• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 
22 /*
23  * MUSTDO:
24  *   - test ext4_ext_search_left() and ext4_ext_search_right()
25  *   - search for metadata in few groups
26  *
27  * TODO v4:
28  *   - normalization should take into account whether file is still open
29  *   - discard preallocations if no free space left (policy?)
30  *   - don't normalize tails
31  *   - quota
32  *   - reservation for superuser
33  *
34  * TODO v3:
35  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36  *   - track min/max extents in each group for better group selection
37  *   - mb_mark_used() may allocate chunk right after splitting buddy
38  *   - tree of groups sorted by number of free blocks
39  *   - error handling
40  */
41 
42 /*
43  * The allocation request involve request for multiple number of blocks
44  * near to the goal(block) value specified.
45  *
46  * During initialization phase of the allocator we decide to use the
47  * group preallocation or inode preallocation depending on the size of
48  * the file. The size of the file could be the resulting file size we
49  * would have after allocation, or the current file size, which ever
50  * is larger. If the size is less than sbi->s_mb_stream_request we
51  * select to use the group preallocation. The default value of
52  * s_mb_stream_request is 16 blocks. This can also be tuned via
53  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54  * terms of number of blocks.
55  *
56  * The main motivation for having small file use group preallocation is to
57  * ensure that we have small files closer together on the disk.
58  *
59  * First stage the allocator looks at the inode prealloc list,
60  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61  * spaces for this particular inode. The inode prealloc space is
62  * represented as:
63  *
64  * pa_lstart -> the logical start block for this prealloc space
65  * pa_pstart -> the physical start block for this prealloc space
66  * pa_len    -> length for this prealloc space (in clusters)
67  * pa_free   ->  free space available in this prealloc space (in clusters)
68  *
69  * The inode preallocation space is used looking at the _logical_ start
70  * block. If only the logical file block falls within the range of prealloc
71  * space we will consume the particular prealloc space. This makes sure that
72  * we have contiguous physical blocks representing the file blocks
73  *
74  * The important thing to be noted in case of inode prealloc space is that
75  * we don't modify the values associated to inode prealloc space except
76  * pa_free.
77  *
78  * If we are not able to find blocks in the inode prealloc space and if we
79  * have the group allocation flag set then we look at the locality group
80  * prealloc space. These are per CPU prealloc list represented as
81  *
82  * ext4_sb_info.s_locality_groups[smp_processor_id()]
83  *
84  * The reason for having a per cpu locality group is to reduce the contention
85  * between CPUs. It is possible to get scheduled at this point.
86  *
87  * The locality group prealloc space is used looking at whether we have
88  * enough free space (pa_free) within the prealloc space.
89  *
90  * If we can't allocate blocks via inode prealloc or/and locality group
91  * prealloc then we look at the buddy cache. The buddy cache is represented
92  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93  * mapped to the buddy and bitmap information regarding different
94  * groups. The buddy information is attached to buddy cache inode so that
95  * we can access them through the page cache. The information regarding
96  * each group is loaded via ext4_mb_load_buddy.  The information involve
97  * block bitmap and buddy information. The information are stored in the
98  * inode as:
99  *
100  *  {                        page                        }
101  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102  *
103  *
104  * one block each for bitmap and buddy information.  So for each group we
105  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106  * blocksize) blocks.  So it can have information regarding groups_per_page
107  * which is blocks_per_page/2
108  *
109  * The buddy cache inode is not stored on disk. The inode is thrown
110  * away when the filesystem is unmounted.
111  *
112  * We look for count number of blocks in the buddy cache. If we were able
113  * to locate that many free blocks we return with additional information
114  * regarding rest of the contiguous physical block available
115  *
116  * Before allocating blocks via buddy cache we normalize the request
117  * blocks. This ensure we ask for more blocks that we needed. The extra
118  * blocks that we get after allocation is added to the respective prealloc
119  * list. In case of inode preallocation we follow a list of heuristics
120  * based on file size. This can be found in ext4_mb_normalize_request. If
121  * we are doing a group prealloc we try to normalize the request to
122  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123  * dependent on the cluster size; for non-bigalloc file systems, it is
124  * 512 blocks. This can be tuned via
125  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126  * terms of number of blocks. If we have mounted the file system with -O
127  * stripe=<value> option the group prealloc request is normalized to the
128  * smallest multiple of the stripe value (sbi->s_stripe) which is
129  * greater than the default mb_group_prealloc.
130  *
131  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132  * structures in two data structures:
133  *
134  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135  *
136  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137  *
138  *    This is an array of lists where the index in the array represents the
139  *    largest free order in the buddy bitmap of the participating group infos of
140  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141  *    number of buddy bitmap orders possible) number of lists. Group-infos are
142  *    placed in appropriate lists.
143  *
144  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
145  *
146  *    Locking: sbi->s_mb_rb_lock (rwlock)
147  *
148  *    This is a red black tree consisting of group infos and the tree is sorted
149  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
150  *    / ext4_group_info->bb_fragments).
151  *
152  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
153  * structures to decide the order in which groups are to be traversed for
154  * fulfilling an allocation request.
155  *
156  * At CR = 0, we look for groups which have the largest_free_order >= the order
157  * of the request. We directly look at the largest free order list in the data
158  * structure (1) above where largest_free_order = order of the request. If that
159  * list is empty, we look at remaining list in the increasing order of
160  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
161  *
162  * At CR = 1, we only consider groups where average fragment size > request
163  * size. So, we lookup a group which has average fragment size just above or
164  * equal to request size using our rb tree (data structure 2) in O(log N) time.
165  *
166  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
167  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
168  *
169  * The regular allocator (using the buddy cache) supports a few tunables.
170  *
171  * /sys/fs/ext4/<partition>/mb_min_to_scan
172  * /sys/fs/ext4/<partition>/mb_max_to_scan
173  * /sys/fs/ext4/<partition>/mb_order2_req
174  * /sys/fs/ext4/<partition>/mb_linear_limit
175  *
176  * The regular allocator uses buddy scan only if the request len is power of
177  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
178  * value of s_mb_order2_reqs can be tuned via
179  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
180  * stripe size (sbi->s_stripe), we try to search for contiguous block in
181  * stripe size. This should result in better allocation on RAID setups. If
182  * not, we search in the specific group using bitmap for best extents. The
183  * tunable min_to_scan and max_to_scan control the behaviour here.
184  * min_to_scan indicate how long the mballoc __must__ look for a best
185  * extent and max_to_scan indicates how long the mballoc __can__ look for a
186  * best extent in the found extents. Searching for the blocks starts with
187  * the group specified as the goal value in allocation context via
188  * ac_g_ex. Each group is first checked based on the criteria whether it
189  * can be used for allocation. ext4_mb_good_group explains how the groups are
190  * checked.
191  *
192  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
193  * get traversed linearly. That may result in subsequent allocations being not
194  * close to each other. And so, the underlying device may get filled up in a
195  * non-linear fashion. While that may not matter on non-rotational devices, for
196  * rotational devices that may result in higher seek times. "mb_linear_limit"
197  * tells mballoc how many groups mballoc should search linearly before
198  * performing consulting above data structures for more efficient lookups. For
199  * non rotational devices, this value defaults to 0 and for rotational devices
200  * this is set to MB_DEFAULT_LINEAR_LIMIT.
201  *
202  * Both the prealloc space are getting populated as above. So for the first
203  * request we will hit the buddy cache which will result in this prealloc
204  * space getting filled. The prealloc space is then later used for the
205  * subsequent request.
206  */
207 
208 /*
209  * mballoc operates on the following data:
210  *  - on-disk bitmap
211  *  - in-core buddy (actually includes buddy and bitmap)
212  *  - preallocation descriptors (PAs)
213  *
214  * there are two types of preallocations:
215  *  - inode
216  *    assiged to specific inode and can be used for this inode only.
217  *    it describes part of inode's space preallocated to specific
218  *    physical blocks. any block from that preallocated can be used
219  *    independent. the descriptor just tracks number of blocks left
220  *    unused. so, before taking some block from descriptor, one must
221  *    make sure corresponded logical block isn't allocated yet. this
222  *    also means that freeing any block within descriptor's range
223  *    must discard all preallocated blocks.
224  *  - locality group
225  *    assigned to specific locality group which does not translate to
226  *    permanent set of inodes: inode can join and leave group. space
227  *    from this type of preallocation can be used for any inode. thus
228  *    it's consumed from the beginning to the end.
229  *
230  * relation between them can be expressed as:
231  *    in-core buddy = on-disk bitmap + preallocation descriptors
232  *
233  * this mean blocks mballoc considers used are:
234  *  - allocated blocks (persistent)
235  *  - preallocated blocks (non-persistent)
236  *
237  * consistency in mballoc world means that at any time a block is either
238  * free or used in ALL structures. notice: "any time" should not be read
239  * literally -- time is discrete and delimited by locks.
240  *
241  *  to keep it simple, we don't use block numbers, instead we count number of
242  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
243  *
244  * all operations can be expressed as:
245  *  - init buddy:			buddy = on-disk + PAs
246  *  - new PA:				buddy += N; PA = N
247  *  - use inode PA:			on-disk += N; PA -= N
248  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
249  *  - use locality group PA		on-disk += N; PA -= N
250  *  - discard locality group PA		buddy -= PA; PA = 0
251  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
252  *        is used in real operation because we can't know actual used
253  *        bits from PA, only from on-disk bitmap
254  *
255  * if we follow this strict logic, then all operations above should be atomic.
256  * given some of them can block, we'd have to use something like semaphores
257  * killing performance on high-end SMP hardware. let's try to relax it using
258  * the following knowledge:
259  *  1) if buddy is referenced, it's already initialized
260  *  2) while block is used in buddy and the buddy is referenced,
261  *     nobody can re-allocate that block
262  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
263  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
264  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
265  *     block
266  *
267  * so, now we're building a concurrency table:
268  *  - init buddy vs.
269  *    - new PA
270  *      blocks for PA are allocated in the buddy, buddy must be referenced
271  *      until PA is linked to allocation group to avoid concurrent buddy init
272  *    - use inode PA
273  *      we need to make sure that either on-disk bitmap or PA has uptodate data
274  *      given (3) we care that PA-=N operation doesn't interfere with init
275  *    - discard inode PA
276  *      the simplest way would be to have buddy initialized by the discard
277  *    - use locality group PA
278  *      again PA-=N must be serialized with init
279  *    - discard locality group PA
280  *      the simplest way would be to have buddy initialized by the discard
281  *  - new PA vs.
282  *    - use inode PA
283  *      i_data_sem serializes them
284  *    - discard inode PA
285  *      discard process must wait until PA isn't used by another process
286  *    - use locality group PA
287  *      some mutex should serialize them
288  *    - discard locality group PA
289  *      discard process must wait until PA isn't used by another process
290  *  - use inode PA
291  *    - use inode PA
292  *      i_data_sem or another mutex should serializes them
293  *    - discard inode PA
294  *      discard process must wait until PA isn't used by another process
295  *    - use locality group PA
296  *      nothing wrong here -- they're different PAs covering different blocks
297  *    - discard locality group PA
298  *      discard process must wait until PA isn't used by another process
299  *
300  * now we're ready to make few consequences:
301  *  - PA is referenced and while it is no discard is possible
302  *  - PA is referenced until block isn't marked in on-disk bitmap
303  *  - PA changes only after on-disk bitmap
304  *  - discard must not compete with init. either init is done before
305  *    any discard or they're serialized somehow
306  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
307  *
308  * a special case when we've used PA to emptiness. no need to modify buddy
309  * in this case, but we should care about concurrent init
310  *
311  */
312 
313  /*
314  * Logic in few words:
315  *
316  *  - allocation:
317  *    load group
318  *    find blocks
319  *    mark bits in on-disk bitmap
320  *    release group
321  *
322  *  - use preallocation:
323  *    find proper PA (per-inode or group)
324  *    load group
325  *    mark bits in on-disk bitmap
326  *    release group
327  *    release PA
328  *
329  *  - free:
330  *    load group
331  *    mark bits in on-disk bitmap
332  *    release group
333  *
334  *  - discard preallocations in group:
335  *    mark PAs deleted
336  *    move them onto local list
337  *    load on-disk bitmap
338  *    load group
339  *    remove PA from object (inode or locality group)
340  *    mark free blocks in-core
341  *
342  *  - discard inode's preallocations:
343  */
344 
345 /*
346  * Locking rules
347  *
348  * Locks:
349  *  - bitlock on a group	(group)
350  *  - object (inode/locality)	(object)
351  *  - per-pa lock		(pa)
352  *  - cr0 lists lock		(cr0)
353  *  - cr1 tree lock		(cr1)
354  *
355  * Paths:
356  *  - new pa
357  *    object
358  *    group
359  *
360  *  - find and use pa:
361  *    pa
362  *
363  *  - release consumed pa:
364  *    pa
365  *    group
366  *    object
367  *
368  *  - generate in-core bitmap:
369  *    group
370  *        pa
371  *
372  *  - discard all for given object (inode, locality group):
373  *    object
374  *        pa
375  *    group
376  *
377  *  - discard all for given group:
378  *    group
379  *        pa
380  *    group
381  *        object
382  *
383  *  - allocation path (ext4_mb_regular_allocator)
384  *    group
385  *    cr0/cr1
386  */
387 static struct kmem_cache *ext4_pspace_cachep;
388 static struct kmem_cache *ext4_ac_cachep;
389 static struct kmem_cache *ext4_free_data_cachep;
390 
391 /* We create slab caches for groupinfo data structures based on the
392  * superblock block size.  There will be one per mounted filesystem for
393  * each unique s_blocksize_bits */
394 #define NR_GRPINFO_CACHES 8
395 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
396 
397 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
398 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
399 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
400 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
401 };
402 
403 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
404 					ext4_group_t group);
405 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
406 						ext4_group_t group);
407 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
408 
409 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
410 			       ext4_group_t group, int cr);
411 
412 static int ext4_try_to_trim_range(struct super_block *sb,
413 		struct ext4_buddy *e4b, ext4_grpblk_t start,
414 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
415 
416 /*
417  * The algorithm using this percpu seq counter goes below:
418  * 1. We sample the percpu discard_pa_seq counter before trying for block
419  *    allocation in ext4_mb_new_blocks().
420  * 2. We increment this percpu discard_pa_seq counter when we either allocate
421  *    or free these blocks i.e. while marking those blocks as used/free in
422  *    mb_mark_used()/mb_free_blocks().
423  * 3. We also increment this percpu seq counter when we successfully identify
424  *    that the bb_prealloc_list is not empty and hence proceed for discarding
425  *    of those PAs inside ext4_mb_discard_group_preallocations().
426  *
427  * Now to make sure that the regular fast path of block allocation is not
428  * affected, as a small optimization we only sample the percpu seq counter
429  * on that cpu. Only when the block allocation fails and when freed blocks
430  * found were 0, that is when we sample percpu seq counter for all cpus using
431  * below function ext4_get_discard_pa_seq_sum(). This happens after making
432  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
433  */
434 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)435 static inline u64 ext4_get_discard_pa_seq_sum(void)
436 {
437 	int __cpu;
438 	u64 __seq = 0;
439 
440 	for_each_possible_cpu(__cpu)
441 		__seq += per_cpu(discard_pa_seq, __cpu);
442 	return __seq;
443 }
444 
mb_correct_addr_and_bit(int * bit,void * addr)445 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
446 {
447 #if BITS_PER_LONG == 64
448 	*bit += ((unsigned long) addr & 7UL) << 3;
449 	addr = (void *) ((unsigned long) addr & ~7UL);
450 #elif BITS_PER_LONG == 32
451 	*bit += ((unsigned long) addr & 3UL) << 3;
452 	addr = (void *) ((unsigned long) addr & ~3UL);
453 #else
454 #error "how many bits you are?!"
455 #endif
456 	return addr;
457 }
458 
mb_test_bit(int bit,void * addr)459 static inline int mb_test_bit(int bit, void *addr)
460 {
461 	/*
462 	 * ext4_test_bit on architecture like powerpc
463 	 * needs unsigned long aligned address
464 	 */
465 	addr = mb_correct_addr_and_bit(&bit, addr);
466 	return ext4_test_bit(bit, addr);
467 }
468 
mb_set_bit(int bit,void * addr)469 static inline void mb_set_bit(int bit, void *addr)
470 {
471 	addr = mb_correct_addr_and_bit(&bit, addr);
472 	ext4_set_bit(bit, addr);
473 }
474 
mb_clear_bit(int bit,void * addr)475 static inline void mb_clear_bit(int bit, void *addr)
476 {
477 	addr = mb_correct_addr_and_bit(&bit, addr);
478 	ext4_clear_bit(bit, addr);
479 }
480 
mb_test_and_clear_bit(int bit,void * addr)481 static inline int mb_test_and_clear_bit(int bit, void *addr)
482 {
483 	addr = mb_correct_addr_and_bit(&bit, addr);
484 	return ext4_test_and_clear_bit(bit, addr);
485 }
486 
mb_find_next_zero_bit(void * addr,int max,int start)487 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
488 {
489 	int fix = 0, ret, tmpmax;
490 	addr = mb_correct_addr_and_bit(&fix, addr);
491 	tmpmax = max + fix;
492 	start += fix;
493 
494 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
495 	if (ret > max)
496 		return max;
497 	return ret;
498 }
499 
mb_find_next_bit(void * addr,int max,int start)500 static inline int mb_find_next_bit(void *addr, int max, int start)
501 {
502 	int fix = 0, ret, tmpmax;
503 	addr = mb_correct_addr_and_bit(&fix, addr);
504 	tmpmax = max + fix;
505 	start += fix;
506 
507 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
508 	if (ret > max)
509 		return max;
510 	return ret;
511 }
512 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)513 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
514 {
515 	char *bb;
516 
517 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
518 	BUG_ON(max == NULL);
519 
520 	if (order > e4b->bd_blkbits + 1) {
521 		*max = 0;
522 		return NULL;
523 	}
524 
525 	/* at order 0 we see each particular block */
526 	if (order == 0) {
527 		*max = 1 << (e4b->bd_blkbits + 3);
528 		return e4b->bd_bitmap;
529 	}
530 
531 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
532 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
533 
534 	return bb;
535 }
536 
537 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)538 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
539 			   int first, int count)
540 {
541 	int i;
542 	struct super_block *sb = e4b->bd_sb;
543 
544 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
545 		return;
546 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
547 	for (i = 0; i < count; i++) {
548 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
549 			ext4_fsblk_t blocknr;
550 
551 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
552 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
553 			ext4_grp_locked_error(sb, e4b->bd_group,
554 					      inode ? inode->i_ino : 0,
555 					      blocknr,
556 					      "freeing block already freed "
557 					      "(bit %u)",
558 					      first + i);
559 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
560 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
561 		}
562 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
563 	}
564 }
565 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)566 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
567 {
568 	int i;
569 
570 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
571 		return;
572 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
573 	for (i = 0; i < count; i++) {
574 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
575 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
576 	}
577 }
578 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)579 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
580 {
581 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
582 		return;
583 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
584 		unsigned char *b1, *b2;
585 		int i;
586 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
587 		b2 = (unsigned char *) bitmap;
588 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
589 			if (b1[i] != b2[i]) {
590 				ext4_msg(e4b->bd_sb, KERN_ERR,
591 					 "corruption in group %u "
592 					 "at byte %u(%u): %x in copy != %x "
593 					 "on disk/prealloc",
594 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
595 				BUG();
596 			}
597 		}
598 	}
599 }
600 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)601 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
602 			struct ext4_group_info *grp, ext4_group_t group)
603 {
604 	struct buffer_head *bh;
605 
606 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
607 	if (!grp->bb_bitmap)
608 		return;
609 
610 	bh = ext4_read_block_bitmap(sb, group);
611 	if (IS_ERR_OR_NULL(bh)) {
612 		kfree(grp->bb_bitmap);
613 		grp->bb_bitmap = NULL;
614 		return;
615 	}
616 
617 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
618 	put_bh(bh);
619 }
620 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)621 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
622 {
623 	kfree(grp->bb_bitmap);
624 }
625 
626 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)627 static inline void mb_free_blocks_double(struct inode *inode,
628 				struct ext4_buddy *e4b, int first, int count)
629 {
630 	return;
631 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)632 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
633 						int first, int count)
634 {
635 	return;
636 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)637 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
638 {
639 	return;
640 }
641 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)642 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
643 			struct ext4_group_info *grp, ext4_group_t group)
644 {
645 	return;
646 }
647 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)648 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
649 {
650 	return;
651 }
652 #endif
653 
654 #ifdef AGGRESSIVE_CHECK
655 
656 #define MB_CHECK_ASSERT(assert)						\
657 do {									\
658 	if (!(assert)) {						\
659 		printk(KERN_EMERG					\
660 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
661 			function, file, line, # assert);		\
662 		BUG();							\
663 	}								\
664 } while (0)
665 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)666 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
667 				const char *function, int line)
668 {
669 	struct super_block *sb = e4b->bd_sb;
670 	int order = e4b->bd_blkbits + 1;
671 	int max;
672 	int max2;
673 	int i;
674 	int j;
675 	int k;
676 	int count;
677 	struct ext4_group_info *grp;
678 	int fragments = 0;
679 	int fstart;
680 	struct list_head *cur;
681 	void *buddy;
682 	void *buddy2;
683 
684 	if (e4b->bd_info->bb_check_counter++ % 10)
685 		return 0;
686 
687 	while (order > 1) {
688 		buddy = mb_find_buddy(e4b, order, &max);
689 		MB_CHECK_ASSERT(buddy);
690 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
691 		MB_CHECK_ASSERT(buddy2);
692 		MB_CHECK_ASSERT(buddy != buddy2);
693 		MB_CHECK_ASSERT(max * 2 == max2);
694 
695 		count = 0;
696 		for (i = 0; i < max; i++) {
697 
698 			if (mb_test_bit(i, buddy)) {
699 				/* only single bit in buddy2 may be 1 */
700 				if (!mb_test_bit(i << 1, buddy2)) {
701 					MB_CHECK_ASSERT(
702 						mb_test_bit((i<<1)+1, buddy2));
703 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
704 					MB_CHECK_ASSERT(
705 						mb_test_bit(i << 1, buddy2));
706 				}
707 				continue;
708 			}
709 
710 			/* both bits in buddy2 must be 1 */
711 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
712 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
713 
714 			for (j = 0; j < (1 << order); j++) {
715 				k = (i * (1 << order)) + j;
716 				MB_CHECK_ASSERT(
717 					!mb_test_bit(k, e4b->bd_bitmap));
718 			}
719 			count++;
720 		}
721 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
722 		order--;
723 	}
724 
725 	fstart = -1;
726 	buddy = mb_find_buddy(e4b, 0, &max);
727 	for (i = 0; i < max; i++) {
728 		if (!mb_test_bit(i, buddy)) {
729 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
730 			if (fstart == -1) {
731 				fragments++;
732 				fstart = i;
733 			}
734 			continue;
735 		}
736 		fstart = -1;
737 		/* check used bits only */
738 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
739 			buddy2 = mb_find_buddy(e4b, j, &max2);
740 			k = i >> j;
741 			MB_CHECK_ASSERT(k < max2);
742 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
743 		}
744 	}
745 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
746 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
747 
748 	grp = ext4_get_group_info(sb, e4b->bd_group);
749 	if (!grp)
750 		return NULL;
751 	list_for_each(cur, &grp->bb_prealloc_list) {
752 		ext4_group_t groupnr;
753 		struct ext4_prealloc_space *pa;
754 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
755 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
756 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
757 		for (i = 0; i < pa->pa_len; i++)
758 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
759 	}
760 	return 0;
761 }
762 #undef MB_CHECK_ASSERT
763 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
764 					__FILE__, __func__, __LINE__)
765 #else
766 #define mb_check_buddy(e4b)
767 #endif
768 
769 /*
770  * Divide blocks started from @first with length @len into
771  * smaller chunks with power of 2 blocks.
772  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
773  * then increase bb_counters[] for corresponded chunk size.
774  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)775 static void ext4_mb_mark_free_simple(struct super_block *sb,
776 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
777 					struct ext4_group_info *grp)
778 {
779 	struct ext4_sb_info *sbi = EXT4_SB(sb);
780 	ext4_grpblk_t min;
781 	ext4_grpblk_t max;
782 	ext4_grpblk_t chunk;
783 	unsigned int border;
784 
785 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
786 
787 	border = 2 << sb->s_blocksize_bits;
788 
789 	while (len > 0) {
790 		/* find how many blocks can be covered since this position */
791 		max = ffs(first | border) - 1;
792 
793 		/* find how many blocks of power 2 we need to mark */
794 		min = fls(len) - 1;
795 
796 		if (max < min)
797 			min = max;
798 		chunk = 1 << min;
799 
800 		/* mark multiblock chunks only */
801 		grp->bb_counters[min]++;
802 		if (min > 0)
803 			mb_clear_bit(first >> min,
804 				     buddy + sbi->s_mb_offsets[min]);
805 
806 		len -= chunk;
807 		first += chunk;
808 	}
809 }
810 
ext4_mb_rb_insert(struct rb_root * root,struct rb_node * new,int (* cmp)(struct rb_node *,struct rb_node *))811 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
812 			int (*cmp)(struct rb_node *, struct rb_node *))
813 {
814 	struct rb_node **iter = &root->rb_node, *parent = NULL;
815 
816 	while (*iter) {
817 		parent = *iter;
818 		if (cmp(new, *iter) > 0)
819 			iter = &((*iter)->rb_left);
820 		else
821 			iter = &((*iter)->rb_right);
822 	}
823 
824 	rb_link_node(new, parent, iter);
825 	rb_insert_color(new, root);
826 }
827 
828 static int
ext4_mb_avg_fragment_size_cmp(struct rb_node * rb1,struct rb_node * rb2)829 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
830 {
831 	struct ext4_group_info *grp1 = rb_entry(rb1,
832 						struct ext4_group_info,
833 						bb_avg_fragment_size_rb);
834 	struct ext4_group_info *grp2 = rb_entry(rb2,
835 						struct ext4_group_info,
836 						bb_avg_fragment_size_rb);
837 	int num_frags_1, num_frags_2;
838 
839 	num_frags_1 = grp1->bb_fragments ?
