• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/module.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 
19 #include "blk-crypto-internal.h"
20 
21 const struct blk_crypto_mode blk_crypto_modes[] = {
22 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
23 		.name = "AES-256-XTS",
24 		.cipher_str = "xts(aes)",
25 		.keysize = 64,
26 		.security_strength = 32,
27 		.ivsize = 16,
28 	},
29 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
30 		.name = "AES-128-CBC-ESSIV",
31 		.cipher_str = "essiv(cbc(aes),sha256)",
32 		.keysize = 16,
33 		.security_strength = 16,
34 		.ivsize = 16,
35 	},
36 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
37 		.name = "Adiantum",
38 		.cipher_str = "adiantum(xchacha12,aes)",
39 		.keysize = 32,
40 		.security_strength = 32,
41 		.ivsize = 32,
42 	},
43 	[BLK_ENCRYPTION_MODE_SM4_XTS] = {
44 		.name = "SM4-XTS",
45 		.cipher_str = "xts(sm4)",
46 		.keysize = 32,
47 		.security_strength = 16,
48 		.ivsize = 16,
49 	},
50 };
51 
52 /*
53  * This number needs to be at least (the number of threads doing IO
54  * concurrently) * (maximum recursive depth of a bio), so that we don't
55  * deadlock on crypt_ctx allocations. The default is chosen to be the same
56  * as the default number of post read contexts in both EXT4 and F2FS.
57  */
58 static int num_prealloc_crypt_ctxs = 128;
59 
60 module_param(num_prealloc_crypt_ctxs, int, 0444);
61 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
62 		"Number of bio crypto contexts to preallocate");
63 
64 static struct kmem_cache *bio_crypt_ctx_cache;
65 static mempool_t *bio_crypt_ctx_pool;
66 
bio_crypt_ctx_init(void)67 static int __init bio_crypt_ctx_init(void)
68 {
69 	size_t i;
70 
71 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
72 	if (!bio_crypt_ctx_cache)
73 		goto out_no_mem;
74 
75 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
76 						      bio_crypt_ctx_cache);
77 	if (!bio_crypt_ctx_pool)
78 		goto out_no_mem;
79 
80 	/* This is assumed in various places. */
81 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
82 
83 	/*
84 	 * Validate the crypto mode properties.  This ideally would be done with
85 	 * static assertions, but boot-time checks are the next best thing.
86 	 */
87 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
88 		BUG_ON(blk_crypto_modes[i].keysize >
89 		       BLK_CRYPTO_MAX_STANDARD_KEY_SIZE);
90 		BUG_ON(blk_crypto_modes[i].security_strength >
91 		       blk_crypto_modes[i].keysize);
92 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
93 	}
94 
95 	return 0;
96 out_no_mem:
97 	panic("Failed to allocate mem for bio crypt ctxs\n");
98 }
99 subsys_initcall(bio_crypt_ctx_init);
100 
bio_crypt_set_ctx(struct bio * bio,const struct blk_crypto_key * key,const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],gfp_t gfp_mask)101 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
102 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
103 {
104 	struct bio_crypt_ctx *bc;
105 
106 	/*
107 	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
108 	 * that the mempool_alloc() can't fail.
109 	 */
110 	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
111 
112 	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
113 
114 	bc->bc_key = key;
115 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
116 
117 	bio->bi_crypt_context = bc;
118 }
119 EXPORT_SYMBOL_GPL(bio_crypt_set_ctx);
120 
__bio_crypt_free_ctx(struct bio * bio)121 void __bio_crypt_free_ctx(struct bio *bio)
122 {
123 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
124 	bio->bi_crypt_context = NULL;
125 }
126 
__bio_crypt_clone(struct bio * dst,struct bio * src,gfp_t gfp_mask)127 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
128 {
129 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
130 	if (!dst->bi_crypt_context)
131 		return -ENOMEM;
132 	*dst->bi_crypt_context = *src->bi_crypt_context;
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
136 
137 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],unsigned int inc)138 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
139 			     unsigned int inc)
140 {
141 	int i;
142 
143 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
144 		dun[i] += inc;
145 		/*
146 		 * If the addition in this limb overflowed, then we need to
147 		 * carry 1 into the next limb. Else the carry is 0.
