• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 
50 #include "blk-mq.h"
51 #ifndef __GENKSYMS__
52 #include "blk-mq-debugfs.h"
53 #endif
54 #include "blk-mq-sched.h"
55 #include "blk-pm.h"
56 #ifndef __GENKSYMS__
57 #include "blk-rq-qos.h"
58 #endif
59 
60 struct dentry *blk_debugfs_root;
61 
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
68 
69 DEFINE_IDA(blk_queue_ida);
70 
71 /*
72  * For queue allocation
73  */
74 struct kmem_cache *blk_requestq_cachep;
75 
76 /*
77  * Controlling structure to kblockd
78  */
79 static struct workqueue_struct *kblockd_workqueue;
80 
81 /**
82  * blk_queue_flag_set - atomically set a queue flag
83  * @flag: flag to be set
84  * @q: request queue
85  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)86 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
87 {
88 	set_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_set);
91 
92 /**
93  * blk_queue_flag_clear - atomically clear a queue flag
94  * @flag: flag to be cleared
95  * @q: request queue
96  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)97 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
98 {
99 	clear_bit(flag, &q->queue_flags);
100 }
101 EXPORT_SYMBOL(blk_queue_flag_clear);
102 
103 /**
104  * blk_queue_flag_test_and_set - atomically test and set a queue flag
105  * @flag: flag to be set
106  * @q: request queue
107  *
108  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
109  * the flag was already set.
110  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)111 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
112 {
113 	return test_and_set_bit(flag, &q->queue_flags);
114 }
115 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
116 
blk_rq_init(struct request_queue * q,struct request * rq)117 void blk_rq_init(struct request_queue *q, struct request *rq)
118 {
119 	memset(rq, 0, sizeof(*rq));
120 
121 	INIT_LIST_HEAD(&rq->queuelist);
122 	rq->q = q;
123 	rq->__sector = (sector_t) -1;
124 	INIT_HLIST_NODE(&rq->hash);
125 	RB_CLEAR_NODE(&rq->rb_node);
126 	rq->tag = BLK_MQ_NO_TAG;
127 	rq->internal_tag = BLK_MQ_NO_TAG;
128 	rq->start_time_ns = ktime_get_ns();
129 	rq->part = NULL;
130 	blk_crypto_rq_set_defaults(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133 
134 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
135 static const char *const blk_op_name[] = {
136 	REQ_OP_NAME(READ),
137 	REQ_OP_NAME(WRITE),
138 	REQ_OP_NAME(FLUSH),
139 	REQ_OP_NAME(DISCARD),
140 	REQ_OP_NAME(SECURE_ERASE),
141 	REQ_OP_NAME(ZONE_RESET),
142 	REQ_OP_NAME(ZONE_RESET_ALL),
143 	REQ_OP_NAME(ZONE_OPEN),
144 	REQ_OP_NAME(ZONE_CLOSE),
145 	REQ_OP_NAME(ZONE_FINISH),
146 	REQ_OP_NAME(ZONE_APPEND),
147 	REQ_OP_NAME(WRITE_SAME),
148 	REQ_OP_NAME(WRITE_ZEROES),
149 	REQ_OP_NAME(DRV_IN),
150 	REQ_OP_NAME(DRV_OUT),
151 };
152 #undef REQ_OP_NAME
153 
154 /**
155  * blk_op_str - Return string XXX in the REQ_OP_XXX.
156  * @op: REQ_OP_XXX.
157  *
158  * Description: Centralize block layer function to convert REQ_OP_XXX into
159  * string format. Useful in the debugging and tracing bio or request. For
160  * invalid REQ_OP_XXX it returns string "UNKNOWN".
161  */
blk_op_str(unsigned int op)162 inline const char *blk_op_str(unsigned int op)
163 {
164 	const char *op_str = "UNKNOWN";
165 
166 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
167 		op_str = blk_op_name[op];
168 
169 	return op_str;
170 }
171 EXPORT_SYMBOL_GPL(blk_op_str);
172 
173 static const struct {
174 	int		errno;
175 	const char	*name;
176 } blk_errors[] = {
177 	[BLK_STS_OK]		= { 0,		"" },
178 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
179 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
180 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
181 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
182 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
183 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
184 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
185 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
186 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
187 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
188 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
189 
190 	/* device mapper special case, should not leak out: */
191 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
192 
193 	/* zone device specific errors */
194 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
195 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
196 
197 	/* everything else not covered above: */
198 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
199 };
200 
errno_to_blk_status(int errno)201 blk_status_t errno_to_blk_status(int errno)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
206 		if (blk_errors[i].errno == errno)
207 			return (__force blk_status_t)i;
208 	}
209 
210 	return BLK_STS_IOERR;
211 }
212 EXPORT_SYMBOL_GPL(errno_to_blk_status);
213 
blk_status_to_errno(blk_status_t status)214 int blk_status_to_errno(blk_status_t status)
215 {
216 	int idx = (__force int)status;
217 
218 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 		return -EIO;
220 	return blk_errors[idx].errno;
221 }
222 EXPORT_SYMBOL_GPL(blk_status_to_errno);
223 
print_req_error(struct request * req,blk_status_t status,const char * caller)224 static void print_req_error(struct request *req, blk_status_t status,
225 		const char *caller)
226 {
227 	int idx = (__force int)status;
228 
229 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
230 		return;
231 
232 	printk_ratelimited(KERN_ERR
233 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
234 		"phys_seg %u prio class %u\n",
235 		caller, blk_errors[idx].name,
236 		req->rq_disk ? req->rq_disk->disk_name : "?",
237 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
238 		req->cmd_flags & ~REQ_OP_MASK,
239 		req->nr_phys_segments,
240 		IOPRIO_PRIO_CLASS(req->ioprio));
241 }
242 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)243 static void req_bio_endio(struct request *rq, struct bio *bio,
244 			  unsigned int nbytes, blk_status_t error)
245 {
246 	if (error)
247 		bio->bi_status = error;
248 
249 	if (unlikely(rq->rq_flags & RQF_QUIET))
250 		bio_set_flag(bio, BIO_QUIET);
251 
252 	bio_advance(bio, nbytes);
253 
254 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
255 		/*
256 		 * Partial zone append completions cannot be supported as the
257 		 * BIO fragments may end up not being written sequentially.
258 		 */
259 		if (bio->bi_iter.bi_size)
260 			bio->bi_status = BLK_STS_IOERR;
261 		else
262 			bio->bi_iter.bi_sector = rq->__sector;
263 	}
264 
265 	/* don't actually finish bio if it's part of flush sequence */
266 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
267 		bio_endio(bio);
268 }
269 
blk_dump_rq_flags(struct request * rq,char * msg)270 void blk_dump_rq_flags(struct request *rq, char *msg)
271 {
272 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
273 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
274 		(unsigned long long) rq->cmd_flags);
275 
276 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
277 	       (unsigned long long)blk_rq_pos(rq),
278 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
279 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
280 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
281 }
282 EXPORT_SYMBOL(blk_dump_rq_flags);
283 
284 /**
285  * blk_sync_queue - cancel any pending callbacks on a queue
286  * @q: the queue
287  *
288  * Description:
289  *     The block layer may perform asynchronous callback activity
290  *     on a queue, such as calling the unplug function after a timeout.