840 		grp1->bb_free / grp1->bb_fragments : 0;
841 	num_frags_2 = grp2->bb_fragments ?
842 		grp2->bb_free / grp2->bb_fragments : 0;
843 
844 	return (num_frags_2 - num_frags_1);
845 }
846 
847 /*
848  * Reinsert grpinfo into the avg_fragment_size tree with new average
849  * fragment size.
850  */
851 static void
mb_update_avg_fragment_size(struct super_block * sb,struct ext4_group_info * grp)852 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
853 {
854 	struct ext4_sb_info *sbi = EXT4_SB(sb);
855 
856 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
857 		return;
858 
859 	write_lock(&sbi->s_mb_rb_lock);
860 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
861 		rb_erase(&grp->bb_avg_fragment_size_rb,
862 				&sbi->s_mb_avg_fragment_size_root);
863 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
864 	}
865 
866 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
867 		&grp->bb_avg_fragment_size_rb,
868 		ext4_mb_avg_fragment_size_cmp);
869 	write_unlock(&sbi->s_mb_rb_lock);
870 }
871 
872 /*
873  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
874  * cr level needs an update.
875  */
ext4_mb_choose_next_group_cr0(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)876 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
877 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
878 {
879 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
880 	struct ext4_group_info *iter, *grp;
881 	int i;
882 
883 	if (ac->ac_status == AC_STATUS_FOUND)
884 		return;
885 
886 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
887 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
888 
889 	grp = NULL;
890 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
892 			continue;
893 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
894 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
895 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
896 			continue;
897 		}
898 		grp = NULL;
899 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
900 				    bb_largest_free_order_node) {
901 			if (sbi->s_mb_stats)
902 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
903 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
904 				grp = iter;
905 				break;
906 			}
907 		}
908 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
909 		if (grp)
910 			break;
911 	}
912 
913 	if (!grp) {
914 		/* Increment cr and search again */
915 		*new_cr = 1;
916 	} else {
917 		*group = grp->bb_group;
918 		ac->ac_last_optimal_group = *group;
919 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
920 	}
921 }
922 
923 /*
924  * Choose next group by traversing average fragment size tree. Updates *new_cr
925  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
926  * the linear search should continue for one iteration since there's lock
927  * contention on the rb tree lock.
928  */
ext4_mb_choose_next_group_cr1(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)929 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
930 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
931 {
932 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
933 	int avg_fragment_size, best_so_far;
934 	struct rb_node *node, *found;
935 	struct ext4_group_info *grp;
936 
937 	/*
938 	 * If there is contention on the lock, instead of waiting for the lock
939 	 * to become available, just continue searching lineraly. We'll resume
940 	 * our rb tree search later starting at ac->ac_last_optimal_group.
941 	 */
942 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
943 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
944 		return;
945 	}
946 
947 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
948 		if (sbi->s_mb_stats)
949 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
950 		/* We have found something at CR 1 in the past */
951 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
952 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
953 		     found = rb_next(found)) {
954 			grp = rb_entry(found, struct ext4_group_info,
955 				       bb_avg_fragment_size_rb);
956 			if (sbi->s_mb_stats)
957 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
958 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
959 				break;
960 		}
961 		goto done;
962 	}
963 
964 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
965 	best_so_far = 0;
966 	found = NULL;
967 
968 	while (node) {
969 		grp = rb_entry(node, struct ext4_group_info,
970 			       bb_avg_fragment_size_rb);
971 		avg_fragment_size = 0;
972 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
973 			avg_fragment_size = grp->bb_fragments ?
974 				grp->bb_free / grp->bb_fragments : 0;
975 			if (!best_so_far || avg_fragment_size < best_so_far) {
976 				best_so_far = avg_fragment_size;
977 				found = node;
978 			}
979 		}
980 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
981 			node = node->rb_right;
982 		else
983 			node = node->rb_left;
984 	}
985 
986 done:
987 	if (found) {
988 		grp = rb_entry(found, struct ext4_group_info,
989 			       bb_avg_fragment_size_rb);
990 		*group = grp->bb_group;
991 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
992 	} else {
993 		*new_cr = 2;
994 	}
995 
996 	read_unlock(&sbi->s_mb_rb_lock);
997 	ac->ac_last_optimal_group = *group;
998 }
999 
should_optimize_scan(struct ext4_allocation_context * ac)1000 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1001 {
1002 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1003 		return 0;
1004 	if (ac->ac_criteria >= 2)
1005 		return 0;
1006 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1007 		return 0;
1008 	return 1;
1009 }
1010 
1011 /*
1012  * Return next linear group for allocation. If linear traversal should not be
1013  * performed, this function just returns the same group
1014  */
1015 static ext4_group_t
next_linear_group(struct ext4_allocation_context * ac,ext4_group_t group,ext4_group_t ngroups)1016 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1017 		  ext4_group_t ngroups)
1018 {
1019 	if (!should_optimize_scan(ac))
1020 		goto inc_and_return;
1021 
1022 	if (ac->ac_groups_linear_remaining) {
1023 		ac->ac_groups_linear_remaining--;
1024 		goto inc_and_return;
1025 	}
1026 
1027 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1028 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1029 		goto inc_and_return;
1030 	}
1031 
1032 	return group;
1033 inc_and_return:
1034 	/*
1035 	 * Artificially restricted ngroups for non-extent
1036 	 * files makes group > ngroups possible on first loop.
1037 	 */
1038 	return group + 1 >= ngroups ? 0 : group + 1;
1039 }
1040 
1041 /*
1042  * ext4_mb_choose_next_group: choose next group for allocation.
1043  *
1044  * @ac        Allocation Context
1045  * @new_cr    This is an output parameter. If the there is no good group
1046  *            available at current CR level, this field is updated to indicate
1047  *            the new cr level that should be used.
1048  * @group     This is an input / output parameter. As an input it indicates the
1049  *            next group that the allocator intends to use for allocation. As
1050  *            output, this field indicates the next group that should be used as
1051  *            determined by the optimization functions.
1052  * @ngroups   Total number of groups
1053  */
ext4_mb_choose_next_group(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)1054 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1055 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1056 {
1057 	*new_cr = ac->ac_criteria;
1058 
1059 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1060 		*group = next_linear_group(ac, *group, ngroups);
1061 		return;
1062 	}
1063 
1064 	if (*new_cr == 0) {
1065 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1066 	} else if (*new_cr == 1) {
1067 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1068 	} else {
1069 		/*
1070 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1071 		 * bb_free. But until that happens, we should never come here.
1072 		 */
1073 		WARN_ON(1);
1074 	}
1075 }
1076 
1077 /*
1078  * Cache the order of the largest free extent we have available in this block
1079  * group.
1080  */
1081 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)1082 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1083 {
1084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1085 	int i;
1086 
1087 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1088 		if (grp->bb_counters[i] > 0)
1089 			break;
1090 	/* No need to move between order lists? */
1091 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1092 	    i == grp->bb_largest_free_order) {
1093 		grp->bb_largest_free_order = i;
1094 		return;
1095 	}
1096 
1097 	if (grp->bb_largest_free_order >= 0) {
1098 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1099 					      grp->bb_largest_free_order]);
1100 		list_del_init(&grp->bb_largest_free_order_node);
1101 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1102 					      grp->bb_largest_free_order]);
1103 	}
1104 	grp->bb_largest_free_order = i;
1105 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1106 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1107 					      grp->bb_largest_free_order]);
1108 		list_add_tail(&grp->bb_largest_free_order_node,
1109 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1110 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1111 					      grp->bb_largest_free_order]);
1112 	}
1113 }
1114 
1115 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group,struct ext4_group_info * grp)1116 void ext4_mb_generate_buddy(struct super_block *sb,
1117 			    void *buddy, void *bitmap, ext4_group_t group,
1118 			    struct ext4_group_info *grp)
1119 {
1120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1122 	ext4_grpblk_t i = 0;
1123 	ext4_grpblk_t first;
1124 	ext4_grpblk_t len;
1125 	unsigned free = 0;
1126 	unsigned fragments = 0;
1127 	unsigned long long period = get_cycles();
1128 
1129 	/* initialize buddy from bitmap which is aggregation
1130 	 * of on-disk bitmap and preallocations */
1131 	i = mb_find_next_zero_bit(bitmap, max, 0);
1132 	grp->bb_first_free = i;
1133 	while (i < max) {
1134 		fragments++;
1135 		first = i;
1136 		i = mb_find_next_bit(bitmap, max, i);
1137 		len = i - first;
1138 		free += len;
1139 		if (len > 1)
1140 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1141 		else
1142 			grp->bb_counters[0]++;
1143 		if (i < max)
1144 			i = mb_find_next_zero_bit(bitmap, max, i);
1145 	}
1146 	grp->bb_fragments = fragments;
1147 
1148 	if (free != grp->bb_free) {
1149 		ext4_grp_locked_error(sb, group, 0, 0,
1150 				      "block bitmap and bg descriptor "
1151 				      "inconsistent: %u vs %u free clusters",
1152 				      free, grp->bb_free);
1153 		/*
1154 		 * If we intend to continue, we consider group descriptor
1155 		 * corrupt and update bb_free using bitmap value
1156 		 */
1157 		grp->bb_free = free;
1158 		ext4_mark_group_bitmap_corrupted(sb, group,
1159 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1160 	}
1161 	mb_set_largest_free_order(sb, grp);
1162 
1163 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1164 
1165 	period = get_cycles() - period;
1166 	atomic_inc(&sbi->s_mb_buddies_generated);
1167 	atomic64_add(period, &sbi->s_mb_generation_time);
1168 	mb_update_avg_fragment_size(sb, grp);
1169 }
1170 
mb_regenerate_buddy(struct ext4_buddy * e4b)1171 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1172 {
1173 	int count;
1174 	int order = 1;
1175 	void *buddy;
1176 
1177 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1178 		ext4_set_bits(buddy, 0, count);
1179 
1180 	e4b->bd_info->bb_fragments = 0;
1181 	memset(e4b->bd_info->bb_counters, 0,
1182 		sizeof(*e4b->bd_info->bb_counters) *
1183 		(e4b->bd_sb->s_blocksize_bits + 2));
1184 
1185 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1186 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1187 }
1188 
1189 /* The buddy information is attached the buddy cache inode
1190  * for convenience. The information regarding each group
1191  * is loaded via ext4_mb_load_buddy. The information involve
1192  * block bitmap and buddy information. The information are
1193  * stored in the inode as
1194  *
1195  * {                        page                        }
1196  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1197  *
1198  *
1199  * one block each for bitmap and buddy information.
1200  * So for each group we take up 2 blocks. A page can
1201  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1202  * So it can have information regarding groups_per_page which
1203  * is blocks_per_page/2
1204  *
1205  * Locking note:  This routine takes the block group lock of all groups
1206  * for this page; do not hold this lock when calling this routine!
1207  */
1208 
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)1209 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1210 {
1211 	ext4_group_t ngroups;
1212 	int blocksize;
1213 	int blocks_per_page;
1214 	int groups_per_page;
1215 	int err = 0;
1216 	int i;
1217 	ext4_group_t first_group, group;
1218 	int first_block;
1219 	struct super_block *sb;
1220 	struct buffer_head *bhs;
1221 	struct buffer_head **bh = NULL;
1222 	struct inode *inode;
1223 	char *data;
1224 	char *bitmap;
1225 	struct ext4_group_info *grinfo;
1226 
1227 	inode = page->mapping->host;
1228 	sb = inode->i_sb;
1229 	ngroups = ext4_get_groups_count(sb);
1230 	blocksize = i_blocksize(inode);
1231 	blocks_per_page = PAGE_SIZE / blocksize;
1232 
1233 	mb_debug(sb, "init page %lu\n", page->index);
1234 
1235 	groups_per_page = blocks_per_page >> 1;
1236 	if (groups_per_page == 0)
1237 		groups_per_page = 1;
1238 
1239 	/* allocate buffer_heads to read bitmaps */
1240 	if (groups_per_page > 1) {
1241 		i = sizeof(struct buffer_head *) * groups_per_page;
1242 		bh = kzalloc(i, gfp);
1243 		if (bh == NULL) {
1244 			err = -ENOMEM;
1245 			goto out;
1246 		}
1247 	} else
1248 		bh = &bhs;
1249 
1250 	first_group = page->index * blocks_per_page / 2;
1251 
1252 	/* read all groups the page covers into the cache */
1253 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1254 		if (group >= ngroups)
1255 			break;
1256 
1257 		grinfo = ext4_get_group_info(sb, group);
1258 		if (!grinfo)
1259 			continue;
1260 		/*
1261 		 * If page is uptodate then we came here after online resize
1262 		 * which added some new uninitialized group info structs, so
1263 		 * we must skip all initialized uptodate buddies on the page,
1264 		 * which may be currently in use by an allocating task.
1265 		 */
1266 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1267 			bh[i] = NULL;
1268 			continue;
1269 		}
1270 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1271 		if (IS_ERR(bh[i])) {
1272 			err = PTR_ERR(bh[i]);
1273 			bh[i] = NULL;
1274 			goto out;
1275 		}
1276 		mb_debug(sb, "read bitmap for group %u\n", group);
1277 	}
1278 
1279 	/* wait for I/O completion */
1280 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1281 		int err2;
1282 
1283 		if (!bh[i])
1284 			continue;
1285 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1286 		if (!err)
1287 			err = err2;
1288 	}
1289 
1290 	first_block = page->index * blocks_per_page;
1291 	for (i = 0; i < blocks_per_page; i++) {
1292 		group = (first_block + i) >> 1;
1293 		if (group >= ngroups)
1294 			break;
1295 
1296 		if (!bh[group - first_group])
1297 			/* skip initialized uptodate buddy */
1298 			continue;
1299 
1300 		if (!buffer_verified(bh[group - first_group]))
1301 			/* Skip faulty bitmaps */
1302 			continue;
1303 		err = 0;
1304 
1305 		/*
1306 		 * data carry information regarding this
1307 		 * particular group in the format specified
1308 		 * above
1309 		 *
1310 		 */
1311 		data = page_address(page) + (i * blocksize);
1312 		bitmap = bh[group - first_group]->b_data;
1313 
1314 		/*
1315 		 * We place the buddy block and bitmap block
1316 		 * close together
1317 		 */
1318 		if ((first_block + i) & 1) {
1319 			/* this is block of buddy */
1320 			BUG_ON(incore == NULL);
1321 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1322 				group, page->index, i * blocksize);
1323 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1324 			grinfo = ext4_get_group_info(sb, group);
1325 			if (!grinfo) {
1326 				err = -EFSCORRUPTED;
1327 				goto out;
1328 			}
1329 			grinfo->bb_fragments = 0;
1330 			memset(grinfo->bb_counters, 0,
1331 			       sizeof(*grinfo->bb_counters) *
1332 			       (MB_NUM_ORDERS(sb)));
1333 			/*
1334 			 * incore got set to the group block bitmap below
1335 			 */
1336 			ext4_lock_group(sb, group);
1337 			/* init the buddy */
1338 			memset(data, 0xff, blocksize);
1339 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1340 			ext4_unlock_group(sb, group);
1341 			incore = NULL;
1342 		} else {
1343 			/* this is block of bitmap */
1344 			BUG_ON(incore != NULL);
1345 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1346 				group, page->index, i * blocksize);
1347 			trace_ext4_mb_bitmap_load(sb, group);
1348 
1349 			/* see comments in ext4_mb_put_pa() */
1350 			ext4_lock_group(sb, group);
1351 			memcpy(data, bitmap, blocksize);
1352 
1353 			/* mark all preallocated blks used in in-core bitmap */
1354 			ext4_mb_generate_from_pa(sb, data, group);
1355 			ext4_mb_generate_from_freelist(sb, data, group);
1356 			ext4_unlock_group(sb, group);
1357 
1358 			/* set incore so that the buddy information can be
1359 			 * generated using this
1360 			 */
1361 			incore = data;
1362 		}
1363 	}
1364 	SetPageUptodate(page);
1365 
1366 out:
1367 	if (bh) {
1368 		for (i = 0; i < groups_per_page; i++)
1369 			brelse(bh[i]);
1370 		if (bh != &bhs)
1371 			kfree(bh);
1372 	}
1373 	return err;
1374 }
1375 
1376 /*
1377  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1378  * on the same buddy page doesn't happen whild holding the buddy page lock.
1379  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1380  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1381  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1382 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1383 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1384 {
1385 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1386 	int block, pnum, poff;
1387 	int blocks_per_page;
1388 	struct page *page;
1389 
1390 	e4b->bd_buddy_page = NULL;
1391 	e4b->bd_bitmap_page = NULL;
1392 
1393 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1394 	/*
1395 	 * the buddy cache inode stores the block bitmap
1396 	 * and buddy information in consecutive blocks.
1397 	 * So for each group we need two blocks.
1398 	 */
1399 	block = group * 2;
1400 	pnum = block / blocks_per_page;
1401 	poff = block % blocks_per_page;
1402 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1403 	if (!page)
1404 		return -ENOMEM;
1405 	BUG_ON(page->mapping != inode->i_mapping);
1406 	e4b->bd_bitmap_page = page;
1407 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1408 
1409 	if (blocks_per_page >= 2) {
1410 		/* buddy and bitmap are on the same page */
1411 		return 0;
1412 	}
1413 
1414 	block++;
1415 	pnum = block / blocks_per_page;
1416 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1417 	if (!page)
1418 		return -ENOMEM;
1419 	BUG_ON(page->mapping != inode->i_mapping);
1420 	e4b->bd_buddy_page = page;
1421 	return 0;
1422 }
1423 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1424 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1425 {
1426 	if (e4b->bd_bitmap_page) {
1427 		unlock_page(e4b->bd_bitmap_page);
1428 		put_page(e4b->bd_bitmap_page);
1429 	}
1430 	if (e4b->bd_buddy_page) {
1431 		unlock_page(e4b->bd_buddy_page);
1432 		put_page(e4b->bd_buddy_page);
1433 	}
1434 }
1435 
1436 /*
1437  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1438  * block group lock of all groups for this page; do not hold the BG lock when
1439  * calling this routine!
1440  */
1441 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1442 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1443 {
1444 
1445 	struct ext4_group_info *this_grp;
1446 	struct ext4_buddy e4b;
1447 	struct page *page;
1448 	int ret = 0;
1449 
1450 	might_sleep();
1451 	mb_debug(sb, "init group %u\n", group);
1452 	this_grp = ext4_get_group_info(sb, group);
1453 	if (!this_grp)
1454 		return -EFSCORRUPTED;
1455 
1456 	/*
1457 	 * This ensures that we don't reinit the buddy cache
1458 	 * page which map to the group from which we are already
1459 	 * allocating. If we are looking at the buddy cache we would
1460 	 * have taken a reference using ext4_mb_load_buddy and that
1461 	 * would have pinned buddy page to page cache.
1462 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1463 	 * page accessed.
1464 	 */
1465 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1466 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1467 		/*
1468 		 * somebody initialized the group
1469 		 * return without doing anything
1470 		 */
1471 		goto err;
1472 	}
1473 
1474 	page = e4b.bd_bitmap_page;
1475 	ret = ext4_mb_init_cache(page, NULL, gfp);
1476 	if (ret)
1477 		goto err;
1478 	if (!PageUptodate(page)) {
1479 		ret = -EIO;
1480 		goto err;
1481 	}
1482 
1483 	if (e4b.bd_buddy_page == NULL) {
1484 		/*
1485 		 * If both the bitmap and buddy are in
1486 		 * the same page we don't need to force
1487 		 * init the buddy
1488 		 */
1489 		ret = 0;
1490 		goto err;
1491 	}
1492 	/* init buddy cache */
1493 	page = e4b.bd_buddy_page;
1494 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1495 	if (ret)
1496 		goto err;
1497 	if (!PageUptodate(page)) {
1498 		ret = -EIO;
1499 		goto err;
1500 	}
1501 err:
1502 	ext4_mb_put_buddy_page_lock(&e4b);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1508  * block group lock of all groups for this page; do not hold the BG lock when
1509  * calling this routine!
1510  */
1511 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1512 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1513 		       struct ext4_buddy *e4b, gfp_t gfp)
1514 {
1515 	int blocks_per_page;
1516 	int block;
1517 	int pnum;
1518 	int poff;
1519 	struct page *page;
1520 	int ret;
1521 	struct ext4_group_info *grp;
1522 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1523 	struct inode *inode = sbi->s_buddy_cache;
1524 
1525 	might_sleep();
1526 	mb_debug(sb, "load group %u\n", group);
1527 
1528 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1529 	grp = ext4_get_group_info(sb, group);
1530 	if (!grp)
1531 		return -EFSCORRUPTED;
1532 
1533 	e4b->bd_blkbits = sb->s_blocksize_bits;
1534 	e4b->bd_info = grp;
1535 	e4b->bd_sb = sb;
1536 	e4b->bd_group = group;
1537 	e4b->bd_buddy_page = NULL;
1538 	e4b->bd_bitmap_page = NULL;
1539 
1540 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1541 		/*
1542 		 * we need full data about the group
1543 		 * to make a good selection
1544 		 */
1545 		ret = ext4_mb_init_group(sb, group, gfp);
1546 		if (ret)
1547 			return ret;
1548 	}
1549 
1550 	/*
1551 	 * the buddy cache inode stores the block bitmap
1552 	 * and buddy information in consecutive blocks.
1553 	 * So for each group we need two blocks.
1554 	 */
1555 	block = group * 2;
1556 	pnum = block / blocks_per_page;
1557 	poff = block % blocks_per_page;
1558 
1559 	/* we could use find_or_create_page(), but it locks page
1560 	 * what we'd like to avoid in fast path ... */
1561 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1562 	if (page == NULL || !PageUptodate(page)) {
1563 		if (page)
1564 			/*
1565 			 * drop the page reference and try
1566 			 * to get the page with lock. If we
1567 			 * are not uptodate that implies
1568 			 * somebody just created the page but
1569 			 * is yet to initialize the same. So
1570 			 * wait for it to initialize.
1571 			 */
1572 			put_page(page);
1573 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1574 		if (page) {
1575 			BUG_ON(page->mapping != inode->i_mapping);
1576 			if (!PageUptodate(page)) {
1577 				ret = ext4_mb_init_cache(page, NULL, gfp);
1578 				if (ret) {
1579 					unlock_page(page);
1580 					goto err;
1581 				}
1582 				mb_cmp_bitmaps(e4b, page_address(page) +
1583 					       (poff * sb->s_blocksize));
1584 			}
1585 			unlock_page(page);
1586 		}
1587 	}
1588 	if (page == NULL) {
1589 		ret = -ENOMEM;
1590 		goto err;
1591 	}
1592 	if (!PageUptodate(page)) {
1593 		ret = -EIO;
1594 		goto err;
1595 	}
1596 
1597 	/* Pages marked accessed already */
1598 	e4b->bd_bitmap_page = page;
1599 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1600 
1601 	block++;
1602 	pnum = block / blocks_per_page;
1603 	poff = block % blocks_per_page;
1604 
1605 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1606 	if (page == NULL || !PageUptodate(page)) {
1607 		if (page)
1608 			put_page(page);
1609 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1610 		if (page) {
1611 			BUG_ON(page->mapping != inode->i_mapping);
1612 			if (!PageUptodate(page)) {
1613 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1614 							 gfp);
1615 				if (ret) {
1616 					unlock_page(page);
1617 					goto err;
1618 				}
1619 			}
1620 			unlock_page(page);
1621 		}
1622 	}
1623 	if (page == NULL) {
1624 		ret = -ENOMEM;
1625 		goto err;
1626 	}
1627 	if (!PageUptodate(page)) {
1628 		ret = -EIO;
1629 		goto err;
1630 	}
1631 
1632 	/* Pages marked accessed already */
1633 	e4b->bd_buddy_page = page;
1634 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1635 
1636 	return 0;
1637 
1638 err:
1639 	if (page)
1640 		put_page(page);
1641 	if (e4b->bd_bitmap_page)
1642 		put_page(e4b->bd_bitmap_page);
1643 	if (e4b->bd_buddy_page)
1644 		put_page(e4b->bd_buddy_page);
1645 	e4b->bd_buddy = NULL;
1646 	e4b->bd_bitmap = NULL;
1647 	return ret;
1648 }
1649 
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1650 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1651 			      struct ext4_buddy *e4b)
1652 {
1653 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1654 }
1655 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1656 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1657 {
1658 	if (e4b->bd_bitmap_page)
1659 		put_page(e4b->bd_bitmap_page);
1660 	if (e4b->bd_buddy_page)
1661 		put_page(e4b->bd_buddy_page);
1662 }
1663 
1664 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1665 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1666 {
1667 	int order = 1, max;
1668 	void *bb;
1669 
1670 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1671 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1672 
1673 	while (order <= e4b->bd_blkbits + 1) {
1674 		bb = mb_find_buddy(e4b, order, &max);
1675 		if (!mb_test_bit(block >> order, bb)) {
1676 			/* this block is part of buddy of order 'order' */
1677 			return order;
1678 		}
1679 		order++;
1680 	}
1681 	return 0;
1682 }
1683 
mb_clear_bits(void * bm,int cur,int len)1684 static void mb_clear_bits(void *bm, int cur, int len)
1685 {
1686 	__u32 *addr;
1687 
1688 	len = cur + len;
1689 	while (cur < len) {
1690 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1691 			/* fast path: clear whole word at once */
1692 			addr = bm + (cur >> 3);
1693 			*addr = 0;
1694 			cur += 32;
1695 			continue;
1696 		}
1697 		mb_clear_bit(cur, bm);
1698 		cur++;
1699 	}
1700 }
1701 
1702 /* clear bits in given range
1703  * will return first found zero bit if any, -1 otherwise
1704  */
mb_test_and_clear_bits(void * bm,int cur,int len)1705 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1706 {
1707 	__u32 *addr;
1708 	int zero_bit = -1;
1709 
1710 	len = cur + len;
1711 	while (cur < len) {
1712 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1713 			/* fast path: clear whole word at once */
1714 			addr = bm + (cur >> 3);
1715 			if (*addr != (__u32)(-1) && zero_bit == -1)
1716 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1717 			*addr = 0;
1718 			cur += 32;
1719 			continue;
1720 		}
1721 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1722 			zero_bit = cur;
1723 		cur++;
1724 	}
1725 
1726 	return zero_bit;
1727 }
1728 
ext4_set_bits(void * bm,int cur,int len)1729 void ext4_set_bits(void *bm, int cur, int len)
1730 {
1731 	__u32 *addr;
1732 
1733 	len = cur + len;
1734 	while (cur < len) {
1735 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1736 			/* fast path: set whole word at once */
1737 			addr = bm + (cur >> 3);
1738 			*addr = 0xffffffff;
1739 			cur += 32;
1740 			continue;
1741 		}
1742 		mb_set_bit(cur, bm);
1743 		cur++;
1744 	}
1745 }
1746 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1747 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1748 {
1749 	if (mb_test_bit(*bit + side, bitmap)) {
1750 		mb_clear_bit(*bit, bitmap);
1751 		(*bit) -= side;
1752 		return 1;
1753 	}
1754 	else {
1755 		(*bit) += side;
1756 		mb_set_bit(*bit, bitmap);
1757 		return -1;
1758 	}
1759 }
1760 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1761 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1762 {
1763 	int max;
1764 	int order = 1;
1765 	void *buddy = mb_find_buddy(e4b, order, &max);
1766 
1767 	while (buddy) {
1768 		void *buddy2;
1769 
1770 		/* Bits in range [first; last] are known to be set since
1771 		 * corresponding blocks were allocated. Bits in range
1772 		 * (first; last) will stay set because they form buddies on
1773 		 * upper layer. We just deal with borders if they don't
1774 		 * align with upper layer and then go up.
