• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 	if (!PageUptodate(page))
153 		SetPageUptodate(page);
154 
155 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 	f2fs_update_time(sbi, REQ_TIME);
157 
158 	trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 	filemap_invalidate_unlock_shared(inode->i_mapping);
161 
162 	sb_end_pagefault(inode->i_sb);
163 err:
164 	return block_page_mkwrite_return(err);
165 }
166 
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 	.fault		= f2fs_filemap_fault,
169 	.map_pages	= filemap_map_pages,
170 	.page_mkwrite	= f2fs_vm_page_mkwrite,
171 	.speculative	= true,
172 };
173 
get_parent_ino(struct inode * inode,nid_t * pino)174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176 	struct dentry *dentry;
177 
178 	/*
179 	 * Make sure to get the non-deleted alias.  The alias associated with
180 	 * the open file descriptor being fsync()'ed may be deleted already.
181 	 */
182 	dentry = d_find_alias(inode);
183 	if (!dentry)
184 		return 0;
185 
186 	*pino = parent_ino(dentry);
187 	dput(dentry);
188 	return 1;
189 }
190 
need_do_checkpoint(struct inode * inode)191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
195 
196 	if (!S_ISREG(inode->i_mode))
197 		cp_reason = CP_NON_REGULAR;
198 	else if (f2fs_compressed_file(inode))
199 		cp_reason = CP_COMPRESSED;
200 	else if (inode->i_nlink != 1)
201 		cp_reason = CP_HARDLINK;
202 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203 		cp_reason = CP_SB_NEED_CP;
204 	else if (file_wrong_pino(inode))
205 		cp_reason = CP_WRONG_PINO;
206 	else if (!f2fs_space_for_roll_forward(sbi))
207 		cp_reason = CP_NO_SPC_ROLL;
208 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209 		cp_reason = CP_NODE_NEED_CP;
210 	else if (test_opt(sbi, FASTBOOT))
211 		cp_reason = CP_FASTBOOT_MODE;
212 	else if (F2FS_OPTION(sbi).active_logs == 2)
213 		cp_reason = CP_SPEC_LOG_NUM;
214 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 							TRANS_DIR_INO))
218 		cp_reason = CP_RECOVER_DIR;
219 
220 	return cp_reason;
221 }
222 
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 	bool ret = false;
227 	/* But we need to avoid that there are some inode updates */
228 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 		ret = true;
230 	f2fs_put_page(i, 0);
231 	return ret;
232 }
233 
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 	struct f2fs_inode_info *fi = F2FS_I(inode);
237 	nid_t pino;
238 
239 	f2fs_down_write(&fi->i_sem);
240 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 			get_parent_ino(inode, &pino)) {
242 		f2fs_i_pino_write(inode, pino);
243 		file_got_pino(inode);
244 	}
245 	f2fs_up_write(&fi->i_sem);
246 }
247 
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 						int datasync, bool atomic)
250 {
251 	struct inode *inode = file->f_mapping->host;
252 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 	nid_t ino = inode->i_ino;
254 	int ret = 0;
255 	enum cp_reason_type cp_reason = 0;
256 	struct writeback_control wbc = {
257 		.sync_mode = WB_SYNC_ALL,
258 		.nr_to_write = LONG_MAX,
259 		.for_reclaim = 0,
260 	};
261 	unsigned int seq_id = 0;
262 
263 	if (unlikely(f2fs_readonly(inode->i_sb)))
264 		return 0;
265 
266 	trace_f2fs_sync_file_enter(inode);
267 
268 	if (S_ISDIR(inode->i_mode))
269 		goto go_write;
270 
271 	/* if fdatasync is triggered, let's do in-place-update */
272 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 		set_inode_flag(inode, FI_NEED_IPU);
274 	ret = file_write_and_wait_range(file, start, end);
275 	clear_inode_flag(inode, FI_NEED_IPU);
276 
277 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 		return ret;
280 	}
281 
282 	/* if the inode is dirty, let's recover all the time */
283 	if (!f2fs_skip_inode_update(inode, datasync)) {
284 		f2fs_write_inode(inode, NULL);
285 		goto go_write;
286 	}
287 
288 	/*
289 	 * if there is no written data, don't waste time to write recovery info.
290 	 */
291 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293 
294 		/* it may call write_inode just prior to fsync */
295 		if (need_inode_page_update(sbi, ino))
296 			goto go_write;
297 
298 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 			goto flush_out;
301 		goto out;
302 	} else {
303 		/*
304 		 * for OPU case, during fsync(), node can be persisted before
305 		 * data when lower device doesn't support write barrier, result
306 		 * in data corruption after SPO.
307 		 * So for strict fsync mode, force to use atomic write semantics
308 		 * to keep write order in between data/node and last node to
309 		 * avoid potential data corruption.
310 		 */
311 		if (F2FS_OPTION(sbi).fsync_mode ==
312 				FSYNC_MODE_STRICT && !atomic)
313 			atomic = true;
314 	}
315 go_write:
316 	/*
317 	 * Both of fdatasync() and fsync() are able to be recovered from
318 	 * sudden-power-off.
319 	 */
320 	f2fs_down_read(&F2FS_I(inode)->i_sem);
321 	cp_reason = need_do_checkpoint(inode);
322 	f2fs_up_read(&F2FS_I(inode)->i_sem);
323 
324 	if (cp_reason) {
325 		/* all the dirty node pages should be flushed for POR */
326 		ret = f2fs_sync_fs(inode->i_sb, 1);
327 
328 		/*
329 		 * We've secured consistency through sync_fs. Following pino
330 		 * will be used only for fsynced inodes after checkpoint.
331 		 */
332 		try_to_fix_pino(inode);
333 		clear_inode_flag(inode, FI_APPEND_WRITE);
334 		clear_inode_flag(inode, FI_UPDATE_WRITE);
335 		goto out;
336 	}
337 sync_nodes:
338 	atomic_inc(&sbi->wb_sync_req[NODE]);
339 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 	atomic_dec(&sbi->wb_sync_req[NODE]);
341 	if (ret)
342 		goto out;
343 
344 	/* if cp_error was enabled, we should avoid infinite loop */
345 	if (unlikely(f2fs_cp_error(sbi))) {
346 		ret = -EIO;
347 		goto out;
348 	}
349 
350 	if (f2fs_need_inode_block_update(sbi, ino)) {
351 		f2fs_mark_inode_dirty_sync(inode, true);
352 		f2fs_write_inode(inode, NULL);
353 		goto sync_nodes;
354 	}
355 
356 	/*
357 	 * If it's atomic_write, it's just fine to keep write ordering. So
358 	 * here we don't need to wait for node write completion, since we use
359 	 * node chain which serializes node blocks. If one of node writes are
360 	 * reordered, we can see simply broken chain, resulting in stopping
361 	 * roll-forward recovery. It means we'll recover all or none node blocks
362 	 * given fsync mark.
363 	 */
364 	if (!atomic) {
365 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 		if (ret)
367 			goto out;
368 	}
369 
370 	/* once recovery info is written, don't need to tack this */
371 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 	clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 		ret = f2fs_issue_flush(sbi, inode->i_ino);
377 	if (!ret) {
378 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 		clear_inode_flag(inode, FI_UPDATE_WRITE);
380 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 	}
382 	f2fs_update_time(sbi, REQ_TIME);
383 out:
384 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 	return ret;
386 }
387 
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 		return -EIO;
392 	return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394 
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 				pgoff_t index, int whence)
397 {
398 	switch (whence) {
399 	case SEEK_DATA:
400 		if (__is_valid_data_blkaddr(blkaddr))
401 			return true;
402 		if (blkaddr == NEW_ADDR &&
403 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 			return true;
405 		break;
406 	case SEEK_HOLE:
407 		if (blkaddr == NULL_ADDR)
408 			return true;
409 		break;
410 	}
411 	return false;
412 }
413 
f2fs_seek_block(struct file * file,loff_t offset,int whence)414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 	struct inode *inode = file->f_mapping->host;
417 	loff_t maxbytes = inode->i_sb->s_maxbytes;
418 	struct dnode_of_data dn;
419 	pgoff_t pgofs, end_offset;
420 	loff_t data_ofs = offset;
421 	loff_t isize;
422 	int err = 0;
423 
424 	inode_lock(inode);
425 
426 	isize = i_size_read(inode);
427 	if (offset >= isize)
428 		goto fail;
429 
430 	/* handle inline data case */
431 	if (f2fs_has_inline_data(inode)) {
432 		if (whence == SEEK_HOLE) {
433 			data_ofs = isize;
434 			goto found;
435 		} else if (whence == SEEK_DATA) {
436 			data_ofs = offset;
437 			goto found;
438 		}
439 	}
440 
441 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442 
443 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 		set_new_dnode(&dn, inode, NULL, NULL, 0);
445 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 		if (err && err != -ENOENT) {
447 			goto fail;
448 		} else if (err == -ENOENT) {
449 			/* direct node does not exists */
450 			if (whence == SEEK_DATA) {
451 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 				continue;
453 			} else {
454 				goto found;
455 			}
456 		}
457 
458 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459 
460 		/* find data/hole in dnode block */
461 		for (; dn.ofs_in_node < end_offset;
462 				dn.ofs_in_node++, pgofs++,
463 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 			block_t blkaddr;
465 
466 			blkaddr = f2fs_data_blkaddr(&dn);
467 
468 			if (__is_valid_data_blkaddr(blkaddr) &&
469 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 					blkaddr, DATA_GENERIC_ENHANCE)) {
471 				f2fs_put_dnode(&dn);
472 				goto fail;
473 			}
474 
475 			if (__found_offset(file->f_mapping, blkaddr,
476 							pgofs, whence)) {
477 				f2fs_put_dnode(&dn);
478 				goto found;
479 			}
480 		}
481 		f2fs_put_dnode(&dn);
482 	}
483 
484 	if (whence == SEEK_DATA)
485 		goto fail;
486 found:
487 	if (whence == SEEK_HOLE && data_ofs > isize)
488 		data_ofs = isize;
489 	inode_unlock(inode);
490 	return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 	inode_unlock(inode);
493 	return -ENXIO;
494 }
495 
f2fs_llseek(struct file * file,loff_t offset,int whence)496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 	struct inode *inode = file->f_mapping->host;
499 	loff_t maxbytes = inode->i_sb->s_maxbytes;
500 
501 	if (f2fs_compressed_file(inode))
502 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503 
504 	switch (whence) {
505 	case SEEK_SET:
506 	case SEEK_CUR:
507 	case SEEK_END:
508 		return generic_file_llseek_size(file, offset, whence,
509 						maxbytes, i_size_read(inode));
510 	case SEEK_DATA:
511 	case SEEK_HOLE:
512 		if (offset < 0)
513 			return -ENXIO;
514 		return f2fs_seek_block(file, offset, whence);
515 	}
516 
517 	return -EINVAL;
518 }
519 
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 	struct inode *inode = file_inode(file);
523 
524 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 		return -EIO;
526 
527 	if (!f2fs_is_compress_backend_ready(inode))
528 		return -EOPNOTSUPP;
529 
530 	file_accessed(file);
531 	vma->vm_ops = &f2fs_file_vm_ops;
532 	set_inode_flag(inode, FI_MMAP_FILE);
533 	return 0;
534 }
535 
f2fs_file_open(struct inode * inode,struct file * filp)536 static int f2fs_file_open(struct inode *inode, struct file *filp)
537 {
538 	int err = fscrypt_file_open(inode, filp);
539 
540 	if (err)
541 		return err;
542 
543 	if (!f2fs_is_compress_backend_ready(inode))
544 		return -EOPNOTSUPP;
545 
546 	err = fsverity_file_open(inode, filp);
547 	if (err)
548 		return err;
549 
550 	filp->f_mode |= FMODE_NOWAIT;
551 
552 	return dquot_file_open(inode, filp);
553 }
554 
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
556 {
557 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558 	struct f2fs_node *raw_node;
559 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
560 	__le32 *addr;
561 	int base = 0;
562 	bool compressed_cluster = false;
563 	int cluster_index = 0, valid_blocks = 0;
564 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566 
567 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
568 		base = get_extra_isize(dn->inode);
569 
570 	raw_node = F2FS_NODE(dn->node_page);
571 	addr = blkaddr_in_node(raw_node) + base + ofs;
572 
573 	/* Assumption: truncation starts with cluster */
574 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
575 		block_t blkaddr = le32_to_cpu(*addr);
576 
577 		if (f2fs_compressed_file(dn->inode) &&
578 					!(cluster_index & (cluster_size - 1))) {
579 			if (compressed_cluster)
580 				f2fs_i_compr_blocks_update(dn->inode,
581 							valid_blocks, false);
582 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
583 			valid_blocks = 0;
584 		}
585 
586 		if (blkaddr == NULL_ADDR)
587 			continue;
588 
589 		dn->data_blkaddr = NULL_ADDR;
590 		f2fs_set_data_blkaddr(dn);
591 
592 		if (__is_valid_data_blkaddr(blkaddr)) {
593 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 					DATA_GENERIC_ENHANCE))
595 				continue;
596 			if (compressed_cluster)
597 				valid_blocks++;
598 		}
599 
600 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
601 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
602 
603 		f2fs_invalidate_blocks(sbi, blkaddr);
604 
605 		if (!released || blkaddr != COMPRESS_ADDR)
606 			nr_free++;
607 	}
608 
609 	if (compressed_cluster)
610 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
611 
612 	if (nr_free) {
613 		pgoff_t fofs;
614 		/*
615 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
616 		 * we will invalidate all blkaddr in the whole range.
617 		 */
618 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
619 							dn->inode) + ofs;
620 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
621 		f2fs_update_age_extent_cache_range(dn, fofs, len);
622 		dec_valid_block_count(sbi, dn->inode, nr_free);
623 	}
624 	dn->ofs_in_node = ofs;
625 
626 	f2fs_update_time(sbi, REQ_TIME);
627 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628 					 dn->ofs_in_node, nr_free);
629 }
630 
f2fs_truncate_data_blocks(struct dnode_of_data * dn)631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635 
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637 								bool cache_only)
638 {
639 	loff_t offset = from & (PAGE_SIZE - 1);
640 	pgoff_t index = from >> PAGE_SHIFT;
641 	struct address_space *mapping = inode->i_mapping;
642 	struct page *page;
643 
644 	if (!offset && !cache_only)
645 		return 0;
646 
647 	if (cache_only) {
648 		page = find_lock_page(mapping, index);
649 		if (page && PageUptodate(page))
650 			goto truncate_out;
651 		f2fs_put_page(page, 1);
652 		return 0;
653 	}
654 
655 	page = f2fs_get_lock_data_page(inode, index, true);
656 	if (IS_ERR(page))
657 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659 	f2fs_wait_on_page_writeback(page, DATA, true, true);
660 	zero_user(page, offset, PAGE_SIZE - offset);
661 
662 	/* An encrypted inode should have a key and truncate the last page. */
663 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664 	if (!cache_only)
665 		set_page_dirty(page);
666 	f2fs_put_page(page, 1);
667 	return 0;
668 }
669 
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 	struct dnode_of_data dn;
674 	pgoff_t free_from;
675 	int count = 0, err = 0;
676 	struct page *ipage;
677 	bool truncate_page = false;
678 
679 	trace_f2fs_truncate_blocks_enter(inode, from);
680 
681 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682 
683 	if (free_from >= max_file_blocks(inode))
684 		goto free_partial;
685 
686 	if (lock)
687 		f2fs_lock_op(sbi);
688 
689 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
690 	if (IS_ERR(ipage)) {
691 		err = PTR_ERR(ipage);
692 		goto out;
693 	}
694 
695 	if (f2fs_has_inline_data(inode)) {
696 		f2fs_truncate_inline_inode(inode, ipage, from);
697 		f2fs_put_page(ipage, 1);
698 		truncate_page = true;
699 		goto out;
700 	}
701 
702 	set_new_dnode(&dn, inode, ipage, NULL, 0);
703 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704 	if (err) {
705 		if (err == -ENOENT)
706 			goto free_next;
707 		goto out;
708 	}
709 
710 	count = ADDRS_PER_PAGE(dn.node_page, inode);
711 
712 	count -= dn.ofs_in_node;
713 	f2fs_bug_on(sbi, count < 0);
714 
715 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716 		f2fs_truncate_data_blocks_range(&dn, count);
717 		free_from += count;
718 	}
719 
720 	f2fs_put_dnode(&dn);
721 free_next:
722 	err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724 	if (lock)
725 		f2fs_unlock_op(sbi);
726 free_partial:
727 	/* lastly zero out the first data page */
728 	if (!err)
729 		err = truncate_partial_data_page(inode, from, truncate_page);
730 
731 	trace_f2fs_truncate_blocks_exit(inode, err);
732 	return err;
733 }
734 
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737 	u64 free_from = from;
738 	int err;
739 
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741 	/*
742 	 * for compressed file, only support cluster size
743 	 * aligned truncation.
744 	 */
745 	if (f2fs_compressed_file(inode))
746 		free_from = round_up(from,
747 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749 
750 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
751 	if (err)
752 		return err;
753 
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755 	/*
756 	 * For compressed file, after release compress blocks, don't allow write
757 	 * direct, but we should allow write direct after truncate to zero.
