1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
12 #include <linux/bits.h>
13
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_flip_work.h>
17 #include <drm/drm_mode.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_rect.h>
20 #include <drm/drm_vblank.h>
21
22 #include "dpu_kms.h"
23 #include "dpu_hw_lm.h"
24 #include "dpu_hw_ctl.h"
25 #include "dpu_hw_dspp.h"
26 #include "dpu_crtc.h"
27 #include "dpu_plane.h"
28 #include "dpu_encoder.h"
29 #include "dpu_vbif.h"
30 #include "dpu_core_perf.h"
31 #include "dpu_trace.h"
32
33 /* layer mixer index on dpu_crtc */
34 #define LEFT_MIXER 0
35 #define RIGHT_MIXER 1
36
37 /* timeout in ms waiting for frame done */
38 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
39
40 #define CONVERT_S3_15(val) \
41 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
42
_dpu_crtc_get_kms(struct drm_crtc * crtc)43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
44 {
45 struct msm_drm_private *priv = crtc->dev->dev_private;
46
47 return to_dpu_kms(priv->kms);
48 }
49
dpu_crtc_destroy(struct drm_crtc * crtc)50 static void dpu_crtc_destroy(struct drm_crtc *crtc)
51 {
52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
53
54 if (!crtc)
55 return;
56
57 drm_crtc_cleanup(crtc);
58 kfree(dpu_crtc);
59 }
60
get_encoder_from_crtc(struct drm_crtc * crtc)61 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
62 {
63 struct drm_device *dev = crtc->dev;
64 struct drm_encoder *encoder;
65
66 drm_for_each_encoder(encoder, dev)
67 if (encoder->crtc == crtc)
68 return encoder;
69
70 return NULL;
71 }
72
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)73 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
74 {
75 struct drm_encoder *encoder;
76
77 encoder = get_encoder_from_crtc(crtc);
78 if (!encoder) {
79 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
80 return false;
81 }
82
83 return dpu_encoder_get_frame_count(encoder);
84 }
85
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)86 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
87 bool in_vblank_irq,
88 int *vpos, int *hpos,
89 ktime_t *stime, ktime_t *etime,
90 const struct drm_display_mode *mode)
91 {
92 unsigned int pipe = crtc->index;
93 struct drm_encoder *encoder;
94 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
95
96 encoder = get_encoder_from_crtc(crtc);
97 if (!encoder) {
98 DRM_ERROR("no encoder found for crtc %d\n", pipe);
99 return false;
100 }
101
102 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
103 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
104
105 /*
106 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
107 * the end of VFP. Translate the porch values relative to the line
108 * counter positions.
109 */
110
111 vactive_start = vsw + vbp + 1;
112 vactive_end = vactive_start + mode->crtc_vdisplay;
113
114 /* last scan line before VSYNC */
115 vfp_end = mode->crtc_vtotal;
116
117 if (stime)
118 *stime = ktime_get();
119
120 line = dpu_encoder_get_linecount(encoder);
121
122 if (line < vactive_start)
123 line -= vactive_start;
124 else if (line > vactive_end)
125 line = line - vfp_end - vactive_start;
126 else
127 line -= vactive_start;
128
129 *vpos = line;
130 *hpos = 0;
131
132 if (etime)
133 *etime = ktime_get();
134
135 return true;
136 }
137
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,struct dpu_format * format)138 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
139 struct dpu_plane_state *pstate, struct dpu_format *format)
140 {
141 struct dpu_hw_mixer *lm = mixer->hw_lm;
142 uint32_t blend_op;
143 uint32_t fg_alpha, bg_alpha;
144
145 fg_alpha = pstate->base.alpha >> 8;
146 bg_alpha = 0xff - fg_alpha;
147
148 /* default to opaque blending */
149 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
150 !format->alpha_enable) {
151 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
152 DPU_BLEND_BG_ALPHA_BG_CONST;
153 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
154 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
155 DPU_BLEND_BG_ALPHA_FG_PIXEL;
156 if (fg_alpha != 0xff) {
157 bg_alpha = fg_alpha;
158 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
159 DPU_BLEND_BG_INV_MOD_ALPHA;
160 } else {
161 blend_op |= DPU_BLEND_BG_INV_ALPHA;
162 }
163 } else {
164 /* coverage blending */
165 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
166 DPU_BLEND_BG_ALPHA_FG_PIXEL;
167 if (fg_alpha != 0xff) {
168 bg_alpha = fg_alpha;
169 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
170 DPU_BLEND_FG_INV_MOD_ALPHA |
171 DPU_BLEND_BG_MOD_ALPHA |
172 DPU_BLEND_BG_INV_MOD_ALPHA;
173 } else {
174 blend_op |= DPU_BLEND_BG_INV_ALPHA;
175 }
176 }
177
178 lm->ops.setup_blend_config(lm, pstate->stage,
179 fg_alpha, bg_alpha, blend_op);
180
181 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
182 &format->base.pixel_format, format->alpha_enable, blend_op);
183 }
184
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)185 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