1775 		 * Releasing entire group is all about clearing
1776 		 * single bit of highest order buddy.
1777 		 */
1778 
1779 		/* Example:
1780 		 * ---------------------------------
1781 		 * |   1   |   1   |   1   |   1   |
1782 		 * ---------------------------------
1783 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1784 		 * ---------------------------------
1785 		 *   0   1   2   3   4   5   6   7
1786 		 *      \_____________________/
1787 		 *
1788 		 * Neither [1] nor [6] is aligned to above layer.
1789 		 * Left neighbour [0] is free, so mark it busy,
1790 		 * decrease bb_counters and extend range to
1791 		 * [0; 6]
1792 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1793 		 * mark [6] free, increase bb_counters and shrink range to
1794 		 * [0; 5].
1795 		 * Then shift range to [0; 2], go up and do the same.
1796 		 */
1797 
1798 
1799 		if (first & 1)
1800 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1801 		if (!(last & 1))
1802 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1803 		if (first > last)
1804 			break;
1805 		order++;
1806 
1807 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1808 			mb_clear_bits(buddy, first, last - first + 1);
1809 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1810 			break;
1811 		}
1812 		first >>= 1;
1813 		last >>= 1;
1814 		buddy = buddy2;
1815 	}
1816 }
1817 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1818 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1819 			   int first, int count)
1820 {
1821 	int left_is_free = 0;
1822 	int right_is_free = 0;
1823 	int block;
1824 	int last = first + count - 1;
1825 	struct super_block *sb = e4b->bd_sb;
1826 
1827 	if (WARN_ON(count == 0))
1828 		return;
1829 	BUG_ON(last >= (sb->s_blocksize << 3));
1830 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1831 	/* Don't bother if the block group is corrupt. */
1832 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1833 		return;
1834 
1835 	mb_check_buddy(e4b);
1836 	mb_free_blocks_double(inode, e4b, first, count);
1837 
1838 	/* access memory sequentially: check left neighbour,
1839 	 * clear range and then check right neighbour
1840 	 */
1841 	if (first != 0)
1842 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1843 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1844 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1845 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1846 
1847 	if (unlikely(block != -1)) {
1848 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1849 		ext4_fsblk_t blocknr;
1850 
1851 		/*
1852 		 * Fastcommit replay can free already freed blocks which
1853 		 * corrupts allocation info. Regenerate it.
1854 		 */
1855 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1856 			mb_regenerate_buddy(e4b);
1857 			goto check;
1858 		}
1859 
1860 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1861 		blocknr += EXT4_C2B(sbi, block);
1862 		ext4_grp_locked_error(sb, e4b->bd_group,
1863 				      inode ? inode->i_ino : 0, blocknr,
1864 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1865 				      block);
1866 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1867 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1868 		return;
1869 	}
1870 
1871 	this_cpu_inc(discard_pa_seq);
1872 	e4b->bd_info->bb_free += count;
1873 	if (first < e4b->bd_info->bb_first_free)
1874 		e4b->bd_info->bb_first_free = first;
1875 
1876 	/* let's maintain fragments counter */
1877 	if (left_is_free && right_is_free)
1878 		e4b->bd_info->bb_fragments--;
1879 	else if (!left_is_free && !right_is_free)
1880 		e4b->bd_info->bb_fragments++;
1881 
1882 	/* buddy[0] == bd_bitmap is a special case, so handle
1883 	 * it right away and let mb_buddy_mark_free stay free of
1884 	 * zero order checks.
1885 	 * Check if neighbours are to be coaleasced,
1886 	 * adjust bitmap bb_counters and borders appropriately.
1887 	 */
1888 	if (first & 1) {
1889 		first += !left_is_free;
1890 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1891 	}
1892 	if (!(last & 1)) {
1893 		last -= !right_is_free;
1894 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1895 	}
1896 
1897 	if (first <= last)
1898 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1899 
1900 	mb_set_largest_free_order(sb, e4b->bd_info);
1901 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1902 check:
1903 	mb_check_buddy(e4b);
1904 }
1905 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1906 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1907 				int needed, struct ext4_free_extent *ex)
1908 {
1909 	int next = block;
1910 	int max, order;
1911 	void *buddy;
1912 
1913 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1914 	BUG_ON(ex == NULL);
1915 
1916 	buddy = mb_find_buddy(e4b, 0, &max);
1917 	BUG_ON(buddy == NULL);
1918 	BUG_ON(block >= max);
1919 	if (mb_test_bit(block, buddy)) {
1920 		ex->fe_len = 0;
1921 		ex->fe_start = 0;
1922 		ex->fe_group = 0;
1923 		return 0;
1924 	}
1925 
1926 	/* find actual order */
1927 	order = mb_find_order_for_block(e4b, block);
1928 	block = block >> order;
1929 
1930 	ex->fe_len = 1 << order;
1931 	ex->fe_start = block << order;
1932 	ex->fe_group = e4b->bd_group;
1933 
1934 	/* calc difference from given start */
1935 	next = next - ex->fe_start;
1936 	ex->fe_len -= next;
1937 	ex->fe_start += next;
1938 
1939 	while (needed > ex->fe_len &&
1940 	       mb_find_buddy(e4b, order, &max)) {
1941 
1942 		if (block + 1 >= max)
1943 			break;
1944 
1945 		next = (block + 1) * (1 << order);
1946 		if (mb_test_bit(next, e4b->bd_bitmap))
1947 			break;
1948 
1949 		order = mb_find_order_for_block(e4b, next);
1950 
1951 		block = next >> order;
1952 		ex->fe_len += 1 << order;
1953 	}
1954 
1955 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1956 		/* Should never happen! (but apparently sometimes does?!?) */
1957 		WARN_ON(1);
1958 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1959 			"corruption or bug in mb_find_extent "
1960 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1961 			block, order, needed, ex->fe_group, ex->fe_start,
1962 			ex->fe_len, ex->fe_logical);
1963 		ex->fe_len = 0;
1964 		ex->fe_start = 0;
1965 		ex->fe_group = 0;
1966 	}
1967 	return ex->fe_len;
1968 }
1969 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1970 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1971 {
1972 	int ord;
1973 	int mlen = 0;
1974 	int max = 0;
1975 	int cur;
1976 	int start = ex->fe_start;
1977 	int len = ex->fe_len;
1978 	unsigned ret = 0;
1979 	int len0 = len;
1980 	void *buddy;
1981 
1982 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1983 	BUG_ON(e4b->bd_group != ex->fe_group);
1984 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1985 	mb_check_buddy(e4b);
1986 	mb_mark_used_double(e4b, start, len);
1987 
1988 	this_cpu_inc(discard_pa_seq);
1989 	e4b->bd_info->bb_free -= len;
1990 	if (e4b->bd_info->bb_first_free == start)
1991 		e4b->bd_info->bb_first_free += len;
1992 
1993 	/* let's maintain fragments counter */
1994 	if (start != 0)
1995 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1996 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1997 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1998 	if (mlen && max)
1999 		e4b->bd_info->bb_fragments++;
2000 	else if (!mlen && !max)
2001 		e4b->bd_info->bb_fragments--;
2002 
2003 	/* let's maintain buddy itself */
2004 	while (len) {
2005 		ord = mb_find_order_for_block(e4b, start);
2006 
2007 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2008 			/* the whole chunk may be allocated at once! */
2009 			mlen = 1 << ord;
2010 			buddy = mb_find_buddy(e4b, ord, &max);
2011 			BUG_ON((start >> ord) >= max);
2012 			mb_set_bit(start >> ord, buddy);
2013 			e4b->bd_info->bb_counters[ord]--;
2014 			start += mlen;
2015 			len -= mlen;
2016 			BUG_ON(len < 0);
2017 			continue;
2018 		}
2019 
2020 		/* store for history */
2021 		if (ret == 0)
2022 			ret = len | (ord << 16);
2023 
2024 		/* we have to split large buddy */
2025 		BUG_ON(ord <= 0);
2026 		buddy = mb_find_buddy(e4b, ord, &max);
2027 		mb_set_bit(start >> ord, buddy);
2028 		e4b->bd_info->bb_counters[ord]--;
2029 
2030 		ord--;
2031 		cur = (start >> ord) & ~1U;
2032 		buddy = mb_find_buddy(e4b, ord, &max);
2033 		mb_clear_bit(cur, buddy);
2034 		mb_clear_bit(cur + 1, buddy);
2035 		e4b->bd_info->bb_counters[ord]++;
2036 		e4b->bd_info->bb_counters[ord]++;
2037 	}
2038 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2039 
2040 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2041 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2042 	mb_check_buddy(e4b);
2043 
2044 	return ret;
2045 }
2046 
2047 /*
2048  * Must be called under group lock!
2049  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2050 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2051 					struct ext4_buddy *e4b)
2052 {
2053 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2054 	int ret;
2055 
2056 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2057 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2058 
2059 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2060 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2061 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2062 
2063 	/* preallocation can change ac_b_ex, thus we store actually
2064 	 * allocated blocks for history */
2065 	ac->ac_f_ex = ac->ac_b_ex;
2066 
2067 	ac->ac_status = AC_STATUS_FOUND;
2068 	ac->ac_tail = ret & 0xffff;
2069 	ac->ac_buddy = ret >> 16;
2070 
2071 	/*
2072 	 * take the page reference. We want the page to be pinned
2073 	 * so that we don't get a ext4_mb_init_cache_call for this
2074 	 * group until we update the bitmap. That would mean we
2075 	 * double allocate blocks. The reference is dropped
2076 	 * in ext4_mb_release_context
2077 	 */
2078 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2079 	get_page(ac->ac_bitmap_page);
2080 	ac->ac_buddy_page = e4b->bd_buddy_page;
2081 	get_page(ac->ac_buddy_page);
2082 	/* store last allocated for subsequent stream allocation */
2083 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2084 		spin_lock(&sbi->s_md_lock);
2085 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2086 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2087 		spin_unlock(&sbi->s_md_lock);
2088 	}
2089 	/*
2090 	 * As we've just preallocated more space than
2091 	 * user requested originally, we store allocated
2092 	 * space in a special descriptor.
2093 	 */
2094 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2095 		ext4_mb_new_preallocation(ac);
2096 
2097 }
2098 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)2099 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2100 					struct ext4_buddy *e4b,
2101 					int finish_group)
2102 {
2103 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2104 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2105 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2106 	struct ext4_free_extent ex;
2107 	int max;
2108 
2109 	if (ac->ac_status == AC_STATUS_FOUND)
2110 		return;
2111 	/*
2112 	 * We don't want to scan for a whole year
2113 	 */
2114 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2115 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2116 		ac->ac_status = AC_STATUS_BREAK;
2117 		return;
2118 	}
2119 
2120 	/*
2121 	 * Haven't found good chunk so far, let's continue
2122 	 */
2123 	if (bex->fe_len < gex->fe_len)
2124 		return;
2125 
2126 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2127 			&& bex->fe_group == e4b->bd_group) {
2128 		/* recheck chunk's availability - we don't know
2129 		 * when it was found (within this lock-unlock
2130 		 * period or not) */
2131 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2132 		if (max >= gex->fe_len) {
2133 			ext4_mb_use_best_found(ac, e4b);
2134 			return;
2135 		}
2136 	}
2137 }
2138 
2139 /*
2140  * The routine checks whether found extent is good enough. If it is,
2141  * then the extent gets marked used and flag is set to the context
2142  * to stop scanning. Otherwise, the extent is compared with the
2143  * previous found extent and if new one is better, then it's stored
2144  * in the context. Later, the best found extent will be used, if
2145  * mballoc can't find good enough extent.
2146  *
2147  * FIXME: real allocation policy is to be designed yet!
2148  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)2149 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2150 					struct ext4_free_extent *ex,
2151 					struct ext4_buddy *e4b)
2152 {
2153 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2154 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2155 
2156 	BUG_ON(ex->fe_len <= 0);
2157 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2158 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2159 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2160 
2161 	ac->ac_found++;
2162 
2163 	/*
2164 	 * The special case - take what you catch first
2165 	 */
2166 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2167 		*bex = *ex;
2168 		ext4_mb_use_best_found(ac, e4b);
2169 		return;
2170 	}
2171 
2172 	/*
2173 	 * Let's check whether the chuck is good enough
2174 	 */
2175 	if (ex->fe_len == gex->fe_len) {
2176 		*bex = *ex;
2177 		ext4_mb_use_best_found(ac, e4b);
2178 		return;
2179 	}
2180 
2181 	/*
2182 	 * If this is first found extent, just store it in the context
2183 	 */
2184 	if (bex->fe_len == 0) {
2185 		*bex = *ex;
2186 		return;
2187 	}
2188 
2189 	/*
2190 	 * If new found extent is better, store it in the context
2191 	 */
2192 	if (bex->fe_len < gex->fe_len) {
2193 		/* if the request isn't satisfied, any found extent
2194 		 * larger than previous best one is better */
2195 		if (ex->fe_len > bex->fe_len)
2196 			*bex = *ex;
2197 	} else if (ex->fe_len > gex->fe_len) {
2198 		/* if the request is satisfied, then we try to find
2199 		 * an extent that still satisfy the request, but is
2200 		 * smaller than previous one */
2201 		if (ex->fe_len < bex->fe_len)
2202 			*bex = *ex;
2203 	}
2204 
2205 	ext4_mb_check_limits(ac, e4b, 0);
2206 }
2207 
2208 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2209 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2210 					struct ext4_buddy *e4b)
2211 {
2212 	struct ext4_free_extent ex = ac->ac_b_ex;
2213 	ext4_group_t group = ex.fe_group;
2214 	int max;
2215 	int err;
2216 
2217 	BUG_ON(ex.fe_len <= 0);
2218 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2219 	if (err)
2220 		return err;
2221 
2222 	ext4_lock_group(ac->ac_sb, group);
2223 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2224 		goto out;
2225 
2226 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2227 
2228 	if (max > 0) {
2229 		ac->ac_b_ex = ex;
2230 		ext4_mb_use_best_found(ac, e4b);
2231 	}
2232 
2233 out:
2234 	ext4_unlock_group(ac->ac_sb, group);
2235 	ext4_mb_unload_buddy(e4b);
2236 
2237 	return 0;
2238 }
2239 
2240 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2241 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2242 				struct ext4_buddy *e4b)
2243 {
2244 	ext4_group_t group = ac->ac_g_ex.fe_group;
2245 	int max;
2246 	int err;
2247 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2248 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2249 	struct ext4_free_extent ex;
2250 
2251 	if (!grp)
2252 		return -EFSCORRUPTED;
2253 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2254 		return 0;
2255 	if (grp->bb_free == 0)
2256 		return 0;
2257 
2258 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2259 	if (err)
2260 		return err;
2261 
2262 	ext4_lock_group(ac->ac_sb, group);
2263 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2264 		goto out;
2265 
2266 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2267 			     ac->ac_g_ex.fe_len, &ex);
2268 	ex.fe_logical = 0xDEADFA11; /* debug value */
2269 
2270 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2271 		ext4_fsblk_t start;
2272 
2273 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2274 			ex.fe_start;
2275 		/* use do_div to get remainder (would be 64-bit modulo) */
2276 		if (do_div(start, sbi->s_stripe) == 0) {
2277 			ac->ac_found++;
2278 			ac->ac_b_ex = ex;
2279 			ext4_mb_use_best_found(ac, e4b);
2280 		}
2281 	} else if (max >= ac->ac_g_ex.fe_len) {
2282 		BUG_ON(ex.fe_len <= 0);
2283 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2284 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2285 		ac->ac_found++;
2286 		ac->ac_b_ex = ex;
2287 		ext4_mb_use_best_found(ac, e4b);
2288 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2289 		/* Sometimes, caller may want to merge even small
2290 		 * number of blocks to an existing extent */
2291 		BUG_ON(ex.fe_len <= 0);
2292 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2293 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2294 		ac->ac_found++;
2295 		ac->ac_b_ex = ex;
2296 		ext4_mb_use_best_found(ac, e4b);
2297 	}
2298 out:
2299 	ext4_unlock_group(ac->ac_sb, group);
2300 	ext4_mb_unload_buddy(e4b);
2301 
2302 	return 0;
2303 }
2304 
2305 /*
2306  * The routine scans buddy structures (not bitmap!) from given order
2307  * to max order and tries to find big enough chunk to satisfy the req
2308  */
2309 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2310 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2311 					struct ext4_buddy *e4b)
2312 {
2313 	struct super_block *sb = ac->ac_sb;
2314 	struct ext4_group_info *grp = e4b->bd_info;
2315 	void *buddy;
2316 	int i;
2317 	int k;
2318 	int max;
2319 
2320 	BUG_ON(ac->ac_2order <= 0);
2321 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2322 		if (grp->bb_counters[i] == 0)
2323 			continue;
2324 
2325 		buddy = mb_find_buddy(e4b, i, &max);
2326 		BUG_ON(buddy == NULL);
2327 
2328 		k = mb_find_next_zero_bit(buddy, max, 0);
2329 		if (k >= max) {
2330 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2331 				"%d free clusters of order %d. But found 0",
2332 				grp->bb_counters[i], i);
2333 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2334 					 e4b->bd_group,
2335 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2336 			break;
2337 		}
2338 		ac->ac_found++;
2339 
2340 		ac->ac_b_ex.fe_len = 1 << i;
2341 		ac->ac_b_ex.fe_start = k << i;
2342 		ac->ac_b_ex.fe_group = e4b->bd_group;
2343 
2344 		ext4_mb_use_best_found(ac, e4b);
2345 
2346 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2347 
2348 		if (EXT4_SB(sb)->s_mb_stats)
2349 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2350 
2351 		break;
2352 	}
2353 }
2354 
2355 /*
2356  * The routine scans the group and measures all found extents.
2357  * In order to optimize scanning, caller must pass number of
2358  * free blocks in the group, so the routine can know upper limit.
2359  */
2360 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2361 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2362 					struct ext4_buddy *e4b)
2363 {
2364 	struct super_block *sb = ac->ac_sb;
2365 	void *bitmap = e4b->bd_bitmap;
2366 	struct ext4_free_extent ex;
2367 	int i;
2368 	int free;
2369 
2370 	free = e4b->bd_info->bb_free;
2371 	if (WARN_ON(free <= 0))
2372 		return;
2373 
2374 	i = e4b->bd_info->bb_first_free;
2375 
2376 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2377 		i = mb_find_next_zero_bit(bitmap,
2378 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2379 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2380 			/*
2381 			 * IF we have corrupt bitmap, we won't find any
2382 			 * free blocks even though group info says we
2383 			 * have free blocks
2384 			 */
2385 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2386 					"%d free clusters as per "
2387 					"group info. But bitmap says 0",
2388 					free);
2389 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2390 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2391 			break;
2392 		}
2393 
2394 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2395 		if (WARN_ON(ex.fe_len <= 0))
2396 			break;
2397 		if (free < ex.fe_len) {
2398 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2399 					"%d free clusters as per "
2400 					"group info. But got %d blocks",
2401 					free, ex.fe_len);
2402 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2403 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2404 			/*
2405 			 * The number of free blocks differs. This mostly
2406 			 * indicate that the bitmap is corrupt. So exit
2407 			 * without claiming the space.
2408 			 */
2409 			break;
2410 		}
2411 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2412 		ext4_mb_measure_extent(ac, &ex, e4b);
2413 
2414 		i += ex.fe_len;
2415 		free -= ex.fe_len;
2416 	}
2417 
2418 	ext4_mb_check_limits(ac, e4b, 1);
2419 }
2420 
2421 /*
2422  * This is a special case for storages like raid5
2423  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2424  */
2425 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2426 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2427 				 struct ext4_buddy *e4b)
2428 {
2429 	struct super_block *sb = ac->ac_sb;
2430 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2431 	void *bitmap = e4b->bd_bitmap;
2432 	struct ext4_free_extent ex;
2433 	ext4_fsblk_t first_group_block;
2434 	ext4_fsblk_t a;
2435 	ext4_grpblk_t i;
2436 	int max;
2437 
2438 	BUG_ON(sbi->s_stripe == 0);
2439 
2440 	/* find first stripe-aligned block in group */
2441 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2442 
2443 	a = first_group_block + sbi->s_stripe - 1;
2444 	do_div(a, sbi->s_stripe);
2445 	i = (a * sbi->s_stripe) - first_group_block;
2446 
2447 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2448 		if (!mb_test_bit(i, bitmap)) {
2449 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2450 			if (max >= sbi->s_stripe) {
2451 				ac->ac_found++;
2452 				ex.fe_logical = 0xDEADF00D; /* debug value */
2453 				ac->ac_b_ex = ex;
2454 				ext4_mb_use_best_found(ac, e4b);
2455 				break;
2456 			}
2457 		}
2458 		i += sbi->s_stripe;
2459 	}
2460 }
2461 
2462 /*
2463  * This is also called BEFORE we load the buddy bitmap.
2464  * Returns either 1 or 0 indicating that the group is either suitable
2465  * for the allocation or not.
2466  */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2467 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2468 				ext4_group_t group, int cr)
2469 {
2470 	ext4_grpblk_t free, fragments;
2471 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2472 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2473 
2474 	BUG_ON(cr < 0 || cr >= 4);
2475 
2476 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2477 		return false;
2478 
2479 	free = grp->bb_free;
2480 	if (free == 0)
2481 		return false;
2482 
2483 	fragments = grp->bb_fragments;
2484 	if (fragments == 0)
2485 		return false;
2486 
2487 	switch (cr) {
2488 	case 0:
2489 		BUG_ON(ac->ac_2order == 0);
2490 
2491 		/* Avoid using the first bg of a flexgroup for data files */
2492 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2493 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2494 		    ((group % flex_size) == 0))
2495 			return false;
2496 
2497 		if (free < ac->ac_g_ex.fe_len)
2498 			return false;
2499 
2500 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2501 			return true;
2502 
2503 		if (grp->bb_largest_free_order < ac->ac_2order)
2504 			return false;
2505 
2506 		return true;
2507 	case 1:
2508 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2509 			return true;
2510 		break;
2511 	case 2:
2512 		if (free >= ac->ac_g_ex.fe_len)
2513 			return true;
2514 		break;
2515 	case 3:
2516 		return true;
2517 	default:
2518 		BUG();
2519 	}
2520 
2521 	return false;
2522 }
2523 
2524 /*
2525  * This could return negative error code if something goes wrong
2526  * during ext4_mb_init_group(). This should not be called with
2527  * ext4_lock_group() held.
2528  *
2529  * Note: because we are conditionally operating with the group lock in
2530  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2531  * function using __acquire and __release.  This means we need to be
2532  * super careful before messing with the error path handling via "goto
2533  * out"!
2534  */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2535 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2536 				     ext4_group_t group, int cr)
2537 {
2538 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2539 	struct super_block *sb = ac->ac_sb;
2540 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2541 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2542 	ext4_grpblk_t free;
2543 	int ret = 0;
2544 
2545 	if (!grp)
2546 		return -EFSCORRUPTED;
2547 	if (sbi->s_mb_stats)
2548 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2549 	if (should_lock) {
2550 		ext4_lock_group(sb, group);
2551 		__release(ext4_group_lock_ptr(sb, group));
2552 	}
2553 	free = grp->bb_free;
2554 	if (free == 0)
2555 		goto out;
2556 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2557 		goto out;
2558 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2559 		goto out;
2560 	if (should_lock) {
2561 		__acquire(ext4_group_lock_ptr(sb, group));
2562 		ext4_unlock_group(sb, group);
2563 	}
2564 
2565 	/* We only do this if the grp has never been initialized */
2566 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2567 		struct ext4_group_desc *gdp =
2568 			ext4_get_group_desc(sb, group, NULL);
2569 		int ret;
2570 
2571 		/* cr=0/1 is a very optimistic search to find large
2572 		 * good chunks almost for free.  If buddy data is not
2573 		 * ready, then this optimization makes no sense.  But
2574 		 * we never skip the first block group in a flex_bg,
2575 		 * since this gets used for metadata block allocation,
2576 		 * and we want to make sure we locate metadata blocks
2577 		 * in the first block group in the flex_bg if possible.