291  *     A block device may call blk_sync_queue to ensure that any
292  *     such activity is cancelled, thus allowing it to release resources
293  *     that the callbacks might use. The caller must already have made sure
294  *     that its ->submit_bio will not re-add plugging prior to calling
295  *     this function.
296  *
297  *     This function does not cancel any asynchronous activity arising
298  *     out of elevator or throttling code. That would require elevator_exit()
299  *     and blkcg_exit_queue() to be called with queue lock initialized.
300  *
301  */
blk_sync_queue(struct request_queue * q)302 void blk_sync_queue(struct request_queue *q)
303 {
304 	del_timer_sync(&q->timeout);
305 	cancel_work_sync(&q->timeout_work);
306 }
307 EXPORT_SYMBOL(blk_sync_queue);
308 
309 /**
310  * blk_set_pm_only - increment pm_only counter
311  * @q: request queue pointer
312  */
blk_set_pm_only(struct request_queue * q)313 void blk_set_pm_only(struct request_queue *q)
314 {
315 	atomic_inc(&q->pm_only);
316 }
317 EXPORT_SYMBOL_GPL(blk_set_pm_only);
318 
blk_clear_pm_only(struct request_queue * q)319 void blk_clear_pm_only(struct request_queue *q)
320 {
321 	int pm_only;
322 
323 	pm_only = atomic_dec_return(&q->pm_only);
324 	WARN_ON_ONCE(pm_only < 0);
325 	if (pm_only == 0)
326 		wake_up_all(&q->mq_freeze_wq);
327 }
328 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
329 
330 /**
331  * blk_put_queue - decrement the request_queue refcount
332  * @q: the request_queue structure to decrement the refcount for
333  *
334  * Decrements the refcount of the request_queue kobject. When this reaches 0
335  * we'll have blk_release_queue() called.
336  *
337  * Context: Any context, but the last reference must not be dropped from
338  *          atomic context.
339  */
blk_put_queue(struct request_queue * q)340 void blk_put_queue(struct request_queue *q)
341 {
342 	kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345 
blk_queue_start_drain(struct request_queue * q)346 void blk_queue_start_drain(struct request_queue *q)
347 {
348 	/*
349 	 * When queue DYING flag is set, we need to block new req
350 	 * entering queue, so we call blk_freeze_queue_start() to
351 	 * prevent I/O from crossing blk_queue_enter().
352 	 */
353 	blk_freeze_queue_start(q);
354 	if (queue_is_mq(q))
355 		blk_mq_wake_waiters(q);
356 	/* Make blk_queue_enter() reexamine the DYING flag. */
357 	wake_up_all(&q->mq_freeze_wq);
358 }
359 
360 /**
361  * blk_cleanup_queue - shutdown a request queue
362  * @q: request queue to shutdown
363  *
364  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
365  * put it.  All future requests will be failed immediately with -ENODEV.
366  *
367  * Context: can sleep
368  */
blk_cleanup_queue(struct request_queue * q)369 void blk_cleanup_queue(struct request_queue *q)
370 {
371 	/* cannot be called from atomic context */
372 	might_sleep();
373 
374 	WARN_ON_ONCE(blk_queue_registered(q));
375 
376 	/* mark @q DYING, no new request or merges will be allowed afterwards */
377 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
378 	blk_queue_start_drain(q);
379 
380 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382 
383 	/*
384 	 * Drain all requests queued before DYING marking. Set DEAD flag to
385 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 	 * after draining finished.
387 	 */
388 	blk_freeze_queue(q);
389 
390 	/* cleanup rq qos structures for queue without disk */
391 	rq_qos_exit(q);
392 
393 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
394 
395 	blk_sync_queue(q);
396 	if (queue_is_mq(q)) {
397 		blk_mq_cancel_work_sync(q);
398 		blk_mq_exit_queue(q);
399 	}
400 
401 	/*
402 	 * In theory, request pool of sched_tags belongs to request queue.
403 	 * However, the current implementation requires tag_set for freeing
404 	 * requests, so free the pool now.
405 	 *
406 	 * Queue has become frozen, there can't be any in-queue requests, so
407 	 * it is safe to free requests now.
408 	 */
409 	mutex_lock(&q->sysfs_lock);
410 	if (q->elevator)
411 		blk_mq_sched_free_requests(q);
412 	mutex_unlock(&q->sysfs_lock);
413 
414 	/* @q is and will stay empty, shutdown and put */
415 	blk_put_queue(q);
416 }
417 EXPORT_SYMBOL(blk_cleanup_queue);
418 
blk_try_enter_queue(struct request_queue * q,bool pm)419 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
420 {
421 	rcu_read_lock();
422 	if (!percpu_ref_tryget_live(&q->q_usage_counter))
423 		goto fail;
424 
425 	/*
426 	 * The code that increments the pm_only counter must ensure that the
427 	 * counter is globally visible before the queue is unfrozen.
428 	 */
429 	if (blk_queue_pm_only(q) &&
430 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
431 		goto fail_put;
432 
433 	rcu_read_unlock();
434 	return true;
435 
436 fail_put:
437 	percpu_ref_put(&q->q_usage_counter);
438 fail:
439 	rcu_read_unlock();
440 	return false;
441 }
442 
443 /**
444  * blk_queue_enter() - try to increase q->q_usage_counter
445  * @q: request queue pointer
446  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
447  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)448 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
449 {
450 	const bool pm = flags & BLK_MQ_REQ_PM;
451 
452 	while (!blk_try_enter_queue(q, pm)) {
453 		if (flags & BLK_MQ_REQ_NOWAIT)
454 			return -EAGAIN;
455 
456 		/*
457 		 * read pair of barrier in blk_freeze_queue_start(), we need to
458 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
459 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
460 		 * following wait may never return if the two reads are
461 		 * reordered.
462 		 */
463 		smp_rmb();
464 		wait_event(q->mq_freeze_wq,
465 			   (!q->mq_freeze_depth &&
466 			    blk_pm_resume_queue(pm, q)) ||
467 			   blk_queue_dying(q));
468 		if (blk_queue_dying(q))
469 			return -ENODEV;
470 	}
471 
472 	return 0;
473 }
474 
bio_queue_enter(struct bio * bio)475 static inline int bio_queue_enter(struct bio *bio)
476 {
477 	struct gendisk *disk = bio->bi_bdev->bd_disk;
478 	struct request_queue *q = disk->queue;
479 
480 	while (!blk_try_enter_queue(q, false)) {
481 		if (bio->bi_opf & REQ_NOWAIT) {
482 			if (test_bit(GD_DEAD, &disk->state))
483 				goto dead;
484 			bio_wouldblock_error(bio);
485 			return -EAGAIN;
486 		}
487 
488 		/*
489 		 * read pair of barrier in blk_freeze_queue_start(), we need to
490 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
491 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
492 		 * following wait may never return if the two reads are
493 		 * reordered.
