• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		/*
186 		 * When journalling data dirty buffers are tracked only in the
187 		 * journal. So although mm thinks everything is clean and
188 		 * ready for reaping the inode might still have some pages to
189 		 * write in the running transaction or waiting to be
190 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
191 		 * (via truncate_inode_pages()) to discard these buffers can
192 		 * cause data loss. Also even if we did not discard these
193 		 * buffers, we would have no way to find them after the inode
194 		 * is reaped and thus user could see stale data if he tries to
195 		 * read them before the transaction is checkpointed. So be
196 		 * careful and force everything to disk here... We use
197 		 * ei->i_datasync_tid to store the newest transaction
198 		 * containing inode's data.
199 		 *
200 		 * Note that directories do not have this problem because they
201 		 * don't use page cache.
202 		 */
203 		if (inode->i_ino != EXT4_JOURNAL_INO &&
204 		    ext4_should_journal_data(inode) &&
205 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206 		    inode->i_data.nrpages) {
207 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209 
210 			jbd2_complete_transaction(journal, commit_tid);
211 			filemap_write_and_wait(&inode->i_data);
212 		}
213 		truncate_inode_pages_final(&inode->i_data);
214 
215 		goto no_delete;
216 	}
217 
218 	if (is_bad_inode(inode))
219 		goto no_delete;
220 	dquot_initialize(inode);
221 
222 	if (ext4_should_order_data(inode))
223 		ext4_begin_ordered_truncate(inode, 0);
224 	truncate_inode_pages_final(&inode->i_data);
225 
226 	/*
227 	 * For inodes with journalled data, transaction commit could have
228 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
229 	 * extents converting worker could merge extents and also have dirtied
230 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
231 	 * we still need to remove the inode from the writeback lists.
232 	 */
233 	if (!list_empty_careful(&inode->i_io_list))
234 		inode_io_list_del(inode);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it. When we are in a running transaction though,
239 	 * we are already protected against freezing and we cannot grab further
240 	 * protection due to lock ordering constraints.
241 	 */
242 	if (!ext4_journal_current_handle()) {
243 		sb_start_intwrite(inode->i_sb);
244 		freeze_protected = true;
245 	}
246 
247 	if (!IS_NOQUOTA(inode))
248 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 
250 	/*
251 	 * Block bitmap, group descriptor, and inode are accounted in both
252 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253 	 */
254 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
256 	if (IS_ERR(handle)) {
257 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 		/*
259 		 * If we're going to skip the normal cleanup, we still need to
260 		 * make sure that the in-core orphan linked list is properly
261 		 * cleaned up.
262 		 */
263 		ext4_orphan_del(NULL, inode);
264 		if (freeze_protected)
265 			sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error_err(inode->i_sb, -err,
292 				       "couldn't truncate inode %lu (err %d)",
293 				       inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		if (freeze_protected)
307 			sb_end_intwrite(inode->i_sb);
308 		ext4_xattr_inode_array_free(ea_inode_array);
309 		goto no_delete;
310 	}
311 
312 	/*
313 	 * Kill off the orphan record which ext4_truncate created.
314 	 * AKPM: I think this can be inside the above `if'.
315 	 * Note that ext4_orphan_del() has to be able to cope with the
316 	 * deletion of a non-existent orphan - this is because we don't
317 	 * know if ext4_truncate() actually created an orphan record.
318 	 * (Well, we could do this if we need to, but heck - it works)
319 	 */
320 	ext4_orphan_del(handle, inode);
321 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
322 
323 	/*
324 	 * One subtle ordering requirement: if anything has gone wrong
325 	 * (transaction abort, IO errors, whatever), then we can still
326 	 * do these next steps (the fs will already have been marked as
327 	 * having errors), but we can't free the inode if the mark_dirty
328 	 * fails.
329 	 */
330 	if (ext4_mark_inode_dirty(handle, inode))
331 		/* If that failed, just do the required in-core inode clear. */
332 		ext4_clear_inode(inode);
333 	else
334 		ext4_free_inode(handle, inode);
335 	ext4_journal_stop(handle);
336 	if (freeze_protected)
337 		sb_end_intwrite(inode->i_sb);
338 	ext4_xattr_inode_array_free(ea_inode_array);
339 	return;
340 no_delete:
341 	/*
342 	 * Check out some where else accidentally dirty the evicting inode,
343 	 * which may probably cause inode use-after-free issues later.
344 	 */
345 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346 
347 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
348 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
349 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
350 }
351 
352 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355 	return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358 
359 /*
360  * Called with i_data_sem down, which is important since we can call
361  * ext4_discard_preallocations() from here.
362  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)363 void ext4_da_update_reserve_space(struct inode *inode,
364 					int used, int quota_claim)
365 {
366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 	struct ext4_inode_info *ei = EXT4_I(inode);
368 
369 	spin_lock(&ei->i_block_reservation_lock);
370 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371 	if (unlikely(used > ei->i_reserved_data_blocks)) {
372 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373 			 "with only %d reserved data blocks",
374 			 __func__, inode->i_ino, used,
375 			 ei->i_reserved_data_blocks);
376 		WARN_ON(1);
377 		used = ei->i_reserved_data_blocks;
378 	}
379 
380 	/* Update per-inode reservations */
381 	ei->i_reserved_data_blocks -= used;
382 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383 
384 	spin_unlock(&ei->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    !inode_is_open_for_write(inode))
405 		ext4_discard_preallocations(inode, 0);
406 }
407 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (ext4_has_feature_journal(inode->i_sb) &&
413 	    (inode->i_ino ==
414 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415 		return 0;
416 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417 		ext4_error_inode(inode, func, line, map->m_pblk,
418 				 "lblock %lu mapped to illegal pblock %llu "
419 				 "(length %d)", (unsigned long) map->m_lblk,
420 				 map->m_pblk, map->m_len);
421 		return -EFSCORRUPTED;
422 	}
423 	return 0;
424 }
425 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 		       ext4_lblk_t len)
428 {
429 	int ret;
430 
431 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
433 
434 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 	if (ret > 0)
436 		ret = 0;
437 
438 	return ret;
439 }
440 
441 #define check_block_validity(inode, map)	\
442 	__check_block_validity((inode), __func__, __LINE__, (map))
443 
444 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446 				       struct inode *inode,
447 				       struct ext4_map_blocks *es_map,
448 				       struct ext4_map_blocks *map,
449 				       int flags)
450 {
451 	int retval;
452 
453 	map->m_flags = 0;
454 	/*
455 	 * There is a race window that the result is not the same.
456 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
457 	 * is that we lookup a block mapping in extent status tree with
458 	 * out taking i_data_sem.  So at the time the unwritten extent
459 	 * could be converted.
460 	 */
461 	down_read(&EXT4_I(inode)->i_data_sem);
462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 	} else {
465 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 	}
467 	up_read((&EXT4_I(inode)->i_data_sem));
468 
469 	/*
470 	 * We don't check m_len because extent will be collpased in status
471 	 * tree.  So the m_len might not equal.
472 	 */
473 	if (es_map->m_lblk != map->m_lblk ||
474 	    es_map->m_flags != map->m_flags ||
475 	    es_map->m_pblk != map->m_pblk) {
476 		printk("ES cache assertion failed for inode: %lu "
477 		       "es_cached ex [%d/%d/%llu/%x] != "
478 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
480 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
481 		       map->m_len, map->m_pblk, map->m_flags,
482 		       retval, flags);
483 	}
484 }
485 #endif /* ES_AGGRESSIVE_TEST */
486 
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 		    struct ext4_map_blocks *map, int flags)
511 {
512 	struct extent_status es;
513 	int retval;
514 	int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 	struct ext4_map_blocks orig_map;
517 
518 	memcpy(&orig_map, map, sizeof(*map));
519 #endif
520 
521 	map->m_flags = 0;
522 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 		  flags, map->m_len, (unsigned long) map->m_lblk);
524 
525 	/*
526 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 	 */
528 	if (unlikely(map->m_len > INT_MAX))
529 		map->m_len = INT_MAX;
530 
531 	/* We can handle the block number less than EXT_MAX_BLOCKS */
532 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 		return -EFSCORRUPTED;
534 
535 	/* Lookup extent status tree firstly */
536 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 			map->m_pblk = ext4_es_pblock(&es) +
540 					map->m_lblk - es.es_lblk;
541 			map->m_flags |= ext4_es_is_written(&es) ?
542 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 			retval = es.es_len - (map->m_lblk - es.es_lblk);
544 			if (retval > map->m_len)
545 				retval = map->m_len;
546 			map->m_len = retval;
547 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 			map->m_pblk = 0;
549 			retval = es.es_len - (map->m_lblk - es.es_lblk);
550 			if (retval > map->m_len)
551 				retval = map->m_len;
552 			map->m_len = retval;
553 			retval = 0;
554 		} else {
555 			BUG();
556 		}
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 
564 	/*
565 	 * Try to see if we can get the block without requesting a new
566 	 * file system block.
567 	 */
568 	down_read(&EXT4_I(inode)->i_data_sem);
569 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
571 	} else {
572 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
573 	}
574 	if (retval > 0) {
575 		unsigned int status;
576 
577 		if (unlikely(retval != map->m_len)) {
578 			ext4_warning(inode->i_sb,
579 				     "ES len assertion failed for inode "
580 				     "%lu: retval %d != map->m_len %d",
581 				     inode->i_ino, retval, map->m_len);
582 			WARN_ON(1);
583 		}
584 
585 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588 		    !(status & EXTENT_STATUS_WRITTEN) &&
589 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590 				       map->m_lblk + map->m_len - 1))
591 			status |= EXTENT_STATUS_DELAYED;
592 		ret = ext4_es_insert_extent(inode, map->m_lblk,
593 					    map->m_len, map->m_pblk, status);
594 		if (ret < 0)
595 			retval = ret;
596 	}
597 	up_read((&EXT4_I(inode)->i_data_sem));
598 
599 found:
600 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601 		ret = check_block_validity(inode, map);
602 		if (ret != 0)
603 			return ret;
604 	}
605 
606 	/* If it is only a block(s) look up */
607 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608 		return retval;
609 
610 	/*
611 	 * Returns if the blocks have already allocated
612 	 *
613 	 * Note that if blocks have been preallocated
614 	 * ext4_ext_get_block() returns the create = 0
615 	 * with buffer head unmapped.
616 	 */
617 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618 		/*
619 		 * If we need to convert extent to unwritten
620 		 * we continue and do the actual work in
621 		 * ext4_ext_map_blocks()
622 		 */
623 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624 			return retval;
625 
626 	/*
627 	 * Here we clear m_flags because after allocating an new extent,
628 	 * it will be set again.
629 	 */
630 	map->m_flags &= ~EXT4_MAP_FLAGS;
631 
632 	/*
633 	 * New blocks allocate and/or writing to unwritten extent
634 	 * will possibly result in updating i_data, so we take
635 	 * the write lock of i_data_sem, and call get_block()
636 	 * with create == 1 flag.
637 	 */
638 	down_write(&EXT4_I(inode)->i_data_sem);
639 
640 	/*
641 	 * We need to check for EXT4 here because migrate
642 	 * could have changed the inode type in between
643 	 */
644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 	} else {
647 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
648 
649 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 			/*
651 			 * We allocated new blocks which will result in
652 			 * i_data's format changing.  Force the migrate
653 			 * to fail by clearing migrate flags
654 			 */
655 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 		}
657 	}
658 
659 	if (retval > 0) {
660 		unsigned int status;
661 
662 		if (unlikely(retval != map->m_len)) {
663 			ext4_warning(inode->i_sb,
664 				     "ES len assertion failed for inode "
665 				     "%lu: retval %d != map->m_len %d",
666 				     inode->i_ino, retval, map->m_len);
667 			WARN_ON(1);
668 		}
669 
670 		/*
671 		 * We have to zeroout blocks before inserting them into extent
672 		 * status tree. Otherwise someone could look them up there and
673 		 * use them before they are really zeroed. We also have to
674 		 * unmap metadata before zeroing as otherwise writeback can
675 		 * overwrite zeros with stale data from block device.
676 		 */
677 		if (flags & EXT4_GET_BLOCKS_ZERO &&
678 		    map->m_flags & EXT4_MAP_MAPPED &&
679 		    map->m_flags & EXT4_MAP_NEW) {
680 			ret = ext4_issue_zeroout(inode, map->m_lblk,
681 						 map->m_pblk, map->m_len);
682 			if (ret) {
683 				retval = ret;
684 				goto out_sem;
685 			}
686 		}
687 
688 		/*
689 		 * If the extent has been zeroed out, we don't need to update
690 		 * extent status tree.
691 		 */
692 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
693 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
694 			if (ext4_es_is_written(&es))
695 				goto out_sem;
696 		}
697 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
698 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
699 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
700 		    !(status & EXTENT_STATUS_WRITTEN) &&
701 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
702 				       map->m_lblk + map->m_len - 1))
703 			status |= EXTENT_STATUS_DELAYED;
704 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
705 					    map->m_pblk, status);
706 		if (ret < 0) {
707 			retval = ret;
708 			goto out_sem;
709 		}
710 	}
711 
712 out_sem:
713 	up_write((&EXT4_I(inode)->i_data_sem));
714 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
715 		ret = check_block_validity(inode, map);
716 		if (ret != 0)
717 			return ret;
718 
719 		/*
720 		 * Inodes with freshly allocated blocks where contents will be
721 		 * visible after transaction commit must be on transaction's
722 		 * ordered data list.
723 		 */
724 		if (map->m_flags & EXT4_MAP_NEW &&
725 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
726 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
727 		    !ext4_is_quota_file(inode) &&
728 		    ext4_should_order_data(inode)) {
729 			loff_t start_byte =
730 				(loff_t)map->m_lblk << inode->i_blkbits;
731 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
732 
733 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
734 				ret = ext4_jbd2_inode_add_wait(handle, inode,
735 						start_byte, length);
736 			else
737 				ret = ext4_jbd2_inode_add_write(handle, inode,
738 						start_byte, length);
739 			if (ret)
740 				return ret;
741 		}
742 	}
743 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
744 				map->m_flags & EXT4_MAP_MAPPED))
745 		ext4_fc_track_range(handle, inode, map->m_lblk,
746 					map->m_lblk + map->m_len - 1);
747 	if (retval < 0)
748 		ext_debug(inode, "failed with err %d\n", retval);
749 	return retval;
750 }
751 
752 /*
753  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
754  * we have to be careful as someone else may be manipulating b_state as well.
755  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)756 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
757 {
758 	unsigned long old_state;
759 	unsigned long new_state;
760 
761 	flags &= EXT4_MAP_FLAGS;
762 
763 	/* Dummy buffer_head? Set non-atomically. */
764 	if (!bh->b_page) {
765 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
766 		return;
767 	}
768 	/*
769 	 * Someone else may be modifying b_state. Be careful! This is ugly but
770 	 * once we get rid of using bh as a container for mapping information
771 	 * to pass to / from get_block functions, this can go away.
772 	 */
773 	do {
774 		old_state = READ_ONCE(bh->b_state);
775 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
776 	} while (unlikely(
777 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
778 }
779 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)780 static int _ext4_get_block(struct inode *inode, sector_t iblock,
781 			   struct buffer_head *bh, int flags)
782 {
783 	struct ext4_map_blocks map;
784 	int ret = 0;
785 
786 	if (ext4_has_inline_data(inode))
787 		return -ERANGE;
788 
789 	map.m_lblk = iblock;
790 	map.m_len = bh->b_size >> inode->i_blkbits;
791 
792 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793 			      flags);
794 	if (ret > 0) {
795 		map_bh(bh, inode->i_sb, map.m_pblk);
796 		ext4_update_bh_state(bh, map.m_flags);
797 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798 		ret = 0;
799 	} else if (ret == 0) {
800 		/* hole case, need to fill in bh->b_size */
801 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802 	}
803 	return ret;
804 }
805 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)806 int ext4_get_block(struct inode *inode, sector_t iblock,
807 		   struct buffer_head *bh, int create)
808 {
809 	return _ext4_get_block(inode, iblock, bh,
810 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
811 }
812 
813 /*
814  * Get block function used when preparing for buffered write if we require
815  * creating an unwritten extent if blocks haven't been allocated.  The extent
816  * will be converted to written after the IO is complete.
817  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819 			     struct buffer_head *bh_result, int create)
820 {
821 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
822 		   inode->i_ino, create);
823 	return _ext4_get_block(inode, iblock, bh_result,
824 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
825 }
826 
827 /* Maximum number of blocks we map for direct IO at once. */
828 #define DIO_MAX_BLOCKS 4096
829 
830 /*
831  * `handle' can be NULL if create is zero
832  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)833 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
834 				ext4_lblk_t block, int map_flags)
835 {
836 	struct ext4_map_blocks map;
837 	struct buffer_head *bh;
838 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
839 	int err;
840 
841 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
842 		    || handle != NULL || create == 0);
843 
844 	map.m_lblk = block;
845 	map.m_len = 1;
846 	err = ext4_map_blocks(handle, inode, &map, map_flags);
847 
848 	if (err == 0)
849 		return create ? ERR_PTR(-ENOSPC) : NULL;
850 	if (err < 0)
851 		return ERR_PTR(err);
852 
853 	bh = sb_getblk(inode->i_sb, map.m_pblk);
854 	if (unlikely(!bh))
855 		return ERR_PTR(-ENOMEM);
856 	if (map.m_flags & EXT4_MAP_NEW) {
857 		ASSERT(create != 0);
858 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 			    || (handle != NULL));
860 
861 		/*
862 		 * Now that we do not always journal data, we should
863 		 * keep in mind whether this should always journal the
864 		 * new buffer as metadata.  For now, regular file
865 		 * writes use ext4_get_block instead, so it's not a
866 		 * problem.
867 		 */
868 		lock_buffer(bh);
869 		BUFFER_TRACE(bh, "call get_create_access");
870 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
871 						     EXT4_JTR_NONE);
872 		if (unlikely(err)) {
873 			unlock_buffer(bh);
874 			goto errout;
875 		}
876 		if (!buffer_uptodate(bh)) {
877 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
878 			set_buffer_uptodate(bh);
879 		}
880 		unlock_buffer(bh);
881 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
882 		err = ext4_handle_dirty_metadata(handle, inode, bh);
883 		if (unlikely(err))
884 			goto errout;
885 	} else
886 		BUFFER_TRACE(bh, "not a new buffer");
887 	return bh;
888 errout:
889 	brelse(bh);
890 	return ERR_PTR(err);
891 }
892 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
894 			       ext4_lblk_t block, int map_flags)
895 {
896 	struct buffer_head *bh;
897 	int ret;
898 
899 	bh = ext4_getblk(handle, inode, block, map_flags);
900 	if (IS_ERR(bh))
901 		return bh;
902 	if (!bh || ext4_buffer_uptodate(bh))
903 		return bh;
904 
905 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
906 	if (ret) {
907 		put_bh(bh);
908 		return ERR_PTR(ret);
909 	}
910 	return bh;
911 }
912 
913 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
915 		     bool wait, struct buffer_head **bhs)
916 {
917 	int i, err;
918 
919 	for (i = 0; i < bh_count; i++) {
920 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
921 		if (IS_ERR(bhs[i])) {
922 			err = PTR_ERR(bhs[i]);
923 			bh_count = i;
924 			goto out_brelse;
925 		}
926 	}
927 
928 	for (i = 0; i < bh_count; i++)
929 		/* Note that NULL bhs[i] is valid because of holes. */
930 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
931 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
932 
933 	if (!wait)
934 		return 0;
935 
936 	for (i = 0; i < bh_count; i++)
937 		if (bhs[i])
938 			wait_on_buffer(bhs[i]);
939 
940 	for (i = 0; i < bh_count; i++) {
941 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
942 			err = -EIO;
943 			goto out_brelse;
944 		}
945 	}
946 	return 0;
947 
948 out_brelse:
949 	for (i = 0; i < bh_count; i++) {
950 		brelse(bhs[i]);
951 		bhs[i] = NULL;
952 	}
953 	return err;
954 }
955 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))956 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
957 			   struct buffer_head *head,
958 			   unsigned from,
959 			   unsigned to,
960 			   int *partial,
961 			   int (*fn)(handle_t *handle, struct inode *inode,
962 				     struct buffer_head *bh))
963 {
964 	struct buffer_head *bh;
965 	unsigned block_start, block_end;
966 	unsigned blocksize = head->b_size;
967 	int err, ret = 0;
968 	struct buffer_head *next;
969 
970 	for (bh = head, block_start = 0;
971 	     ret == 0 && (bh != head || !block_start);
972 	     block_start = block_end, bh = next) {
973 		next = bh->b_this_page;
974 		block_end = block_start + blocksize;
975 		if (block_end <= from || block_start >= to) {
976 			if (partial && !buffer_uptodate(bh))
977 				*partial = 1;
978 			continue;
979 		}
980 		err = (*fn)(handle, inode, bh);
981 		if (!ret)
982 			ret = err;
983 	}
984 	return ret;
985 }
986 
987 /*
988  * To preserve ordering, it is essential that the hole instantiation and
989  * the data write be encapsulated in a single transaction.  We cannot
990  * close off a transaction and start a new one between the ext4_get_block()
991  * and the commit_write().  So doing the jbd2_journal_start at the start of
992  * prepare_write() is the right place.
993  *
994  * Also, this function can nest inside ext4_writepage().  In that case, we
995  * *know* that ext4_writepage() has generated enough buffer credits to do the
996  * whole page.  So we won't block on the journal in that case, which is good,
997  * because the caller may be PF_MEMALLOC.
998  *
999  * By accident, ext4 can be reentered when a transaction is open via
1000  * quota file writes.  If we were to commit the transaction while thus
1001  * reentered, there can be a deadlock - we would be holding a quota
1002  * lock, and the commit would never complete if another thread had a
1003  * transaction open and was blocking on the quota lock - a ranking
1004  * violation.
1005  *
1006  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007  * will _not_ run commit under these circumstances because handle->h_ref
1008  * is elevated.  We'll still have enough credits for the tiny quotafile
1009  * write.
1010  */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1011 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1012 				struct buffer_head *bh)
1013 {
1014 	int dirty = buffer_dirty(bh);
1015 	int ret;
1016 
1017 	if (!buffer_mapped(bh) || buffer_freed(bh))
1018 		return 0;
1019 	/*
1020 	 * __block_write_begin() could have dirtied some buffers. Clean
1021 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1022 	 * otherwise about fs integrity issues. Setting of the dirty bit
1023 	 * by __block_write_begin() isn't a real problem here as we clear
1024 	 * the bit before releasing a page lock and thus writeback cannot
1025 	 * ever write the buffer.
1026 	 */
1027 	if (dirty)
1028 		clear_buffer_dirty(bh);
1029 	BUFFER_TRACE(bh, "get write access");
1030 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1031 					    EXT4_JTR_NONE);
1032 	if (!ret && dirty)
1033 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	return ret;
1035 }
1036 
1037 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 				  get_block_t *get_block)
1040 {
1041 	unsigned from = pos & (PAGE_SIZE - 1);
1042 	unsigned to = from + len;
1043 	struct inode *inode = page->mapping->host;
1044 	unsigned block_start, block_end;
1045 	sector_t block;
1046 	int err = 0;
1047 	unsigned blocksize = inode->i_sb->s_blocksize;
1048 	unsigned bbits;
1049 	struct buffer_head *bh, *head, *wait[2];
1050 	int nr_wait = 0;
1051 	int i;
1052 
1053 	BUG_ON(!PageLocked(page));
1054 	BUG_ON(from > PAGE_SIZE);
1055 	BUG_ON(to > PAGE_SIZE);
1056 	BUG_ON(from > to);
1057 
1058 	if (!page_has_buffers(page))
1059 		create_empty_buffers(page, blocksize, 0);
1060 	head = page_buffers(page);
1061 	bbits = ilog2(blocksize);
1062 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063 
1064 	for (bh = head, block_start = 0; bh != head || !block_start;
1065 	    block++, block_start = block_end, bh = bh->b_this_page) {
1066 		block_end = block_start + blocksize;
1067 		if (block_end <= from || block_start >= to) {
1068 			if (PageUptodate(page)) {
1069 				set_buffer_uptodate(bh);
1070 			}
1071 			continue;
1072 		}
1073 		if (buffer_new(bh))
1074 			clear_buffer_new(bh);
1075 		if (!buffer_mapped(bh)) {
1076 			WARN_ON(bh->b_size != blocksize);
1077 			err = get_block(inode, block, bh, 1);
1078 			if (err)
1079 				break;
1080 			if (buffer_new(bh)) {
1081 				if (PageUptodate(page)) {
1082 					clear_buffer_new(bh);
1083 					set_buffer_uptodate(bh);
1084 					mark_buffer_dirty(bh);
1085 					continue;
1086 				}
1087 				if (block_end > to || block_start < from)
1088 					zero_user_segments(page, to, block_end,
1089 							   block_start, from);
1090 				continue;
1091 			}
1092 		}
1093 		if (PageUptodate(page)) {
1094 			set_buffer_uptodate(bh);
1095 			continue;
1096 		}
1097 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 		    !buffer_unwritten(bh) &&
1099 		    (block_start < from || block_end > to)) {
1100 			ext4_read_bh_lock(bh, 0, false);
1101 			wait[nr_wait++] = bh;
1102 		}
1103 	}
1104 	/*
1105 	 * If we issued read requests, let them complete.