2578 		 */
2579 		if (cr < 2 &&
2580 		    (!sbi->s_log_groups_per_flex ||
2581 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2582 		    !(ext4_has_group_desc_csum(sb) &&
2583 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2584 			return 0;
2585 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2586 		if (ret)
2587 			return ret;
2588 	}
2589 
2590 	if (should_lock) {
2591 		ext4_lock_group(sb, group);
2592 		__release(ext4_group_lock_ptr(sb, group));
2593 	}
2594 	ret = ext4_mb_good_group(ac, group, cr);
2595 out:
2596 	if (should_lock) {
2597 		__acquire(ext4_group_lock_ptr(sb, group));
2598 		ext4_unlock_group(sb, group);
2599 	}
2600 	return ret;
2601 }
2602 
2603 /*
2604  * Start prefetching @nr block bitmaps starting at @group.
2605  * Return the next group which needs to be prefetched.
2606  */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2607 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2608 			      unsigned int nr, int *cnt)
2609 {
2610 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2611 	struct buffer_head *bh;
2612 	struct blk_plug plug;
2613 
2614 	blk_start_plug(&plug);
2615 	while (nr-- > 0) {
2616 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2617 								  NULL);
2618 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2619 
2620 		/*
2621 		 * Prefetch block groups with free blocks; but don't
2622 		 * bother if it is marked uninitialized on disk, since
2623 		 * it won't require I/O to read.  Also only try to
2624 		 * prefetch once, so we avoid getblk() call, which can
2625 		 * be expensive.
2626 		 */
2627 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2628 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2629 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2630 		    !(ext4_has_group_desc_csum(sb) &&
2631 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2632 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2633 			if (bh && !IS_ERR(bh)) {
2634 				if (!buffer_uptodate(bh) && cnt)
2635 					(*cnt)++;
2636 				brelse(bh);
2637 			}
2638 		}
2639 		if (++group >= ngroups)
2640 			group = 0;
2641 	}
2642 	blk_finish_plug(&plug);
2643 	return group;
2644 }
2645 
2646 /*
2647  * Prefetching reads the block bitmap into the buffer cache; but we
2648  * need to make sure that the buddy bitmap in the page cache has been
2649  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2650  * is not yet completed, or indeed if it was not initiated by
2651  * ext4_mb_prefetch did not start the I/O.
2652  *
2653  * TODO: We should actually kick off the buddy bitmap setup in a work
2654  * queue when the buffer I/O is completed, so that we don't block
2655  * waiting for the block allocation bitmap read to finish when
2656  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2657  */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2658 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2659 			   unsigned int nr)
2660 {
2661 	while (nr-- > 0) {
2662 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2663 								  NULL);
2664 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2665 
2666 		if (!group)
2667 			group = ext4_get_groups_count(sb);
2668 		group--;
2669 		grp = ext4_get_group_info(sb, group);
2670 
2671 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2672 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2673 		    !(ext4_has_group_desc_csum(sb) &&
2674 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2675 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2676 				break;
2677 		}
2678 	}
2679 }
2680 
2681 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2682 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2683 {
2684 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2685 	int cr = -1, new_cr;
2686 	int err = 0, first_err = 0;
2687 	unsigned int nr = 0, prefetch_ios = 0;
2688 	struct ext4_sb_info *sbi;
2689 	struct super_block *sb;
2690 	struct ext4_buddy e4b;
2691 	int lost;
2692 
2693 	sb = ac->ac_sb;
2694 	sbi = EXT4_SB(sb);
2695 	ngroups = ext4_get_groups_count(sb);
2696 	/* non-extent files are limited to low blocks/groups */
2697 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2698 		ngroups = sbi->s_blockfile_groups;
2699 
2700 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2701 
2702 	/* first, try the goal */
2703 	err = ext4_mb_find_by_goal(ac, &e4b);
2704 	if (err || ac->ac_status == AC_STATUS_FOUND)
2705 		goto out;
2706 
2707 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2708 		goto out;
2709 
2710 	/*
2711 	 * ac->ac_2order is set only if the fe_len is a power of 2
2712 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2713 	 * try exact allocation using buddy.
2714 	 */
2715 	i = fls(ac->ac_g_ex.fe_len);
2716 	ac->ac_2order = 0;
2717 	/*
2718 	 * We search using buddy data only if the order of the request
2719 	 * is greater than equal to the sbi_s_mb_order2_reqs
2720 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2721 	 * We also support searching for power-of-two requests only for
2722 	 * requests upto maximum buddy size we have constructed.
2723 	 */
2724 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2725 		/*
2726 		 * This should tell if fe_len is exactly power of 2
2727 		 */
2728 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2729 			ac->ac_2order = array_index_nospec(i - 1,
2730 							   MB_NUM_ORDERS(sb));
2731 	}
2732 
2733 	/* if stream allocation is enabled, use global goal */
2734 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2735 		/* TBD: may be hot point */
2736 		spin_lock(&sbi->s_md_lock);
2737 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2738 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2739 		spin_unlock(&sbi->s_md_lock);
2740 	}
2741 
2742 	/* Let's just scan groups to find more-less suitable blocks */
2743 	cr = ac->ac_2order ? 0 : 1;
2744 	/*
2745 	 * cr == 0 try to get exact allocation,
2746 	 * cr == 3  try to get anything
2747 	 */
2748 repeat:
2749 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2750 		ac->ac_criteria = cr;
2751 		/*
2752 		 * searching for the right group start
2753 		 * from the goal value specified
2754 		 */
2755 		group = ac->ac_g_ex.fe_group;
2756 		ac->ac_last_optimal_group = group;
2757 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2758 		prefetch_grp = group;
2759 
2760 		for (i = 0, new_cr = cr; i < ngroups; i++,
2761 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2762 			int ret = 0;
2763 
2764 			cond_resched();
2765 			if (new_cr != cr) {
2766 				cr = new_cr;
2767 				goto repeat;
2768 			}
2769 
2770 			/*
2771 			 * Batch reads of the block allocation bitmaps
2772 			 * to get multiple READs in flight; limit
2773 			 * prefetching at cr=0/1, otherwise mballoc can
2774 			 * spend a lot of time loading imperfect groups
2775 			 */
2776 			if ((prefetch_grp == group) &&
2777 			    (cr > 1 ||
2778 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2779 				unsigned int curr_ios = prefetch_ios;
2780 
2781 				nr = sbi->s_mb_prefetch;
2782 				if (ext4_has_feature_flex_bg(sb)) {
2783 					nr = 1 << sbi->s_log_groups_per_flex;
2784 					nr -= group & (nr - 1);
2785 					nr = min(nr, sbi->s_mb_prefetch);
2786 				}
2787 				prefetch_grp = ext4_mb_prefetch(sb, group,
2788 							nr, &prefetch_ios);
2789 				if (prefetch_ios == curr_ios)
2790 					nr = 0;
2791 			}
2792 
2793 			/* This now checks without needing the buddy page */
2794 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2795 			if (ret <= 0) {
2796 				if (!first_err)
2797 					first_err = ret;
2798 				continue;
2799 			}
2800 
2801 			err = ext4_mb_load_buddy(sb, group, &e4b);
2802 			if (err)
2803 				goto out;
2804 
2805 			ext4_lock_group(sb, group);
2806 
2807 			/*
2808 			 * We need to check again after locking the
2809 			 * block group
2810 			 */
2811 			ret = ext4_mb_good_group(ac, group, cr);
2812 			if (ret == 0) {
2813 				ext4_unlock_group(sb, group);
2814 				ext4_mb_unload_buddy(&e4b);
2815 				continue;
2816 			}
2817 
2818 			ac->ac_groups_scanned++;
2819 			if (cr == 0)
2820 				ext4_mb_simple_scan_group(ac, &e4b);
2821 			else if (cr == 1 && sbi->s_stripe &&
2822 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2823 				ext4_mb_scan_aligned(ac, &e4b);
2824 			else
2825 				ext4_mb_complex_scan_group(ac, &e4b);
2826 
2827 			ext4_unlock_group(sb, group);
2828 			ext4_mb_unload_buddy(&e4b);
2829 
2830 			if (ac->ac_status != AC_STATUS_CONTINUE)
2831 				break;
2832 		}
2833 		/* Processed all groups and haven't found blocks */
2834 		if (sbi->s_mb_stats && i == ngroups)
2835 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2836 	}
2837 
2838 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2839 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2840 		/*
2841 		 * We've been searching too long. Let's try to allocate
2842 		 * the best chunk we've found so far
2843 		 */
2844 		ext4_mb_try_best_found(ac, &e4b);
2845 		if (ac->ac_status != AC_STATUS_FOUND) {
2846 			/*
2847 			 * Someone more lucky has already allocated it.
2848 			 * The only thing we can do is just take first
2849 			 * found block(s)
2850 			 */
2851 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2852 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2853 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2854 				 ac->ac_b_ex.fe_len, lost);
2855 
2856 			ac->ac_b_ex.fe_group = 0;
2857 			ac->ac_b_ex.fe_start = 0;
2858 			ac->ac_b_ex.fe_len = 0;
2859 			ac->ac_status = AC_STATUS_CONTINUE;
2860 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2861 			cr = 3;
2862 			goto repeat;
2863 		}
2864 	}
2865 
2866 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2867 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2868 out:
2869 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2870 		err = first_err;
2871 
2872 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2873 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2874 		 ac->ac_flags, cr, err);
2875 
2876 	if (nr)
2877 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2878 
2879 	return err;
2880 }
2881 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2882 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2883 {
2884 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2885 	ext4_group_t group;
2886 
2887 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2888 		return NULL;
2889 	group = *pos + 1;
2890 	return (void *) ((unsigned long) group);
2891 }
2892 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2893 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2894 {
2895 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2896 	ext4_group_t group;
2897 
2898 	++*pos;
2899 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2900 		return NULL;
2901 	group = *pos + 1;
2902 	return (void *) ((unsigned long) group);
2903 }
2904 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2905 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2906 {
2907 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2908 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2909 	int i;
2910 	int err, buddy_loaded = 0;
2911 	struct ext4_buddy e4b;
2912 	struct ext4_group_info *grinfo;
2913 	unsigned char blocksize_bits = min_t(unsigned char,
2914 					     sb->s_blocksize_bits,
2915 					     EXT4_MAX_BLOCK_LOG_SIZE);
2916 	struct sg {
2917 		struct ext4_group_info info;
2918 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2919 	} sg;
2920 
2921 	group--;
2922 	if (group == 0)
2923 		seq_puts(seq, "#group: free  frags first ["
2924 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2925 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2926 
2927 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2928 		sizeof(struct ext4_group_info);
2929 
2930 	grinfo = ext4_get_group_info(sb, group);
2931 	if (!grinfo)
2932 		return 0;
2933 	/* Load the group info in memory only if not already loaded. */
2934 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2935 		err = ext4_mb_load_buddy(sb, group, &e4b);
2936 		if (err) {
2937 			seq_printf(seq, "#%-5u: I/O error\n", group);
2938 			return 0;
2939 		}
2940 		buddy_loaded = 1;
2941 	}
2942 
2943 	memcpy(&sg, grinfo, i);
2944 
2945 	if (buddy_loaded)
2946 		ext4_mb_unload_buddy(&e4b);
2947 
2948 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2949 			sg.info.bb_fragments, sg.info.bb_first_free);
2950 	for (i = 0; i <= 13; i++)
2951 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2952 				sg.info.bb_counters[i] : 0);
2953 	seq_puts(seq, " ]\n");
2954 
2955 	return 0;
2956 }
2957 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2958 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2959 {
2960 }
2961 
2962 const struct seq_operations ext4_mb_seq_groups_ops = {
2963 	.start  = ext4_mb_seq_groups_start,
2964 	.next   = ext4_mb_seq_groups_next,
2965 	.stop   = ext4_mb_seq_groups_stop,
2966 	.show   = ext4_mb_seq_groups_show,
2967 };
2968 
ext4_seq_mb_stats_show(struct seq_file * seq,void * offset)2969 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2970 {
2971 	struct super_block *sb = (struct super_block *)seq->private;
2972 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2973 
2974 	seq_puts(seq, "mballoc:\n");
2975 	if (!sbi->s_mb_stats) {
2976 		seq_puts(seq, "\tmb stats collection turned off.\n");
2977 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2978 		return 0;
2979 	}
2980 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2981 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2982 
2983 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2984 
2985 	seq_puts(seq, "\tcr0_stats:\n");
2986 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2987 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2988 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2989 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2990 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2991 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2992 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2993 
2994 	seq_puts(seq, "\tcr1_stats:\n");
2995 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2996 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2997 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2998 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2999 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
3000 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3001 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
3002 
3003 	seq_puts(seq, "\tcr2_stats:\n");
3004 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
3005 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3006 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
3007 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3008 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
3009 
3010 	seq_puts(seq, "\tcr3_stats:\n");
3011 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
3012 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3013 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
3014 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3015 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
3016 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
3017 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3018 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3019 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3020 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3021 
3022 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3023 		   atomic_read(&sbi->s_mb_buddies_generated),
3024 		   ext4_get_groups_count(sb));
3025 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3026 		   atomic64_read(&sbi->s_mb_generation_time));
3027 	seq_printf(seq, "\tpreallocated: %u\n",
3028 		   atomic_read(&sbi->s_mb_preallocated));
3029 	seq_printf(seq, "\tdiscarded: %u\n",
3030 		   atomic_read(&sbi->s_mb_discarded));
3031 	return 0;
3032 }
3033 
ext4_mb_seq_structs_summary_start(struct seq_file * seq,loff_t * pos)3034 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3035 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3036 {
3037 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3038 	unsigned long position;
3039 
3040 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
3041 
3042 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
3043 		return NULL;
3044 	position = *pos + 1;
3045 	return (void *) ((unsigned long) position);
3046 }
3047 
ext4_mb_seq_structs_summary_next(struct seq_file * seq,void * v,loff_t * pos)3048 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3049 {
3050 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3051 	unsigned long position;
3052 
3053 	++*pos;
3054 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
3055 		return NULL;
3056 	position = *pos + 1;
3057 	return (void *) ((unsigned long) position);
3058 }
3059 
ext4_mb_seq_structs_summary_show(struct seq_file * seq,void * v)3060 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3061 {
3062 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3063 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3064 	unsigned long position = ((unsigned long) v);
3065 	struct ext4_group_info *grp;
3066 	struct rb_node *n;
3067 	unsigned int count, min, max;
3068 
3069 	position--;
3070 	if (position >= MB_NUM_ORDERS(sb)) {
3071 		seq_puts(seq, "fragment_size_tree:\n");
3072 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3073 		if (!n) {
3074 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3075 			return 0;
3076 		}
3077 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3078 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3079 		count = 1;
3080 		while (rb_next(n)) {
3081 			count++;
3082 			n = rb_next(n);
3083 		}
3084 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3085 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3086 
3087 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3088 			   min, max, count);
3089 		return 0;
3090 	}
3091 
3092 	if (position == 0) {
3093 		seq_printf(seq, "optimize_scan: %d\n",
3094 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3095 		seq_puts(seq, "max_free_order_lists:\n");
3096 	}
3097 	count = 0;
3098 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3099 			    bb_largest_free_order_node)
3100 		count++;
3101 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3102 		   (unsigned int)position, count);
3103 
3104 	return 0;
3105 }
3106 
ext4_mb_seq_structs_summary_stop(struct seq_file * seq,void * v)3107 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3108 __releases(&EXT4_SB(sb)->s_mb_rb_lock)
3109 {
3110 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3111 
3112 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3113 }
3114 
3115 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3116 	.start  = ext4_mb_seq_structs_summary_start,
3117 	.next   = ext4_mb_seq_structs_summary_next,
3118 	.stop   = ext4_mb_seq_structs_summary_stop,
3119 	.show   = ext4_mb_seq_structs_summary_show,
3120 };
3121 
get_groupinfo_cache(int blocksize_bits)3122 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3123 {
3124 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3125 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3126 
3127 	BUG_ON(!cachep);
3128 	return cachep;
3129 }
3130 
3131 /*
3132  * Allocate the top-level s_group_info array for the specified number
3133  * of groups
3134  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)3135 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3136 {
3137 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3138 	unsigned size;
3139 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3140 
3141 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3142 		EXT4_DESC_PER_BLOCK_BITS(sb);
3143 	if (size <= sbi->s_group_info_size)
3144 		return 0;
3145 
3146 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3147 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3148 	if (!new_groupinfo) {
3149 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3150 		return -ENOMEM;
3151 	}
3152 	rcu_read_lock();
3153 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3154 	if (old_groupinfo)
3155 		memcpy(new_groupinfo, old_groupinfo,
3156 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3157 	rcu_read_unlock();
3158 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3159 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3160 	if (old_groupinfo)
3161 		ext4_kvfree_array_rcu(old_groupinfo);
3162 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3163 		   sbi->s_group_info_size);
3164 	return 0;
3165 }
3166 
3167 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)3168 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3169 			  struct ext4_group_desc *desc)
3170 {
3171 	int i;
3172 	int metalen = 0;
3173 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3174 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3175 	struct ext4_group_info **meta_group_info;
3176 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3177 
3178 	/*
3179 	 * First check if this group is the first of a reserved block.
3180 	 * If it's true, we have to allocate a new table of pointers
3181 	 * to ext4_group_info structures
3182 	 */
3183 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3184 		metalen = sizeof(*meta_group_info) <<
3185 			EXT4_DESC_PER_BLOCK_BITS(sb);
3186 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3187 		if (meta_group_info == NULL) {
3188 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3189 				 "for a buddy group");
3190 			goto exit_meta_group_info;
3191 		}
3192 		rcu_read_lock();
3193 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3194 		rcu_read_unlock();
3195 	}
3196 
3197 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3198 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3199 
3200 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3201 	if (meta_group_info[i] == NULL) {
3202 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3203 		goto exit_group_info;
3204 	}
3205 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3206 		&(meta_group_info[i]->bb_state));
3207 
3208 	/*
3209 	 * initialize bb_free to be able to skip
3210 	 * empty groups without initialization
3211 	 */
3212 	if (ext4_has_group_desc_csum(sb) &&
3213 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3214 		meta_group_info[i]->bb_free =
3215 			ext4_free_clusters_after_init(sb, group, desc);
3216 	} else {
3217 		meta_group_info[i]->bb_free =
3218 			ext4_free_group_clusters(sb, desc);
3219 	}
3220 
3221 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3222 	init_rwsem(&meta_group_info[i]->alloc_sem);
3223 	meta_group_info[i]->bb_free_root = RB_ROOT;
3224 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3225 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3226 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3227 	meta_group_info[i]->bb_group = group;
3228 
3229 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3230 	return 0;
3231 
3232 exit_group_info:
3233 	/* If a meta_group_info table has been allocated, release it now */
3234 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3235 		struct ext4_group_info ***group_info;
3236 
3237 		rcu_read_lock();
3238 		group_info = rcu_dereference(sbi->s_group_info);
3239 		kfree(group_info[idx]);
3240 		group_info[idx] = NULL;
3241 		rcu_read_unlock();
3242 	}
3243 exit_meta_group_info:
3244 	return -ENOMEM;
3245 } /* ext4_mb_add_groupinfo */
3246 
ext4_mb_init_backend(struct super_block * sb)3247 static int ext4_mb_init_backend(struct super_block *sb)
3248 {
3249 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3250 	ext4_group_t i;
3251 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3252 	int err;
3253 	struct ext4_group_desc *desc;
3254 	struct ext4_group_info ***group_info;
3255 	struct kmem_cache *cachep;
3256 
3257 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3258 	if (err)
3259 		return err;
3260 
3261 	sbi->s_buddy_cache = new_inode(sb);
3262 	if (sbi->s_buddy_cache == NULL) {
3263 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3264 		goto err_freesgi;
3265 	}
3266 	/* To avoid potentially colliding with an valid on-disk inode number,
3267 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3268 	 * not in the inode hash, so it should never be found by iget(), but
3269 	 * this will avoid confusion if it ever shows up during debugging. */
3270 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3271 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3272 	for (i = 0; i < ngroups; i++) {
3273 		cond_resched();
3274 		desc = ext4_get_group_desc(sb, i, NULL);
3275 		if (desc == NULL) {
3276 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3277 			goto err_freebuddy;
3278 		}
3279 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3280 			goto err_freebuddy;
3281 	}
3282 
3283 	if (ext4_has_feature_flex_bg(sb)) {
3284 		/* a single flex group is supposed to be read by a single IO.
3285 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3286 		 * unsigned integer, so the maximum shift is 32.
3287 		 */
3288 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3289 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3290 			goto err_freebuddy;
3291 		}
3292 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3293 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3294 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3295 	} else {
3296 		sbi->s_mb_prefetch = 32;
3297 	}
3298 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3299 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3300 	/* now many real IOs to prefetch within a single allocation at cr=0
3301 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3302 	 * load too many groups, at some point we should start to use what
3303 	 * we've got in memory.
3304 	 * with an average random access time 5ms, it'd take a second to get
3305 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3306 	 */
3307 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3308 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3309 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3310 
3311 	return 0;
3312 
3313 err_freebuddy:
3314 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3315 	while (i-- > 0) {
3316 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3317 
3318 		if (grp)
3319 			kmem_cache_free(cachep, grp);
3320 	}
3321 	i = sbi->s_group_info_size;
3322 	rcu_read_lock();
3323 	group_info = rcu_dereference(sbi->s_group_info);
3324 	while (i-- > 0)
3325 		kfree(group_info[i]);
3326 	rcu_read_unlock();
3327 	iput(sbi->s_buddy_cache);
3328 err_freesgi:
3329 	rcu_read_lock();
3330 	kvfree(rcu_dereference(sbi->s_group_info));
3331 	rcu_read_unlock();
3332 	return -ENOMEM;
3333 }
3334 
ext4_groupinfo_destroy_slabs(void)3335 static void ext4_groupinfo_destroy_slabs(void)
3336 {
3337 	int i;
3338 
3339 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3340 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3341 		ext4_groupinfo_caches[i] = NULL;
3342 	}
3343 }
3344 
ext4_groupinfo_create_slab(size_t size)3345 static int ext4_groupinfo_create_slab(size_t size)
3346 {
3347 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3348 	int slab_size;
3349 	int blocksize_bits = order_base_2(size);
3350 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3351 	struct kmem_cache *cachep;
3352 
3353 	if (cache_index >= NR_GRPINFO_CACHES)
3354 		return -EINVAL;
3355 
3356 	if (unlikely(cache_index < 0))
3357 		cache_index = 0;
3358 
3359 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3360 	if (ext4_groupinfo_caches[cache_index]) {
3361 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3362 		return 0;	/* Already created */
3363 	}
3364 
3365 	slab_size = offsetof(struct ext4_group_info,
3366 				bb_counters[blocksize_bits + 2]);
3367 
3368 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3369 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3370 					NULL);
3371 
3372 	ext4_groupinfo_caches[cache_index] = cachep;
3373 
3374 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3375 	if (!cachep) {
3376 		printk(KERN_EMERG
3377 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3378 		return -ENOMEM;
3379 	}
3380 
3381 	return 0;
3382 }
3383 
ext4_discard_work(struct work_struct * work)3384 static void ext4_discard_work(struct work_struct *work)
3385 {
3386 	struct ext4_sb_info *sbi = container_of(work,
3387 			struct ext4_sb_info, s_discard_work);
3388 	struct super_block *sb = sbi->s_sb;
3389 	struct ext4_free_data *fd, *nfd;
3390 	struct ext4_buddy e4b;
3391 	struct list_head discard_list;
3392 	ext4_group_t grp, load_grp;
3393 	int err = 0;
3394 
3395 	INIT_LIST_HEAD(&discard_list);
3396 	spin_lock(&sbi->s_md_lock);
3397 	list_splice_init(&sbi->s_discard_list, &discard_list);
3398 	spin_unlock(&sbi->s_md_lock);
3399 
3400 	load_grp = UINT_MAX;
3401 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3402 		/*
3403 		 * If filesystem is umounting or no memory or suffering
3404 		 * from no space, give up the discard
3405 		 */
3406 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3407 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3408 			grp = fd->efd_group;
3409 			if (grp != load_grp) {
3410 				if (load_grp != UINT_MAX)
3411 					ext4_mb_unload_buddy(&e4b);
3412 
3413 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3414 				if (err) {
3415 					kmem_cache_free(ext4_free_data_cachep, fd);
3416 					load_grp = UINT_MAX;
3417 					continue;
3418 				} else {
3419 					load_grp = grp;
3420 				}
3421 			}
3422 
3423 			ext4_lock_group(sb, grp);
3424 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3425 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3426 			ext4_unlock_group(sb, grp);
3427 		}
3428 		kmem_cache_free(ext4_free_data_cachep, fd);
3429 	}
3430 
3431 	if (load_grp != UINT_MAX)
3432 		ext4_mb_unload_buddy(&e4b);
3433 }
3434 
ext4_mb_init(struct super_block * sb)3435 int ext4_mb_init(struct super_block *sb)
3436 {
3437 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3438 	unsigned i, j;
3439 	unsigned offset, offset_incr;
3440 	unsigned max;
3441 	int ret;
3442 
3443 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3444 
3445 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3446 	if (sbi->s_mb_offsets == NULL) {
3447 		ret = -ENOMEM;
3448 		goto out;
3449 	}
3450 
3451 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3452 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3453 	if (sbi->s_mb_maxs == NULL) {
3454 		ret = -ENOMEM;
3455 		goto out;
3456 	}
3457 
3458 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3459 	if (ret < 0)
3460 		goto out;
3461 
3462 	/* order 0 is regular bitmap */
3463 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3464 	sbi->s_mb_offsets[0] = 0;
3465 
3466 	i = 1;
3467 	offset = 0;
3468 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3469 	max = sb->s_blocksize << 2;
3470 	do {
3471 		sbi->s_mb_offsets[i] = offset;
3472 		sbi->s_mb_maxs[i] = max;
3473 		offset += offset_incr;
3474 		offset_incr = offset_incr >> 1;
3475 		max = max >> 1;
3476 		i++;
3477 	} while (i < MB_NUM_ORDERS(sb));
3478 
3479 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3480 	sbi->s_mb_largest_free_orders =
3481 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3482 			GFP_KERNEL);
3483 	if (!sbi->s_mb_largest_free_orders) {
3484 		ret = -ENOMEM;
3485 		goto out;
3486 	}
3487 	sbi->s_mb_largest_free_orders_locks =
3488 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3489 			GFP_KERNEL);
3490 	if (!sbi->s_mb_largest_free_orders_locks) {
3491 		ret = -ENOMEM;
3492 		goto out;
3493 	}
3494 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3495 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3496 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3497 	}
3498 	rwlock_init(&sbi->s_mb_rb_lock);
3499 
3500 	spin_lock_init(&sbi->s_md_lock);
3501 	sbi->s_mb_free_pending = 0;
3502 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3503 	INIT_LIST_HEAD(&sbi->s_discard_list);
3504 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3505 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3506 
3507 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3508 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3509 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3510 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3511 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3512 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3513 	/*
3514 	 * The default group preallocation is 512, which for 4k block
3515 	 * sizes translates to 2 megabytes.  However for bigalloc file
3516 	 * systems, this is probably too big (i.e, if the cluster size
3517 	 * is 1 megabyte, then group preallocation size becomes half a
3518 	 * gigabyte!).  As a default, we will keep a two megabyte
3519 	 * group pralloc size for cluster sizes up to 64k, and after
3520 	 * that, we will force a minimum group preallocation size of
3521 	 * 32 clusters.  This translates to 8 megs when the cluster
3522 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3523 	 * which seems reasonable as a default.
