1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30 #ifndef __GENKSYMS__
31 #include <trace/hooks/syscall_check.h>
32 #include <trace/hooks/mm.h>
33 #endif
34
35 /**
36 * kfree_const - conditionally free memory
37 * @x: pointer to the memory
38 *
39 * Function calls kfree only if @x is not in .rodata section.
40 */
kfree_const(const void * x)41 void kfree_const(const void *x)
42 {
43 if (!is_kernel_rodata((unsigned long)x))
44 kfree(x);
45 }
46 EXPORT_SYMBOL(kfree_const);
47
48 /**
49 * kstrdup - allocate space for and copy an existing string
50 * @s: the string to duplicate
51 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
52 *
53 * Return: newly allocated copy of @s or %NULL in case of error
54 */
kstrdup(const char * s,gfp_t gfp)55 char *kstrdup(const char *s, gfp_t gfp)
56 {
57 size_t len;
58 char *buf;
59
60 if (!s)
61 return NULL;
62
63 len = strlen(s) + 1;
64 buf = kmalloc_track_caller(len, gfp);
65 if (buf)
66 memcpy(buf, s, len);
67 return buf;
68 }
69 EXPORT_SYMBOL(kstrdup);
70
71 /**
72 * kstrdup_const - conditionally duplicate an existing const string
73 * @s: the string to duplicate
74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75 *
76 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
77 * must not be passed to krealloc().
78 *
79 * Return: source string if it is in .rodata section otherwise
80 * fallback to kstrdup.
81 */
kstrdup_const(const char * s,gfp_t gfp)82 const char *kstrdup_const(const char *s, gfp_t gfp)
83 {
84 if (is_kernel_rodata((unsigned long)s))
85 return s;
86
87 return kstrdup(s, gfp);
88 }
89 EXPORT_SYMBOL(kstrdup_const);
90
91 /**
92 * kstrndup - allocate space for and copy an existing string
93 * @s: the string to duplicate
94 * @max: read at most @max chars from @s
95 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
96 *
97 * Note: Use kmemdup_nul() instead if the size is known exactly.
98 *
99 * Return: newly allocated copy of @s or %NULL in case of error
100 */
kstrndup(const char * s,size_t max,gfp_t gfp)101 char *kstrndup(const char *s, size_t max, gfp_t gfp)
102 {
103 size_t len;
104 char *buf;
105
106 if (!s)
107 return NULL;
108
109 len = strnlen(s, max);
110 buf = kmalloc_track_caller(len+1, gfp);
111 if (buf) {
112 memcpy(buf, s, len);
113 buf[len] = '\0';
114 }
115 return buf;
116 }
117 EXPORT_SYMBOL(kstrndup);
118
119 /**
120 * kmemdup - duplicate region of memory
121 *
122 * @src: memory region to duplicate
123 * @len: memory region length
124 * @gfp: GFP mask to use
125 *
126 * Return: newly allocated copy of @src or %NULL in case of error
127 */
kmemdup(const void * src,size_t len,gfp_t gfp)128 void *kmemdup(const void *src, size_t len, gfp_t gfp)
129 {
130 void *p;
131
132 p = kmalloc_track_caller(len, gfp);
133 if (p)
134 memcpy(p, src, len);
135 return p;
136 }
137 EXPORT_SYMBOL(kmemdup);
138
139 /**
140 * kmemdup_nul - Create a NUL-terminated string from unterminated data
141 * @s: The data to stringify
142 * @len: The size of the data
143 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
144 *
145 * Return: newly allocated copy of @s with NUL-termination or %NULL in
146 * case of error
147 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)148 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
149 {
150 char *buf;
151
152 if (!s)
153 return NULL;
154
155 buf = kmalloc_track_caller(len + 1, gfp);
156 if (buf) {
157 memcpy(buf, s, len);
158 buf[len] = '\0';
159 }
160 return buf;
161 }
162 EXPORT_SYMBOL(kmemdup_nul);
163
164 /**
165 * memdup_user - duplicate memory region from user space
166 *
167 * @src: source address in user space
168 * @len: number of bytes to copy
169 *
170 * Return: an ERR_PTR() on failure. Result is physically
171 * contiguous, to be freed by kfree().