1106 	 */
1107 	for (i = 0; i < nr_wait; i++) {
1108 		wait_on_buffer(wait[i]);
1109 		if (!buffer_uptodate(wait[i]))
1110 			err = -EIO;
1111 	}
1112 	if (unlikely(err)) {
1113 		page_zero_new_buffers(page, from, to);
1114 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 		for (i = 0; i < nr_wait; i++) {
1116 			int err2;
1117 
1118 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 								bh_offset(wait[i]));
1120 			if (err2) {
1121 				clear_buffer_uptodate(wait[i]);
1122 				err = err2;
1123 			}
1124 		}
1125 	}
1126 
1127 	return err;
1128 }
1129 #endif
1130 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1131 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 			    loff_t pos, unsigned len, unsigned flags,
1133 			    struct page **pagep, void **fsdata)
1134 {
1135 	struct inode *inode = mapping->host;
1136 	int ret, needed_blocks;
1137 	handle_t *handle;
1138 	int retries = 0;
1139 	struct page *page;
1140 	pgoff_t index;
1141 	unsigned from, to;
1142 
1143 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 		return -EIO;
1145 
1146 	trace_ext4_write_begin(inode, pos, len, flags);
1147 	/*
1148 	 * Reserve one block more for addition to orphan list in case
1149 	 * we allocate blocks but write fails for some reason
1150 	 */
1151 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 	index = pos >> PAGE_SHIFT;
1153 	from = pos & (PAGE_SIZE - 1);
1154 	to = from + len;
1155 
1156 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 						    flags, pagep);
1159 		if (ret < 0)
1160 			return ret;
1161 		if (ret == 1)
1162 			return 0;
1163 	}
1164 
1165 	/*
1166 	 * grab_cache_page_write_begin() can take a long time if the
1167 	 * system is thrashing due to memory pressure, or if the page
1168 	 * is being written back.  So grab it first before we start
1169 	 * the transaction handle.  This also allows us to allocate
1170 	 * the page (if needed) without using GFP_NOFS.
1171 	 */
1172 retry_grab:
1173 	page = grab_cache_page_write_begin(mapping, index, flags);
1174 	if (!page)
1175 		return -ENOMEM;
1176 	/*
1177 	 * The same as page allocation, we prealloc buffer heads before
1178 	 * starting the handle.
1179 	 */
1180 	if (!page_has_buffers(page))
1181 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1182 
1183 	unlock_page(page);
1184 
1185 retry_journal:
1186 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1187 	if (IS_ERR(handle)) {
1188 		put_page(page);
1189 		return PTR_ERR(handle);
1190 	}
1191 
1192 	lock_page(page);
1193 	if (page->mapping != mapping) {
1194 		/* The page got truncated from under us */
1195 		unlock_page(page);
1196 		put_page(page);
1197 		ext4_journal_stop(handle);
1198 		goto retry_grab;
1199 	}
1200 	/* In case writeback began while the page was unlocked */
1201 	wait_for_stable_page(page);
1202 
1203 #ifdef CONFIG_FS_ENCRYPTION
1204 	if (ext4_should_dioread_nolock(inode))
1205 		ret = ext4_block_write_begin(page, pos, len,
1206 					     ext4_get_block_unwritten);
1207 	else
1208 		ret = ext4_block_write_begin(page, pos, len,
1209 					     ext4_get_block);
1210 #else
1211 	if (ext4_should_dioread_nolock(inode))
1212 		ret = __block_write_begin(page, pos, len,
1213 					  ext4_get_block_unwritten);
1214 	else
1215 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1216 #endif
1217 	if (!ret && ext4_should_journal_data(inode)) {
1218 		ret = ext4_walk_page_buffers(handle, inode,
1219 					     page_buffers(page), from, to, NULL,
1220 					     do_journal_get_write_access);
1221 	}
1222 
1223 	if (ret) {
1224 		bool extended = (pos + len > inode->i_size) &&
1225 				!ext4_verity_in_progress(inode);
1226 
1227 		unlock_page(page);
1228 		/*
1229 		 * __block_write_begin may have instantiated a few blocks
1230 		 * outside i_size.  Trim these off again. Don't need
1231 		 * i_size_read because we hold i_mutex.
1232 		 *
1233 		 * Add inode to orphan list in case we crash before
1234 		 * truncate finishes
1235 		 */
1236 		if (extended && ext4_can_truncate(inode))
1237 			ext4_orphan_add(handle, inode);
1238 
1239 		ext4_journal_stop(handle);
1240 		if (extended) {
1241 			ext4_truncate_failed_write(inode);
1242 			/*
1243 			 * If truncate failed early the inode might
1244 			 * still be on the orphan list; we need to
1245 			 * make sure the inode is removed from the
1246 			 * orphan list in that case.
1247 			 */
1248 			if (inode->i_nlink)
1249 				ext4_orphan_del(NULL, inode);
1250 		}
1251 
1252 		if (ret == -ENOSPC &&
1253 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1254 			goto retry_journal;
1255 		put_page(page);
1256 		return ret;
1257 	}
1258 	*pagep = page;
1259 	return ret;
1260 }
1261 
1262 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1263 static int write_end_fn(handle_t *handle, struct inode *inode,
1264 			struct buffer_head *bh)
1265 {
1266 	int ret;
1267 	if (!buffer_mapped(bh) || buffer_freed(bh))
1268 		return 0;
1269 	set_buffer_uptodate(bh);
1270 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1271 	clear_buffer_meta(bh);
1272 	clear_buffer_prio(bh);
1273 	return ret;
1274 }
1275 
1276 /*
1277  * We need to pick up the new inode size which generic_commit_write gave us
1278  * `file' can be NULL - eg, when called from page_symlink().
1279  *
1280  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1281  * buffers are managed internally.
1282  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1283 static int ext4_write_end(struct file *file,
1284 			  struct address_space *mapping,
1285 			  loff_t pos, unsigned len, unsigned copied,
1286 			  struct page *page, void *fsdata)
1287 {
1288 	handle_t *handle = ext4_journal_current_handle();
1289 	struct inode *inode = mapping->host;
1290 	loff_t old_size = inode->i_size;
1291 	int ret = 0, ret2;
1292 	int i_size_changed = 0;
1293 	bool verity = ext4_verity_in_progress(inode);
1294 
1295 	trace_ext4_write_end(inode, pos, len, copied);
1296 
1297 	if (ext4_has_inline_data(inode) &&
1298 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1299 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1300 
1301 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1302 	/*
1303 	 * it's important to update i_size while still holding page lock:
1304 	 * page writeout could otherwise come in and zero beyond i_size.
1305 	 *
1306 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 	 * blocks are being written past EOF, so skip the i_size update.
1308 	 */
1309 	if (!verity)
1310 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311 	unlock_page(page);
1312 	put_page(page);
1313 
1314 	if (old_size < pos && !verity)
1315 		pagecache_isize_extended(inode, old_size, pos);
1316 	/*
1317 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 	 * makes the holding time of page lock longer. Second, it forces lock
1319 	 * ordering of page lock and transaction start for journaling
1320 	 * filesystems.
1321 	 */
1322 	if (i_size_changed)
1323 		ret = ext4_mark_inode_dirty(handle, inode);
1324 
1325 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1326 		/* if we have allocated more blocks and copied
1327 		 * less. We will have blocks allocated outside
1328 		 * inode->i_size. So truncate them
1329 		 */
1330 		ext4_orphan_add(handle, inode);
1331 
1332 	ret2 = ext4_journal_stop(handle);
1333 	if (!ret)
1334 		ret = ret2;
1335 
1336 	if (pos + len > inode->i_size && !verity) {
1337 		ext4_truncate_failed_write(inode);
1338 		/*
1339 		 * If truncate failed early the inode might still be
1340 		 * on the orphan list; we need to make sure the inode
1341 		 * is removed from the orphan list in that case.
1342 		 */
1343 		if (inode->i_nlink)
1344 			ext4_orphan_del(NULL, inode);
1345 	}
1346 
1347 	return ret ? ret : copied;
1348 }
1349 
1350 /*
1351  * This is a private version of page_zero_new_buffers() which doesn't
1352  * set the buffer to be dirty, since in data=journalled mode we need
1353  * to call ext4_handle_dirty_metadata() instead.
1354  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1355 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1356 					    struct inode *inode,
1357 					    struct page *page,
1358 					    unsigned from, unsigned to)
1359 {
1360 	unsigned int block_start = 0, block_end;
1361 	struct buffer_head *head, *bh;
1362 
1363 	bh = head = page_buffers(page);
1364 	do {
1365 		block_end = block_start + bh->b_size;
1366 		if (buffer_new(bh)) {
1367 			if (block_end > from && block_start < to) {
1368 				if (!PageUptodate(page)) {
1369 					unsigned start, size;
1370 
1371 					start = max(from, block_start);
1372 					size = min(to, block_end) - start;
1373 
1374 					zero_user(page, start, size);
1375 					write_end_fn(handle, inode, bh);
1376 				}
1377 				clear_buffer_new(bh);
1378 			}
1379 		}
1380 		block_start = block_end;
1381 		bh = bh->b_this_page;
1382 	} while (bh != head);
1383 }
1384 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1385 static int ext4_journalled_write_end(struct file *file,
1386 				     struct address_space *mapping,
1387 				     loff_t pos, unsigned len, unsigned copied,
1388 				     struct page *page, void *fsdata)
1389 {
1390 	handle_t *handle = ext4_journal_current_handle();
1391 	struct inode *inode = mapping->host;
1392 	loff_t old_size = inode->i_size;
1393 	int ret = 0, ret2;
1394 	int partial = 0;
1395 	unsigned from, to;
1396 	int size_changed = 0;
1397 	bool verity = ext4_verity_in_progress(inode);
1398 
1399 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 	from = pos & (PAGE_SIZE - 1);
1401 	to = from + len;
1402 
1403 	BUG_ON(!ext4_handle_valid(handle));
1404 
1405 	if (ext4_has_inline_data(inode))
1406 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1407 
1408 	if (unlikely(copied < len) && !PageUptodate(page)) {
1409 		copied = 0;
1410 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1411 	} else {
1412 		if (unlikely(copied < len))
1413 			ext4_journalled_zero_new_buffers(handle, inode, page,
1414 							 from + copied, to);
1415 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1416 					     from, from + copied, &partial,
1417 					     write_end_fn);
1418 		if (!partial)
1419 			SetPageUptodate(page);
1420 	}
1421 	if (!verity)
1422 		size_changed = ext4_update_inode_size(inode, pos + copied);
1423 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1424 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1425 	unlock_page(page);
1426 	put_page(page);
1427 
1428 	if (old_size < pos && !verity)
1429 		pagecache_isize_extended(inode, old_size, pos);
1430 
1431 	if (size_changed) {
1432 		ret2 = ext4_mark_inode_dirty(handle, inode);
1433 		if (!ret)
1434 			ret = ret2;
1435 	}
1436 
1437 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1438 		/* if we have allocated more blocks and copied
1439 		 * less. We will have blocks allocated outside
1440 		 * inode->i_size. So truncate them
1441 		 */
1442 		ext4_orphan_add(handle, inode);
1443 
1444 	ret2 = ext4_journal_stop(handle);
1445 	if (!ret)
1446 		ret = ret2;
1447 	if (pos + len > inode->i_size && !verity) {
1448 		ext4_truncate_failed_write(inode);
1449 		/*
1450 		 * If truncate failed early the inode might still be
1451 		 * on the orphan list; we need to make sure the inode
1452 		 * is removed from the orphan list in that case.
1453 		 */
1454 		if (inode->i_nlink)
1455 			ext4_orphan_del(NULL, inode);
1456 	}
1457 
1458 	return ret ? ret : copied;
1459 }
1460 
1461 /*
1462  * Reserve space for a single cluster
1463  */
ext4_da_reserve_space(struct inode * inode)1464 static int ext4_da_reserve_space(struct inode *inode)
1465 {
1466 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467 	struct ext4_inode_info *ei = EXT4_I(inode);
1468 	int ret;
1469 
1470 	/*
1471 	 * We will charge metadata quota at writeout time; this saves
1472 	 * us from metadata over-estimation, though we may go over by
1473 	 * a small amount in the end.  Here we just reserve for data.
1474 	 */
1475 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476 	if (ret)
1477 		return ret;
1478 
1479 	spin_lock(&ei->i_block_reservation_lock);
1480 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1481 		spin_unlock(&ei->i_block_reservation_lock);
1482 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1483 		return -ENOSPC;
1484 	}
1485 	ei->i_reserved_data_blocks++;
1486 	trace_ext4_da_reserve_space(inode);
1487 	spin_unlock(&ei->i_block_reservation_lock);
1488 
1489 	return 0;       /* success */
1490 }
1491 
ext4_da_release_space(struct inode * inode,int to_free)1492 void ext4_da_release_space(struct inode *inode, int to_free)
1493 {
1494 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1495 	struct ext4_inode_info *ei = EXT4_I(inode);
1496 
1497 	if (!to_free)
1498 		return;		/* Nothing to release, exit */
1499 
1500 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1501 
1502 	trace_ext4_da_release_space(inode, to_free);
1503 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1504 		/*
1505 		 * if there aren't enough reserved blocks, then the
1506 		 * counter is messed up somewhere.  Since this
1507 		 * function is called from invalidate page, it's
1508 		 * harmless to return without any action.
1509 		 */
1510 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1511 			 "ino %lu, to_free %d with only %d reserved "
1512 			 "data blocks", inode->i_ino, to_free,
1513 			 ei->i_reserved_data_blocks);
1514 		WARN_ON(1);
1515 		to_free = ei->i_reserved_data_blocks;
1516 	}
1517 	ei->i_reserved_data_blocks -= to_free;
1518 
1519 	/* update fs dirty data blocks counter */
1520 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1521 
1522 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1523 
1524 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 }
1526 
1527 /*
1528  * Delayed allocation stuff
1529  */
1530 
1531 struct mpage_da_data {
1532 	struct inode *inode;
1533 	struct writeback_control *wbc;
1534 
1535 	pgoff_t first_page;	/* The first page to write */
1536 	pgoff_t next_page;	/* Current page to examine */
1537 	pgoff_t last_page;	/* Last page to examine */
1538 	/*
1539 	 * Extent to map - this can be after first_page because that can be
1540 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1541 	 * is delalloc or unwritten.
1542 	 */
1543 	struct ext4_map_blocks map;
1544 	struct ext4_io_submit io_submit;	/* IO submission data */
1545 	unsigned int do_map:1;
1546 	unsigned int scanned_until_end:1;
1547 };
1548 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1549 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1550 				       bool invalidate)
1551 {
1552 	int nr_pages, i;
1553 	pgoff_t index, end;
1554 	struct pagevec pvec;
1555 	struct inode *inode = mpd->inode;
1556 	struct address_space *mapping = inode->i_mapping;
1557 
1558 	/* This is necessary when next_page == 0. */
1559 	if (mpd->first_page >= mpd->next_page)
1560 		return;
1561 
1562 	mpd->scanned_until_end = 0;
1563 	index = mpd->first_page;
1564 	end   = mpd->next_page - 1;
1565 	if (invalidate) {
1566 		ext4_lblk_t start, last;
1567 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1568 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1569 
1570 		/*
1571 		 * avoid racing with extent status tree scans made by
1572 		 * ext4_insert_delayed_block()
1573 		 */
1574 		down_write(&EXT4_I(inode)->i_data_sem);
1575 		ext4_es_remove_extent(inode, start, last - start + 1);
1576 		up_write(&EXT4_I(inode)->i_data_sem);
1577 	}
1578 
1579 	pagevec_init(&pvec);
1580 	while (index <= end) {
1581 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1582 		if (nr_pages == 0)
1583 			break;
1584 		for (i = 0; i < nr_pages; i++) {
1585 			struct page *page = pvec.pages[i];
1586 
1587 			BUG_ON(!PageLocked(page));
1588 			BUG_ON(PageWriteback(page));
1589 			if (invalidate) {
1590 				if (page_mapped(page))
1591 					clear_page_dirty_for_io(page);
1592 				block_invalidatepage(page, 0, PAGE_SIZE);
1593 				ClearPageUptodate(page);
1594 			}
1595 			unlock_page(page);
1596 		}
1597 		pagevec_release(&pvec);
1598 	}
1599 }
1600 
ext4_print_free_blocks(struct inode * inode)1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 	struct super_block *sb = inode->i_sb;
1605 	struct ext4_inode_info *ei = EXT4_I(inode);
1606 
1607 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609 			ext4_count_free_clusters(sb)));
1610 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 	       (long long) EXT4_C2B(EXT4_SB(sb),
1613 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 	       (long long) EXT4_C2B(EXT4_SB(sb),
1616 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 		 ei->i_reserved_data_blocks);
1620 	return;
1621 }
1622 
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1624 				      struct buffer_head *bh)
1625 {
1626 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627 }
1628 
1629 /*
1630  * ext4_insert_delayed_block - adds a delayed block to the extents status
1631  *                             tree, incrementing the reserved cluster/block
1632  *                             count or making a pending reservation
1633  *                             where needed
1634  *
1635  * @inode - file containing the newly added block
1636  * @lblk - logical block to be added
1637  *
1638  * Returns 0 on success, negative error code on failure.
1639  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 {
1642 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643 	int ret;
1644 	bool allocated = false;
1645 	bool reserved = false;
1646 
1647 	/*
1648 	 * If the cluster containing lblk is shared with a delayed,
1649 	 * written, or unwritten extent in a bigalloc file system, it's
1650 	 * already been accounted for and does not need to be reserved.
1651 	 * A pending reservation must be made for the cluster if it's
1652 	 * shared with a written or unwritten extent and doesn't already
1653 	 * have one.  Written and unwritten extents can be purged from the
1654 	 * extents status tree if the system is under memory pressure, so
1655 	 * it's necessary to examine the extent tree if a search of the
1656 	 * extents status tree doesn't get a match.
1657 	 */
1658 	if (sbi->s_cluster_ratio == 1) {
1659 		ret = ext4_da_reserve_space(inode);
1660 		if (ret != 0)   /* ENOSPC */
1661 			goto errout;
1662 		reserved = true;
1663 	} else {   /* bigalloc */
1664 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 			if (!ext4_es_scan_clu(inode,
1666 					      &ext4_es_is_mapped, lblk)) {
1667 				ret = ext4_clu_mapped(inode,
1668 						      EXT4_B2C(sbi, lblk));
1669 				if (ret < 0)
1670 					goto errout;
1671 				if (ret == 0) {
1672 					ret = ext4_da_reserve_space(inode);
1673 					if (ret != 0)   /* ENOSPC */
1674 						goto errout;
1675 					reserved = true;
1676 				} else {
1677 					allocated = true;
1678 				}
1679 			} else {
1680 				allocated = true;
1681 			}
1682 		}
1683 	}
1684 
1685 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1686 	if (ret && reserved)
1687 		ext4_da_release_space(inode, 1);
1688 
1689 errout:
1690 	return ret;
1691 }
1692 
1693 /*
1694  * This function is grabs code from the very beginning of
1695  * ext4_map_blocks, but assumes that the caller is from delayed write
1696  * time. This function looks up the requested blocks and sets the
1697  * buffer delay bit under the protection of i_data_sem.
1698  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1699 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1700 			      struct ext4_map_blocks *map,
1701 			      struct buffer_head *bh)
1702 {
1703 	struct extent_status es;
1704 	int retval;
1705 	sector_t invalid_block = ~((sector_t) 0xffff);
1706 #ifdef ES_AGGRESSIVE_TEST
1707 	struct ext4_map_blocks orig_map;
1708 
1709 	memcpy(&orig_map, map, sizeof(*map));
1710 #endif
1711 
1712 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1713 		invalid_block = ~0;
1714 
1715 	map->m_flags = 0;
1716 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1717 		  (unsigned long) map->m_lblk);
1718 
1719 	/* Lookup extent status tree firstly */
1720 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1721 		if (ext4_es_is_hole(&es)) {
1722 			retval = 0;
1723 			down_read(&EXT4_I(inode)->i_data_sem);
1724 			goto add_delayed;
1725 		}
1726 
1727 		/*
1728 		 * Delayed extent could be allocated by fallocate.
1729 		 * So we need to check it.
1730 		 */
1731 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1732 			map_bh(bh, inode->i_sb, invalid_block);
1733 			set_buffer_new(bh);
1734 			set_buffer_delay(bh);
1735 			return 0;
1736 		}
1737 
1738 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1739 		retval = es.es_len - (iblock - es.es_lblk);
1740 		if (retval > map->m_len)
1741 			retval = map->m_len;
1742 		map->m_len = retval;
1743 		if (ext4_es_is_written(&es))
1744 			map->m_flags |= EXT4_MAP_MAPPED;
1745 		else if (ext4_es_is_unwritten(&es))
1746 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1747 		else
1748 			BUG();
1749 
1750 #ifdef ES_AGGRESSIVE_TEST
1751 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1752 #endif
1753 		return retval;
1754 	}
1755 
1756 	/*
1757 	 * Try to see if we can get the block without requesting a new
1758 	 * file system block.
1759 	 */
1760 	down_read(&EXT4_I(inode)->i_data_sem);
1761 	if (ext4_has_inline_data(inode))
1762 		retval = 0;
1763 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1764 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1765 	else
1766 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1767 
1768 add_delayed:
1769 	if (retval == 0) {
1770 		int ret;
1771 
1772 		/*
1773 		 * XXX: __block_prepare_write() unmaps passed block,
1774 		 * is it OK?
1775 		 */
1776 
1777 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1778 		if (ret != 0) {
1779 			retval = ret;
1780 			goto out_unlock;
1781 		}
1782 
1783 		map_bh(bh, inode->i_sb, invalid_block);
1784 		set_buffer_new(bh);
1785 		set_buffer_delay(bh);
1786 	} else if (retval > 0) {
1787 		int ret;
1788 		unsigned int status;
1789 
1790 		if (unlikely(retval != map->m_len)) {
1791 			ext4_warning(inode->i_sb,
1792 				     "ES len assertion failed for inode "
1793 				     "%lu: retval %d != map->m_len %d",
1794 				     inode->i_ino, retval, map->m_len);
1795 			WARN_ON(1);
1796 		}
1797 
1798 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1799 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1800 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1801 					    map->m_pblk, status);
1802 		if (ret != 0)
1803 			retval = ret;
1804 	}
1805 
1806 out_unlock:
1807 	up_read((&EXT4_I(inode)->i_data_sem));
1808 
1809 	return retval;
1810 }
1811 
1812 /*
1813  * This is a special get_block_t callback which is used by
1814  * ext4_da_write_begin().  It will either return mapped block or
1815  * reserve space for a single block.
1816  *
1817  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1818  * We also have b_blocknr = -1 and b_bdev initialized properly
1819  *
1820  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1821  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1822  * initialized properly.
1823  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1824 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1825 			   struct buffer_head *bh, int create)
1826 {
1827 	struct ext4_map_blocks map;
1828 	int ret = 0;
1829 
1830 	BUG_ON(create == 0);
1831 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1832 
1833 	map.m_lblk = iblock;
1834 	map.m_len = 1;
1835 
1836 	/*
1837 	 * first, we need to know whether the block is allocated already
1838 	 * preallocated blocks are unmapped but should treated
1839 	 * the same as allocated blocks.