3524 	 */
3525 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3526 				       sbi->s_cluster_bits, 32);
3527 	/*
3528 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3529 	 * to the lowest multiple of s_stripe which is bigger than
3530 	 * the s_mb_group_prealloc as determined above. We want
3531 	 * the preallocation size to be an exact multiple of the
3532 	 * RAID stripe size so that preallocations don't fragment
3533 	 * the stripes.
3534 	 */
3535 	if (sbi->s_stripe > 1) {
3536 		sbi->s_mb_group_prealloc = roundup(
3537 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3538 	}
3539 
3540 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3541 	if (sbi->s_locality_groups == NULL) {
3542 		ret = -ENOMEM;
3543 		goto out;
3544 	}
3545 	for_each_possible_cpu(i) {
3546 		struct ext4_locality_group *lg;
3547 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3548 		mutex_init(&lg->lg_mutex);
3549 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3550 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3551 		spin_lock_init(&lg->lg_prealloc_lock);
3552 	}
3553 
3554 	if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
3555 		sbi->s_mb_max_linear_groups = 0;
3556 	else
3557 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3558 	/* init file for buddy data */
3559 	ret = ext4_mb_init_backend(sb);
3560 	if (ret != 0)
3561 		goto out_free_locality_groups;
3562 
3563 	return 0;
3564 
3565 out_free_locality_groups:
3566 	free_percpu(sbi->s_locality_groups);
3567 	sbi->s_locality_groups = NULL;
3568 out:
3569 	kfree(sbi->s_mb_largest_free_orders);
3570 	kfree(sbi->s_mb_largest_free_orders_locks);
3571 	kfree(sbi->s_mb_offsets);
3572 	sbi->s_mb_offsets = NULL;
3573 	kfree(sbi->s_mb_maxs);
3574 	sbi->s_mb_maxs = NULL;
3575 	return ret;
3576 }
3577 
3578 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)3579 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3580 {
3581 	struct ext4_prealloc_space *pa;
3582 	struct list_head *cur, *tmp;
3583 	int count = 0;
3584 
3585 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3586 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3587 		list_del(&pa->pa_group_list);
3588 		count++;
3589 		kmem_cache_free(ext4_pspace_cachep, pa);
3590 	}
3591 	return count;
3592 }
3593 
ext4_mb_release(struct super_block * sb)3594 int ext4_mb_release(struct super_block *sb)
3595 {
3596 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3597 	ext4_group_t i;
3598 	int num_meta_group_infos;
3599 	struct ext4_group_info *grinfo, ***group_info;
3600 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3601 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3602 	int count;
3603 
3604 	if (test_opt(sb, DISCARD)) {
3605 		/*
3606 		 * wait the discard work to drain all of ext4_free_data
3607 		 */
3608 		flush_work(&sbi->s_discard_work);
3609 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3610 	}
3611 
3612 	if (sbi->s_group_info) {
3613 		for (i = 0; i < ngroups; i++) {
3614 			cond_resched();
3615 			grinfo = ext4_get_group_info(sb, i);
3616 			if (!grinfo)
3617 				continue;
3618 			mb_group_bb_bitmap_free(grinfo);
3619 			ext4_lock_group(sb, i);
3620 			count = ext4_mb_cleanup_pa(grinfo);
3621 			if (count)
3622 				mb_debug(sb, "mballoc: %d PAs left\n",
3623 					 count);
3624 			ext4_unlock_group(sb, i);
3625 			kmem_cache_free(cachep, grinfo);
3626 		}
3627 		num_meta_group_infos = (ngroups +
3628 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3629 			EXT4_DESC_PER_BLOCK_BITS(sb);
3630 		rcu_read_lock();
3631 		group_info = rcu_dereference(sbi->s_group_info);
3632 		for (i = 0; i < num_meta_group_infos; i++)
3633 			kfree(group_info[i]);
3634 		kvfree(group_info);
3635 		rcu_read_unlock();
3636 	}
3637 	kfree(sbi->s_mb_largest_free_orders);
3638 	kfree(sbi->s_mb_largest_free_orders_locks);
3639 	kfree(sbi->s_mb_offsets);
3640 	kfree(sbi->s_mb_maxs);
3641 	iput(sbi->s_buddy_cache);
3642 	if (sbi->s_mb_stats) {
3643 		ext4_msg(sb, KERN_INFO,
3644 		       "mballoc: %u blocks %u reqs (%u success)",
3645 				atomic_read(&sbi->s_bal_allocated),
3646 				atomic_read(&sbi->s_bal_reqs),
3647 				atomic_read(&sbi->s_bal_success));
3648 		ext4_msg(sb, KERN_INFO,
3649 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3650 				"%u 2^N hits, %u breaks, %u lost",
3651 				atomic_read(&sbi->s_bal_ex_scanned),
3652 				atomic_read(&sbi->s_bal_groups_scanned),
3653 				atomic_read(&sbi->s_bal_goals),
3654 				atomic_read(&sbi->s_bal_2orders),
3655 				atomic_read(&sbi->s_bal_breaks),
3656 				atomic_read(&sbi->s_mb_lost_chunks));
3657 		ext4_msg(sb, KERN_INFO,
3658 		       "mballoc: %u generated and it took %llu",
3659 				atomic_read(&sbi->s_mb_buddies_generated),
3660 				atomic64_read(&sbi->s_mb_generation_time));
3661 		ext4_msg(sb, KERN_INFO,
3662 		       "mballoc: %u preallocated, %u discarded",
3663 				atomic_read(&sbi->s_mb_preallocated),
3664 				atomic_read(&sbi->s_mb_discarded));
3665 	}
3666 
3667 	free_percpu(sbi->s_locality_groups);
3668 
3669 	return 0;
3670 }
3671 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)3672 static inline int ext4_issue_discard(struct super_block *sb,
3673 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3674 		struct bio **biop)
3675 {
3676 	ext4_fsblk_t discard_block;
3677 
3678 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3679 			 ext4_group_first_block_no(sb, block_group));
3680 	count = EXT4_C2B(EXT4_SB(sb), count);
3681 	trace_ext4_discard_blocks(sb,
3682 			(unsigned long long) discard_block, count);
3683 	if (biop) {
3684 		return __blkdev_issue_discard(sb->s_bdev,
3685 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3686 			(sector_t)count << (sb->s_blocksize_bits - 9),
3687 			GFP_NOFS, 0, biop);
3688 	} else
3689 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3690 }
3691 
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3692 static void ext4_free_data_in_buddy(struct super_block *sb,
3693 				    struct ext4_free_data *entry)
3694 {
3695 	struct ext4_buddy e4b;
3696 	struct ext4_group_info *db;
3697 	int err, count = 0, count2 = 0;
3698 
3699 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3700 		 entry->efd_count, entry->efd_group, entry);
3701 
3702 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3703 	/* we expect to find existing buddy because it's pinned */
3704 	BUG_ON(err != 0);
3705 
3706 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3707 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3708 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3709 
3710 	db = e4b.bd_info;
3711 	/* there are blocks to put in buddy to make them really free */
3712 	count += entry->efd_count;
3713 	count2++;
3714 	ext4_lock_group(sb, entry->efd_group);
3715 	/* Take it out of per group rb tree */
3716 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3717 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3718 
3719 	/*
3720 	 * Clear the trimmed flag for the group so that the next
3721 	 * ext4_trim_fs can trim it.
3722 	 * If the volume is mounted with -o discard, online discard
3723 	 * is supported and the free blocks will be trimmed online.
3724 	 */
3725 	if (!test_opt(sb, DISCARD))
3726 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3727 
3728 	if (!db->bb_free_root.rb_node) {
3729 		/* No more items in the per group rb tree
3730 		 * balance refcounts from ext4_mb_free_metadata()
3731 		 */
3732 		put_page(e4b.bd_buddy_page);
3733 		put_page(e4b.bd_bitmap_page);
3734 	}
3735 	ext4_unlock_group(sb, entry->efd_group);
3736 	ext4_mb_unload_buddy(&e4b);
3737 
3738 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3739 		 count2);
3740 }
3741 
3742 /*
3743  * This function is called by the jbd2 layer once the commit has finished,
3744  * so we know we can free the blocks that were released with that commit.
3745  */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3746 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3747 {
3748 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3749 	struct ext4_free_data *entry, *tmp;
3750 	struct list_head freed_data_list;
3751 	struct list_head *cut_pos = NULL;
3752 	bool wake;
3753 
3754 	INIT_LIST_HEAD(&freed_data_list);
3755 
3756 	spin_lock(&sbi->s_md_lock);
3757 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3758 		if (entry->efd_tid != commit_tid)
3759 			break;
3760 		cut_pos = &entry->efd_list;
3761 	}
3762 	if (cut_pos)
3763 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3764 				  cut_pos);
3765 	spin_unlock(&sbi->s_md_lock);
3766 
3767 	list_for_each_entry(entry, &freed_data_list, efd_list)
3768 		ext4_free_data_in_buddy(sb, entry);
3769 
3770 	if (test_opt(sb, DISCARD)) {
3771 		spin_lock(&sbi->s_md_lock);
3772 		wake = list_empty(&sbi->s_discard_list);
3773 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3774 		spin_unlock(&sbi->s_md_lock);
3775 		if (wake)
3776 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3777 	} else {
3778 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3779 			kmem_cache_free(ext4_free_data_cachep, entry);
3780 	}
3781 }
3782 
ext4_init_mballoc(void)3783 int __init ext4_init_mballoc(void)
3784 {
3785 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3786 					SLAB_RECLAIM_ACCOUNT);
3787 	if (ext4_pspace_cachep == NULL)
3788 		goto out;
3789 
3790 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3791 				    SLAB_RECLAIM_ACCOUNT);
3792 	if (ext4_ac_cachep == NULL)
3793 		goto out_pa_free;
3794 
3795 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3796 					   SLAB_RECLAIM_ACCOUNT);
3797 	if (ext4_free_data_cachep == NULL)
3798 		goto out_ac_free;
3799 
3800 	return 0;
3801 
3802 out_ac_free:
3803 	kmem_cache_destroy(ext4_ac_cachep);
3804 out_pa_free:
3805 	kmem_cache_destroy(ext4_pspace_cachep);
3806 out:
3807 	return -ENOMEM;
3808 }
3809 
ext4_exit_mballoc(void)3810 void ext4_exit_mballoc(void)
3811 {
3812 	/*
3813 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3814 	 * before destroying the slab cache.
3815 	 */
3816 	rcu_barrier();
3817 	kmem_cache_destroy(ext4_pspace_cachep);
3818 	kmem_cache_destroy(ext4_ac_cachep);
3819 	kmem_cache_destroy(ext4_free_data_cachep);
3820 	ext4_groupinfo_destroy_slabs();
3821 }
3822 
3823 
3824 /*
3825  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3826  * Returns 0 if success or error code
3827  */
3828 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)3829 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3830 				handle_t *handle, unsigned int reserv_clstrs)
3831 {
3832 	struct buffer_head *bitmap_bh = NULL;
3833 	struct ext4_group_desc *gdp;
3834 	struct buffer_head *gdp_bh;
3835 	struct ext4_sb_info *sbi;
3836 	struct super_block *sb;
3837 	ext4_fsblk_t block;
3838 	int err, len;
3839 
3840 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3841 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3842 
3843 	sb = ac->ac_sb;
3844 	sbi = EXT4_SB(sb);
3845 
3846 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3847 	if (IS_ERR(bitmap_bh)) {
3848 		err = PTR_ERR(bitmap_bh);
3849 		bitmap_bh = NULL;
3850 		goto out_err;
3851 	}
3852 
3853 	BUFFER_TRACE(bitmap_bh, "getting write access");
3854 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3855 					    EXT4_JTR_NONE);
3856 	if (err)
3857 		goto out_err;
3858 
3859 	err = -EIO;
3860 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3861 	if (!gdp)
3862 		goto out_err;
3863 
3864 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3865 			ext4_free_group_clusters(sb, gdp));
3866 
3867 	BUFFER_TRACE(gdp_bh, "get_write_access");
3868 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3869 	if (err)
3870 		goto out_err;
3871 
3872 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3873 
3874 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3875 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3876 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3877 			   "fs metadata", block, block+len);
3878 		/* File system mounted not to panic on error
3879 		 * Fix the bitmap and return EFSCORRUPTED
3880 		 * We leak some of the blocks here.
3881 		 */
3882 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3883 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3884 			      ac->ac_b_ex.fe_len);
3885 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3886 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3887 		if (!err)
3888 			err = -EFSCORRUPTED;
3889 		goto out_err;
3890 	}
3891 
3892 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3893 #ifdef AGGRESSIVE_CHECK
3894 	{
3895 		int i;
3896 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3897 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3898 						bitmap_bh->b_data));
3899 		}
3900 	}
3901 #endif
3902 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3903 		      ac->ac_b_ex.fe_len);
3904 	if (ext4_has_group_desc_csum(sb) &&
3905 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3906 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3907 		ext4_free_group_clusters_set(sb, gdp,
3908 					     ext4_free_clusters_after_init(sb,
3909 						ac->ac_b_ex.fe_group, gdp));
3910 	}
3911 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3912 	ext4_free_group_clusters_set(sb, gdp, len);
3913 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3914 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3915 
3916 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3917 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3918 	/*
3919 	 * Now reduce the dirty block count also. Should not go negative
3920 	 */
3921 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3922 		/* release all the reserved blocks if non delalloc */
3923 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3924 				   reserv_clstrs);
3925 
3926 	if (sbi->s_log_groups_per_flex) {
3927 		ext4_group_t flex_group = ext4_flex_group(sbi,
3928 							  ac->ac_b_ex.fe_group);
3929 		atomic64_sub(ac->ac_b_ex.fe_len,
3930 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3931 						  flex_group)->free_clusters);
3932 	}
3933 
3934 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3935 	if (err)
3936 		goto out_err;
3937 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3938 
3939 out_err:
3940 	brelse(bitmap_bh);
3941 	return err;
3942 }
3943 
3944 /*
3945  * Idempotent helper for Ext4 fast commit replay path to set the state of
3946  * blocks in bitmaps and update counters.
3947  */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,int state)3948 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3949 			int len, int state)
3950 {
3951 	struct buffer_head *bitmap_bh = NULL;
3952 	struct ext4_group_desc *gdp;
3953 	struct buffer_head *gdp_bh;
3954 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3955 	ext4_group_t group;
3956 	ext4_grpblk_t blkoff;
3957 	int i, err;
3958 	int already;
3959 	unsigned int clen, clen_changed, thisgrp_len;
3960 
3961 	while (len > 0) {
3962 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3963 
3964 		/*
3965 		 * Check to see if we are freeing blocks across a group
3966 		 * boundary.
3967 		 * In case of flex_bg, this can happen that (block, len) may
3968 		 * span across more than one group. In that case we need to
3969 		 * get the corresponding group metadata to work with.
3970 		 * For this we have goto again loop.
3971 		 */
3972 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3973 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3974 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3975 
3976 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3977 		if (IS_ERR(bitmap_bh)) {
3978 			err = PTR_ERR(bitmap_bh);
3979 			bitmap_bh = NULL;
3980 			break;
3981 		}
3982 
3983 		err = -EIO;
3984 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3985 		if (!gdp)
3986 			break;
3987 
3988 		ext4_lock_group(sb, group);
3989 		already = 0;
3990 		for (i = 0; i < clen; i++)
3991 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3992 					 !state)
3993 				already++;
3994 
3995 		clen_changed = clen - already;
3996 		if (state)
3997 			ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3998 		else
3999 			mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
4000 		if (ext4_has_group_desc_csum(sb) &&
4001 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4002 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4003 			ext4_free_group_clusters_set(sb, gdp,
4004 			     ext4_free_clusters_after_init(sb, group, gdp));
4005 		}
4006 		if (state)
4007 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4008 		else
4009 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4010 
4011 		ext4_free_group_clusters_set(sb, gdp, clen);
4012 		ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
4013 		ext4_group_desc_csum_set(sb, group, gdp);
4014 
4015 		ext4_unlock_group(sb, group);
4016 
4017 		if (sbi->s_log_groups_per_flex) {
4018 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4019 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4020 						   s_flex_groups, flex_group);
4021 
4022 			if (state)
4023 				atomic64_sub(clen_changed, &fg->free_clusters);
4024 			else
4025 				atomic64_add(clen_changed, &fg->free_clusters);
4026 
4027 		}
4028 
4029 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4030 		if (err)
4031 			break;
4032 		sync_dirty_buffer(bitmap_bh);
4033 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4034 		sync_dirty_buffer(gdp_bh);
4035 		if (err)
4036 			break;
4037 
4038 		block += thisgrp_len;
4039 		len -= thisgrp_len;
4040 		brelse(bitmap_bh);
4041 		BUG_ON(len < 0);
4042 	}
4043 
4044 	if (err)
4045 		brelse(bitmap_bh);
4046 }
4047 
4048 /*
4049  * here we normalize request for locality group
4050  * Group request are normalized to s_mb_group_prealloc, which goes to
4051  * s_strip if we set the same via mount option.
4052  * s_mb_group_prealloc can be configured via
4053  * /sys/fs/ext4/<partition>/mb_group_prealloc
4054  *
4055  * XXX: should we try to preallocate more than the group has now?
4056  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)4057 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4058 {
4059 	struct super_block *sb = ac->ac_sb;
4060 	struct ext4_locality_group *lg = ac->ac_lg;
4061 
4062 	BUG_ON(lg == NULL);
4063 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4064 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4065 }
4066 
4067 /*
4068  * Normalization means making request better in terms of
4069  * size and alignment
4070  */
4071 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4072 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4073 				struct ext4_allocation_request *ar)
4074 {
4075 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4076 	struct ext4_super_block *es = sbi->s_es;
4077 	int bsbits, max;
4078 	loff_t size, start_off, end;
4079 	loff_t orig_size __maybe_unused;
4080 	ext4_lblk_t start;
4081 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4082 	struct ext4_prealloc_space *pa;
4083 
4084 	/* do normalize only data requests, metadata requests
4085 	   do not need preallocation */
4086 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4087 		return;
4088 
4089 	/* sometime caller may want exact blocks */
4090 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4091 		return;
4092 
4093 	/* caller may indicate that preallocation isn't
4094 	 * required (it's a tail, for example) */
4095 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4096 		return;
4097 
4098 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4099 		ext4_mb_normalize_group_request(ac);
4100 		return ;
4101 	}
4102 
4103 	bsbits = ac->ac_sb->s_blocksize_bits;
4104 
4105 	/* first, let's learn actual file size
4106 	 * given current request is allocated */
4107 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4108 	size = size << bsbits;
4109 	if (size < i_size_read(ac->ac_inode))
4110 		size = i_size_read(ac->ac_inode);
4111 	orig_size = size;
4112 
4113 	/* max size of free chunks */
4114 	max = 2 << bsbits;
4115 
4116 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4117 		(req <= (size) || max <= (chunk_size))
4118 
4119 	/* first, try to predict filesize */
4120 	/* XXX: should this table be tunable? */
4121 	start_off = 0;
4122 	if (size <= 16 * 1024) {
4123 		size = 16 * 1024;
4124 	} else if (size <= 32 * 1024) {
4125 		size = 32 * 1024;
4126 	} else if (size <= 64 * 1024) {
4127 		size = 64 * 1024;
4128 	} else if (size <= 128 * 1024) {
4129 		size = 128 * 1024;
4130 	} else if (size <= 256 * 1024) {
4131 		size = 256 * 1024;
4132 	} else if (size <= 512 * 1024) {
4133 		size = 512 * 1024;
4134 	} else if (size <= 1024 * 1024) {
4135 		size = 1024 * 1024;
4136 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4137 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4138 						(21 - bsbits)) << 21;
4139 		size = 2 * 1024 * 1024;
4140 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4141 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4142 							(22 - bsbits)) << 22;
4143 		size = 4 * 1024 * 1024;
4144 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4145 					(8<<20)>>bsbits, max, 8 * 1024)) {
4146 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4147 							(23 - bsbits)) << 23;
4148 		size = 8 * 1024 * 1024;
4149 	} else {
4150 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4151 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
4152 					      ac->ac_o_ex.fe_len) << bsbits;
4153 	}
4154 	size = size >> bsbits;
4155 	start = start_off >> bsbits;
4156 
4157 	/*
4158 	 * For tiny groups (smaller than 8MB) the chosen allocation
4159 	 * alignment may be larger than group size. Make sure the
4160 	 * alignment does not move allocation to a different group which
4161 	 * makes mballoc fail assertions later.
4162 	 */
4163 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4164 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4165 
4166 	/* avoid unnecessary preallocation that may trigger assertions */
4167 	if (start + size > EXT_MAX_BLOCKS)
4168 		size = EXT_MAX_BLOCKS - start;
4169 
4170 	/* don't cover already allocated blocks in selected range */
4171 	if (ar->pleft && start <= ar->lleft) {
4172 		size -= ar->lleft + 1 - start;
4173 		start = ar->lleft + 1;
4174 	}
4175 	if (ar->pright && start + size - 1 >= ar->lright)
4176 		size -= start + size - ar->lright;
4177 
4178 	/*
4179 	 * Trim allocation request for filesystems with artificially small
4180 	 * groups.
4181 	 */
4182 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4183 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4184 
4185 	end = start + size;
4186 
4187 	/* check we don't cross already preallocated blocks */
4188 	rcu_read_lock();
4189 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4190 		loff_t pa_end;
4191 
4192 		if (pa->pa_deleted)
4193 			continue;
4194 		spin_lock(&pa->pa_lock);
4195 		if (pa->pa_deleted) {
4196 			spin_unlock(&pa->pa_lock);
4197 			continue;
4198 		}
4199 
4200 		pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
4201 
4202 		/* PA must not overlap original request */
4203 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4204 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4205 
4206 		/* skip PAs this normalized request doesn't overlap with */
4207 		if (pa->pa_lstart >= end || pa_end <= start) {
4208 			spin_unlock(&pa->pa_lock);
4209 			continue;
4210 		}
4211 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4212 
4213 		/* adjust start or end to be adjacent to this pa */
4214 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4215 			BUG_ON(pa_end < start);
4216 			start = pa_end;
4217 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4218 			BUG_ON(pa->pa_lstart > end);
4219 			end = pa->pa_lstart;
4220 		}
4221 		spin_unlock(&pa->pa_lock);
4222 	}
4223 	rcu_read_unlock();
4224 	size = end - start;
4225 
4226 	/* XXX: extra loop to check we really don't overlap preallocations */
4227 	rcu_read_lock();
4228 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4229 		loff_t pa_end;
4230 
4231 		spin_lock(&pa->pa_lock);
4232 		if (pa->pa_deleted == 0) {
4233 			pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
4234 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4235 		}
4236 		spin_unlock(&pa->pa_lock);
4237 	}
4238 	rcu_read_unlock();
4239 
4240 	if (start + size <= ac->ac_o_ex.fe_logical &&
4241 			start > ac->ac_o_ex.fe_logical) {
4242 		ext4_msg(ac->ac_sb, KERN_ERR,
4243 			 "start %lu, size %lu, fe_logical %lu",
4244 			 (unsigned long) start, (unsigned long) size,
4245 			 (unsigned long) ac->ac_o_ex.fe_logical);
4246 		BUG();
4247 	}
4248 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4249 
4250 	/* now prepare goal request */
4251 
4252 	/* XXX: is it better to align blocks WRT to logical
4253 	 * placement or satisfy big request as is */
4254 	ac->ac_g_ex.fe_logical = start;
4255 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4256 
4257 	/* define goal start in order to merge */
4258 	if (ar->pright && (ar->lright == (start + size)) &&
4259 	    ar->pright >= size &&
4260 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4261 		/* merge to the right */
4262 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4263 						&ac->ac_g_ex.fe_group,
4264 						&ac->ac_g_ex.fe_start);
4265 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4266 	}
4267 	if (ar->pleft && (ar->lleft + 1 == start) &&
4268 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4269 		/* merge to the left */
4270 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4271 						&ac->ac_g_ex.fe_group,
4272 						&ac->ac_g_ex.fe_start);
4273 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4274 	}
4275 
4276 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4277 		 orig_size, start);
4278 }
4279 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)4280 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4281 {
4282 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4283 
4284 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4285 		atomic_inc(&sbi->s_bal_reqs);
4286 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4287 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4288 			atomic_inc(&sbi->s_bal_success);
4289 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4290 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4291 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4292 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4293 			atomic_inc(&sbi->s_bal_goals);
4294 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4295 			atomic_inc(&sbi->s_bal_breaks);
4296 	}
4297 
4298 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4299 		trace_ext4_mballoc_alloc(ac);
4300 	else
4301 		trace_ext4_mballoc_prealloc(ac);
4302 }
4303 
4304 /*
4305  * Called on failure; free up any blocks from the inode PA for this
4306  * context.  We don't need this for MB_GROUP_PA because we only change
4307  * pa_free in ext4_mb_release_context(), but on failure, we've already
4308  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4309  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)4310 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4311 {
4312 	struct ext4_prealloc_space *pa = ac->ac_pa;
4313 	struct ext4_buddy e4b;
4314 	int err;
4315 
4316 	if (pa == NULL) {
4317 		if (ac->ac_f_ex.fe_len == 0)
4318 			return;
4319 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4320 		if (err) {
4321 			/*
4322 			 * This should never happen since we pin the
4323 			 * pages in the ext4_allocation_context so
4324 			 * ext4_mb_load_buddy() should never fail.
