1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (!ret)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152 if (!PageUptodate(page))
153 SetPageUptodate(page);
154
155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 f2fs_update_time(sbi, REQ_TIME);
157
158 trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 filemap_invalidate_unlock_shared(inode->i_mapping);
161
162 sb_end_pagefault(inode->i_sb);
163 err:
164 return block_page_mkwrite_return(err);
165 }
166
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 .fault = f2fs_filemap_fault,
169 .map_pages = filemap_map_pages,
170 .page_mkwrite = f2fs_vm_page_mkwrite,
171 .speculative = true,
172 };
173
get_parent_ino(struct inode * inode,nid_t * pino)174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176 struct dentry *dentry;
177
178 /*
179 * Make sure to get the non-deleted alias. The alias associated with
180 * the open file descriptor being fsync()'ed may be deleted already.
181 */
182 dentry = d_find_alias(inode);
183 if (!dentry)
184 return 0;
185
186 *pino = parent_ino(dentry);
187 dput(dentry);
188 return 1;
189 }
190
need_do_checkpoint(struct inode * inode)191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 enum cp_reason_type cp_reason = CP_NO_NEEDED;
195
196 if (!S_ISREG(inode->i_mode))
197 cp_reason = CP_NON_REGULAR;
198 else if (f2fs_compressed_file(inode))
199 cp_reason = CP_COMPRESSED;
200 else if (inode->i_nlink != 1)
201 cp_reason = CP_HARDLINK;
202 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203 cp_reason = CP_SB_NEED_CP;
204 else if (file_wrong_pino(inode))
205 cp_reason = CP_WRONG_PINO;
206 else if (!f2fs_space_for_roll_forward(sbi))
207 cp_reason = CP_NO_SPC_ROLL;
208 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209 cp_reason = CP_NODE_NEED_CP;
210 else if (test_opt(sbi, FASTBOOT))
211 cp_reason = CP_FASTBOOT_MODE;
212 else if (F2FS_OPTION(sbi).active_logs == 2)
213 cp_reason = CP_SPEC_LOG_NUM;
214 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 TRANS_DIR_INO))
218 cp_reason = CP_RECOVER_DIR;
219
220 return cp_reason;
221 }
222
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 f2fs_down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 f2fs_up_write(&fi->i_sem);
246 }
247
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 } else {
303 /*
304 * for OPU case, during fsync(), node can be persisted before
305 * data when lower device doesn't support write barrier, result
306 * in data corruption after SPO.
307 * So for strict fsync mode, force to use atomic write semantics
308 * to keep write order in between data/node and last node to
309 * avoid potential data corruption.
310 */
311 if (F2FS_OPTION(sbi).fsync_mode ==
312 FSYNC_MODE_STRICT && !atomic)
313 atomic = true;
314 }
315 go_write:
316 /*
317 * Both of fdatasync() and fsync() are able to be recovered from
318 * sudden-power-off.
319 */
320 f2fs_down_read(&F2FS_I(inode)->i_sem);
321 cp_reason = need_do_checkpoint(inode);
322 f2fs_up_read(&F2FS_I(inode)->i_sem);
323
324 if (cp_reason) {
325 /* all the dirty node pages should be flushed for POR */
326 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328 /*
329 * We've secured consistency through sync_fs. Following pino
330 * will be used only for fsynced inodes after checkpoint.
331 */
332 try_to_fix_pino(inode);
333 clear_inode_flag(inode, FI_APPEND_WRITE);
334 clear_inode_flag(inode, FI_UPDATE_WRITE);
335 goto out;
336 }
337 sync_nodes:
338 atomic_inc(&sbi->wb_sync_req[NODE]);
339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 atomic_dec(&sbi->wb_sync_req[NODE]);
341 if (ret)
342 goto out;
343
344 /* if cp_error was enabled, we should avoid infinite loop */
345 if (unlikely(f2fs_cp_error(sbi))) {
346 ret = -EIO;
347 goto out;
348 }
349
350 if (f2fs_need_inode_block_update(sbi, ino)) {
351 f2fs_mark_inode_dirty_sync(inode, true);
352 f2fs_write_inode(inode, NULL);
353 goto sync_nodes;
354 }
355
356 /*
357 * If it's atomic_write, it's just fine to keep write ordering. So
358 * here we don't need to wait for node write completion, since we use
359 * node chain which serializes node blocks. If one of node writes are
360 * reordered, we can see simply broken chain, resulting in stopping
361 * roll-forward recovery. It means we'll recover all or none node blocks
362 * given fsync mark.