1840 	 */
1841 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1842 	if (ret <= 0)
1843 		return ret;
1844 
1845 	map_bh(bh, inode->i_sb, map.m_pblk);
1846 	ext4_update_bh_state(bh, map.m_flags);
1847 
1848 	if (buffer_unwritten(bh)) {
1849 		/* A delayed write to unwritten bh should be marked
1850 		 * new and mapped.  Mapped ensures that we don't do
1851 		 * get_block multiple times when we write to the same
1852 		 * offset and new ensures that we do proper zero out
1853 		 * for partial write.
1854 		 */
1855 		set_buffer_new(bh);
1856 		set_buffer_mapped(bh);
1857 	}
1858 	return 0;
1859 }
1860 
__ext4_journalled_writepage(struct page * page,unsigned int len)1861 static int __ext4_journalled_writepage(struct page *page,
1862 				       unsigned int len)
1863 {
1864 	struct address_space *mapping = page->mapping;
1865 	struct inode *inode = mapping->host;
1866 	handle_t *handle = NULL;
1867 	int ret = 0, err = 0;
1868 	int inline_data = ext4_has_inline_data(inode);
1869 	struct buffer_head *inode_bh = NULL;
1870 	loff_t size;
1871 
1872 	ClearPageChecked(page);
1873 
1874 	if (inline_data) {
1875 		BUG_ON(page->index != 0);
1876 		BUG_ON(len > ext4_get_max_inline_size(inode));
1877 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878 		if (inode_bh == NULL)
1879 			goto out;
1880 	}
1881 	/*
1882 	 * We need to release the page lock before we start the
1883 	 * journal, so grab a reference so the page won't disappear
1884 	 * out from under us.
1885 	 */
1886 	get_page(page);
1887 	unlock_page(page);
1888 
1889 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1890 				    ext4_writepage_trans_blocks(inode));
1891 	if (IS_ERR(handle)) {
1892 		ret = PTR_ERR(handle);
1893 		put_page(page);
1894 		goto out_no_pagelock;
1895 	}
1896 	BUG_ON(!ext4_handle_valid(handle));
1897 
1898 	lock_page(page);
1899 	put_page(page);
1900 	size = i_size_read(inode);
1901 	if (page->mapping != mapping || page_offset(page) > size) {
1902 		/* The page got truncated from under us */
1903 		ext4_journal_stop(handle);
1904 		ret = 0;
1905 		goto out;
1906 	}
1907 
1908 	if (inline_data) {
1909 		ret = ext4_mark_inode_dirty(handle, inode);
1910 	} else {
1911 		struct buffer_head *page_bufs = page_buffers(page);
1912 
1913 		if (page->index == size >> PAGE_SHIFT)
1914 			len = size & ~PAGE_MASK;
1915 		else
1916 			len = PAGE_SIZE;
1917 
1918 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919 					     NULL, do_journal_get_write_access);
1920 
1921 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 					     NULL, write_end_fn);
1923 	}
1924 	if (ret == 0)
1925 		ret = err;
1926 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1927 	if (ret == 0)
1928 		ret = err;
1929 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930 	err = ext4_journal_stop(handle);
1931 	if (!ret)
1932 		ret = err;
1933 
1934 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936 	unlock_page(page);
1937 out_no_pagelock:
1938 	brelse(inode_bh);
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Note that we don't need to start a transaction unless we're journaling data
1944  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945  * need to file the inode to the transaction's list in ordered mode because if
1946  * we are writing back data added by write(), the inode is already there and if
1947  * we are writing back data modified via mmap(), no one guarantees in which
1948  * transaction the data will hit the disk. In case we are journaling data, we
1949  * cannot start transaction directly because transaction start ranks above page
1950  * lock so we have to do some magic.
1951  *
1952  * This function can get called via...
1953  *   - ext4_writepages after taking page lock (have journal handle)
1954  *   - journal_submit_inode_data_buffers (no journal handle)
1955  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1956  *   - grab_page_cache when doing write_begin (have journal handle)
1957  *
1958  * We don't do any block allocation in this function. If we have page with
1959  * multiple blocks we need to write those buffer_heads that are mapped. This
1960  * is important for mmaped based write. So if we do with blocksize 1K
1961  * truncate(f, 1024);
1962  * a = mmap(f, 0, 4096);
1963  * a[0] = 'a';
1964  * truncate(f, 4096);
1965  * we have in the page first buffer_head mapped via page_mkwrite call back
1966  * but other buffer_heads would be unmapped but dirty (dirty done via the
1967  * do_wp_page). So writepage should write the first block. If we modify
1968  * the mmap area beyond 1024 we will again get a page_fault and the
1969  * page_mkwrite callback will do the block allocation and mark the
1970  * buffer_heads mapped.
1971  *
1972  * We redirty the page if we have any buffer_heads that is either delay or
1973  * unwritten in the page.
1974  *
1975  * We can get recursively called as show below.
1976  *
1977  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1978  *		ext4_writepage()
1979  *
1980  * But since we don't do any block allocation we should not deadlock.
1981  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1982  */
ext4_writepage(struct page * page,struct writeback_control * wbc)1983 static int ext4_writepage(struct page *page,
1984 			  struct writeback_control *wbc)
1985 {
1986 	int ret = 0;
1987 	loff_t size;
1988 	unsigned int len;
1989 	struct buffer_head *page_bufs = NULL;
1990 	struct inode *inode = page->mapping->host;
1991 	struct ext4_io_submit io_submit;
1992 	bool keep_towrite = false;
1993 
1994 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1995 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1996 		unlock_page(page);
1997 		return -EIO;
1998 	}
1999 
2000 	trace_ext4_writepage(page);
2001 	size = i_size_read(inode);
2002 	if (page->index == size >> PAGE_SHIFT &&
2003 	    !ext4_verity_in_progress(inode))
2004 		len = size & ~PAGE_MASK;
2005 	else
2006 		len = PAGE_SIZE;
2007 
2008 	/* Should never happen but for bugs in other kernel subsystems */
2009 	if (!page_has_buffers(page)) {
2010 		ext4_warning_inode(inode,
2011 		   "page %lu does not have buffers attached", page->index);
2012 		ClearPageDirty(page);
2013 		unlock_page(page);
2014 		return 0;
2015 	}
2016 
2017 	page_bufs = page_buffers(page);
2018 	/*
2019 	 * We cannot do block allocation or other extent handling in this
2020 	 * function. If there are buffers needing that, we have to redirty
2021 	 * the page. But we may reach here when we do a journal commit via
2022 	 * journal_submit_inode_data_buffers() and in that case we must write
2023 	 * allocated buffers to achieve data=ordered mode guarantees.
2024 	 *
2025 	 * Also, if there is only one buffer per page (the fs block
2026 	 * size == the page size), if one buffer needs block
2027 	 * allocation or needs to modify the extent tree to clear the
2028 	 * unwritten flag, we know that the page can't be written at
2029 	 * all, so we might as well refuse the write immediately.
2030 	 * Unfortunately if the block size != page size, we can't as
2031 	 * easily detect this case using ext4_walk_page_buffers(), but
2032 	 * for the extremely common case, this is an optimization that
2033 	 * skips a useless round trip through ext4_bio_write_page().
2034 	 */
2035 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2036 				   ext4_bh_delay_or_unwritten)) {
2037 		redirty_page_for_writepage(wbc, page);
2038 		if ((current->flags & PF_MEMALLOC) ||
2039 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2040 			/*
2041 			 * For memory cleaning there's no point in writing only
2042 			 * some buffers. So just bail out. Warn if we came here
2043 			 * from direct reclaim.
2044 			 */
2045 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2046 							== PF_MEMALLOC);
2047 			unlock_page(page);
2048 			return 0;
2049 		}
2050 		keep_towrite = true;
2051 	}
2052 
2053 	if (PageChecked(page) && ext4_should_journal_data(inode))
2054 		/*
2055 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2056 		 * doesn't seem much point in redirtying the page here.
2057 		 */
2058 		return __ext4_journalled_writepage(page, len);
2059 
2060 	ext4_io_submit_init(&io_submit, wbc);
2061 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2062 	if (!io_submit.io_end) {
2063 		redirty_page_for_writepage(wbc, page);
2064 		unlock_page(page);
2065 		return -ENOMEM;
2066 	}
2067 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2068 	ext4_io_submit(&io_submit);
2069 	/* Drop io_end reference we got from init */
2070 	ext4_put_io_end_defer(io_submit.io_end);
2071 	return ret;
2072 }
2073 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2074 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2075 {
2076 	int len;
2077 	loff_t size;
2078 	int err;
2079 
2080 	BUG_ON(page->index != mpd->first_page);
2081 	clear_page_dirty_for_io(page);
2082 	/*
2083 	 * We have to be very careful here!  Nothing protects writeback path
2084 	 * against i_size changes and the page can be writeably mapped into
2085 	 * page tables. So an application can be growing i_size and writing
2086 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2087 	 * write-protects our page in page tables and the page cannot get
2088 	 * written to again until we release page lock. So only after
2089 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2090 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2091 	 * on the barrier provided by TestClearPageDirty in
2092 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2093 	 * after page tables are updated.
2094 	 */
2095 	size = i_size_read(mpd->inode);
2096 	if (page->index == size >> PAGE_SHIFT &&
2097 	    !ext4_verity_in_progress(mpd->inode))
2098 		len = size & ~PAGE_MASK;
2099 	else
2100 		len = PAGE_SIZE;
2101 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2102 	if (!err)
2103 		mpd->wbc->nr_to_write--;
2104 	mpd->first_page++;
2105 
2106 	return err;
2107 }
2108 
2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2110 
2111 /*
2112  * mballoc gives us at most this number of blocks...
2113  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2114  * The rest of mballoc seems to handle chunks up to full group size.
2115  */
2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2117 
2118 /*
2119  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2120  *
2121  * @mpd - extent of blocks
2122  * @lblk - logical number of the block in the file
2123  * @bh - buffer head we want to add to the extent
2124  *
2125  * The function is used to collect contig. blocks in the same state. If the
2126  * buffer doesn't require mapping for writeback and we haven't started the
2127  * extent of buffers to map yet, the function returns 'true' immediately - the
2128  * caller can write the buffer right away. Otherwise the function returns true
2129  * if the block has been added to the extent, false if the block couldn't be
2130  * added.
2131  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2132 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2133 				   struct buffer_head *bh)
2134 {
2135 	struct ext4_map_blocks *map = &mpd->map;
2136 
2137 	/* Buffer that doesn't need mapping for writeback? */
2138 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2139 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2140 		/* So far no extent to map => we write the buffer right away */
2141 		if (map->m_len == 0)
2142 			return true;
2143 		return false;
2144 	}
2145 
2146 	/* First block in the extent? */
2147 	if (map->m_len == 0) {
2148 		/* We cannot map unless handle is started... */
2149 		if (!mpd->do_map)
2150 			return false;
2151 		map->m_lblk = lblk;
2152 		map->m_len = 1;
2153 		map->m_flags = bh->b_state & BH_FLAGS;
2154 		return true;
2155 	}
2156 
2157 	/* Don't go larger than mballoc is willing to allocate */
2158 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2159 		return false;
2160 
2161 	/* Can we merge the block to our big extent? */
2162 	if (lblk == map->m_lblk + map->m_len &&
2163 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2164 		map->m_len++;
2165 		return true;
2166 	}
2167 	return false;
2168 }
2169 
2170 /*
2171  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2172  *
2173  * @mpd - extent of blocks for mapping
2174  * @head - the first buffer in the page
2175  * @bh - buffer we should start processing from
2176  * @lblk - logical number of the block in the file corresponding to @bh
2177  *
2178  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2179  * the page for IO if all buffers in this page were mapped and there's no
2180  * accumulated extent of buffers to map or add buffers in the page to the
2181  * extent of buffers to map. The function returns 1 if the caller can continue
2182  * by processing the next page, 0 if it should stop adding buffers to the
2183  * extent to map because we cannot extend it anymore. It can also return value
2184  * < 0 in case of error during IO submission.
2185  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2186 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2187 				   struct buffer_head *head,
2188 				   struct buffer_head *bh,
2189 				   ext4_lblk_t lblk)
2190 {
2191 	struct inode *inode = mpd->inode;
2192 	int err;
2193 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2194 							>> inode->i_blkbits;
2195 
2196 	if (ext4_verity_in_progress(inode))
2197 		blocks = EXT_MAX_BLOCKS;
2198 
2199 	do {
2200 		BUG_ON(buffer_locked(bh));
2201 
2202 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203 			/* Found extent to map? */
2204 			if (mpd->map.m_len)
2205 				return 0;
2206 			/* Buffer needs mapping and handle is not started? */
2207 			if (!mpd->do_map)
2208 				return 0;
2209 			/* Everything mapped so far and we hit EOF */
2210 			break;
2211 		}
2212 	} while (lblk++, (bh = bh->b_this_page) != head);
2213 	/* So far everything mapped? Submit the page for IO. */
2214 	if (mpd->map.m_len == 0) {
2215 		err = mpage_submit_page(mpd, head->b_page);
2216 		if (err < 0)
2217 			return err;
2218 	}
2219 	if (lblk >= blocks) {
2220 		mpd->scanned_until_end = 1;
2221 		return 0;
2222 	}
2223 	return 1;
2224 }
2225 
2226 /*
2227  * mpage_process_page - update page buffers corresponding to changed extent and
2228  *		       may submit fully mapped page for IO
2229  *
2230  * @mpd		- description of extent to map, on return next extent to map
2231  * @m_lblk	- logical block mapping.
2232  * @m_pblk	- corresponding physical mapping.
2233  * @map_bh	- determines on return whether this page requires any further
2234  *		  mapping or not.
2235  * Scan given page buffers corresponding to changed extent and update buffer
2236  * state according to new extent state.
2237  * We map delalloc buffers to their physical location, clear unwritten bits.
2238  * If the given page is not fully mapped, we update @map to the next extent in
2239  * the given page that needs mapping & return @map_bh as true.
2240  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2241 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2242 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2243 			      bool *map_bh)
2244 {
2245 	struct buffer_head *head, *bh;
2246 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2247 	ext4_lblk_t lblk = *m_lblk;
2248 	ext4_fsblk_t pblock = *m_pblk;
2249 	int err = 0;
2250 	int blkbits = mpd->inode->i_blkbits;
2251 	ssize_t io_end_size = 0;
2252 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2253 
2254 	bh = head = page_buffers(page);
2255 	do {
2256 		if (lblk < mpd->map.m_lblk)
2257 			continue;
2258 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2259 			/*
2260 			 * Buffer after end of mapped extent.
2261 			 * Find next buffer in the page to map.
2262 			 */
2263 			mpd->map.m_len = 0;
2264 			mpd->map.m_flags = 0;
2265 			io_end_vec->size += io_end_size;
2266 			io_end_size = 0;
2267 
2268 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269 			if (err > 0)
2270 				err = 0;
2271 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 				if (IS_ERR(io_end_vec)) {
2274 					err = PTR_ERR(io_end_vec);
2275 					goto out;
2276 				}
2277 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2278 			}
2279 			*map_bh = true;
2280 			goto out;
2281 		}
2282 		if (buffer_delay(bh)) {
2283 			clear_buffer_delay(bh);
2284 			bh->b_blocknr = pblock++;
2285 		}
2286 		clear_buffer_unwritten(bh);
2287 		io_end_size += (1 << blkbits);
2288 	} while (lblk++, (bh = bh->b_this_page) != head);
2289 
2290 	io_end_vec->size += io_end_size;
2291 	io_end_size = 0;
2292 	*map_bh = false;
2293 out:
2294 	*m_lblk = lblk;
2295 	*m_pblk = pblock;
2296 	return err;
2297 }
2298 
2299 /*
2300  * mpage_map_buffers - update buffers corresponding to changed extent and
2301  *		       submit fully mapped pages for IO
2302  *
2303  * @mpd - description of extent to map, on return next extent to map
2304  *
2305  * Scan buffers corresponding to changed extent (we expect corresponding pages
2306  * to be already locked) and update buffer state according to new extent state.
2307  * We map delalloc buffers to their physical location, clear unwritten bits,
2308  * and mark buffers as uninit when we perform writes to unwritten extents
2309  * and do extent conversion after IO is finished. If the last page is not fully
2310  * mapped, we update @map to the next extent in the last page that needs
2311  * mapping. Otherwise we submit the page for IO.
2312  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2313 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2314 {
2315 	struct pagevec pvec;
2316 	int nr_pages, i;
2317 	struct inode *inode = mpd->inode;
2318 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2319 	pgoff_t start, end;
2320 	ext4_lblk_t lblk;
2321 	ext4_fsblk_t pblock;
2322 	int err;
2323 	bool map_bh = false;
2324 
2325 	start = mpd->map.m_lblk >> bpp_bits;
2326 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2327 	lblk = start << bpp_bits;
2328 	pblock = mpd->map.m_pblk;
2329 
2330 	pagevec_init(&pvec);
2331 	while (start <= end) {
2332 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2333 						&start, end);
2334 		if (nr_pages == 0)
2335 			break;
2336 		for (i = 0; i < nr_pages; i++) {
2337 			struct page *page = pvec.pages[i];
2338 
2339 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2340 						 &map_bh);
2341 			/*
2342 			 * If map_bh is true, means page may require further bh
2343 			 * mapping, or maybe the page was submitted for IO.
2344 			 * So we return to call further extent mapping.
2345 			 */
2346 			if (err < 0 || map_bh)
2347 				goto out;
2348 			/* Page fully mapped - let IO run! */
2349 			err = mpage_submit_page(mpd, page);
2350 			if (err < 0)
2351 				goto out;
2352 		}
2353 		pagevec_release(&pvec);
2354 	}
2355 	/* Extent fully mapped and matches with page boundary. We are done. */
2356 	mpd->map.m_len = 0;
2357 	mpd->map.m_flags = 0;
2358 	return 0;
2359 out:
2360 	pagevec_release(&pvec);
2361 	return err;
2362 }
2363 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2364 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2365 {
2366 	struct inode *inode = mpd->inode;
2367 	struct ext4_map_blocks *map = &mpd->map;
2368 	int get_blocks_flags;
2369 	int err, dioread_nolock;
2370 
2371 	trace_ext4_da_write_pages_extent(inode, map);
2372 	/*
2373 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2374 	 * to convert an unwritten extent to be initialized (in the case
2375 	 * where we have written into one or more preallocated blocks).  It is
2376 	 * possible that we're going to need more metadata blocks than
2377 	 * previously reserved. However we must not fail because we're in
2378 	 * writeback and there is nothing we can do about it so it might result
2379 	 * in data loss.  So use reserved blocks to allocate metadata if
2380 	 * possible.
2381 	 *
2382 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2383 	 * the blocks in question are delalloc blocks.  This indicates
2384 	 * that the blocks and quotas has already been checked when
2385 	 * the data was copied into the page cache.
2386 	 */
2387 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2388 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2389 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2390 	dioread_nolock = ext4_should_dioread_nolock(inode);
2391 	if (dioread_nolock)
2392 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2393 	if (map->m_flags & BIT(BH_Delay))
2394 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2395 
2396 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2397 	if (err < 0)
2398 		return err;
2399 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2400 		if (!mpd->io_submit.io_end->handle &&
2401 		    ext4_handle_valid(handle)) {
2402 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2403 			handle->h_rsv_handle = NULL;
2404 		}
2405 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2406 	}
2407 
2408 	BUG_ON(map->m_len == 0);
2409 	return 0;
2410 }
2411 
2412 /*
2413  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414  *				 mpd->len and submit pages underlying it for IO
2415  *
2416  * @handle - handle for journal operations
2417  * @mpd - extent to map
2418  * @give_up_on_write - we set this to true iff there is a fatal error and there
2419  *                     is no hope of writing the data. The caller should discard
2420  *                     dirty pages to avoid infinite loops.
2421  *
2422  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424  * them to initialized or split the described range from larger unwritten
2425  * extent. Note that we need not map all the described range since allocation
2426  * can return less blocks or the range is covered by more unwritten extents. We
2427  * cannot map more because we are limited by reserved transaction credits. On
2428  * the other hand we always make sure that the last touched page is fully
2429  * mapped so that it can be written out (and thus forward progress is
2430  * guaranteed). After mapping we submit all mapped pages for IO.
2431  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2432 static int mpage_map_and_submit_extent(handle_t *handle,
2433 				       struct mpage_da_data *mpd,
2434 				       bool *give_up_on_write)
2435 {
2436 	struct inode *inode = mpd->inode;
2437 	struct ext4_map_blocks *map = &mpd->map;
2438 	int err;
2439 	loff_t disksize;
2440 	int progress = 0;
2441 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2442 	struct ext4_io_end_vec *io_end_vec;
2443 
2444 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2445 	if (IS_ERR(io_end_vec))
2446 		return PTR_ERR(io_end_vec);
2447 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2448 	do {
2449 		err = mpage_map_one_extent(handle, mpd);
2450 		if (err < 0) {
2451 			struct super_block *sb = inode->i_sb;
2452 
2453 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2454 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2455 				goto invalidate_dirty_pages;
2456 			/*
2457 			 * Let the uper layers retry transient errors.
2458 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2459 			 * is non-zero, a commit should free up blocks.
2460 			 */
2461 			if ((err == -ENOMEM) ||
2462 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2463 				if (progress)
2464 					goto update_disksize;
2465 				return err;
2466 			}
2467 			ext4_msg(sb, KERN_CRIT,
2468 				 "Delayed block allocation failed for "
2469 				 "inode %lu at logical offset %llu with"
2470 				 " max blocks %u with error %d",
2471 				 inode->i_ino,
2472 				 (unsigned long long)map->m_lblk,
2473 				 (unsigned)map->m_len, -err);
2474 			ext4_msg(sb, KERN_CRIT,
2475 				 "This should not happen!! Data will "
2476 				 "be lost\n");
2477 			if (err == -ENOSPC)
2478 				ext4_print_free_blocks(inode);
2479 		invalidate_dirty_pages:
2480 			*give_up_on_write = true;
2481 			return err;
2482 		}
2483 		progress = 1;
2484 		/*
2485 		 * Update buffer state, submit mapped pages, and get us new
2486 		 * extent to map
2487 		 */
2488 		err = mpage_map_and_submit_buffers(mpd);
2489 		if (err < 0)
2490 			goto update_disksize;
2491 	} while (map->m_len);
2492 
2493 update_disksize:
2494 	/*
2495 	 * Update on-disk size after IO is submitted.  Races with
2496 	 * truncate are avoided by checking i_size under i_data_sem.
2497 	 */
2498 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2499 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2500 		int err2;
2501 		loff_t i_size;
2502 
2503 		down_write(&EXT4_I(inode)->i_data_sem);
2504 		i_size = i_size_read(inode);
2505 		if (disksize > i_size)
2506 			disksize = i_size;
2507 		if (disksize > EXT4_I(inode)->i_disksize)
2508 			EXT4_I(inode)->i_disksize = disksize;
2509 		up_write(&EXT4_I(inode)->i_data_sem);
2510 		err2 = ext4_mark_inode_dirty(handle, inode);
2511 		if (err2) {
2512 			ext4_error_err(inode->i_sb, -err2,
2513 				       "Failed to mark inode %lu dirty",
2514 				       inode->i_ino);
2515 		}
2516 		if (!err)
2517 			err = err2;
2518 	}
2519 	return err;
2520 }
2521 
2522 /*
2523  * Calculate the total number of credits to reserve for one writepages
2524  * iteration. This is called from ext4_writepages(). We map an extent of
2525  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527  * bpp - 1 blocks in bpp different extents.
2528  */
ext4_da_writepages_trans_blocks(struct inode * inode)2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 {
2531 	int bpp = ext4_journal_blocks_per_page(inode);
2532 
2533 	return ext4_meta_trans_blocks(inode,
2534 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2535 }
2536 
2537 /*
2538  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539  * 				 and underlying extent to map
2540  *
2541  * @mpd - where to look for pages
2542  *
2543  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544  * IO immediately. When we find a page which isn't mapped we start accumulating
2545  * extent of buffers underlying these pages that needs mapping (formed by
2546  * either delayed or unwritten buffers). We also lock the pages containing
2547  * these buffers. The extent found is returned in @mpd structure (starting at
2548  * mpd->lblk with length mpd->len blocks).
2549  *
2550  * Note that this function can attach bios to one io_end structure which are
2551  * neither logically nor physically contiguous. Although it may seem as an
2552  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553  * case as we need to track IO to all buffers underlying a page in one io_end.