186 {
187 struct dpu_crtc_state *crtc_state;
188 int lm_idx, lm_horiz_position;
189
190 crtc_state = to_dpu_crtc_state(crtc->state);
191
192 lm_horiz_position = 0;
193 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
194 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
195 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
196 struct dpu_hw_mixer_cfg cfg;
197
198 if (!lm_roi || !drm_rect_visible(lm_roi))
199 continue;
200
201 cfg.out_width = drm_rect_width(lm_roi);
202 cfg.out_height = drm_rect_height(lm_roi);
203 cfg.right_mixer = lm_horiz_position++;
204 cfg.flags = 0;
205 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
206 }
207 }
208
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer)209 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
210 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
211 {
212 struct drm_plane *plane;
213 struct drm_framebuffer *fb;
214 struct drm_plane_state *state;
215 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
216 struct dpu_plane_state *pstate = NULL;
217 struct dpu_format *format;
218 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
219 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
220
221 u32 flush_mask;
222 uint32_t stage_idx, lm_idx;
223 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
224 bool bg_alpha_enable = false;
225 DECLARE_BITMAP(fetch_active, SSPP_MAX);
226
227 memset(fetch_active, 0, sizeof(fetch_active));
228 drm_atomic_crtc_for_each_plane(plane, crtc) {
229 state = plane->state;
230 if (!state)
231 continue;
232
233 if (!state->visible)
234 continue;
235
236 pstate = to_dpu_plane_state(state);
237 fb = state->fb;
238
239 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
240 set_bit(dpu_plane_pipe(plane), fetch_active);
241
242 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
243 crtc->base.id,
244 pstate->stage,
245 plane->base.id,
246 dpu_plane_pipe(plane) - SSPP_VIG0,
247 state->fb ? state->fb->base.id : -1);
248
249 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
250
251 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
252 bg_alpha_enable = true;
253
254 stage_idx = zpos_cnt[pstate->stage]++;
255 stage_cfg->stage[pstate->stage][stage_idx] =
256 dpu_plane_pipe(plane);
257 stage_cfg->multirect_index[pstate->stage][stage_idx] =
258 pstate->multirect_index;
259
260 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
261 state, pstate, stage_idx,
262 dpu_plane_pipe(plane) - SSPP_VIG0,
263 format->base.pixel_format,
264 fb ? fb->modifier : 0);
265
266 /* blend config update */
267 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
268 _dpu_crtc_setup_blend_cfg(mixer + lm_idx,
269 pstate, format);
270
271 mixer[lm_idx].flush_mask |= flush_mask;
272
273 if (bg_alpha_enable && !format->alpha_enable)
274 mixer[lm_idx].mixer_op_mode = 0;
275 else
276 mixer[lm_idx].mixer_op_mode |=
277 1 << pstate->stage;
278 }
279 }
280
281 if (ctl->ops.set_active_pipes)
282 ctl->ops.set_active_pipes(ctl, fetch_active);
283
284 _dpu_crtc_program_lm_output_roi(crtc);
285 }
286
287 /**
288 * _dpu_crtc_blend_setup - configure crtc mixers
289 * @crtc: Pointer to drm crtc structure
290 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)291 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
292 {
293 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
294 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
295 struct dpu_crtc_mixer *mixer = cstate->mixers;
296 struct dpu_hw_ctl *ctl;
297 struct dpu_hw_mixer *lm;
298 int i;
299
300 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
301
302 for (i = 0; i < cstate->num_mixers; i++) {
303 mixer[i].mixer_op_mode = 0;
304 mixer[i].flush_mask = 0;
305 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
306 mixer[i].lm_ctl->ops.clear_all_blendstages(
307 mixer[i].lm_ctl);
308 }
309
310 /* initialize stage cfg */
311 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
312
313 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
314
315 for (i = 0; i < cstate->num_mixers; i++) {
316 ctl = mixer[i].lm_ctl;
317 lm = mixer[i].hw_lm;
318
319 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
320
321 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
322 mixer[i].hw_lm->idx);
323
324 /* stage config flush mask */
325 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
326
327 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
328 mixer[i].hw_lm->idx - LM_0,
329 mixer[i].mixer_op_mode,
330 ctl->idx - CTL_0,
331 mixer[i].flush_mask);
332
333 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
334 &dpu_crtc->stage_cfg);
335 }
336 }
337
338 /**
339 * _dpu_crtc_complete_flip - signal pending page_flip events
340 * Any pending vblank events are added to the vblank_event_list
341 * so that the next vblank interrupt shall signal them.
342 * However PAGE_FLIP events are not handled through the vblank_event_list.