4325 			 */
4326 			WARN(1, "mb_load_buddy failed (%d)", err);
4327 			return;
4328 		}
4329 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4330 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4331 			       ac->ac_f_ex.fe_len);
4332 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4333 		ext4_mb_unload_buddy(&e4b);
4334 		return;
4335 	}
4336 	if (pa->pa_type == MB_INODE_PA)
4337 		pa->pa_free += ac->ac_b_ex.fe_len;
4338 }
4339 
4340 /*
4341  * use blocks preallocated to inode
4342  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4343 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4344 				struct ext4_prealloc_space *pa)
4345 {
4346 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4347 	ext4_fsblk_t start;
4348 	ext4_fsblk_t end;
4349 	int len;
4350 
4351 	/* found preallocated blocks, use them */
4352 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4353 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4354 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4355 	len = EXT4_NUM_B2C(sbi, end - start);
4356 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4357 					&ac->ac_b_ex.fe_start);
4358 	ac->ac_b_ex.fe_len = len;
4359 	ac->ac_status = AC_STATUS_FOUND;
4360 	ac->ac_pa = pa;
4361 
4362 	BUG_ON(start < pa->pa_pstart);
4363 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4364 	BUG_ON(pa->pa_free < len);
4365 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4366 	pa->pa_free -= len;
4367 
4368 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4369 }
4370 
4371 /*
4372  * use blocks preallocated to locality group
4373  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4374 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4375 				struct ext4_prealloc_space *pa)
4376 {
4377 	unsigned int len = ac->ac_o_ex.fe_len;
4378 
4379 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4380 					&ac->ac_b_ex.fe_group,
4381 					&ac->ac_b_ex.fe_start);
4382 	ac->ac_b_ex.fe_len = len;
4383 	ac->ac_status = AC_STATUS_FOUND;
4384 	ac->ac_pa = pa;
4385 
4386 	/* we don't correct pa_pstart or pa_plen here to avoid
4387 	 * possible race when the group is being loaded concurrently
4388 	 * instead we correct pa later, after blocks are marked
4389 	 * in on-disk bitmap -- see ext4_mb_release_context()
4390 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4391 	 */
4392 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4393 		 pa->pa_lstart-len, len, pa);
4394 }
4395 
4396 /*
4397  * Return the prealloc space that have minimal distance
4398  * from the goal block. @cpa is the prealloc
4399  * space that is having currently known minimal distance
4400  * from the goal block.
4401  */
4402 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)4403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4404 			struct ext4_prealloc_space *pa,
4405 			struct ext4_prealloc_space *cpa)
4406 {
4407 	ext4_fsblk_t cur_distance, new_distance;
4408 
4409 	if (cpa == NULL) {
4410 		atomic_inc(&pa->pa_count);
4411 		return pa;
4412 	}
4413 	cur_distance = abs(goal_block - cpa->pa_pstart);
4414 	new_distance = abs(goal_block - pa->pa_pstart);
4415 
4416 	if (cur_distance <= new_distance)
4417 		return cpa;
4418 
4419 	/* drop the previous reference */
4420 	atomic_dec(&cpa->pa_count);
4421 	atomic_inc(&pa->pa_count);
4422 	return pa;
4423 }
4424 
4425 /*
4426  * search goal blocks in preallocated space
4427  */
4428 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)4429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4430 {
4431 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4432 	int order, i;
4433 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4434 	struct ext4_locality_group *lg;
4435 	struct ext4_prealloc_space *pa, *cpa = NULL;
4436 	ext4_fsblk_t goal_block;
4437 
4438 	/* only data can be preallocated */
4439 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4440 		return false;
4441 
4442 	/* first, try per-file preallocation */
4443 	rcu_read_lock();
4444 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4445 
4446 		/* all fields in this condition don't change,
4447 		 * so we can skip locking for them */
4448 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4449 		    ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa))
4450 			continue;
4451 
4452 		/* non-extent files can't have physical blocks past 2^32 */
4453 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4454 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4455 		     EXT4_MAX_BLOCK_FILE_PHYS))
4456 			continue;
4457 
4458 		/* found preallocated blocks, use them */
4459 		spin_lock(&pa->pa_lock);
4460 		if (pa->pa_deleted == 0 && pa->pa_free) {
4461 			atomic_inc(&pa->pa_count);
4462 			ext4_mb_use_inode_pa(ac, pa);
4463 			spin_unlock(&pa->pa_lock);
4464 			ac->ac_criteria = 10;
4465 			rcu_read_unlock();
4466 			return true;
4467 		}
4468 		spin_unlock(&pa->pa_lock);
4469 	}
4470 	rcu_read_unlock();
4471 
4472 	/* can we use group allocation? */
4473 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4474 		return false;
4475 
4476 	/* inode may have no locality group for some reason */
4477 	lg = ac->ac_lg;
4478 	if (lg == NULL)
4479 		return false;
4480 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4481 	if (order > PREALLOC_TB_SIZE - 1)
4482 		/* The max size of hash table is PREALLOC_TB_SIZE */
4483 		order = PREALLOC_TB_SIZE - 1;
4484 
4485 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4486 	/*
4487 	 * search for the prealloc space that is having
4488 	 * minimal distance from the goal block.
4489 	 */
4490 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4491 		rcu_read_lock();
4492 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4493 					pa_inode_list) {
4494 			spin_lock(&pa->pa_lock);
4495 			if (pa->pa_deleted == 0 &&
4496 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4497 
4498 				cpa = ext4_mb_check_group_pa(goal_block,
4499 								pa, cpa);
4500 			}
4501 			spin_unlock(&pa->pa_lock);
4502 		}
4503 		rcu_read_unlock();
4504 	}
4505 	if (cpa) {
4506 		ext4_mb_use_group_pa(ac, cpa);
4507 		ac->ac_criteria = 20;
4508 		return true;
4509 	}
4510 	return false;
4511 }
4512 
4513 /*
4514  * the function goes through all block freed in the group
4515  * but not yet committed and marks them used in in-core bitmap.
4516  * buddy must be generated from this bitmap
4517  * Need to be called with the ext4 group lock held
4518  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)4519 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4520 						ext4_group_t group)
4521 {
4522 	struct rb_node *n;
4523 	struct ext4_group_info *grp;
4524 	struct ext4_free_data *entry;
4525 
4526 	grp = ext4_get_group_info(sb, group);
4527 	if (!grp)
4528 		return;
4529 	n = rb_first(&(grp->bb_free_root));
4530 
4531 	while (n) {
4532 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4533 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4534 		n = rb_next(n);
4535 	}
4536 	return;
4537 }
4538 
4539 /*
4540  * the function goes through all preallocation in this group and marks them
4541  * used in in-core bitmap. buddy must be generated from this bitmap
4542  * Need to be called with ext4 group lock held
4543  */
4544 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)4545 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4546 					ext4_group_t group)
4547 {
4548 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4549 	struct ext4_prealloc_space *pa;
4550 	struct list_head *cur;
4551 	ext4_group_t groupnr;
4552 	ext4_grpblk_t start;
4553 	int preallocated = 0;
4554 	int len;
4555 
4556 	if (!grp)
4557 		return;
4558 
4559 	/* all form of preallocation discards first load group,
4560 	 * so the only competing code is preallocation use.
4561 	 * we don't need any locking here
4562 	 * notice we do NOT ignore preallocations with pa_deleted
4563 	 * otherwise we could leave used blocks available for
4564 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4565 	 * is dropping preallocation
4566 	 */
4567 	list_for_each(cur, &grp->bb_prealloc_list) {
4568 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4569 		spin_lock(&pa->pa_lock);
4570 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4571 					     &groupnr, &start);
4572 		len = pa->pa_len;
4573 		spin_unlock(&pa->pa_lock);
4574 		if (unlikely(len == 0))
4575 			continue;
4576 		BUG_ON(groupnr != group);
4577 		ext4_set_bits(bitmap, start, len);
4578 		preallocated += len;
4579 	}
4580 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4581 }
4582 
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)4583 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4584 				    struct ext4_prealloc_space *pa)
4585 {
4586 	struct ext4_inode_info *ei;
4587 
4588 	if (pa->pa_deleted) {
4589 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4590 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4591 			     pa->pa_len);
4592 		return;
4593 	}
4594 
4595 	pa->pa_deleted = 1;
4596 
4597 	if (pa->pa_type == MB_INODE_PA) {
4598 		ei = EXT4_I(pa->pa_inode);
4599 		atomic_dec(&ei->i_prealloc_active);
4600 	}
4601 }
4602 
ext4_mb_pa_callback(struct rcu_head * head)4603 static void ext4_mb_pa_callback(struct rcu_head *head)
4604 {
4605 	struct ext4_prealloc_space *pa;
4606 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4607 
4608 	BUG_ON(atomic_read(&pa->pa_count));
4609 	BUG_ON(pa->pa_deleted == 0);
4610 	kmem_cache_free(ext4_pspace_cachep, pa);
4611 }
4612 
4613 /*
4614  * drops a reference to preallocated space descriptor
4615  * if this was the last reference and the space is consumed
4616  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)4617 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4618 			struct super_block *sb, struct ext4_prealloc_space *pa)
4619 {
4620 	ext4_group_t grp;
4621 	ext4_fsblk_t grp_blk;
4622 
4623 	/* in this short window concurrent discard can set pa_deleted */
4624 	spin_lock(&pa->pa_lock);
4625 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4626 		spin_unlock(&pa->pa_lock);
4627 		return;
4628 	}
4629 
4630 	if (pa->pa_deleted == 1) {
4631 		spin_unlock(&pa->pa_lock);
4632 		return;
4633 	}
4634 
4635 	ext4_mb_mark_pa_deleted(sb, pa);
4636 	spin_unlock(&pa->pa_lock);
4637 
4638 	grp_blk = pa->pa_pstart;
4639 	/*
4640 	 * If doing group-based preallocation, pa_pstart may be in the
4641 	 * next group when pa is used up
4642 	 */
4643 	if (pa->pa_type == MB_GROUP_PA)
4644 		grp_blk--;
4645 
4646 	grp = ext4_get_group_number(sb, grp_blk);
4647 
4648 	/*
4649 	 * possible race:
4650 	 *
4651 	 *  P1 (buddy init)			P2 (regular allocation)
4652 	 *					find block B in PA
4653 	 *  copy on-disk bitmap to buddy
4654 	 *  					mark B in on-disk bitmap
4655 	 *					drop PA from group
4656 	 *  mark all PAs in buddy
4657 	 *
4658 	 * thus, P1 initializes buddy with B available. to prevent this
4659 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4660 	 * against that pair
4661 	 */
4662 	ext4_lock_group(sb, grp);
4663 	list_del(&pa->pa_group_list);
4664 	ext4_unlock_group(sb, grp);
4665 
4666 	spin_lock(pa->pa_obj_lock);
4667 	list_del_rcu(&pa->pa_inode_list);
4668 	spin_unlock(pa->pa_obj_lock);
4669 
4670 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4671 }
4672 
4673 /*
4674  * creates new preallocated space for given inode
4675  */
4676 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)4677 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4678 {
4679 	struct super_block *sb = ac->ac_sb;
4680 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4681 	struct ext4_prealloc_space *pa;
4682 	struct ext4_group_info *grp;
4683 	struct ext4_inode_info *ei;
4684 
4685 	/* preallocate only when found space is larger then requested */
4686 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4687 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4688 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4689 	BUG_ON(ac->ac_pa == NULL);
4690 
4691 	pa = ac->ac_pa;
4692 
4693 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4694 		struct ext4_free_extent ex = {
4695 			.fe_logical = ac->ac_g_ex.fe_logical,
4696 			.fe_len = ac->ac_g_ex.fe_len,
4697 		};
4698 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
4699 
4700 		/* we can't allocate as much as normalizer wants.
4701 		 * so, found space must get proper lstart
4702 		 * to cover original request */
4703 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4704 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4705 
4706 		/*
4707 		 * Use the below logic for adjusting best extent as it keeps
4708 		 * fragmentation in check while ensuring logical range of best
4709 		 * extent doesn't overflow out of goal extent:
4710 		 *
4711 		 * 1. Check if best ex can be kept at end of goal and still
4712 		 *    cover original start
4713 		 * 2. Else, check if best ex can be kept at start of goal and
4714 		 *    still cover original start
4715 		 * 3. Else, keep the best ex at start of original request.
4716 		 */
4717 		ex.fe_len = ac->ac_b_ex.fe_len;
4718 
4719 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
4720 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
4721 			goto adjust_bex;
4722 
4723 		ex.fe_logical = ac->ac_g_ex.fe_logical;
4724 		if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
4725 			goto adjust_bex;
4726 
4727 		ex.fe_logical = ac->ac_o_ex.fe_logical;
4728 adjust_bex:
4729 		ac->ac_b_ex.fe_logical = ex.fe_logical;
4730 
4731 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4732 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4733 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
4734 	}
4735 
4736 	/* preallocation can change ac_b_ex, thus we store actually
4737 	 * allocated blocks for history */
4738 	ac->ac_f_ex = ac->ac_b_ex;
4739 
4740 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4741 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4742 	pa->pa_len = ac->ac_b_ex.fe_len;
4743 	pa->pa_free = pa->pa_len;
4744 	spin_lock_init(&pa->pa_lock);
4745 	INIT_LIST_HEAD(&pa->pa_inode_list);
4746 	INIT_LIST_HEAD(&pa->pa_group_list);
4747 	pa->pa_deleted = 0;
4748 	pa->pa_type = MB_INODE_PA;
4749 
4750 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4751 		 pa->pa_len, pa->pa_lstart);
4752 	trace_ext4_mb_new_inode_pa(ac, pa);
4753 
4754 	ext4_mb_use_inode_pa(ac, pa);
4755 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4756 
4757 	ei = EXT4_I(ac->ac_inode);
4758 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4759 	if (!grp)
4760 		return;
4761 
4762 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4763 	pa->pa_inode = ac->ac_inode;
4764 
4765 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4766 
4767 	spin_lock(pa->pa_obj_lock);
4768 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4769 	spin_unlock(pa->pa_obj_lock);
4770 	atomic_inc(&ei->i_prealloc_active);
4771 }
4772 
4773 /*
4774  * creates new preallocated space for locality group inodes belongs to
4775  */
4776 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)4777 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4778 {
4779 	struct super_block *sb = ac->ac_sb;
4780 	struct ext4_locality_group *lg;
4781 	struct ext4_prealloc_space *pa;
4782 	struct ext4_group_info *grp;
4783 
4784 	/* preallocate only when found space is larger then requested */
4785 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4786 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4787 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4788 	BUG_ON(ac->ac_pa == NULL);
4789 
4790 	pa = ac->ac_pa;
4791 
4792 	/* preallocation can change ac_b_ex, thus we store actually
4793 	 * allocated blocks for history */
4794 	ac->ac_f_ex = ac->ac_b_ex;
4795 
4796 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4797 	pa->pa_lstart = pa->pa_pstart;
4798 	pa->pa_len = ac->ac_b_ex.fe_len;
4799 	pa->pa_free = pa->pa_len;
4800 	spin_lock_init(&pa->pa_lock);
4801 	INIT_LIST_HEAD(&pa->pa_inode_list);
4802 	INIT_LIST_HEAD(&pa->pa_group_list);
4803 	pa->pa_deleted = 0;
4804 	pa->pa_type = MB_GROUP_PA;
4805 
4806 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4807 		 pa->pa_len, pa->pa_lstart);
4808 	trace_ext4_mb_new_group_pa(ac, pa);
4809 
4810 	ext4_mb_use_group_pa(ac, pa);
4811 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4812 
4813 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4814 	if (!grp)
4815 		return;
4816 	lg = ac->ac_lg;
4817 	BUG_ON(lg == NULL);
4818 
4819 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4820 	pa->pa_inode = NULL;
4821 
4822 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4823 
4824 	/*
4825 	 * We will later add the new pa to the right bucket
4826 	 * after updating the pa_free in ext4_mb_release_context
4827 	 */
4828 }
4829 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)4830 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4831 {
4832 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4833 		ext4_mb_new_group_pa(ac);
4834 	else
4835 		ext4_mb_new_inode_pa(ac);
4836 }
4837 
4838 /*
4839  * finds all unused blocks in on-disk bitmap, frees them in
4840  * in-core bitmap and buddy.
4841  * @pa must be unlinked from inode and group lists, so that
4842  * nobody else can find/use it.
4843  * the caller MUST hold group/inode locks.
4844  * TODO: optimize the case when there are no in-core structures yet
4845  */
4846 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)4847 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4848 			struct ext4_prealloc_space *pa)
4849 {
4850 	struct super_block *sb = e4b->bd_sb;
4851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4852 	unsigned int end;
4853 	unsigned int next;
4854 	ext4_group_t group;
4855 	ext4_grpblk_t bit;
4856 	unsigned long long grp_blk_start;
4857 	int free = 0;
4858 
4859 	BUG_ON(pa->pa_deleted == 0);
4860 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4861 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4862 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4863 	end = bit + pa->pa_len;
4864 
4865 	while (bit < end) {
4866 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4867 		if (bit >= end)
4868 			break;
4869 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4870 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4871 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4872 			 (unsigned) next - bit, (unsigned) group);
4873 		free += next - bit;
4874 
4875 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4876 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4877 						    EXT4_C2B(sbi, bit)),
4878 					       next - bit);
4879 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4880 		bit = next + 1;
4881 	}
4882 	if (free != pa->pa_free) {
4883 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4884 			 "pa %p: logic %lu, phys. %lu, len %d",
4885 			 pa, (unsigned long) pa->pa_lstart,
4886 			 (unsigned long) pa->pa_pstart,
4887 			 pa->pa_len);
4888 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4889 					free, pa->pa_free);
4890 		/*
4891 		 * pa is already deleted so we use the value obtained
4892 		 * from the bitmap and continue.
4893 		 */
4894 	}
4895 	atomic_add(free, &sbi->s_mb_discarded);
4896 
4897 	return 0;
4898 }
4899 
4900 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)4901 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4902 				struct ext4_prealloc_space *pa)
4903 {
4904 	struct super_block *sb = e4b->bd_sb;
4905 	ext4_group_t group;
4906 	ext4_grpblk_t bit;
4907 
4908 	trace_ext4_mb_release_group_pa(sb, pa);
4909 	BUG_ON(pa->pa_deleted == 0);
4910 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4911 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
4912 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
4913 			     e4b->bd_group, group, pa->pa_pstart);
4914 		return 0;
4915 	}
4916 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4917 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4918 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4919 
4920 	return 0;
4921 }
4922 
4923 /*
4924  * releases all preallocations in given group
4925  *
4926  * first, we need to decide discard policy:
4927  * - when do we discard
4928  *   1) ENOSPC
4929  * - how many do we discard
4930  *   1) how many requested
4931  */
4932 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int * busy)4933 ext4_mb_discard_group_preallocations(struct super_block *sb,
4934 				     ext4_group_t group, int *busy)
4935 {
4936 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4937 	struct buffer_head *bitmap_bh = NULL;
4938 	struct ext4_prealloc_space *pa, *tmp;
4939 	struct list_head list;
4940 	struct ext4_buddy e4b;
4941 	int err;
4942 	int free = 0;
4943 
4944 	if (!grp)
4945 		return 0;
4946 	mb_debug(sb, "discard preallocation for group %u\n", group);
4947 	if (list_empty(&grp->bb_prealloc_list))
4948 		goto out_dbg;
4949 
4950 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4951 	if (IS_ERR(bitmap_bh)) {
4952 		err = PTR_ERR(bitmap_bh);
4953 		ext4_error_err(sb, -err,
4954 			       "Error %d reading block bitmap for %u",
4955 			       err, group);
4956 		goto out_dbg;
4957 	}
4958 
4959 	err = ext4_mb_load_buddy(sb, group, &e4b);
4960 	if (err) {
4961 		ext4_warning(sb, "Error %d loading buddy information for %u",
4962 			     err, group);
4963 		put_bh(bitmap_bh);
4964 		goto out_dbg;
4965 	}
4966 
4967 	INIT_LIST_HEAD(&list);
4968 	ext4_lock_group(sb, group);
4969 	list_for_each_entry_safe(pa, tmp,
4970 				&grp->bb_prealloc_list, pa_group_list) {
4971 		spin_lock(&pa->pa_lock);
4972 		if (atomic_read(&pa->pa_count)) {
4973 			spin_unlock(&pa->pa_lock);
4974 			*busy = 1;
4975 			continue;
4976 		}
4977 		if (pa->pa_deleted) {
4978 			spin_unlock(&pa->pa_lock);
4979 			continue;
4980 		}
4981 
4982 		/* seems this one can be freed ... */
4983 		ext4_mb_mark_pa_deleted(sb, pa);
4984 
4985 		if (!free)
4986 			this_cpu_inc(discard_pa_seq);
4987 
4988 		/* we can trust pa_free ... */
4989 		free += pa->pa_free;
4990 
4991 		spin_unlock(&pa->pa_lock);
4992 
4993 		list_del(&pa->pa_group_list);
4994 		list_add(&pa->u.pa_tmp_list, &list);
4995 	}
4996 
4997 	/* now free all selected PAs */
4998 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4999 
5000 		/* remove from object (inode or locality group) */
5001 		spin_lock(pa->pa_obj_lock);
5002 		list_del_rcu(&pa->pa_inode_list);
5003 		spin_unlock(pa->pa_obj_lock);
5004 
5005 		if (pa->pa_type == MB_GROUP_PA)
5006 			ext4_mb_release_group_pa(&e4b, pa);
5007 		else
5008 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5009 
5010 		list_del(&pa->u.pa_tmp_list);
5011 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5012 	}
5013 
5014 	ext4_unlock_group(sb, group);
5015 	ext4_mb_unload_buddy(&e4b);
5016 	put_bh(bitmap_bh);
5017 out_dbg:
5018 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5019 		 free, group, grp->bb_free);
5020 	return free;
5021 }
5022 
5023 /*
5024  * releases all non-used preallocated blocks for given inode
5025  *
5026  * It's important to discard preallocations under i_data_sem
5027  * We don't want another block to be served from the prealloc
5028  * space when we are discarding the inode prealloc space.