363 */
364 if (!atomic) {
365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 if (ret)
367 goto out;
368 }
369
370 /* once recovery info is written, don't need to tack this */
371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 ret = f2fs_issue_flush(sbi, inode->i_ino);
377 if (!ret) {
378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 clear_inode_flag(inode, FI_UPDATE_WRITE);
380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 }
382 f2fs_update_time(sbi, REQ_TIME);
383 out:
384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 return ret;
386 }
387
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 return -EIO;
392 return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 pgoff_t index, int whence)
397 {
398 switch (whence) {
399 case SEEK_DATA:
400 if (__is_valid_data_blkaddr(blkaddr))
401 return true;
402 if (blkaddr == NEW_ADDR &&
403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 return true;
405 break;
406 case SEEK_HOLE:
407 if (blkaddr == NULL_ADDR)
408 return true;
409 break;
410 }
411 return false;
412 }
413
f2fs_seek_block(struct file * file,loff_t offset,int whence)414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 struct inode *inode = file->f_mapping->host;
417 loff_t maxbytes = inode->i_sb->s_maxbytes;
418 struct dnode_of_data dn;
419 pgoff_t pgofs, end_offset;
420 loff_t data_ofs = offset;
421 loff_t isize;
422 int err = 0;
423
424 inode_lock(inode);
425
426 isize = i_size_read(inode);
427 if (offset >= isize)
428 goto fail;
429
430 /* handle inline data case */
431 if (f2fs_has_inline_data(inode)) {
432 if (whence == SEEK_HOLE) {
433 data_ofs = isize;
434 goto found;
435 } else if (whence == SEEK_DATA) {
436 data_ofs = offset;
437 goto found;
438 }
439 }
440
441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442
443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 set_new_dnode(&dn, inode, NULL, NULL, 0);
445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 if (err && err != -ENOENT) {
447 goto fail;
448 } else if (err == -ENOENT) {
449 /* direct node does not exists */
450 if (whence == SEEK_DATA) {
451 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 continue;
453 } else {
454 goto found;
455 }
456 }
457
458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459
460 /* find data/hole in dnode block */
461 for (; dn.ofs_in_node < end_offset;
462 dn.ofs_in_node++, pgofs++,
463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 block_t blkaddr;
465
466 blkaddr = f2fs_data_blkaddr(&dn);
467
468 if (__is_valid_data_blkaddr(blkaddr) &&
469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 blkaddr, DATA_GENERIC_ENHANCE)) {
471 f2fs_put_dnode(&dn);
472 goto fail;
473 }
474
475 if (__found_offset(file->f_mapping, blkaddr,
476 pgofs, whence)) {
477 f2fs_put_dnode(&dn);
478 goto found;
479 }
480 }
481 f2fs_put_dnode(&dn);
482 }
483
484 if (whence == SEEK_DATA)
485 goto fail;
486 found:
487 if (whence == SEEK_HOLE && data_ofs > isize)
488 data_ofs = isize;
489 inode_unlock(inode);
490 return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 inode_unlock(inode);
493 return -ENXIO;
494 }
495
f2fs_llseek(struct file * file,loff_t offset,int whence)496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 struct inode *inode = file->f_mapping->host;
499 loff_t maxbytes = inode->i_sb->s_maxbytes;
500
501 if (f2fs_compressed_file(inode))
502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503
504 switch (whence) {
505 case SEEK_SET:
506 case SEEK_CUR:
507 case SEEK_END:
508 return generic_file_llseek_size(file, offset, whence,
509 maxbytes, i_size_read(inode));
510 case SEEK_DATA:
511 case SEEK_HOLE:
512 if (offset < 0)
513 return -ENXIO;
514 return f2fs_seek_block(file, offset, whence);
515 }
516
517 return -EINVAL;
518 }
519
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 struct inode *inode = file_inode(file);
523
524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 return -EIO;
526
527 if (!f2fs_is_compress_backend_ready(inode))
528 return -EOPNOTSUPP;
529
530 file_accessed(file);
531 vma->vm_ops = &f2fs_file_vm_ops;
532 set_inode_flag(inode, FI_MMAP_FILE);
533 return 0;
534 }
535
f2fs_file_open(struct inode * inode,struct file * filp)536 static int f2fs_file_open(struct inode *inode, struct file *filp)
537 {
538 int err = fscrypt_file_open(inode, filp);
539
540 if (err)
541 return err;
542
543 if (!f2fs_is_compress_backend_ready(inode))
544 return -EOPNOTSUPP;
545
546 err = fsverity_file_open(inode, filp);
547 if (err)
548 return err;
549
550 filp->f_mode |= FMODE_NOWAIT;
551
552 return dquot_file_open(inode, filp);
553 }
554
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
556 {
557 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558 struct f2fs_node *raw_node;
559 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
560 __le32 *addr;
561 int base = 0;
562 bool compressed_cluster = false;
563 int cluster_index = 0, valid_blocks = 0;
564 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566
567 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
568 base = get_extra_isize(dn->inode);
569
570 raw_node = F2FS_NODE(dn->node_page);
571 addr = blkaddr_in_node(raw_node) + base + ofs;
572
573 /* Assumption: truncation starts with cluster */
574 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
575 block_t blkaddr = le32_to_cpu(*addr);
576
577 if (f2fs_compressed_file(dn->inode) &&
578 !(cluster_index & (cluster_size - 1))) {
579 if (compressed_cluster)
580 f2fs_i_compr_blocks_update(dn->inode,
581 valid_blocks, false);
582 compressed_cluster = (blkaddr == COMPRESS_ADDR);
583 valid_blocks = 0;
584 }
585
586 if (blkaddr == NULL_ADDR)
587 continue;
588
589 dn->data_blkaddr = NULL_ADDR;
590 f2fs_set_data_blkaddr(dn);
591
592 if (__is_valid_data_blkaddr(blkaddr)) {
593 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 DATA_GENERIC_ENHANCE))
595 continue;
596 if (compressed_cluster)
597 valid_blocks++;
598 }
599
600 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
601 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
602
603 f2fs_invalidate_blocks(sbi, blkaddr);
604
605 if (!released || blkaddr != COMPRESS_ADDR)
606 nr_free++;
607 }
608
609 if (compressed_cluster)
610 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
611
612 if (nr_free) {
613 pgoff_t fofs;
614 /*
615 * once we invalidate valid blkaddr in range [ofs, ofs + count],
616 * we will invalidate all blkaddr in the whole range.