758 	 */
759 	if (f2fs_compressed_file(inode) && !free_from
760 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762 
763 	if (from != free_from) {
764 		err = f2fs_truncate_partial_cluster(inode, from, lock);
765 		if (err)
766 			return err;
767 	}
768 #endif
769 
770 	return 0;
771 }
772 
f2fs_truncate(struct inode * inode)773 int f2fs_truncate(struct inode *inode)
774 {
775 	int err;
776 
777 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778 		return -EIO;
779 
780 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781 				S_ISLNK(inode->i_mode)))
782 		return 0;
783 
784 	trace_f2fs_truncate(inode);
785 
786 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
787 		return -EIO;
788 
789 	err = f2fs_dquot_initialize(inode);
790 	if (err)
791 		return err;
792 
793 	/* we should check inline_data size */
794 	if (!f2fs_may_inline_data(inode)) {
795 		err = f2fs_convert_inline_inode(inode);
796 		if (err)
797 			return err;
798 	}
799 
800 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801 	if (err)
802 		return err;
803 
804 	inode->i_mtime = inode->i_ctime = current_time(inode);
805 	f2fs_mark_inode_dirty_sync(inode, false);
806 	return 0;
807 }
808 
f2fs_force_buffered_io(struct inode * inode,int rw)809 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
810 {
811 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812 
813 	if (!fscrypt_dio_supported(inode))
814 		return true;
815 	if (fsverity_active(inode))
816 		return true;
817 	if (f2fs_compressed_file(inode))
818 		return true;
819 
820 	/* disallow direct IO if any of devices has unaligned blksize */
821 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
822 		return true;
823 	/*
824 	 * for blkzoned device, fallback direct IO to buffered IO, so
825 	 * all IOs can be serialized by log-structured write.
826 	 */
827 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
828 		return true;
829 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
830 		return true;
831 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
832 		return true;
833 
834 	return false;
835 }
836 
f2fs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)837 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
838 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
839 {
840 	struct inode *inode = d_inode(path->dentry);
841 	struct f2fs_inode_info *fi = F2FS_I(inode);
842 	struct f2fs_inode *ri = NULL;
843 	unsigned int flags;
844 
845 	if (f2fs_has_extra_attr(inode) &&
846 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
847 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
848 		stat->result_mask |= STATX_BTIME;
849 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
850 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
851 	}
852 
853 	flags = fi->i_flags;
854 	if (flags & F2FS_COMPR_FL)
855 		stat->attributes |= STATX_ATTR_COMPRESSED;
856 	if (flags & F2FS_APPEND_FL)
857 		stat->attributes |= STATX_ATTR_APPEND;
858 	if (IS_ENCRYPTED(inode))
859 		stat->attributes |= STATX_ATTR_ENCRYPTED;
860 	if (flags & F2FS_IMMUTABLE_FL)
861 		stat->attributes |= STATX_ATTR_IMMUTABLE;
862 	if (flags & F2FS_NODUMP_FL)
863 		stat->attributes |= STATX_ATTR_NODUMP;
864 	if (IS_VERITY(inode))
865 		stat->attributes |= STATX_ATTR_VERITY;
866 
867 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
868 				  STATX_ATTR_APPEND |
869 				  STATX_ATTR_ENCRYPTED |
870 				  STATX_ATTR_IMMUTABLE |
871 				  STATX_ATTR_NODUMP |
872 				  STATX_ATTR_VERITY);
873 
874 	generic_fillattr(mnt_userns, inode, stat);
875 
876 	/* we need to show initial sectors used for inline_data/dentries */
877 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
878 					f2fs_has_inline_dentry(inode))
879 		stat->blocks += (stat->size + 511) >> 9;
880 
881 	return 0;
882 }
883 
884 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct user_namespace * mnt_userns,struct inode * inode,const struct iattr * attr)885 static void __setattr_copy(struct user_namespace *mnt_userns,
886 			   struct inode *inode, const struct iattr *attr)
887 {
888 	unsigned int ia_valid = attr->ia_valid;
889 
890 	if (ia_valid & ATTR_UID)
891 		inode->i_uid = attr->ia_uid;
892 	if (ia_valid & ATTR_GID)
893 		inode->i_gid = attr->ia_gid;
894 	if (ia_valid & ATTR_ATIME)
895 		inode->i_atime = attr->ia_atime;
896 	if (ia_valid & ATTR_MTIME)
897 		inode->i_mtime = attr->ia_mtime;
898 	if (ia_valid & ATTR_CTIME)
899 		inode->i_ctime = attr->ia_ctime;
900 	if (ia_valid & ATTR_MODE) {
901 		umode_t mode = attr->ia_mode;
902 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
903 
904 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
905 			mode &= ~S_ISGID;
906 		set_acl_inode(inode, mode);
907 	}
908 }
909 #else
910 #define __setattr_copy setattr_copy
911 #endif
912 
f2fs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)913 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
914 		 struct iattr *attr)
915 {
916 	struct inode *inode = d_inode(dentry);
917 	int err;
918 
919 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
920 		return -EIO;
921 
922 	if (unlikely(IS_IMMUTABLE(inode)))
923 		return -EPERM;
924 
925 	if (unlikely(IS_APPEND(inode) &&
926 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
927 				  ATTR_GID | ATTR_TIMES_SET))))
928 		return -EPERM;
929 
930 	if ((attr->ia_valid & ATTR_SIZE) &&
931 		!f2fs_is_compress_backend_ready(inode))
932 		return -EOPNOTSUPP;
933 
934 	err = setattr_prepare(mnt_userns, dentry, attr);
935 	if (err)
936 		return err;
937 
938 	err = fscrypt_prepare_setattr(dentry, attr);
939 	if (err)
940 		return err;
941 
942 	err = fsverity_prepare_setattr(dentry, attr);
943 	if (err)
944 		return err;
945 
946 	if (is_quota_modification(inode, attr)) {
947 		err = f2fs_dquot_initialize(inode);
948 		if (err)
949 			return err;
950 	}
951 	if ((attr->ia_valid & ATTR_UID &&
952 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
953 		(attr->ia_valid & ATTR_GID &&
954 		!gid_eq(attr->ia_gid, inode->i_gid))) {
955 		f2fs_lock_op(F2FS_I_SB(inode));
956 		err = dquot_transfer(inode, attr);
957 		if (err) {
958 			set_sbi_flag(F2FS_I_SB(inode),
959 					SBI_QUOTA_NEED_REPAIR);
960 			f2fs_unlock_op(F2FS_I_SB(inode));
961 			return err;
962 		}
963 		/*
964 		 * update uid/gid under lock_op(), so that dquot and inode can
965 		 * be updated atomically.
966 		 */
967 		if (attr->ia_valid & ATTR_UID)
968 			inode->i_uid = attr->ia_uid;
969 		if (attr->ia_valid & ATTR_GID)
970 			inode->i_gid = attr->ia_gid;
971 		f2fs_mark_inode_dirty_sync(inode, true);
972 		f2fs_unlock_op(F2FS_I_SB(inode));
973 	}
974 
975 	if (attr->ia_valid & ATTR_SIZE) {
976 		loff_t old_size = i_size_read(inode);
977 
978 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
979 			/*
980 			 * should convert inline inode before i_size_write to
981 			 * keep smaller than inline_data size with inline flag.
982 			 */
983 			err = f2fs_convert_inline_inode(inode);
984 			if (err)
985 				return err;
986 		}
987 
988 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
989 		filemap_invalidate_lock(inode->i_mapping);
990 
991 		truncate_setsize(inode, attr->ia_size);
992 
993 		if (attr->ia_size <= old_size)
994 			err = f2fs_truncate(inode);
995 		/*
996 		 * do not trim all blocks after i_size if target size is
997 		 * larger than i_size.
998 		 */
999 		filemap_invalidate_unlock(inode->i_mapping);
1000 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1001 		if (err)
1002 			return err;
1003 
1004 		spin_lock(&F2FS_I(inode)->i_size_lock);
1005 		inode->i_mtime = inode->i_ctime = current_time(inode);
1006 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1007 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1008 	}
1009 
1010 	__setattr_copy(mnt_userns, inode, attr);
1011 
1012 	if (attr->ia_valid & ATTR_MODE) {
1013 		err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
1014 
1015 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1016 			if (!err)
1017 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1018 			clear_inode_flag(inode, FI_ACL_MODE);
1019 		}
1020 	}
1021 
1022 	/* file size may changed here */
1023 	f2fs_mark_inode_dirty_sync(inode, true);
1024 
1025 	/* inode change will produce dirty node pages flushed by checkpoint */
1026 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1027 
1028 	return err;
1029 }
1030 
1031 const struct inode_operations f2fs_file_inode_operations = {
1032 	.getattr	= f2fs_getattr,
1033 	.setattr	= f2fs_setattr,
1034 	.get_acl	= f2fs_get_acl,
1035 	.set_acl	= f2fs_set_acl,
1036 	.listxattr	= f2fs_listxattr,
1037 	.fiemap		= f2fs_fiemap,
1038 	.fileattr_get	= f2fs_fileattr_get,
1039 	.fileattr_set	= f2fs_fileattr_set,
1040 };
1041 
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1042 static int fill_zero(struct inode *inode, pgoff_t index,
1043 					loff_t start, loff_t len)
1044 {
1045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 	struct page *page;
1047 
1048 	if (!len)
1049 		return 0;
1050 
1051 	f2fs_balance_fs(sbi, true);
1052 
1053 	f2fs_lock_op(sbi);
1054 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1055 	f2fs_unlock_op(sbi);
1056 
1057 	if (IS_ERR(page))
1058 		return PTR_ERR(page);
1059 
1060 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1061 	zero_user(page, start, len);
1062 	set_page_dirty(page);
1063 	f2fs_put_page(page, 1);
1064 	return 0;
1065 }
1066 
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1067 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1068 {
1069 	int err;
1070 
1071 	while (pg_start < pg_end) {
1072 		struct dnode_of_data dn;
1073 		pgoff_t end_offset, count;
1074 
1075 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1076 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1077 		if (err) {
1078 			if (err == -ENOENT) {
1079 				pg_start = f2fs_get_next_page_offset(&dn,
1080 								pg_start);
1081 				continue;
1082 			}
1083 			return err;
1084 		}
1085 
1086 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1087 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1088 
1089 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1090 
1091 		f2fs_truncate_data_blocks_range(&dn, count);
1092 		f2fs_put_dnode(&dn);
1093 
1094 		pg_start += count;
1095 	}
1096 	return 0;
1097 }
1098 
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1099 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1100 {
1101 	pgoff_t pg_start, pg_end;
1102 	loff_t off_start, off_end;
1103 	int ret;
1104 
1105 	ret = f2fs_convert_inline_inode(inode);
1106 	if (ret)
1107 		return ret;
1108 
1109 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1110 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1111 
1112 	off_start = offset & (PAGE_SIZE - 1);
1113 	off_end = (offset + len) & (PAGE_SIZE - 1);
1114 
1115 	if (pg_start == pg_end) {
1116 		ret = fill_zero(inode, pg_start, off_start,
1117 						off_end - off_start);
1118 		if (ret)
1119 			return ret;
1120 	} else {
1121 		if (off_start) {
1122 			ret = fill_zero(inode, pg_start++, off_start,
1123 						PAGE_SIZE - off_start);
1124 			if (ret)
1125 				return ret;
1126 		}
1127 		if (off_end) {
1128 			ret = fill_zero(inode, pg_end, 0, off_end);
1129 			if (ret)
1130 				return ret;
1131 		}
1132 
1133 		if (pg_start < pg_end) {
1134 			loff_t blk_start, blk_end;
1135 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 
1137 			f2fs_balance_fs(sbi, true);
1138 
1139 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1140 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1141 
1142 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1143 			filemap_invalidate_lock(inode->i_mapping);
1144 
1145 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1146 
1147 			f2fs_lock_op(sbi);
1148 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1149 			f2fs_unlock_op(sbi);
1150 
1151 			filemap_invalidate_unlock(inode->i_mapping);
1152 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 		}
1154 	}
1155 
1156 	return ret;
1157 }
1158 
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1159 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1160 				int *do_replace, pgoff_t off, pgoff_t len)
1161 {
1162 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1163 	struct dnode_of_data dn;
1164 	int ret, done, i;
1165 
1166 next_dnode:
1167 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1168 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1169 	if (ret && ret != -ENOENT) {
1170 		return ret;
1171 	} else if (ret == -ENOENT) {
1172 		if (dn.max_level == 0)
1173 			return -ENOENT;
1174 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1175 						dn.ofs_in_node, len);
1176 		blkaddr += done;
1177 		do_replace += done;
1178 		goto next;
1179 	}
1180 
1181 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1182 							dn.ofs_in_node, len);
1183 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1184 		*blkaddr = f2fs_data_blkaddr(&dn);
1185 
1186 		if (__is_valid_data_blkaddr(*blkaddr) &&
1187 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1188 					DATA_GENERIC_ENHANCE)) {
1189 			f2fs_put_dnode(&dn);
1190 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1191 			return -EFSCORRUPTED;
1192 		}
1193 
1194 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1195 
1196 			if (f2fs_lfs_mode(sbi)) {
1197 				f2fs_put_dnode(&dn);
1198 				return -EOPNOTSUPP;
1199 			}
1200 
1201 			/* do not invalidate this block address */
1202 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1203 			*do_replace = 1;
1204 		}
1205 	}
1206 	f2fs_put_dnode(&dn);
1207 next:
1208 	len -= done;
1209 	off += done;
1210 	if (len)
1211 		goto next_dnode;
1212 	return 0;
1213 }
1214 
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1215 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1216 				int *do_replace, pgoff_t off, int len)
1217 {
1218 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1219 	struct dnode_of_data dn;
1220 	int ret, i;
1221 
1222 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1223 		if (*do_replace == 0)
1224 			continue;
1225 
1226 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1227 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1228 		if (ret) {
1229 			dec_valid_block_count(sbi, inode, 1);
1230 			f2fs_invalidate_blocks(sbi, *blkaddr);
1231 		} else {
1232 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1233 		}
1234 		f2fs_put_dnode(&dn);
1235 	}
1236 	return 0;
1237 }
1238 
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1239 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1240 			block_t *blkaddr, int *do_replace,
1241 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1242 {
1243 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1244 	pgoff_t i = 0;
1245 	int ret;
1246 
1247 	while (i < len) {
1248 		if (blkaddr[i] == NULL_ADDR && !full) {
1249 			i++;
1250 			continue;
1251 		}
1252 
1253 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1254 			struct dnode_of_data dn;
1255 			struct node_info ni;
1256 			size_t new_size;
1257 			pgoff_t ilen;
1258 
1259 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1260 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1261 			if (ret)
1262 				return ret;
1263 
1264 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1265 			if (ret) {
1266 				f2fs_put_dnode(&dn);
1267 				return ret;
1268 			}
1269 
1270 			ilen = min((pgoff_t)
1271 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1272 						dn.ofs_in_node, len - i);
1273 			do {
1274 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1275 				f2fs_truncate_data_blocks_range(&dn, 1);
1276 
1277 				if (do_replace[i]) {
1278 					f2fs_i_blocks_write(src_inode,
1279 							1, false, false);
1280 					f2fs_i_blocks_write(dst_inode,
1281 							1, true, false);
1282 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1283 					blkaddr[i], ni.version, true, false);
1284 
1285 					do_replace[i] = 0;
1286 				}
1287 				dn.ofs_in_node++;
1288 				i++;
1289 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1290 				if (dst_inode->i_size < new_size)
1291 					f2fs_i_size_write(dst_inode, new_size);
1292 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1293 
1294 			f2fs_put_dnode(&dn);
1295 		} else {
1296 			struct page *psrc, *pdst;
1297 
1298 			psrc = f2fs_get_lock_data_page(src_inode,
1299 							src + i, true);
1300 			if (IS_ERR(psrc))
1301 				return PTR_ERR(psrc);
1302 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1303 								true);
1304 			if (IS_ERR(pdst)) {
1305 				f2fs_put_page(psrc, 1);
1306 				return PTR_ERR(pdst);
1307 			}
1308 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1309 			set_page_dirty(pdst);
1310 			set_page_private_gcing(pdst);
1311 			f2fs_put_page(pdst, 1);
1312 			f2fs_put_page(psrc, 1);
1313 
1314 			ret = f2fs_truncate_hole(src_inode,
1315 						src + i, src + i + 1);
1316 			if (ret)
1317 				return ret;
1318 			i++;
1319 		}
1320 	}
1321 	return 0;
1322 }
1323 
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1324 static int __exchange_data_block(struct inode *src_inode,
1325 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1326 			pgoff_t len, bool full)
1327 {
1328 	block_t *src_blkaddr;
1329 	int *do_replace;
1330 	pgoff_t olen;
1331 	int ret;
1332 
1333 	while (len) {
1334 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1335 
1336 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1337 					array_size(olen, sizeof(block_t)),
1338 					GFP_NOFS);
1339 		if (!src_blkaddr)
1340 			return -ENOMEM;
1341 
1342 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1343 					array_size(olen, sizeof(int)),
1344 					GFP_NOFS);
1345 		if (!do_replace) {
1346 			kvfree(src_blkaddr);
1347 			return -ENOMEM;
1348 		}
1349 
1350 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1351 					do_replace, src, olen);
1352 		if (ret)
1353 			goto roll_back;
1354 
1355 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1356 					do_replace, src, dst, olen, full);
1357 		if (ret)
1358 			goto roll_back;
1359 
1360 		src += olen;
1361 		dst += olen;
1362 		len -= olen;
1363 
1364 		kvfree(src_blkaddr);
1365 		kvfree(do_replace);
1366 	}
1367 	return 0;
1368 
1369 roll_back:
1370 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1371 	kvfree(src_blkaddr);
1372 	kvfree(do_replace);
1373 	return ret;
1374 }
1375 
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1376 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1377 {
1378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1379 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1380 	pgoff_t start = offset >> PAGE_SHIFT;
1381 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1382 	int ret;
1383 
1384 	f2fs_balance_fs(sbi, true);
1385 
1386 	/* avoid gc operation during block exchange */
1387 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1388 	filemap_invalidate_lock(inode->i_mapping);
1389 
1390 	f2fs_lock_op(sbi);
1391 	f2fs_drop_extent_tree(inode);
1392 	truncate_pagecache(inode, offset);
1393 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1394 	f2fs_unlock_op(sbi);
1395 
1396 	filemap_invalidate_unlock(inode->i_mapping);
1397 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1398 	return ret;
1399 }
1400 
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1401 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1402 {
1403 	loff_t new_size;
1404 	int ret;
1405 
1406 	if (offset + len >= i_size_read(inode))
1407 		return -EINVAL;
1408 
1409 	/* collapse range should be aligned to block size of f2fs. */
1410 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1411 		return -EINVAL;
1412 
1413 	ret = f2fs_convert_inline_inode(inode);
1414 	if (ret)
1415 		return ret;
1416 
1417 	/* write out all dirty pages from offset */
1418 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1419 	if (ret)
1420 		return ret;
1421 
1422 	ret = f2fs_do_collapse(inode, offset, len);
1423 	if (ret)
1424 		return ret;
1425 
1426 	/* write out all moved pages, if possible */
1427 	filemap_invalidate_lock(inode->i_mapping);
1428 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429 	truncate_pagecache(inode, offset);
1430 
1431 	new_size = i_size_read(inode) - len;
1432 	ret = f2fs_truncate_blocks(inode, new_size, true);
1433 	filemap_invalidate_unlock(inode->i_mapping);
1434 	if (!ret)
1435 		f2fs_i_size_write(inode, new_size);
1436 	return ret;
1437 }
1438 
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1439 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1440 								pgoff_t end)
1441 {
1442 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1443 	pgoff_t index = start;
1444 	unsigned int ofs_in_node = dn->ofs_in_node;
1445 	blkcnt_t count = 0;
1446 	int ret;
1447 
1448 	for (; index < end; index++, dn->ofs_in_node++) {
1449 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1450 			count++;
1451 	}
1452 
1453 	dn->ofs_in_node = ofs_in_node;
1454 	ret = f2fs_reserve_new_blocks(dn, count);
1455 	if (ret)
1456 		return ret;
1457 
1458 	dn->ofs_in_node = ofs_in_node;
1459 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1460 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1461 		/*
1462 		 * f2fs_reserve_new_blocks will not guarantee entire block
1463 		 * allocation.