172 */
memdup_user(const void __user * src,size_t len)173 void *memdup_user(const void __user *src, size_t len)
174 {
175 void *p;
176
177 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
178 if (!p)
179 return ERR_PTR(-ENOMEM);
180
181 if (copy_from_user(p, src, len)) {
182 kfree(p);
183 return ERR_PTR(-EFAULT);
184 }
185
186 return p;
187 }
188 EXPORT_SYMBOL(memdup_user);
189
190 /**
191 * vmemdup_user - duplicate memory region from user space
192 *
193 * @src: source address in user space
194 * @len: number of bytes to copy
195 *
196 * Return: an ERR_PTR() on failure. Result may be not
197 * physically contiguous. Use kvfree() to free.
198 */
vmemdup_user(const void __user * src,size_t len)199 void *vmemdup_user(const void __user *src, size_t len)
200 {
201 void *p;
202
203 p = kvmalloc(len, GFP_USER);
204 if (!p)
205 return ERR_PTR(-ENOMEM);
206
207 if (copy_from_user(p, src, len)) {
208 kvfree(p);
209 return ERR_PTR(-EFAULT);
210 }
211
212 return p;
213 }
214 EXPORT_SYMBOL(vmemdup_user);
215
216 /**
217 * strndup_user - duplicate an existing string from user space
218 * @s: The string to duplicate
219 * @n: Maximum number of bytes to copy, including the trailing NUL.
220 *
221 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
222 */
strndup_user(const char __user * s,long n)223 char *strndup_user(const char __user *s, long n)
224 {
225 char *p;
226 long length;
227
228 length = strnlen_user(s, n);
229
230 if (!length)
231 return ERR_PTR(-EFAULT);
232
233 if (length > n)
234 return ERR_PTR(-EINVAL);
235
236 p = memdup_user(s, length);
237
238 if (IS_ERR(p))
239 return p;
240
241 p[length - 1] = '\0';
242
243 return p;
244 }
245 EXPORT_SYMBOL(strndup_user);
246
247 /**
248 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
249 *
250 * @src: source address in user space
251 * @len: number of bytes to copy
252 *
253 * Return: an ERR_PTR() on failure.
254 */
memdup_user_nul(const void __user * src,size_t len)255 void *memdup_user_nul(const void __user *src, size_t len)
256 {
257 char *p;
258
259 /*
260 * Always use GFP_KERNEL, since copy_from_user() can sleep and
261 * cause pagefault, which makes it pointless to use GFP_NOFS
262 * or GFP_ATOMIC.
263 */
264 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
265 if (!p)
266 return ERR_PTR(-ENOMEM);
267
268 if (copy_from_user(p, src, len)) {
269 kfree(p);
270 return ERR_PTR(-EFAULT);
271 }
272 p[len] = '\0';
273
274 return p;
275 }
276 EXPORT_SYMBOL(memdup_user_nul);
277
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)278 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
279 struct vm_area_struct *prev)
280 {
281 struct vm_area_struct *next;
282
283 vma->vm_prev = prev;
284 if (prev) {
285 next = prev->vm_next;
286 prev->vm_next = vma;
287 } else {
288 next = mm->mmap;
289 mm->mmap = vma;
290 }
291 vma->vm_next = next;
292 if (next)
293 next->vm_prev = vma;
294 }
295
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)296 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
297 {
298 struct vm_area_struct *prev, *next;
299
300 next = vma->vm_next;
301 prev = vma->vm_prev;
302 if (prev)
303 prev->vm_next = next;
304 else
305 mm->mmap = next;
306 if (next)
307 next->vm_prev = prev;
308 }
309
310 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)311 int vma_is_stack_for_current(struct vm_area_struct *vma)
312 {
313 struct task_struct * __maybe_unused t = current;
314
315 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
316 }
317
318 /*
319 * Change backing file, only valid to use during initial VMA setup.