617 */
618 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
619 dn->inode) + ofs;
620 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
621 f2fs_update_age_extent_cache_range(dn, fofs, len);
622 dec_valid_block_count(sbi, dn->inode, nr_free);
623 }
624 dn->ofs_in_node = ofs;
625
626 f2fs_update_time(sbi, REQ_TIME);
627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628 dn->ofs_in_node, nr_free);
629 }
630
f2fs_truncate_data_blocks(struct dnode_of_data * dn)631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637 bool cache_only)
638 {
639 loff_t offset = from & (PAGE_SIZE - 1);
640 pgoff_t index = from >> PAGE_SHIFT;
641 struct address_space *mapping = inode->i_mapping;
642 struct page *page;
643
644 if (!offset && !cache_only)
645 return 0;
646
647 if (cache_only) {
648 page = find_lock_page(mapping, index);
649 if (page && PageUptodate(page))
650 goto truncate_out;
651 f2fs_put_page(page, 1);
652 return 0;
653 }
654
655 page = f2fs_get_lock_data_page(inode, index, true);
656 if (IS_ERR(page))
657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659 f2fs_wait_on_page_writeback(page, DATA, true, true);
660 zero_user(page, offset, PAGE_SIZE - offset);
661
662 /* An encrypted inode should have a key and truncate the last page. */
663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664 if (!cache_only)
665 set_page_dirty(page);
666 f2fs_put_page(page, 1);
667 return 0;
668 }
669
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 struct dnode_of_data dn;
674 pgoff_t free_from;
675 int count = 0, err = 0;
676 struct page *ipage;
677 bool truncate_page = false;
678
679 trace_f2fs_truncate_blocks_enter(inode, from);
680
681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682
683 if (free_from >= max_file_blocks(inode))
684 goto free_partial;
685
686 if (lock)
687 f2fs_lock_op(sbi);
688
689 ipage = f2fs_get_node_page(sbi, inode->i_ino);
690 if (IS_ERR(ipage)) {
691 err = PTR_ERR(ipage);
692 goto out;
693 }
694
695 if (f2fs_has_inline_data(inode)) {
696 f2fs_truncate_inline_inode(inode, ipage, from);
697 f2fs_put_page(ipage, 1);
698 truncate_page = true;
699 goto out;
700 }
701
702 set_new_dnode(&dn, inode, ipage, NULL, 0);
703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704 if (err) {
705 if (err == -ENOENT)
706 goto free_next;
707 goto out;
708 }
709
710 count = ADDRS_PER_PAGE(dn.node_page, inode);
711
712 count -= dn.ofs_in_node;
713 f2fs_bug_on(sbi, count < 0);
714
715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716 f2fs_truncate_data_blocks_range(&dn, count);
717 free_from += count;
718 }
719
720 f2fs_put_dnode(&dn);
721 free_next:
722 err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724 if (lock)
725 f2fs_unlock_op(sbi);
726 free_partial:
727 /* lastly zero out the first data page */
728 if (!err)
729 err = truncate_partial_data_page(inode, from, truncate_page);
730
731 trace_f2fs_truncate_blocks_exit(inode, err);
732 return err;
733 }
734
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737 u64 free_from = from;
738 int err;
739
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741 /*
742 * for compressed file, only support cluster size
743 * aligned truncation.
744 */
745 if (f2fs_compressed_file(inode))
746 free_from = round_up(from,
747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749
750 err = f2fs_do_truncate_blocks(inode, free_from, lock);
751 if (err)
752 return err;
753
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755 /*
756 * For compressed file, after release compress blocks, don't allow write
757 * direct, but we should allow write direct after truncate to zero.
758 */
759 if (f2fs_compressed_file(inode) && !free_from
760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762
763 if (from != free_from) {
764 err = f2fs_truncate_partial_cluster(inode, from, lock);
765 if (err)
766 return err;
767 }
768 #endif
769
770 return 0;
771 }
772
f2fs_truncate(struct inode * inode)773 int f2fs_truncate(struct inode *inode)
774 {
775 int err;
776
777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778 return -EIO;
779
780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781 S_ISLNK(inode->i_mode)))
782 return 0;
783
784 trace_f2fs_truncate(inode);
785
786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
787 return -EIO;
788
789 err = f2fs_dquot_initialize(inode);
790 if (err)
791 return err;
792
793 /* we should check inline_data size */
794 if (!f2fs_may_inline_data(inode)) {
795 err = f2fs_convert_inline_inode(inode);
796 if (err)
797 return err;
798 }
799
800 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801 if (err)
802 return err;
803
804 inode->i_mtime = inode->i_ctime = current_time(inode);
805 f2fs_mark_inode_dirty_sync(inode, false);
806 return 0;
807 }
808
f2fs_force_buffered_io(struct inode * inode,int rw)809 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
810 {
811 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812
813 if (!fscrypt_dio_supported(inode))
814 return true;
815 if (fsverity_active(inode))
816 return true;
817 if (f2fs_compressed_file(inode))
818 return true;
819
820 /* disallow direct IO if any of devices has unaligned blksize */
821 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
822 return true;
823 /*
824 * for blkzoned device, fallback direct IO to buffered IO, so
825 * all IOs can be serialized by log-structured write.