343 * This API signals any pending PAGE_FLIP events requested through
344 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
345 * @crtc: Pointer to drm crtc structure
346 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)347 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
348 {
349 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
350 struct drm_device *dev = crtc->dev;
351 unsigned long flags;
352
353 spin_lock_irqsave(&dev->event_lock, flags);
354 if (dpu_crtc->event) {
355 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
356 dpu_crtc->event);
357 trace_dpu_crtc_complete_flip(DRMID(crtc));
358 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
359 dpu_crtc->event = NULL;
360 }
361 spin_unlock_irqrestore(&dev->event_lock, flags);
362 }
363
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)364 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
365 {
366 struct drm_encoder *encoder;
367
368 /*
369 * TODO: This function is called from dpu debugfs and as part of atomic
370 * check. When called from debugfs, the crtc->mutex must be held to
371 * read crtc->state. However reading crtc->state from atomic check isn't
372 * allowed (unless you have a good reason, a big comment, and a deep
373 * understanding of how the atomic/modeset locks work (<- and this is
374 * probably not possible)). So we'll keep the WARN_ON here for now, but
375 * really we need to figure out a better way to track our operating mode
376 */
377 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
378
379 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
380 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
381 return dpu_encoder_get_intf_mode(encoder);
382
383 return INTF_MODE_NONE;
384 }
385
dpu_crtc_vblank_callback(struct drm_crtc * crtc)386 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
387 {
388 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
389
390 /* keep statistics on vblank callback - with auto reset via debugfs */
391 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
392 dpu_crtc->vblank_cb_time = ktime_get();
393 else
394 dpu_crtc->vblank_cb_count++;
395 drm_crtc_handle_vblank(crtc);
396 trace_dpu_crtc_vblank_cb(DRMID(crtc));
397 }
398
dpu_crtc_frame_event_work(struct kthread_work * work)399 static void dpu_crtc_frame_event_work(struct kthread_work *work)
400 {
401 struct dpu_crtc_frame_event *fevent = container_of(work,
402 struct dpu_crtc_frame_event, work);
403 struct drm_crtc *crtc = fevent->crtc;
404 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
405 unsigned long flags;
406 bool frame_done = false;
407
408 DPU_ATRACE_BEGIN("crtc_frame_event");
409
410 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
411 ktime_to_ns(fevent->ts));
412
413 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
414 | DPU_ENCODER_FRAME_EVENT_ERROR
415 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
416
417 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
418 /* ignore vblank when not pending */
419 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
420 /* release bandwidth and other resources */
421 trace_dpu_crtc_frame_event_done(DRMID(crtc),
422 fevent->event);
423 dpu_core_perf_crtc_release_bw(crtc);
424 } else {
425 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
426 fevent->event);
427 }
428
429 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
430 | DPU_ENCODER_FRAME_EVENT_ERROR))
431 frame_done = true;
432 }
433
434 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
435 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
436 crtc->base.id, ktime_to_ns(fevent->ts));
437
438 if (frame_done)
439 complete_all(&dpu_crtc->frame_done_comp);
440
441 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
442 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
443 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
444 DPU_ATRACE_END("crtc_frame_event");
445 }
446
447 /*
448 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
449 * registers this API to encoder for all frame event callbacks like
450 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
451 * from different context - IRQ, user thread, commit_thread, etc. Each event
452 * should be carefully reviewed and should be processed in proper task context
453 * to avoid schedulin delay or properly manage the irq context's bottom half
454 * processing.
455 */
dpu_crtc_frame_event_cb(void * data,u32 event)456 static void dpu_crtc_frame_event_cb(void *data, u32 event)
457 {
458 struct drm_crtc *crtc = (struct drm_crtc *)data;
459 struct dpu_crtc *dpu_crtc;
460 struct msm_drm_private *priv;
461 struct dpu_crtc_frame_event *fevent;
462 unsigned long flags;
463 u32 crtc_id;
464
465 /* Nothing to do on idle event */
466 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
467 return;
468
469 dpu_crtc = to_dpu_crtc(crtc);
470 priv = crtc->dev->dev_private;
471 crtc_id = drm_crtc_index(crtc);
472
473 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
474
475 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
476 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
477 struct dpu_crtc_frame_event, list);
478 if (fevent)
479 list_del_init(&fevent->list);
480 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
481
482 if (!fevent) {
483 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
484 return;
485 }
486
487 fevent->event = event;
488 fevent->crtc = crtc;
489 fevent->ts = ktime_get();
490 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
491 }
492
dpu_crtc_complete_commit(struct drm_crtc * crtc)493 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
494 {
495 trace_dpu_crtc_complete_commit(DRMID(crtc));
496 dpu_core_perf_crtc_update(crtc, 0, false);
497 _dpu_crtc_complete_flip(crtc);
498 }
499
_dpu_crtc_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)500 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
501 struct drm_crtc_state *state)
502 {
503 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
504 struct drm_display_mode *adj_mode = &state->adjusted_mode;
505 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
506 int i;
507
508 for (i = 0; i < cstate->num_mixers; i++) {
509 struct drm_rect *r = &cstate->lm_bounds[i];
510 r->x1 = crtc_split_width * i;
511 r->y1 = 0;
512 r->x2 = r->x1 + crtc_split_width;
513 r->y2 = adj_mode->vdisplay;
514
515 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
516 }
517 }
518
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)519 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
520 struct dpu_hw_pcc_cfg *cfg)
521 {