2554  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 {
2557 	struct address_space *mapping = mpd->inode->i_mapping;
2558 	struct pagevec pvec;
2559 	unsigned int nr_pages;
2560 	long left = mpd->wbc->nr_to_write;
2561 	pgoff_t index = mpd->first_page;
2562 	pgoff_t end = mpd->last_page;
2563 	xa_mark_t tag;
2564 	int i, err = 0;
2565 	int blkbits = mpd->inode->i_blkbits;
2566 	ext4_lblk_t lblk;
2567 	struct buffer_head *head;
2568 
2569 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570 		tag = PAGECACHE_TAG_TOWRITE;
2571 	else
2572 		tag = PAGECACHE_TAG_DIRTY;
2573 
2574 	pagevec_init(&pvec);
2575 	mpd->map.m_len = 0;
2576 	mpd->next_page = index;
2577 	while (index <= end) {
2578 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2579 				tag);
2580 		if (nr_pages == 0)
2581 			break;
2582 
2583 		for (i = 0; i < nr_pages; i++) {
2584 			struct page *page = pvec.pages[i];
2585 
2586 			/*
2587 			 * Accumulated enough dirty pages? This doesn't apply
2588 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2589 			 * keep going because someone may be concurrently
2590 			 * dirtying pages, and we might have synced a lot of
2591 			 * newly appeared dirty pages, but have not synced all
2592 			 * of the old dirty pages.
2593 			 */
2594 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2595 				goto out;
2596 
2597 			/* If we can't merge this page, we are done. */
2598 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2599 				goto out;
2600 
2601 			lock_page(page);
2602 			/*
2603 			 * If the page is no longer dirty, or its mapping no
2604 			 * longer corresponds to inode we are writing (which
2605 			 * means it has been truncated or invalidated), or the
2606 			 * page is already under writeback and we are not doing
2607 			 * a data integrity writeback, skip the page
2608 			 */
2609 			if (!PageDirty(page) ||
2610 			    (PageWriteback(page) &&
2611 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2612 			    unlikely(page->mapping != mapping)) {
2613 				unlock_page(page);
2614 				continue;
2615 			}
2616 
2617 			wait_on_page_writeback(page);
2618 			BUG_ON(PageWriteback(page));
2619 
2620 			/*
2621 			 * Should never happen but for buggy code in
2622 			 * other subsystems that call
2623 			 * set_page_dirty() without properly warning
2624 			 * the file system first.  See [1] for more
2625 			 * information.
2626 			 *
2627 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2628 			 */
2629 			if (!page_has_buffers(page)) {
2630 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2631 				ClearPageDirty(page);
2632 				unlock_page(page);
2633 				continue;
2634 			}
2635 
2636 			if (mpd->map.m_len == 0)
2637 				mpd->first_page = page->index;
2638 			mpd->next_page = page->index + 1;
2639 			/* Add all dirty buffers to mpd */
2640 			lblk = ((ext4_lblk_t)page->index) <<
2641 				(PAGE_SHIFT - blkbits);
2642 			head = page_buffers(page);
2643 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2644 			if (err <= 0)
2645 				goto out;
2646 			err = 0;
2647 			left--;
2648 		}
2649 		pagevec_release(&pvec);
2650 		cond_resched();
2651 	}
2652 	mpd->scanned_until_end = 1;
2653 	return 0;
2654 out:
2655 	pagevec_release(&pvec);
2656 	return err;
2657 }
2658 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2659 static int ext4_writepages(struct address_space *mapping,
2660 			   struct writeback_control *wbc)
2661 {
2662 	pgoff_t	writeback_index = 0;
2663 	long nr_to_write = wbc->nr_to_write;
2664 	int range_whole = 0;
2665 	int cycled = 1;
2666 	handle_t *handle = NULL;
2667 	struct mpage_da_data mpd;
2668 	struct inode *inode = mapping->host;
2669 	int needed_blocks, rsv_blocks = 0, ret = 0;
2670 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2671 	struct blk_plug plug;
2672 	bool give_up_on_write = false;
2673 
2674 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2675 		return -EIO;
2676 
2677 	percpu_down_read(&sbi->s_writepages_rwsem);
2678 	trace_ext4_writepages(inode, wbc);
2679 
2680 	/*
2681 	 * No pages to write? This is mainly a kludge to avoid starting
2682 	 * a transaction for special inodes like journal inode on last iput()
2683 	 * because that could violate lock ordering on umount
2684 	 */
2685 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2686 		goto out_writepages;
2687 
2688 	if (ext4_should_journal_data(inode)) {
2689 		ret = generic_writepages(mapping, wbc);
2690 		goto out_writepages;
2691 	}
2692 
2693 	/*
2694 	 * If the filesystem has aborted, it is read-only, so return
2695 	 * right away instead of dumping stack traces later on that
2696 	 * will obscure the real source of the problem.  We test
2697 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2698 	 * the latter could be true if the filesystem is mounted
2699 	 * read-only, and in that case, ext4_writepages should
2700 	 * *never* be called, so if that ever happens, we would want
2701 	 * the stack trace.
2702 	 */
2703 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2704 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2705 		ret = -EROFS;
2706 		goto out_writepages;
2707 	}
2708 
2709 	/*
2710 	 * If we have inline data and arrive here, it means that
2711 	 * we will soon create the block for the 1st page, so
2712 	 * we'd better clear the inline data here.
2713 	 */
2714 	if (ext4_has_inline_data(inode)) {
2715 		/* Just inode will be modified... */
2716 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2717 		if (IS_ERR(handle)) {
2718 			ret = PTR_ERR(handle);
2719 			goto out_writepages;
2720 		}
2721 		BUG_ON(ext4_test_inode_state(inode,
2722 				EXT4_STATE_MAY_INLINE_DATA));
2723 		ext4_destroy_inline_data(handle, inode);
2724 		ext4_journal_stop(handle);
2725 	}
2726 
2727 	if (ext4_should_dioread_nolock(inode)) {
2728 		/*
2729 		 * We may need to convert up to one extent per block in
2730 		 * the page and we may dirty the inode.
2731 		 */
2732 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2733 						PAGE_SIZE >> inode->i_blkbits);
2734 	}
2735 
2736 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2737 		range_whole = 1;
2738 
2739 	if (wbc->range_cyclic) {
2740 		writeback_index = mapping->writeback_index;
2741 		if (writeback_index)
2742 			cycled = 0;
2743 		mpd.first_page = writeback_index;
2744 		mpd.last_page = -1;
2745 	} else {
2746 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2747 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2748 	}
2749 
2750 	mpd.inode = inode;
2751 	mpd.wbc = wbc;
2752 	ext4_io_submit_init(&mpd.io_submit, wbc);
2753 retry:
2754 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2755 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2756 	blk_start_plug(&plug);
2757 
2758 	/*
2759 	 * First writeback pages that don't need mapping - we can avoid
2760 	 * starting a transaction unnecessarily and also avoid being blocked
2761 	 * in the block layer on device congestion while having transaction
2762 	 * started.
2763 	 */
2764 	mpd.do_map = 0;
2765 	mpd.scanned_until_end = 0;
2766 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2767 	if (!mpd.io_submit.io_end) {
2768 		ret = -ENOMEM;
2769 		goto unplug;
2770 	}
2771 	ret = mpage_prepare_extent_to_map(&mpd);
2772 	/* Unlock pages we didn't use */
2773 	mpage_release_unused_pages(&mpd, false);
2774 	/* Submit prepared bio */
2775 	ext4_io_submit(&mpd.io_submit);
2776 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2777 	mpd.io_submit.io_end = NULL;
2778 	if (ret < 0)
2779 		goto unplug;
2780 
2781 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2782 		/* For each extent of pages we use new io_end */
2783 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2784 		if (!mpd.io_submit.io_end) {
2785 			ret = -ENOMEM;
2786 			break;
2787 		}
2788 
2789 		/*
2790 		 * We have two constraints: We find one extent to map and we
2791 		 * must always write out whole page (makes a difference when
2792 		 * blocksize < pagesize) so that we don't block on IO when we
2793 		 * try to write out the rest of the page. Journalled mode is
2794 		 * not supported by delalloc.
2795 		 */
2796 		BUG_ON(ext4_should_journal_data(inode));
2797 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2798 
2799 		/* start a new transaction */
2800 		handle = ext4_journal_start_with_reserve(inode,
2801 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2802 		if (IS_ERR(handle)) {
2803 			ret = PTR_ERR(handle);
2804 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2805 			       "%ld pages, ino %lu; err %d", __func__,
2806 				wbc->nr_to_write, inode->i_ino, ret);
2807 			/* Release allocated io_end */
2808 			ext4_put_io_end(mpd.io_submit.io_end);
2809 			mpd.io_submit.io_end = NULL;
2810 			break;
2811 		}
2812 		mpd.do_map = 1;
2813 
2814 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2815 		ret = mpage_prepare_extent_to_map(&mpd);
2816 		if (!ret && mpd.map.m_len)
2817 			ret = mpage_map_and_submit_extent(handle, &mpd,
2818 					&give_up_on_write);
2819 		/*
2820 		 * Caution: If the handle is synchronous,
2821 		 * ext4_journal_stop() can wait for transaction commit
2822 		 * to finish which may depend on writeback of pages to
2823 		 * complete or on page lock to be released.  In that
2824 		 * case, we have to wait until after we have
2825 		 * submitted all the IO, released page locks we hold,
2826 		 * and dropped io_end reference (for extent conversion
2827 		 * to be able to complete) before stopping the handle.
2828 		 */
2829 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2830 			ext4_journal_stop(handle);
2831 			handle = NULL;
2832 			mpd.do_map = 0;
2833 		}
2834 		/* Unlock pages we didn't use */
2835 		mpage_release_unused_pages(&mpd, give_up_on_write);
2836 		/* Submit prepared bio */
2837 		ext4_io_submit(&mpd.io_submit);
2838 
2839 		/*
2840 		 * Drop our io_end reference we got from init. We have
2841 		 * to be careful and use deferred io_end finishing if
2842 		 * we are still holding the transaction as we can
2843 		 * release the last reference to io_end which may end
2844 		 * up doing unwritten extent conversion.
2845 		 */
2846 		if (handle) {
2847 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2848 			ext4_journal_stop(handle);
2849 		} else
2850 			ext4_put_io_end(mpd.io_submit.io_end);
2851 		mpd.io_submit.io_end = NULL;
2852 
2853 		if (ret == -ENOSPC && sbi->s_journal) {
2854 			/*
2855 			 * Commit the transaction which would
2856 			 * free blocks released in the transaction
2857 			 * and try again
2858 			 */
2859 			jbd2_journal_force_commit_nested(sbi->s_journal);
2860 			ret = 0;
2861 			continue;
2862 		}
2863 		/* Fatal error - ENOMEM, EIO... */
2864 		if (ret)
2865 			break;
2866 	}
2867 unplug:
2868 	blk_finish_plug(&plug);
2869 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2870 		cycled = 1;
2871 		mpd.last_page = writeback_index - 1;
2872 		mpd.first_page = 0;
2873 		goto retry;
2874 	}
2875 
2876 	/* Update index */
2877 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2878 		/*
2879 		 * Set the writeback_index so that range_cyclic
2880 		 * mode will write it back later
2881 		 */
2882 		mapping->writeback_index = mpd.first_page;
2883 
2884 out_writepages:
2885 	trace_ext4_writepages_result(inode, wbc, ret,
2886 				     nr_to_write - wbc->nr_to_write);
2887 	percpu_up_read(&sbi->s_writepages_rwsem);
2888 	return ret;
2889 }
2890 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2891 static int ext4_dax_writepages(struct address_space *mapping,
2892 			       struct writeback_control *wbc)
2893 {
2894 	int ret;
2895 	long nr_to_write = wbc->nr_to_write;
2896 	struct inode *inode = mapping->host;
2897 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898 
2899 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2900 		return -EIO;
2901 
2902 	percpu_down_read(&sbi->s_writepages_rwsem);
2903 	trace_ext4_writepages(inode, wbc);
2904 
2905 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2906 	trace_ext4_writepages_result(inode, wbc, ret,
2907 				     nr_to_write - wbc->nr_to_write);
2908 	percpu_up_read(&sbi->s_writepages_rwsem);
2909 	return ret;
2910 }
2911 
ext4_nonda_switch(struct super_block * sb)2912 static int ext4_nonda_switch(struct super_block *sb)
2913 {
2914 	s64 free_clusters, dirty_clusters;
2915 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2916 
2917 	/*
2918 	 * switch to non delalloc mode if we are running low
2919 	 * on free block. The free block accounting via percpu
2920 	 * counters can get slightly wrong with percpu_counter_batch getting
2921 	 * accumulated on each CPU without updating global counters
2922 	 * Delalloc need an accurate free block accounting. So switch
2923 	 * to non delalloc when we are near to error range.
2924 	 */
2925 	free_clusters =
2926 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2927 	dirty_clusters =
2928 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2929 	/*
2930 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2931 	 */
2932 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2933 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2934 
2935 	if (2 * free_clusters < 3 * dirty_clusters ||
2936 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2937 		/*
2938 		 * free block count is less than 150% of dirty blocks
2939 		 * or free blocks is less than watermark
2940 		 */
2941 		return 1;
2942 	}
2943 	return 0;
2944 }
2945 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2946 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2947 			       loff_t pos, unsigned len, unsigned flags,
2948 			       struct page **pagep, void **fsdata)
2949 {
2950 	int ret, retries = 0;
2951 	struct page *page;
2952 	pgoff_t index;
2953 	struct inode *inode = mapping->host;
2954 
2955 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2956 		return -EIO;
2957 
2958 	index = pos >> PAGE_SHIFT;
2959 
2960 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2961 	    ext4_verity_in_progress(inode)) {
2962 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2963 		return ext4_write_begin(file, mapping, pos,
2964 					len, flags, pagep, fsdata);
2965 	}
2966 	*fsdata = (void *)0;
2967 	trace_ext4_da_write_begin(inode, pos, len, flags);
2968 
2969 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2970 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2971 						      pos, len, flags,
2972 						      pagep, fsdata);
2973 		if (ret < 0)
2974 			return ret;
2975 		if (ret == 1)
2976 			return 0;
2977 	}
2978 
2979 retry:
2980 	page = grab_cache_page_write_begin(mapping, index, flags);
2981 	if (!page)
2982 		return -ENOMEM;
2983 
2984 	/* In case writeback began while the page was unlocked */
2985 	wait_for_stable_page(page);
2986 
2987 #ifdef CONFIG_FS_ENCRYPTION
2988 	ret = ext4_block_write_begin(page, pos, len,
2989 				     ext4_da_get_block_prep);
2990 #else
2991 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2992 #endif
2993 	if (ret < 0) {
2994 		unlock_page(page);
2995 		put_page(page);
2996 		/*
2997 		 * block_write_begin may have instantiated a few blocks
2998 		 * outside i_size.  Trim these off again. Don't need
2999 		 * i_size_read because we hold inode lock.
3000 		 */
3001 		if (pos + len > inode->i_size)
3002 			ext4_truncate_failed_write(inode);
3003 
3004 		if (ret == -ENOSPC &&
3005 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3006 			goto retry;
3007 		return ret;
3008 	}
3009 
3010 	*pagep = page;
3011 	return ret;
3012 }
3013 
3014 /*
3015  * Check if we should update i_disksize
3016  * when write to the end of file but not require block allocation
3017  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3018 static int ext4_da_should_update_i_disksize(struct page *page,
3019 					    unsigned long offset)
3020 {
3021 	struct buffer_head *bh;
3022 	struct inode *inode = page->mapping->host;
3023 	unsigned int idx;
3024 	int i;
3025 
3026 	bh = page_buffers(page);
3027 	idx = offset >> inode->i_blkbits;
3028 
3029 	for (i = 0; i < idx; i++)
3030 		bh = bh->b_this_page;
3031 
3032 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3033 		return 0;
3034 	return 1;
3035 }
3036 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3037 static int ext4_da_write_end(struct file *file,
3038 			     struct address_space *mapping,
3039 			     loff_t pos, unsigned len, unsigned copied,
3040 			     struct page *page, void *fsdata)
3041 {
3042 	struct inode *inode = mapping->host;
3043 	loff_t new_i_size;
3044 	unsigned long start, end;
3045 	int write_mode = (int)(unsigned long)fsdata;
3046 
3047 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3048 		return ext4_write_end(file, mapping, pos,
3049 				      len, copied, page, fsdata);
3050 
3051 	trace_ext4_da_write_end(inode, pos, len, copied);
3052 
3053 	if (write_mode != CONVERT_INLINE_DATA &&
3054 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3055 	    ext4_has_inline_data(inode))
3056 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3057 
3058 	if (unlikely(copied < len) && !PageUptodate(page))
3059 		copied = 0;
3060 
3061 	start = pos & (PAGE_SIZE - 1);
3062 	end = start + copied - 1;
3063 
3064 	/*
3065 	 * Since we are holding inode lock, we are sure i_disksize <=
3066 	 * i_size. We also know that if i_disksize < i_size, there are
3067 	 * delalloc writes pending in the range upto i_size. If the end of
3068 	 * the current write is <= i_size, there's no need to touch
3069 	 * i_disksize since writeback will push i_disksize upto i_size
3070 	 * eventually. If the end of the current write is > i_size and
3071 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3072 	 * check), we need to update i_disksize here as neither
3073 	 * ext4_writepage() nor certain ext4_writepages() paths not
3074 	 * allocating blocks update i_disksize.
3075 	 *
3076 	 * Note that we defer inode dirtying to generic_write_end() /
3077 	 * ext4_da_write_inline_data_end().
3078 	 */
3079 	new_i_size = pos + copied;
3080 	if (copied && new_i_size > inode->i_size &&
3081 	    ext4_da_should_update_i_disksize(page, end))
3082 		ext4_update_i_disksize(inode, new_i_size);
3083 
3084 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3085 }
3086 
3087 /*
3088  * Force all delayed allocation blocks to be allocated for a given inode.
3089  */
ext4_alloc_da_blocks(struct inode * inode)3090 int ext4_alloc_da_blocks(struct inode *inode)
3091 {
3092 	trace_ext4_alloc_da_blocks(inode);
3093 
3094 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3095 		return 0;
3096 
3097 	/*
3098 	 * We do something simple for now.  The filemap_flush() will
3099 	 * also start triggering a write of the data blocks, which is
3100 	 * not strictly speaking necessary (and for users of
3101 	 * laptop_mode, not even desirable).  However, to do otherwise
3102 	 * would require replicating code paths in:
3103 	 *
3104 	 * ext4_writepages() ->
3105 	 *    write_cache_pages() ---> (via passed in callback function)
3106 	 *        __mpage_da_writepage() -->
3107 	 *           mpage_add_bh_to_extent()
3108 	 *           mpage_da_map_blocks()
3109 	 *
3110 	 * The problem is that write_cache_pages(), located in
3111 	 * mm/page-writeback.c, marks pages clean in preparation for
3112 	 * doing I/O, which is not desirable if we're not planning on
3113 	 * doing I/O at all.
3114 	 *
3115 	 * We could call write_cache_pages(), and then redirty all of
3116 	 * the pages by calling redirty_page_for_writepage() but that
3117 	 * would be ugly in the extreme.  So instead we would need to
3118 	 * replicate parts of the code in the above functions,
3119 	 * simplifying them because we wouldn't actually intend to
3120 	 * write out the pages, but rather only collect contiguous
3121 	 * logical block extents, call the multi-block allocator, and
3122 	 * then update the buffer heads with the block allocations.
3123 	 *
3124 	 * For now, though, we'll cheat by calling filemap_flush(),
3125 	 * which will map the blocks, and start the I/O, but not
3126 	 * actually wait for the I/O to complete.
3127 	 */
3128 	return filemap_flush(inode->i_mapping);
3129 }
3130 
3131 /*
3132  * bmap() is special.  It gets used by applications such as lilo and by
3133  * the swapper to find the on-disk block of a specific piece of data.
3134  *
3135  * Naturally, this is dangerous if the block concerned is still in the
3136  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3137  * filesystem and enables swap, then they may get a nasty shock when the
3138  * data getting swapped to that swapfile suddenly gets overwritten by
3139  * the original zero's written out previously to the journal and
3140  * awaiting writeback in the kernel's buffer cache.
3141  *
3142  * So, if we see any bmap calls here on a modified, data-journaled file,
3143  * take extra steps to flush any blocks which might be in the cache.
3144  */
ext4_bmap(struct address_space * mapping,sector_t block)3145 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3146 {
3147 	struct inode *inode = mapping->host;
3148 	journal_t *journal;
3149 	sector_t ret = 0;
3150 	int err;
3151 
3152 	inode_lock_shared(inode);
3153 	/*
3154 	 * We can get here for an inline file via the FIBMAP ioctl
3155 	 */
3156 	if (ext4_has_inline_data(inode))
3157 		goto out;
3158 
3159 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 			test_opt(inode->i_sb, DELALLOC)) {
3161 		/*
3162 		 * With delalloc we want to sync the file
3163 		 * so that we can make sure we allocate
3164 		 * blocks for file
3165 		 */
3166 		filemap_write_and_wait(mapping);
3167 	}
3168 
3169 	if (EXT4_JOURNAL(inode) &&
3170 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3171 		/*
3172 		 * This is a REALLY heavyweight approach, but the use of
3173 		 * bmap on dirty files is expected to be extremely rare:
3174 		 * only if we run lilo or swapon on a freshly made file
3175 		 * do we expect this to happen.
3176 		 *
3177 		 * (bmap requires CAP_SYS_RAWIO so this does not
3178 		 * represent an unprivileged user DOS attack --- we'd be
3179 		 * in trouble if mortal users could trigger this path at
3180 		 * will.)
3181 		 *
3182 		 * NB. EXT4_STATE_JDATA is not set on files other than
3183 		 * regular files.  If somebody wants to bmap a directory
3184 		 * or symlink and gets confused because the buffer
3185 		 * hasn't yet been flushed to disk, they deserve
3186 		 * everything they get.
3187 		 */
3188 
3189 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3190 		journal = EXT4_JOURNAL(inode);
3191 		jbd2_journal_lock_updates(journal);
3192 		err = jbd2_journal_flush(journal, 0);
3193 		jbd2_journal_unlock_updates(journal);
3194 
3195 		if (err)
3196 			goto out;
3197 	}
3198 
3199 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3200 
3201 out:
3202 	inode_unlock_shared(inode);
3203 	return ret;
3204 }
3205 
ext4_readpage(struct file * file,struct page * page)3206 static int ext4_readpage(struct file *file, struct page *page)
3207 {
3208 	int ret = -EAGAIN;
3209 	struct inode *inode = page->mapping->host;
3210 
3211 	trace_ext4_readpage(page);
3212 
3213 	if (ext4_has_inline_data(inode))
3214 		ret = ext4_readpage_inline(inode, page);
3215 
3216 	if (ret == -EAGAIN)
3217 		return ext4_mpage_readpages(inode, NULL, page);
3218 
3219 	return ret;
3220 }
3221 
ext4_readahead(struct readahead_control * rac)3222 static void ext4_readahead(struct readahead_control *rac)
3223 {
3224 	struct inode *inode = rac->mapping->host;
3225 
3226 	/* If the file has inline data, no need to do readahead. */
3227 	if (ext4_has_inline_data(inode))
3228 		return;
3229 
3230 	ext4_mpage_readpages(inode, rac, NULL);
3231 }
3232 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3233 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3234 				unsigned int length)
3235 {
3236 	trace_ext4_invalidatepage(page, offset, length);
3237 
3238 	/* No journalling happens on data buffers when this function is used */
3239 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3240 
3241 	block_invalidatepage(page, offset, length);
3242 }
3243 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3244 static int __ext4_journalled_invalidatepage(struct page *page,
3245 					    unsigned int offset,
3246 					    unsigned int length)
3247 {
3248 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249 
3250 	trace_ext4_journalled_invalidatepage(page, offset, length);
3251 
3252 	/*
3253 	 * If it's a full truncate we just forget about the pending dirtying
3254 	 */
3255 	if (offset == 0 && length == PAGE_SIZE)
3256 		ClearPageChecked(page);
3257 
3258 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3259 }
3260 
3261 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3262 static void ext4_journalled_invalidatepage(struct page *page,
3263 					   unsigned int offset,
3264 					   unsigned int length)
3265 {
3266 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3267 }
3268 
ext4_releasepage(struct page * page,gfp_t wait)3269 static int ext4_releasepage(struct page *page, gfp_t wait)
3270 {
3271 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3272 
3273 	trace_ext4_releasepage(page);
3274 
3275 	/* Page has dirty journalled data -> cannot release */
3276 	if (PageChecked(page))
3277 		return 0;
3278 	if (journal)
3279 		return jbd2_journal_try_to_free_buffers(journal, page);
3280 	else
3281 		return try_to_free_buffers(page);
3282 }
3283 
ext4_inode_datasync_dirty(struct inode * inode)3284 static bool ext4_inode_datasync_dirty(struct inode *inode)
3285 {
3286 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3287 
3288 	if (journal) {
3289 		if (jbd2_transaction_committed(journal,
3290 			EXT4_I(inode)->i_datasync_tid))
3291 			return false;
3292 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3293 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3294 		return true;
3295 	}
3296 
3297 	/* Any metadata buffers to write? */
3298 	if (!list_empty(&inode->i_mapping->private_list))
3299 		return true;
3300 	return inode->i_state & I_DIRTY_DATASYNC;
3301 }
3302 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3303 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3304 			   struct ext4_map_blocks *map, loff_t offset,
3305 			   loff_t length)
3306 {
3307 	u8 blkbits = inode->i_blkbits;
3308 
3309 	/*
3310 	 * Writes that span EOF might trigger an I/O size update on completion,
3311 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3312 	 * there is no other metadata changes being made or are pending.