5029  *
5030  * FIXME!! Make sure it is valid at all the call sites
5031  */
ext4_discard_preallocations(struct inode * inode,unsigned int needed)5032 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5033 {
5034 	struct ext4_inode_info *ei = EXT4_I(inode);
5035 	struct super_block *sb = inode->i_sb;
5036 	struct buffer_head *bitmap_bh = NULL;
5037 	struct ext4_prealloc_space *pa, *tmp;
5038 	ext4_group_t group = 0;
5039 	struct list_head list;
5040 	struct ext4_buddy e4b;
5041 	int err;
5042 
5043 	if (!S_ISREG(inode->i_mode)) {
5044 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
5045 		return;
5046 	}
5047 
5048 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5049 		return;
5050 
5051 	mb_debug(sb, "discard preallocation for inode %lu\n",
5052 		 inode->i_ino);
5053 	trace_ext4_discard_preallocations(inode,
5054 			atomic_read(&ei->i_prealloc_active), needed);
5055 
5056 	INIT_LIST_HEAD(&list);
5057 
5058 	if (needed == 0)
5059 		needed = UINT_MAX;
5060 
5061 repeat:
5062 	/* first, collect all pa's in the inode */
5063 	spin_lock(&ei->i_prealloc_lock);
5064 	while (!list_empty(&ei->i_prealloc_list) && needed) {
5065 		pa = list_entry(ei->i_prealloc_list.prev,
5066 				struct ext4_prealloc_space, pa_inode_list);
5067 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
5068 		spin_lock(&pa->pa_lock);
5069 		if (atomic_read(&pa->pa_count)) {
5070 			/* this shouldn't happen often - nobody should
5071 			 * use preallocation while we're discarding it */
5072 			spin_unlock(&pa->pa_lock);
5073 			spin_unlock(&ei->i_prealloc_lock);
5074 			ext4_msg(sb, KERN_ERR,
5075 				 "uh-oh! used pa while discarding");
5076 			WARN_ON(1);
5077 			schedule_timeout_uninterruptible(HZ);
5078 			goto repeat;
5079 
5080 		}
5081 		if (pa->pa_deleted == 0) {
5082 			ext4_mb_mark_pa_deleted(sb, pa);
5083 			spin_unlock(&pa->pa_lock);
5084 			list_del_rcu(&pa->pa_inode_list);
5085 			list_add(&pa->u.pa_tmp_list, &list);
5086 			needed--;
5087 			continue;
5088 		}
5089 
5090 		/* someone is deleting pa right now */
5091 		spin_unlock(&pa->pa_lock);
5092 		spin_unlock(&ei->i_prealloc_lock);
5093 
5094 		/* we have to wait here because pa_deleted
5095 		 * doesn't mean pa is already unlinked from
5096 		 * the list. as we might be called from
5097 		 * ->clear_inode() the inode will get freed
5098 		 * and concurrent thread which is unlinking
5099 		 * pa from inode's list may access already
5100 		 * freed memory, bad-bad-bad */
5101 
5102 		/* XXX: if this happens too often, we can
5103 		 * add a flag to force wait only in case
5104 		 * of ->clear_inode(), but not in case of
5105 		 * regular truncate */
5106 		schedule_timeout_uninterruptible(HZ);
5107 		goto repeat;
5108 	}
5109 	spin_unlock(&ei->i_prealloc_lock);
5110 
5111 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5112 		BUG_ON(pa->pa_type != MB_INODE_PA);
5113 		group = ext4_get_group_number(sb, pa->pa_pstart);
5114 
5115 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5116 					     GFP_NOFS|__GFP_NOFAIL);
5117 		if (err) {
5118 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5119 				       err, group);
5120 			continue;
5121 		}
5122 
5123 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5124 		if (IS_ERR(bitmap_bh)) {
5125 			err = PTR_ERR(bitmap_bh);
5126 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5127 				       err, group);
5128 			ext4_mb_unload_buddy(&e4b);
5129 			continue;
5130 		}
5131 
5132 		ext4_lock_group(sb, group);
5133 		list_del(&pa->pa_group_list);
5134 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5135 		ext4_unlock_group(sb, group);
5136 
5137 		ext4_mb_unload_buddy(&e4b);
5138 		put_bh(bitmap_bh);
5139 
5140 		list_del(&pa->u.pa_tmp_list);
5141 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5142 	}
5143 }
5144 
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)5145 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5146 {
5147 	struct ext4_prealloc_space *pa;
5148 
5149 	BUG_ON(ext4_pspace_cachep == NULL);
5150 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5151 	if (!pa)
5152 		return -ENOMEM;
5153 	atomic_set(&pa->pa_count, 1);
5154 	ac->ac_pa = pa;
5155 	return 0;
5156 }
5157 
ext4_mb_pa_free(struct ext4_allocation_context * ac)5158 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
5159 {
5160 	struct ext4_prealloc_space *pa = ac->ac_pa;
5161 
5162 	BUG_ON(!pa);
5163 	ac->ac_pa = NULL;
5164 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5165 	kmem_cache_free(ext4_pspace_cachep, pa);
5166 }
5167 
5168 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)5169 static inline void ext4_mb_show_pa(struct super_block *sb)
5170 {
5171 	ext4_group_t i, ngroups;
5172 
5173 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5174 		return;
5175 
5176 	ngroups = ext4_get_groups_count(sb);
5177 	mb_debug(sb, "groups: ");
5178 	for (i = 0; i < ngroups; i++) {
5179 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5180 		struct ext4_prealloc_space *pa;
5181 		ext4_grpblk_t start;
5182 		struct list_head *cur;
5183 
5184 		if (!grp)
5185 			continue;
5186 		ext4_lock_group(sb, i);
5187 		list_for_each(cur, &grp->bb_prealloc_list) {
5188 			pa = list_entry(cur, struct ext4_prealloc_space,
5189 					pa_group_list);
5190 			spin_lock(&pa->pa_lock);
5191 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5192 						     NULL, &start);
5193 			spin_unlock(&pa->pa_lock);
5194 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5195 				 pa->pa_len);
5196 		}
5197 		ext4_unlock_group(sb, i);
5198 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5199 			 grp->bb_fragments);
5200 	}
5201 }
5202 
ext4_mb_show_ac(struct ext4_allocation_context * ac)5203 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5204 {
5205 	struct super_block *sb = ac->ac_sb;
5206 
5207 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5208 		return;
5209 
5210 	mb_debug(sb, "Can't allocate:"
5211 			" Allocation context details:");
5212 	mb_debug(sb, "status %u flags 0x%x",
5213 			ac->ac_status, ac->ac_flags);
5214 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5215 			"goal %lu/%lu/%lu@%lu, "
5216 			"best %lu/%lu/%lu@%lu cr %d",
5217 			(unsigned long)ac->ac_o_ex.fe_group,
5218 			(unsigned long)ac->ac_o_ex.fe_start,
5219 			(unsigned long)ac->ac_o_ex.fe_len,
5220 			(unsigned long)ac->ac_o_ex.fe_logical,
5221 			(unsigned long)ac->ac_g_ex.fe_group,
5222 			(unsigned long)ac->ac_g_ex.fe_start,
5223 			(unsigned long)ac->ac_g_ex.fe_len,
5224 			(unsigned long)ac->ac_g_ex.fe_logical,
5225 			(unsigned long)ac->ac_b_ex.fe_group,
5226 			(unsigned long)ac->ac_b_ex.fe_start,
5227 			(unsigned long)ac->ac_b_ex.fe_len,
5228 			(unsigned long)ac->ac_b_ex.fe_logical,
5229 			(int)ac->ac_criteria);
5230 	mb_debug(sb, "%u found", ac->ac_found);
5231 	ext4_mb_show_pa(sb);
5232 }
5233 #else
ext4_mb_show_pa(struct super_block * sb)5234 static inline void ext4_mb_show_pa(struct super_block *sb)
5235 {
5236 	return;
5237 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)5238 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5239 {
5240 	ext4_mb_show_pa(ac->ac_sb);
5241 	return;
5242 }
5243 #endif
5244 
5245 /*
5246  * We use locality group preallocation for small size file. The size of the
5247  * file is determined by the current size or the resulting size after
5248  * allocation which ever is larger
5249  *
5250  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5251  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)5252 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5253 {
5254 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5255 	int bsbits = ac->ac_sb->s_blocksize_bits;
5256 	loff_t size, isize;
5257 	bool inode_pa_eligible, group_pa_eligible;
5258 
5259 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5260 		return;
5261 
5262 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5263 		return;
5264 
5265 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5266 	inode_pa_eligible = true;
5267 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5268 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5269 		>> bsbits;
5270 
5271 	/* No point in using inode preallocation for closed files */
5272 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5273 	    !inode_is_open_for_write(ac->ac_inode))
5274 		inode_pa_eligible = false;
5275 
5276 	size = max(size, isize);
5277 	/* Don't use group allocation for large files */
5278 	if (size > sbi->s_mb_stream_request)
5279 		group_pa_eligible = false;
5280 
5281 	if (!group_pa_eligible) {
5282 		if (inode_pa_eligible)
5283 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5284 		else
5285 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5286 		return;
5287 	}
5288 
5289 	BUG_ON(ac->ac_lg != NULL);
5290 	/*
5291 	 * locality group prealloc space are per cpu. The reason for having
5292 	 * per cpu locality group is to reduce the contention between block
5293 	 * request from multiple CPUs.
5294 	 */
5295 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5296 
5297 	/* we're going to use group allocation */
5298 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5299 
5300 	/* serialize all allocations in the group */
5301 	mutex_lock(&ac->ac_lg->lg_mutex);
5302 }
5303 
5304 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)5305 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5306 				struct ext4_allocation_request *ar)
5307 {
5308 	struct super_block *sb = ar->inode->i_sb;
5309 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5310 	struct ext4_super_block *es = sbi->s_es;
5311 	ext4_group_t group;
5312 	unsigned int len;
5313 	ext4_fsblk_t goal;
5314 	ext4_grpblk_t block;
5315 
5316 	/* we can't allocate > group size */
5317 	len = ar->len;
5318 
5319 	/* just a dirty hack to filter too big requests  */
5320 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5321 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5322 
5323 	/* start searching from the goal */
5324 	goal = ar->goal;
5325 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5326 			goal >= ext4_blocks_count(es))
5327 		goal = le32_to_cpu(es->s_first_data_block);
5328 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5329 
5330 	/* set up allocation goals */
5331 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5332 	ac->ac_status = AC_STATUS_CONTINUE;
5333 	ac->ac_sb = sb;
5334 	ac->ac_inode = ar->inode;
5335 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5336 	ac->ac_o_ex.fe_group = group;
5337 	ac->ac_o_ex.fe_start = block;
5338 	ac->ac_o_ex.fe_len = len;
5339 	ac->ac_g_ex = ac->ac_o_ex;
5340 	ac->ac_flags = ar->flags;
5341 
5342 	/* we have to define context: we'll work with a file or
5343 	 * locality group. this is a policy, actually */
5344 	ext4_mb_group_or_file(ac);
5345 
5346 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5347 			"left: %u/%u, right %u/%u to %swritable\n",
5348 			(unsigned) ar->len, (unsigned) ar->logical,
5349 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5350 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5351 			(unsigned) ar->lright, (unsigned) ar->pright,
5352 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5353 	return 0;
5354 
5355 }
5356 
5357 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)5358 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5359 					struct ext4_locality_group *lg,
5360 					int order, int total_entries)
5361 {
5362 	ext4_group_t group = 0;
5363 	struct ext4_buddy e4b;
5364 	struct list_head discard_list;
5365 	struct ext4_prealloc_space *pa, *tmp;
5366 
5367 	mb_debug(sb, "discard locality group preallocation\n");
5368 
5369 	INIT_LIST_HEAD(&discard_list);
5370 
5371 	spin_lock(&lg->lg_prealloc_lock);
5372 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5373 				pa_inode_list,
5374 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5375 		spin_lock(&pa->pa_lock);
5376 		if (atomic_read(&pa->pa_count)) {
5377 			/*
5378 			 * This is the pa that we just used
5379 			 * for block allocation. So don't
5380 			 * free that
5381 			 */
5382 			spin_unlock(&pa->pa_lock);
5383 			continue;
5384 		}
5385 		if (pa->pa_deleted) {
5386 			spin_unlock(&pa->pa_lock);
5387 			continue;
5388 		}
5389 		/* only lg prealloc space */
5390 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5391 
5392 		/* seems this one can be freed ... */
5393 		ext4_mb_mark_pa_deleted(sb, pa);
5394 		spin_unlock(&pa->pa_lock);
5395 
5396 		list_del_rcu(&pa->pa_inode_list);
5397 		list_add(&pa->u.pa_tmp_list, &discard_list);
5398 
5399 		total_entries--;
5400 		if (total_entries <= 5) {
5401 			/*
5402 			 * we want to keep only 5 entries
5403 			 * allowing it to grow to 8. This
5404 			 * mak sure we don't call discard
5405 			 * soon for this list.
5406 			 */
5407 			break;
5408 		}
5409 	}
5410 	spin_unlock(&lg->lg_prealloc_lock);
5411 
5412 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5413 		int err;
5414 
5415 		group = ext4_get_group_number(sb, pa->pa_pstart);
5416 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5417 					     GFP_NOFS|__GFP_NOFAIL);
5418 		if (err) {
5419 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5420 				       err, group);
5421 			continue;
5422 		}
5423 		ext4_lock_group(sb, group);
5424 		list_del(&pa->pa_group_list);
5425 		ext4_mb_release_group_pa(&e4b, pa);
5426 		ext4_unlock_group(sb, group);
5427 
5428 		ext4_mb_unload_buddy(&e4b);
5429 		list_del(&pa->u.pa_tmp_list);
5430 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5431 	}
5432 }
5433 
5434 /*
5435  * We have incremented pa_count. So it cannot be freed at this
5436  * point. Also we hold lg_mutex. So no parallel allocation is
5437  * possible from this lg. That means pa_free cannot be updated.
5438  *
5439  * A parallel ext4_mb_discard_group_preallocations is possible.
5440  * which can cause the lg_prealloc_list to be updated.
5441  */
5442 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)5443 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5444 {
5445 	int order, added = 0, lg_prealloc_count = 1;
5446 	struct super_block *sb = ac->ac_sb;
5447 	struct ext4_locality_group *lg = ac->ac_lg;
5448 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5449 
5450 	order = fls(pa->pa_free) - 1;
5451 	if (order > PREALLOC_TB_SIZE - 1)
5452 		/* The max size of hash table is PREALLOC_TB_SIZE */
5453 		order = PREALLOC_TB_SIZE - 1;
5454 	/* Add the prealloc space to lg */
5455 	spin_lock(&lg->lg_prealloc_lock);
5456 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5457 				pa_inode_list,
5458 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5459 		spin_lock(&tmp_pa->pa_lock);
5460 		if (tmp_pa->pa_deleted) {
5461 			spin_unlock(&tmp_pa->pa_lock);
5462 			continue;
5463 		}
5464 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5465 			/* Add to the tail of the previous entry */
5466 			list_add_tail_rcu(&pa->pa_inode_list,
5467 						&tmp_pa->pa_inode_list);
5468 			added = 1;
5469 			/*
5470 			 * we want to count the total
5471 			 * number of entries in the list
5472 			 */
5473 		}
5474 		spin_unlock(&tmp_pa->pa_lock);
5475 		lg_prealloc_count++;
5476 	}
5477 	if (!added)
5478 		list_add_tail_rcu(&pa->pa_inode_list,
5479 					&lg->lg_prealloc_list[order]);
5480 	spin_unlock(&lg->lg_prealloc_lock);
5481 
5482 	/* Now trim the list to be not more than 8 elements */
5483 	if (lg_prealloc_count > 8) {
5484 		ext4_mb_discard_lg_preallocations(sb, lg,
5485 						  order, lg_prealloc_count);
5486 		return;
5487 	}
5488 	return ;
5489 }
5490 
5491 /*
5492  * if per-inode prealloc list is too long, trim some PA
5493  */
ext4_mb_trim_inode_pa(struct inode * inode)5494 static void ext4_mb_trim_inode_pa(struct inode *inode)
5495 {
5496 	struct ext4_inode_info *ei = EXT4_I(inode);
5497 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5498 	int count, delta;
5499 
5500 	count = atomic_read(&ei->i_prealloc_active);
5501 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5502 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5503 		count -= sbi->s_mb_max_inode_prealloc;
5504 		ext4_discard_preallocations(inode, count);
5505 	}
5506 }
5507 
5508 /*
5509  * release all resource we used in allocation
5510  */
ext4_mb_release_context(struct ext4_allocation_context * ac)5511 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5512 {
5513 	struct inode *inode = ac->ac_inode;
5514 	struct ext4_inode_info *ei = EXT4_I(inode);
5515 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5516 	struct ext4_prealloc_space *pa = ac->ac_pa;
5517 	if (pa) {
5518 		if (pa->pa_type == MB_GROUP_PA) {
5519 			/* see comment in ext4_mb_use_group_pa() */
5520 			spin_lock(&pa->pa_lock);
5521 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5522 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5523 			pa->pa_free -= ac->ac_b_ex.fe_len;
5524 			pa->pa_len -= ac->ac_b_ex.fe_len;
5525 			spin_unlock(&pa->pa_lock);
5526 
5527 			/*
5528 			 * We want to add the pa to the right bucket.
5529 			 * Remove it from the list and while adding
5530 			 * make sure the list to which we are adding
5531 			 * doesn't grow big.
5532 			 */
5533 			if (likely(pa->pa_free)) {
5534 				spin_lock(pa->pa_obj_lock);
5535 				list_del_rcu(&pa->pa_inode_list);
5536 				spin_unlock(pa->pa_obj_lock);
5537 				ext4_mb_add_n_trim(ac);
5538 			}
5539 		}
5540 
5541 		if (pa->pa_type == MB_INODE_PA) {
5542 			/*
5543 			 * treat per-inode prealloc list as a lru list, then try
5544 			 * to trim the least recently used PA.
5545 			 */
5546 			spin_lock(pa->pa_obj_lock);
5547 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5548 			spin_unlock(pa->pa_obj_lock);
5549 		}
5550 
5551 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5552 	}
5553 	if (ac->ac_bitmap_page)
5554 		put_page(ac->ac_bitmap_page);
5555 	if (ac->ac_buddy_page)
5556 		put_page(ac->ac_buddy_page);
5557 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5558 		mutex_unlock(&ac->ac_lg->lg_mutex);
5559 	ext4_mb_collect_stats(ac);
5560 	ext4_mb_trim_inode_pa(inode);
5561 	return 0;
5562 }
5563 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)5564 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5565 {
5566 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5567 	int ret;
5568 	int freed = 0, busy = 0;
5569 	int retry = 0;
5570 
5571 	trace_ext4_mb_discard_preallocations(sb, needed);
5572 
5573 	if (needed == 0)
5574 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5575  repeat:
5576 	for (i = 0; i < ngroups && needed > 0; i++) {
5577 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5578 		freed += ret;
5579 		needed -= ret;
5580 		cond_resched();
5581 	}
5582 
5583 	if (needed > 0 && busy && ++retry < 3) {
5584 		busy = 0;
5585 		goto repeat;
5586 	}
5587 
5588 	return freed;
5589 }
5590 
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)5591 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5592 			struct ext4_allocation_context *ac, u64 *seq)
5593 {
5594 	int freed;
5595 	u64 seq_retry = 0;
5596 	bool ret = false;
5597 
5598 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5599 	if (freed) {
5600 		ret = true;
5601 		goto out_dbg;
5602 	}
5603 	seq_retry = ext4_get_discard_pa_seq_sum();
5604 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5605 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5606 		*seq = seq_retry;
5607 		ret = true;
5608 	}
5609 
5610 out_dbg:
5611 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5612 	return ret;
5613 }
5614 
5615 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5616 				struct ext4_allocation_request *ar, int *errp);
5617 
5618 /*
5619  * Main entry point into mballoc to allocate blocks
5620  * it tries to use preallocation first, then falls back
5621  * to usual allocation
5622  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5623 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5624 				struct ext4_allocation_request *ar, int *errp)
5625 {
5626 	struct ext4_allocation_context *ac = NULL;
5627 	struct ext4_sb_info *sbi;
5628 	struct super_block *sb;
5629 	ext4_fsblk_t block = 0;
5630 	unsigned int inquota = 0;
5631 	unsigned int reserv_clstrs = 0;
5632 	int retries = 0;
5633 	u64 seq;
5634 
5635 	might_sleep();
5636 	sb = ar->inode->i_sb;
5637 	sbi = EXT4_SB(sb);
5638 
5639 	trace_ext4_request_blocks(ar);
5640 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5641 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5642 
5643 	/* Allow to use superuser reservation for quota file */
5644 	if (ext4_is_quota_file(ar->inode))
5645 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5646 
5647 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5648 		/* Without delayed allocation we need to verify
5649 		 * there is enough free blocks to do block allocation
5650 		 * and verify allocation doesn't exceed the quota limits.
5651 		 */
5652 		while (ar->len &&
5653 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5654 
5655 			/* let others to free the space */
5656 			cond_resched();
5657 			ar->len = ar->len >> 1;
5658 		}
5659 		if (!ar->len) {
5660 			ext4_mb_show_pa(sb);
5661 			*errp = -ENOSPC;
5662 			return 0;
5663 		}
5664 		reserv_clstrs = ar->len;
5665 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5666 			dquot_alloc_block_nofail(ar->inode,
5667 						 EXT4_C2B(sbi, ar->len));
5668 		} else {
5669 			while (ar->len &&
5670 				dquot_alloc_block(ar->inode,
5671 						  EXT4_C2B(sbi, ar->len))) {
5672 
5673 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5674 				ar->len--;
5675 			}
5676 		}
5677 		inquota = ar->len;
5678 		if (ar->len == 0) {
5679 			*errp = -EDQUOT;
5680 			goto out;
5681 		}
5682 	}
5683 
5684 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5685 	if (!ac) {
5686 		ar->len = 0;
5687 		*errp = -ENOMEM;
5688 		goto out;
5689 	}
5690 
5691 	*errp = ext4_mb_initialize_context(ac, ar);
5692 	if (*errp) {
5693 		ar->len = 0;
5694 		goto out;
5695 	}
5696 
5697 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5698 	seq = this_cpu_read(discard_pa_seq);
5699 	if (!ext4_mb_use_preallocated(ac)) {
5700 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5701 		ext4_mb_normalize_request(ac, ar);
5702 
5703 		*errp = ext4_mb_pa_alloc(ac);
5704 		if (*errp)
5705 			goto errout;
5706 repeat:
5707 		/* allocate space in core */
5708 		*errp = ext4_mb_regular_allocator(ac);
5709 		/*
5710 		 * pa allocated above is added to grp->bb_prealloc_list only
5711 		 * when we were able to allocate some block i.e. when
5712 		 * ac->ac_status == AC_STATUS_FOUND.
5713 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5714 		 * So we have to free this pa here itself.
5715 		 */
5716 		if (*errp) {
5717 			ext4_mb_pa_free(ac);
5718 			ext4_discard_allocated_blocks(ac);
5719 			goto errout;
5720 		}
5721 		if (ac->ac_status == AC_STATUS_FOUND &&
5722 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5723 			ext4_mb_pa_free(ac);
5724 	}
5725 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5726 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5727 		if (*errp) {
5728 			ext4_discard_allocated_blocks(ac);
5729 			goto errout;
5730 		} else {
5731 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5732 			ar->len = ac->ac_b_ex.fe_len;
5733 		}
5734 	} else {
5735 		if (++retries < 3 &&
5736 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5737 			goto repeat;
5738 		/*
5739 		 * If block allocation fails then the pa allocated above
5740 		 * needs to be freed here itself.
5741 		 */
5742 		ext4_mb_pa_free(ac);
5743 		*errp = -ENOSPC;
5744 	}
5745 
5746 errout:
5747 	if (*errp) {
5748 		ac->ac_b_ex.fe_len = 0;
5749 		ar->len = 0;
5750 		ext4_mb_show_ac(ac);
5751 	}
5752 	ext4_mb_release_context(ac);
5753 out:
5754 	if (ac)
5755 		kmem_cache_free(ext4_ac_cachep, ac);
5756 	if (inquota && ar->len < inquota)
5757 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5758 	if (!ar->len) {
5759 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5760 			/* release all the reserved blocks if non delalloc */
5761 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5762 						reserv_clstrs);
5763 	}
5764 
5765 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5766 
5767 	return block;
5768 }
5769 
5770 /*
5771  * We can merge two free data extents only if the physical blocks
5772  * are contiguous, AND the extents were freed by the same transaction,
5773  * AND the blocks are associated with the same group.
5774  */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)5775 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5776 					struct ext4_free_data *entry,
5777 					struct ext4_free_data *new_entry,
5778 					struct rb_root *entry_rb_root)
5779 {
5780 	if ((entry->efd_tid != new_entry->efd_tid) ||
5781 	    (entry->efd_group != new_entry->efd_group))
5782 		return;
5783 	if (entry->efd_start_cluster + entry->efd_count ==
5784 	    new_entry->efd_start_cluster) {
5785 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5786 		new_entry->efd_count += entry->efd_count;
5787 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5788 		   entry->efd_start_cluster) {
5789 		new_entry->efd_count += entry->efd_count;
5790 	} else
5791 		return;
5792 	spin_lock(&sbi->s_md_lock);
5793 	list_del(&entry->efd_list);
5794 	spin_unlock(&sbi->s_md_lock);
5795 	rb_erase(&entry->efd_node, entry_rb_root);
5796 	kmem_cache_free(ext4_free_data_cachep, entry);
5797 }
5798 
5799 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)5800 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5801 		      struct ext4_free_data *new_entry)
5802 {
5803 	ext4_group_t group = e4b->bd_group;
5804 	ext4_grpblk_t cluster;
5805 	ext4_grpblk_t clusters = new_entry->efd_count;
5806 	struct ext4_free_data *entry;
5807 	struct ext4_group_info *db = e4b->bd_info;
5808 	struct super_block *sb = e4b->bd_sb;
5809 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5810 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5811 	struct rb_node *parent = NULL, *new_node;
5812 
5813 	BUG_ON(!ext4_handle_valid(handle));
5814 	BUG_ON(e4b->bd_bitmap_page == NULL);
5815 	BUG_ON(e4b->bd_buddy_page == NULL);
5816 
5817 	new_node = &new_entry->efd_node;
5818 	cluster = new_entry->efd_start_cluster;
5819 
5820 	if (!*n) {
5821 		/* first free block exent. We need to
5822 		   protect buddy cache from being freed,
5823 		 * otherwise we'll refresh it from
5824 		 * on-disk bitmap and lose not-yet-available
5825 		 * blocks */
5826 		get_page(e4b->bd_buddy_page);
5827 		get_page(e4b->bd_bitmap_page);
5828 	}
5829 	while (*n) {
5830 		parent = *n;
5831 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5832 		if (cluster < entry->efd_start_cluster)
5833 			n = &(*n)->rb_left;
5834 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5835 			n = &(*n)->rb_right;
5836 		else {
5837 			ext4_grp_locked_error(sb, group, 0,
5838 				ext4_group_first_block_no(sb, group) +
5839 				EXT4_C2B(sbi, cluster),
5840 				"Block already on to-be-freed list");
5841 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5842 			return 0;
5843 		}
5844 	}
5845 
5846 	rb_link_node(new_node, parent, n);
5847 	rb_insert_color(new_node, &db->bb_free_root);
5848 
5849 	/* Now try to see the extent can be merged to left and right */
5850 	node = rb_prev(new_node);
5851 	if (node) {
5852 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5853 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5854 					    &(db->bb_free_root));
5855 	}
5856 
5857 	node = rb_next(new_node);
5858 	if (node) {
5859 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5860 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5861 					    &(db->bb_free_root));
5862 	}
5863 
5864 	spin_lock(&sbi->s_md_lock);
5865 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5866 	sbi->s_mb_free_pending += clusters;
5867 	spin_unlock(&sbi->s_md_lock);
5868 	return 0;
5869 }
5870 
5871 /*
5872  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5873  * linearly starting at the goal block and also excludes the blocks which
5874  * are going to be in use after fast commit replay.