494 		 */
495 		smp_rmb();
496 		wait_event(q->mq_freeze_wq,
497 			   (!q->mq_freeze_depth &&
498 			    blk_pm_resume_queue(false, q)) ||
499 			   test_bit(GD_DEAD, &disk->state));
500 		if (test_bit(GD_DEAD, &disk->state))
501 			goto dead;
502 	}
503 
504 	return 0;
505 dead:
506 	bio_io_error(bio);
507 	return -ENODEV;
508 }
509 
blk_queue_exit(struct request_queue * q)510 void blk_queue_exit(struct request_queue *q)
511 {
512 	percpu_ref_put(&q->q_usage_counter);
513 }
514 
blk_queue_usage_counter_release(struct percpu_ref * ref)515 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
516 {
517 	struct request_queue *q =
518 		container_of(ref, struct request_queue, q_usage_counter);
519 
520 	wake_up_all(&q->mq_freeze_wq);
521 }
522 
blk_rq_timed_out_timer(struct timer_list * t)523 static void blk_rq_timed_out_timer(struct timer_list *t)
524 {
525 	struct request_queue *q = from_timer(q, t, timeout);
526 
527 	kblockd_schedule_work(&q->timeout_work);
528 }
529 
blk_timeout_work(struct work_struct * work)530 static void blk_timeout_work(struct work_struct *work)
531 {
532 }
533 
blk_alloc_queue(int node_id)534 struct request_queue *blk_alloc_queue(int node_id)
535 {
536 	struct request_queue *q;
537 	int ret;
538 
539 	q = kmem_cache_alloc_node(blk_requestq_cachep,
540 				GFP_KERNEL | __GFP_ZERO, node_id);
541 	if (!q)
542 		return NULL;
543 
544 	q->last_merge = NULL;
545 
546 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
547 	if (q->id < 0)
548 		goto fail_q;
549 
550 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
551 	if (ret)
552 		goto fail_id;
553 
554 	q->stats = blk_alloc_queue_stats();
555 	if (!q->stats)
556 		goto fail_split;
557 
558 	q->node = node_id;
559 
560 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
561 
562 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
563 	INIT_WORK(&q->timeout_work, blk_timeout_work);
564 	INIT_LIST_HEAD(&q->icq_list);
565 #ifdef CONFIG_BLK_CGROUP
566 	INIT_LIST_HEAD(&q->blkg_list);
567 #endif
568 
569 	kobject_init(&q->kobj, &blk_queue_ktype);
570 
571 	mutex_init(&q->debugfs_mutex);
572 	mutex_init(&q->sysfs_lock);
573 	mutex_init(&q->sysfs_dir_lock);
574 	spin_lock_init(&q->queue_lock);
575 
576 	init_waitqueue_head(&q->mq_freeze_wq);
577 	mutex_init(&q->mq_freeze_lock);
578 
579 	/*
580 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
581 	 * See blk_register_queue() for details.
582 	 */
583 	if (percpu_ref_init(&q->q_usage_counter,
584 				blk_queue_usage_counter_release,
585 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
586 		goto fail_stats;
587 
588 	if (blkcg_init_queue(q))
589 		goto fail_ref;
590 
591 	blk_queue_dma_alignment(q, 511);
592 	blk_set_default_limits(&q->limits);
593 	q->nr_requests = BLKDEV_MAX_RQ;
594 
595 	return q;
596 
597 fail_ref:
598 	percpu_ref_exit(&q->q_usage_counter);
599 fail_stats:
600 	blk_free_queue_stats(q->stats);
601 fail_split:
602 	bioset_exit(&q->bio_split);
603 fail_id:
604 	ida_simple_remove(&blk_queue_ida, q->id);
605 fail_q:
606 	kmem_cache_free(blk_requestq_cachep, q);
607 	return NULL;
608 }
609 
610 /**
611  * blk_get_queue - increment the request_queue refcount
612  * @q: the request_queue structure to increment the refcount for
613  *
614  * Increment the refcount of the request_queue kobject.
615  *
616  * Context: Any context.
617  */
blk_get_queue(struct request_queue * q)618 bool blk_get_queue(struct request_queue *q)
619 {
620 	if (likely(!blk_queue_dying(q))) {
621 		__blk_get_queue(q);
622 		return true;
623 	}
624 
625 	return false;
626 }
627 EXPORT_SYMBOL(blk_get_queue);
628 
629 /**
630  * blk_get_request - allocate a request
631  * @q: request queue to allocate a request for
632  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
633  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
634  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)635 struct request *blk_get_request(struct request_queue *q, unsigned int op,
636 				blk_mq_req_flags_t flags)
637 {
638 	struct request *req;
639 
640 	WARN_ON_ONCE(op & REQ_NOWAIT);
641 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
642 
643 	req = blk_mq_alloc_request(q, op, flags);
644 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
645 		q->mq_ops->initialize_rq_fn(req);
646 
647 	return req;
648 }
649 EXPORT_SYMBOL(blk_get_request);
650 
blk_put_request(struct request * req)651 void blk_put_request(struct request *req)
652 {
653 	blk_mq_free_request(req);
654 }
655 EXPORT_SYMBOL(blk_put_request);
656 
handle_bad_sector(struct bio * bio,sector_t maxsector)657 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
658 {
659 	char b[BDEVNAME_SIZE];
660 
661 	pr_info_ratelimited("attempt to access beyond end of device\n"
662 			    "%s: rw=%d, want=%llu, limit=%llu\n",
663 			    bio_devname(bio, b), bio->bi_opf,
664 			    bio_end_sector(bio), maxsector);
665 }
666 
667 #ifdef CONFIG_FAIL_MAKE_REQUEST
668 
669 static DECLARE_FAULT_ATTR(fail_make_request);
670 
setup_fail_make_request(char * str)671 static int __init setup_fail_make_request(char *str)
672 {
673 	return setup_fault_attr(&fail_make_request, str);
674 }
675 __setup("fail_make_request=", setup_fail_make_request);
676 
should_fail_request(struct block_device * part,unsigned int bytes)677 static bool should_fail_request(struct block_device *part, unsigned int bytes)
678 {
679 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
680 }
681 
fail_make_request_debugfs(void)682 static int __init fail_make_request_debugfs(void)
683 {
684 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
685 						NULL, &fail_make_request);
686 
687 	return PTR_ERR_OR_ZERO(dir);
688 }
689 
690 late_initcall(fail_make_request_debugfs);
691 
692 #else /* CONFIG_FAIL_MAKE_REQUEST */
693 
should_fail_request(struct block_device * part,unsigned int bytes)694 static inline bool should_fail_request(struct block_device *part,
695 					unsigned int bytes)
696 {
697 	return false;
698 }
699 
700 #endif /* CONFIG_FAIL_MAKE_REQUEST */
701 
bio_check_ro(struct bio * bio)702 static inline void bio_check_ro(struct bio *bio)
703 {
704 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
705 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
706 			return;
707 		pr_warn_ratelimited("Trying to write to read-only block-device %pg\n",
708 				    bio->bi_bdev);
709 		/* Older lvm-tools actually trigger this */
710 	}
711 }
712 
should_fail_bio(struct bio * bio)713 static noinline int should_fail_bio(struct bio *bio)
714 {
715 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
716 		return -EIO;
717 	return 0;
718 }
719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720 
721 /*
722  * Check whether this bio extends beyond the end of the device or partition.