3313 	 */
3314 	iomap->flags = 0;
3315 	if (ext4_inode_datasync_dirty(inode) ||
3316 	    offset + length > i_size_read(inode))
3317 		iomap->flags |= IOMAP_F_DIRTY;
3318 
3319 	if (map->m_flags & EXT4_MAP_NEW)
3320 		iomap->flags |= IOMAP_F_NEW;
3321 
3322 	iomap->bdev = inode->i_sb->s_bdev;
3323 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3324 	iomap->offset = (u64) map->m_lblk << blkbits;
3325 	iomap->length = (u64) map->m_len << blkbits;
3326 
3327 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3328 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3329 		iomap->flags |= IOMAP_F_MERGED;
3330 
3331 	/*
3332 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3333 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3334 	 * set. In order for any allocated unwritten extents to be converted
3335 	 * into written extents correctly within the ->end_io() handler, we
3336 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3337 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3338 	 * been set first.
3339 	 */
3340 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3341 		iomap->type = IOMAP_UNWRITTEN;
3342 		iomap->addr = (u64) map->m_pblk << blkbits;
3343 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3344 		iomap->type = IOMAP_MAPPED;
3345 		iomap->addr = (u64) map->m_pblk << blkbits;
3346 	} else {
3347 		iomap->type = IOMAP_HOLE;
3348 		iomap->addr = IOMAP_NULL_ADDR;
3349 	}
3350 }
3351 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3352 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3353 			    unsigned int flags)
3354 {
3355 	handle_t *handle;
3356 	u8 blkbits = inode->i_blkbits;
3357 	int ret, dio_credits, m_flags = 0, retries = 0;
3358 
3359 	/*
3360 	 * Trim the mapping request to the maximum value that we can map at
3361 	 * once for direct I/O.
3362 	 */
3363 	if (map->m_len > DIO_MAX_BLOCKS)
3364 		map->m_len = DIO_MAX_BLOCKS;
3365 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3366 
3367 retry:
3368 	/*
3369 	 * Either we allocate blocks and then don't get an unwritten extent, so
3370 	 * in that case we have reserved enough credits. Or, the blocks are
3371 	 * already allocated and unwritten. In that case, the extent conversion
3372 	 * fits into the credits as well.
3373 	 */
3374 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3375 	if (IS_ERR(handle))
3376 		return PTR_ERR(handle);
3377 
3378 	/*
3379 	 * DAX and direct I/O are the only two operations that are currently
3380 	 * supported with IOMAP_WRITE.
3381 	 */
3382 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3383 	if (IS_DAX(inode))
3384 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3385 	/*
3386 	 * We use i_size instead of i_disksize here because delalloc writeback
3387 	 * can complete at any point during the I/O and subsequently push the
3388 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3389 	 * happening and thus expose allocated blocks to direct I/O reads.
3390 	 */
3391 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3392 		m_flags = EXT4_GET_BLOCKS_CREATE;
3393 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3394 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3395 
3396 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3397 
3398 	/*
3399 	 * We cannot fill holes in indirect tree based inodes as that could
3400 	 * expose stale data in the case of a crash. Use the magic error code
3401 	 * to fallback to buffered I/O.
3402 	 */
3403 	if (!m_flags && !ret)
3404 		ret = -ENOTBLK;
3405 
3406 	ext4_journal_stop(handle);
3407 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3408 		goto retry;
3409 
3410 	return ret;
3411 }
3412 
3413 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3414 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3415 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3416 {
3417 	int ret;
3418 	struct ext4_map_blocks map;
3419 	u8 blkbits = inode->i_blkbits;
3420 
3421 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3422 		return -EINVAL;
3423 
3424 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3425 		return -ERANGE;
3426 
3427 	/*
3428 	 * Calculate the first and last logical blocks respectively.
3429 	 */
3430 	map.m_lblk = offset >> blkbits;
3431 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3432 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3433 
3434 	if (flags & IOMAP_WRITE) {
3435 		/*
3436 		 * We check here if the blocks are already allocated, then we
3437 		 * don't need to start a journal txn and we can directly return
3438 		 * the mapping information. This could boost performance
3439 		 * especially in multi-threaded overwrite requests.
3440 		 */
3441 		if (offset + length <= i_size_read(inode)) {
3442 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3443 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3444 				goto out;
3445 		}
3446 		ret = ext4_iomap_alloc(inode, &map, flags);
3447 	} else {
3448 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3449 	}
3450 
3451 	if (ret < 0)
3452 		return ret;
3453 out:
3454 	/*
3455 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3456 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3457 	 * limiting the length of the mapping returned.
3458 	 */
3459 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3460 
3461 	ext4_set_iomap(inode, iomap, &map, offset, length);
3462 
3463 	return 0;
3464 }
3465 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3466 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3467 		loff_t length, unsigned flags, struct iomap *iomap,
3468 		struct iomap *srcmap)
3469 {
3470 	int ret;
3471 
3472 	/*
3473 	 * Even for writes we don't need to allocate blocks, so just pretend
3474 	 * we are reading to save overhead of starting a transaction.
3475 	 */
3476 	flags &= ~IOMAP_WRITE;
3477 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3478 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3479 	return ret;
3480 }
3481 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3482 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3483 			  ssize_t written, unsigned flags, struct iomap *iomap)
3484 {
3485 	/*
3486 	 * Check to see whether an error occurred while writing out the data to
3487 	 * the allocated blocks. If so, return the magic error code so that we
3488 	 * fallback to buffered I/O and attempt to complete the remainder of
3489 	 * the I/O. Any blocks that may have been allocated in preparation for
3490 	 * the direct I/O will be reused during buffered I/O.
3491 	 */
3492 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3493 		return -ENOTBLK;
3494 
3495 	return 0;
3496 }
3497 
3498 const struct iomap_ops ext4_iomap_ops = {
3499 	.iomap_begin		= ext4_iomap_begin,
3500 	.iomap_end		= ext4_iomap_end,
3501 };
3502 
3503 const struct iomap_ops ext4_iomap_overwrite_ops = {
3504 	.iomap_begin		= ext4_iomap_overwrite_begin,
3505 	.iomap_end		= ext4_iomap_end,
3506 };
3507 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3508 static bool ext4_iomap_is_delalloc(struct inode *inode,
3509 				   struct ext4_map_blocks *map)
3510 {
3511 	struct extent_status es;
3512 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3513 
3514 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3515 				  map->m_lblk, end, &es);
3516 
3517 	if (!es.es_len || es.es_lblk > end)
3518 		return false;
3519 
3520 	if (es.es_lblk > map->m_lblk) {
3521 		map->m_len = es.es_lblk - map->m_lblk;
3522 		return false;
3523 	}
3524 
3525 	offset = map->m_lblk - es.es_lblk;
3526 	map->m_len = es.es_len - offset;
3527 
3528 	return true;
3529 }
3530 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3531 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3532 				   loff_t length, unsigned int flags,
3533 				   struct iomap *iomap, struct iomap *srcmap)
3534 {
3535 	int ret;
3536 	bool delalloc = false;
3537 	struct ext4_map_blocks map;
3538 	u8 blkbits = inode->i_blkbits;
3539 
3540 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3541 		return -EINVAL;
3542 
3543 	if (ext4_has_inline_data(inode)) {
3544 		ret = ext4_inline_data_iomap(inode, iomap);
3545 		if (ret != -EAGAIN) {
3546 			if (ret == 0 && offset >= iomap->length)
3547 				ret = -ENOENT;
3548 			return ret;
3549 		}
3550 	}
3551 
3552 	/*
3553 	 * Calculate the first and last logical block respectively.
3554 	 */
3555 	map.m_lblk = offset >> blkbits;
3556 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3557 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3558 
3559 	/*
3560 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3561 	 * So handle it here itself instead of querying ext4_map_blocks().
3562 	 * Since ext4_map_blocks() will warn about it and will return
3563 	 * -EIO error.
3564 	 */
3565 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3566 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3567 
3568 		if (offset >= sbi->s_bitmap_maxbytes) {
3569 			map.m_flags = 0;
3570 			goto set_iomap;
3571 		}
3572 	}
3573 
3574 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3575 	if (ret < 0)
3576 		return ret;
3577 	if (ret == 0)
3578 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3579 
3580 set_iomap:
3581 	ext4_set_iomap(inode, iomap, &map, offset, length);
3582 	if (delalloc && iomap->type == IOMAP_HOLE)
3583 		iomap->type = IOMAP_DELALLOC;
3584 
3585 	return 0;
3586 }
3587 
3588 const struct iomap_ops ext4_iomap_report_ops = {
3589 	.iomap_begin = ext4_iomap_begin_report,
3590 };
3591 
3592 /*
3593  * Pages can be marked dirty completely asynchronously from ext4's journalling
3594  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3595  * much here because ->set_page_dirty is called under VFS locks.  The page is
3596  * not necessarily locked.
3597  *
3598  * We cannot just dirty the page and leave attached buffers clean, because the
3599  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3600  * or jbddirty because all the journalling code will explode.
3601  *
3602  * So what we do is to mark the page "pending dirty" and next time writepage
3603  * is called, propagate that into the buffers appropriately.
3604  */
ext4_journalled_set_page_dirty(struct page * page)3605 static int ext4_journalled_set_page_dirty(struct page *page)
3606 {
3607 	SetPageChecked(page);
3608 	return __set_page_dirty_nobuffers(page);
3609 }
3610 
ext4_set_page_dirty(struct page * page)3611 static int ext4_set_page_dirty(struct page *page)
3612 {
3613 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3614 	WARN_ON_ONCE(!page_has_buffers(page));
3615 	return __set_page_dirty_buffers(page);
3616 }
3617 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3618 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3619 				    struct file *file, sector_t *span)
3620 {
3621 	return iomap_swapfile_activate(sis, file, span,
3622 				       &ext4_iomap_report_ops);
3623 }
3624 
3625 static const struct address_space_operations ext4_aops = {
3626 	.readpage		= ext4_readpage,
3627 	.readahead		= ext4_readahead,
3628 	.writepage		= ext4_writepage,
3629 	.writepages		= ext4_writepages,
3630 	.write_begin		= ext4_write_begin,
3631 	.write_end		= ext4_write_end,
3632 	.set_page_dirty		= ext4_set_page_dirty,
3633 	.bmap			= ext4_bmap,
3634 	.invalidatepage		= ext4_invalidatepage,
3635 	.releasepage		= ext4_releasepage,
3636 	.direct_IO		= noop_direct_IO,
3637 	.migratepage		= buffer_migrate_page,
3638 	.is_partially_uptodate  = block_is_partially_uptodate,
3639 	.error_remove_page	= generic_error_remove_page,
3640 	.swap_activate		= ext4_iomap_swap_activate,
3641 };
3642 
3643 static const struct address_space_operations ext4_journalled_aops = {
3644 	.readpage		= ext4_readpage,
3645 	.readahead		= ext4_readahead,
3646 	.writepage		= ext4_writepage,
3647 	.writepages		= ext4_writepages,
3648 	.write_begin		= ext4_write_begin,
3649 	.write_end		= ext4_journalled_write_end,
3650 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3651 	.bmap			= ext4_bmap,
3652 	.invalidatepage		= ext4_journalled_invalidatepage,
3653 	.releasepage		= ext4_releasepage,
3654 	.direct_IO		= noop_direct_IO,
3655 	.is_partially_uptodate  = block_is_partially_uptodate,
3656 	.error_remove_page	= generic_error_remove_page,
3657 	.swap_activate		= ext4_iomap_swap_activate,
3658 };
3659 
3660 static const struct address_space_operations ext4_da_aops = {
3661 	.readpage		= ext4_readpage,
3662 	.readahead		= ext4_readahead,
3663 	.writepage		= ext4_writepage,
3664 	.writepages		= ext4_writepages,
3665 	.write_begin		= ext4_da_write_begin,
3666 	.write_end		= ext4_da_write_end,
3667 	.set_page_dirty		= ext4_set_page_dirty,
3668 	.bmap			= ext4_bmap,
3669 	.invalidatepage		= ext4_invalidatepage,
3670 	.releasepage		= ext4_releasepage,
3671 	.direct_IO		= noop_direct_IO,
3672 	.migratepage		= buffer_migrate_page,
3673 	.is_partially_uptodate  = block_is_partially_uptodate,
3674 	.error_remove_page	= generic_error_remove_page,
3675 	.swap_activate		= ext4_iomap_swap_activate,
3676 };
3677 
3678 static const struct address_space_operations ext4_dax_aops = {
3679 	.writepages		= ext4_dax_writepages,
3680 	.direct_IO		= noop_direct_IO,
3681 	.set_page_dirty		= __set_page_dirty_no_writeback,
3682 	.bmap			= ext4_bmap,
3683 	.invalidatepage		= noop_invalidatepage,
3684 	.swap_activate		= ext4_iomap_swap_activate,
3685 };
3686 
ext4_set_aops(struct inode * inode)3687 void ext4_set_aops(struct inode *inode)
3688 {
3689 	switch (ext4_inode_journal_mode(inode)) {
3690 	case EXT4_INODE_ORDERED_DATA_MODE:
3691 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3692 		break;
3693 	case EXT4_INODE_JOURNAL_DATA_MODE:
3694 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3695 		return;
3696 	default:
3697 		BUG();
3698 	}
3699 	if (IS_DAX(inode))
3700 		inode->i_mapping->a_ops = &ext4_dax_aops;
3701 	else if (test_opt(inode->i_sb, DELALLOC))
3702 		inode->i_mapping->a_ops = &ext4_da_aops;
3703 	else
3704 		inode->i_mapping->a_ops = &ext4_aops;
3705 }
3706 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3707 static int __ext4_block_zero_page_range(handle_t *handle,
3708 		struct address_space *mapping, loff_t from, loff_t length)
3709 {
3710 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3711 	unsigned offset = from & (PAGE_SIZE-1);
3712 	unsigned blocksize, pos;
3713 	ext4_lblk_t iblock;
3714 	struct inode *inode = mapping->host;
3715 	struct buffer_head *bh;
3716 	struct page *page;
3717 	int err = 0;
3718 
3719 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3720 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3721 	if (!page)
3722 		return -ENOMEM;
3723 
3724 	blocksize = inode->i_sb->s_blocksize;
3725 
3726 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3727 
3728 	if (!page_has_buffers(page))
3729 		create_empty_buffers(page, blocksize, 0);
3730 
3731 	/* Find the buffer that contains "offset" */
3732 	bh = page_buffers(page);
3733 	pos = blocksize;
3734 	while (offset >= pos) {
3735 		bh = bh->b_this_page;
3736 		iblock++;
3737 		pos += blocksize;
3738 	}
3739 	if (buffer_freed(bh)) {
3740 		BUFFER_TRACE(bh, "freed: skip");
3741 		goto unlock;
3742 	}
3743 	if (!buffer_mapped(bh)) {
3744 		BUFFER_TRACE(bh, "unmapped");
3745 		ext4_get_block(inode, iblock, bh, 0);
3746 		/* unmapped? It's a hole - nothing to do */
3747 		if (!buffer_mapped(bh)) {
3748 			BUFFER_TRACE(bh, "still unmapped");
3749 			goto unlock;
3750 		}
3751 	}
3752 
3753 	/* Ok, it's mapped. Make sure it's up-to-date */
3754 	if (PageUptodate(page))
3755 		set_buffer_uptodate(bh);
3756 
3757 	if (!buffer_uptodate(bh)) {
3758 		err = ext4_read_bh_lock(bh, 0, true);
3759 		if (err)
3760 			goto unlock;
3761 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3762 			/* We expect the key to be set. */
3763 			BUG_ON(!fscrypt_has_encryption_key(inode));
3764 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3765 							       bh_offset(bh));
3766 			if (err) {
3767 				clear_buffer_uptodate(bh);
3768 				goto unlock;
3769 			}
3770 		}
3771 	}
3772 	if (ext4_should_journal_data(inode)) {
3773 		BUFFER_TRACE(bh, "get write access");
3774 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3775 						    EXT4_JTR_NONE);
3776 		if (err)
3777 			goto unlock;
3778 	}
3779 	zero_user(page, offset, length);
3780 	BUFFER_TRACE(bh, "zeroed end of block");
3781 
3782 	if (ext4_should_journal_data(inode)) {
3783 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3784 	} else {
3785 		err = 0;
3786 		mark_buffer_dirty(bh);
3787 		if (ext4_should_order_data(inode))
3788 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3789 					length);
3790 	}
3791 
3792 unlock:
3793 	unlock_page(page);
3794 	put_page(page);
3795 	return err;
3796 }
3797 
3798 /*
3799  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3800  * starting from file offset 'from'.  The range to be zero'd must
3801  * be contained with in one block.  If the specified range exceeds
3802  * the end of the block it will be shortened to end of the block
3803  * that corresponds to 'from'
3804  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3805 static int ext4_block_zero_page_range(handle_t *handle,
3806 		struct address_space *mapping, loff_t from, loff_t length)
3807 {
3808 	struct inode *inode = mapping->host;
3809 	unsigned offset = from & (PAGE_SIZE-1);
3810 	unsigned blocksize = inode->i_sb->s_blocksize;
3811 	unsigned max = blocksize - (offset & (blocksize - 1));
3812 
3813 	/*
3814 	 * correct length if it does not fall between
3815 	 * 'from' and the end of the block
3816 	 */
3817 	if (length > max || length < 0)
3818 		length = max;
3819 
3820 	if (IS_DAX(inode)) {
3821 		return iomap_zero_range(inode, from, length, NULL,
3822 					&ext4_iomap_ops);
3823 	}
3824 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3825 }
3826 
3827 /*
3828  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3829  * up to the end of the block which corresponds to `from'.
3830  * This required during truncate. We need to physically zero the tail end
3831  * of that block so it doesn't yield old data if the file is later grown.
3832  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3833 static int ext4_block_truncate_page(handle_t *handle,
3834 		struct address_space *mapping, loff_t from)
3835 {
3836 	unsigned offset = from & (PAGE_SIZE-1);
3837 	unsigned length;
3838 	unsigned blocksize;
3839 	struct inode *inode = mapping->host;
3840 
3841 	/* If we are processing an encrypted inode during orphan list handling */
3842 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3843 		return 0;
3844 
3845 	blocksize = inode->i_sb->s_blocksize;
3846 	length = blocksize - (offset & (blocksize - 1));
3847 
3848 	return ext4_block_zero_page_range(handle, mapping, from, length);
3849 }
3850 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3851 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3852 			     loff_t lstart, loff_t length)
3853 {
3854 	struct super_block *sb = inode->i_sb;
3855 	struct address_space *mapping = inode->i_mapping;
3856 	unsigned partial_start, partial_end;
3857 	ext4_fsblk_t start, end;
3858 	loff_t byte_end = (lstart + length - 1);
3859 	int err = 0;
3860 
3861 	partial_start = lstart & (sb->s_blocksize - 1);
3862 	partial_end = byte_end & (sb->s_blocksize - 1);
3863 
3864 	start = lstart >> sb->s_blocksize_bits;
3865 	end = byte_end >> sb->s_blocksize_bits;
3866 
3867 	/* Handle partial zero within the single block */
3868 	if (start == end &&
3869 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3870 		err = ext4_block_zero_page_range(handle, mapping,
3871 						 lstart, length);
3872 		return err;
3873 	}
3874 	/* Handle partial zero out on the start of the range */
3875 	if (partial_start) {
3876 		err = ext4_block_zero_page_range(handle, mapping,
3877 						 lstart, sb->s_blocksize);
3878 		if (err)
3879 			return err;
3880 	}
3881 	/* Handle partial zero out on the end of the range */
3882 	if (partial_end != sb->s_blocksize - 1)
3883 		err = ext4_block_zero_page_range(handle, mapping,
3884 						 byte_end - partial_end,
3885 						 partial_end + 1);
3886 	return err;
3887 }
3888 
ext4_can_truncate(struct inode * inode)3889 int ext4_can_truncate(struct inode *inode)
3890 {
3891 	if (S_ISREG(inode->i_mode))
3892 		return 1;
3893 	if (S_ISDIR(inode->i_mode))
3894 		return 1;
3895 	if (S_ISLNK(inode->i_mode))
3896 		return !ext4_inode_is_fast_symlink(inode);
3897 	return 0;
3898 }
3899 
3900 /*
3901  * We have to make sure i_disksize gets properly updated before we truncate
3902  * page cache due to hole punching or zero range. Otherwise i_disksize update
3903  * can get lost as it may have been postponed to submission of writeback but
3904  * that will never happen after we truncate page cache.
3905  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3906 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3907 				      loff_t len)
3908 {
3909 	handle_t *handle;
3910 	int ret;
3911 
3912 	loff_t size = i_size_read(inode);
3913 
3914 	WARN_ON(!inode_is_locked(inode));
3915 	if (offset > size || offset + len < size)
3916 		return 0;
3917 
3918 	if (EXT4_I(inode)->i_disksize >= size)
3919 		return 0;
3920 
3921 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3922 	if (IS_ERR(handle))
3923 		return PTR_ERR(handle);
3924 	ext4_update_i_disksize(inode, size);
3925 	ret = ext4_mark_inode_dirty(handle, inode);
3926 	ext4_journal_stop(handle);
3927 
3928 	return ret;
3929 }
3930 
ext4_wait_dax_page(struct inode * inode)3931 static void ext4_wait_dax_page(struct inode *inode)
3932 {
3933 	filemap_invalidate_unlock(inode->i_mapping);
3934 	schedule();
3935 	filemap_invalidate_lock(inode->i_mapping);
3936 }
3937 
ext4_break_layouts(struct inode * inode)3938 int ext4_break_layouts(struct inode *inode)
3939 {
3940 	struct page *page;
3941 	int error;
3942 
3943 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3944 		return -EINVAL;
3945 
3946 	do {
3947 		page = dax_layout_busy_page(inode->i_mapping);
3948 		if (!page)
3949 			return 0;
3950 
3951 		error = ___wait_var_event(&page->_refcount,
3952 				atomic_read(&page->_refcount) == 1,
3953 				TASK_INTERRUPTIBLE, 0, 0,
3954 				ext4_wait_dax_page(inode));
3955 	} while (error == 0);
3956 
3957 	return error;
3958 }
3959 
3960 /*
3961  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3962  * associated with the given offset and length
3963  *
3964  * @inode:  File inode
3965  * @offset: The offset where the hole will begin
3966  * @len:    The length of the hole
3967  *
3968  * Returns: 0 on success or negative on failure
3969  */
3970 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3971 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3972 {
3973 	struct inode *inode = file_inode(file);
3974 	struct super_block *sb = inode->i_sb;
3975 	ext4_lblk_t first_block, stop_block;
3976 	struct address_space *mapping = inode->i_mapping;
3977 	loff_t first_block_offset, last_block_offset, max_length;
3978 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3979 	handle_t *handle;
3980 	unsigned int credits;
3981 	int ret = 0, ret2 = 0;
3982 
3983 	trace_ext4_punch_hole(inode, offset, length, 0);
3984 
3985 	/*
3986 	 * Write out all dirty pages to avoid race conditions
3987 	 * Then release them.