826 */
827 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
828 return true;
829 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
830 return true;
831 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
832 return true;
833
834 return false;
835 }
836
f2fs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)837 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
838 struct kstat *stat, u32 request_mask, unsigned int query_flags)
839 {
840 struct inode *inode = d_inode(path->dentry);
841 struct f2fs_inode_info *fi = F2FS_I(inode);
842 struct f2fs_inode *ri = NULL;
843 unsigned int flags;
844
845 if (f2fs_has_extra_attr(inode) &&
846 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
847 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
848 stat->result_mask |= STATX_BTIME;
849 stat->btime.tv_sec = fi->i_crtime.tv_sec;
850 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
851 }
852
853 flags = fi->i_flags;
854 if (flags & F2FS_COMPR_FL)
855 stat->attributes |= STATX_ATTR_COMPRESSED;
856 if (flags & F2FS_APPEND_FL)
857 stat->attributes |= STATX_ATTR_APPEND;
858 if (IS_ENCRYPTED(inode))
859 stat->attributes |= STATX_ATTR_ENCRYPTED;
860 if (flags & F2FS_IMMUTABLE_FL)
861 stat->attributes |= STATX_ATTR_IMMUTABLE;
862 if (flags & F2FS_NODUMP_FL)
863 stat->attributes |= STATX_ATTR_NODUMP;
864 if (IS_VERITY(inode))
865 stat->attributes |= STATX_ATTR_VERITY;
866
867 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
868 STATX_ATTR_APPEND |
869 STATX_ATTR_ENCRYPTED |
870 STATX_ATTR_IMMUTABLE |
871 STATX_ATTR_NODUMP |
872 STATX_ATTR_VERITY);
873
874 generic_fillattr(mnt_userns, inode, stat);
875
876 /* we need to show initial sectors used for inline_data/dentries */
877 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
878 f2fs_has_inline_dentry(inode))
879 stat->blocks += (stat->size + 511) >> 9;
880
881 return 0;
882 }
883
884 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct user_namespace * mnt_userns,struct inode * inode,const struct iattr * attr)885 static void __setattr_copy(struct user_namespace *mnt_userns,
886 struct inode *inode, const struct iattr *attr)
887 {
888 unsigned int ia_valid = attr->ia_valid;
889
890 if (ia_valid & ATTR_UID)
891 inode->i_uid = attr->ia_uid;
892 if (ia_valid & ATTR_GID)
893 inode->i_gid = attr->ia_gid;
894 if (ia_valid & ATTR_ATIME)
895 inode->i_atime = attr->ia_atime;
896 if (ia_valid & ATTR_MTIME)
897 inode->i_mtime = attr->ia_mtime;
898 if (ia_valid & ATTR_CTIME)
899 inode->i_ctime = attr->ia_ctime;
900 if (ia_valid & ATTR_MODE) {
901 umode_t mode = attr->ia_mode;
902 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
903
904 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
905 mode &= ~S_ISGID;
906 set_acl_inode(inode, mode);
907 }
908 }
909 #else
910 #define __setattr_copy setattr_copy
911 #endif
912
f2fs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)913 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
914 struct iattr *attr)
915 {
916 struct inode *inode = d_inode(dentry);
917 int err;
918
919 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
920 return -EIO;
921
922 if (unlikely(IS_IMMUTABLE(inode)))
923 return -EPERM;
924
925 if (unlikely(IS_APPEND(inode) &&
926 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
927 ATTR_GID | ATTR_TIMES_SET))))
928 return -EPERM;
929
930 if ((attr->ia_valid & ATTR_SIZE) &&
931 !f2fs_is_compress_backend_ready(inode))
932 return -EOPNOTSUPP;
933
934 err = setattr_prepare(mnt_userns, dentry, attr);
935 if (err)
936 return err;
937
938 err = fscrypt_prepare_setattr(dentry, attr);
939 if (err)
940 return err;
941
942 err = fsverity_prepare_setattr(dentry, attr);
943 if (err)
944 return err;
945
946 if (is_quota_modification(inode, attr)) {
947 err = f2fs_dquot_initialize(inode);
948 if (err)
949 return err;
950 }
951 if ((attr->ia_valid & ATTR_UID &&
952 !uid_eq(attr->ia_uid, inode->i_uid)) ||
953 (attr->ia_valid & ATTR_GID &&
954 !gid_eq(attr->ia_gid, inode->i_gid))) {
955 f2fs_lock_op(F2FS_I_SB(inode));
956 err = dquot_transfer(inode, attr);
957 if (err) {
958 set_sbi_flag(F2FS_I_SB(inode),
959 SBI_QUOTA_NEED_REPAIR);
960 f2fs_unlock_op(F2FS_I_SB(inode));
961 return err;
962 }
963 /*
964 * update uid/gid under lock_op(), so that dquot and inode can
965 * be updated atomically.
966 */
967 if (attr->ia_valid & ATTR_UID)
968 inode->i_uid = attr->ia_uid;
969 if (attr->ia_valid & ATTR_GID)
970 inode->i_gid = attr->ia_gid;
971 f2fs_mark_inode_dirty_sync(inode, true);
972 f2fs_unlock_op(F2FS_I_SB(inode));
973 }
974
975 if (attr->ia_valid & ATTR_SIZE) {
976 loff_t old_size = i_size_read(inode);
977
978 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
979 /*
980 * should convert inline inode before i_size_write to
981 * keep smaller than inline_data size with inline flag.
