 /*
943  * __refdata because early_brk64 is __init, but the reference to it is
944  * clobbered at arch_initcall time.
945  * See traps.c and debug-monitors.c:debug_traps_init().
946  */
947 static struct fault_info __refdata debug_fault_info[] = {
948 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
949 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
950 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
951 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
952 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
953 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
954 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
955 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
956 };
957 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned long,struct pt_regs *),int sig,int code,const char * name)958 void __init hook_debug_fault_code(int nr,
959 				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
960 				  int sig, int code, const char *name)
961 {
962 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
963 
964 	debug_fault_info[nr].fn		= fn;
965 	debug_fault_info[nr].sig	= sig;
966 	debug_fault_info[nr].code	= code;
967 	debug_fault_info[nr].name	= name;
968 }
969 
970 /*
971  * In debug exception context, we explicitly disable preemption despite
972  * having interrupts disabled.
973  * This serves two purposes: it makes it much less likely that we would
974  * accidentally schedule in exception context and it will force a warning
975  * if we somehow manage to schedule by accident.
976  */
debug_exception_enter(struct pt_regs * regs)977 static void debug_exception_enter(struct pt_regs *regs)
978 {
979 	preempt_disable();
980 
981 	/* This code is a bit fragile.  Test it. */
982 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
983 }
984 NOKPROBE_SYMBOL(debug_exception_enter);
985 
debug_exception_exit(struct pt_regs * regs)986 static void debug_exception_exit(struct pt_regs *regs)
987 {
988 	preempt_enable_no_resched();
989 }
990 NOKPROBE_SYMBOL(debug_exception_exit);
991 
do_debug_exception(unsigned long addr_if_watchpoint,unsigned long esr,struct pt_regs * regs)992 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
993 			struct pt_regs *regs)
994 {
995 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
996 	unsigned long pc = instruction_pointer(regs);
997 
998 	debug_exception_enter(regs);
999 
1000 	if (user_mode(regs) && !is_ttbr0_addr(pc))
1001 		arm64_apply_bp_hardening();
1002 
1003 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
1004 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
1005 	}
1006 
1007 	debug_exception_exit(regs);
1008 }
1009 NOKPROBE_SYMBOL(do_debug_exception);
1010 
1011 /*
1012  * Used during anonymous page fault handling.
1013  */
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)1014 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
1015 						unsigned long vaddr)
1016 {
1017 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
1018 
1019 	/*
1020 	 * If the page is mapped with PROT_MTE, initialise the tags at the
1021 	 * point of allocation and page zeroing as this is usually faster than
1022 	 * separate DC ZVA and STGM.
1023 	 */
1024 	if (vma->vm_flags & VM_MTE)
1025 		flags |= __GFP_ZEROTAGS;
1026 
1027 	return alloc_page_vma(flags, vma, vaddr);
1028 }
1029 
tag_clear_highpage(struct page * page)1030 void tag_clear_highpage(struct page *page)
1031 {
1032 	mte_zero_clear_page_tags(page_address(page));
1033 	set_page_mte_tagged(page);
1034 }
1035