522 struct drm_color_ctm *ctm;
523
524 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
525
526 ctm = (struct drm_color_ctm *)state->ctm->data;
527
528 if (!ctm)
529 return;
530
531 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
532 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
533 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
534
535 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
536 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
537 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
538
539 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
540 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
541 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
542 }
543
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)544 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
545 {
546 struct drm_crtc_state *state = crtc->state;
547 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
548 struct dpu_crtc_mixer *mixer = cstate->mixers;
549 struct dpu_hw_pcc_cfg cfg;
550 struct dpu_hw_ctl *ctl;
551 struct dpu_hw_dspp *dspp;
552 int i;
553
554
555 if (!state->color_mgmt_changed)
556 return;
557
558 for (i = 0; i < cstate->num_mixers; i++) {
559 ctl = mixer[i].lm_ctl;
560 dspp = mixer[i].hw_dspp;
561
562 if (!dspp || !dspp->ops.setup_pcc)
563 continue;
564
565 if (!state->ctm) {
566 dspp->ops.setup_pcc(dspp, NULL);
567 } else {
568 _dpu_crtc_get_pcc_coeff(state, &cfg);
569 dspp->ops.setup_pcc(dspp, &cfg);
570 }
571
572 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
573 mixer[i].hw_dspp->idx);
574
575 /* stage config flush mask */
576 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
577
578 DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n",
579 mixer[i].hw_lm->idx - DSPP_0,
580 ctl->idx - CTL_0,
581 mixer[i].flush_mask);
582 }
583 }
584
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)585 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
586 struct drm_atomic_state *state)
587 {
588 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
589 struct drm_encoder *encoder;
590
591 if (!crtc->state->enable) {
592 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
593 crtc->base.id, crtc->state->enable);
594 return;
595 }
596
597 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
598
599 _dpu_crtc_setup_lm_bounds(crtc, crtc->state);
600
601 /* encoder will trigger pending mask now */
602 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
603 dpu_encoder_trigger_kickoff_pending(encoder);
604
605 /*
606 * If no mixers have been allocated in dpu_crtc_atomic_check(),
607 * it means we are trying to flush a CRTC whose state is disabled:
608 * nothing else needs to be done.
609 */
610 if (unlikely(!cstate->num_mixers))
611 return;
612
613 _dpu_crtc_blend_setup(crtc);
614
615 _dpu_crtc_setup_cp_blocks(crtc);
616
617 /*
618 * PP_DONE irq is only used by command mode for now.
619 * It is better to request pending before FLUSH and START trigger
620 * to make sure no pp_done irq missed.
621 * This is safe because no pp_done will happen before SW trigger
622 * in command mode.
623 */
624 }
625
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)626 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
627 struct drm_atomic_state *state)
628 {
629 struct dpu_crtc *dpu_crtc;
630 struct drm_device *dev;
631 struct drm_plane *plane;
632 struct msm_drm_private *priv;
633 unsigned long flags;
634 struct dpu_crtc_state *cstate;
635
636 if (!crtc->state->enable) {
637 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
638 crtc->base.id, crtc->state->enable);
639 return;
640 }
641
642 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
643
644 dpu_crtc = to_dpu_crtc(crtc);
645 cstate = to_dpu_crtc_state(crtc->state);
646 dev = crtc->dev;
647 priv = dev->dev_private;
648
649 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
650 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
651 return;
652 }
653
654 WARN_ON(dpu_crtc->event);
655 spin_lock_irqsave(&dev->event_lock, flags);
656 dpu_crtc->event = crtc->state->event;
657 crtc->state->event = NULL;
658 spin_unlock_irqrestore(&dev->event_lock, flags);
659
660 /*
661 * If no mixers has been allocated in dpu_crtc_atomic_check(),
662 * it means we are trying to flush a CRTC whose state is disabled:
663 * nothing else needs to be done.
664 */
665 if (unlikely(!cstate->num_mixers))
666 return;
667
668 /* update performance setting before crtc kickoff */
669 dpu_core_perf_crtc_update(crtc, 1, false);
670
671 /*
672 * Final plane updates: Give each plane a chance to complete all
673 * required writes/flushing before crtc's "flush
674 * everything" call below.
675 */
676 drm_atomic_crtc_for_each_plane(plane, crtc) {
677 if (dpu_crtc->smmu_state.transition_error)
678 dpu_plane_set_error(plane, true);
679 dpu_plane_flush(plane);
680 }
681
682 /* Kickoff will be scheduled by outer layer */
683 }
684
685 /**
686 * dpu_crtc_destroy_state - state destroy hook
687 * @crtc: drm CRTC
688 * @state: CRTC state object to release
689 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)690 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
691 struct drm_crtc_state *state)
692 {
693 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
694
695 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
696
697 __drm_atomic_helper_crtc_destroy_state(state);
698
699 kfree(cstate);
700 }
701
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)702 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
703 {
704 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
705 int ret, rc = 0;
706
707 if (!atomic_read(&dpu_crtc->frame_pending)) {
708 DRM_DEBUG_ATOMIC("no frames pending\n");
709 return 0;
710 }
711
712 DPU_ATRACE_BEGIN("frame done completion wait");
713 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
714 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
715 if (!ret) {
716 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
717 rc = -ETIMEDOUT;
718 }
719 DPU_ATRACE_END("frame done completion wait");
720
721 return rc;
722 }
723
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)724 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
725 {
726 struct drm_encoder *encoder;
727 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
728 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
729 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
730
731 /*
732 * If no mixers has been allocated in dpu_crtc_atomic_check(),
733 * it means we are trying to start a CRTC whose state is disabled:
734 * nothing else needs to be done.