982 */
983 err = f2fs_convert_inline_inode(inode);
984 if (err)
985 return err;
986 }
987
988 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
989 filemap_invalidate_lock(inode->i_mapping);
990
991 truncate_setsize(inode, attr->ia_size);
992
993 if (attr->ia_size <= old_size)
994 err = f2fs_truncate(inode);
995 /*
996 * do not trim all blocks after i_size if target size is
997 * larger than i_size.
998 */
999 filemap_invalidate_unlock(inode->i_mapping);
1000 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1001 if (err)
1002 return err;
1003
1004 spin_lock(&F2FS_I(inode)->i_size_lock);
1005 inode->i_mtime = inode->i_ctime = current_time(inode);
1006 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1007 spin_unlock(&F2FS_I(inode)->i_size_lock);
1008 }
1009
1010 __setattr_copy(mnt_userns, inode, attr);
1011
1012 if (attr->ia_valid & ATTR_MODE) {
1013 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
1014
1015 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1016 if (!err)
1017 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1018 clear_inode_flag(inode, FI_ACL_MODE);
1019 }
1020 }
1021
1022 /* file size may changed here */
1023 f2fs_mark_inode_dirty_sync(inode, true);
1024
1025 /* inode change will produce dirty node pages flushed by checkpoint */
1026 f2fs_balance_fs(F2FS_I_SB(inode), true);
1027
1028 return err;
1029 }
1030
1031 const struct inode_operations f2fs_file_inode_operations = {
1032 .getattr = f2fs_getattr,
1033 .setattr = f2fs_setattr,
1034 .get_acl = f2fs_get_acl,
1035 .set_acl = f2fs_set_acl,
1036 .listxattr = f2fs_listxattr,
1037 .fiemap = f2fs_fiemap,
1038 .fileattr_get = f2fs_fileattr_get,
1039 .fileattr_set = f2fs_fileattr_set,
1040 };
1041
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1042 static int fill_zero(struct inode *inode, pgoff_t index,
1043 loff_t start, loff_t len)
1044 {
1045 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 struct page *page;
1047
1048 if (!len)
1049 return 0;
1050
1051 f2fs_balance_fs(sbi, true);
1052
1053 f2fs_lock_op(sbi);
1054 page = f2fs_get_new_data_page(inode, NULL, index, false);
1055 f2fs_unlock_op(sbi);
1056
1057 if (IS_ERR(page))
1058 return PTR_ERR(page);
1059
1060 f2fs_wait_on_page_writeback(page, DATA, true, true);
1061 zero_user(page, start, len);
1062 set_page_dirty(page);
1063 f2fs_put_page(page, 1);
1064 return 0;
1065 }
1066
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1067 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1068 {
1069 int err;
1070
1071 while (pg_start < pg_end) {
1072 struct dnode_of_data dn;
1073 pgoff_t end_offset, count;
1074
1075 set_new_dnode(&dn, inode, NULL, NULL, 0);
1076 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1077 if (err) {
1078 if (err == -ENOENT) {
1079 pg_start = f2fs_get_next_page_offset(&dn,
1080 pg_start);
1081 continue;
1082 }
1083 return err;
1084 }
1085
1086 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1087 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1088
1089 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1090
1091 f2fs_truncate_data_blocks_range(&dn, count);
1092 f2fs_put_dnode(&dn);
1093
1094 pg_start += count;
1095 }
1096 return 0;
1097 }
1098
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1099 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1100 {
1101 pgoff_t pg_start, pg_end;
1102 loff_t off_start, off_end;
1103 int ret;
1104
1105 ret = f2fs_convert_inline_inode(inode);
1106 if (ret)
1107 return ret;
1108
1109 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1110 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1111
1112 off_start = offset & (PAGE_SIZE - 1);
1113 off_end = (offset + len) & (PAGE_SIZE - 1);
1114
1115 if (pg_start == pg_end) {
1116 ret = fill_zero(inode, pg_start, off_start,
1117 off_end - off_start);
1118 if (ret)
1119 return ret;
1120 } else {
1121 if (off_start) {
1122 ret = fill_zero(inode, pg_start++, off_start,
1123 PAGE_SIZE - off_start);
1124 if (ret)
1125 return ret;
1126 }
1127 if (off_end) {
1128 ret = fill_zero(inode, pg_end, 0, off_end);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 if (pg_start < pg_end) {
1134 loff_t blk_start, blk_end;
1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136
1137 f2fs_balance_fs(sbi, true);
1138
1139 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1140 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1141
1142 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1143 filemap_invalidate_lock(inode->i_mapping);
1144
1145 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1146
1147 f2fs_lock_op(sbi);
1148 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1149 f2fs_unlock_op(sbi);
1150
1151 filemap_invalidate_unlock(inode->i_mapping);
1152 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 }
1154 }
1155
1156 return ret;
1157 }
1158
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1159 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1160 int *do_replace, pgoff_t off, pgoff_t len)
1161 {
1162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1163 struct dnode_of_data dn;
1164 int ret, done, i;
1165
1166 next_dnode:
1167 set_new_dnode(&dn, inode, NULL, NULL, 0);
1168 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1169 if (ret && ret != -ENOENT) {
1170 return ret;
1171 } else if (ret == -ENOENT) {
1172 if (dn.max_level == 0)
1173 return -ENOENT;
1174 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1175 dn.ofs_in_node, len);
1176 blkaddr += done;