3988 	 */
3989 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3990 		ret = filemap_write_and_wait_range(mapping, offset,
3991 						   offset + length - 1);
3992 		if (ret)
3993 			return ret;
3994 	}
3995 
3996 	inode_lock(inode);
3997 
3998 	/* No need to punch hole beyond i_size */
3999 	if (offset >= inode->i_size)
4000 		goto out_mutex;
4001 
4002 	/*
4003 	 * If the hole extends beyond i_size, set the hole
4004 	 * to end after the page that contains i_size
4005 	 */
4006 	if (offset + length > inode->i_size) {
4007 		length = inode->i_size +
4008 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4009 		   offset;
4010 	}
4011 
4012 	/*
4013 	 * For punch hole the length + offset needs to be within one block
4014 	 * before last range. Adjust the length if it goes beyond that limit.
4015 	 */
4016 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4017 	if (offset + length > max_length)
4018 		length = max_length - offset;
4019 
4020 	if (offset & (sb->s_blocksize - 1) ||
4021 	    (offset + length) & (sb->s_blocksize - 1)) {
4022 		/*
4023 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4024 		 * partial block
4025 		 */
4026 		ret = ext4_inode_attach_jinode(inode);
4027 		if (ret < 0)
4028 			goto out_mutex;
4029 
4030 	}
4031 
4032 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4033 	inode_dio_wait(inode);
4034 
4035 	ret = file_modified(file);
4036 	if (ret)
4037 		goto out_mutex;
4038 
4039 	/*
4040 	 * Prevent page faults from reinstantiating pages we have released from
4041 	 * page cache.
4042 	 */
4043 	filemap_invalidate_lock(mapping);
4044 
4045 	ret = ext4_break_layouts(inode);
4046 	if (ret)
4047 		goto out_dio;
4048 
4049 	first_block_offset = round_up(offset, sb->s_blocksize);
4050 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4051 
4052 	/* Now release the pages and zero block aligned part of pages*/
4053 	if (last_block_offset > first_block_offset) {
4054 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4055 		if (ret)
4056 			goto out_dio;
4057 		truncate_pagecache_range(inode, first_block_offset,
4058 					 last_block_offset);
4059 	}
4060 
4061 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4062 		credits = ext4_writepage_trans_blocks(inode);
4063 	else
4064 		credits = ext4_blocks_for_truncate(inode);
4065 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4066 	if (IS_ERR(handle)) {
4067 		ret = PTR_ERR(handle);
4068 		ext4_std_error(sb, ret);
4069 		goto out_dio;
4070 	}
4071 
4072 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4073 				       length);
4074 	if (ret)
4075 		goto out_stop;
4076 
4077 	first_block = (offset + sb->s_blocksize - 1) >>
4078 		EXT4_BLOCK_SIZE_BITS(sb);
4079 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4080 
4081 	/* If there are blocks to remove, do it */
4082 	if (stop_block > first_block) {
4083 
4084 		down_write(&EXT4_I(inode)->i_data_sem);
4085 		ext4_discard_preallocations(inode, 0);
4086 
4087 		ret = ext4_es_remove_extent(inode, first_block,
4088 					    stop_block - first_block);
4089 		if (ret) {
4090 			up_write(&EXT4_I(inode)->i_data_sem);
4091 			goto out_stop;
4092 		}
4093 
4094 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4095 			ret = ext4_ext_remove_space(inode, first_block,
4096 						    stop_block - 1);
4097 		else
4098 			ret = ext4_ind_remove_space(handle, inode, first_block,
4099 						    stop_block);
4100 
4101 		up_write(&EXT4_I(inode)->i_data_sem);
4102 	}
4103 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4104 	if (IS_SYNC(inode))
4105 		ext4_handle_sync(handle);
4106 
4107 	inode->i_mtime = inode->i_ctime = current_time(inode);
4108 	ret2 = ext4_mark_inode_dirty(handle, inode);
4109 	if (unlikely(ret2))
4110 		ret = ret2;
4111 	if (ret >= 0)
4112 		ext4_update_inode_fsync_trans(handle, inode, 1);
4113 out_stop:
4114 	ext4_journal_stop(handle);
4115 out_dio:
4116 	filemap_invalidate_unlock(mapping);
4117 out_mutex:
4118 	inode_unlock(inode);
4119 	return ret;
4120 }
4121 
ext4_inode_attach_jinode(struct inode * inode)4122 int ext4_inode_attach_jinode(struct inode *inode)
4123 {
4124 	struct ext4_inode_info *ei = EXT4_I(inode);
4125 	struct jbd2_inode *jinode;
4126 
4127 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4128 		return 0;
4129 
4130 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4131 	spin_lock(&inode->i_lock);
4132 	if (!ei->jinode) {
4133 		if (!jinode) {
4134 			spin_unlock(&inode->i_lock);
4135 			return -ENOMEM;
4136 		}
4137 		ei->jinode = jinode;
4138 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4139 		jinode = NULL;
4140 	}
4141 	spin_unlock(&inode->i_lock);
4142 	if (unlikely(jinode != NULL))
4143 		jbd2_free_inode(jinode);
4144 	return 0;
4145 }
4146 
4147 /*
4148  * ext4_truncate()
4149  *
4150  * We block out ext4_get_block() block instantiations across the entire
4151  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4152  * simultaneously on behalf of the same inode.
4153  *
4154  * As we work through the truncate and commit bits of it to the journal there
4155  * is one core, guiding principle: the file's tree must always be consistent on
4156  * disk.  We must be able to restart the truncate after a crash.
4157  *
4158  * The file's tree may be transiently inconsistent in memory (although it
4159  * probably isn't), but whenever we close off and commit a journal transaction,
4160  * the contents of (the filesystem + the journal) must be consistent and
4161  * restartable.  It's pretty simple, really: bottom up, right to left (although
4162  * left-to-right works OK too).
4163  *
4164  * Note that at recovery time, journal replay occurs *before* the restart of
4165  * truncate against the orphan inode list.
4166  *
4167  * The committed inode has the new, desired i_size (which is the same as
4168  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4169  * that this inode's truncate did not complete and it will again call
4170  * ext4_truncate() to have another go.  So there will be instantiated blocks
4171  * to the right of the truncation point in a crashed ext4 filesystem.  But
4172  * that's fine - as long as they are linked from the inode, the post-crash
4173  * ext4_truncate() run will find them and release them.
4174  */
ext4_truncate(struct inode * inode)4175 int ext4_truncate(struct inode *inode)
4176 {
4177 	struct ext4_inode_info *ei = EXT4_I(inode);
4178 	unsigned int credits;
4179 	int err = 0, err2;
4180 	handle_t *handle;
4181 	struct address_space *mapping = inode->i_mapping;
4182 
4183 	/*
4184 	 * There is a possibility that we're either freeing the inode
4185 	 * or it's a completely new inode. In those cases we might not
4186 	 * have i_mutex locked because it's not necessary.
4187 	 */
4188 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4189 		WARN_ON(!inode_is_locked(inode));
4190 	trace_ext4_truncate_enter(inode);
4191 
4192 	if (!ext4_can_truncate(inode))
4193 		goto out_trace;
4194 
4195 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4196 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4197 
4198 	if (ext4_has_inline_data(inode)) {
4199 		int has_inline = 1;
4200 
4201 		err = ext4_inline_data_truncate(inode, &has_inline);
4202 		if (err || has_inline)
4203 			goto out_trace;
4204 	}
4205 
4206 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4207 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4208 		err = ext4_inode_attach_jinode(inode);
4209 		if (err)
4210 			goto out_trace;
4211 	}
4212 
4213 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214 		credits = ext4_writepage_trans_blocks(inode);
4215 	else
4216 		credits = ext4_blocks_for_truncate(inode);
4217 
4218 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4219 	if (IS_ERR(handle)) {
4220 		err = PTR_ERR(handle);
4221 		goto out_trace;
4222 	}
4223 
4224 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4225 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4226 
4227 	/*
4228 	 * We add the inode to the orphan list, so that if this
4229 	 * truncate spans multiple transactions, and we crash, we will
4230 	 * resume the truncate when the filesystem recovers.  It also
4231 	 * marks the inode dirty, to catch the new size.
4232 	 *
4233 	 * Implication: the file must always be in a sane, consistent
4234 	 * truncatable state while each transaction commits.
4235 	 */
4236 	err = ext4_orphan_add(handle, inode);
4237 	if (err)
4238 		goto out_stop;
4239 
4240 	down_write(&EXT4_I(inode)->i_data_sem);
4241 
4242 	ext4_discard_preallocations(inode, 0);
4243 
4244 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4245 		err = ext4_ext_truncate(handle, inode);
4246 	else
4247 		ext4_ind_truncate(handle, inode);
4248 
4249 	up_write(&ei->i_data_sem);
4250 	if (err)
4251 		goto out_stop;
4252 
4253 	if (IS_SYNC(inode))
4254 		ext4_handle_sync(handle);
4255 
4256 out_stop:
4257 	/*
4258 	 * If this was a simple ftruncate() and the file will remain alive,
4259 	 * then we need to clear up the orphan record which we created above.
4260 	 * However, if this was a real unlink then we were called by
4261 	 * ext4_evict_inode(), and we allow that function to clean up the
4262 	 * orphan info for us.
4263 	 */
4264 	if (inode->i_nlink)
4265 		ext4_orphan_del(handle, inode);
4266 
4267 	inode->i_mtime = inode->i_ctime = current_time(inode);
4268 	err2 = ext4_mark_inode_dirty(handle, inode);
4269 	if (unlikely(err2 && !err))
4270 		err = err2;
4271 	ext4_journal_stop(handle);
4272 
4273 out_trace:
4274 	trace_ext4_truncate_exit(inode);
4275 	return err;
4276 }
4277 
4278 /*
4279  * ext4_get_inode_loc returns with an extra refcount against the inode's
4280  * underlying buffer_head on success. If 'in_mem' is true, we have all
4281  * data in memory that is needed to recreate the on-disk version of this
4282  * inode.
4283  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc,int in_mem,ext4_fsblk_t * ret_block)4284 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4285 				struct ext4_iloc *iloc, int in_mem,
4286 				ext4_fsblk_t *ret_block)
4287 {
4288 	struct ext4_group_desc	*gdp;
4289 	struct buffer_head	*bh;
4290 	ext4_fsblk_t		block;
4291 	struct blk_plug		plug;
4292 	int			inodes_per_block, inode_offset;
4293 
4294 	iloc->bh = NULL;
4295 	if (ino < EXT4_ROOT_INO ||
4296 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4297 		return -EFSCORRUPTED;
4298 
4299 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4300 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4301 	if (!gdp)
4302 		return -EIO;
4303 
4304 	/*
4305 	 * Figure out the offset within the block group inode table
4306 	 */
4307 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4308 	inode_offset = ((ino - 1) %
4309 			EXT4_INODES_PER_GROUP(sb));
4310 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4311 
4312 	block = ext4_inode_table(sb, gdp);
4313 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4314 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4315 		ext4_error(sb, "Invalid inode table block %llu in "
4316 			   "block_group %u", block, iloc->block_group);
4317 		return -EFSCORRUPTED;
4318 	}
4319 	block += (inode_offset / inodes_per_block);
4320 
4321 	bh = sb_getblk(sb, block);
4322 	if (unlikely(!bh))
4323 		return -ENOMEM;
4324 	if (ext4_buffer_uptodate(bh))
4325 		goto has_buffer;
4326 
4327 	lock_buffer(bh);
4328 	if (ext4_buffer_uptodate(bh)) {
4329 		/* Someone brought it uptodate while we waited */
4330 		unlock_buffer(bh);
4331 		goto has_buffer;
4332 	}
4333 
4334 	/*
4335 	 * If we have all information of the inode in memory and this
4336 	 * is the only valid inode in the block, we need not read the
4337 	 * block.
4338 	 */
4339 	if (in_mem) {
4340 		struct buffer_head *bitmap_bh;
4341 		int i, start;
4342 
4343 		start = inode_offset & ~(inodes_per_block - 1);
4344 
4345 		/* Is the inode bitmap in cache? */
4346 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4347 		if (unlikely(!bitmap_bh))
4348 			goto make_io;
4349 
4350 		/*
4351 		 * If the inode bitmap isn't in cache then the
4352 		 * optimisation may end up performing two reads instead
4353 		 * of one, so skip it.
4354 		 */
4355 		if (!buffer_uptodate(bitmap_bh)) {
4356 			brelse(bitmap_bh);
4357 			goto make_io;
4358 		}
4359 		for (i = start; i < start + inodes_per_block; i++) {
4360 			if (i == inode_offset)
4361 				continue;
4362 			if (ext4_test_bit(i, bitmap_bh->b_data))
4363 				break;
4364 		}
4365 		brelse(bitmap_bh);
4366 		if (i == start + inodes_per_block) {
4367 			/* all other inodes are free, so skip I/O */
4368 			memset(bh->b_data, 0, bh->b_size);
4369 			set_buffer_uptodate(bh);
4370 			unlock_buffer(bh);
4371 			goto has_buffer;
4372 		}
4373 	}
4374 
4375 make_io:
4376 	/*
4377 	 * If we need to do any I/O, try to pre-readahead extra
4378 	 * blocks from the inode table.
4379 	 */
4380 	blk_start_plug(&plug);
4381 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4382 		ext4_fsblk_t b, end, table;
4383 		unsigned num;
4384 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4385 
4386 		table = ext4_inode_table(sb, gdp);
4387 		/* s_inode_readahead_blks is always a power of 2 */
4388 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4389 		if (table > b)
4390 			b = table;
4391 		end = b + ra_blks;
4392 		num = EXT4_INODES_PER_GROUP(sb);
4393 		if (ext4_has_group_desc_csum(sb))
4394 			num -= ext4_itable_unused_count(sb, gdp);
4395 		table += num / inodes_per_block;
4396 		if (end > table)
4397 			end = table;
4398 		while (b <= end)
4399 			ext4_sb_breadahead_unmovable(sb, b++);
4400 	}
4401 
4402 	/*
4403 	 * There are other valid inodes in the buffer, this inode
4404 	 * has in-inode xattrs, or we don't have this inode in memory.
4405 	 * Read the block from disk.
4406 	 */
4407 	trace_ext4_load_inode(sb, ino);
4408 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4409 	blk_finish_plug(&plug);
4410 	wait_on_buffer(bh);
4411 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4412 	if (!buffer_uptodate(bh)) {
4413 		if (ret_block)
4414 			*ret_block = block;
4415 		brelse(bh);
4416 		return -EIO;
4417 	}
4418 has_buffer:
4419 	iloc->bh = bh;
4420 	return 0;
4421 }
4422 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4423 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4424 					struct ext4_iloc *iloc)
4425 {
4426 	ext4_fsblk_t err_blk = 0;
4427 	int ret;
4428 
4429 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4430 					&err_blk);
4431 
4432 	if (ret == -EIO)
4433 		ext4_error_inode_block(inode, err_blk, EIO,
4434 					"unable to read itable block");
4435 
4436 	return ret;
4437 }
4438 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4439 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441 	ext4_fsblk_t err_blk = 0;
4442 	int ret;
4443 
4444 	/* We have all inode data except xattrs in memory here. */
4445 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4446 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4447 
4448 	if (ret == -EIO)
4449 		ext4_error_inode_block(inode, err_blk, EIO,
4450 					"unable to read itable block");
4451 
4452 	return ret;
4453 }
4454 
4455 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4456 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4457 			  struct ext4_iloc *iloc)
4458 {
4459 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4460 }
4461 
ext4_should_enable_dax(struct inode * inode)4462 static bool ext4_should_enable_dax(struct inode *inode)
4463 {
4464 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4465 
4466 	if (test_opt2(inode->i_sb, DAX_NEVER))
4467 		return false;
4468 	if (!S_ISREG(inode->i_mode))
4469 		return false;
4470 	if (ext4_should_journal_data(inode))
4471 		return false;
4472 	if (ext4_has_inline_data(inode))
4473 		return false;
4474 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4475 		return false;
4476 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4477 		return false;
4478 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4479 		return false;
4480 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4481 		return true;
4482 
4483 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4484 }
4485 
ext4_set_inode_flags(struct inode * inode,bool init)4486 void ext4_set_inode_flags(struct inode *inode, bool init)
4487 {
4488 	unsigned int flags = EXT4_I(inode)->i_flags;
4489 	unsigned int new_fl = 0;
4490 
4491 	WARN_ON_ONCE(IS_DAX(inode) && init);
4492 
4493 	if (flags & EXT4_SYNC_FL)
4494 		new_fl |= S_SYNC;
4495 	if (flags & EXT4_APPEND_FL)
4496 		new_fl |= S_APPEND;
4497 	if (flags & EXT4_IMMUTABLE_FL)
4498 		new_fl |= S_IMMUTABLE;
4499 	if (flags & EXT4_NOATIME_FL)
4500 		new_fl |= S_NOATIME;
4501 	if (flags & EXT4_DIRSYNC_FL)
4502 		new_fl |= S_DIRSYNC;
4503 
4504 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4505 	 * here if already set. */
4506 	new_fl |= (inode->i_flags & S_DAX);
4507 	if (init && ext4_should_enable_dax(inode))
4508 		new_fl |= S_DAX;
4509 
4510 	if (flags & EXT4_ENCRYPT_FL)
4511 		new_fl |= S_ENCRYPTED;
4512 	if (flags & EXT4_CASEFOLD_FL)
4513 		new_fl |= S_CASEFOLD;
4514 	if (flags & EXT4_VERITY_FL)
4515 		new_fl |= S_VERITY;
4516 	inode_set_flags(inode, new_fl,
4517 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4518 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4519 }
4520 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4521 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4522 				  struct ext4_inode_info *ei)
4523 {
4524 	blkcnt_t i_blocks ;
4525 	struct inode *inode = &(ei->vfs_inode);
4526 	struct super_block *sb = inode->i_sb;
4527 
4528 	if (ext4_has_feature_huge_file(sb)) {
4529 		/* we are using combined 48 bit field */
4530 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4531 					le32_to_cpu(raw_inode->i_blocks_lo);
4532 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4533 			/* i_blocks represent file system block size */
4534 			return i_blocks  << (inode->i_blkbits - 9);
4535 		} else {
4536 			return i_blocks;
4537 		}
4538 	} else {
4539 		return le32_to_cpu(raw_inode->i_blocks_lo);
4540 	}
4541 }
4542 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4543 static inline int ext4_iget_extra_inode(struct inode *inode,
4544 					 struct ext4_inode *raw_inode,
4545 					 struct ext4_inode_info *ei)
4546 {
4547 	__le32 *magic = (void *)raw_inode +
4548 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4549 
4550 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4551 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4552 		int err;
4553 
4554 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4555 		err = ext4_find_inline_data_nolock(inode);
4556 		if (!err && ext4_has_inline_data(inode))
4557 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4558 		return err;
4559 	} else
4560 		EXT4_I(inode)->i_inline_off = 0;
4561 	return 0;
4562 }
4563 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4564 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4565 {
4566 	if (!ext4_has_feature_project(inode->i_sb))
4567 		return -EOPNOTSUPP;
4568 	*projid = EXT4_I(inode)->i_projid;
4569 	return 0;
4570 }
4571 
4572 /*
4573  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4574  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4575  * set.
4576  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4577 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4578 {
4579 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4580 		inode_set_iversion_raw(inode, val);
4581 	else
4582 		inode_set_iversion_queried(inode, val);
4583 }
ext4_inode_peek_iversion(const struct inode * inode)4584 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4585 {
4586 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4587 		return inode_peek_iversion_raw(inode);
4588 	else
4589 		return inode_peek_iversion(inode);
4590 }
4591 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4592 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4593 
4594 {
4595 	if (flags & EXT4_IGET_EA_INODE) {
4596 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4597 			return "missing EA_INODE flag";
4598 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4599 		    EXT4_I(inode)->i_file_acl)
4600 			return "ea_inode with extended attributes";
4601 	} else {
4602 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4603 			return "unexpected EA_INODE flag";
4604 	}
4605 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4606 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4607 	return NULL;
4608 }
4609 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4610 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4611 			  ext4_iget_flags flags, const char *function,
4612 			  unsigned int line)
4613 {
4614 	struct ext4_iloc iloc;
4615 	struct ext4_inode *raw_inode;
4616 	struct ext4_inode_info *ei;
4617 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4618 	struct inode *inode;
4619 	const char *err_str;
4620 	journal_t *journal = EXT4_SB(sb)->s_journal;
4621 	long ret;
4622 	loff_t size;
4623 	int block;
4624 	uid_t i_uid;
4625 	gid_t i_gid;
4626 	projid_t i_projid;
4627 
4628 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4629 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4630 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4631 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4632 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4633 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4634 	    (ino < EXT4_ROOT_INO) ||
4635 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4636 		if (flags & EXT4_IGET_HANDLE)
4637 			return ERR_PTR(-ESTALE);
4638 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4639 			     "inode #%lu: comm %s: iget: illegal inode #",
4640 			     ino, current->comm);
4641 		return ERR_PTR(-EFSCORRUPTED);
4642 	}
4643 
4644 	inode = iget_locked(sb, ino);
4645 	if (!inode)
4646 		return ERR_PTR(-ENOMEM);
4647 	if (!(inode->i_state & I_NEW)) {
4648 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4649 			ext4_error_inode(inode, function, line, 0, err_str);
4650 			iput(inode);
4651 			return ERR_PTR(-EFSCORRUPTED);
4652 		}
4653 		return inode;
4654 	}
4655 
4656 	ei = EXT4_I(inode);
4657 	iloc.bh = NULL;
4658 
4659 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4660 	if (ret < 0)
4661 		goto bad_inode;
4662 	raw_inode = ext4_raw_inode(&iloc);
4663 
4664 	if ((flags & EXT4_IGET_HANDLE) &&
4665 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4666 		ret = -ESTALE;
4667 		goto bad_inode;
4668 	}
4669 
4670 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4671 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4672 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4673 			EXT4_INODE_SIZE(inode->i_sb) ||
4674 		    (ei->i_extra_isize & 3)) {
4675 			ext4_error_inode(inode, function, line, 0,
4676 					 "iget: bad extra_isize %u "
4677 					 "(inode size %u)",
4678 					 ei->i_extra_isize,
4679 					 EXT4_INODE_SIZE(inode->i_sb));
4680 			ret = -EFSCORRUPTED;
4681 			goto bad_inode;
4682 		}
4683 	} else
4684 		ei->i_extra_isize = 0;
4685 
4686 	/* Precompute checksum seed for inode metadata */
4687 	if (ext4_has_metadata_csum(sb)) {
4688 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689 		__u32 csum;
4690 		__le32 inum = cpu_to_le32(inode->i_ino);
4691 		__le32 gen = raw_inode->i_generation;
4692 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4693 				   sizeof(inum));
4694 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4695 					      sizeof(gen));
4696 	}
4697 
4698 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4699 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4700 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4701 		ext4_error_inode_err(inode, function, line, 0,
4702 				EFSBADCRC, "iget: checksum invalid");
4703 		ret = -EFSBADCRC;
4704 		goto bad_inode;
4705 	}
4706 
4707 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4708 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4709 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4710 	if (ext4_has_feature_project(sb) &&
4711 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4712 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4713 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4714 	else
4715 		i_projid = EXT4_DEF_PROJID;
4716 
4717 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4718 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4719 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4720 	}
4721 	i_uid_write(inode, i_uid);
4722 	i_gid_write(inode, i_gid);
4723 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4724 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4725 
4726 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4727 	ei->i_inline_off = 0;
4728 	ei->i_dir_start_lookup = 0;
4729 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4730 	/* We now have enough fields to check if the inode was active or not.
4731 	 * This is needed because nfsd might try to access dead inodes
4732 	 * the test is that same one that e2fsck uses
4733 	 * NeilBrown 1999oct15
4734 	 */
4735 	if (inode->i_nlink == 0) {
4736 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4737 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4738 		    ino != EXT4_BOOT_LOADER_INO) {
4739 			/* this inode is deleted or unallocated */
4740 			if (flags & EXT4_IGET_SPECIAL) {
4741 				ext4_error_inode(inode, function, line, 0,
4742 						 "iget: special inode unallocated");
4743 				ret = -EFSCORRUPTED;
4744 			} else
4745 				ret = -ESTALE;
4746 			goto bad_inode;
4747 		}
4748 		/* The only unlinked inodes we let through here have
4749 		 * valid i_mode and are being read by the orphan
4750 		 * recovery code: that's fine, we're about to complete
4751 		 * the process of deleting those.