723  * This may well happen - the kernel calls bread() without checking the size of
724  * the device, e.g., when mounting a file system.
725  */
bio_check_eod(struct bio * bio)726 static inline int bio_check_eod(struct bio *bio)
727 {
728 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
729 	unsigned int nr_sectors = bio_sectors(bio);
730 
731 	if (nr_sectors && maxsector &&
732 	    (nr_sectors > maxsector ||
733 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 		handle_bad_sector(bio, maxsector);
735 		return -EIO;
736 	}
737 	return 0;
738 }
739 
740 /*
741  * Remap block n of partition p to block n+start(p) of the disk.
742  */
blk_partition_remap(struct bio * bio)743 static int blk_partition_remap(struct bio *bio)
744 {
745 	struct block_device *p = bio->bi_bdev;
746 
747 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
748 		return -EIO;
749 	if (bio_sectors(bio)) {
750 		bio->bi_iter.bi_sector += p->bd_start_sect;
751 		trace_block_bio_remap(bio, p->bd_dev,
752 				      bio->bi_iter.bi_sector -
753 				      p->bd_start_sect);
754 	}
755 	bio_set_flag(bio, BIO_REMAPPED);
756 	return 0;
757 }
758 
759 /*
760  * Check write append to a zoned block device.
761  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)762 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
763 						 struct bio *bio)
764 {
765 	sector_t pos = bio->bi_iter.bi_sector;
766 	int nr_sectors = bio_sectors(bio);
767 
768 	/* Only applicable to zoned block devices */
769 	if (!blk_queue_is_zoned(q))
770 		return BLK_STS_NOTSUPP;
771 
772 	/* The bio sector must point to the start of a sequential zone */
773 	if (!bdev_is_zone_start(bio->bi_bdev, pos) ||
774 	    !blk_queue_zone_is_seq(q, pos))
775 		return BLK_STS_IOERR;
776 
777 	/*
778 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
779 	 * split and could result in non-contiguous sectors being written in
780 	 * different zones.
781 	 */
782 	if (nr_sectors > q->limits.chunk_sectors)
783 		return BLK_STS_IOERR;
784 
785 	/* Make sure the BIO is small enough and will not get split */
786 	if (nr_sectors > q->limits.max_zone_append_sectors)
787 		return BLK_STS_IOERR;
788 
789 	bio->bi_opf |= REQ_NOMERGE;
790 
791 	return BLK_STS_OK;
792 }
793 
submit_bio_checks(struct bio * bio)794 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
795 {
796 	struct block_device *bdev = bio->bi_bdev;
797 	struct request_queue *q = bdev->bd_disk->queue;
798 	blk_status_t status = BLK_STS_IOERR;
799 	struct blk_plug *plug;
800 
801 	might_sleep();
802 
803 	plug = blk_mq_plug(q, bio);
804 	if (plug && plug->nowait)
805 		bio->bi_opf |= REQ_NOWAIT;
806 
807 	/*
808 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
809 	 * if queue does not support NOWAIT.
810 	 */
811 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
812 		goto not_supported;
813 
814 	if (should_fail_bio(bio))
815 		goto end_io;
816 	bio_check_ro(bio);
817 	if (!bio_flagged(bio, BIO_REMAPPED)) {
818 		if (unlikely(bio_check_eod(bio)))
819 			goto end_io;
820 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
821 			goto end_io;
822 	}
823 
824 	/*
825 	 * Filter flush bio's early so that bio based drivers without flush
826 	 * support don't have to worry about them.
827 	 */
828 	if (op_is_flush(bio->bi_opf) &&
829 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
830 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
831 		if (!bio_sectors(bio)) {
832 			status = BLK_STS_OK;
833 			goto end_io;
834 		}
835 	}
836 
837 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
838 		bio_clear_hipri(bio);
839 
840 	switch (bio_op(bio)) {
841 	case REQ_OP_DISCARD:
842 		if (!blk_queue_discard(q))
843 			goto not_supported;
844 		break;
845 	case REQ_OP_SECURE_ERASE:
846 		if (!blk_queue_secure_erase(q))
847 			goto not_supported;
848 		break;
849 	case REQ_OP_WRITE_SAME:
850 		if (!q->limits.max_write_same_sectors)
851 			goto not_supported;
852 		break;
853 	case REQ_OP_ZONE_APPEND:
854 		status = blk_check_zone_append(q, bio);
855 		if (status != BLK_STS_OK)
856 			goto end_io;
857 		break;
858 	case REQ_OP_ZONE_RESET:
859 	case REQ_OP_ZONE_OPEN:
860 	case REQ_OP_ZONE_CLOSE:
861 	case REQ_OP_ZONE_FINISH:
862 		if (!blk_queue_is_zoned(q))
863 			goto not_supported;
864 		break;
865 	case REQ_OP_ZONE_RESET_ALL:
866 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
867 			goto not_supported;
868 		break;
869 	case REQ_OP_WRITE_ZEROES:
870 		if (!q->limits.max_write_zeroes_sectors)
871 			goto not_supported;
872 		break;
873 	default:
874 		break;
875 	}
876 
877 	/*
878 	 * Various block parts want %current->io_context, so allocate it up
879 	 * front rather than dealing with lots of pain to allocate it only
880 	 * where needed. This may fail and the block layer knows how to live
881 	 * with it.
882 	 */
883 	if (unlikely(!current->io_context))
884 		create_task_io_context(current, GFP_ATOMIC, q->node);
885 
886 	if (blk_throtl_bio(bio))
887 		return false;
888 
889 	blk_cgroup_bio_start(bio);
890 	blkcg_bio_issue_init(bio);
891 
892 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
893 		trace_block_bio_queue(bio);
894 		/* Now that enqueuing has been traced, we need to trace
895 		 * completion as well.
896 		 */
897 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
898 	}
899 	return true;
900 
901 not_supported:
902 	status = BLK_STS_NOTSUPP;
903 end_io:
904 	bio->bi_status = status;
905 	bio_endio(bio);
906 	return false;
907 }
908 
__submit_bio(struct bio * bio)909 static blk_qc_t __submit_bio(struct bio *bio)
910 {
911 	struct gendisk *disk = bio->bi_bdev->bd_disk;
912 	blk_qc_t ret = BLK_QC_T_NONE;
913 
914 	if (unlikely(bio_queue_enter(bio) != 0))
915 		return BLK_QC_T_NONE;
916 
917 	if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
918 		goto queue_exit;
919 	if (disk->fops->submit_bio) {
920 		ret = disk->fops->submit_bio(bio);
921 		goto queue_exit;
922 	}
923 	return blk_mq_submit_bio(bio);
924 
925 queue_exit:
926 	blk_queue_exit(disk->queue);
927 	return ret;
928 }
929 
930 /*
931  * The loop in this function may be a bit non-obvious, and so deserves some
932  * explanation:
933  *
934  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
935  *    that), so we have a list with a single bio.