1464 		 */
1465 		if (dn->data_blkaddr == NULL_ADDR) {
1466 			ret = -ENOSPC;
1467 			break;
1468 		}
1469 
1470 		if (dn->data_blkaddr == NEW_ADDR)
1471 			continue;
1472 
1473 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1474 					DATA_GENERIC_ENHANCE)) {
1475 			ret = -EFSCORRUPTED;
1476 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1477 			break;
1478 		}
1479 
1480 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1481 		dn->data_blkaddr = NEW_ADDR;
1482 		f2fs_set_data_blkaddr(dn);
1483 	}
1484 
1485 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1486 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1487 
1488 	return ret;
1489 }
1490 
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1491 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1492 								int mode)
1493 {
1494 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1495 	struct address_space *mapping = inode->i_mapping;
1496 	pgoff_t index, pg_start, pg_end;
1497 	loff_t new_size = i_size_read(inode);
1498 	loff_t off_start, off_end;
1499 	int ret = 0;
1500 
1501 	ret = inode_newsize_ok(inode, (len + offset));
1502 	if (ret)
1503 		return ret;
1504 
1505 	ret = f2fs_convert_inline_inode(inode);
1506 	if (ret)
1507 		return ret;
1508 
1509 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1510 	if (ret)
1511 		return ret;
1512 
1513 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1514 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1515 
1516 	off_start = offset & (PAGE_SIZE - 1);
1517 	off_end = (offset + len) & (PAGE_SIZE - 1);
1518 
1519 	if (pg_start == pg_end) {
1520 		ret = fill_zero(inode, pg_start, off_start,
1521 						off_end - off_start);
1522 		if (ret)
1523 			return ret;
1524 
1525 		new_size = max_t(loff_t, new_size, offset + len);
1526 	} else {
1527 		if (off_start) {
1528 			ret = fill_zero(inode, pg_start++, off_start,
1529 						PAGE_SIZE - off_start);
1530 			if (ret)
1531 				return ret;
1532 
1533 			new_size = max_t(loff_t, new_size,
1534 					(loff_t)pg_start << PAGE_SHIFT);
1535 		}
1536 
1537 		for (index = pg_start; index < pg_end;) {
1538 			struct dnode_of_data dn;
1539 			unsigned int end_offset;
1540 			pgoff_t end;
1541 
1542 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1543 			filemap_invalidate_lock(mapping);
1544 
1545 			truncate_pagecache_range(inode,
1546 				(loff_t)index << PAGE_SHIFT,
1547 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1548 
1549 			f2fs_lock_op(sbi);
1550 
1551 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1552 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1553 			if (ret) {
1554 				f2fs_unlock_op(sbi);
1555 				filemap_invalidate_unlock(mapping);
1556 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1557 				goto out;
1558 			}
1559 
1560 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1561 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1562 
1563 			ret = f2fs_do_zero_range(&dn, index, end);
1564 			f2fs_put_dnode(&dn);
1565 
1566 			f2fs_unlock_op(sbi);
1567 			filemap_invalidate_unlock(mapping);
1568 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569 
1570 			f2fs_balance_fs(sbi, dn.node_changed);
1571 
1572 			if (ret)
1573 				goto out;
1574 
1575 			index = end;
1576 			new_size = max_t(loff_t, new_size,
1577 					(loff_t)index << PAGE_SHIFT);
1578 		}
1579 
1580 		if (off_end) {
1581 			ret = fill_zero(inode, pg_end, 0, off_end);
1582 			if (ret)
1583 				goto out;
1584 
1585 			new_size = max_t(loff_t, new_size, offset + len);
1586 		}
1587 	}
1588 
1589 out:
1590 	if (new_size > i_size_read(inode)) {
1591 		if (mode & FALLOC_FL_KEEP_SIZE)
1592 			file_set_keep_isize(inode);
1593 		else
1594 			f2fs_i_size_write(inode, new_size);
1595 	}
1596 	return ret;
1597 }
1598 
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1599 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1600 {
1601 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1602 	struct address_space *mapping = inode->i_mapping;
1603 	pgoff_t nr, pg_start, pg_end, delta, idx;
1604 	loff_t new_size;
1605 	int ret = 0;
1606 
1607 	new_size = i_size_read(inode) + len;
1608 	ret = inode_newsize_ok(inode, new_size);
1609 	if (ret)
1610 		return ret;
1611 
1612 	if (offset >= i_size_read(inode))
1613 		return -EINVAL;
1614 
1615 	/* insert range should be aligned to block size of f2fs. */
1616 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1617 		return -EINVAL;
1618 
1619 	ret = f2fs_convert_inline_inode(inode);
1620 	if (ret)
1621 		return ret;
1622 
1623 	f2fs_balance_fs(sbi, true);
1624 
1625 	filemap_invalidate_lock(mapping);
1626 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1627 	filemap_invalidate_unlock(mapping);
1628 	if (ret)
1629 		return ret;
1630 
1631 	/* write out all dirty pages from offset */
1632 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1633 	if (ret)
1634 		return ret;
1635 
1636 	pg_start = offset >> PAGE_SHIFT;
1637 	pg_end = (offset + len) >> PAGE_SHIFT;
1638 	delta = pg_end - pg_start;
1639 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1640 
1641 	/* avoid gc operation during block exchange */
1642 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1643 	filemap_invalidate_lock(mapping);
1644 	truncate_pagecache(inode, offset);
1645 
1646 	while (!ret && idx > pg_start) {
1647 		nr = idx - pg_start;
1648 		if (nr > delta)
1649 			nr = delta;
1650 		idx -= nr;
1651 
1652 		f2fs_lock_op(sbi);
1653 		f2fs_drop_extent_tree(inode);
1654 
1655 		ret = __exchange_data_block(inode, inode, idx,
1656 					idx + delta, nr, false);
1657 		f2fs_unlock_op(sbi);
1658 	}
1659 	filemap_invalidate_unlock(mapping);
1660 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1661 
1662 	/* write out all moved pages, if possible */
1663 	filemap_invalidate_lock(mapping);
1664 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1665 	truncate_pagecache(inode, offset);
1666 	filemap_invalidate_unlock(mapping);
1667 
1668 	if (!ret)
1669 		f2fs_i_size_write(inode, new_size);
1670 	return ret;
1671 }
1672 
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1673 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1674 					loff_t len, int mode)
1675 {
1676 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1678 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1679 			.m_may_create = true };
1680 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1681 			.init_gc_type = FG_GC,
1682 			.should_migrate_blocks = false,
1683 			.err_gc_skipped = true,
1684 			.nr_free_secs = 0 };
1685 	pgoff_t pg_start, pg_end;
1686 	loff_t new_size;
1687 	loff_t off_end;
1688 	block_t expanded = 0;
1689 	int err;
1690 
1691 	err = inode_newsize_ok(inode, (len + offset));
1692 	if (err)
1693 		return err;
1694 
1695 	err = f2fs_convert_inline_inode(inode);
1696 	if (err)
1697 		return err;
1698 
1699 	f2fs_balance_fs(sbi, true);
1700 
1701 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1702 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1703 	off_end = (offset + len) & (PAGE_SIZE - 1);
1704 
1705 	map.m_lblk = pg_start;
1706 	map.m_len = pg_end - pg_start;
1707 	if (off_end)
1708 		map.m_len++;
1709 
1710 	if (!map.m_len)
1711 		return 0;
1712 
1713 	if (f2fs_is_pinned_file(inode)) {
1714 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1715 		block_t sec_len = roundup(map.m_len, sec_blks);
1716 
1717 		map.m_len = sec_blks;
1718 next_alloc:
1719 		if (has_not_enough_free_secs(sbi, 0,
1720 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1721 			f2fs_down_write(&sbi->gc_lock);
1722 			err = f2fs_gc(sbi, &gc_control);
1723 			if (err && err != -ENODATA)
1724 				goto out_err;
1725 		}
1726 
1727 		f2fs_down_write(&sbi->pin_sem);
1728 
1729 		f2fs_lock_op(sbi);
1730 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1731 		f2fs_unlock_op(sbi);
1732 
1733 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1734 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1735 		file_dont_truncate(inode);
1736 
1737 		f2fs_up_write(&sbi->pin_sem);
1738 
1739 		expanded += map.m_len;
1740 		sec_len -= map.m_len;
1741 		map.m_lblk += map.m_len;
1742 		if (!err && sec_len)
1743 			goto next_alloc;
1744 
1745 		map.m_len = expanded;
1746 	} else {
1747 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1748 		expanded = map.m_len;
1749 	}
1750 out_err:
1751 	if (err) {
1752 		pgoff_t last_off;
1753 
1754 		if (!expanded)
1755 			return err;
1756 
1757 		last_off = pg_start + expanded - 1;
1758 
1759 		/* update new size to the failed position */
1760 		new_size = (last_off == pg_end) ? offset + len :
1761 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1762 	} else {
1763 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1764 	}
1765 
1766 	if (new_size > i_size_read(inode)) {
1767 		if (mode & FALLOC_FL_KEEP_SIZE)
1768 			file_set_keep_isize(inode);
1769 		else
1770 			f2fs_i_size_write(inode, new_size);
1771 	}
1772 
1773 	return err;
1774 }
1775 
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1776 static long f2fs_fallocate(struct file *file, int mode,
1777 				loff_t offset, loff_t len)
1778 {
1779 	struct inode *inode = file_inode(file);
1780 	long ret = 0;
1781 
1782 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1783 		return -EIO;
1784 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1785 		return -ENOSPC;
1786 	if (!f2fs_is_compress_backend_ready(inode))
1787 		return -EOPNOTSUPP;
1788 
1789 	/* f2fs only support ->fallocate for regular file */
1790 	if (!S_ISREG(inode->i_mode))
1791 		return -EINVAL;
1792 
1793 	if (IS_ENCRYPTED(inode) &&
1794 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1795 		return -EOPNOTSUPP;
1796 
1797 	/*
1798 	 * Pinned file should not support partial truncation since the block
1799 	 * can be used by applications.
1800 	 */
1801 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1802 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1803 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1804 		return -EOPNOTSUPP;
1805 
1806 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1807 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1808 			FALLOC_FL_INSERT_RANGE))
1809 		return -EOPNOTSUPP;
1810 
1811 	inode_lock(inode);
1812 
1813 	ret = file_modified(file);
1814 	if (ret)
1815 		goto out;
1816 
1817 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1818 		if (offset >= inode->i_size)
1819 			goto out;
1820 
1821 		ret = f2fs_punch_hole(inode, offset, len);
1822 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1823 		ret = f2fs_collapse_range(inode, offset, len);
1824 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1825 		ret = f2fs_zero_range(inode, offset, len, mode);
1826 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1827 		ret = f2fs_insert_range(inode, offset, len);
1828 	} else {
1829 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1830 	}
1831 
1832 	if (!ret) {
1833 		inode->i_mtime = inode->i_ctime = current_time(inode);
1834 		f2fs_mark_inode_dirty_sync(inode, false);
1835 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1836 	}
1837 
1838 out:
1839 	inode_unlock(inode);
1840 
1841 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1842 	return ret;
1843 }
1844 
f2fs_release_file(struct inode * inode,struct file * filp)1845 static int f2fs_release_file(struct inode *inode, struct file *filp)
1846 {
1847 	/*
1848 	 * f2fs_release_file is called at every close calls. So we should
1849 	 * not drop any inmemory pages by close called by other process.
1850 	 */
1851 	if (!(filp->f_mode & FMODE_WRITE) ||
1852 			atomic_read(&inode->i_writecount) != 1)
1853 		return 0;
1854 
1855 	inode_lock(inode);
1856 	f2fs_abort_atomic_write(inode, true);
1857 	inode_unlock(inode);
1858 
1859 	return 0;
1860 }
1861 
f2fs_file_flush(struct file * file,fl_owner_t id)1862 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1863 {
1864 	struct inode *inode = file_inode(file);
1865 
1866 	/*
1867 	 * If the process doing a transaction is crashed, we should do
1868 	 * roll-back. Otherwise, other reader/write can see corrupted database
1869 	 * until all the writers close its file. Since this should be done
1870 	 * before dropping file lock, it needs to do in ->flush.
1871 	 */
1872 	if (F2FS_I(inode)->atomic_write_task == current &&
1873 				(current->flags & PF_EXITING)) {
1874 		inode_lock(inode);
1875 		f2fs_abort_atomic_write(inode, true);
1876 		inode_unlock(inode);
1877 	}
1878 
1879 	return 0;
1880 }
1881 
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1882 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1883 {
1884 	struct f2fs_inode_info *fi = F2FS_I(inode);
1885 	u32 masked_flags = fi->i_flags & mask;
1886 
1887 	/* mask can be shrunk by flags_valid selector */
1888 	iflags &= mask;
1889 
1890 	/* Is it quota file? Do not allow user to mess with it */
1891 	if (IS_NOQUOTA(inode))
1892 		return -EPERM;
1893 
1894 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1895 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1896 			return -EOPNOTSUPP;
1897 		if (!f2fs_empty_dir(inode))
1898 			return -ENOTEMPTY;
1899 	}
1900 
1901 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1902 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1903 			return -EOPNOTSUPP;
1904 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1905 			return -EINVAL;
1906 	}
1907 
1908 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1909 		if (masked_flags & F2FS_COMPR_FL) {
1910 			if (!f2fs_disable_compressed_file(inode))
1911 				return -EINVAL;
1912 		} else {
1913 			/* try to convert inline_data to support compression */
1914 			int err = f2fs_convert_inline_inode(inode);
1915 			if (err)
1916 				return err;
1917 			if (!f2fs_may_compress(inode))
1918 				return -EINVAL;
1919 			if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1920 				return -EINVAL;
1921 			if (set_compress_context(inode))
1922 				return -EOPNOTSUPP;
1923 		}
1924 	}
1925 
1926 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1927 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1928 					(fi->i_flags & F2FS_NOCOMP_FL));
1929 
1930 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1931 		set_inode_flag(inode, FI_PROJ_INHERIT);
1932 	else
1933 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1934 
1935 	inode->i_ctime = current_time(inode);
1936 	f2fs_set_inode_flags(inode);
1937 	f2fs_mark_inode_dirty_sync(inode, true);
1938 	return 0;
1939 }
1940 
1941 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1942 
1943 /*
1944  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1945  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1946  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1947  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1948  *
1949  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1950  * FS_IOC_FSSETXATTR is done by the VFS.