1177 do_replace += done;
1178 goto next;
1179 }
1180
1181 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1182 dn.ofs_in_node, len);
1183 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1184 *blkaddr = f2fs_data_blkaddr(&dn);
1185
1186 if (__is_valid_data_blkaddr(*blkaddr) &&
1187 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1188 DATA_GENERIC_ENHANCE)) {
1189 f2fs_put_dnode(&dn);
1190 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1191 return -EFSCORRUPTED;
1192 }
1193
1194 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1195
1196 if (f2fs_lfs_mode(sbi)) {
1197 f2fs_put_dnode(&dn);
1198 return -EOPNOTSUPP;
1199 }
1200
1201 /* do not invalidate this block address */
1202 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1203 *do_replace = 1;
1204 }
1205 }
1206 f2fs_put_dnode(&dn);
1207 next:
1208 len -= done;
1209 off += done;
1210 if (len)
1211 goto next_dnode;
1212 return 0;
1213 }
1214
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1215 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1216 int *do_replace, pgoff_t off, int len)
1217 {
1218 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1219 struct dnode_of_data dn;
1220 int ret, i;
1221
1222 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1223 if (*do_replace == 0)
1224 continue;
1225
1226 set_new_dnode(&dn, inode, NULL, NULL, 0);
1227 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1228 if (ret) {
1229 dec_valid_block_count(sbi, inode, 1);
1230 f2fs_invalidate_blocks(sbi, *blkaddr);
1231 } else {
1232 f2fs_update_data_blkaddr(&dn, *blkaddr);
1233 }
1234 f2fs_put_dnode(&dn);
1235 }
1236 return 0;
1237 }
1238
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1239 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1240 block_t *blkaddr, int *do_replace,
1241 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1242 {
1243 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1244 pgoff_t i = 0;
1245 int ret;
1246
1247 while (i < len) {
1248 if (blkaddr[i] == NULL_ADDR && !full) {
1249 i++;
1250 continue;
1251 }
1252
1253 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1254 struct dnode_of_data dn;
1255 struct node_info ni;
1256 size_t new_size;
1257 pgoff_t ilen;
1258
1259 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1260 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1261 if (ret)
1262 return ret;
1263
1264 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1265 if (ret) {
1266 f2fs_put_dnode(&dn);
1267 return ret;
1268 }
1269
1270 ilen = min((pgoff_t)
1271 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1272 dn.ofs_in_node, len - i);
1273 do {
1274 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1275 f2fs_truncate_data_blocks_range(&dn, 1);
1276
1277 if (do_replace[i]) {
1278 f2fs_i_blocks_write(src_inode,
1279 1, false, false);
1280 f2fs_i_blocks_write(dst_inode,
1281 1, true, false);
1282 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1283 blkaddr[i], ni.version, true, false);
1284
1285 do_replace[i] = 0;
1286 }
1287 dn.ofs_in_node++;
1288 i++;
1289 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1290 if (dst_inode->i_size < new_size)
1291 f2fs_i_size_write(dst_inode, new_size);
1292 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1293
1294 f2fs_put_dnode(&dn);
1295 } else {
1296 struct page *psrc, *pdst;
1297
1298 psrc = f2fs_get_lock_data_page(src_inode,
1299 src + i, true);
1300 if (IS_ERR(psrc))
1301 return PTR_ERR(psrc);
1302 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1303 true);
1304 if (IS_ERR(pdst)) {
1305 f2fs_put_page(psrc, 1);
1306 return PTR_ERR(pdst);
1307 }
1308 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1309 set_page_dirty(pdst);
1310 set_page_private_gcing(pdst);
1311 f2fs_put_page(pdst, 1);
1312 f2fs_put_page(psrc, 1);
1313
1314 ret = f2fs_truncate_hole(src_inode,
1315 src + i, src + i + 1);
1316 if (ret)
1317 return ret;
1318 i++;
1319 }
1320 }
1321 return 0;
1322 }
1323
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1324 static int __exchange_data_block(struct inode *src_inode,
1325 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1326 pgoff_t len, bool full)
1327 {
1328 block_t *src_blkaddr;
1329 int *do_replace;
1330 pgoff_t olen;
1331 int ret;
1332
1333 while (len) {
1334 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1335
1336 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1337 array_size(olen, sizeof(block_t)),
1338 GFP_NOFS);
1339 if (!src_blkaddr)
1340 return -ENOMEM;
1341
1342 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1343 array_size(olen, sizeof(int)),
1344 GFP_NOFS);
1345 if (!do_replace) {
1346 kvfree(src_blkaddr);
1347 return -ENOMEM;
1348 }
1349
1350 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1351 do_replace, src, olen);
1352 if (ret)
1353 goto roll_back;
1354
1355 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1356 do_replace, src, dst, olen, full);
1357 if (ret)
1358 goto roll_back;
1359
1360 src += olen;
1361 dst += olen;
1362 len -= olen;
1363
1364 kvfree(src_blkaddr);
1365 kvfree(do_replace);
1366 }
1367 return 0;
1368
1369 roll_back:
1370 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1371 kvfree(src_blkaddr);
1372 kvfree(do_replace);
1373 return ret;
1374 }
1375
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1376 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1377 {
1378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1379 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1380 pgoff_t start = offset >> PAGE_SHIFT;