148 		 */
149 		if (dun[i] < inc)
150 			inc = 1;
151 		else
152 			inc = 0;
153 	}
154 }
155 
__bio_crypt_advance(struct bio * bio,unsigned int bytes)156 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
157 {
158 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
159 
160 	bio_crypt_dun_increment(bc->bc_dun,
161 				bytes >> bc->bc_key->data_unit_size_bits);
162 }
163 
164 /*
165  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
166  * @next_dun, treating the DUNs as multi-limb integers.
167  */
bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx * bc,unsigned int bytes,const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])168 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
169 				 unsigned int bytes,
170 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
171 {
172 	int i;
173 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
174 
175 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
176 		if (bc->bc_dun[i] + carry != next_dun[i])
177 			return false;
178 		/*
179 		 * If the addition in this limb overflowed, then we need to
180 		 * carry 1 into the next limb. Else the carry is 0.
181 		 */
182 		if ((bc->bc_dun[i] + carry) < carry)
183 			carry = 1;
184 		else
185 			carry = 0;
186 	}
187 
188 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
189 	return carry == 0;
190 }
191 
192 /*
193  * Checks that two bio crypt contexts are compatible - i.e. that
194  * they are mergeable except for data_unit_num continuity.
195  */
bio_crypt_ctx_compatible(struct bio_crypt_ctx * bc1,struct bio_crypt_ctx * bc2)196 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
197 				     struct bio_crypt_ctx *bc2)
198 {
199 	if (!bc1)
200 		return !bc2;
201 
202 	return bc2 && bc1->bc_key == bc2->bc_key;
203 }
204 
bio_crypt_rq_ctx_compatible(struct request * rq,struct bio * bio)205 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
206 {
207 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
208 }
209 
210 /*
211  * Checks that two bio crypt contexts are compatible, and also
212  * that their data_unit_nums are continuous (and can hence be merged)
213  * in the order @bc1 followed by @bc2.
214  */
bio_crypt_ctx_mergeable(struct bio_crypt_ctx * bc1,unsigned int bc1_bytes,struct bio_crypt_ctx * bc2)215 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
216 			     struct bio_crypt_ctx *bc2)
217 {
218 	if (!bio_crypt_ctx_compatible(bc1, bc2))
219 		return false;
220 
221 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
222 }
223 
224 /* Check that all I/O segments are data unit aligned. */
bio_crypt_check_alignment(struct bio * bio)225 static bool bio_crypt_check_alignment(struct bio *bio)
226 {
227 	const unsigned int data_unit_size =
228 		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
229 	struct bvec_iter iter;
230 	struct bio_vec bv;
231 
232 	bio_for_each_segment(bv, bio, iter) {
233 		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
234 			return false;
235 	}
236 
237 	return true;
238 }
239 
__blk_crypto_rq_get_keyslot(struct request * rq)240 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
241 {
242 	return blk_crypto_get_keyslot(rq->q->crypto_profile,
243 				      rq->crypt_ctx->bc_key,
244 				      &rq->crypt_keyslot);
245 }
246 
__blk_crypto_rq_put_keyslot(struct request * rq)247 void __blk_crypto_rq_put_keyslot(struct request *rq)
248 {
249 	blk_crypto_put_keyslot(rq->crypt_keyslot);
250 	rq->crypt_keyslot = NULL;
251 }
252 
__blk_crypto_free_request(struct request * rq)253 void __blk_crypto_free_request(struct request *rq)
254 {
255 	/* The keyslot, if one was needed, should have been released earlier. */
256 	if (WARN_ON_ONCE(rq->crypt_keyslot))
257 		__blk_crypto_rq_put_keyslot(rq);
258 
259 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
260 	rq->crypt_ctx = NULL;
261 }
262 
263 /**
264  * __blk_crypto_bio_prep - Prepare bio for inline encryption
265  *
266  * @bio_ptr: pointer to original bio pointer
267  *
268  * If the bio crypt context provided for the bio is supported by the underlying
269  * device's inline encryption hardware, do nothing.