4752 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4753 		 * not initialized on a new filesystem. */
4754 	}
4755 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4756 	ext4_set_inode_flags(inode, true);
4757 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4758 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4759 	if (ext4_has_feature_64bit(sb))
4760 		ei->i_file_acl |=
4761 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4762 	inode->i_size = ext4_isize(sb, raw_inode);
4763 	if ((size = i_size_read(inode)) < 0) {
4764 		ext4_error_inode(inode, function, line, 0,
4765 				 "iget: bad i_size value: %lld", size);
4766 		ret = -EFSCORRUPTED;
4767 		goto bad_inode;
4768 	}
4769 	/*
4770 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4771 	 * we'd normally treat htree data as empty space. But with metadata
4772 	 * checksumming that corrupts checksums so forbid that.
4773 	 */
4774 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4775 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4776 		ext4_error_inode(inode, function, line, 0,
4777 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4778 		ret = -EFSCORRUPTED;
4779 		goto bad_inode;
4780 	}
4781 	ei->i_disksize = inode->i_size;
4782 #ifdef CONFIG_QUOTA
4783 	ei->i_reserved_quota = 0;
4784 #endif
4785 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4786 	ei->i_block_group = iloc.block_group;
4787 	ei->i_last_alloc_group = ~0;
4788 	/*
4789 	 * NOTE! The in-memory inode i_data array is in little-endian order
4790 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4791 	 */
4792 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4793 		ei->i_data[block] = raw_inode->i_block[block];
4794 	INIT_LIST_HEAD(&ei->i_orphan);
4795 	ext4_fc_init_inode(&ei->vfs_inode);
4796 
4797 	/*
4798 	 * Set transaction id's of transactions that have to be committed
4799 	 * to finish f[data]sync. We set them to currently running transaction
4800 	 * as we cannot be sure that the inode or some of its metadata isn't
4801 	 * part of the transaction - the inode could have been reclaimed and
4802 	 * now it is reread from disk.
4803 	 */
4804 	if (journal) {
4805 		transaction_t *transaction;
4806 		tid_t tid;
4807 
4808 		read_lock(&journal->j_state_lock);
4809 		if (journal->j_running_transaction)
4810 			transaction = journal->j_running_transaction;
4811 		else
4812 			transaction = journal->j_committing_transaction;
4813 		if (transaction)
4814 			tid = transaction->t_tid;
4815 		else
4816 			tid = journal->j_commit_sequence;
4817 		read_unlock(&journal->j_state_lock);
4818 		ei->i_sync_tid = tid;
4819 		ei->i_datasync_tid = tid;
4820 	}
4821 
4822 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4823 		if (ei->i_extra_isize == 0) {
4824 			/* The extra space is currently unused. Use it. */
4825 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4826 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4827 					    EXT4_GOOD_OLD_INODE_SIZE;
4828 		} else {
4829 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4830 			if (ret)
4831 				goto bad_inode;
4832 		}
4833 	}
4834 
4835 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4836 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4837 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4838 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4839 
4840 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4841 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4842 
4843 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4844 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4845 				ivers |=
4846 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4847 		}
4848 		ext4_inode_set_iversion_queried(inode, ivers);
4849 	}
4850 
4851 	ret = 0;
4852 	if (ei->i_file_acl &&
4853 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4854 		ext4_error_inode(inode, function, line, 0,
4855 				 "iget: bad extended attribute block %llu",
4856 				 ei->i_file_acl);
4857 		ret = -EFSCORRUPTED;
4858 		goto bad_inode;
4859 	} else if (!ext4_has_inline_data(inode)) {
4860 		/* validate the block references in the inode */
4861 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4862 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4863 			(S_ISLNK(inode->i_mode) &&
4864 			!ext4_inode_is_fast_symlink(inode)))) {
4865 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4866 				ret = ext4_ext_check_inode(inode);
4867 			else
4868 				ret = ext4_ind_check_inode(inode);
4869 		}
4870 	}
4871 	if (ret)
4872 		goto bad_inode;
4873 
4874 	if (S_ISREG(inode->i_mode)) {
4875 		inode->i_op = &ext4_file_inode_operations;
4876 		inode->i_fop = &ext4_file_operations;
4877 		ext4_set_aops(inode);
4878 	} else if (S_ISDIR(inode->i_mode)) {
4879 		inode->i_op = &ext4_dir_inode_operations;
4880 		inode->i_fop = &ext4_dir_operations;
4881 	} else if (S_ISLNK(inode->i_mode)) {
4882 		/* VFS does not allow setting these so must be corruption */
4883 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4884 			ext4_error_inode(inode, function, line, 0,
4885 					 "iget: immutable or append flags "
4886 					 "not allowed on symlinks");
4887 			ret = -EFSCORRUPTED;
4888 			goto bad_inode;
4889 		}
4890 		if (IS_ENCRYPTED(inode)) {
4891 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4892 			ext4_set_aops(inode);
4893 		} else if (ext4_inode_is_fast_symlink(inode)) {
4894 			inode->i_link = (char *)ei->i_data;
4895 			inode->i_op = &ext4_fast_symlink_inode_operations;
4896 			nd_terminate_link(ei->i_data, inode->i_size,
4897 				sizeof(ei->i_data) - 1);
4898 		} else {
4899 			inode->i_op = &ext4_symlink_inode_operations;
4900 			ext4_set_aops(inode);
4901 		}
4902 		inode_nohighmem(inode);
4903 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4904 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4905 		inode->i_op = &ext4_special_inode_operations;
4906 		if (raw_inode->i_block[0])
4907 			init_special_inode(inode, inode->i_mode,
4908 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4909 		else
4910 			init_special_inode(inode, inode->i_mode,
4911 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4912 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4913 		make_bad_inode(inode);
4914 	} else {
4915 		ret = -EFSCORRUPTED;
4916 		ext4_error_inode(inode, function, line, 0,
4917 				 "iget: bogus i_mode (%o)", inode->i_mode);
4918 		goto bad_inode;
4919 	}
4920 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4921 		ext4_error_inode(inode, function, line, 0,
4922 				 "casefold flag without casefold feature");
4923 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4924 		ext4_error_inode(inode, function, line, 0, err_str);
4925 		ret = -EFSCORRUPTED;
4926 		goto bad_inode;
4927 	}
4928 
4929 	brelse(iloc.bh);
4930 	unlock_new_inode(inode);
4931 	return inode;
4932 
4933 bad_inode:
4934 	brelse(iloc.bh);
4935 	iget_failed(inode);
4936 	return ERR_PTR(ret);
4937 }
4938 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4939 static int ext4_inode_blocks_set(handle_t *handle,
4940 				struct ext4_inode *raw_inode,
4941 				struct ext4_inode_info *ei)
4942 {
4943 	struct inode *inode = &(ei->vfs_inode);
4944 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4945 	struct super_block *sb = inode->i_sb;
4946 
4947 	if (i_blocks <= ~0U) {
4948 		/*
4949 		 * i_blocks can be represented in a 32 bit variable
4950 		 * as multiple of 512 bytes
4951 		 */
4952 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4953 		raw_inode->i_blocks_high = 0;
4954 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4955 		return 0;
4956 	}
4957 
4958 	/*
4959 	 * This should never happen since sb->s_maxbytes should not have
4960 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4961 	 * feature in ext4_fill_super().
4962 	 */
4963 	if (!ext4_has_feature_huge_file(sb))
4964 		return -EFSCORRUPTED;
4965 
4966 	if (i_blocks <= 0xffffffffffffULL) {
4967 		/*
4968 		 * i_blocks can be represented in a 48 bit variable
4969 		 * as multiple of 512 bytes
4970 		 */
4971 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4972 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4973 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4974 	} else {
4975 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4976 		/* i_block is stored in file system block size */
4977 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4978 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4979 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4980 	}
4981 	return 0;
4982 }
4983 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)4984 static void __ext4_update_other_inode_time(struct super_block *sb,
4985 					   unsigned long orig_ino,
4986 					   unsigned long ino,
4987 					   struct ext4_inode *raw_inode)
4988 {
4989 	struct inode *inode;
4990 
4991 	inode = find_inode_by_ino_rcu(sb, ino);
4992 	if (!inode)
4993 		return;
4994 
4995 	if (!inode_is_dirtytime_only(inode))
4996 		return;
4997 
4998 	spin_lock(&inode->i_lock);
4999 	if (inode_is_dirtytime_only(inode)) {
5000 		struct ext4_inode_info	*ei = EXT4_I(inode);
5001 
5002 		inode->i_state &= ~I_DIRTY_TIME;
5003 		spin_unlock(&inode->i_lock);
5004 
5005 		spin_lock(&ei->i_raw_lock);
5006 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5007 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5008 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5009 		ext4_inode_csum_set(inode, raw_inode, ei);
5010 		spin_unlock(&ei->i_raw_lock);
5011 		trace_ext4_other_inode_update_time(inode, orig_ino);
5012 		return;
5013 	}
5014 	spin_unlock(&inode->i_lock);
5015 }
5016 
5017 /*
5018  * Opportunistically update the other time fields for other inodes in
5019  * the same inode table block.
5020  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5021 static void ext4_update_other_inodes_time(struct super_block *sb,
5022 					  unsigned long orig_ino, char *buf)
5023 {
5024 	unsigned long ino;
5025 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5026 	int inode_size = EXT4_INODE_SIZE(sb);
5027 
5028 	/*
5029 	 * Calculate the first inode in the inode table block.  Inode
5030 	 * numbers are one-based.  That is, the first inode in a block
5031 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5032 	 */
5033 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5034 	rcu_read_lock();
5035 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5036 		if (ino == orig_ino)
5037 			continue;
5038 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5039 					       (struct ext4_inode *)buf);
5040 	}
5041 	rcu_read_unlock();
5042 }
5043 
5044 /*
5045  * Post the struct inode info into an on-disk inode location in the
5046  * buffer-cache.  This gobbles the caller's reference to the
5047  * buffer_head in the inode location struct.
5048  *
5049  * The caller must have write access to iloc->bh.
5050  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5051 static int ext4_do_update_inode(handle_t *handle,
5052 				struct inode *inode,
5053 				struct ext4_iloc *iloc)
5054 {
5055 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5056 	struct ext4_inode_info *ei = EXT4_I(inode);
5057 	struct buffer_head *bh = iloc->bh;
5058 	struct super_block *sb = inode->i_sb;
5059 	int err = 0, block;
5060 	int need_datasync = 0, set_large_file = 0;
5061 	uid_t i_uid;
5062 	gid_t i_gid;
5063 	projid_t i_projid;
5064 
5065 	spin_lock(&ei->i_raw_lock);
5066 
5067 	/*
5068 	 * For fields not tracked in the in-memory inode, initialise them
5069 	 * to zero for new inodes.
5070 	 */
5071 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5072 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5073 
5074 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5075 
5076 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5077 	i_uid = i_uid_read(inode);
5078 	i_gid = i_gid_read(inode);
5079 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5080 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5081 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5082 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5083 		/*
5084 		 * Fix up interoperability with old kernels. Otherwise,
5085 		 * old inodes get re-used with the upper 16 bits of the
5086 		 * uid/gid intact.
5087 		 */
5088 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5089 			raw_inode->i_uid_high = 0;
5090 			raw_inode->i_gid_high = 0;
5091 		} else {
5092 			raw_inode->i_uid_high =
5093 				cpu_to_le16(high_16_bits(i_uid));
5094 			raw_inode->i_gid_high =
5095 				cpu_to_le16(high_16_bits(i_gid));
5096 		}
5097 	} else {
5098 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5099 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5100 		raw_inode->i_uid_high = 0;
5101 		raw_inode->i_gid_high = 0;
5102 	}
5103 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5104 
5105 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5106 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5107 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5108 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5109 
5110 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5111 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5112 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5113 		raw_inode->i_file_acl_high =
5114 			cpu_to_le16(ei->i_file_acl >> 32);
5115 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5116 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5117 		ext4_isize_set(raw_inode, ei->i_disksize);
5118 		need_datasync = 1;
5119 	}
5120 	if (ei->i_disksize > 0x7fffffffULL) {
5121 		if (!ext4_has_feature_large_file(sb) ||
5122 				EXT4_SB(sb)->s_es->s_rev_level ==
5123 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5124 			set_large_file = 1;
5125 	}
5126 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5127 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5128 		if (old_valid_dev(inode->i_rdev)) {
5129 			raw_inode->i_block[0] =
5130 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5131 			raw_inode->i_block[1] = 0;
5132 		} else {
5133 			raw_inode->i_block[0] = 0;
5134 			raw_inode->i_block[1] =
5135 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5136 			raw_inode->i_block[2] = 0;
5137 		}
5138 	} else if (!ext4_has_inline_data(inode)) {
5139 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5140 			raw_inode->i_block[block] = ei->i_data[block];
5141 	}
5142 
5143 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5144 		u64 ivers = ext4_inode_peek_iversion(inode);
5145 
5146 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5147 		if (ei->i_extra_isize) {
5148 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5149 				raw_inode->i_version_hi =
5150 					cpu_to_le32(ivers >> 32);
5151 			raw_inode->i_extra_isize =
5152 				cpu_to_le16(ei->i_extra_isize);
5153 		}
5154 	}
5155 
5156 	if (i_projid != EXT4_DEF_PROJID &&
5157 	    !ext4_has_feature_project(inode->i_sb))
5158 		err = err ?: -EFSCORRUPTED;
5159 
5160 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5161 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5162 		raw_inode->i_projid = cpu_to_le32(i_projid);
5163 
5164 	ext4_inode_csum_set(inode, raw_inode, ei);
5165 	spin_unlock(&ei->i_raw_lock);
5166 	if (err) {
5167 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5168 		goto out_brelse;
5169 	}
5170 
5171 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5172 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5173 					      bh->b_data);
5174 
5175 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5176 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5177 	if (err)
5178 		goto out_error;
5179 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5180 	if (set_large_file) {
5181 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5182 		err = ext4_journal_get_write_access(handle, sb,
5183 						    EXT4_SB(sb)->s_sbh,
5184 						    EXT4_JTR_NONE);
5185 		if (err)
5186 			goto out_error;
5187 		lock_buffer(EXT4_SB(sb)->s_sbh);
5188 		ext4_set_feature_large_file(sb);
5189 		ext4_superblock_csum_set(sb);
5190 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5191 		ext4_handle_sync(handle);
5192 		err = ext4_handle_dirty_metadata(handle, NULL,
5193 						 EXT4_SB(sb)->s_sbh);
5194 	}
5195 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5196 out_error:
5197 	ext4_std_error(inode->i_sb, err);
5198 out_brelse:
5199 	brelse(bh);
5200 	return err;
5201 }
5202 
5203 /*
5204  * ext4_write_inode()
5205  *
5206  * We are called from a few places:
5207  *
5208  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5209  *   Here, there will be no transaction running. We wait for any running
5210  *   transaction to commit.
5211  *
5212  * - Within flush work (sys_sync(), kupdate and such).
5213  *   We wait on commit, if told to.
5214  *
5215  * - Within iput_final() -> write_inode_now()
5216  *   We wait on commit, if told to.
5217  *
5218  * In all cases it is actually safe for us to return without doing anything,
5219  * because the inode has been copied into a raw inode buffer in
5220  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5221  * writeback.
5222  *
5223  * Note that we are absolutely dependent upon all inode dirtiers doing the
5224  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5225  * which we are interested.
5226  *
5227  * It would be a bug for them to not do this.  The code:
5228  *
5229  *	mark_inode_dirty(inode)
5230  *	stuff();
5231  *	inode->i_size = expr;
5232  *
5233  * is in error because write_inode() could occur while `stuff()' is running,
5234  * and the new i_size will be lost.  Plus the inode will no longer be on the
5235  * superblock's dirty inode list.
5236  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5237 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5238 {
5239 	int err;
5240 
5241 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5242 	    sb_rdonly(inode->i_sb))
5243 		return 0;
5244 
5245 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5246 		return -EIO;
5247 
5248 	if (EXT4_SB(inode->i_sb)->s_journal) {
5249 		if (ext4_journal_current_handle()) {
5250 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5251 			dump_stack();
5252 			return -EIO;
5253 		}
5254 
5255 		/*
5256 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5257 		 * ext4_sync_fs() will force the commit after everything is
5258 		 * written.
5259 		 */
5260 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5261 			return 0;
5262 
5263 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5264 						EXT4_I(inode)->i_sync_tid);
5265 	} else {
5266 		struct ext4_iloc iloc;
5267 
5268 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5269 		if (err)
5270 			return err;
5271 		/*
5272 		 * sync(2) will flush the whole buffer cache. No need to do
5273 		 * it here separately for each inode.
5274 		 */
5275 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5276 			sync_dirty_buffer(iloc.bh);
5277 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5278 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5279 					       "IO error syncing inode");
5280 			err = -EIO;
5281 		}
5282 		brelse(iloc.bh);
5283 	}
5284 	return err;
5285 }
5286 
5287 /*
5288  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5289  * buffers that are attached to a page stradding i_size and are undergoing
5290  * commit. In that case we have to wait for commit to finish and try again.
5291  */
ext4_wait_for_tail_page_commit(struct inode * inode)5292 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5293 {
5294 	struct page *page;
5295 	unsigned offset;
5296 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5297 	tid_t commit_tid = 0;
5298 	int ret;
5299 
5300 	offset = inode->i_size & (PAGE_SIZE - 1);
5301 	/*
5302 	 * If the page is fully truncated, we don't need to wait for any commit
5303 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5304 	 * strip all buffers from the page but keep the page dirty which can then
5305 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5306 	 * buffers). Also we don't need to wait for any commit if all buffers in
5307 	 * the page remain valid. This is most beneficial for the common case of
5308 	 * blocksize == PAGESIZE.
5309 	 */
5310 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5311 		return;
5312 	while (1) {
5313 		page = find_lock_page(inode->i_mapping,
5314 				      inode->i_size >> PAGE_SHIFT);
5315 		if (!page)
5316 			return;
5317 		ret = __ext4_journalled_invalidatepage(page, offset,
5318 						PAGE_SIZE - offset);
5319 		unlock_page(page);
5320 		put_page(page);
5321 		if (ret != -EBUSY)
5322 			return;
5323 		commit_tid = 0;
5324 		read_lock(&journal->j_state_lock);
5325 		if (journal->j_committing_transaction)
5326 			commit_tid = journal->j_committing_transaction->t_tid;
5327 		read_unlock(&journal->j_state_lock);
5328 		if (commit_tid)
5329 			jbd2_log_wait_commit(journal, commit_tid);
5330 	}
5331 }
5332 
5333 /*
5334  * ext4_setattr()
5335  *
5336  * Called from notify_change.
5337  *
5338  * We want to trap VFS attempts to truncate the file as soon as
5339  * possible.  In particular, we want to make sure that when the VFS
5340  * shrinks i_size, we put the inode on the orphan list and modify
5341  * i_disksize immediately, so that during the subsequent flushing of
5342  * dirty pages and freeing of disk blocks, we can guarantee that any
5343  * commit will leave the blocks being flushed in an unused state on
5344  * disk.  (On recovery, the inode will get truncated and the blocks will
5345  * be freed, so we have a strong guarantee that no future commit will
5346  * leave these blocks visible to the user.)
5347  *
5348  * Another thing we have to assure is that if we are in ordered mode
5349  * and inode is still attached to the committing transaction, we must
5350  * we start writeout of all the dirty pages which are being truncated.
5351  * This way we are sure that all the data written in the previous
5352  * transaction are already on disk (truncate waits for pages under
5353  * writeback).
5354  *
5355  * Called with inode->i_mutex down.
5356  */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5357 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5358 		 struct iattr *attr)
5359 {
5360 	struct inode *inode = d_inode(dentry);
5361 	int error, rc = 0;
5362 	int orphan = 0;
5363 	const unsigned int ia_valid = attr->ia_valid;
5364 
5365 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5366 		return -EIO;
5367 
5368 	if (unlikely(IS_IMMUTABLE(inode)))
5369 		return -EPERM;
5370 
5371 	if (unlikely(IS_APPEND(inode) &&
5372 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5373 				  ATTR_GID | ATTR_TIMES_SET))))
5374 		return -EPERM;
5375 
5376 	error = setattr_prepare(mnt_userns, dentry, attr);
5377 	if (error)
5378 		return error;
5379 
5380 	error = fscrypt_prepare_setattr(dentry, attr);
5381 	if (error)
5382 		return error;
5383 
5384 	error = fsverity_prepare_setattr(dentry, attr);
5385 	if (error)
5386 		return error;
5387 
5388 	if (is_quota_modification(inode, attr)) {
5389 		error = dquot_initialize(inode);
5390 		if (error)
5391 			return error;
5392 	}
5393 
5394 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5395 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5396 		handle_t *handle;
5397 
5398 		/* (user+group)*(old+new) structure, inode write (sb,
5399 		 * inode block, ? - but truncate inode update has it) */
5400 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5401 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5402 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5403 		if (IS_ERR(handle)) {
5404 			error = PTR_ERR(handle);
5405 			goto err_out;
5406 		}
5407 
5408 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5409 		 * counts xattr inode references.
5410 		 */
5411 		down_read(&EXT4_I(inode)->xattr_sem);
5412 		error = dquot_transfer(inode, attr);
5413 		up_read(&EXT4_I(inode)->xattr_sem);
5414 
5415 		if (error) {
5416 			ext4_journal_stop(handle);
5417 			return error;
5418 		}
5419 		/* Update corresponding info in inode so that everything is in
5420 		 * one transaction */
5421 		if (attr->ia_valid & ATTR_UID)
5422 			inode->i_uid = attr->ia_uid;
5423 		if (attr->ia_valid & ATTR_GID)
5424 			inode->i_gid = attr->ia_gid;
5425 		error = ext4_mark_inode_dirty(handle, inode);
5426 		ext4_journal_stop(handle);
5427 		if (unlikely(error)) {
5428 			return error;
5429 		}
5430 	}
5431 
5432 	if (attr->ia_valid & ATTR_SIZE) {
5433 		handle_t *handle;
5434 		loff_t oldsize = inode->i_size;
5435 		loff_t old_disksize;
5436 		int shrink = (attr->ia_size < inode->i_size);
5437 
5438 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5439 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5440 
5441 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5442 				return -EFBIG;
5443 			}
5444 		}
5445 		if (!S_ISREG(inode->i_mode)) {
5446 			return -EINVAL;
5447 		}
5448 
5449 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5450 			inode_inc_iversion(inode);
5451 
5452 		if (shrink) {
5453 			if (ext4_should_order_data(inode)) {
5454 				error = ext4_begin_ordered_truncate(inode,
5455 							    attr->ia_size);
5456 				if (error)
5457 					goto err_out;
5458 			}
5459 			/*
5460 			 * Blocks are going to be removed from the inode. Wait
5461 			 * for dio in flight.
5462 			 */
5463 			inode_dio_wait(inode);
5464 		}
5465 
5466 		filemap_invalidate_lock(inode->i_mapping);
5467 
5468 		rc = ext4_break_layouts(inode);
5469 		if (rc) {
5470 			filemap_invalidate_unlock(inode->i_mapping);
5471 			goto err_out;
5472 		}
5473 
5474 		if (attr->ia_size != inode->i_size) {
5475 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5476 			if (IS_ERR(handle)) {
5477 				error = PTR_ERR(handle);
5478 				goto out_mmap_sem;
5479 			}
5480 			if (ext4_handle_valid(handle) && shrink) {
5481 				error = ext4_orphan_add(handle, inode);
5482 				orphan = 1;
5483 			}
5484 			/*
5485 			 * Update c/mtime on truncate up, ext4_truncate() will
5486 			 * update c/mtime in shrink case below
5487 			 */
5488 			if (!shrink) {
5489 				inode->i_mtime = current_time(inode);
5490 				inode->i_ctime = inode->i_mtime;
5491 			}
5492 
5493 			if (shrink)
5494 				ext4_fc_track_range(handle, inode,
5495 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5496 					inode->i_sb->s_blocksize_bits,
5497 					EXT_MAX_BLOCKS - 1);
5498 			else
5499 				ext4_fc_track_range(
5500 					handle, inode,
5501 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5502 					inode->i_sb->s_blocksize_bits,
5503 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5504 					inode->i_sb->s_blocksize_bits);
5505 
5506 			down_write(&EXT4_I(inode)->i_data_sem);
5507 			old_disksize = EXT4_I(inode)->i_disksize;
5508 			EXT4_I(inode)->i_disksize = attr->ia_size;
5509 			rc = ext4_mark_inode_dirty(handle, inode);
5510 			if (!error)
5511 				error = rc;
5512 			/*
5513 			 * We have to update i_size under i_data_sem together
5514 			 * with i_disksize to avoid races with writeback code
5515 			 * running ext4_wb_update_i_disksize().