1381 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1382 int ret;
1383
1384 f2fs_balance_fs(sbi, true);
1385
1386 /* avoid gc operation during block exchange */
1387 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1388 filemap_invalidate_lock(inode->i_mapping);
1389
1390 f2fs_lock_op(sbi);
1391 f2fs_drop_extent_tree(inode);
1392 truncate_pagecache(inode, offset);
1393 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1394 f2fs_unlock_op(sbi);
1395
1396 filemap_invalidate_unlock(inode->i_mapping);
1397 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1398 return ret;
1399 }
1400
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1401 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1402 {
1403 loff_t new_size;
1404 int ret;
1405
1406 if (offset + len >= i_size_read(inode))
1407 return -EINVAL;
1408
1409 /* collapse range should be aligned to block size of f2fs. */
1410 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1411 return -EINVAL;
1412
1413 ret = f2fs_convert_inline_inode(inode);
1414 if (ret)
1415 return ret;
1416
1417 /* write out all dirty pages from offset */
1418 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1419 if (ret)
1420 return ret;
1421
1422 ret = f2fs_do_collapse(inode, offset, len);
1423 if (ret)
1424 return ret;
1425
1426 /* write out all moved pages, if possible */
1427 filemap_invalidate_lock(inode->i_mapping);
1428 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429 truncate_pagecache(inode, offset);
1430
1431 new_size = i_size_read(inode) - len;
1432 ret = f2fs_truncate_blocks(inode, new_size, true);
1433 filemap_invalidate_unlock(inode->i_mapping);
1434 if (!ret)
1435 f2fs_i_size_write(inode, new_size);
1436 return ret;
1437 }
1438
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1439 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1440 pgoff_t end)
1441 {
1442 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1443 pgoff_t index = start;
1444 unsigned int ofs_in_node = dn->ofs_in_node;
1445 blkcnt_t count = 0;
1446 int ret;
1447
1448 for (; index < end; index++, dn->ofs_in_node++) {
1449 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1450 count++;
1451 }
1452
1453 dn->ofs_in_node = ofs_in_node;
1454 ret = f2fs_reserve_new_blocks(dn, count);
1455 if (ret)
1456 return ret;
1457
1458 dn->ofs_in_node = ofs_in_node;
1459 for (index = start; index < end; index++, dn->ofs_in_node++) {
1460 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1461 /*
1462 * f2fs_reserve_new_blocks will not guarantee entire block
1463 * allocation.
1464 */
1465 if (dn->data_blkaddr == NULL_ADDR) {
1466 ret = -ENOSPC;
1467 break;
1468 }
1469
1470 if (dn->data_blkaddr == NEW_ADDR)
1471 continue;
1472
1473 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1474 DATA_GENERIC_ENHANCE)) {
1475 ret = -EFSCORRUPTED;
1476 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1477 break;
1478 }
1479
1480 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1481 dn->data_blkaddr = NEW_ADDR;
1482 f2fs_set_data_blkaddr(dn);
1483 }
1484
1485 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1486 f2fs_update_age_extent_cache_range(dn, start, index - start);
1487
1488 return ret;
1489 }
1490
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1491 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1492 int mode)
1493 {
1494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1495 struct address_space *mapping = inode->i_mapping;
1496 pgoff_t index, pg_start, pg_end;
1497 loff_t new_size = i_size_read(inode);
1498 loff_t off_start, off_end;
1499 int ret = 0;
1500
1501 ret = inode_newsize_ok(inode, (len + offset));
1502 if (ret)
1503 return ret;
1504
1505 ret = f2fs_convert_inline_inode(inode);
1506 if (ret)
1507 return ret;
1508
1509 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1510 if (ret)
1511 return ret;
1512
1513 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1514 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1515
1516 off_start = offset & (PAGE_SIZE - 1);
1517 off_end = (offset + len) & (PAGE_SIZE - 1);
1518
1519 if (pg_start == pg_end) {
1520 ret = fill_zero(inode, pg_start, off_start,
1521 off_end - off_start);
1522 if (ret)
1523 return ret;
1524
1525 new_size = max_t(loff_t, new_size, offset + len);
1526 } else {
1527 if (off_start) {
1528 ret = fill_zero(inode, pg_start++, off_start,
1529 PAGE_SIZE - off_start);
1530 if (ret)
1531 return ret;
1532
1533 new_size = max_t(loff_t, new_size,
1534 (loff_t)pg_start << PAGE_SHIFT);
1535 }
1536
1537 for (index = pg_start; index < pg_end;) {
1538 struct dnode_of_data dn;
1539 unsigned int end_offset;
1540 pgoff_t end;
1541
1542 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1543 filemap_invalidate_lock(mapping);
1544
1545 truncate_pagecache_range(inode,
1546 (loff_t)index << PAGE_SHIFT,
1547 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1548
1549 f2fs_lock_op(sbi);
1550
1551 set_new_dnode(&dn, inode, NULL, NULL, 0);
1552 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1553 if (ret) {
1554 f2fs_unlock_op(sbi);
1555 filemap_invalidate_unlock(mapping);
1556 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1557 goto out;
1558 }
1559
1560 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1561 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1562
1563 ret = f2fs_do_zero_range(&dn, index, end);
1564 f2fs_put_dnode(&dn);
1565
1566 f2fs_unlock_op(sbi);
1567 filemap_invalidate_unlock(mapping);