735 */
736 if (unlikely(!cstate->num_mixers))
737 return;
738
739 DPU_ATRACE_BEGIN("crtc_commit");
740
741 /*
742 * Encoder will flush/start now, unless it has a tx pending. If so, it
743 * may delay and flush at an irq event (e.g. ppdone)
744 */
745 drm_for_each_encoder_mask(encoder, crtc->dev,
746 crtc->state->encoder_mask)
747 dpu_encoder_prepare_for_kickoff(encoder);
748
749 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
750 /* acquire bandwidth and other resources */
751 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
752 } else
753 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
754
755 dpu_crtc->play_count++;
756
757 dpu_vbif_clear_errors(dpu_kms);
758
759 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
760 dpu_encoder_kickoff(encoder);
761
762 reinit_completion(&dpu_crtc->frame_done_comp);
763 DPU_ATRACE_END("crtc_commit");
764 }
765
dpu_crtc_reset(struct drm_crtc * crtc)766 static void dpu_crtc_reset(struct drm_crtc *crtc)
767 {
768 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
769
770 if (crtc->state)
771 dpu_crtc_destroy_state(crtc, crtc->state);
772
773 if (cstate)
774 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
775 else
776 __drm_atomic_helper_crtc_reset(crtc, NULL);
777 }
778
779 /**
780 * dpu_crtc_duplicate_state - state duplicate hook
781 * @crtc: Pointer to drm crtc structure
782 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)783 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
784 {
785 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
786
787 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
788 if (!cstate) {
789 DPU_ERROR("failed to allocate state\n");
790 return NULL;
791 }
792
793 /* duplicate base helper */
794 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
795
796 return &cstate->base;
797 }
798
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)799 static void dpu_crtc_disable(struct drm_crtc *crtc,
800 struct drm_atomic_state *state)
801 {
802 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
803 crtc);
804 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
805 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
806 struct drm_encoder *encoder;
807 unsigned long flags;
808 bool release_bandwidth = false;
809
810 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
811
812 /* Disable/save vblank irq handling */
813 drm_crtc_vblank_off(crtc);
814
815 drm_for_each_encoder_mask(encoder, crtc->dev,
816 old_crtc_state->encoder_mask) {
817 /* in video mode, we hold an extra bandwidth reference
818 * as we cannot drop bandwidth at frame-done if any
819 * crtc is being used in video mode.
820 */
821 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
822 release_bandwidth = true;
823 dpu_encoder_assign_crtc(encoder, NULL);
824 }
825
826 /* wait for frame_event_done completion */
827 if (_dpu_crtc_wait_for_frame_done(crtc))
828 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
829 crtc->base.id,
830 atomic_read(&dpu_crtc->frame_pending));
831
832 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
833 dpu_crtc->enabled = false;
834
835 if (atomic_read(&dpu_crtc->frame_pending)) {
836 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
837 atomic_read(&dpu_crtc->frame_pending));
838 if (release_bandwidth)
839 dpu_core_perf_crtc_release_bw(crtc);
840 atomic_set(&dpu_crtc->frame_pending, 0);
841 }
842
843 dpu_core_perf_crtc_update(crtc, 0, true);
844
845 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
846 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
847
848 memset(cstate->mixers, 0, sizeof(cstate->mixers));
849 cstate->num_mixers = 0;
850
851 /* disable clk & bw control until clk & bw properties are set */
852 cstate->bw_control = false;
853 cstate->bw_split_vote = false;
854
855 if (crtc->state->event && !crtc->state->active) {
856 spin_lock_irqsave(&crtc->dev->event_lock, flags);
857 drm_crtc_send_vblank_event(crtc, crtc->state->event);
858 crtc->state->event = NULL;
859 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
860 }
861
862 pm_runtime_put_sync(crtc->dev->dev);
863 }
864
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)865 static void dpu_crtc_enable(struct drm_crtc *crtc,
866 struct drm_atomic_state *state)
867 {
868 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
869 struct drm_encoder *encoder;
870 bool request_bandwidth = false;
871
872 pm_runtime_get_sync(crtc->dev->dev);
873
874 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
875
876 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
877 /* in video mode, we hold an extra bandwidth reference
878 * as we cannot drop bandwidth at frame-done if any
879 * crtc is being used in video mode.