5516 			 */
5517 			if (!error)
5518 				i_size_write(inode, attr->ia_size);
5519 			else
5520 				EXT4_I(inode)->i_disksize = old_disksize;
5521 			up_write(&EXT4_I(inode)->i_data_sem);
5522 			ext4_journal_stop(handle);
5523 			if (error)
5524 				goto out_mmap_sem;
5525 			if (!shrink) {
5526 				pagecache_isize_extended(inode, oldsize,
5527 							 inode->i_size);
5528 			} else if (ext4_should_journal_data(inode)) {
5529 				ext4_wait_for_tail_page_commit(inode);
5530 			}
5531 		}
5532 
5533 		/*
5534 		 * Truncate pagecache after we've waited for commit
5535 		 * in data=journal mode to make pages freeable.
5536 		 */
5537 		truncate_pagecache(inode, inode->i_size);
5538 		/*
5539 		 * Call ext4_truncate() even if i_size didn't change to
5540 		 * truncate possible preallocated blocks.
5541 		 */
5542 		if (attr->ia_size <= oldsize) {
5543 			rc = ext4_truncate(inode);
5544 			if (rc)
5545 				error = rc;
5546 		}
5547 out_mmap_sem:
5548 		filemap_invalidate_unlock(inode->i_mapping);
5549 	}
5550 
5551 	if (!error) {
5552 		setattr_copy(mnt_userns, inode, attr);
5553 		mark_inode_dirty(inode);
5554 	}
5555 
5556 	/*
5557 	 * If the call to ext4_truncate failed to get a transaction handle at
5558 	 * all, we need to clean up the in-core orphan list manually.
5559 	 */
5560 	if (orphan && inode->i_nlink)
5561 		ext4_orphan_del(NULL, inode);
5562 
5563 	if (!error && (ia_valid & ATTR_MODE))
5564 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5565 
5566 err_out:
5567 	if  (error)
5568 		ext4_std_error(inode->i_sb, error);
5569 	if (!error)
5570 		error = rc;
5571 	return error;
5572 }
5573 
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5574 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5575 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5576 {
5577 	struct inode *inode = d_inode(path->dentry);
5578 	struct ext4_inode *raw_inode;
5579 	struct ext4_inode_info *ei = EXT4_I(inode);
5580 	unsigned int flags;
5581 
5582 	if ((request_mask & STATX_BTIME) &&
5583 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5584 		stat->result_mask |= STATX_BTIME;
5585 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5586 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5587 	}
5588 
5589 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5590 	if (flags & EXT4_APPEND_FL)
5591 		stat->attributes |= STATX_ATTR_APPEND;
5592 	if (flags & EXT4_COMPR_FL)
5593 		stat->attributes |= STATX_ATTR_COMPRESSED;
5594 	if (flags & EXT4_ENCRYPT_FL)
5595 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5596 	if (flags & EXT4_IMMUTABLE_FL)
5597 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5598 	if (flags & EXT4_NODUMP_FL)
5599 		stat->attributes |= STATX_ATTR_NODUMP;
5600 	if (flags & EXT4_VERITY_FL)
5601 		stat->attributes |= STATX_ATTR_VERITY;
5602 
5603 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5604 				  STATX_ATTR_COMPRESSED |
5605 				  STATX_ATTR_ENCRYPTED |
5606 				  STATX_ATTR_IMMUTABLE |
5607 				  STATX_ATTR_NODUMP |
5608 				  STATX_ATTR_VERITY);
5609 
5610 	generic_fillattr(mnt_userns, inode, stat);
5611 	return 0;
5612 }
5613 
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5614 int ext4_file_getattr(struct user_namespace *mnt_userns,
5615 		      const struct path *path, struct kstat *stat,
5616 		      u32 request_mask, unsigned int query_flags)
5617 {
5618 	struct inode *inode = d_inode(path->dentry);
5619 	u64 delalloc_blocks;
5620 
5621 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5622 
5623 	/*
5624 	 * If there is inline data in the inode, the inode will normally not
5625 	 * have data blocks allocated (it may have an external xattr block).
5626 	 * Report at least one sector for such files, so tools like tar, rsync,
5627 	 * others don't incorrectly think the file is completely sparse.
5628 	 */
5629 	if (unlikely(ext4_has_inline_data(inode)))
5630 		stat->blocks += (stat->size + 511) >> 9;
5631 
5632 	/*
5633 	 * We can't update i_blocks if the block allocation is delayed
5634 	 * otherwise in the case of system crash before the real block
5635 	 * allocation is done, we will have i_blocks inconsistent with
5636 	 * on-disk file blocks.
5637 	 * We always keep i_blocks updated together with real
5638 	 * allocation. But to not confuse with user, stat
5639 	 * will return the blocks that include the delayed allocation
5640 	 * blocks for this file.
5641 	 */
5642 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5643 				   EXT4_I(inode)->i_reserved_data_blocks);
5644 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5645 	return 0;
5646 }
5647 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5648 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5649 				   int pextents)
5650 {
5651 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5652 		return ext4_ind_trans_blocks(inode, lblocks);
5653 	return ext4_ext_index_trans_blocks(inode, pextents);
5654 }
5655 
5656 /*
5657  * Account for index blocks, block groups bitmaps and block group
5658  * descriptor blocks if modify datablocks and index blocks
5659  * worse case, the indexs blocks spread over different block groups
5660  *
5661  * If datablocks are discontiguous, they are possible to spread over
5662  * different block groups too. If they are contiguous, with flexbg,
5663  * they could still across block group boundary.
5664  *
5665  * Also account for superblock, inode, quota and xattr blocks
5666  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5667 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5668 				  int pextents)
5669 {
5670 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5671 	int gdpblocks;
5672 	int idxblocks;
5673 	int ret = 0;
5674 
5675 	/*
5676 	 * How many index blocks need to touch to map @lblocks logical blocks
5677 	 * to @pextents physical extents?
5678 	 */
5679 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5680 
5681 	ret = idxblocks;
5682 
5683 	/*
5684 	 * Now let's see how many group bitmaps and group descriptors need
5685 	 * to account
5686 	 */
5687 	groups = idxblocks + pextents;
5688 	gdpblocks = groups;
5689 	if (groups > ngroups)
5690 		groups = ngroups;
5691 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5692 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5693 
5694 	/* bitmaps and block group descriptor blocks */
5695 	ret += groups + gdpblocks;
5696 
5697 	/* Blocks for super block, inode, quota and xattr blocks */
5698 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5699 
5700 	return ret;
5701 }
5702 
5703 /*
5704  * Calculate the total number of credits to reserve to fit
5705  * the modification of a single pages into a single transaction,
5706  * which may include multiple chunks of block allocations.
5707  *
5708  * This could be called via ext4_write_begin()
5709  *
5710  * We need to consider the worse case, when
5711  * one new block per extent.
5712  */
ext4_writepage_trans_blocks(struct inode * inode)5713 int ext4_writepage_trans_blocks(struct inode *inode)
5714 {
5715 	int bpp = ext4_journal_blocks_per_page(inode);
5716 	int ret;
5717 
5718 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5719 
5720 	/* Account for data blocks for journalled mode */
5721 	if (ext4_should_journal_data(inode))
5722 		ret += bpp;
5723 	return ret;
5724 }
5725 
5726 /*
5727  * Calculate the journal credits for a chunk of data modification.
5728  *
5729  * This is called from DIO, fallocate or whoever calling
5730  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5731  *
5732  * journal buffers for data blocks are not included here, as DIO
5733  * and fallocate do no need to journal data buffers.
5734  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5735 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5736 {
5737 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5738 }
5739 
5740 /*
5741  * The caller must have previously called ext4_reserve_inode_write().
5742  * Give this, we know that the caller already has write access to iloc->bh.
5743  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5744 int ext4_mark_iloc_dirty(handle_t *handle,
5745 			 struct inode *inode, struct ext4_iloc *iloc)
5746 {
5747 	int err = 0;
5748 
5749 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5750 		put_bh(iloc->bh);
5751 		return -EIO;
5752 	}
5753 	ext4_fc_track_inode(handle, inode);
5754 
5755 	/*
5756 	 * ea_inodes are using i_version for storing reference count, don't
5757 	 * mess with it
5758 	 */
5759 	if (IS_I_VERSION(inode) &&
5760 	    !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5761 		inode_inc_iversion(inode);
5762 
5763 	/* the do_update_inode consumes one bh->b_count */
5764 	get_bh(iloc->bh);
5765 
5766 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5767 	err = ext4_do_update_inode(handle, inode, iloc);
5768 	put_bh(iloc->bh);
5769 	return err;
5770 }
5771 
5772 /*
5773  * On success, We end up with an outstanding reference count against
5774  * iloc->bh.  This _must_ be cleaned up later.
5775  */
5776 
5777 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5778 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5779 			 struct ext4_iloc *iloc)
5780 {
5781 	int err;
5782 
5783 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5784 		return -EIO;
5785 
5786 	err = ext4_get_inode_loc(inode, iloc);
5787 	if (!err) {
5788 		BUFFER_TRACE(iloc->bh, "get_write_access");
5789 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5790 						    iloc->bh, EXT4_JTR_NONE);
5791 		if (err) {
5792 			brelse(iloc->bh);
5793 			iloc->bh = NULL;
5794 		}
5795 	}
5796 	ext4_std_error(inode->i_sb, err);
5797 	return err;
5798 }
5799 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5800 static int __ext4_expand_extra_isize(struct inode *inode,
5801 				     unsigned int new_extra_isize,
5802 				     struct ext4_iloc *iloc,
5803 				     handle_t *handle, int *no_expand)
5804 {
5805 	struct ext4_inode *raw_inode;
5806 	struct ext4_xattr_ibody_header *header;
5807 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5808 	struct ext4_inode_info *ei = EXT4_I(inode);
5809 	int error;
5810 
5811 	/* this was checked at iget time, but double check for good measure */
5812 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5813 	    (ei->i_extra_isize & 3)) {
5814 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5815 				 ei->i_extra_isize,
5816 				 EXT4_INODE_SIZE(inode->i_sb));
5817 		return -EFSCORRUPTED;
5818 	}
5819 	if ((new_extra_isize < ei->i_extra_isize) ||
5820 	    (new_extra_isize < 4) ||
5821 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5822 		return -EINVAL;	/* Should never happen */
5823 
5824 	raw_inode = ext4_raw_inode(iloc);
5825 
5826 	header = IHDR(inode, raw_inode);
5827 
5828 	/* No extended attributes present */
5829 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5830 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5831 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5832 		       EXT4_I(inode)->i_extra_isize, 0,
5833 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5834 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5835 		return 0;
5836 	}
5837 
5838 	/*
5839 	 * We may need to allocate external xattr block so we need quotas
5840 	 * initialized. Here we can be called with various locks held so we
5841 	 * cannot affort to initialize quotas ourselves. So just bail.
5842 	 */
5843 	if (dquot_initialize_needed(inode))
5844 		return -EAGAIN;
5845 
5846 	/* try to expand with EAs present */
5847 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5848 					   raw_inode, handle);
5849 	if (error) {
5850 		/*
5851 		 * Inode size expansion failed; don't try again
5852 		 */
5853 		*no_expand = 1;
5854 	}
5855 
5856 	return error;
5857 }
5858 
5859 /*
5860  * Expand an inode by new_extra_isize bytes.
5861  * Returns 0 on success or negative error number on failure.
5862  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5863 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5864 					  unsigned int new_extra_isize,
5865 					  struct ext4_iloc iloc,
5866 					  handle_t *handle)
5867 {
5868 	int no_expand;
5869 	int error;
5870 
5871 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5872 		return -EOVERFLOW;
5873 
5874 	/*
5875 	 * In nojournal mode, we can immediately attempt to expand
5876 	 * the inode.  When journaled, we first need to obtain extra
5877 	 * buffer credits since we may write into the EA block
5878 	 * with this same handle. If journal_extend fails, then it will
5879 	 * only result in a minor loss of functionality for that inode.
5880 	 * If this is felt to be critical, then e2fsck should be run to
5881 	 * force a large enough s_min_extra_isize.
5882 	 */
5883 	if (ext4_journal_extend(handle,
5884 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5885 		return -ENOSPC;
5886 
5887 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5888 		return -EBUSY;
5889 
5890 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5891 					  handle, &no_expand);
5892 	ext4_write_unlock_xattr(inode, &no_expand);
5893 
5894 	return error;
5895 }
5896 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5897 int ext4_expand_extra_isize(struct inode *inode,
5898 			    unsigned int new_extra_isize,
5899 			    struct ext4_iloc *iloc)
5900 {
5901 	handle_t *handle;
5902 	int no_expand;
5903 	int error, rc;
5904 
5905 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5906 		brelse(iloc->bh);
5907 		return -EOVERFLOW;
5908 	}
5909 
5910 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5911 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5912 	if (IS_ERR(handle)) {
5913 		error = PTR_ERR(handle);
5914 		brelse(iloc->bh);
5915 		return error;
5916 	}
5917 
5918 	ext4_write_lock_xattr(inode, &no_expand);
5919 
5920 	BUFFER_TRACE(iloc->bh, "get_write_access");
5921 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5922 					      EXT4_JTR_NONE);
5923 	if (error) {
5924 		brelse(iloc->bh);
5925 		goto out_unlock;
5926 	}
5927 
5928 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5929 					  handle, &no_expand);
5930 
5931 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5932 	if (!error)
5933 		error = rc;
5934 
5935 out_unlock:
5936 	ext4_write_unlock_xattr(inode, &no_expand);
5937 	ext4_journal_stop(handle);
5938 	return error;
5939 }
5940 
5941 /*
5942  * What we do here is to mark the in-core inode as clean with respect to inode
5943  * dirtiness (it may still be data-dirty).
5944  * This means that the in-core inode may be reaped by prune_icache
5945  * without having to perform any I/O.  This is a very good thing,
5946  * because *any* task may call prune_icache - even ones which
5947  * have a transaction open against a different journal.
5948  *
5949  * Is this cheating?  Not really.  Sure, we haven't written the
5950  * inode out, but prune_icache isn't a user-visible syncing function.
5951  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5952  * we start and wait on commits.
5953  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5954 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5955 				const char *func, unsigned int line)
5956 {
5957 	struct ext4_iloc iloc;
5958 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5959 	int err;
5960 
5961 	might_sleep();
5962 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5963 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5964 	if (err)
5965 		goto out;
5966 
5967 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5968 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5969 					       iloc, handle);
5970 
5971 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5972 out:
5973 	if (unlikely(err))
5974 		ext4_error_inode_err(inode, func, line, 0, err,
5975 					"mark_inode_dirty error");
5976 	return err;
5977 }
5978 
5979 /*
5980  * ext4_dirty_inode() is called from __mark_inode_dirty()
5981  *
5982  * We're really interested in the case where a file is being extended.
5983  * i_size has been changed by generic_commit_write() and we thus need
5984  * to include the updated inode in the current transaction.
5985  *
5986  * Also, dquot_alloc_block() will always dirty the inode when blocks
5987  * are allocated to the file.
5988  *
5989  * If the inode is marked synchronous, we don't honour that here - doing
5990  * so would cause a commit on atime updates, which we don't bother doing.
5991  * We handle synchronous inodes at the highest possible level.
5992  */
ext4_dirty_inode(struct inode * inode,int flags)5993 void ext4_dirty_inode(struct inode *inode, int flags)
5994 {
5995 	handle_t *handle;
5996 
5997 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5998 	if (IS_ERR(handle))
5999 		return;
6000 	ext4_mark_inode_dirty(handle, inode);
6001 	ext4_journal_stop(handle);
6002 }
6003 
ext4_change_inode_journal_flag(struct inode * inode,int val)6004 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6005 {
6006 	journal_t *journal;
6007 	handle_t *handle;
6008 	int err;
6009 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6010 
6011 	/*
6012 	 * We have to be very careful here: changing a data block's
6013 	 * journaling status dynamically is dangerous.  If we write a
6014 	 * data block to the journal, change the status and then delete
6015 	 * that block, we risk forgetting to revoke the old log record
6016 	 * from the journal and so a subsequent replay can corrupt data.
6017 	 * So, first we make sure that the journal is empty and that
6018 	 * nobody is changing anything.
6019 	 */
6020 
6021 	journal = EXT4_JOURNAL(inode);
6022 	if (!journal)
6023 		return 0;
6024 	if (is_journal_aborted(journal))
6025 		return -EROFS;
6026 
6027 	/* Wait for all existing dio workers */
6028 	inode_dio_wait(inode);
6029 
6030 	/*
6031 	 * Before flushing the journal and switching inode's aops, we have
6032 	 * to flush all dirty data the inode has. There can be outstanding
6033 	 * delayed allocations, there can be unwritten extents created by
6034 	 * fallocate or buffered writes in dioread_nolock mode covered by
6035 	 * dirty data which can be converted only after flushing the dirty
6036 	 * data (and journalled aops don't know how to handle these cases).
6037 	 */
6038 	if (val) {
6039 		filemap_invalidate_lock(inode->i_mapping);
6040 		err = filemap_write_and_wait(inode->i_mapping);
6041 		if (err < 0) {
6042 			filemap_invalidate_unlock(inode->i_mapping);
6043 			return err;
6044 		}
6045 	}
6046 
6047 	percpu_down_write(&sbi->s_writepages_rwsem);
6048 	jbd2_journal_lock_updates(journal);
6049 
6050 	/*
6051 	 * OK, there are no updates running now, and all cached data is
6052 	 * synced to disk.  We are now in a completely consistent state
6053 	 * which doesn't have anything in the journal, and we know that
6054 	 * no filesystem updates are running, so it is safe to modify
6055 	 * the inode's in-core data-journaling state flag now.
6056 	 */
6057 
6058 	if (val)
6059 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6060 	else {
6061 		err = jbd2_journal_flush(journal, 0);
6062 		if (err < 0) {
6063 			jbd2_journal_unlock_updates(journal);
6064 			percpu_up_write(&sbi->s_writepages_rwsem);
6065 			return err;
6066 		}
6067 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6068 	}
6069 	ext4_set_aops(inode);
6070 
6071 	jbd2_journal_unlock_updates(journal);
6072 	percpu_up_write(&sbi->s_writepages_rwsem);
6073 
6074 	if (val)
6075 		filemap_invalidate_unlock(inode->i_mapping);
6076 
6077 	/* Finally we can mark the inode as dirty. */
6078 
6079 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6080 	if (IS_ERR(handle))
6081 		return PTR_ERR(handle);
6082 
6083 	ext4_fc_mark_ineligible(inode->i_sb,
6084 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6085 	err = ext4_mark_inode_dirty(handle, inode);
6086 	ext4_handle_sync(handle);
6087 	ext4_journal_stop(handle);
6088 	ext4_std_error(inode->i_sb, err);
6089 
6090 	return err;
6091 }
6092 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6093 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6094 			    struct buffer_head *bh)
6095 {
6096 	return !buffer_mapped(bh);
6097 }
6098 
ext4_page_mkwrite(struct vm_fault * vmf)6099 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6100 {
6101 	struct vm_area_struct *vma = vmf->vma;
6102 	struct page *page = vmf->page;
6103 	loff_t size;
6104 	unsigned long len;
6105 	int err;
6106 	vm_fault_t ret;
6107 	struct file *file = vma->vm_file;
6108 	struct inode *inode = file_inode(file);
6109 	struct address_space *mapping = inode->i_mapping;
6110 	handle_t *handle;
6111 	get_block_t *get_block;
6112 	int retries = 0;
6113 
6114 	if (unlikely(IS_IMMUTABLE(inode)))
6115 		return VM_FAULT_SIGBUS;
6116 
6117 	sb_start_pagefault(inode->i_sb);
6118 	file_update_time(vma->vm_file);
6119 
6120 	filemap_invalidate_lock_shared(mapping);
6121 
6122 	err = ext4_convert_inline_data(inode);
6123 	if (err)
6124 		goto out_ret;
6125 
6126 	/*
6127 	 * On data journalling we skip straight to the transaction handle:
6128 	 * there's no delalloc; page truncated will be checked later; the
6129 	 * early return w/ all buffers mapped (calculates size/len) can't
6130 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6131 	 */
6132 	if (ext4_should_journal_data(inode))
6133 		goto retry_alloc;
6134 
6135 	/* Delalloc case is easy... */
6136 	if (test_opt(inode->i_sb, DELALLOC) &&
6137 	    !ext4_nonda_switch(inode->i_sb)) {
6138 		do {
6139 			err = block_page_mkwrite(vma, vmf,
6140 						   ext4_da_get_block_prep);
6141 		} while (err == -ENOSPC &&
6142 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6143 		goto out_ret;
6144 	}
6145 
6146 	lock_page(page);
6147 	size = i_size_read(inode);
6148 	/* Page got truncated from under us? */
6149 	if (page->mapping != mapping || page_offset(page) > size) {
6150 		unlock_page(page);
6151 		ret = VM_FAULT_NOPAGE;
6152 		goto out;
6153 	}
6154 
6155 	if (page->index == size >> PAGE_SHIFT)
6156 		len = size & ~PAGE_MASK;
6157 	else
6158 		len = PAGE_SIZE;
6159 	/*
6160 	 * Return if we have all the buffers mapped. This avoids the need to do
6161 	 * journal_start/journal_stop which can block and take a long time
6162 	 *
6163 	 * This cannot be done for data journalling, as we have to add the
6164 	 * inode to the transaction's list to writeprotect pages on commit.
6165 	 */
6166 	if (page_has_buffers(page)) {
6167 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6168 					    0, len, NULL,
6169 					    ext4_bh_unmapped)) {
6170 			/* Wait so that we don't change page under IO */
6171 			wait_for_stable_page(page);
6172 			ret = VM_FAULT_LOCKED;
6173 			goto out;
6174 		}
6175 	}
6176 	unlock_page(page);
6177 	/* OK, we need to fill the hole... */
6178 	if (ext4_should_dioread_nolock(inode))
6179 		get_block = ext4_get_block_unwritten;
6180 	else
6181 		get_block = ext4_get_block;
6182 retry_alloc:
6183 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6184 				    ext4_writepage_trans_blocks(inode));
6185 	if (IS_ERR(handle)) {
6186 		ret = VM_FAULT_SIGBUS;
6187 		goto out;
6188 	}
6189 	/*
6190 	 * Data journalling can't use block_page_mkwrite() because it
6191 	 * will set_buffer_dirty() before do_journal_get_write_access()
6192 	 * thus might hit warning messages for dirty metadata buffers.
6193 	 */
6194 	if (!ext4_should_journal_data(inode)) {
6195 		err = block_page_mkwrite(vma, vmf, get_block);
6196 	} else {
6197 		lock_page(page);
6198 		size = i_size_read(inode);
6199 		/* Page got truncated from under us? */
6200 		if (page->mapping != mapping || page_offset(page) > size) {
6201 			ret = VM_FAULT_NOPAGE;
6202 			goto out_error;
6203 		}
6204 
6205 		if (page->index == size >> PAGE_SHIFT)
6206 			len = size & ~PAGE_MASK;
6207 		else
6208 			len = PAGE_SIZE;
6209 
6210 		err = __block_write_begin(page, 0, len, ext4_get_block);
6211 		if (!err) {
6212 			ret = VM_FAULT_SIGBUS;
6213 			if (ext4_walk_page_buffers(handle, inode,
6214 					page_buffers(page), 0, len, NULL,
6215 					do_journal_get_write_access))
6216 				goto out_error;
6217 			if (ext4_walk_page_buffers(handle, inode,
6218 					page_buffers(page), 0, len, NULL,
6219 					write_end_fn))
6220 				goto out_error;
6221 			if (ext4_jbd2_inode_add_write(handle, inode,
6222 						      page_offset(page), len))
6223 				goto out_error;
6224 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6225 		} else {
6226 			unlock_page(page);
6227 		}
6228 	}
6229 	ext4_journal_stop(handle);
6230 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6231 		goto retry_alloc;
6232 out_ret:
6233 	ret = block_page_mkwrite_return(err);
6234 out:
6235 	filemap_invalidate_unlock_shared(mapping);
6236 	sb_end_pagefault(inode->i_sb);
6237 	return ret;
6238 out_error:
6239 	unlock_page(page);
6240 	ext4_journal_stop(handle);
6241 	goto out;
6242 }
6243