320 */
vma_set_file(struct vm_area_struct * vma,struct file * file)321 void vma_set_file(struct vm_area_struct *vma, struct file *file)
322 {
323 /* Changing an anonymous vma with this is illegal */
324 get_file(file);
325 swap(vma->vm_file, file);
326 fput(file);
327 }
328 EXPORT_SYMBOL(vma_set_file);
329
330 #ifndef STACK_RND_MASK
331 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
332 #endif
333
randomize_stack_top(unsigned long stack_top)334 unsigned long randomize_stack_top(unsigned long stack_top)
335 {
336 unsigned long random_variable = 0;
337
338 if (current->flags & PF_RANDOMIZE) {
339 random_variable = get_random_long();
340 random_variable &= STACK_RND_MASK;
341 random_variable <<= PAGE_SHIFT;
342 }
343 #ifdef CONFIG_STACK_GROWSUP
344 return PAGE_ALIGN(stack_top) + random_variable;
345 #else
346 return PAGE_ALIGN(stack_top) - random_variable;
347 #endif
348 }
349
350 /**
351 * randomize_page - Generate a random, page aligned address
352 * @start: The smallest acceptable address the caller will take.
353 * @range: The size of the area, starting at @start, within which the
354 * random address must fall.
355 *
356 * If @start + @range would overflow, @range is capped.
357 *
358 * NOTE: Historical use of randomize_range, which this replaces, presumed that
359 * @start was already page aligned. We now align it regardless.
360 *
361 * Return: A page aligned address within [start, start + range). On error,
362 * @start is returned.
363 */
randomize_page(unsigned long start,unsigned long range)364 unsigned long randomize_page(unsigned long start, unsigned long range)
365 {
366 if (!PAGE_ALIGNED(start)) {
367 range -= PAGE_ALIGN(start) - start;
368 start = PAGE_ALIGN(start);
369 }
370
371 if (start > ULONG_MAX - range)
372 range = ULONG_MAX - start;
373
374 range >>= PAGE_SHIFT;
375
376 if (range == 0)
377 return start;
378
379 return start + (get_random_long() % range << PAGE_SHIFT);
380 }
381
382 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)383 unsigned long arch_randomize_brk(struct mm_struct *mm)
384 {
385 /* Is the current task 32bit ? */
386 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
387 return randomize_page(mm->brk, SZ_32M);
388
389 return randomize_page(mm->brk, SZ_1G);
390 }
391
arch_mmap_rnd(void)392 unsigned long arch_mmap_rnd(void)
393 {
394 unsigned long rnd;
395
396 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
397 if (is_compat_task())
398 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
399 else
400 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
401 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
402
403 return rnd << PAGE_SHIFT;
404 }
405
mmap_is_legacy(struct rlimit * rlim_stack)406 static int mmap_is_legacy(struct rlimit *rlim_stack)
407 {
408 if (current->personality & ADDR_COMPAT_LAYOUT)
409 return 1;
410
411 if (rlim_stack->rlim_cur == RLIM_INFINITY)
412 return 1;
413
414 return sysctl_legacy_va_layout;
415 }
416
417 /*
418 * Leave enough space between the mmap area and the stack to honour ulimit in
419 * the face of randomisation.
420 */
421 #define MIN_GAP (SZ_128M)
422 #define MAX_GAP (STACK_TOP / 6 * 5)
423
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)424 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
425 {
426 unsigned long gap = rlim_stack->rlim_cur;
427 unsigned long pad = stack_guard_gap;
428
429 /* Account for stack randomization if necessary */
430 if (current->flags & PF_RANDOMIZE)
431 pad += (STACK_RND_MASK << PAGE_SHIFT);
432
433 /* Values close to RLIM_INFINITY can overflow. */
434 if (gap + pad > gap)
435 gap += pad;
436
437 if (gap < MIN_GAP)
438 gap = MIN_GAP;
439 else if (gap > MAX_GAP)
440 gap = MAX_GAP;
441
442 return PAGE_ALIGN(STACK_TOP - gap - rnd);
443 }
444
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)445 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
446 {
447 unsigned long random_factor = 0UL;
448
449 if (current->flags & PF_RANDOMIZE)
450 random_factor = arch_mmap_rnd();
451
452 if (mmap_is_legacy(rlim_stack)) {
453 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
454 mm->get_unmapped_area = arch_get_unmapped_area;
455 } else {
456 mm->mmap_base = mmap_base(random_factor, rlim_stack);
457 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
458 }
459 }
460 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)461 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
462 {
463 mm->mmap_base = TASK_UNMAPPED_BASE;
464 mm->get_unmapped_area = arch_get_unmapped_area;
465 }
466 #endif
467
468 /**
469 * __account_locked_vm - account locked pages to an mm's locked_vm
470 * @mm: mm to account against
471 * @pages: number of pages to account
472 * @inc: %true if @pages should be considered positive, %false if not
473 * @task: task used to check RLIMIT_MEMLOCK
474 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
475 *
476 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
477 * that mmap_lock is held as writer.