880 */
881 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
882 request_bandwidth = true;
883 dpu_encoder_register_frame_event_callback(encoder,
884 dpu_crtc_frame_event_cb, (void *)crtc);
885 }
886
887 if (request_bandwidth)
888 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
889
890 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
891 dpu_crtc->enabled = true;
892
893 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
894 dpu_encoder_assign_crtc(encoder, crtc);
895
896 /* Enable/restore vblank irq handling */
897 drm_crtc_vblank_on(crtc);
898 }
899
900 struct plane_state {
901 struct dpu_plane_state *dpu_pstate;
902 const struct drm_plane_state *drm_pstate;
903 int stage;
904 u32 pipe_id;
905 };
906
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)907 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
908 {
909 struct drm_crtc *crtc = cstate->crtc;
910 struct drm_encoder *encoder;
911
912 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
913 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
914 return true;
915 }
916 }
917
918 return false;
919 }
920
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)921 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
922 struct drm_atomic_state *state)
923 {
924 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
925 crtc);
926 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
927 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
928 struct plane_state *pstates;
929
930 const struct drm_plane_state *pstate;
931 struct drm_plane *plane;
932 struct drm_display_mode *mode;
933
934 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
935
936 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
937 int multirect_count = 0;
938 const struct drm_plane_state *pipe_staged[SSPP_MAX];
939 int left_zpos_cnt = 0, right_zpos_cnt = 0;
940 struct drm_rect crtc_rect = { 0 };
941 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
942
943 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
944 if (!pstates)
945 return -ENOMEM;
946
947 if (!crtc_state->enable || !crtc_state->active) {
948 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
949 crtc->base.id, crtc_state->enable,
950 crtc_state->active);
951 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
952 goto end;
953 }
954
955 mode = &crtc_state->adjusted_mode;
956 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
957
958 /* force a full mode set if active state changed */
959 if (crtc_state->active_changed)
960 crtc_state->mode_changed = true;
961
962 memset(pipe_staged, 0, sizeof(pipe_staged));
963
964 if (cstate->num_mixers) {
965 mixer_width = mode->hdisplay / cstate->num_mixers;
966
967 _dpu_crtc_setup_lm_bounds(crtc, crtc_state);
968 }
969
970 crtc_rect.x2 = mode->hdisplay;
971 crtc_rect.y2 = mode->vdisplay;
972
973 /* get plane state for all drm planes associated with crtc state */
974 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
975 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
976 struct drm_rect dst, clip = crtc_rect;
977
978 if (IS_ERR_OR_NULL(pstate)) {
979 rc = PTR_ERR(pstate);
980 DPU_ERROR("%s: failed to get plane%d state, %d\n",
981 dpu_crtc->name, plane->base.id, rc);
982 goto end;
983 }
984 if (cnt >= DPU_STAGE_MAX * 4)
985 continue;
986
987 if (!pstate->visible)
988 continue;
989
990 pstates[cnt].dpu_pstate = dpu_pstate;
991 pstates[cnt].drm_pstate = pstate;
992 pstates[cnt].stage = pstate->normalized_zpos;
993 pstates[cnt].pipe_id = dpu_plane_pipe(plane);
994
995 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
996
997 if (pipe_staged[pstates[cnt].pipe_id]) {
998 multirect_plane[multirect_count].r0 =
999 pipe_staged[pstates[cnt].pipe_id];
1000 multirect_plane[multirect_count].r1 = pstate;
1001 multirect_count++;
1002
1003 pipe_staged[pstates[cnt].pipe_id] = NULL;
1004 } else {
1005 pipe_staged[pstates[cnt].pipe_id] = pstate;
1006 }
1007
1008 cnt++;
1009
1010 dst = drm_plane_state_dest(pstate);
1011 if (!drm_rect_intersect(&clip, &dst)) {
1012 DPU_ERROR("invalid vertical/horizontal destination\n");
1013 DPU_ERROR("display: " DRM_RECT_FMT " plane: "
1014 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
1015 DRM_RECT_ARG(&dst));
1016 rc = -E2BIG;
1017 goto end;
1018 }
1019 }
1020
1021 for (i = 1; i < SSPP_MAX; i++) {
1022 if (pipe_staged[i]) {
1023 dpu_plane_clear_multirect(pipe_staged[i]);
1024
1025 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
1026 DPU_ERROR(
1027 "r1 only virt plane:%d not supported\n",
1028 pipe_staged[i]->plane->base.id);
1029 rc = -EINVAL;
1030 goto end;
1031 }
1032 }
1033 }
1034
1035 z_pos = -1;
1036 for (i = 0; i < cnt; i++) {
1037 /* reset counts at every new blend stage */
1038 if (pstates[i].stage != z_pos) {
1039 left_zpos_cnt = 0;
1040 right_zpos_cnt = 0;
1041 z_pos = pstates[i].stage;
1042 }
1043
1044 /* verify z_pos setting before using it */
1045 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1046 DPU_ERROR("> %d plane stages assigned\n",
1047 DPU_STAGE_MAX - DPU_STAGE_0);
1048 rc = -EINVAL;
1049 goto end;
1050 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
1051 if (left_zpos_cnt == 2) {
1052 DPU_ERROR("> 2 planes @ stage %d on left\n",
1053 z_pos);
1054 rc = -EINVAL;
1055 goto end;
1056 }
1057 left_zpos_cnt++;
1058
1059 } else {
1060 if (right_zpos_cnt == 2) {
1061 DPU_ERROR("> 2 planes @ stage %d on right\n",
1062 z_pos);
1063 rc = -EINVAL;
1064 goto end;
1065 }
1066 right_zpos_cnt++;
1067 }
1068
1069 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1070 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1071 }
1072
1073 for (i = 0; i < multirect_count; i++) {
1074 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1075 DPU_ERROR(
1076 "multirect validation failed for planes (%d - %d)\n",
1077 multirect_plane[i].r0->plane->base.id,
1078 multirect_plane[i].r1->plane->base.id);
1079 rc = -EINVAL;
1080 goto end;
1081 }
1082 }
1083
1084 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1085
1086 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1087 if (rc) {
1088 DPU_ERROR("crtc%d failed performance check %d\n",
1089 crtc->base.id, rc);
1090 goto end;
1091 }
1092
1093 /* validate source split:
1094 * use pstates sorted by stage to check planes on same stage
1095 * we assume that all pipes are in source split so its valid to compare
1096 * without taking into account left/right mixer placement
1097 */
1098 for (i = 1; i < cnt; i++) {
1099 struct plane_state *prv_pstate, *cur_pstate;
1100 struct drm_rect left_rect, right_rect;
1101 int32_t left_pid, right_pid;
1102 int32_t stage;
1103
1104 prv_pstate = &pstates[i - 1];
1105 cur_pstate = &pstates[i];
1106 if (prv_pstate->stage != cur_pstate->stage)
1107 continue;
1108
1109 stage = cur_pstate->stage;
1110
1111 left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1112 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1113
1114 right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1115 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1116
1117 if (right_rect.x1 < left_rect.x1) {
1118 swap(left_pid, right_pid);
1119 swap(left_rect, right_rect);
1120 }
1121
1122 /**
1123 * - planes are enumerated in pipe-priority order such that
1124 * planes with lower drm_id must be left-most in a shared
1125 * blend-stage when using source split.