1951  */
1952 
1953 static const struct {
1954 	u32 iflag;
1955 	u32 fsflag;
1956 } f2fs_fsflags_map[] = {
1957 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1958 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1959 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1960 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1961 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1962 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1963 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1964 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1965 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1966 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1967 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1968 };
1969 
1970 #define F2FS_GETTABLE_FS_FL (		\
1971 		FS_COMPR_FL |		\
1972 		FS_SYNC_FL |		\
1973 		FS_IMMUTABLE_FL |	\
1974 		FS_APPEND_FL |		\
1975 		FS_NODUMP_FL |		\
1976 		FS_NOATIME_FL |		\
1977 		FS_NOCOMP_FL |		\
1978 		FS_INDEX_FL |		\
1979 		FS_DIRSYNC_FL |		\
1980 		FS_PROJINHERIT_FL |	\
1981 		FS_ENCRYPT_FL |		\
1982 		FS_INLINE_DATA_FL |	\
1983 		FS_NOCOW_FL |		\
1984 		FS_VERITY_FL |		\
1985 		FS_CASEFOLD_FL)
1986 
1987 #define F2FS_SETTABLE_FS_FL (		\
1988 		FS_COMPR_FL |		\
1989 		FS_SYNC_FL |		\
1990 		FS_IMMUTABLE_FL |	\
1991 		FS_APPEND_FL |		\
1992 		FS_NODUMP_FL |		\
1993 		FS_NOATIME_FL |		\
1994 		FS_NOCOMP_FL |		\
1995 		FS_DIRSYNC_FL |		\
1996 		FS_PROJINHERIT_FL |	\
1997 		FS_CASEFOLD_FL)
1998 
1999 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2000 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2001 {
2002 	u32 fsflags = 0;
2003 	int i;
2004 
2005 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2006 		if (iflags & f2fs_fsflags_map[i].iflag)
2007 			fsflags |= f2fs_fsflags_map[i].fsflag;
2008 
2009 	return fsflags;
2010 }
2011 
2012 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2013 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2014 {
2015 	u32 iflags = 0;
2016 	int i;
2017 
2018 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2019 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2020 			iflags |= f2fs_fsflags_map[i].iflag;
2021 
2022 	return iflags;
2023 }
2024 
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2025 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2026 {
2027 	struct inode *inode = file_inode(filp);
2028 
2029 	return put_user(inode->i_generation, (int __user *)arg);
2030 }
2031 
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2032 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2033 {
2034 	struct inode *inode = file_inode(filp);
2035 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2036 	struct f2fs_inode_info *fi = F2FS_I(inode);
2037 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2038 	struct inode *pinode;
2039 	loff_t isize;
2040 	int ret;
2041 
2042 	if (!inode_owner_or_capable(mnt_userns, inode))
2043 		return -EACCES;
2044 
2045 	if (!S_ISREG(inode->i_mode))
2046 		return -EINVAL;
2047 
2048 	if (filp->f_flags & O_DIRECT)
2049 		return -EINVAL;
2050 
2051 	ret = mnt_want_write_file(filp);
2052 	if (ret)
2053 		return ret;
2054 
2055 	inode_lock(inode);
2056 
2057 	if (!f2fs_disable_compressed_file(inode)) {
2058 		ret = -EINVAL;
2059 		goto out;
2060 	}
2061 
2062 	if (f2fs_is_atomic_file(inode))
2063 		goto out;
2064 
2065 	ret = f2fs_convert_inline_inode(inode);
2066 	if (ret)
2067 		goto out;
2068 
2069 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2070 
2071 	/*
2072 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2073 	 * f2fs_is_atomic_file.
2074 	 */
2075 	if (get_dirty_pages(inode))
2076 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2077 			  inode->i_ino, get_dirty_pages(inode));
2078 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2079 	if (ret) {
2080 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2081 		goto out;
2082 	}
2083 
2084 	/* Check if the inode already has a COW inode */
2085 	if (fi->cow_inode == NULL) {
2086 		/* Create a COW inode for atomic write */
2087 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2088 		if (IS_ERR(pinode)) {
2089 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2090 			ret = PTR_ERR(pinode);
2091 			goto out;
2092 		}
2093 
2094 		ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2095 		iput(pinode);
2096 		if (ret) {
2097 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098 			goto out;
2099 		}
2100 
2101 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2102 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2103 	} else {
2104 		/* Reuse the already created COW inode */
2105 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2106 		if (ret) {
2107 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2108 			goto out;
2109 		}
2110 	}
2111 
2112 	f2fs_write_inode(inode, NULL);
2113 
2114 	stat_inc_atomic_inode(inode);
2115 
2116 	set_inode_flag(inode, FI_ATOMIC_FILE);
2117 
2118 	isize = i_size_read(inode);
2119 	fi->original_i_size = isize;
2120 	if (truncate) {
2121 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2122 		truncate_inode_pages_final(inode->i_mapping);
2123 		f2fs_i_size_write(inode, 0);
2124 		isize = 0;
2125 	}
2126 	f2fs_i_size_write(fi->cow_inode, isize);
2127 
2128 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2129 
2130 	f2fs_update_time(sbi, REQ_TIME);
2131 	fi->atomic_write_task = current;
2132 	stat_update_max_atomic_write(inode);
2133 	fi->atomic_write_cnt = 0;
2134 out:
2135 	inode_unlock(inode);
2136 	mnt_drop_write_file(filp);
2137 	return ret;
2138 }
2139 
f2fs_ioc_commit_atomic_write(struct file * filp)2140 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2141 {
2142 	struct inode *inode = file_inode(filp);
2143 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2144 	int ret;
2145 
2146 	if (!inode_owner_or_capable(mnt_userns, inode))
2147 		return -EACCES;
2148 
2149 	ret = mnt_want_write_file(filp);
2150 	if (ret)
2151 		return ret;
2152 
2153 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2154 
2155 	inode_lock(inode);
2156 
2157 	if (f2fs_is_atomic_file(inode)) {
2158 		ret = f2fs_commit_atomic_write(inode);
2159 		if (!ret)
2160 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2161 
2162 		f2fs_abort_atomic_write(inode, ret);
2163 	} else {
2164 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2165 	}
2166 
2167 	inode_unlock(inode);
2168 	mnt_drop_write_file(filp);
2169 	return ret;
2170 }
2171 
f2fs_ioc_abort_atomic_write(struct file * filp)2172 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2173 {
2174 	struct inode *inode = file_inode(filp);
2175 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2176 	int ret;
2177 
2178 	if (!inode_owner_or_capable(mnt_userns, inode))
2179 		return -EACCES;
2180 
2181 	ret = mnt_want_write_file(filp);
2182 	if (ret)
2183 		return ret;
2184 
2185 	inode_lock(inode);
2186 
2187 	f2fs_abort_atomic_write(inode, true);
2188 
2189 	inode_unlock(inode);
2190 
2191 	mnt_drop_write_file(filp);
2192 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2193 	return ret;
2194 }
2195 
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2196 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2197 {
2198 	struct inode *inode = file_inode(filp);
2199 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2200 	struct super_block *sb = sbi->sb;
2201 	__u32 in;
2202 	int ret = 0;
2203 
2204 	if (!capable(CAP_SYS_ADMIN))
2205 		return -EPERM;
2206 
2207 	if (get_user(in, (__u32 __user *)arg))
2208 		return -EFAULT;
2209 
2210 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2211 		ret = mnt_want_write_file(filp);
2212 		if (ret) {
2213 			if (ret == -EROFS) {
2214 				ret = 0;
2215 				f2fs_stop_checkpoint(sbi, false,
2216 						STOP_CP_REASON_SHUTDOWN);
2217 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2218 				trace_f2fs_shutdown(sbi, in, ret);
2219 			}
2220 			return ret;
2221 		}
2222 	}
2223 
2224 	switch (in) {
2225 	case F2FS_GOING_DOWN_FULLSYNC:
2226 		ret = freeze_bdev(sb->s_bdev);
2227 		if (ret)
2228 			goto out;
2229 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2230 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2231 		thaw_bdev(sb->s_bdev);
2232 		break;
2233 	case F2FS_GOING_DOWN_METASYNC:
2234 		/* do checkpoint only */
2235 		ret = f2fs_sync_fs(sb, 1);
2236 		if (ret)
2237 			goto out;
2238 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2239 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2240 		break;
2241 	case F2FS_GOING_DOWN_NOSYNC:
2242 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2243 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2244 		break;
2245 	case F2FS_GOING_DOWN_METAFLUSH:
2246 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2247 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2248 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2249 		break;
2250 	case F2FS_GOING_DOWN_NEED_FSCK:
2251 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2252 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2253 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2254 		/* do checkpoint only */
2255 		ret = f2fs_sync_fs(sb, 1);
2256 		goto out;
2257 	default:
2258 		ret = -EINVAL;
2259 		goto out;
2260 	}
2261 
2262 	f2fs_stop_gc_thread(sbi);
2263 	f2fs_stop_discard_thread(sbi);
2264 
2265 	f2fs_drop_discard_cmd(sbi);
2266 	clear_opt(sbi, DISCARD);
2267 
2268 	f2fs_update_time(sbi, REQ_TIME);
2269 out:
2270 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2271 		mnt_drop_write_file(filp);
2272 
2273 	trace_f2fs_shutdown(sbi, in, ret);
2274 
2275 	return ret;
2276 }
2277 
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2278 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2279 {
2280 	struct inode *inode = file_inode(filp);
2281 	struct super_block *sb = inode->i_sb;
2282 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2283 	struct fstrim_range range;
2284 	int ret;
2285 
2286 	if (!capable(CAP_SYS_ADMIN))
2287 		return -EPERM;
2288 
2289 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2290 		return -EOPNOTSUPP;
2291 
2292 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2293 				sizeof(range)))
2294 		return -EFAULT;
2295 
2296 	ret = mnt_want_write_file(filp);
2297 	if (ret)
2298 		return ret;
2299 
2300 	range.minlen = max((unsigned int)range.minlen,
2301 				q->limits.discard_granularity);
2302 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2303 	mnt_drop_write_file(filp);
2304 	if (ret < 0)
2305 		return ret;
2306 
2307 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2308 				sizeof(range)))
2309 		return -EFAULT;
2310 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2311 	return 0;
2312 }
2313 
uuid_is_nonzero(__u8 u[16])2314 static bool uuid_is_nonzero(__u8 u[16])
2315 {
2316 	int i;
2317 
2318 	for (i = 0; i < 16; i++)
2319 		if (u[i])
2320 			return true;
2321 	return false;
2322 }
2323 
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2324 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2325 {
2326 	struct inode *inode = file_inode(filp);
2327 
2328 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2329 		return -EOPNOTSUPP;
2330 
2331 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2332 
2333 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2334 }
2335 
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2336 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2337 {
2338 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2339 		return -EOPNOTSUPP;
2340 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2341 }
2342 
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2343 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2344 {
2345 	struct inode *inode = file_inode(filp);
2346 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2347 	u8 encrypt_pw_salt[16];
2348 	int err;
2349 
2350 	if (!f2fs_sb_has_encrypt(sbi))
2351 		return -EOPNOTSUPP;
2352 
2353 	err = mnt_want_write_file(filp);
2354 	if (err)
2355 		return err;
2356 
2357 	f2fs_down_write(&sbi->sb_lock);
2358 
2359 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2360 		goto got_it;
2361 
2362 	/* update superblock with uuid */
2363 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2364 
2365 	err = f2fs_commit_super(sbi, false);
2366 	if (err) {
2367 		/* undo new data */
2368 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2369 		goto out_err;
2370 	}
2371 got_it:
2372 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2373 out_err:
2374 	f2fs_up_write(&sbi->sb_lock);
2375 	mnt_drop_write_file(filp);
2376 
2377 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2378 		err = -EFAULT;
2379 
2380 	return err;
2381 }
2382 
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2383 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2384 					     unsigned long arg)
2385 {
2386 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2387 		return -EOPNOTSUPP;
2388 
2389 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2390 }
2391 
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2392 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2393 {
2394 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2395 		return -EOPNOTSUPP;
2396 
2397 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2398 }
2399 
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2400 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2401 {
2402 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 		return -EOPNOTSUPP;
2404 
2405 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2406 }
2407 
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2408 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2409 						    unsigned long arg)
2410 {
2411 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 		return -EOPNOTSUPP;
2413 
2414 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2415 }
2416 
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2417 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2418 					      unsigned long arg)
2419 {
2420 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2421 		return -EOPNOTSUPP;
2422 
2423 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2424 }
2425 
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2426 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2427 {
2428 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2429 		return -EOPNOTSUPP;
2430 
2431 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2432 }
2433 
f2fs_ioc_gc(struct file * filp,unsigned long arg)2434 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2435 {
2436 	struct inode *inode = file_inode(filp);
2437 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2438 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2439 			.no_bg_gc = false,
2440 			.should_migrate_blocks = false,
2441 			.nr_free_secs = 0 };
2442 	__u32 sync;
2443 	int ret;
2444 
2445 	if (!capable(CAP_SYS_ADMIN))
2446 		return -EPERM;
2447 
2448 	if (get_user(sync, (__u32 __user *)arg))
2449 		return -EFAULT;
2450 
2451 	if (f2fs_readonly(sbi->sb))
2452 		return -EROFS;
2453 
2454 	ret = mnt_want_write_file(filp);
2455 	if (ret)
2456 		return ret;
2457 
2458 	if (!sync) {
2459 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2460 			ret = -EBUSY;
2461 			goto out;
2462 		}
2463 	} else {
2464 		f2fs_down_write(&sbi->gc_lock);
2465 	}
2466 
2467 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2468 	gc_control.err_gc_skipped = sync;
2469 	ret = f2fs_gc(sbi, &gc_control);
2470 out:
2471 	mnt_drop_write_file(filp);
2472 	return ret;
2473 }
2474 
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2475 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2476 {
2477 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2478 	struct f2fs_gc_control gc_control = {
2479 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2480 			.no_bg_gc = false,
2481 			.should_migrate_blocks = false,
2482 			.err_gc_skipped = range->sync,
2483 			.nr_free_secs = 0 };
2484 	u64 end;
2485 	int ret;
2486 
2487 	if (!capable(CAP_SYS_ADMIN))
2488 		return -EPERM;
2489 	if (f2fs_readonly(sbi->sb))
2490 		return -EROFS;
2491 
2492 	end = range->start + range->len;
2493 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2494 					end >= MAX_BLKADDR(sbi))
2495 		return -EINVAL;
2496 
2497 	ret = mnt_want_write_file(filp);
2498 	if (ret)
2499 		return ret;
2500 
2501 do_more:
2502 	if (!range->sync) {
2503 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2504 			ret = -EBUSY;
2505 			goto out;
2506 		}
2507 	} else {
2508 		f2fs_down_write(&sbi->gc_lock);
2509 	}
2510 
2511 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2512 	ret = f2fs_gc(sbi, &gc_control);
2513 	if (ret) {
2514 		if (ret == -EBUSY)
2515 			ret = -EAGAIN;
2516 		goto out;
2517 	}
2518 	range->start += CAP_BLKS_PER_SEC(sbi);
2519 	if (range->start <= end)
2520 		goto do_more;
2521 out:
2522 	mnt_drop_write_file(filp);
2523 	return ret;
2524 }
2525 
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2526 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2527 {
2528 	struct f2fs_gc_range range;
2529 
2530 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2531 							sizeof(range)))
2532 		return -EFAULT;
2533 	return __f2fs_ioc_gc_range(filp, &range);
2534 }
2535 
f2fs_ioc_write_checkpoint(struct file * filp)2536 static int f2fs_ioc_write_checkpoint(struct file *filp)
2537 {
2538 	struct inode *inode = file_inode(filp);
2539 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2540 	int ret;
2541 
2542 	if (!capable(CAP_SYS_ADMIN))
2543 		return -EPERM;
2544 
2545 	if (f2fs_readonly(sbi->sb))
2546 		return -EROFS;
2547 
2548 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2549 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2550 		return -EINVAL;
2551 	}
2552 
2553 	ret = mnt_want_write_file(filp);
2554 	if (ret)
2555 		return ret;
2556 
2557 	ret = f2fs_sync_fs(sbi->sb, 1);
2558 
2559 	mnt_drop_write_file(filp);
2560 	return ret;
2561 }
2562 
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2563 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2564 					struct file *filp,
2565 					struct f2fs_defragment *range)
2566 {
2567 	struct inode *inode = file_inode(filp);
2568 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2569 					.m_seg_type = NO_CHECK_TYPE,
2570 					.m_may_create = false };
2571 	struct extent_info ei = {};
2572 	pgoff_t pg_start, pg_end, next_pgofs;
2573 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2574 	unsigned int total = 0, sec_num;
2575 	block_t blk_end = 0;
2576 	bool fragmented = false;
2577 	int err;
2578 
2579 	pg_start = range->start >> PAGE_SHIFT;
2580 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2581 
2582 	f2fs_balance_fs(sbi, true);
2583 
2584 	inode_lock(inode);
2585 
2586 	/* if in-place-update policy is enabled, don't waste time here */
2587 	set_inode_flag(inode, FI_OPU_WRITE);
2588 	if (f2fs_should_update_inplace(inode, NULL)) {
2589 		err = -EINVAL;
2590 		goto out;
2591 	}
2592 
2593 	/* writeback all dirty pages in the range */
2594 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2595 						range->start + range->len - 1);
2596 	if (err)
2597 		goto out;
2598 
2599 	/*
2600 	 * lookup mapping info in extent cache, skip defragmenting if physical
2601 	 * block addresses are continuous.