936  *  - We pretend that we have just taken it off a longer list, so we assign
937  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
938  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
939  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
940  *    non-NULL value in bio_list and re-enter the loop from the top.
941  *  - In this case we really did just take the bio of the top of the list (no
942  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
943  *    again.
944  *
945  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
946  * bio_list_on_stack[1] contains bios that were submitted before the current
947  *	->submit_bio_bio, but that haven't been processed yet.
948  */
__submit_bio_noacct(struct bio * bio)949 static blk_qc_t __submit_bio_noacct(struct bio *bio)
950 {
951 	struct bio_list bio_list_on_stack[2];
952 	blk_qc_t ret = BLK_QC_T_NONE;
953 
954 	BUG_ON(bio->bi_next);
955 
956 	bio_list_init(&bio_list_on_stack[0]);
957 	current->bio_list = bio_list_on_stack;
958 
959 	do {
960 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
961 		struct bio_list lower, same;
962 
963 		/*
964 		 * Create a fresh bio_list for all subordinate requests.
965 		 */
966 		bio_list_on_stack[1] = bio_list_on_stack[0];
967 		bio_list_init(&bio_list_on_stack[0]);
968 
969 		ret = __submit_bio(bio);
970 
971 		/*
972 		 * Sort new bios into those for a lower level and those for the
973 		 * same level.
974 		 */
975 		bio_list_init(&lower);
976 		bio_list_init(&same);
977 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
978 			if (q == bio->bi_bdev->bd_disk->queue)
979 				bio_list_add(&same, bio);
980 			else
981 				bio_list_add(&lower, bio);
982 
983 		/*
984 		 * Now assemble so we handle the lowest level first.
985 		 */
986 		bio_list_merge(&bio_list_on_stack[0], &lower);
987 		bio_list_merge(&bio_list_on_stack[0], &same);
988 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
989 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
990 
991 	current->bio_list = NULL;
992 	return ret;
993 }
994 
__submit_bio_noacct_mq(struct bio * bio)995 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
996 {
997 	struct bio_list bio_list[2] = { };
998 	blk_qc_t ret;
999 
1000 	current->bio_list = bio_list;
1001 
1002 	do {
1003 		ret = __submit_bio(bio);
1004 	} while ((bio = bio_list_pop(&bio_list[0])));
1005 
1006 	current->bio_list = NULL;
1007 	return ret;
1008 }
1009 
1010 /**
1011  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1012  * @bio:  The bio describing the location in memory and on the device.
1013  *
1014  * This is a version of submit_bio() that shall only be used for I/O that is
1015  * resubmitted to lower level drivers by stacking block drivers.  All file
1016  * systems and other upper level users of the block layer should use
1017  * submit_bio() instead.
1018  */
submit_bio_noacct(struct bio * bio)1019 blk_qc_t submit_bio_noacct(struct bio *bio)
1020 {
1021 	/*
1022 	 * We only want one ->submit_bio to be active at a time, else stack
1023 	 * usage with stacked devices could be a problem.  Use current->bio_list
1024 	 * to collect a list of requests submited by a ->submit_bio method while
1025 	 * it is active, and then process them after it returned.
1026 	 */
1027 	if (current->bio_list) {
1028 		bio_list_add(&current->bio_list[0], bio);
1029 		return BLK_QC_T_NONE;
1030 	}
1031 
1032 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1033 		return __submit_bio_noacct_mq(bio);
1034 	return __submit_bio_noacct(bio);
1035 }
1036 EXPORT_SYMBOL(submit_bio_noacct);
1037 
1038 /**
1039  * submit_bio - submit a bio to the block device layer for I/O
1040  * @bio: The &struct bio which describes the I/O
1041  *
1042  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1043  * fully set up &struct bio that describes the I/O that needs to be done.  The
1044  * bio will be send to the device described by the bi_bdev field.
1045  *
1046  * The success/failure status of the request, along with notification of
1047  * completion, is delivered asynchronously through the ->bi_end_io() callback
1048  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1049  * been called.
1050  */
submit_bio(struct bio * bio)1051 blk_qc_t submit_bio(struct bio *bio)
1052 {
1053 	if (blkcg_punt_bio_submit(bio))
1054 		return BLK_QC_T_NONE;
1055 
1056 	/*
1057 	 * If it's a regular read/write or a barrier with data attached,
1058 	 * go through the normal accounting stuff before submission.
1059 	 */
1060 	if (bio_has_data(bio)) {
1061 		unsigned int count;
1062 
1063 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1064 			count = queue_logical_block_size(
1065 					bio->bi_bdev->bd_disk->queue) >> 9;
1066 		else
1067 			count = bio_sectors(bio);
1068 
1069 		if (op_is_write(bio_op(bio))) {
1070 			count_vm_events(PGPGOUT, count);
1071 		} else {
1072 			task_io_account_read(bio->bi_iter.bi_size);
1073 			count_vm_events(PGPGIN, count);
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * If we're reading data that is part of the userspace workingset, count
1079 	 * submission time as memory stall.  When the device is congested, or
1080 	 * the submitting cgroup IO-throttled, submission can be a significant
1081 	 * part of overall IO time.
1082 	 */
1083 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1084 	    bio_flagged(bio, BIO_WORKINGSET))) {
1085 		unsigned long pflags;
1086 		blk_qc_t ret;
1087 
1088 		psi_memstall_enter(&pflags);
1089 		ret = submit_bio_noacct(bio);
1090 		psi_memstall_leave(&pflags);
1091 
1092 		return ret;
1093 	}
1094 
1095 	return submit_bio_noacct(bio);
1096 }
1097 EXPORT_SYMBOL(submit_bio);
1098 
1099 /**
1100  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1101  *                              for the new queue limits
1102  * @q:  the queue
1103  * @rq: the request being checked
1104  *
1105  * Description:
1106  *    @rq may have been made based on weaker limitations of upper-level queues
1107  *    in request stacking drivers, and it may violate the limitation of @q.
1108  *    Since the block layer and the underlying device driver trust @rq
1109  *    after it is inserted to @q, it should be checked against @q before
1110  *    the insertion using this generic function.
1111  *
1112  *    Request stacking drivers like request-based dm may change the queue
1113  *    limits when retrying requests on other queues. Those requests need
1114  *    to be checked against the new queue limits again during dispatch.
1115  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1116 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1117 				      struct request *rq)
1118 {
1119 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1120 
1121 	if (blk_rq_sectors(rq) > max_sectors) {
1122 		/*
1123 		 * SCSI device does not have a good way to return if
1124 		 * Write Same/Zero is actually supported. If a device rejects
1125 		 * a non-read/write command (discard, write same,etc.) the
1126 		 * low-level device driver will set the relevant queue limit to
1127 		 * 0 to prevent blk-lib from issuing more of the offending
1128 		 * operations. Commands queued prior to the queue limit being
1129 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1130 		 * errors being propagated to upper layers.