478 *
479 * Return:
480 * * 0 on success
481 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
482 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)483 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
484 struct task_struct *task, bool bypass_rlim)
485 {
486 unsigned long locked_vm, limit;
487 int ret = 0;
488
489 mmap_assert_write_locked(mm);
490
491 locked_vm = mm->locked_vm;
492 if (inc) {
493 if (!bypass_rlim) {
494 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
495 if (locked_vm + pages > limit)
496 ret = -ENOMEM;
497 }
498 if (!ret)
499 mm->locked_vm = locked_vm + pages;
500 } else {
501 WARN_ON_ONCE(pages > locked_vm);
502 mm->locked_vm = locked_vm - pages;
503 }
504
505 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
506 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
507 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
508 ret ? " - exceeded" : "");
509
510 return ret;
511 }
512 EXPORT_SYMBOL_GPL(__account_locked_vm);
513
514 /**
515 * account_locked_vm - account locked pages to an mm's locked_vm
516 * @mm: mm to account against, may be NULL
517 * @pages: number of pages to account
518 * @inc: %true if @pages should be considered positive, %false if not
519 *
520 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
521 *
522 * Return:
523 * * 0 on success, or if mm is NULL
524 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
525 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)526 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
527 {
528 int ret;
529
530 if (pages == 0 || !mm)
531 return 0;
532
533 mmap_write_lock(mm);
534 ret = __account_locked_vm(mm, pages, inc, current,
535 capable(CAP_IPC_LOCK));
536 mmap_write_unlock(mm);
537
538 return ret;
539 }
540 EXPORT_SYMBOL_GPL(account_locked_vm);
541
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)542 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
543 unsigned long len, unsigned long prot,
544 unsigned long flag, unsigned long pgoff)
545 {
546 unsigned long ret;
547 struct mm_struct *mm = current->mm;
548 unsigned long populate;
549 LIST_HEAD(uf);
550
551 ret = security_mmap_file(file, prot, flag);
552 if (!ret) {
553 if (mmap_write_lock_killable(mm))
554 return -EINTR;
555 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
556 &uf);
557 mmap_write_unlock(mm);
558 userfaultfd_unmap_complete(mm, &uf);
559 if (populate)
560 mm_populate(ret, populate);
561 }
562 trace_android_vh_check_mmap_file(file, prot, flag, ret);
563 return ret;
564 }
565
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)566 unsigned long vm_mmap(struct file *file, unsigned long addr,
567 unsigned long len, unsigned long prot,
568 unsigned long flag, unsigned long offset)
569 {
570 if (unlikely(offset + PAGE_ALIGN(len) < offset))
571 return -EINVAL;
572 if (unlikely(offset_in_page(offset)))
573 return -EINVAL;
574
575 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
576 }
577 EXPORT_SYMBOL(vm_mmap);
578
579 /**
580 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
581 * failure, fall back to non-contiguous (vmalloc) allocation.
582 * @size: size of the request.
583 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
584 * @node: numa node to allocate from
585 *
586 * Uses kmalloc to get the memory but if the allocation fails then falls back
587 * to the vmalloc allocator. Use kvfree for freeing the memory.
588 *
589 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
590 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
591 * preferable to the vmalloc fallback, due to visible performance drawbacks.
592 *
593 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
594 * fall back to vmalloc.
595 *
596 * Return: pointer to the allocated memory of %NULL in case of failure
597 */
kvmalloc_node(size_t size,gfp_t flags,int node)598 void *kvmalloc_node(size_t size, gfp_t flags, int node)
599 {
600 gfp_t kmalloc_flags = flags;
601 void *ret;
602 bool use_vmalloc = false;
603
604 /*
605 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
606 * so the given set of flags has to be compatible.
607 */
608 if ((flags & GFP_KERNEL) != GFP_KERNEL)
609 return kmalloc_node(size, flags, node);
610
611 trace_android_vh_kvmalloc_node_use_vmalloc(size, &kmalloc_flags, &use_vmalloc);
612 if (use_vmalloc)
613 goto use_vmalloc_node;
614 /*
615 * We want to attempt a large physically contiguous block first because
616 * it is less likely to fragment multiple larger blocks and therefore
617 * contribute to a long term fragmentation less than vmalloc fallback.