5875  */
ext4_mb_new_blocks_simple(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5876 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5877 				struct ext4_allocation_request *ar, int *errp)
5878 {
5879 	struct buffer_head *bitmap_bh;
5880 	struct super_block *sb = ar->inode->i_sb;
5881 	ext4_group_t group;
5882 	ext4_grpblk_t blkoff;
5883 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5884 	ext4_grpblk_t i = 0;
5885 	ext4_fsblk_t goal, block;
5886 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5887 
5888 	goal = ar->goal;
5889 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5890 			goal >= ext4_blocks_count(es))
5891 		goal = le32_to_cpu(es->s_first_data_block);
5892 
5893 	ar->len = 0;
5894 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5895 	for (; group < ext4_get_groups_count(sb); group++) {
5896 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5897 		if (IS_ERR(bitmap_bh)) {
5898 			*errp = PTR_ERR(bitmap_bh);
5899 			pr_warn("Failed to read block bitmap\n");
5900 			return 0;
5901 		}
5902 
5903 		ext4_get_group_no_and_offset(sb,
5904 			max(ext4_group_first_block_no(sb, group), goal),
5905 			NULL, &blkoff);
5906 		while (1) {
5907 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5908 						blkoff);
5909 			if (i >= max)
5910 				break;
5911 			if (ext4_fc_replay_check_excluded(sb,
5912 				ext4_group_first_block_no(sb, group) + i)) {
5913 				blkoff = i + 1;
5914 			} else
5915 				break;
5916 		}
5917 		brelse(bitmap_bh);
5918 		if (i < max)
5919 			break;
5920 	}
5921 
5922 	if (group >= ext4_get_groups_count(sb) || i >= max) {
5923 		*errp = -ENOSPC;
5924 		return 0;
5925 	}
5926 
5927 	block = ext4_group_first_block_no(sb, group) + i;
5928 	ext4_mb_mark_bb(sb, block, 1, 1);
5929 	ar->len = 1;
5930 
5931 	return block;
5932 }
5933 
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)5934 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5935 					unsigned long count)
5936 {
5937 	struct buffer_head *bitmap_bh;
5938 	struct super_block *sb = inode->i_sb;
5939 	struct ext4_group_desc *gdp;
5940 	struct buffer_head *gdp_bh;
5941 	ext4_group_t group;
5942 	ext4_grpblk_t blkoff;
5943 	int already_freed = 0, err, i;
5944 
5945 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5946 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5947 	if (IS_ERR(bitmap_bh)) {
5948 		err = PTR_ERR(bitmap_bh);
5949 		pr_warn("Failed to read block bitmap\n");
5950 		return;
5951 	}
5952 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5953 	if (!gdp)
5954 		return;
5955 
5956 	for (i = 0; i < count; i++) {
5957 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5958 			already_freed++;
5959 	}
5960 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5961 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5962 	if (err)
5963 		return;
5964 	ext4_free_group_clusters_set(
5965 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5966 		count - already_freed);
5967 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5968 	ext4_group_desc_csum_set(sb, group, gdp);
5969 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5970 	sync_dirty_buffer(bitmap_bh);
5971 	sync_dirty_buffer(gdp_bh);
5972 	brelse(bitmap_bh);
5973 }
5974 
5975 /**
5976  * ext4_mb_clear_bb() -- helper function for freeing blocks.
5977  *			Used by ext4_free_blocks()
5978  * @handle:		handle for this transaction
5979  * @inode:		inode
5980  * @bh:			optional buffer of the block to be freed
5981  * @block:		starting physical block to be freed
5982  * @count:		number of blocks to be freed
5983  * @flags:		flags used by ext4_free_blocks
5984  */
ext4_mb_clear_bb(handle_t * handle,struct inode * inode,ext4_fsblk_t block,unsigned long count,int flags)5985 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
5986 			       ext4_fsblk_t block, unsigned long count,
5987 			       int flags)
5988 {
5989 	struct buffer_head *bitmap_bh = NULL;
5990 	struct super_block *sb = inode->i_sb;
5991 	struct ext4_group_desc *gdp;
5992 	struct ext4_group_info *grp;
5993 	unsigned int overflow;
5994 	ext4_grpblk_t bit;
5995 	struct buffer_head *gd_bh;
5996 	ext4_group_t block_group;
5997 	struct ext4_sb_info *sbi;
5998 	struct ext4_buddy e4b;
5999 	unsigned int count_clusters;
6000 	int err = 0;
6001 	int ret;
6002 
6003 	sbi = EXT4_SB(sb);
6004 
6005 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6006 	    !ext4_inode_block_valid(inode, block, count)) {
6007 		ext4_error(sb, "Freeing blocks in system zone - "
6008 			   "Block = %llu, count = %lu", block, count);
6009 		/* err = 0. ext4_std_error should be a no op */
6010 		goto error_return;
6011 	}
6012 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6013 
6014 do_more:
6015 	overflow = 0;
6016 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6017 
6018 	grp = ext4_get_group_info(sb, block_group);
6019 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6020 		return;
6021 
6022 	/*
6023 	 * Check to see if we are freeing blocks across a group
6024 	 * boundary.
6025 	 */
6026 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6027 		overflow = EXT4_C2B(sbi, bit) + count -
6028 			EXT4_BLOCKS_PER_GROUP(sb);
6029 		count -= overflow;
6030 		/* The range changed so it's no longer validated */
6031 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6032 	}
6033 	count_clusters = EXT4_NUM_B2C(sbi, count);
6034 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6035 	if (IS_ERR(bitmap_bh)) {
6036 		err = PTR_ERR(bitmap_bh);
6037 		bitmap_bh = NULL;
6038 		goto error_return;
6039 	}
6040 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6041 	if (!gdp) {
6042 		err = -EIO;
6043 		goto error_return;
6044 	}
6045 
6046 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6047 	    !ext4_inode_block_valid(inode, block, count)) {
6048 		ext4_error(sb, "Freeing blocks in system zone - "
6049 			   "Block = %llu, count = %lu", block, count);
6050 		/* err = 0. ext4_std_error should be a no op */
6051 		goto error_return;
6052 	}
6053 
6054 	BUFFER_TRACE(bitmap_bh, "getting write access");
6055 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6056 					    EXT4_JTR_NONE);
6057 	if (err)
6058 		goto error_return;
6059 
6060 	/*
6061 	 * We are about to modify some metadata.  Call the journal APIs
6062 	 * to unshare ->b_data if a currently-committing transaction is
6063 	 * using it
6064 	 */
6065 	BUFFER_TRACE(gd_bh, "get_write_access");
6066 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6067 	if (err)
6068 		goto error_return;
6069 #ifdef AGGRESSIVE_CHECK
6070 	{
6071 		int i;
6072 		for (i = 0; i < count_clusters; i++)
6073 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6074 	}
6075 #endif
6076 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6077 
6078 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6079 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6080 				     GFP_NOFS|__GFP_NOFAIL);
6081 	if (err)
6082 		goto error_return;
6083 
6084 	/*
6085 	 * We need to make sure we don't reuse the freed block until after the
6086 	 * transaction is committed. We make an exception if the inode is to be
6087 	 * written in writeback mode since writeback mode has weak data
6088 	 * consistency guarantees.
6089 	 */
6090 	if (ext4_handle_valid(handle) &&
6091 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6092 	     !ext4_should_writeback_data(inode))) {
6093 		struct ext4_free_data *new_entry;
6094 		/*
6095 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6096 		 * to fail.
6097 		 */
6098 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6099 				GFP_NOFS|__GFP_NOFAIL);
6100 		new_entry->efd_start_cluster = bit;
6101 		new_entry->efd_group = block_group;
6102 		new_entry->efd_count = count_clusters;
6103 		new_entry->efd_tid = handle->h_transaction->t_tid;
6104 
6105 		ext4_lock_group(sb, block_group);
6106 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6107 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6108 	} else {
6109 		/* need to update group_info->bb_free and bitmap
6110 		 * with group lock held. generate_buddy look at
6111 		 * them with group lock_held
6112 		 */
6113 		if (test_opt(sb, DISCARD)) {
6114 			err = ext4_issue_discard(sb, block_group, bit,
6115 						 count_clusters, NULL);
6116 			if (err && err != -EOPNOTSUPP)
6117 				ext4_msg(sb, KERN_WARNING, "discard request in"
6118 					 " group:%u block:%d count:%lu failed"
6119 					 " with %d", block_group, bit, count,
6120 					 err);
6121 		} else
6122 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6123 
6124 		ext4_lock_group(sb, block_group);
6125 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6126 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6127 	}
6128 
6129 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6130 	ext4_free_group_clusters_set(sb, gdp, ret);
6131 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
6132 	ext4_group_desc_csum_set(sb, block_group, gdp);
6133 	ext4_unlock_group(sb, block_group);
6134 
6135 	if (sbi->s_log_groups_per_flex) {
6136 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6137 		atomic64_add(count_clusters,
6138 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6139 						  flex_group)->free_clusters);
6140 	}
6141 
6142 	/*
6143 	 * on a bigalloc file system, defer the s_freeclusters_counter
6144 	 * update to the caller (ext4_remove_space and friends) so they
6145 	 * can determine if a cluster freed here should be rereserved
6146 	 */
6147 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6148 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6149 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6150 		percpu_counter_add(&sbi->s_freeclusters_counter,
6151 				   count_clusters);
6152 	}
6153 
6154 	ext4_mb_unload_buddy(&e4b);
6155 
6156 	/* We dirtied the bitmap block */
6157 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6158 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6159 
6160 	/* And the group descriptor block */
6161 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6162 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6163 	if (!err)
6164 		err = ret;
6165 
6166 	if (overflow && !err) {
6167 		block += count;
6168 		count = overflow;
6169 		put_bh(bitmap_bh);
6170 		/* The range changed so it's no longer validated */
6171 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6172 		goto do_more;
6173 	}
6174 error_return:
6175 	brelse(bitmap_bh);
6176 	ext4_std_error(sb, err);
6177 	return;
6178 }
6179 
6180 /**
6181  * ext4_free_blocks() -- Free given blocks and update quota
6182  * @handle:		handle for this transaction
6183  * @inode:		inode
6184  * @bh:			optional buffer of the block to be freed
6185  * @block:		starting physical block to be freed
6186  * @count:		number of blocks to be freed
6187  * @flags:		flags used by ext4_free_blocks
6188  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)6189 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6190 		      struct buffer_head *bh, ext4_fsblk_t block,
6191 		      unsigned long count, int flags)
6192 {
6193 	struct super_block *sb = inode->i_sb;
6194 	unsigned int overflow;
6195 	struct ext4_sb_info *sbi;
6196 
6197 	sbi = EXT4_SB(sb);
6198 
6199 	if (bh) {
6200 		if (block)
6201 			BUG_ON(block != bh->b_blocknr);
6202 		else
6203 			block = bh->b_blocknr;
6204 	}
6205 
6206 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6207 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6208 		return;
6209 	}
6210 
6211 	might_sleep();
6212 
6213 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6214 	    !ext4_inode_block_valid(inode, block, count)) {
6215 		ext4_error(sb, "Freeing blocks not in datazone - "
6216 			   "block = %llu, count = %lu", block, count);
6217 		return;
6218 	}
6219 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6220 
6221 	ext4_debug("freeing block %llu\n", block);
6222 	trace_ext4_free_blocks(inode, block, count, flags);
6223 
6224 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6225 		BUG_ON(count > 1);
6226 
6227 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6228 			    inode, bh, block);
6229 	}
6230 
6231 	/*
6232 	 * If the extent to be freed does not begin on a cluster
6233 	 * boundary, we need to deal with partial clusters at the
6234 	 * beginning and end of the extent.  Normally we will free
6235 	 * blocks at the beginning or the end unless we are explicitly
6236 	 * requested to avoid doing so.
6237 	 */
6238 	overflow = EXT4_PBLK_COFF(sbi, block);
6239 	if (overflow) {
6240 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6241 			overflow = sbi->s_cluster_ratio - overflow;
6242 			block += overflow;
6243 			if (count > overflow)
6244 				count -= overflow;
6245 			else
6246 				return;
6247 		} else {
6248 			block -= overflow;
6249 			count += overflow;
6250 		}
6251 		/* The range changed so it's no longer validated */
6252 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6253 	}
6254 	overflow = EXT4_LBLK_COFF(sbi, count);
6255 	if (overflow) {
6256 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6257 			if (count > overflow)
6258 				count -= overflow;
6259 			else
6260 				return;
6261 		} else
6262 			count += sbi->s_cluster_ratio - overflow;
6263 		/* The range changed so it's no longer validated */
6264 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6265 	}
6266 
6267 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6268 		int i;
6269 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6270 
6271 		for (i = 0; i < count; i++) {
6272 			cond_resched();
6273 			if (is_metadata)
6274 				bh = sb_find_get_block(inode->i_sb, block + i);
6275 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6276 		}
6277 	}
6278 
6279 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6280 	return;
6281 }
6282 
6283 /**
6284  * ext4_group_add_blocks() -- Add given blocks to an existing group
6285  * @handle:			handle to this transaction
6286  * @sb:				super block
6287  * @block:			start physical block to add to the block group
6288  * @count:			number of blocks to free
6289  *
6290  * This marks the blocks as free in the bitmap and buddy.
6291  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)6292 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6293 			 ext4_fsblk_t block, unsigned long count)
6294 {
6295 	struct buffer_head *bitmap_bh = NULL;
6296 	struct buffer_head *gd_bh;
6297 	ext4_group_t block_group;
6298 	ext4_grpblk_t bit;
6299 	unsigned int i;
6300 	struct ext4_group_desc *desc;
6301 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6302 	struct ext4_buddy e4b;
6303 	int err = 0, ret, free_clusters_count;
6304 	ext4_grpblk_t clusters_freed;
6305 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6306 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6307 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6308 
6309 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6310 
6311 	if (count == 0)
6312 		return 0;
6313 
6314 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6315 	/*
6316 	 * Check to see if we are freeing blocks across a group
6317 	 * boundary.
6318 	 */
6319 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6320 		ext4_warning(sb, "too many blocks added to group %u",
6321 			     block_group);
6322 		err = -EINVAL;
6323 		goto error_return;
6324 	}
6325 
6326 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6327 	if (IS_ERR(bitmap_bh)) {
6328 		err = PTR_ERR(bitmap_bh);
6329 		bitmap_bh = NULL;
6330 		goto error_return;
6331 	}
6332 
6333 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6334 	if (!desc) {
6335 		err = -EIO;
6336 		goto error_return;
6337 	}
6338 
6339 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6340 		ext4_error(sb, "Adding blocks in system zones - "
6341 			   "Block = %llu, count = %lu",
6342 			   block, count);
6343 		err = -EINVAL;
6344 		goto error_return;
6345 	}
6346 
6347 	BUFFER_TRACE(bitmap_bh, "getting write access");
6348 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6349 					    EXT4_JTR_NONE);
6350 	if (err)
6351 		goto error_return;
6352 
6353 	/*
6354 	 * We are about to modify some metadata.  Call the journal APIs
6355 	 * to unshare ->b_data if a currently-committing transaction is
6356 	 * using it
6357 	 */
6358 	BUFFER_TRACE(gd_bh, "get_write_access");
6359 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6360 	if (err)
6361 		goto error_return;
6362 
6363 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6364 		BUFFER_TRACE(bitmap_bh, "clear bit");
6365 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6366 			ext4_error(sb, "bit already cleared for block %llu",
6367 				   (ext4_fsblk_t)(block + i));
6368 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6369 		} else {
6370 			clusters_freed++;
6371 		}
6372 	}
6373 
6374 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6375 	if (err)
6376 		goto error_return;
6377 
6378 	/*
6379 	 * need to update group_info->bb_free and bitmap
6380 	 * with group lock held. generate_buddy look at
6381 	 * them with group lock_held
6382 	 */
6383 	ext4_lock_group(sb, block_group);
6384 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6385 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6386 	free_clusters_count = clusters_freed +
6387 		ext4_free_group_clusters(sb, desc);
6388 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6389 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6390 	ext4_group_desc_csum_set(sb, block_group, desc);
6391 	ext4_unlock_group(sb, block_group);
6392 	percpu_counter_add(&sbi->s_freeclusters_counter,
6393 			   clusters_freed);
6394 
6395 	if (sbi->s_log_groups_per_flex) {
6396 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6397 		atomic64_add(clusters_freed,
6398 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6399 						  flex_group)->free_clusters);
6400 	}
6401 
6402 	ext4_mb_unload_buddy(&e4b);
6403 
6404 	/* We dirtied the bitmap block */
6405 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6406 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6407 
6408 	/* And the group descriptor block */
6409 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6410 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6411 	if (!err)
6412 		err = ret;
6413 
6414 error_return:
6415 	brelse(bitmap_bh);
6416 	ext4_std_error(sb, err);
6417 	return err;
6418 }
6419 
6420 /**
6421  * ext4_trim_extent -- function to TRIM one single free extent in the group
6422  * @sb:		super block for the file system
6423  * @start:	starting block of the free extent in the alloc. group
6424  * @count:	number of blocks to TRIM
6425  * @e4b:	ext4 buddy for the group
6426  *
6427  * Trim "count" blocks starting at "start" in the "group". To assure that no
6428  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6429  * be called with under the group lock.
6430  */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)6431 static int ext4_trim_extent(struct super_block *sb,
6432 		int start, int count, struct ext4_buddy *e4b)
6433 __releases(bitlock)
6434 __acquires(bitlock)
6435 {
6436 	struct ext4_free_extent ex;
6437 	ext4_group_t group = e4b->bd_group;
6438 	int ret = 0;
6439 
6440 	trace_ext4_trim_extent(sb, group, start, count);
6441 
6442 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6443 
6444 	ex.fe_start = start;
6445 	ex.fe_group = group;
6446 	ex.fe_len = count;
6447 
6448 	/*
6449 	 * Mark blocks used, so no one can reuse them while
6450 	 * being trimmed.
6451 	 */
6452 	mb_mark_used(e4b, &ex);
6453 	ext4_unlock_group(sb, group);
6454 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6455 	ext4_lock_group(sb, group);
6456 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6457 	return ret;
6458 }
6459 
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)6460 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6461 					   ext4_group_t grp)
6462 {
6463 	unsigned long nr_clusters_in_group;
6464 
6465 	if (grp < (ext4_get_groups_count(sb) - 1))
6466 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6467 	else
6468 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6469 					ext4_group_first_block_no(sb, grp))
6470 				       >> EXT4_CLUSTER_BITS(sb);
6471 
6472 	return nr_clusters_in_group - 1;
6473 }
6474 
ext4_trim_interrupted(void)6475 static bool ext4_trim_interrupted(void)
6476 {
6477 	return fatal_signal_pending(current) || freezing(current);
6478 }
6479 
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6480 static int ext4_try_to_trim_range(struct super_block *sb,
6481 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6482 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6483 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6484 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6485 {
6486 	ext4_grpblk_t next, count, free_count, last, origin_start;
6487 	bool set_trimmed = false;
6488 	void *bitmap;
6489 
6490 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6491 	bitmap = e4b->bd_bitmap;
6492 	if (start == 0 && max >= last)
6493 		set_trimmed = true;
6494 	origin_start = start;
6495 	start = max(e4b->bd_info->bb_first_free, start);
6496 	count = 0;
6497 	free_count = 0;
6498 
6499 	while (start <= max) {
6500 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6501 		if (start > max)
6502 			break;
6503 
6504 		next = mb_find_next_bit(bitmap, last + 1, start);
6505 		if (origin_start == 0 && next >= last)
6506 			set_trimmed = true;
6507 
6508 		if ((next - start) >= minblocks) {
6509 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6510 
6511 			if (ret && ret != -EOPNOTSUPP)
6512 				return count;
6513 			count += next - start;
6514 		}
6515 		free_count += next - start;
6516 		start = next + 1;
6517 
6518 		if (ext4_trim_interrupted())
6519 			return count;
6520 
6521 		if (need_resched()) {
6522 			ext4_unlock_group(sb, e4b->bd_group);
6523 			cond_resched();
6524 			ext4_lock_group(sb, e4b->bd_group);
6525 		}
6526 
6527 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6528 			break;
6529 	}
6530 
6531 	if (set_trimmed)
6532 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6533 
6534 	return count;
6535 }
6536 
6537 /**
6538  * ext4_trim_all_free -- function to trim all free space in alloc. group
6539  * @sb:			super block for file system
6540  * @group:		group to be trimmed
6541  * @start:		first group block to examine
6542  * @max:		last group block to examine
6543  * @minblocks:		minimum extent block count
6544  *
6545  * ext4_trim_all_free walks through group's block bitmap searching for free
6546  * extents. When the free extent is found, mark it as used in group buddy
6547  * bitmap. Then issue a TRIM command on this extent and free the extent in
6548  * the group buddy bitmap.
6549  */
6550 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6551 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6552 		   ext4_grpblk_t start, ext4_grpblk_t max,
6553 		   ext4_grpblk_t minblocks)
6554 {
6555 	struct ext4_buddy e4b;
6556 	int ret;
6557 
6558 	trace_ext4_trim_all_free(sb, group, start, max);
6559 
6560 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6561 	if (ret) {
6562 		ext4_warning(sb, "Error %d loading buddy information for %u",
6563 			     ret, group);
6564 		return ret;
6565 	}
6566 
6567 	ext4_lock_group(sb, group);
6568 
6569 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6570 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6571 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6572 	else
6573 		ret = 0;
6574 
6575 	ext4_unlock_group(sb, group);
6576 	ext4_mb_unload_buddy(&e4b);
6577 
6578 	ext4_debug("trimmed %d blocks in the group %d\n",
6579 		ret, group);
6580 
6581 	return ret;
6582 }
6583 
6584 /**
6585  * ext4_trim_fs() -- trim ioctl handle function
6586  * @sb:			superblock for filesystem
6587  * @range:		fstrim_range structure
6588  *
6589  * start:	First Byte to trim
6590  * len:		number of Bytes to trim from start
6591  * minlen:	minimum extent length in Bytes
6592  * ext4_trim_fs goes through all allocation groups containing Bytes from
6593  * start to start+len. For each such a group ext4_trim_all_free function
6594  * is invoked to trim all free space.
6595  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)6596 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6597 {
6598 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
6599 	struct ext4_group_info *grp;
6600 	ext4_group_t group, first_group, last_group;
6601 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6602 	uint64_t start, end, minlen, trimmed = 0;
6603 	ext4_fsblk_t first_data_blk =
6604 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6605 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6606 	int ret = 0;
6607 
6608 	start = range->start >> sb->s_blocksize_bits;
6609 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6610 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6611 			      range->minlen >> sb->s_blocksize_bits);
6612 
6613 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6614 	    start >= max_blks ||
6615 	    range->len < sb->s_blocksize)
6616 		return -EINVAL;
6617 	/* No point to try to trim less than discard granularity */
6618 	if (range->minlen < q->limits.discard_granularity) {
6619 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6620 			q->limits.discard_granularity >> sb->s_blocksize_bits);
6621 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6622 			goto out;
6623 	}
6624 	if (end >= max_blks - 1)
6625 		end = max_blks - 1;
6626 	if (end <= first_data_blk)
6627 		goto out;
6628 	if (start < first_data_blk)
6629 		start = first_data_blk;
6630 
6631 	/* Determine first and last group to examine based on start and end */
6632 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6633 				     &first_group, &first_cluster);
6634 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6635 				     &last_group, &last_cluster);
6636 
6637 	/* end now represents the last cluster to discard in this group */
6638 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6639 
6640 	for (group = first_group; group <= last_group; group++) {
6641 		if (ext4_trim_interrupted())
6642 			break;
6643 		grp = ext4_get_group_info(sb, group);
6644 		if (!grp)
6645 			continue;
6646 		/* We only do this if the grp has never been initialized */
6647 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6648 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6649 			if (ret)
6650 				break;
6651 		}
6652 
6653 		/*
6654 		 * For all the groups except the last one, last cluster will
6655 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6656 		 * change it for the last group, note that last_cluster is
6657 		 * already computed earlier by ext4_get_group_no_and_offset()
6658 		 */
6659 		if (group == last_group)
6660 			end = last_cluster;
6661 		if (grp->bb_free >= minlen) {
6662 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6663 						 end, minlen);
6664 			if (cnt < 0) {
6665 				ret = cnt;
6666 				break;
6667 			}
6668 			trimmed += cnt;
6669 		}
6670 
6671 		/*
6672 		 * For every group except the first one, we are sure
6673 		 * that the first cluster to discard will be cluster #0.
6674 		 */
6675 		first_cluster = 0;
6676 	}
6677 
6678 	if (!ret)
6679 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6680 
6681 out:
6682 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6683 	return ret;
6684 }
6685 
6686 /* Iterate all the free extents in the group. */
6687 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)6688 ext4_mballoc_query_range(
6689 	struct super_block		*sb,
6690 	ext4_group_t			group,
6691 	ext4_grpblk_t			start,
6692 	ext4_grpblk_t			end,
6693 	ext4_mballoc_query_range_fn	formatter,
6694 	void				*priv)
6695 {
6696 	void				*bitmap;
6697 	ext4_grpblk_t			next;
6698 	struct ext4_buddy		e4b;
6699 	int				error;
6700 
6701 	error = ext4_mb_load_buddy(sb, group, &e4b);
6702 	if (error)
6703 		return error;
6704 	bitmap = e4b.bd_bitmap;
6705 
6706 	ext4_lock_group(sb, group);
6707 
6708 	start = max(e4b.bd_info->bb_first_free, start);
6709 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6710 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6711 
6712 	while (start <= end) {
6713 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6714 		if (start > end)
6715 			break;
6716 		next = mb_find_next_bit(bitmap, end + 1, start);
6717 
6718 		ext4_unlock_group(sb, group);
6719 		error = formatter(sb, group, start, next - start, priv);
6720 		if (error)
6721 			goto out_unload;
6722 		ext4_lock_group(sb, group);
6723 
6724 		start = next + 1;
6725 	}
6726 
6727 	ext4_unlock_group(sb, group);
6728 out_unload:
6729 	ext4_mb_unload_buddy(&e4b);
6730 
6731 	return error;
6732 }
6733