1131 		 */
1132 		if (max_sectors == 0)
1133 			return BLK_STS_NOTSUPP;
1134 
1135 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1136 			__func__, blk_rq_sectors(rq), max_sectors);
1137 		return BLK_STS_IOERR;
1138 	}
1139 
1140 	/*
1141 	 * The queue settings related to segment counting may differ from the
1142 	 * original queue.
1143 	 */
1144 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1145 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1146 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1147 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1148 		return BLK_STS_IOERR;
1149 	}
1150 
1151 	return BLK_STS_OK;
1152 }
1153 
1154 /**
1155  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1156  * @q:  the queue to submit the request
1157  * @rq: the request being queued
1158  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1159 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1160 {
1161 	blk_status_t ret;
1162 
1163 	ret = blk_cloned_rq_check_limits(q, rq);
1164 	if (ret != BLK_STS_OK)
1165 		return ret;
1166 
1167 	if (rq->rq_disk &&
1168 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1169 		return BLK_STS_IOERR;
1170 
1171 	if (blk_crypto_insert_cloned_request(rq))
1172 		return BLK_STS_IOERR;
1173 
1174 	if (blk_queue_io_stat(q))
1175 		blk_account_io_start(rq);
1176 
1177 	/*
1178 	 * Since we have a scheduler attached on the top device,
1179 	 * bypass a potential scheduler on the bottom device for
1180 	 * insert.
1181 	 */
1182 	return blk_mq_request_issue_directly(rq, true);
1183 }
1184 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1185 
1186 /**
1187  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1188  * @rq: request to examine
1189  *
1190  * Description:
1191  *     A request could be merge of IOs which require different failure
1192  *     handling.  This function determines the number of bytes which
1193  *     can be failed from the beginning of the request without
1194  *     crossing into area which need to be retried further.
1195  *
1196  * Return:
1197  *     The number of bytes to fail.
1198  */
blk_rq_err_bytes(const struct request * rq)1199 unsigned int blk_rq_err_bytes(const struct request *rq)
1200 {
1201 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1202 	unsigned int bytes = 0;
1203 	struct bio *bio;
1204 
1205 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1206 		return blk_rq_bytes(rq);
1207 
1208 	/*
1209 	 * Currently the only 'mixing' which can happen is between
1210 	 * different fastfail types.  We can safely fail portions
1211 	 * which have all the failfast bits that the first one has -
1212 	 * the ones which are at least as eager to fail as the first
1213 	 * one.
1214 	 */
1215 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1216 		if ((bio->bi_opf & ff) != ff)
1217 			break;
1218 		bytes += bio->bi_iter.bi_size;
1219 	}
1220 
1221 	/* this could lead to infinite loop */
1222 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1223 	return bytes;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1226 
update_io_ticks(struct block_device * part,unsigned long now,bool end)1227 static void update_io_ticks(struct block_device *part, unsigned long now,
1228 		bool end)
1229 {
1230 	unsigned long stamp;
1231 again:
1232 	stamp = READ_ONCE(part->bd_stamp);
1233 	if (unlikely(time_after(now, stamp))) {
1234 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1235 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1236 	}
1237 	if (part->bd_partno) {
1238 		part = bdev_whole(part);
1239 		goto again;
1240 	}
1241 }
1242 
blk_account_io_completion(struct request * req,unsigned int bytes)1243 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1244 {
1245 	if (req->part && blk_do_io_stat(req)) {
1246 		const int sgrp = op_stat_group(req_op(req));
1247 
1248 		part_stat_lock();
1249 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1250 		part_stat_unlock();
1251 	}
1252 }
1253 
blk_account_io_done(struct request * req,u64 now)1254 void blk_account_io_done(struct request *req, u64 now)
1255 {
1256 	/*
1257 	 * Account IO completion.  flush_rq isn't accounted as a
1258 	 * normal IO on queueing nor completion.  Accounting the
1259 	 * containing request is enough.
1260 	 */
1261 	if (req->part && blk_do_io_stat(req) &&
1262 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1263 		const int sgrp = op_stat_group(req_op(req));
1264 
1265 		part_stat_lock();
1266 		update_io_ticks(req->part, jiffies, true);
1267 		part_stat_inc(req->part, ios[sgrp]);
1268 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1269 		part_stat_unlock();
1270 	}
1271 }
1272 
blk_account_io_start(struct request * rq)1273 void blk_account_io_start(struct request *rq)
1274 {
1275 	if (!blk_do_io_stat(rq))
1276 		return;
1277 
1278 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1279 	if (rq->bio && rq->bio->bi_bdev)
1280 		rq->part = rq->bio->bi_bdev;
1281 	else
1282 		rq->part = rq->rq_disk->part0;
1283 
1284 	part_stat_lock();
1285 	update_io_ticks(rq->part, jiffies, false);
1286 	part_stat_unlock();
1287 }
1288 
__part_start_io_acct(struct block_device * part,unsigned int sectors,unsigned int op,unsigned long start_time)1289 static unsigned long __part_start_io_acct(struct block_device *part,
1290 					  unsigned int sectors, unsigned int op,
1291 					  unsigned long start_time)
1292 {
1293 	const int sgrp = op_stat_group(op);
1294 
1295 	part_stat_lock();
1296 	update_io_ticks(part, start_time, false);
1297 	part_stat_inc(part, ios[sgrp]);
1298 	part_stat_add(part, sectors[sgrp], sectors);
1299 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1300 	part_stat_unlock();
1301 
1302 	return start_time;
1303 }
1304 
1305 /**
1306  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1307  * @bio:	bio to start account for
1308  * @start_time:	start time that should be passed back to bio_end_io_acct().
1309  */
bio_start_io_acct_time(struct bio * bio,unsigned long start_time)1310 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1311 {
1312 	__part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1313 			     bio_op(bio), start_time);
1314 }
1315 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1316 
1317 /**
1318  * bio_start_io_acct - start I/O accounting for bio based drivers
1319  * @bio:	bio to start account for
1320  *
1321  * Returns the start time that should be passed back to bio_end_io_acct().
1322  */
bio_start_io_acct(struct bio * bio)1323 unsigned long bio_start_io_acct(struct bio *bio)
1324 {
1325 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1326 				    bio_op(bio), jiffies);
1327 }
1328 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1329 
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1330 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1331 				 unsigned int op)
1332 {
1333 	return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1334 }
1335 EXPORT_SYMBOL(disk_start_io_acct);
1336 
__part_end_io_acct(struct block_device * part,unsigned int op,unsigned long start_time)1337 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1338 			       unsigned long start_time)
1339 {
1340 	const int sgrp = op_stat_group(op);
1341 	unsigned long now = READ_ONCE(jiffies);
1342 	unsigned long duration = now - start_time;
1343 
1344 	part_stat_lock();
1345 	update_io_ticks(part, now, true);
1346 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1347 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1348 	part_stat_unlock();
1349 }
1350 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1351 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1352 		struct block_device *orig_bdev)
1353 {
1354 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1355 }
1356 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1357 
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1358 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1359 		      unsigned long start_time)
1360 {
1361 	__part_end_io_acct(disk->part0, op, start_time);
1362 }
1363 EXPORT_SYMBOL(disk_end_io_acct);
1364 
1365 /*
1366  * Steal bios from a request and add them to a bio list.