618 * However make sure that larger requests are not too disruptive - no
619 * OOM killer and no allocation failure warnings as we have a fallback.
620 */
621 if (size > PAGE_SIZE) {
622 kmalloc_flags |= __GFP_NOWARN;
623
624 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
625 kmalloc_flags |= __GFP_NORETRY;
626 }
627
628 ret = kmalloc_node(size, kmalloc_flags, node);
629
630 /*
631 * It doesn't really make sense to fallback to vmalloc for sub page
632 * requests
633 */
634 if (ret || size <= PAGE_SIZE)
635 return ret;
636
637 /* Don't even allow crazy sizes */
638 if (unlikely(size > INT_MAX)) {
639 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
640 return NULL;
641 }
642
643 use_vmalloc_node:
644 return __vmalloc_node(size, 1, flags, node,
645 __builtin_return_address(0));
646 }
647 EXPORT_SYMBOL(kvmalloc_node);
648
649 /**
650 * kvfree() - Free memory.
651 * @addr: Pointer to allocated memory.
652 *
653 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
654 * It is slightly more efficient to use kfree() or vfree() if you are certain
655 * that you know which one to use.
656 *
657 * Context: Either preemptible task context or not-NMI interrupt.
658 */
kvfree(const void * addr)659 void kvfree(const void *addr)
660 {
661 if (is_vmalloc_addr(addr))
662 vfree(addr);
663 else
664 kfree(addr);
665 }
666 EXPORT_SYMBOL(kvfree);
667
668 /**
669 * kvfree_sensitive - Free a data object containing sensitive information.
670 * @addr: address of the data object to be freed.
671 * @len: length of the data object.
672 *
673 * Use the special memzero_explicit() function to clear the content of a
674 * kvmalloc'ed object containing sensitive data to make sure that the
675 * compiler won't optimize out the data clearing.
676 */
kvfree_sensitive(const void * addr,size_t len)677 void kvfree_sensitive(const void *addr, size_t len)
678 {
679 if (likely(!ZERO_OR_NULL_PTR(addr))) {
680 memzero_explicit((void *)addr, len);
681 kvfree(addr);
682 }
683 }
684 EXPORT_SYMBOL(kvfree_sensitive);
685
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)686 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
687 {
688 void *newp;
689
690 if (oldsize >= newsize)
691 return (void *)p;
692 newp = kvmalloc(newsize, flags);
693 if (!newp)
694 return NULL;
695 memcpy(newp, p, oldsize);
696 kvfree(p);
697 return newp;
698 }
699 EXPORT_SYMBOL(kvrealloc);
700
__page_rmapping(struct page * page)701 static inline void *__page_rmapping(struct page *page)
702 {
703 unsigned long mapping;
704
705 mapping = (unsigned long)page->mapping;
706 mapping &= ~PAGE_MAPPING_FLAGS;
707
708 return (void *)mapping;
709 }
710
711 /**
712 * __vmalloc_array - allocate memory for a virtually contiguous array.
713 * @n: number of elements.
714 * @size: element size.
715 * @flags: the type of memory to allocate (see kmalloc).
716 */
__vmalloc_array(size_t n,size_t size,gfp_t flags)717 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
718 {
719 size_t bytes;
720
721 if (unlikely(check_mul_overflow(n, size, &bytes)))
722 return NULL;
723 return __vmalloc(bytes, flags);
724 }
725 EXPORT_SYMBOL(__vmalloc_array);
726
727 /**
728 * vmalloc_array - allocate memory for a virtually contiguous array.
729 * @n: number of elements.
730 * @size: element size.
731 */
vmalloc_array(size_t n,size_t size)732 void *vmalloc_array(size_t n, size_t size)
733 {
734 return __vmalloc_array(n, size, GFP_KERNEL);
735 }
736 EXPORT_SYMBOL(vmalloc_array);
737
738 /**
739 * __vcalloc - allocate and zero memory for a virtually contiguous array.
740 * @n: number of elements.
741 * @size: element size.
742 * @flags: the type of memory to allocate (see kmalloc).