2602 	 */
2603 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2604 		if (ei.fofs + ei.len >= pg_end)
2605 			goto out;
2606 	}
2607 
2608 	map.m_lblk = pg_start;
2609 	map.m_next_pgofs = &next_pgofs;
2610 
2611 	/*
2612 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2613 	 * physical block addresses are continuous even if there are hole(s)
2614 	 * in logical blocks.
2615 	 */
2616 	while (map.m_lblk < pg_end) {
2617 		map.m_len = pg_end - map.m_lblk;
2618 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2619 		if (err)
2620 			goto out;
2621 
2622 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2623 			map.m_lblk = next_pgofs;
2624 			continue;
2625 		}
2626 
2627 		if (blk_end && blk_end != map.m_pblk)
2628 			fragmented = true;
2629 
2630 		/* record total count of block that we're going to move */
2631 		total += map.m_len;
2632 
2633 		blk_end = map.m_pblk + map.m_len;
2634 
2635 		map.m_lblk += map.m_len;
2636 	}
2637 
2638 	if (!fragmented) {
2639 		total = 0;
2640 		goto out;
2641 	}
2642 
2643 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2644 
2645 	/*
2646 	 * make sure there are enough free section for LFS allocation, this can
2647 	 * avoid defragment running in SSR mode when free section are allocated
2648 	 * intensively
2649 	 */
2650 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2651 		err = -EAGAIN;
2652 		goto out;
2653 	}
2654 
2655 	map.m_lblk = pg_start;
2656 	map.m_len = pg_end - pg_start;
2657 	total = 0;
2658 
2659 	while (map.m_lblk < pg_end) {
2660 		pgoff_t idx;
2661 		int cnt = 0;
2662 
2663 do_map:
2664 		map.m_len = pg_end - map.m_lblk;
2665 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2666 		if (err)
2667 			goto clear_out;
2668 
2669 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2670 			map.m_lblk = next_pgofs;
2671 			goto check;
2672 		}
2673 
2674 		set_inode_flag(inode, FI_SKIP_WRITES);
2675 
2676 		idx = map.m_lblk;
2677 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2678 			struct page *page;
2679 
2680 			page = f2fs_get_lock_data_page(inode, idx, true);
2681 			if (IS_ERR(page)) {
2682 				err = PTR_ERR(page);
2683 				goto clear_out;
2684 			}
2685 
2686 			set_page_dirty(page);
2687 			set_page_private_gcing(page);
2688 			f2fs_put_page(page, 1);
2689 
2690 			idx++;
2691 			cnt++;
2692 			total++;
2693 		}
2694 
2695 		map.m_lblk = idx;
2696 check:
2697 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2698 			goto do_map;
2699 
2700 		clear_inode_flag(inode, FI_SKIP_WRITES);
2701 
2702 		err = filemap_fdatawrite(inode->i_mapping);
2703 		if (err)
2704 			goto out;
2705 	}
2706 clear_out:
2707 	clear_inode_flag(inode, FI_SKIP_WRITES);
2708 out:
2709 	clear_inode_flag(inode, FI_OPU_WRITE);
2710 	inode_unlock(inode);
2711 	if (!err)
2712 		range->len = (u64)total << PAGE_SHIFT;
2713 	return err;
2714 }
2715 
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2716 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2717 {
2718 	struct inode *inode = file_inode(filp);
2719 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2720 	struct f2fs_defragment range;
2721 	int err;
2722 
2723 	if (!capable(CAP_SYS_ADMIN))
2724 		return -EPERM;
2725 
2726 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2727 		return -EINVAL;
2728 
2729 	if (f2fs_readonly(sbi->sb))
2730 		return -EROFS;
2731 
2732 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2733 							sizeof(range)))
2734 		return -EFAULT;
2735 
2736 	/* verify alignment of offset & size */
2737 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2738 		return -EINVAL;
2739 
2740 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2741 					max_file_blocks(inode)))
2742 		return -EINVAL;
2743 
2744 	err = mnt_want_write_file(filp);
2745 	if (err)
2746 		return err;
2747 
2748 	err = f2fs_defragment_range(sbi, filp, &range);
2749 	mnt_drop_write_file(filp);
2750 
2751 	f2fs_update_time(sbi, REQ_TIME);
2752 	if (err < 0)
2753 		return err;
2754 
2755 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2756 							sizeof(range)))
2757 		return -EFAULT;
2758 
2759 	return 0;
2760 }
2761 
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2762 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2763 			struct file *file_out, loff_t pos_out, size_t len)
2764 {
2765 	struct inode *src = file_inode(file_in);
2766 	struct inode *dst = file_inode(file_out);
2767 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2768 	size_t olen = len, dst_max_i_size = 0;
2769 	size_t dst_osize;
2770 	int ret;
2771 
2772 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2773 				src->i_sb != dst->i_sb)
2774 		return -EXDEV;
2775 
2776 	if (unlikely(f2fs_readonly(src->i_sb)))
2777 		return -EROFS;
2778 
2779 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2780 		return -EINVAL;
2781 
2782 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2783 		return -EOPNOTSUPP;
2784 
2785 	if (pos_out < 0 || pos_in < 0)
2786 		return -EINVAL;
2787 
2788 	if (src == dst) {
2789 		if (pos_in == pos_out)
2790 			return 0;
2791 		if (pos_out > pos_in && pos_out < pos_in + len)
2792 			return -EINVAL;
2793 	}
2794 
2795 	inode_lock(src);
2796 	if (src != dst) {
2797 		ret = -EBUSY;
2798 		if (!inode_trylock(dst))
2799 			goto out;
2800 	}
2801 
2802 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2803 		ret = -EOPNOTSUPP;
2804 		goto out_unlock;
2805 	}
2806 
2807 	ret = -EINVAL;
2808 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2809 		goto out_unlock;
2810 	if (len == 0)
2811 		olen = len = src->i_size - pos_in;
2812 	if (pos_in + len == src->i_size)
2813 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2814 	if (len == 0) {
2815 		ret = 0;
2816 		goto out_unlock;
2817 	}
2818 
2819 	dst_osize = dst->i_size;
2820 	if (pos_out + olen > dst->i_size)
2821 		dst_max_i_size = pos_out + olen;
2822 
2823 	/* verify the end result is block aligned */
2824 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2825 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2826 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2827 		goto out_unlock;
2828 
2829 	ret = f2fs_convert_inline_inode(src);
2830 	if (ret)
2831 		goto out_unlock;
2832 
2833 	ret = f2fs_convert_inline_inode(dst);
2834 	if (ret)
2835 		goto out_unlock;
2836 
2837 	/* write out all dirty pages from offset */
2838 	ret = filemap_write_and_wait_range(src->i_mapping,
2839 					pos_in, pos_in + len);
2840 	if (ret)
2841 		goto out_unlock;
2842 
2843 	ret = filemap_write_and_wait_range(dst->i_mapping,
2844 					pos_out, pos_out + len);
2845 	if (ret)
2846 		goto out_unlock;
2847 
2848 	f2fs_balance_fs(sbi, true);
2849 
2850 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2851 	if (src != dst) {
2852 		ret = -EBUSY;
2853 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2854 			goto out_src;
2855 	}
2856 
2857 	f2fs_lock_op(sbi);
2858 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2859 				pos_out >> F2FS_BLKSIZE_BITS,
2860 				len >> F2FS_BLKSIZE_BITS, false);
2861 
2862 	if (!ret) {
2863 		if (dst_max_i_size)
2864 			f2fs_i_size_write(dst, dst_max_i_size);
2865 		else if (dst_osize != dst->i_size)
2866 			f2fs_i_size_write(dst, dst_osize);
2867 	}
2868 	f2fs_unlock_op(sbi);
2869 
2870 	if (src != dst)
2871 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2872 out_src:
2873 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2874 out_unlock:
2875 	if (src != dst)
2876 		inode_unlock(dst);
2877 out:
2878 	inode_unlock(src);
2879 	return ret;
2880 }
2881 
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2882 static int __f2fs_ioc_move_range(struct file *filp,
2883 				struct f2fs_move_range *range)
2884 {
2885 	struct fd dst;
2886 	int err;
2887 
2888 	if (!(filp->f_mode & FMODE_READ) ||
2889 			!(filp->f_mode & FMODE_WRITE))
2890 		return -EBADF;
2891 
2892 	dst = fdget(range->dst_fd);
2893 	if (!dst.file)
2894 		return -EBADF;
2895 
2896 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2897 		err = -EBADF;
2898 		goto err_out;
2899 	}
2900 
2901 	err = mnt_want_write_file(filp);
2902 	if (err)
2903 		goto err_out;
2904 
2905 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2906 					range->pos_out, range->len);
2907 
2908 	mnt_drop_write_file(filp);
2909 err_out:
2910 	fdput(dst);
2911 	return err;
2912 }
2913 
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2914 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2915 {
2916 	struct f2fs_move_range range;
2917 
2918 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2919 							sizeof(range)))
2920 		return -EFAULT;
2921 	return __f2fs_ioc_move_range(filp, &range);
2922 }
2923 
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2924 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2925 {
2926 	struct inode *inode = file_inode(filp);
2927 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2928 	struct sit_info *sm = SIT_I(sbi);
2929 	unsigned int start_segno = 0, end_segno = 0;
2930 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2931 	struct f2fs_flush_device range;
2932 	struct f2fs_gc_control gc_control = {
2933 			.init_gc_type = FG_GC,
2934 			.should_migrate_blocks = true,
2935 			.err_gc_skipped = true,
2936 			.nr_free_secs = 0 };
2937 	int ret;
2938 
2939 	if (!capable(CAP_SYS_ADMIN))
2940 		return -EPERM;
2941 
2942 	if (f2fs_readonly(sbi->sb))
2943 		return -EROFS;
2944 
2945 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2946 		return -EINVAL;
2947 
2948 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2949 							sizeof(range)))
2950 		return -EFAULT;
2951 
2952 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2953 			__is_large_section(sbi)) {
2954 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2955 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2956 		return -EINVAL;
2957 	}
2958 
2959 	ret = mnt_want_write_file(filp);
2960 	if (ret)
2961 		return ret;
2962 
2963 	if (range.dev_num != 0)
2964 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2965 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2966 
2967 	start_segno = sm->last_victim[FLUSH_DEVICE];
2968 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2969 		start_segno = dev_start_segno;
2970 	end_segno = min(start_segno + range.segments, dev_end_segno);
2971 
2972 	while (start_segno < end_segno) {
2973 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2974 			ret = -EBUSY;
2975 			goto out;
2976 		}
2977 		sm->last_victim[GC_CB] = end_segno + 1;
2978 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2979 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2980 
2981 		gc_control.victim_segno = start_segno;
2982 		ret = f2fs_gc(sbi, &gc_control);
2983 		if (ret == -EAGAIN)
2984 			ret = 0;
2985 		else if (ret < 0)
2986 			break;
2987 		start_segno++;
2988 	}
2989 out:
2990 	mnt_drop_write_file(filp);
2991 	return ret;
2992 }
2993 
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2994 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2995 {
2996 	struct inode *inode = file_inode(filp);
2997 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2998 
2999 	/* Must validate to set it with SQLite behavior in Android. */
3000 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3001 
3002 	return put_user(sb_feature, (u32 __user *)arg);
3003 }
3004 
3005 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3006 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3007 {
3008 	struct dquot *transfer_to[MAXQUOTAS] = {};
3009 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3010 	struct super_block *sb = sbi->sb;
3011 	int err;
3012 
3013 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3014 	if (IS_ERR(transfer_to[PRJQUOTA]))
3015 		return PTR_ERR(transfer_to[PRJQUOTA]);
3016 
3017 	err = __dquot_transfer(inode, transfer_to);
3018 	if (err)
3019 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3020 	dqput(transfer_to[PRJQUOTA]);
3021 	return err;
3022 }
3023 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3024 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3025 {
3026 	struct f2fs_inode_info *fi = F2FS_I(inode);
3027 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3028 	struct f2fs_inode *ri = NULL;
3029 	kprojid_t kprojid;
3030 	int err;
3031 
3032 	if (!f2fs_sb_has_project_quota(sbi)) {
3033 		if (projid != F2FS_DEF_PROJID)
3034 			return -EOPNOTSUPP;
3035 		else
3036 			return 0;
3037 	}
3038 
3039 	if (!f2fs_has_extra_attr(inode))
3040 		return -EOPNOTSUPP;
3041 
3042 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3043 
3044 	if (projid_eq(kprojid, fi->i_projid))
3045 		return 0;
3046 
3047 	err = -EPERM;
3048 	/* Is it quota file? Do not allow user to mess with it */
3049 	if (IS_NOQUOTA(inode))
3050 		return err;
3051 
3052 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3053 		return -EOVERFLOW;
3054 
3055 	err = f2fs_dquot_initialize(inode);
3056 	if (err)
3057 		return err;
3058 
3059 	f2fs_lock_op(sbi);
3060 	err = f2fs_transfer_project_quota(inode, kprojid);
3061 	if (err)
3062 		goto out_unlock;
3063 
3064 	fi->i_projid = kprojid;
3065 	inode->i_ctime = current_time(inode);
3066 	f2fs_mark_inode_dirty_sync(inode, true);
3067 out_unlock:
3068 	f2fs_unlock_op(sbi);
3069 	return err;
3070 }
3071 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3072 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3073 {
3074 	return 0;
3075 }
3076 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3077 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3078 {
3079 	if (projid != F2FS_DEF_PROJID)
3080 		return -EOPNOTSUPP;
3081 	return 0;
3082 }
3083 #endif
3084 
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3085 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3086 {
3087 	struct inode *inode = d_inode(dentry);
3088 	struct f2fs_inode_info *fi = F2FS_I(inode);
3089 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3090 
3091 	if (IS_ENCRYPTED(inode))
3092 		fsflags |= FS_ENCRYPT_FL;
3093 	if (IS_VERITY(inode))
3094 		fsflags |= FS_VERITY_FL;
3095 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3096 		fsflags |= FS_INLINE_DATA_FL;
3097 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3098 		fsflags |= FS_NOCOW_FL;
3099 
3100 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3101 
3102 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3103 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3104 
3105 	return 0;
3106 }
3107 
f2fs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)3108 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3109 		      struct dentry *dentry, struct fileattr *fa)
3110 {
3111 	struct inode *inode = d_inode(dentry);
3112 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3113 	u32 iflags;
3114 	int err;
3115 
3116 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3117 		return -EIO;
3118 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3119 		return -ENOSPC;
3120 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3121 		return -EOPNOTSUPP;
3122 	fsflags &= F2FS_SETTABLE_FS_FL;
3123 	if (!fa->flags_valid)
3124 		mask &= FS_COMMON_FL;
3125 
3126 	iflags = f2fs_fsflags_to_iflags(fsflags);
3127 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3128 		return -EOPNOTSUPP;
3129 
3130 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3131 	if (!err)
3132 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3133 
3134 	return err;
3135 }
3136 
f2fs_pin_file_control(struct inode * inode,bool inc)3137 int f2fs_pin_file_control(struct inode *inode, bool inc)
3138 {
3139 	struct f2fs_inode_info *fi = F2FS_I(inode);
3140 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3141 
3142 	/* Use i_gc_failures for normal file as a risk signal. */
3143 	if (inc)
3144 		f2fs_i_gc_failures_write(inode,
3145 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3146 
3147 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3148 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3149 			  __func__, inode->i_ino,
3150 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3151 		clear_inode_flag(inode, FI_PIN_FILE);
3152 		return -EAGAIN;
3153 	}
3154 	return 0;
3155 }
3156 
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3157 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3158 {
3159 	struct inode *inode = file_inode(filp);
3160 	__u32 pin;
3161 	int ret = 0;
3162 
3163 	if (get_user(pin, (__u32 __user *)arg))
3164 		return -EFAULT;
3165 
3166 	if (!S_ISREG(inode->i_mode))
3167 		return -EINVAL;
3168 
3169 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3170 		return -EROFS;
3171 
3172 	ret = mnt_want_write_file(filp);
3173 	if (ret)
3174 		return ret;
3175 
3176 	inode_lock(inode);
3177 
3178 	if (!pin) {
3179 		clear_inode_flag(inode, FI_PIN_FILE);
3180 		f2fs_i_gc_failures_write(inode, 0);
3181 		goto done;
3182 	}
3183 
3184 	if (f2fs_should_update_outplace(inode, NULL)) {
3185 		ret = -EINVAL;
3186 		goto out;
3187 	}
3188 
3189 	if (f2fs_pin_file_control(inode, false)) {
3190 		ret = -EAGAIN;
3191 		goto out;
3192 	}
3193 
3194 	ret = f2fs_convert_inline_inode(inode);
3195 	if (ret)
3196 		goto out;
3197 
3198 	if (!f2fs_disable_compressed_file(inode)) {
3199 		ret = -EOPNOTSUPP;
3200 		goto out;
3201 	}
3202 
3203 	set_inode_flag(inode, FI_PIN_FILE);