1126 * - planes in source split must be contiguous in width
1127 * - planes in source split must have same dest yoff and height
1128 */
1129 if (right_pid < left_pid) {
1130 DPU_ERROR(
1131 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1132 stage, left_pid, right_pid);
1133 rc = -EINVAL;
1134 goto end;
1135 } else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1136 DPU_ERROR("non-contiguous coordinates for src split. "
1137 "stage: %d left: " DRM_RECT_FMT " right: "
1138 DRM_RECT_FMT "\n", stage,
1139 DRM_RECT_ARG(&left_rect),
1140 DRM_RECT_ARG(&right_rect));
1141 rc = -EINVAL;
1142 goto end;
1143 } else if (left_rect.y1 != right_rect.y1 ||
1144 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1145 DPU_ERROR("source split at stage: %d. invalid "
1146 "yoff/height: left: " DRM_RECT_FMT " right: "
1147 DRM_RECT_FMT "\n", stage,
1148 DRM_RECT_ARG(&left_rect),
1149 DRM_RECT_ARG(&right_rect));
1150 rc = -EINVAL;
1151 goto end;
1152 }
1153 }
1154
1155 end:
1156 kfree(pstates);
1157 return rc;
1158 }
1159
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1160 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1161 {
1162 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1163 struct drm_encoder *enc;
1164
1165 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1166
1167 /*
1168 * Normally we would iterate through encoder_mask in crtc state to find
1169 * attached encoders. In this case, we might be disabling vblank _after_
1170 * encoder_mask has been cleared.
1171 *
1172 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1173 * disable (which is also after encoder_mask is cleared). So instead of
1174 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1175 * currently assigned to our crtc.
1176 *
1177 * Note also that this function cannot be called while crtc is disabled
1178 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1179 * about the assigned crtcs being inconsistent with the current state
1180 * (which means no need to worry about modeset locks).
1181 */
1182 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1183 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1184 dpu_crtc);
1185
1186 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1187 }
1188
1189 return 0;
1190 }
1191
1192 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1193 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1194 {
1195 struct dpu_crtc *dpu_crtc;
1196 struct dpu_plane_state *pstate = NULL;
1197 struct dpu_crtc_mixer *m;
1198
1199 struct drm_crtc *crtc;
1200 struct drm_plane *plane;
1201 struct drm_display_mode *mode;
1202 struct drm_framebuffer *fb;
1203 struct drm_plane_state *state;
1204 struct dpu_crtc_state *cstate;
1205
1206 int i, out_width;
1207
1208 dpu_crtc = s->private;
1209 crtc = &dpu_crtc->base;
1210
1211 drm_modeset_lock_all(crtc->dev);
1212 cstate = to_dpu_crtc_state(crtc->state);
1213
1214 mode = &crtc->state->adjusted_mode;
1215 out_width = mode->hdisplay / cstate->num_mixers;
1216
1217 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1218 mode->hdisplay, mode->vdisplay);
1219
1220 seq_puts(s, "\n");
1221
1222 for (i = 0; i < cstate->num_mixers; ++i) {
1223 m = &cstate->mixers[i];
1224 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1225 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1226 out_width, mode->vdisplay);
1227 }
1228
1229 seq_puts(s, "\n");
1230
1231 drm_atomic_crtc_for_each_plane(plane, crtc) {
1232 pstate = to_dpu_plane_state(plane->state);
1233 state = plane->state;
1234
1235 if (!pstate || !state)
1236 continue;
1237
1238 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1239 pstate->stage);
1240
1241 if (plane->state->fb) {
1242 fb = plane->state->fb;
1243
1244 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1245 fb->base.id, (char *) &fb->format->format,
1246 fb->width, fb->height);
1247 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1248 seq_printf(s, "cpp[%d]:%u ",
1249 i, fb->format->cpp[i]);
1250 seq_puts(s, "\n\t");
1251
1252 seq_printf(s, "modifier:%8llu ", fb->modifier);
1253 seq_puts(s, "\n");
1254
1255 seq_puts(s, "\t");
1256 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1257 seq_printf(s, "pitches[%d]:%8u ", i,
1258 fb->pitches[i]);
1259 seq_puts(s, "\n");
1260
1261 seq_puts(s, "\t");
1262 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1263 seq_printf(s, "offsets[%d]:%8u ", i,
1264 fb->offsets[i]);
1265 seq_puts(s, "\n");
1266 }
1267
1268 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1269 state->src_x, state->src_y, state->src_w, state->src_h);
1270
1271 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1272 state->crtc_x, state->crtc_y, state->crtc_w,
1273 state->crtc_h);
1274 seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1275 pstate->multirect_mode, pstate->multirect_index);
1276
1277 seq_puts(s, "\n");
1278 }
1279 if (dpu_crtc->vblank_cb_count) {
1280 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1281 s64 diff_ms = ktime_to_ms(diff);