743 */
__vcalloc(size_t n,size_t size,gfp_t flags)744 void *__vcalloc(size_t n, size_t size, gfp_t flags)
745 {
746 return __vmalloc_array(n, size, flags | __GFP_ZERO);
747 }
748 EXPORT_SYMBOL(__vcalloc);
749
750 /**
751 * vcalloc - allocate and zero memory for a virtually contiguous array.
752 * @n: number of elements.
753 * @size: element size.
754 */
vcalloc(size_t n,size_t size)755 void *vcalloc(size_t n, size_t size)
756 {
757 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
758 }
759 EXPORT_SYMBOL(vcalloc);
760
761 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)762 void *page_rmapping(struct page *page)
763 {
764 page = compound_head(page);
765 return __page_rmapping(page);
766 }
767
768 /*
769 * Return true if this page is mapped into pagetables.
770 * For compound page it returns true if any subpage of compound page is mapped.
771 */
page_mapped(struct page * page)772 bool page_mapped(struct page *page)
773 {
774 int i;
775
776 if (likely(!PageCompound(page)))
777 return atomic_read(&page->_mapcount) >= 0;
778 page = compound_head(page);
779 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
780 return true;
781 if (PageHuge(page))
782 return false;
783 for (i = 0; i < compound_nr(page); i++) {
784 if (atomic_read(&page[i]._mapcount) >= 0)
785 return true;
786 }
787 return false;
788 }
789 EXPORT_SYMBOL(page_mapped);
790
page_anon_vma(struct page * page)791 struct anon_vma *page_anon_vma(struct page *page)
792 {
793 unsigned long mapping;
794
795 page = compound_head(page);
796 mapping = (unsigned long)page->mapping;
797 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
798 return NULL;
799 return __page_rmapping(page);
800 }
801
page_mapping(struct page * page)802 struct address_space *page_mapping(struct page *page)
803 {
804 struct address_space *mapping;
805
806 page = compound_head(page);
807
808 /* This happens if someone calls flush_dcache_page on slab page */
809 if (unlikely(PageSlab(page)))
810 return NULL;
811
812 if (unlikely(PageSwapCache(page))) {
813 swp_entry_t entry;
814
815 entry.val = page_private(page);
816 return swap_address_space(entry);
817 }
818
819 mapping = page->mapping;
820 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
821 return NULL;
822
823 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
824 }
825 EXPORT_SYMBOL(page_mapping);
826
827 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)828 int __page_mapcount(struct page *page)
829 {
830 int ret;
831
832 ret = atomic_read(&page->_mapcount) + 1;
833 /*
834 * For file THP page->_mapcount contains total number of mapping
835 * of the page: no need to look into compound_mapcount.
836 */
837 if (!PageAnon(page) && !PageHuge(page))
838 return ret;
839 page = compound_head(page);
840 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
841 if (PageDoubleMap(page))
842 ret--;
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(__page_mapcount);
846
copy_huge_page(struct page * dst,struct page * src)847 void copy_huge_page(struct page *dst, struct page *src)
848 {
849 unsigned i, nr = compound_nr(src);
850
851 for (i = 0; i < nr; i++) {
852 cond_resched();
853 copy_highpage(nth_page(dst, i), nth_page(src, i));
854 }
855 }
856
857 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
858 int sysctl_overcommit_ratio __read_mostly = 50;
859 unsigned long sysctl_overcommit_kbytes __read_mostly;
860 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
861 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
862 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
863
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)864 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
865 size_t *lenp, loff_t *ppos)
866 {
867 int ret;
868
869 ret = proc_dointvec(table, write, buffer, lenp, ppos);
870 if (ret == 0 && write)
871 sysctl_overcommit_kbytes = 0;
872 return ret;
873 }
874
sync_overcommit_as(struct work_struct * dummy)875 static void sync_overcommit_as(struct work_struct *dummy)
876 {
877 percpu_counter_sync(&vm_committed_as);
878 }
879
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)880 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
881 size_t *lenp, loff_t *ppos)
882 {
883 struct ctl_table t;
884 int new_policy = -1;
885 int ret;
886
887 /*
888 * The deviation of sync_overcommit_as could be big with loose policy
889 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
890 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
891 * with the strict "NEVER", and to avoid possible race condition (even