3204 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3205 done:
3206 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3207 out:
3208 	inode_unlock(inode);
3209 	mnt_drop_write_file(filp);
3210 	return ret;
3211 }
3212 
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3213 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3214 {
3215 	struct inode *inode = file_inode(filp);
3216 	__u32 pin = 0;
3217 
3218 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3219 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3220 	return put_user(pin, (u32 __user *)arg);
3221 }
3222 
f2fs_precache_extents(struct inode * inode)3223 int f2fs_precache_extents(struct inode *inode)
3224 {
3225 	struct f2fs_inode_info *fi = F2FS_I(inode);
3226 	struct f2fs_map_blocks map;
3227 	pgoff_t m_next_extent;
3228 	loff_t end;
3229 	int err;
3230 
3231 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3232 		return -EOPNOTSUPP;
3233 
3234 	map.m_lblk = 0;
3235 	map.m_pblk = 0;
3236 	map.m_next_pgofs = NULL;
3237 	map.m_next_extent = &m_next_extent;
3238 	map.m_seg_type = NO_CHECK_TYPE;
3239 	map.m_may_create = false;
3240 	end = max_file_blocks(inode);
3241 
3242 	while (map.m_lblk < end) {
3243 		map.m_len = end - map.m_lblk;
3244 
3245 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3246 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3247 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3248 		if (err)
3249 			return err;
3250 
3251 		map.m_lblk = m_next_extent;
3252 	}
3253 
3254 	return 0;
3255 }
3256 
f2fs_ioc_precache_extents(struct file * filp)3257 static int f2fs_ioc_precache_extents(struct file *filp)
3258 {
3259 	return f2fs_precache_extents(file_inode(filp));
3260 }
3261 
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3262 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3263 {
3264 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3265 	__u64 block_count;
3266 
3267 	if (!capable(CAP_SYS_ADMIN))
3268 		return -EPERM;
3269 
3270 	if (f2fs_readonly(sbi->sb))
3271 		return -EROFS;
3272 
3273 	if (copy_from_user(&block_count, (void __user *)arg,
3274 			   sizeof(block_count)))
3275 		return -EFAULT;
3276 
3277 	return f2fs_resize_fs(filp, block_count);
3278 }
3279 
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3280 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3281 {
3282 	struct inode *inode = file_inode(filp);
3283 
3284 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3285 
3286 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3287 		f2fs_warn(F2FS_I_SB(inode),
3288 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3289 			  inode->i_ino);
3290 		return -EOPNOTSUPP;
3291 	}
3292 
3293 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3294 }
3295 
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3296 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3297 {
3298 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3299 		return -EOPNOTSUPP;
3300 
3301 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3302 }
3303 
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3304 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3305 {
3306 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3307 		return -EOPNOTSUPP;
3308 
3309 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3310 }
3311 
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3312 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3313 {
3314 	struct inode *inode = file_inode(filp);
3315 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3316 	char *vbuf;
3317 	int count;
3318 	int err = 0;
3319 
3320 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3321 	if (!vbuf)
3322 		return -ENOMEM;
3323 
3324 	f2fs_down_read(&sbi->sb_lock);
3325 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3326 			ARRAY_SIZE(sbi->raw_super->volume_name),
3327 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3328 	f2fs_up_read(&sbi->sb_lock);
3329 
3330 	if (copy_to_user((char __user *)arg, vbuf,
3331 				min(FSLABEL_MAX, count)))
3332 		err = -EFAULT;
3333 
3334 	kfree(vbuf);
3335 	return err;
3336 }
3337 
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3338 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3339 {
3340 	struct inode *inode = file_inode(filp);
3341 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342 	char *vbuf;
3343 	int err = 0;
3344 
3345 	if (!capable(CAP_SYS_ADMIN))
3346 		return -EPERM;
3347 
3348 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3349 	if (IS_ERR(vbuf))
3350 		return PTR_ERR(vbuf);
3351 
3352 	err = mnt_want_write_file(filp);
3353 	if (err)
3354 		goto out;
3355 
3356 	f2fs_down_write(&sbi->sb_lock);
3357 
3358 	memset(sbi->raw_super->volume_name, 0,
3359 			sizeof(sbi->raw_super->volume_name));
3360 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3361 			sbi->raw_super->volume_name,
3362 			ARRAY_SIZE(sbi->raw_super->volume_name));
3363 
3364 	err = f2fs_commit_super(sbi, false);
3365 
3366 	f2fs_up_write(&sbi->sb_lock);
3367 
3368 	mnt_drop_write_file(filp);
3369 out:
3370 	kfree(vbuf);
3371 	return err;
3372 }
3373 
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3374 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3375 {
3376 	struct inode *inode = file_inode(filp);
3377 	__u64 blocks;
3378 
3379 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3380 		return -EOPNOTSUPP;
3381 
3382 	if (!f2fs_compressed_file(inode))
3383 		return -EINVAL;
3384 
3385 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3386 	return put_user(blocks, (u64 __user *)arg);
3387 }
3388 
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3389 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3390 {
3391 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3392 	unsigned int released_blocks = 0;
3393 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3394 	block_t blkaddr;
3395 	int i;
3396 
3397 	for (i = 0; i < count; i++) {
3398 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3399 						dn->ofs_in_node + i);
3400 
3401 		if (!__is_valid_data_blkaddr(blkaddr))
3402 			continue;
3403 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3404 					DATA_GENERIC_ENHANCE))) {
3405 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3406 			return -EFSCORRUPTED;
3407 		}
3408 	}
3409 
3410 	while (count) {
3411 		int compr_blocks = 0;
3412 
3413 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3414 			blkaddr = f2fs_data_blkaddr(dn);
3415 
3416 			if (i == 0) {
3417 				if (blkaddr == COMPRESS_ADDR)
3418 					continue;
3419 				dn->ofs_in_node += cluster_size;
3420 				goto next;
3421 			}
3422 
3423 			if (__is_valid_data_blkaddr(blkaddr))
3424 				compr_blocks++;
3425 
3426 			if (blkaddr != NEW_ADDR)
3427 				continue;
3428 
3429 			dn->data_blkaddr = NULL_ADDR;
3430 			f2fs_set_data_blkaddr(dn);
3431 		}
3432 
3433 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3434 		dec_valid_block_count(sbi, dn->inode,
3435 					cluster_size - compr_blocks);
3436 
3437 		released_blocks += cluster_size - compr_blocks;
3438 next:
3439 		count -= cluster_size;
3440 	}
3441 
3442 	return released_blocks;
3443 }
3444 
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3445 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3446 {
3447 	struct inode *inode = file_inode(filp);
3448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3449 	pgoff_t page_idx = 0, last_idx;
3450 	unsigned int released_blocks = 0;
3451 	int ret;
3452 	int writecount;
3453 
3454 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3455 		return -EOPNOTSUPP;
3456 
3457 	if (!f2fs_compressed_file(inode))
3458 		return -EINVAL;
3459 
3460 	if (f2fs_readonly(sbi->sb))
3461 		return -EROFS;
3462 
3463 	ret = mnt_want_write_file(filp);
3464 	if (ret)
3465 		return ret;
3466 
3467 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3468 
3469 	inode_lock(inode);
3470 
3471 	writecount = atomic_read(&inode->i_writecount);
3472 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3473 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3474 		ret = -EBUSY;
3475 		goto out;
3476 	}
3477 
3478 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3479 		ret = -EINVAL;
3480 		goto out;
3481 	}
3482 
3483 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3484 	if (ret)
3485 		goto out;
3486 
3487 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3488 	inode->i_ctime = current_time(inode);
3489 	f2fs_mark_inode_dirty_sync(inode, true);
3490 
3491 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3492 		goto out;
3493 
3494 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3495 	filemap_invalidate_lock(inode->i_mapping);
3496 
3497 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3498 
3499 	while (page_idx < last_idx) {
3500 		struct dnode_of_data dn;
3501 		pgoff_t end_offset, count;
3502 
3503 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3504 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3505 		if (ret) {
3506 			if (ret == -ENOENT) {
3507 				page_idx = f2fs_get_next_page_offset(&dn,
3508 								page_idx);
3509 				ret = 0;
3510 				continue;
3511 			}
3512 			break;
3513 		}
3514 
3515 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3516 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3517 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3518 
3519 		ret = release_compress_blocks(&dn, count);
3520 
3521 		f2fs_put_dnode(&dn);
3522 
3523 		if (ret < 0)
3524 			break;
3525 
3526 		page_idx += count;
3527 		released_blocks += ret;
3528 	}
3529 
3530 	filemap_invalidate_unlock(inode->i_mapping);
3531 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3532 out:
3533 	inode_unlock(inode);
3534 
3535 	mnt_drop_write_file(filp);
3536 
3537 	if (ret >= 0) {
3538 		ret = put_user(released_blocks, (u64 __user *)arg);
3539 	} else if (released_blocks &&
3540 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3541 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3542 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3543 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3544 			"run fsck to fix.",
3545 			__func__, inode->i_ino, inode->i_blocks,
3546 			released_blocks,
3547 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3548 	}
3549 
3550 	return ret;
3551 }
3552 
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3553 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3554 {
3555 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3556 	unsigned int reserved_blocks = 0;
3557 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3558 	block_t blkaddr;
3559 	int i;
3560 
3561 	for (i = 0; i < count; i++) {
3562 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3563 						dn->ofs_in_node + i);
3564 
3565 		if (!__is_valid_data_blkaddr(blkaddr))
3566 			continue;
3567 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3568 					DATA_GENERIC_ENHANCE))) {
3569 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3570 			return -EFSCORRUPTED;
3571 		}
3572 	}
3573 
3574 	while (count) {
3575 		int compr_blocks = 0;
3576 		blkcnt_t reserved;
3577 		int ret;
3578 
3579 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3580 			blkaddr = f2fs_data_blkaddr(dn);
3581 
3582 			if (i == 0) {
3583 				if (blkaddr == COMPRESS_ADDR)
3584 					continue;
3585 				dn->ofs_in_node += cluster_size;
3586 				goto next;
3587 			}
3588 
3589 			if (__is_valid_data_blkaddr(blkaddr)) {
3590 				compr_blocks++;
3591 				continue;
3592 			}
3593 
3594 			dn->data_blkaddr = NEW_ADDR;
3595 			f2fs_set_data_blkaddr(dn);
3596 		}
3597 
3598 		reserved = cluster_size - compr_blocks;
3599 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3600 		if (ret)
3601 			return ret;
3602 
3603 		if (reserved != cluster_size - compr_blocks)
3604 			return -ENOSPC;
3605 
3606 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3607 
3608 		reserved_blocks += reserved;
3609 next:
3610 		count -= cluster_size;
3611 	}
3612 
3613 	return reserved_blocks;
3614 }
3615 
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3616 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3617 {
3618 	struct inode *inode = file_inode(filp);
3619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3620 	pgoff_t page_idx = 0, last_idx;
3621 	unsigned int reserved_blocks = 0;
3622 	int ret;
3623 
3624 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3625 		return -EOPNOTSUPP;
3626 
3627 	if (!f2fs_compressed_file(inode))
3628 		return -EINVAL;
3629 
3630 	if (f2fs_readonly(sbi->sb))
3631 		return -EROFS;
3632 
3633 	ret = mnt_want_write_file(filp);
3634 	if (ret)
3635 		return ret;
3636 
3637 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3638 		goto out;
3639 
3640 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3641 
3642 	inode_lock(inode);
3643 
3644 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3645 		ret = -EINVAL;
3646 		goto unlock_inode;
3647 	}
3648 
3649 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3650 	filemap_invalidate_lock(inode->i_mapping);
3651 
3652 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3653 
3654 	while (page_idx < last_idx) {
3655 		struct dnode_of_data dn;
3656 		pgoff_t end_offset, count;
3657 
3658 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3659 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3660 		if (ret) {
3661 			if (ret == -ENOENT) {
3662 				page_idx = f2fs_get_next_page_offset(&dn,
3663 								page_idx);
3664 				ret = 0;
3665 				continue;
3666 			}
3667 			break;
3668 		}
3669 
3670 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3671 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3672 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3673 
3674 		ret = reserve_compress_blocks(&dn, count);
3675 
3676 		f2fs_put_dnode(&dn);
3677 
3678 		if (ret < 0)
3679 			break;
3680 
3681 		page_idx += count;
3682 		reserved_blocks += ret;
3683 	}
3684 
3685 	filemap_invalidate_unlock(inode->i_mapping);
3686 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3687 
3688 	if (ret >= 0) {
3689 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3690 		inode->i_ctime = current_time(inode);
3691 		f2fs_mark_inode_dirty_sync(inode, true);
3692 	}
3693 unlock_inode:
3694 	inode_unlock(inode);
3695 out:
3696 	mnt_drop_write_file(filp);
3697 
3698 	if (ret >= 0) {
3699 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3700 	} else if (reserved_blocks &&
3701 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3702 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3703 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3704 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3705 			"run fsck to fix.",
3706 			__func__, inode->i_ino, inode->i_blocks,
3707 			reserved_blocks,
3708 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3709 	}
3710 
3711 	return ret;
3712 }
3713 
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3714 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3715 		pgoff_t off, block_t block, block_t len, u32 flags)
3716 {
3717 	struct request_queue *q = bdev_get_queue(bdev);
3718 	sector_t sector = SECTOR_FROM_BLOCK(block);
3719 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3720 	int ret = 0;
3721 
3722 	if (!q)
3723 		return -ENXIO;
3724 
3725 	if (flags & F2FS_TRIM_FILE_DISCARD)
3726 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3727 						blk_queue_secure_erase(q) ?
3728 						BLKDEV_DISCARD_SECURE : 0);
3729 
3730 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3731 		if (IS_ENCRYPTED(inode))
3732 			ret = fscrypt_zeroout_range(inode, off, block, len);
3733 		else
3734 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3735 					GFP_NOFS, 0);
3736 	}
3737 
3738 	return ret;
3739 }
3740 
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3741 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3742 {
3743 	struct inode *inode = file_inode(filp);
3744 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3745 	struct address_space *mapping = inode->i_mapping;
3746 	struct block_device *prev_bdev = NULL;
3747 	struct f2fs_sectrim_range range;
3748 	pgoff_t index, pg_end, prev_index = 0;
3749 	block_t prev_block = 0, len = 0;
3750 	loff_t end_addr;
3751 	bool to_end = false;
3752 	int ret = 0;
3753 
3754 	if (!(filp->f_mode & FMODE_WRITE))
3755 		return -EBADF;
3756 
3757 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3758 				sizeof(range)))
3759 		return -EFAULT;
3760 
3761 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3762 			!S_ISREG(inode->i_mode))
3763 		return -EINVAL;
3764 
3765 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3766 			!f2fs_hw_support_discard(sbi)) ||
3767 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3768 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3769 		return -EOPNOTSUPP;
3770 
3771 	file_start_write(filp);
3772 	inode_lock(inode);
3773 
3774 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3775 			range.start >= inode->i_size) {
3776 		ret = -EINVAL;
3777 		goto err;
3778 	}
3779 
3780 	if (range.len == 0)
3781 		goto err;
3782 
3783 	if (inode->i_size - range.start > range.len) {
3784 		end_addr = range.start + range.len;
3785 	} else {
3786 		end_addr = range.len == (u64)-1 ?