1282 s64 fps = diff_ms ? div_s64(
1283 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1284
1285 seq_printf(s,
1286 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1287 fps, dpu_crtc->vblank_cb_count,
1288 ktime_to_ms(diff), dpu_crtc->play_count);
1289
1290 /* reset time & count for next measurement */
1291 dpu_crtc->vblank_cb_count = 0;
1292 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1293 }
1294
1295 drm_modeset_unlock_all(crtc->dev);
1296
1297 return 0;
1298 }
1299
1300 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1301
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1302 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1303 {
1304 struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1305 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1306
1307 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1308 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1309 seq_printf(s, "core_clk_rate: %llu\n",
1310 dpu_crtc->cur_perf.core_clk_rate);
1311 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1312 seq_printf(s, "max_per_pipe_ib: %llu\n",
1313 dpu_crtc->cur_perf.max_per_pipe_ib);
1314
1315 return 0;
1316 }
1317 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1318
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1319 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1320 {
1321 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1322
1323 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1324 crtc->dev->primary->debugfs_root);
1325
1326 debugfs_create_file("status", 0400,
1327 dpu_crtc->debugfs_root,
1328 dpu_crtc, &_dpu_debugfs_status_fops);
1329 debugfs_create_file("state", 0600,
1330 dpu_crtc->debugfs_root,
1331 &dpu_crtc->base,
1332 &dpu_crtc_debugfs_state_fops);
1333
1334 return 0;
1335 }
1336 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1337 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1338 {
1339 return 0;
1340 }
1341 #endif /* CONFIG_DEBUG_FS */
1342
dpu_crtc_late_register(struct drm_crtc * crtc)1343 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1344 {
1345 return _dpu_crtc_init_debugfs(crtc);
1346 }
1347
dpu_crtc_early_unregister(struct drm_crtc * crtc)1348 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1349 {
1350 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1351
1352 debugfs_remove_recursive(dpu_crtc->debugfs_root);
1353 }
1354
1355 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1356 .set_config = drm_atomic_helper_set_config,
1357 .destroy = dpu_crtc_destroy,
1358 .page_flip = drm_atomic_helper_page_flip,
1359 .reset = dpu_crtc_reset,
1360 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1361 .atomic_destroy_state = dpu_crtc_destroy_state,
1362 .late_register = dpu_crtc_late_register,
1363 .early_unregister = dpu_crtc_early_unregister,
1364 .enable_vblank = msm_crtc_enable_vblank,
1365 .disable_vblank = msm_crtc_disable_vblank,
1366 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1367 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1368 };
1369
1370 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1371 .atomic_disable = dpu_crtc_disable,
1372 .atomic_enable = dpu_crtc_enable,
1373 .atomic_check = dpu_crtc_atomic_check,
1374 .atomic_begin = dpu_crtc_atomic_begin,
1375 .atomic_flush = dpu_crtc_atomic_flush,
1376 .get_scanout_position = dpu_crtc_get_scanout_position,
1377 };
1378
1379 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1380 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1381 struct drm_plane *cursor)
1382 {
1383 struct msm_drm_private *priv = dev->dev_private;
1384 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1385 struct drm_crtc *crtc = NULL;
1386 struct dpu_crtc *dpu_crtc = NULL;
1387 int i;
1388
1389 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1390 if (!dpu_crtc)
1391 return ERR_PTR(-ENOMEM);
1392
1393 crtc = &dpu_crtc->base;
1394 crtc->dev = dev;
1395
1396 spin_lock_init(&dpu_crtc->spin_lock);
1397 atomic_set(&dpu_crtc->frame_pending, 0);
1398
1399 init_completion(&dpu_crtc->frame_done_comp);
1400
1401 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1402
1403 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1404 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1405 list_add(&dpu_crtc->frame_events[i].list,
1406 &dpu_crtc->frame_event_list);
1407 kthread_init_work(&dpu_crtc->frame_events[i].work,
1408 dpu_crtc_frame_event_work);
1409 }
1410
1411 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1412 NULL);
1413
1414 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1415
1416 if (dpu_kms->catalog->dspp_count)
1417 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1418
1419 /* save user friendly CRTC name for later */
1420 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1421
1422 /* initialize event handling */
1423 spin_lock_init(&dpu_crtc->event_lock);
1424
1425 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1426 return crtc;
1427 }
1428