1367  * The request must not have been partially completed before.
1368  */
blk_steal_bios(struct bio_list * list,struct request * rq)1369 void blk_steal_bios(struct bio_list *list, struct request *rq)
1370 {
1371 	if (rq->bio) {
1372 		if (list->tail)
1373 			list->tail->bi_next = rq->bio;
1374 		else
1375 			list->head = rq->bio;
1376 		list->tail = rq->biotail;
1377 
1378 		rq->bio = NULL;
1379 		rq->biotail = NULL;
1380 	}
1381 
1382 	rq->__data_len = 0;
1383 }
1384 EXPORT_SYMBOL_GPL(blk_steal_bios);
1385 
1386 /**
1387  * blk_update_request - Complete multiple bytes without completing the request
1388  * @req:      the request being processed
1389  * @error:    block status code
1390  * @nr_bytes: number of bytes to complete for @req
1391  *
1392  * Description:
1393  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1394  *     the request structure even if @req doesn't have leftover.
1395  *     If @req has leftover, sets it up for the next range of segments.
1396  *
1397  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1398  *     %false return from this function.
1399  *
1400  * Note:
1401  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1402  *      except in the consistency check at the end of this function.
1403  *
1404  * Return:
1405  *     %false - this request doesn't have any more data
1406  *     %true  - this request has more data
1407  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1408 bool blk_update_request(struct request *req, blk_status_t error,
1409 		unsigned int nr_bytes)
1410 {
1411 	int total_bytes;
1412 
1413 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1414 
1415 	if (!req->bio)
1416 		return false;
1417 
1418 #ifdef CONFIG_BLK_DEV_INTEGRITY
1419 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1420 	    error == BLK_STS_OK)
1421 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1422 #endif
1423 
1424 	/*
1425 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
1426 	 * bio_endio().  Therefore, the keyslot must be released before that.
1427 	 */
1428 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1429 		__blk_crypto_rq_put_keyslot(req);
1430 
1431 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1432 		     !(req->rq_flags & RQF_QUIET)))
1433 		print_req_error(req, error, __func__);
1434 
1435 	blk_account_io_completion(req, nr_bytes);
1436 
1437 	total_bytes = 0;
1438 	while (req->bio) {
1439 		struct bio *bio = req->bio;
1440 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1441 
1442 		if (bio_bytes == bio->bi_iter.bi_size)
1443 			req->bio = bio->bi_next;
1444 
1445 		/* Completion has already been traced */
1446 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1447 		req_bio_endio(req, bio, bio_bytes, error);
1448 
1449 		total_bytes += bio_bytes;
1450 		nr_bytes -= bio_bytes;
1451 
1452 		if (!nr_bytes)
1453 			break;
1454 	}
1455 
1456 	/*
1457 	 * completely done
1458 	 */
1459 	if (!req->bio) {
1460 		/*
1461 		 * Reset counters so that the request stacking driver
1462 		 * can find how many bytes remain in the request
1463 		 * later.
1464 		 */
1465 		req->__data_len = 0;
1466 		return false;
1467 	}
1468 
1469 	req->__data_len -= total_bytes;
1470 
1471 	/* update sector only for requests with clear definition of sector */
1472 	if (!blk_rq_is_passthrough(req))
1473 		req->__sector += total_bytes >> 9;
1474 
1475 	/* mixed attributes always follow the first bio */
1476 	if (req->rq_flags & RQF_MIXED_MERGE) {
1477 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1478 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1479 	}
1480 
1481 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1482 		/*
1483 		 * If total number of sectors is less than the first segment
1484 		 * size, something has gone terribly wrong.
1485 		 */
1486 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1487 			blk_dump_rq_flags(req, "request botched");
1488 			req->__data_len = blk_rq_cur_bytes(req);
1489 		}
1490 
1491 		/* recalculate the number of segments */
1492 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1493 	}
1494 
1495 	return true;
1496 }
1497 EXPORT_SYMBOL_GPL(blk_update_request);
1498 
1499 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1500 /**
1501  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1502  * @rq: the request to be flushed
1503  *
1504  * Description:
1505  *     Flush all pages in @rq.
1506  */
rq_flush_dcache_pages(struct request * rq)1507 void rq_flush_dcache_pages(struct request *rq)
1508 {
1509 	struct req_iterator iter;
1510 	struct bio_vec bvec;
1511 
1512 	rq_for_each_segment(bvec, rq, iter)
1513 		flush_dcache_page(bvec.bv_page);
1514 }
1515 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1516 #endif
1517 
1518 /**
1519  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1520  * @q : the queue of the device being checked
1521  *
1522  * Description:
1523  *    Check if underlying low-level drivers of a device are busy.
1524  *    If the drivers want to export their busy state, they must set own
1525  *    exporting function using blk_queue_lld_busy() first.
1526  *
1527  *    Basically, this function is used only by request stacking drivers
1528  *    to stop dispatching requests to underlying devices when underlying
1529  *    devices are busy.  This behavior helps more I/O merging on the queue
1530  *    of the request stacking driver and prevents I/O throughput regression
1531  *    on burst I/O load.
1532  *
1533  * Return:
1534  *    0 - Not busy (The request stacking driver should dispatch request)
1535  *    1 - Busy (The request stacking driver should stop dispatching request)
1536  */
blk_lld_busy(struct request_queue * q)1537 int blk_lld_busy(struct request_queue *q)
1538 {
1539 	if (queue_is_mq(q) && q->mq_ops->busy)
1540 		return q->mq_ops->busy(q);
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(blk_lld_busy);
1545 
1546 /**
1547  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1548  * @rq: the clone request to be cleaned up
1549  *
1550  * Description:
1551  *     Free all bios in @rq for a cloned request.
1552  */
blk_rq_unprep_clone(struct request * rq)1553 void blk_rq_unprep_clone(struct request *rq)
1554 {
1555 	struct bio *bio;
1556 
1557 	while ((bio = rq->bio) != NULL) {
1558 		rq->bio = bio->bi_next;
1559 
1560 		bio_put(bio);
1561 	}
1562 }
1563 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1564 
1565 /**
1566  * blk_rq_prep_clone - Helper function to setup clone request
1567  * @rq: the request to be setup
1568  * @rq_src: original request to be cloned
1569  * @bs: bio_set that bios for clone are allocated from
1570  * @gfp_mask: memory allocation mask for bio
1571  * @bio_ctr: setup function to be called for each clone bio.
1572  *           Returns %0 for success, non %0 for failure.
1573  * @data: private data to be passed to @bio_ctr
1574  *
1575  * Description:
1576  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1577  *     Also, pages which the original bios are pointing to are not copied
1578  *     and the cloned bios just point same pages.