3787 			sbi->sb->s_maxbytes : inode->i_size;
3788 		to_end = true;
3789 	}
3790 
3791 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3792 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3793 		ret = -EINVAL;
3794 		goto err;
3795 	}
3796 
3797 	index = F2FS_BYTES_TO_BLK(range.start);
3798 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3799 
3800 	ret = f2fs_convert_inline_inode(inode);
3801 	if (ret)
3802 		goto err;
3803 
3804 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3805 	filemap_invalidate_lock(mapping);
3806 
3807 	ret = filemap_write_and_wait_range(mapping, range.start,
3808 			to_end ? LLONG_MAX : end_addr - 1);
3809 	if (ret)
3810 		goto out;
3811 
3812 	truncate_inode_pages_range(mapping, range.start,
3813 			to_end ? -1 : end_addr - 1);
3814 
3815 	while (index < pg_end) {
3816 		struct dnode_of_data dn;
3817 		pgoff_t end_offset, count;
3818 		int i;
3819 
3820 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3821 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3822 		if (ret) {
3823 			if (ret == -ENOENT) {
3824 				index = f2fs_get_next_page_offset(&dn, index);
3825 				continue;
3826 			}
3827 			goto out;
3828 		}
3829 
3830 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3831 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3832 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3833 			struct block_device *cur_bdev;
3834 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3835 
3836 			if (!__is_valid_data_blkaddr(blkaddr))
3837 				continue;
3838 
3839 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3840 						DATA_GENERIC_ENHANCE)) {
3841 				ret = -EFSCORRUPTED;
3842 				f2fs_put_dnode(&dn);
3843 				f2fs_handle_error(sbi,
3844 						ERROR_INVALID_BLKADDR);
3845 				goto out;
3846 			}
3847 
3848 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3849 			if (f2fs_is_multi_device(sbi)) {
3850 				int di = f2fs_target_device_index(sbi, blkaddr);
3851 
3852 				blkaddr -= FDEV(di).start_blk;
3853 			}
3854 
3855 			if (len) {
3856 				if (prev_bdev == cur_bdev &&
3857 						index == prev_index + len &&
3858 						blkaddr == prev_block + len) {
3859 					len++;
3860 				} else {
3861 					ret = f2fs_secure_erase(prev_bdev,
3862 						inode, prev_index, prev_block,
3863 						len, range.flags);
3864 					if (ret) {
3865 						f2fs_put_dnode(&dn);
3866 						goto out;
3867 					}
3868 
3869 					len = 0;
3870 				}
3871 			}
3872 
3873 			if (!len) {
3874 				prev_bdev = cur_bdev;
3875 				prev_index = index;
3876 				prev_block = blkaddr;
3877 				len = 1;
3878 			}
3879 		}
3880 
3881 		f2fs_put_dnode(&dn);
3882 
3883 		if (fatal_signal_pending(current)) {
3884 			ret = -EINTR;
3885 			goto out;
3886 		}
3887 		cond_resched();
3888 	}
3889 
3890 	if (len)
3891 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3892 				prev_block, len, range.flags);
3893 out:
3894 	filemap_invalidate_unlock(mapping);
3895 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3896 err:
3897 	inode_unlock(inode);
3898 	file_end_write(filp);
3899 
3900 	return ret;
3901 }
3902 
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)3903 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3904 {
3905 	struct inode *inode = file_inode(filp);
3906 	struct f2fs_comp_option option;
3907 
3908 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3909 		return -EOPNOTSUPP;
3910 
3911 	inode_lock_shared(inode);
3912 
3913 	if (!f2fs_compressed_file(inode)) {
3914 		inode_unlock_shared(inode);
3915 		return -ENODATA;
3916 	}
3917 
3918 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3919 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3920 
3921 	inode_unlock_shared(inode);
3922 
3923 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3924 				sizeof(option)))
3925 		return -EFAULT;
3926 
3927 	return 0;
3928 }
3929 
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)3930 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3931 {
3932 	struct inode *inode = file_inode(filp);
3933 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3934 	struct f2fs_comp_option option;
3935 	int ret = 0;
3936 
3937 	if (!f2fs_sb_has_compression(sbi))
3938 		return -EOPNOTSUPP;
3939 
3940 	if (!(filp->f_mode & FMODE_WRITE))
3941 		return -EBADF;
3942 
3943 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3944 				sizeof(option)))
3945 		return -EFAULT;
3946 
3947 	if (!f2fs_compressed_file(inode) ||
3948 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3949 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3950 			option.algorithm >= COMPRESS_MAX)
3951 		return -EINVAL;
3952 
3953 	file_start_write(filp);
3954 	inode_lock(inode);
3955 
3956 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3957 		ret = -EBUSY;
3958 		goto out;
3959 	}
3960 
3961 	if (F2FS_HAS_BLOCKS(inode)) {
3962 		ret = -EFBIG;
3963 		goto out;
3964 	}
3965 
3966 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3967 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3968 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
3969 	f2fs_mark_inode_dirty_sync(inode, true);
3970 
3971 	if (!f2fs_is_compress_backend_ready(inode))
3972 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3973 			"but current kernel doesn't support this algorithm.");
3974 out:
3975 	inode_unlock(inode);
3976 	file_end_write(filp);
3977 
3978 	return ret;
3979 }
3980 
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)3981 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3982 {
3983 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3984 	struct address_space *mapping = inode->i_mapping;
3985 	struct page *page;
3986 	pgoff_t redirty_idx = page_idx;
3987 	int i, page_len = 0, ret = 0;
3988 
3989 	page_cache_ra_unbounded(&ractl, len, 0);
3990 
3991 	for (i = 0; i < len; i++, page_idx++) {
3992 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3993 		if (IS_ERR(page)) {
3994 			ret = PTR_ERR(page);
3995 			break;
3996 		}
3997 		page_len++;
3998 	}
3999 
4000 	for (i = 0; i < page_len; i++, redirty_idx++) {
4001 		page = find_lock_page(mapping, redirty_idx);
4002 
4003 		/* It will never fail, when page has pinned above */
4004 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4005 
4006 		set_page_dirty(page);
4007 		set_page_private_gcing(page);
4008 		f2fs_put_page(page, 1);
4009 		f2fs_put_page(page, 0);
4010 	}
4011 
4012 	return ret;
4013 }
4014 
f2fs_ioc_decompress_file(struct file * filp)4015 static int f2fs_ioc_decompress_file(struct file *filp)
4016 {
4017 	struct inode *inode = file_inode(filp);
4018 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4019 	struct f2fs_inode_info *fi = F2FS_I(inode);
4020 	pgoff_t page_idx = 0, last_idx;
4021 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4022 	int cluster_size = fi->i_cluster_size;
4023 	int count, ret;
4024 
4025 	if (!f2fs_sb_has_compression(sbi) ||
4026 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4027 		return -EOPNOTSUPP;
4028 
4029 	if (!(filp->f_mode & FMODE_WRITE))
4030 		return -EBADF;
4031 
4032 	if (!f2fs_compressed_file(inode))
4033 		return -EINVAL;
4034 
4035 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4036 
4037 	file_start_write(filp);
4038 	inode_lock(inode);
4039 
4040 	if (!f2fs_is_compress_backend_ready(inode)) {
4041 		ret = -EOPNOTSUPP;
4042 		goto out;
4043 	}
4044 
4045 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4046 		ret = -EINVAL;
4047 		goto out;
4048 	}
4049 
4050 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4051 	if (ret)
4052 		goto out;
4053 
4054 	if (!atomic_read(&fi->i_compr_blocks))
4055 		goto out;
4056 
4057 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4058 
4059 	count = last_idx - page_idx;
4060 	while (count) {
4061 		int len = min(cluster_size, count);
4062 
4063 		ret = redirty_blocks(inode, page_idx, len);
4064 		if (ret < 0)
4065 			break;
4066 
4067 		if (get_dirty_pages(inode) >= blk_per_seg) {
4068 			ret = filemap_fdatawrite(inode->i_mapping);
4069 			if (ret < 0)
4070 				break;
4071 		}
4072 
4073 		count -= len;
4074 		page_idx += len;
4075 	}
4076 
4077 	if (!ret)
4078 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4079 							LLONG_MAX);
4080 
4081 	if (ret)
4082 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4083 			  __func__, ret);
4084 out:
4085 	inode_unlock(inode);
4086 	file_end_write(filp);
4087 
4088 	return ret;
4089 }
4090 
f2fs_ioc_compress_file(struct file * filp)4091 static int f2fs_ioc_compress_file(struct file *filp)
4092 {
4093 	struct inode *inode = file_inode(filp);
4094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4095 	pgoff_t page_idx = 0, last_idx;
4096 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4097 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4098 	int count, ret;
4099 
4100 	if (!f2fs_sb_has_compression(sbi) ||
4101 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4102 		return -EOPNOTSUPP;
4103 
4104 	if (!(filp->f_mode & FMODE_WRITE))
4105 		return -EBADF;
4106 
4107 	if (!f2fs_compressed_file(inode))
4108 		return -EINVAL;
4109 
4110 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4111 
4112 	file_start_write(filp);
4113 	inode_lock(inode);
4114 
4115 	if (!f2fs_is_compress_backend_ready(inode)) {
4116 		ret = -EOPNOTSUPP;
4117 		goto out;
4118 	}
4119 
4120 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4121 		ret = -EINVAL;
4122 		goto out;
4123 	}
4124 
4125 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4126 	if (ret)
4127 		goto out;
4128 
4129 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4130 
4131 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4132 
4133 	count = last_idx - page_idx;
4134 	while (count) {
4135 		int len = min(cluster_size, count);
4136 
4137 		ret = redirty_blocks(inode, page_idx, len);
4138 		if (ret < 0)
4139 			break;
4140 
4141 		if (get_dirty_pages(inode) >= blk_per_seg) {
4142 			ret = filemap_fdatawrite(inode->i_mapping);
4143 			if (ret < 0)
4144 				break;
4145 		}
4146 
4147 		count -= len;
4148 		page_idx += len;
4149 	}
4150 
4151 	if (!ret)
4152 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4153 							LLONG_MAX);
4154 
4155 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4156 
4157 	if (ret)
4158 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4159 			  __func__, ret);
4160 out:
4161 	inode_unlock(inode);
4162 	file_end_write(filp);
4163 
4164 	return ret;
4165 }
4166 
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4167 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4168 {
4169 	switch (cmd) {
4170 	case FS_IOC_GETVERSION:
4171 		return f2fs_ioc_getversion(filp, arg);
4172 	case F2FS_IOC_START_ATOMIC_WRITE:
4173 		return f2fs_ioc_start_atomic_write(filp, false);
4174 	case F2FS_IOC_START_ATOMIC_REPLACE:
4175 		return f2fs_ioc_start_atomic_write(filp, true);
4176 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4177 		return f2fs_ioc_commit_atomic_write(filp);
4178 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4179 		return f2fs_ioc_abort_atomic_write(filp);
4180 	case F2FS_IOC_START_VOLATILE_WRITE:
4181 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4182 		return -EOPNOTSUPP;
4183 	case F2FS_IOC_SHUTDOWN:
4184 		return f2fs_ioc_shutdown(filp, arg);
4185 	case FITRIM:
4186 		return f2fs_ioc_fitrim(filp, arg);
4187 	case FS_IOC_SET_ENCRYPTION_POLICY:
4188 		return f2fs_ioc_set_encryption_policy(filp, arg);
4189 	case FS_IOC_GET_ENCRYPTION_POLICY:
4190 		return f2fs_ioc_get_encryption_policy(filp, arg);
4191 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4192 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4193 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4194 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4195 	case FS_IOC_ADD_ENCRYPTION_KEY:
4196 		return f2fs_ioc_add_encryption_key(filp, arg);
4197 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4198 		return f2fs_ioc_remove_encryption_key(filp, arg);
4199 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4200 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4201 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4202 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4203 	case FS_IOC_GET_ENCRYPTION_NONCE:
4204 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4205 	case F2FS_IOC_GARBAGE_COLLECT:
4206 		return f2fs_ioc_gc(filp, arg);
4207 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4208 		return f2fs_ioc_gc_range(filp, arg);
4209 	case F2FS_IOC_WRITE_CHECKPOINT:
4210 		return f2fs_ioc_write_checkpoint(filp);
4211 	case F2FS_IOC_DEFRAGMENT:
4212 		return f2fs_ioc_defragment(filp, arg);
4213 	case F2FS_IOC_MOVE_RANGE:
4214 		return f2fs_ioc_move_range(filp, arg);
4215 	case F2FS_IOC_FLUSH_DEVICE:
4216 		return f2fs_ioc_flush_device(filp, arg);
4217 	case F2FS_IOC_GET_FEATURES:
4218 		return f2fs_ioc_get_features(filp, arg);
4219 	case F2FS_IOC_GET_PIN_FILE:
4220 		return f2fs_ioc_get_pin_file(filp, arg);
4221 	case F2FS_IOC_SET_PIN_FILE:
4222 		return f2fs_ioc_set_pin_file(filp, arg);
4223 	case F2FS_IOC_PRECACHE_EXTENTS:
4224 		return f2fs_ioc_precache_extents(filp);
4225 	case F2FS_IOC_RESIZE_FS:
4226 		return f2fs_ioc_resize_fs(filp, arg);
4227 	case FS_IOC_ENABLE_VERITY:
4228 		return f2fs_ioc_enable_verity(filp, arg);
4229 	case FS_IOC_MEASURE_VERITY:
4230 		return f2fs_ioc_measure_verity(filp, arg);
4231 	case FS_IOC_READ_VERITY_METADATA:
4232 		return f2fs_ioc_read_verity_metadata(filp, arg);
4233 	case FS_IOC_GETFSLABEL:
4234 		return f2fs_ioc_getfslabel(filp, arg);
4235 	case FS_IOC_SETFSLABEL:
4236 		return f2fs_ioc_setfslabel(filp, arg);
4237 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4238 		return f2fs_get_compress_blocks(filp, arg);
4239 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4240 		return f2fs_release_compress_blocks(filp, arg);
4241 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4242 		return f2fs_reserve_compress_blocks(filp, arg);
4243 	case F2FS_IOC_SEC_TRIM_FILE:
4244 		return f2fs_sec_trim_file(filp, arg);
4245 	case F2FS_IOC_GET_COMPRESS_OPTION:
4246 		return f2fs_ioc_get_compress_option(filp, arg);
4247 	case F2FS_IOC_SET_COMPRESS_OPTION:
4248 		return f2fs_ioc_set_compress_option(filp, arg);
4249 	case F2FS_IOC_DECOMPRESS_FILE:
4250 		return f2fs_ioc_decompress_file(filp);
4251 	case F2FS_IOC_COMPRESS_FILE:
4252 		return f2fs_ioc_compress_file(filp);
4253 	default:
4254 		return -ENOTTY;
4255 	}
4256 }
4257 
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4258 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4259 {
4260 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4261 		return -EIO;
4262 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4263 		return -ENOSPC;
4264 
4265 	return __f2fs_ioctl(filp, cmd, arg);
4266 }
4267 
4268 /*
4269  * Return %true if the given read or write request should use direct I/O, or
4270  * %false if it should use buffered I/O.
4271  */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4272 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4273 				struct iov_iter *iter)
4274 {
4275 	unsigned int align;
4276 
4277 	if (!(iocb->ki_flags & IOCB_DIRECT))
4278 		return false;
4279 
4280 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4281 		return false;
4282 
4283 	/*
4284 	 * Direct I/O not aligned to the disk's logical_block_size will be
4285 	 * attempted, but will fail with -EINVAL.
4286 	 *
4287 	 * f2fs additionally requires that direct I/O be aligned to the
4288 	 * filesystem block size, which is often a stricter requirement.
4289 	 * However, f2fs traditionally falls back to buffered I/O on requests
4290 	 * that are logical_block_size-aligned but not fs-block aligned.
4291 	 *
4292 	 * The below logic implements this behavior.
4293 	 */
4294 	align = iocb->ki_pos | iov_iter_alignment(iter);
4295 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4296 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4297 		return false;
4298 
4299 	return true;
4300 }
4301 
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4302 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4303 				unsigned int flags)
4304 {
4305 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4306 
4307 	dec_page_count(sbi, F2FS_DIO_READ);
4308 	if (error)
4309 		return error;
4310 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4311 	return 0;
4312 }
4313 
4314 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4315 	.end_io = f2fs_dio_read_end_io,
4316 };
4317 
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4318 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4319 {
4320 	struct file *file = iocb->ki_filp;
4321 	struct inode *inode = file_inode(file);
4322 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4323 	struct f2fs_inode_info *fi = F2FS_I(inode);
4324 	const loff_t pos = iocb->ki_pos;
4325 	const size_t count = iov_iter_count(to);
4326 	struct iomap_dio *dio;
4327 	ssize_t ret;
4328 
4329 	if (count == 0)
4330 		return 0; /* skip atime update */
4331 
4332 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4333 
4334 	if (iocb->ki_flags & IOCB_NOWAIT) {
4335 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4336 			ret = -EAGAIN;
4337 			goto out;
4338 		}
4339 	} else {
4340 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4341 	}
4342 
4343 	/*
4344 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4345 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4346 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4347 	 */
4348 	inc_page_count(sbi, F2FS_DIO_READ);
4349 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4350 			     &f2fs_iomap_dio_read_ops, 0, 0);
4351 	if (IS_ERR_OR_NULL(dio)) {
4352 		ret = PTR_ERR_OR_ZERO(dio);
4353 		if (ret != -EIOCBQUEUED)
4354 			dec_page_count(sbi, F2FS_DIO_READ);
4355 	} else {
4356 		ret = iomap_dio_complete(dio);
4357 	}
4358 
4359 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4360 
4361 	file_accessed(file);
4362 out:
4363 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4364 	return ret;
4365 }
4366 
f2fs_trace_rw_file_path(struct kiocb * iocb,size_t count,int rw)4367 static void f2fs_trace_rw_file_path(struct kiocb *iocb, size_t count, int rw)
4368 {
4369 	struct inode *inode = file_inode(iocb->ki_filp);
4370 	char *buf, *path;
4371 
4372 	buf = f2fs_getname(F2FS_I_SB(inode));
4373 	if (!buf)
4374 		return;
4375 	path = dentry_path_raw(file_dentry(iocb->ki_filp), buf, PATH_MAX);
4376 	if (IS_ERR(path))
4377 		goto free_buf;
4378 	if (rw == WRITE)
4379 		trace_f2fs_datawrite_start(inode, iocb->ki_pos, count,
4380 				current->pid, path, current->comm);
4381 	else
4382 		trace_f2fs_dataread_start(inode, iocb->ki_pos, count,
4383 				current->pid, path, current->comm);
4384 free_buf:
4385 	f2fs_putname(buf);
4386 }
4387 
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4388 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4389 {
4390 	struct inode *inode = file_inode(iocb->ki_filp);
4391 	const loff_t pos = iocb->ki_pos;
4392 	ssize_t ret;
4393 
4394 	if (!f2fs_is_compress_backend_ready(inode))
4395 		return -EOPNOTSUPP;
4396 
4397 	if (trace_f2fs_dataread_start_enabled())
4398 		f2fs_trace_rw_file_path(iocb, iov_iter_count(to), READ);
4399 
4400 	if (f2fs_should_use_dio(inode, iocb, to)) {
4401 		ret = f2fs_dio_read_iter(iocb, to);
4402 	} else {
4403 		ret = filemap_read(iocb, to, 0);
4404 		if (ret > 0)
4405 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4406 						APP_BUFFERED_READ_IO, ret);
4407 	}
4408 	if (trace_f2fs_dataread_end_enabled())
4409 		trace_f2fs_dataread_end(inode, pos, ret);
4410 	return ret;
4411 }
4412 
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4413 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4414 {
4415 	struct file *file = iocb->ki_filp;
4416 	struct inode *inode = file_inode(file);
4417 	ssize_t count;
4418 	int err;
4419 
4420 	if (IS_IMMUTABLE(inode))
4421 		return -EPERM;
4422 
4423 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4424 		return -EPERM;
4425 
4426 	count = generic_write_checks(iocb, from);
4427 	if (count <= 0)
4428 		return count;
4429 
4430 	err = file_modified(file);
4431 	if (err)
4432 		return err;
4433 	return count;
4434 }
4435 
4436 /*
4437  * Preallocate blocks for a write request, if it is possible and helpful to do
4438  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4439  * blocks were preallocated, or a negative errno value if something went
4440  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4441  * requested blocks (not just some of them) have been allocated.