892 * though user usually won't too frequently do the switching to policy
893 * OVERCOMMIT_NEVER), the switch is done in the following order:
894 * 1. changing the batch
895 * 2. sync percpu count on each CPU
896 * 3. switch the policy
897 */
898 if (write) {
899 t = *table;
900 t.data = &new_policy;
901 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
902 if (ret || new_policy == -1)
903 return ret;
904
905 mm_compute_batch(new_policy);
906 if (new_policy == OVERCOMMIT_NEVER)
907 schedule_on_each_cpu(sync_overcommit_as);
908 sysctl_overcommit_memory = new_policy;
909 } else {
910 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
911 }
912
913 return ret;
914 }
915
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)916 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
917 size_t *lenp, loff_t *ppos)
918 {
919 int ret;
920
921 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
922 if (ret == 0 && write)
923 sysctl_overcommit_ratio = 0;
924 return ret;
925 }
926
927 /*
928 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
929 */
vm_commit_limit(void)930 unsigned long vm_commit_limit(void)
931 {
932 unsigned long allowed;
933
934 if (sysctl_overcommit_kbytes)
935 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
936 else
937 allowed = ((totalram_pages() - hugetlb_total_pages())
938 * sysctl_overcommit_ratio / 100);
939 allowed += total_swap_pages;
940
941 return allowed;
942 }
943
944 /*
945 * Make sure vm_committed_as in one cacheline and not cacheline shared with
946 * other variables. It can be updated by several CPUs frequently.
947 */
948 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
949
950 /*
951 * The global memory commitment made in the system can be a metric
952 * that can be used to drive ballooning decisions when Linux is hosted
953 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
954 * balancing memory across competing virtual machines that are hosted.
955 * Several metrics drive this policy engine including the guest reported
956 * memory commitment.
957 *
958 * The time cost of this is very low for small platforms, and for big
959 * platform like a 2S/36C/72T Skylake server, in worst case where
960 * vm_committed_as's spinlock is under severe contention, the time cost
961 * could be about 30~40 microseconds.
962 */
vm_memory_committed(void)963 unsigned long vm_memory_committed(void)
964 {
965 return percpu_counter_sum_positive(&vm_committed_as);
966 }
967 EXPORT_SYMBOL_GPL(vm_memory_committed);
968
969 /*
970 * Check that a process has enough memory to allocate a new virtual
971 * mapping. 0 means there is enough memory for the allocation to
972 * succeed and -ENOMEM implies there is not.
973 *
974 * We currently support three overcommit policies, which are set via the
975 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
976 *
977 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
978 * Additional code 2002 Jul 20 by Robert Love.
979 *
980 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
981 *
982 * Note this is a helper function intended to be used by LSMs which
983 * wish to use this logic.
984 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)985 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
986 {
987 long allowed;
988
989 vm_acct_memory(pages);
990
991 /*
992 * Sometimes we want to use more memory than we have
993 */
994 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
995 return 0;
996
997 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
998 if (pages > totalram_pages() + total_swap_pages)
999 goto error;
1000 return 0;
1001 }
1002
1003 allowed = vm_commit_limit();
1004 /*
1005 * Reserve some for root
1006 */
1007 if (!cap_sys_admin)
1008 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1009
1010 /*
1011 * Don't let a single process grow so big a user can't recover
1012 */
1013 if (mm) {
1014 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1015
1016 allowed -= min_t(long, mm->total_vm / 32, reserve);
1017 }
1018
1019 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1020 return 0;
1021 error:
1022 vm_unacct_memory(pages);
1023
1024 return -ENOMEM;
1025 }
1026
1027 /**
1028 * get_cmdline() - copy the cmdline value to a buffer.
1029 * @task: the task whose cmdline value to copy.
1030 * @buffer: the buffer to copy to.
1031 * @buflen: the length of the buffer. Larger cmdline values are truncated
1032 * to this length.
1033 *
1034 * Return: the size of the cmdline field copied. Note that the copy does
1035 * not guarantee an ending NULL byte.