270  *
271  * Otherwise, try to perform en/decryption for this bio by falling back to the
272  * kernel crypto API. When the crypto API fallback is used for encryption,
273  * blk-crypto may choose to split the bio into 2 - the first one that will
274  * continue to be processed and the second one that will be resubmitted via
275  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
276  * of the aforementioned "first one", and *bio_ptr will be updated to this
277  * bounce bio.
278  *
279  * Caller must ensure bio has bio_crypt_ctx.
280  *
281  * Return: true on success; false on error (and bio->bi_status will be set
282  *	   appropriately, and bio_endio() will have been called so bio
283  *	   submission should abort).
284  */
__blk_crypto_bio_prep(struct bio ** bio_ptr)285 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
286 {
287 	struct bio *bio = *bio_ptr;
288 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
289 
290 	/* Error if bio has no data. */
291 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
292 		bio->bi_status = BLK_STS_IOERR;
293 		goto fail;
294 	}
295 
296 	if (!bio_crypt_check_alignment(bio)) {
297 		bio->bi_status = BLK_STS_IOERR;
298 		goto fail;
299 	}
300 
301 	/*
302 	 * Success if device supports the encryption context, or if we succeeded
303 	 * in falling back to the crypto API.
304 	 */
305 	if (blk_crypto_config_supported_natively(bio->bi_bdev,
306 						 &bc_key->crypto_cfg))
307 		return true;
308 	if (blk_crypto_fallback_bio_prep(bio_ptr))
309 		return true;
310 fail:
311 	bio_endio(*bio_ptr);
312 	return false;
313 }
314 
__blk_crypto_rq_bio_prep(struct request * rq,struct bio * bio,gfp_t gfp_mask)315 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
316 			     gfp_t gfp_mask)
317 {
318 	if (!rq->crypt_ctx) {
319 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
320 		if (!rq->crypt_ctx)
321 			return -ENOMEM;
322 	}
323 	*rq->crypt_ctx = *bio->bi_crypt_context;
324 	return 0;
325 }
326 
327 /**
328  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
329  * @blk_key: Pointer to the blk_crypto_key to initialize.
330  * @raw_key: the raw bytes of the key
331  * @raw_key_size: size of the raw key in bytes
332  * @key_type: type of the key -- either standard or hardware-wrapped
333  * @crypto_mode: identifier for the encryption algorithm to use
334  * @dun_bytes: number of bytes that will be used to specify the DUN when this
335  *	       key is used
336  * @data_unit_size: the data unit size to use for en/decryption
337  *
338  * Return: 0 on success, -errno on failure.  The caller is responsible for
339  *	   zeroizing both blk_key and raw_key when done with them.
340  */
blk_crypto_init_key(struct blk_crypto_key * blk_key,const u8 * raw_key,size_t raw_key_size,enum blk_crypto_key_type key_type,enum blk_crypto_mode_num crypto_mode,unsigned int dun_bytes,unsigned int data_unit_size)341 int blk_crypto_init_key(struct blk_crypto_key *blk_key,
342 			const u8 *raw_key, size_t raw_key_size,
343 			enum blk_crypto_key_type key_type,
344 			enum blk_crypto_mode_num crypto_mode,
345 			unsigned int dun_bytes,
346 			unsigned int data_unit_size)
347 {
348 	const struct blk_crypto_mode *mode;
349 
350 	memset(blk_key, 0, sizeof(*blk_key));
351 
352 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
353 		return -EINVAL;
354 
355 	mode = &blk_crypto_modes[crypto_mode];
356 	switch (key_type) {
357 	case BLK_CRYPTO_KEY_TYPE_STANDARD:
358 		if (raw_key_size != mode->keysize)
359 			return -EINVAL;
360 		break;
361 	case BLK_CRYPTO_KEY_TYPE_HW_WRAPPED:
362 		if (raw_key_size < mode->security_strength ||
363 		    raw_key_size > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)
364 			return -EINVAL;
365 		break;
366 	default:
367 		return -EINVAL;
368 	}
369 
370 	if (dun_bytes == 0 || dun_bytes > mode->ivsize)
371 		return -EINVAL;
372 
373 	if (!is_power_of_2(data_unit_size))
374 		return -EINVAL;
375 
376 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
377 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
378 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
379 	blk_key->crypto_cfg.key_type = key_type;
380 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
381 	blk_key->size = raw_key_size;
382 	memcpy(blk_key->raw, raw_key, raw_key_size);
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL_GPL(blk_crypto_init_key);
387 
blk_crypto_config_supported_natively(struct block_device * bdev,const struct blk_crypto_config * cfg)388 bool blk_crypto_config_supported_natively(struct block_device *bdev,
389 					  const struct blk_crypto_config *cfg)
390 {
391 	return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
392 					  cfg);
393 }
394 
395 /*
396  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
397  * block_device it's submitted to supports inline crypto, or the
398  * blk-crypto-fallback is enabled and supports the cfg).