4442  */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4443 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4444 				   bool dio)
4445 {
4446 	struct inode *inode = file_inode(iocb->ki_filp);
4447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4448 	const loff_t pos = iocb->ki_pos;
4449 	const size_t count = iov_iter_count(iter);
4450 	struct f2fs_map_blocks map = {};
4451 	int flag;
4452 	int ret;
4453 
4454 	/* If it will be an out-of-place direct write, don't bother. */
4455 	if (dio && f2fs_lfs_mode(sbi))
4456 		return 0;
4457 	/*
4458 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4459 	 * buffered IO, if DIO meets any holes.
4460 	 */
4461 	if (dio && i_size_read(inode) &&
4462 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4463 		return 0;
4464 
4465 	/* No-wait I/O can't allocate blocks. */
4466 	if (iocb->ki_flags & IOCB_NOWAIT)
4467 		return 0;
4468 
4469 	/* If it will be a short write, don't bother. */
4470 	if (fault_in_iov_iter_readable(iter, count))
4471 		return 0;
4472 
4473 	if (f2fs_has_inline_data(inode)) {
4474 		/* If the data will fit inline, don't bother. */
4475 		if (pos + count <= MAX_INLINE_DATA(inode))
4476 			return 0;
4477 		ret = f2fs_convert_inline_inode(inode);
4478 		if (ret)
4479 			return ret;
4480 	}
4481 
4482 	/* Do not preallocate blocks that will be written partially in 4KB. */
4483 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4484 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4485 	if (map.m_len > map.m_lblk)
4486 		map.m_len -= map.m_lblk;
4487 	else
4488 		map.m_len = 0;
4489 	map.m_may_create = true;
4490 	if (dio) {
4491 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4492 		flag = F2FS_GET_BLOCK_PRE_DIO;
4493 	} else {
4494 		map.m_seg_type = NO_CHECK_TYPE;
4495 		flag = F2FS_GET_BLOCK_PRE_AIO;
4496 	}
4497 
4498 	ret = f2fs_map_blocks(inode, &map, flag);
4499 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4500 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4501 		return ret;
4502 	if (ret == 0)
4503 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4504 	return map.m_len;
4505 }
4506 
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4507 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4508 					struct iov_iter *from)
4509 {
4510 	struct file *file = iocb->ki_filp;
4511 	struct inode *inode = file_inode(file);
4512 	ssize_t ret;
4513 
4514 	if (iocb->ki_flags & IOCB_NOWAIT)
4515 		return -EOPNOTSUPP;
4516 
4517 	current->backing_dev_info = inode_to_bdi(inode);
4518 	ret = generic_perform_write(file, from, iocb->ki_pos);
4519 	current->backing_dev_info = NULL;
4520 
4521 	if (ret > 0) {
4522 		iocb->ki_pos += ret;
4523 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4524 						APP_BUFFERED_IO, ret);
4525 	}
4526 	return ret;
4527 }
4528 
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4529 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4530 				 unsigned int flags)
4531 {
4532 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4533 
4534 	dec_page_count(sbi, F2FS_DIO_WRITE);
4535 	if (error)
4536 		return error;
4537 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4538 	return 0;
4539 }
4540 
4541 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4542 	.end_io = f2fs_dio_write_end_io,
4543 };
4544 
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4545 static void f2fs_flush_buffered_write(struct address_space *mapping,
4546 				      loff_t start_pos, loff_t end_pos)
4547 {
4548 	int ret;
4549 
4550 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4551 	if (ret < 0)
4552 		return;
4553 	invalidate_mapping_pages(mapping,
4554 				 start_pos >> PAGE_SHIFT,
4555 				 end_pos >> PAGE_SHIFT);
4556 }
4557 
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4558 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4559 				   bool *may_need_sync)
4560 {
4561 	struct file *file = iocb->ki_filp;
4562 	struct inode *inode = file_inode(file);
4563 	struct f2fs_inode_info *fi = F2FS_I(inode);
4564 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4565 	const bool do_opu = f2fs_lfs_mode(sbi);
4566 	const loff_t pos = iocb->ki_pos;
4567 	const ssize_t count = iov_iter_count(from);
4568 	unsigned int dio_flags;
4569 	struct iomap_dio *dio;
4570 	ssize_t ret;
4571 
4572 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4573 
4574 	if (iocb->ki_flags & IOCB_NOWAIT) {
4575 		/* f2fs_convert_inline_inode() and block allocation can block */
4576 		if (f2fs_has_inline_data(inode) ||
4577 		    !f2fs_overwrite_io(inode, pos, count)) {
4578 			ret = -EAGAIN;
4579 			goto out;
4580 		}
4581 
4582 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4583 			ret = -EAGAIN;
4584 			goto out;
4585 		}
4586 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4587 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4588 			ret = -EAGAIN;
4589 			goto out;
4590 		}
4591 	} else {
4592 		ret = f2fs_convert_inline_inode(inode);
4593 		if (ret)
4594 			goto out;
4595 
4596 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4597 		if (do_opu)
4598 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4599 	}
4600 	/*
4601 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4602 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4603 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4604 	 */
4605 	inc_page_count(sbi, F2FS_DIO_WRITE);
4606 	dio_flags = 0;
4607 	if (pos + count > inode->i_size)
4608 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4609 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4610 			     &f2fs_iomap_dio_write_ops, dio_flags, 0);
4611 	if (IS_ERR_OR_NULL(dio)) {
4612 		ret = PTR_ERR_OR_ZERO(dio);
4613 		if (ret == -ENOTBLK)
4614 			ret = 0;
4615 		if (ret != -EIOCBQUEUED)
4616 			dec_page_count(sbi, F2FS_DIO_WRITE);
4617 	} else {
4618 		ret = iomap_dio_complete(dio);
4619 	}
4620 
4621 	if (do_opu)
4622 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4623 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4624 
4625 	if (ret < 0)
4626 		goto out;
4627 	if (pos + ret > inode->i_size)
4628 		f2fs_i_size_write(inode, pos + ret);
4629 	if (!do_opu)
4630 		set_inode_flag(inode, FI_UPDATE_WRITE);
4631 
4632 	if (iov_iter_count(from)) {
4633 		ssize_t ret2;
4634 		loff_t bufio_start_pos = iocb->ki_pos;
4635 
4636 		/*
4637 		 * The direct write was partial, so we need to fall back to a
4638 		 * buffered write for the remainder.
4639 		 */
4640 
4641 		ret2 = f2fs_buffered_write_iter(iocb, from);
4642 		if (iov_iter_count(from))
4643 			f2fs_write_failed(inode, iocb->ki_pos);
4644 		if (ret2 < 0)
4645 			goto out;
4646 
4647 		/*
4648 		 * Ensure that the pagecache pages are written to disk and
4649 		 * invalidated to preserve the expected O_DIRECT semantics.
4650 		 */
4651 		if (ret2 > 0) {
4652 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4653 
4654 			ret += ret2;
4655 
4656 			f2fs_flush_buffered_write(file->f_mapping,
4657 						  bufio_start_pos,
4658 						  bufio_end_pos);
4659 		}
4660 	} else {
4661 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4662 		*may_need_sync = false;
4663 	}
4664 out:
4665 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4666 	return ret;
4667 }
4668 
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4669 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4670 {
4671 	struct inode *inode = file_inode(iocb->ki_filp);
4672 	const loff_t orig_pos = iocb->ki_pos;
4673 	const size_t orig_count = iov_iter_count(from);
4674 	loff_t target_size;
4675 	bool dio;
4676 	bool may_need_sync = true;
4677 	int preallocated;
4678 	ssize_t ret;
4679 
4680 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4681 		ret = -EIO;
4682 		goto out;
4683 	}
4684 
4685 	if (!f2fs_is_compress_backend_ready(inode)) {
4686 		ret = -EOPNOTSUPP;
4687 		goto out;
4688 	}
4689 
4690 	if (iocb->ki_flags & IOCB_NOWAIT) {
4691 		if (!inode_trylock(inode)) {
4692 			ret = -EAGAIN;
4693 			goto out;
4694 		}
4695 	} else {
4696 		inode_lock(inode);
4697 	}
4698 
4699 	ret = f2fs_write_checks(iocb, from);
4700 	if (ret <= 0)
4701 		goto out_unlock;
4702 
4703 	/* Determine whether we will do a direct write or a buffered write. */
4704 	dio = f2fs_should_use_dio(inode, iocb, from);
4705 
4706 	/* Possibly preallocate the blocks for the write. */
4707 	target_size = iocb->ki_pos + iov_iter_count(from);
4708 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4709 	if (preallocated < 0) {
4710 		ret = preallocated;
4711 	} else {
4712 		if (trace_f2fs_datawrite_start_enabled())
4713 			f2fs_trace_rw_file_path(iocb, orig_count, WRITE);
4714 
4715 		/* Do the actual write. */
4716 		ret = dio ?
4717 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4718 			f2fs_buffered_write_iter(iocb, from);
4719 
4720 		if (trace_f2fs_datawrite_end_enabled())
4721 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4722 	}
4723 
4724 	/* Don't leave any preallocated blocks around past i_size. */
4725 	if (preallocated && i_size_read(inode) < target_size) {
4726 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4727 		filemap_invalidate_lock(inode->i_mapping);
4728 		if (!f2fs_truncate(inode))
4729 			file_dont_truncate(inode);
4730 		filemap_invalidate_unlock(inode->i_mapping);
4731 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4732 	} else {
4733 		file_dont_truncate(inode);
4734 	}
4735 
4736 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4737 out_unlock:
4738 	inode_unlock(inode);
4739 out:
4740 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4741 
4742 	if (ret > 0 && may_need_sync)
4743 		ret = generic_write_sync(iocb, ret);
4744 
4745 	/* If buffered IO was forced, flush and drop the data from
4746 	 * the page cache to preserve O_DIRECT semantics
4747 	 */
4748 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4749 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4750 					  orig_pos,
4751 					  orig_pos + ret - 1);
4752 
4753 	return ret;
4754 }
4755 
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4756 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4757 		int advice)
4758 {
4759 	struct address_space *mapping;
4760 	struct backing_dev_info *bdi;
4761 	struct inode *inode = file_inode(filp);
4762 	int err;
4763 
4764 	if (advice == POSIX_FADV_SEQUENTIAL) {
4765 		if (S_ISFIFO(inode->i_mode))
4766 			return -ESPIPE;
4767 
4768 		mapping = filp->f_mapping;
4769 		if (!mapping || len < 0)
4770 			return -EINVAL;
4771 
4772 		bdi = inode_to_bdi(mapping->host);
4773 		filp->f_ra.ra_pages = bdi->ra_pages *
4774 			F2FS_I_SB(inode)->seq_file_ra_mul;
4775 		spin_lock(&filp->f_lock);
4776 		filp->f_mode &= ~FMODE_RANDOM;
4777 		spin_unlock(&filp->f_lock);
4778 		return 0;
4779 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4780 		/* Load extent cache at the first readahead. */
4781 		f2fs_precache_extents(inode);
4782 	}
4783 
4784 	err = generic_fadvise(filp, offset, len, advice);
4785 	if (!err && advice == POSIX_FADV_DONTNEED &&
4786 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4787 		f2fs_compressed_file(inode))
4788 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4789 
4790 	return err;
4791 }
4792 
4793 #ifdef CONFIG_COMPAT
4794 struct compat_f2fs_gc_range {
4795 	u32 sync;
4796 	compat_u64 start;
4797 	compat_u64 len;
4798 };
4799 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4800 						struct compat_f2fs_gc_range)
4801 
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4802 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4803 {
4804 	struct compat_f2fs_gc_range __user *urange;
4805 	struct f2fs_gc_range range;
4806 	int err;
4807 
4808 	urange = compat_ptr(arg);
4809 	err = get_user(range.sync, &urange->sync);
4810 	err |= get_user(range.start, &urange->start);
4811 	err |= get_user(range.len, &urange->len);
4812 	if (err)
4813 		return -EFAULT;
4814 
4815 	return __f2fs_ioc_gc_range(file, &range);
4816 }
4817 
4818 struct compat_f2fs_move_range {
4819 	u32 dst_fd;
4820 	compat_u64 pos_in;
4821 	compat_u64 pos_out;
4822 	compat_u64 len;
4823 };
4824 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4825 					struct compat_f2fs_move_range)
4826 
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4827 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4828 {
4829 	struct compat_f2fs_move_range __user *urange;
4830 	struct f2fs_move_range range;
4831 	int err;
4832 
4833 	urange = compat_ptr(arg);
4834 	err = get_user(range.dst_fd, &urange->dst_fd);
4835 	err |= get_user(range.pos_in, &urange->pos_in);
4836 	err |= get_user(range.pos_out, &urange->pos_out);
4837 	err |= get_user(range.len, &urange->len);
4838 	if (err)
4839 		return -EFAULT;
4840 
4841 	return __f2fs_ioc_move_range(file, &range);
4842 }
4843 
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4844 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4845 {
4846 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4847 		return -EIO;
4848 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4849 		return -ENOSPC;
4850 
4851 	switch (cmd) {
4852 	case FS_IOC32_GETVERSION:
4853 		cmd = FS_IOC_GETVERSION;
4854 		break;
4855 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4856 		return f2fs_compat_ioc_gc_range(file, arg);
4857 	case F2FS_IOC32_MOVE_RANGE:
4858 		return f2fs_compat_ioc_move_range(file, arg);
4859 	case F2FS_IOC_START_ATOMIC_WRITE:
4860 	case F2FS_IOC_START_ATOMIC_REPLACE:
4861 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4862 	case F2FS_IOC_START_VOLATILE_WRITE:
4863 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4864 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4865 	case F2FS_IOC_SHUTDOWN:
4866 	case FITRIM:
4867 	case FS_IOC_SET_ENCRYPTION_POLICY:
4868 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4869 	case FS_IOC_GET_ENCRYPTION_POLICY:
4870 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4871 	case FS_IOC_ADD_ENCRYPTION_KEY:
4872 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4873 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4874 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4875 	case FS_IOC_GET_ENCRYPTION_NONCE:
4876 	case F2FS_IOC_GARBAGE_COLLECT:
4877 	case F2FS_IOC_WRITE_CHECKPOINT:
4878 	case F2FS_IOC_DEFRAGMENT:
4879 	case F2FS_IOC_FLUSH_DEVICE:
4880 	case F2FS_IOC_GET_FEATURES:
4881 	case F2FS_IOC_GET_PIN_FILE:
4882 	case F2FS_IOC_SET_PIN_FILE:
4883 	case F2FS_IOC_PRECACHE_EXTENTS:
4884 	case F2FS_IOC_RESIZE_FS:
4885 	case FS_IOC_ENABLE_VERITY:
4886 	case FS_IOC_MEASURE_VERITY:
4887 	case FS_IOC_READ_VERITY_METADATA:
4888 	case FS_IOC_GETFSLABEL:
4889 	case FS_IOC_SETFSLABEL:
4890 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4891 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4892 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4893 	case F2FS_IOC_SEC_TRIM_FILE:
4894 	case F2FS_IOC_GET_COMPRESS_OPTION:
4895 	case F2FS_IOC_SET_COMPRESS_OPTION:
4896 	case F2FS_IOC_DECOMPRESS_FILE:
4897 	case F2FS_IOC_COMPRESS_FILE:
4898 		break;
4899 	default:
4900 		return -ENOIOCTLCMD;
4901 	}
4902 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4903 }
4904 #endif
4905 
4906 const struct file_operations f2fs_file_operations = {
4907 	.llseek		= f2fs_llseek,
4908 	.read_iter	= f2fs_file_read_iter,
4909 	.write_iter	= f2fs_file_write_iter,
4910 	.iopoll		= iomap_dio_iopoll,
4911 	.open		= f2fs_file_open,
4912 	.release	= f2fs_release_file,
4913 	.mmap		= f2fs_file_mmap,
4914 	.flush		= f2fs_file_flush,
4915 	.fsync		= f2fs_sync_file,
4916 	.fallocate	= f2fs_fallocate,
4917 	.unlocked_ioctl	= f2fs_ioctl,
4918 #ifdef CONFIG_COMPAT
4919 	.compat_ioctl	= f2fs_compat_ioctl,
4920 #endif
4921 	.splice_read	= generic_file_splice_read,
4922 	.splice_write	= iter_file_splice_write,
4923 	.fadvise	= f2fs_file_fadvise,
4924 };
4925