1036 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1037 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1038 {
1039 int res = 0;
1040 unsigned int len;
1041 struct mm_struct *mm = get_task_mm(task);
1042 unsigned long arg_start, arg_end, env_start, env_end;
1043 if (!mm)
1044 goto out;
1045 if (!mm->arg_end)
1046 goto out_mm; /* Shh! No looking before we're done */
1047
1048 spin_lock(&mm->arg_lock);
1049 arg_start = mm->arg_start;
1050 arg_end = mm->arg_end;
1051 env_start = mm->env_start;
1052 env_end = mm->env_end;
1053 spin_unlock(&mm->arg_lock);
1054
1055 len = arg_end - arg_start;
1056
1057 if (len > buflen)
1058 len = buflen;
1059
1060 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1061
1062 /*
1063 * If the nul at the end of args has been overwritten, then
1064 * assume application is using setproctitle(3).
1065 */
1066 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1067 len = strnlen(buffer, res);
1068 if (len < res) {
1069 res = len;
1070 } else {
1071 len = env_end - env_start;
1072 if (len > buflen - res)
1073 len = buflen - res;
1074 res += access_process_vm(task, env_start,
1075 buffer+res, len,
1076 FOLL_FORCE);
1077 res = strnlen(buffer, res);
1078 }
1079 }
1080 out_mm:
1081 mmput(mm);
1082 out:
1083 return res;
1084 }
1085
memcmp_pages(struct page * page1,struct page * page2)1086 int __weak memcmp_pages(struct page *page1, struct page *page2)
1087 {
1088 char *addr1, *addr2;
1089 int ret;
1090
1091 addr1 = kmap_atomic(page1);
1092 addr2 = kmap_atomic(page2);
1093 ret = memcmp(addr1, addr2, PAGE_SIZE);
1094 kunmap_atomic(addr2);
1095 kunmap_atomic(addr1);
1096 return ret;
1097 }
1098
1099 #ifdef CONFIG_PRINTK
1100 /**
1101 * mem_dump_obj - Print available provenance information
1102 * @object: object for which to find provenance information.
1103 *
1104 * This function uses pr_cont(), so that the caller is expected to have
1105 * printed out whatever preamble is appropriate. The provenance information
1106 * depends on the type of object and on how much debugging is enabled.
1107 * For example, for a slab-cache object, the slab name is printed, and,
1108 * if available, the return address and stack trace from the allocation
1109 * and last free path of that object.
1110 */
mem_dump_obj(void * object)1111 void mem_dump_obj(void *object)
1112 {
1113 const char *type;
1114
1115 if (kmem_valid_obj(object)) {
1116 kmem_dump_obj(object);
1117 return;
1118 }
1119
1120 if (vmalloc_dump_obj(object))
1121 return;
1122
1123 if (is_vmalloc_addr(object))
1124 type = "vmalloc memory";
1125 else if (virt_addr_valid(object))
1126 type = "non-slab/vmalloc memory";
1127 else if (object == NULL)
1128 type = "NULL pointer";
1129 else if (object == ZERO_SIZE_PTR)
1130 type = "zero-size pointer";
1131 else
1132 type = "non-paged memory";
1133
1134 pr_cont(" %s\n", type);
1135 }
1136 EXPORT_SYMBOL_GPL(mem_dump_obj);
1137 #endif
1138
1139 /*
1140 * A driver might set a page logically offline -- PageOffline() -- and
1141 * turn the page inaccessible in the hypervisor; after that, access to page
1142 * content can be fatal.
1143 *
1144 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1145 * pages after checking PageOffline(); however, these PFN walkers can race
1146 * with drivers that set PageOffline().
1147 *
1148 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1149 * synchronize with such drivers, achieving that a page cannot be set
1150 * PageOffline() while frozen.
1151 *
1152 * page_offline_begin()/page_offline_end() is used by drivers that care about
1153 * such races when setting a page PageOffline().
1154 */
1155 static DECLARE_RWSEM(page_offline_rwsem);
1156
page_offline_freeze(void)1157 void page_offline_freeze(void)
1158 {
1159 down_read(&page_offline_rwsem);
1160 }
1161
page_offline_thaw(void)1162 void page_offline_thaw(void)
1163 {
1164 up_read(&page_offline_rwsem);
1165 }
1166
page_offline_begin(void)1167 void page_offline_begin(void)
1168 {
1169 down_write(&page_offline_rwsem);
1170 }
1171 EXPORT_SYMBOL(page_offline_begin);
1172
page_offline_end(void)1173 void page_offline_end(void)
1174 {
1175 up_write(&page_offline_rwsem);
1176 }
1177 EXPORT_SYMBOL(page_offline_end);
1178