399  */
blk_crypto_config_supported(struct block_device * bdev,const struct blk_crypto_config * cfg)400 bool blk_crypto_config_supported(struct block_device *bdev,
401 				 const struct blk_crypto_config *cfg)
402 {
403 	if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
404 	    cfg->key_type == BLK_CRYPTO_KEY_TYPE_STANDARD)
405 		return true;
406 	return blk_crypto_config_supported_natively(bdev, cfg);
407 }
408 
409 /**
410  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
411  * @bdev: block device to operate on
412  * @key: A key to use on the device
413  *
414  * Upper layers must call this function to ensure that either the hardware
415  * supports the key's crypto settings, or the crypto API fallback has transforms
416  * for the needed mode allocated and ready to go. This function may allocate
417  * an skcipher, and *should not* be called from the data path, since that might
418  * cause a deadlock
419  *
420  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
421  *	   blk-crypto-fallback is either disabled or the needed algorithm
422  *	   is disabled in the crypto API; or another -errno code.
423  */
blk_crypto_start_using_key(struct block_device * bdev,const struct blk_crypto_key * key)424 int blk_crypto_start_using_key(struct block_device *bdev,
425 			       const struct blk_crypto_key *key)
426 {
427 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
428 		return 0;
429 	if (key->crypto_cfg.key_type != BLK_CRYPTO_KEY_TYPE_STANDARD) {
430 		pr_warn_once("tried to use wrapped key, but hardware doesn't support it\n");
431 		return -EOPNOTSUPP;
432 	}
433 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
434 }
435 EXPORT_SYMBOL_GPL(blk_crypto_start_using_key);
436 
437 /**
438  * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
439  * @bdev: a block_device on which I/O using the key may have been done
440  * @key: the key to evict
441  *
442  * For a given block_device, this function removes the given blk_crypto_key from
443  * the keyslot management structures and evicts it from any underlying hardware
444  * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
445  *
446  * Upper layers must call this before freeing the blk_crypto_key.  It must be
447  * called for every block_device the key may have been used on.  The key must no
448  * longer be in use by any I/O when this function is called.
449  *
450  * Context: May sleep.
451  */
blk_crypto_evict_key(struct block_device * bdev,const struct blk_crypto_key * key)452 void blk_crypto_evict_key(struct block_device *bdev,
453 			  const struct blk_crypto_key *key)
454 {
455 	struct request_queue *q = bdev_get_queue(bdev);
456 	int err;
457 
458 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
459 		err = __blk_crypto_evict_key(q->crypto_profile, key);
460 	else
461 		err = blk_crypto_fallback_evict_key(key);
462 	/*
463 	 * An error can only occur here if the key failed to be evicted from a
464 	 * keyslot (due to a hardware or driver issue) or is allegedly still in
465 	 * use by I/O (due to a kernel bug).  Even in these cases, the key is
466 	 * still unlinked from the keyslot management structures, and the caller
467 	 * is allowed and expected to free it right away.  There's nothing
468 	 * callers can do to handle errors, so just log them and return void.
469 	 */
470 	if (err)
471 		pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
472 }
473 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
474