1579  *     So cloned bios must be completed before original bios, which means
1580  *     the caller must complete @rq before @rq_src.
1581  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1582 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1583 		      struct bio_set *bs, gfp_t gfp_mask,
1584 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1585 		      void *data)
1586 {
1587 	struct bio *bio, *bio_src;
1588 
1589 	if (!bs)
1590 		bs = &fs_bio_set;
1591 
1592 	__rq_for_each_bio(bio_src, rq_src) {
1593 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1594 		if (!bio)
1595 			goto free_and_out;
1596 
1597 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1598 			goto free_and_out;
1599 
1600 		if (rq->bio) {
1601 			rq->biotail->bi_next = bio;
1602 			rq->biotail = bio;
1603 		} else {
1604 			rq->bio = rq->biotail = bio;
1605 		}
1606 		bio = NULL;
1607 	}
1608 
1609 	/* Copy attributes of the original request to the clone request. */
1610 	rq->__sector = blk_rq_pos(rq_src);
1611 	rq->__data_len = blk_rq_bytes(rq_src);
1612 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1613 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1614 		rq->special_vec = rq_src->special_vec;
1615 	}
1616 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1617 	rq->ioprio = rq_src->ioprio;
1618 
1619 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1620 		goto free_and_out;
1621 
1622 	return 0;
1623 
1624 free_and_out:
1625 	if (bio)
1626 		bio_put(bio);
1627 	blk_rq_unprep_clone(rq);
1628 
1629 	return -ENOMEM;
1630 }
1631 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1632 
kblockd_schedule_work(struct work_struct * work)1633 int kblockd_schedule_work(struct work_struct *work)
1634 {
1635 	return queue_work(kblockd_workqueue, work);
1636 }
1637 EXPORT_SYMBOL(kblockd_schedule_work);
1638 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1639 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1640 				unsigned long delay)
1641 {
1642 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1643 }
1644 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1645 
1646 /**
1647  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1648  * @plug:	The &struct blk_plug that needs to be initialized
1649  *
1650  * Description:
1651  *   blk_start_plug() indicates to the block layer an intent by the caller
1652  *   to submit multiple I/O requests in a batch.  The block layer may use
1653  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1654  *   is called.  However, the block layer may choose to submit requests
1655  *   before a call to blk_finish_plug() if the number of queued I/Os
1656  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1657  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1658  *   the task schedules (see below).
1659  *
1660  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1661  *   pending I/O should the task end up blocking between blk_start_plug() and
1662  *   blk_finish_plug(). This is important from a performance perspective, but
1663  *   also ensures that we don't deadlock. For instance, if the task is blocking
1664  *   for a memory allocation, memory reclaim could end up wanting to free a
1665  *   page belonging to that request that is currently residing in our private
1666  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1667  *   this kind of deadlock.
1668  */
blk_start_plug(struct blk_plug * plug)1669 void blk_start_plug(struct blk_plug *plug)
1670 {
1671 	struct task_struct *tsk = current;
1672 
1673 	/*
1674 	 * If this is a nested plug, don't actually assign it.
1675 	 */
1676 	if (tsk->plug)
1677 		return;
1678 
1679 	INIT_LIST_HEAD(&plug->mq_list);
1680 	INIT_LIST_HEAD(&plug->cb_list);
1681 	plug->rq_count = 0;
1682 	plug->multiple_queues = false;
1683 	plug->nowait = false;
1684 
1685 	/*
1686 	 * Store ordering should not be needed here, since a potential
1687 	 * preempt will imply a full memory barrier
1688 	 */
1689 	tsk->plug = plug;
1690 }
1691 EXPORT_SYMBOL(blk_start_plug);
1692 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1693 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1694 {
1695 	LIST_HEAD(callbacks);
1696 
1697 	while (!list_empty(&plug->cb_list)) {
1698 		list_splice_init(&plug->cb_list, &callbacks);
1699 
1700 		while (!list_empty(&callbacks)) {
1701 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1702 							  struct blk_plug_cb,
1703 							  list);
1704 			list_del(&cb->list);
1705 			cb->callback(cb, from_schedule);
1706 		}
1707 	}
1708 }
1709 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1710 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1711 				      int size)
1712 {
1713 	struct blk_plug *plug = current->plug;
1714 	struct blk_plug_cb *cb;
1715 
1716 	if (!plug)
1717 		return NULL;
1718 
1719 	list_for_each_entry(cb, &plug->cb_list, list)
1720 		if (cb->callback == unplug && cb->data == data)
1721 			return cb;
1722 
1723 	/* Not currently on the callback list */
1724 	BUG_ON(size < sizeof(*cb));
1725 	cb = kzalloc(size, GFP_ATOMIC);
1726 	if (cb) {
1727 		cb->data = data;
1728 		cb->callback = unplug;
1729 		list_add(&cb->list, &plug->cb_list);
1730 	}
1731 	return cb;
1732 }
1733 EXPORT_SYMBOL(blk_check_plugged);
1734 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1735 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1736 {
1737 	flush_plug_callbacks(plug, from_schedule);
1738 
1739 	if (!list_empty(&plug->mq_list))
1740 		blk_mq_flush_plug_list(plug, from_schedule);
1741 }
1742 
1743 /**
1744  * blk_finish_plug - mark the end of a batch of submitted I/O
1745  * @plug:	The &struct blk_plug passed to blk_start_plug()
1746  *
1747  * Description:
1748  * Indicate that a batch of I/O submissions is complete.  This function
1749  * must be paired with an initial call to blk_start_plug().  The intent
1750  * is to allow the block layer to optimize I/O submission.  See the
1751  * documentation for blk_start_plug() for more information.
1752  */
blk_finish_plug(struct blk_plug * plug)1753 void blk_finish_plug(struct blk_plug *plug)
1754 {
1755 	if (plug != current->plug)
1756 		return;
1757 	blk_flush_plug_list(plug, false);
1758 
1759 	current->plug = NULL;
1760 }
1761 EXPORT_SYMBOL(blk_finish_plug);
1762 
blk_io_schedule(void)1763 void blk_io_schedule(void)
1764 {
1765 	/* Prevent hang_check timer from firing at us during very long I/O */
1766 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1767 
1768 	if (timeout)
1769 		io_schedule_timeout(timeout);
1770 	else
1771 		io_schedule();
1772 }
1773 EXPORT_SYMBOL_GPL(blk_io_schedule);
1774 
blk_dev_init(void)1775 int __init blk_dev_init(void)
1776 {
1777 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1778 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1779 			sizeof_field(struct request, cmd_flags));
1780 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1781 			sizeof_field(struct bio, bi_opf));
1782 
1783 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1784 	kblockd_workqueue = alloc_workqueue("kblockd",
1785 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1786 	if (!kblockd_workqueue)
1787 		panic("Failed to create kblockd\n");
1788 
1789 	blk_requestq_cachep = kmem_cache_create("request_queue",
1790 		sizeof(struct internal_request_queue), 0, SLAB_PANIC, NULL);
1791 
1792 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1793 	blk_mq_debugfs_init();
1794 
1795 	return 0;
1796 }
1797