1568 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569
1570 f2fs_balance_fs(sbi, dn.node_changed);
1571
1572 if (ret)
1573 goto out;
1574
1575 index = end;
1576 new_size = max_t(loff_t, new_size,
1577 (loff_t)index << PAGE_SHIFT);
1578 }
1579
1580 if (off_end) {
1581 ret = fill_zero(inode, pg_end, 0, off_end);
1582 if (ret)
1583 goto out;
1584
1585 new_size = max_t(loff_t, new_size, offset + len);
1586 }
1587 }
1588
1589 out:
1590 if (new_size > i_size_read(inode)) {
1591 if (mode & FALLOC_FL_KEEP_SIZE)
1592 file_set_keep_isize(inode);
1593 else
1594 f2fs_i_size_write(inode, new_size);
1595 }
1596 return ret;
1597 }
1598
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1599 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1600 {
1601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1602 struct address_space *mapping = inode->i_mapping;
1603 pgoff_t nr, pg_start, pg_end, delta, idx;
1604 loff_t new_size;
1605 int ret = 0;
1606
1607 new_size = i_size_read(inode) + len;
1608 ret = inode_newsize_ok(inode, new_size);
1609 if (ret)
1610 return ret;
1611
1612 if (offset >= i_size_read(inode))
1613 return -EINVAL;
1614
1615 /* insert range should be aligned to block size of f2fs. */
1616 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1617 return -EINVAL;
1618
1619 ret = f2fs_convert_inline_inode(inode);
1620 if (ret)
1621 return ret;
1622
1623 f2fs_balance_fs(sbi, true);
1624
1625 filemap_invalidate_lock(mapping);
1626 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1627 filemap_invalidate_unlock(mapping);
1628 if (ret)
1629 return ret;
1630
1631 /* write out all dirty pages from offset */
1632 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1633 if (ret)
1634 return ret;
1635
1636 pg_start = offset >> PAGE_SHIFT;
1637 pg_end = (offset + len) >> PAGE_SHIFT;
1638 delta = pg_end - pg_start;
1639 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1640
1641 /* avoid gc operation during block exchange */
1642 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1643 filemap_invalidate_lock(mapping);
1644 truncate_pagecache(inode, offset);
1645
1646 while (!ret && idx > pg_start) {
1647 nr = idx - pg_start;
1648 if (nr > delta)
1649 nr = delta;
1650 idx -= nr;
1651
1652 f2fs_lock_op(sbi);
1653 f2fs_drop_extent_tree(inode);
1654
1655 ret = __exchange_data_block(inode, inode, idx,
1656 idx + delta, nr, false);
1657 f2fs_unlock_op(sbi);
1658 }
1659 filemap_invalidate_unlock(mapping);
1660 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1661
1662 /* write out all moved pages, if possible */
1663 filemap_invalidate_lock(mapping);
1664 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1665 truncate_pagecache(inode, offset);
1666 filemap_invalidate_unlock(mapping);
1667
1668 if (!ret)
1669 f2fs_i_size_write(inode, new_size);
1670 return ret;
1671 }
1672
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1673 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1674 loff_t len, int mode)
1675 {
1676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1678 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1679 .m_may_create = true };
1680 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1681 .init_gc_type = FG_GC,
1682 .should_migrate_blocks = false,
1683 .err_gc_skipped = true,
1684 .nr_free_secs = 0 };
1685 pgoff_t pg_start, pg_end;
1686 loff_t new_size;
1687 loff_t off_end;
1688 block_t expanded = 0;
1689 int err;
1690
1691 err = inode_newsize_ok(inode, (len + offset));
1692 if (err)
1693 return err;
1694
1695 err = f2fs_convert_inline_inode(inode);
1696 if (err)
1697 return err;
1698
1699 f2fs_balance_fs(sbi, true);
1700
1701 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1702 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1703 off_end = (offset + len) & (PAGE_SIZE - 1);
1704
1705 map.m_lblk = pg_start;
1706 map.m_len = pg_end - pg_start;
1707 if (off_end)
1708 map.m_len++;
1709
1710 if (!map.m_len)
1711 return 0;
1712
1713 if (f2fs_is_pinned_file(inode)) {
1714 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1715 block_t sec_len = roundup(map.m_len, sec_blks);
1716
1717 map.m_len = sec_blks;
1718 next_alloc:
1719 if (has_not_enough_free_secs(sbi, 0,
1720 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1721 f2fs_down_write(&sbi->gc_lock);
1722 err = f2fs_gc(sbi, &gc_control);
1723 if (err && err != -ENODATA)
1724 goto out_err;
1725 }
1726
1727 f2fs_down_write(&sbi->pin_sem);
1728
1729 f2fs_lock_op(sbi);
1730 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1731 f2fs_unlock_op(sbi);
1732
1733 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1734 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1735 file_dont_truncate(inode);
1736
1737 f2fs_up_write(&sbi->pin_sem);
1738
1739 expanded += map.m_len;
1740 sec_len -= map.m_len;
1741 map.m_lblk += map.m_len;
1742 if (!err && sec_len)
1743 goto next_alloc;
1744
1745 map.m_len = expanded;
1746 } else {
1747 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1748 expanded = map.m_len;
1749 }
1750 out_err:
1751 if (err) {
1752 pgoff_t last_off;
1753
1754 if (!expanded)
1755 return err;
1756
1757 last_off = pg_start + expanded - 1;
1758
1759 /* update new size to the failed position */
1760 new_size = (last_off == pg_end) ? offset + len :
1761 (loff_t)(last_off + 1) << PAGE_SHIFT;
1762 } else {
1763 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1764 }
1765
1766 if (new_size > i_size_read(inode)) {
1767 if (mode & FALLOC_FL_KEEP_SIZE)
1768 file_set_keep_isize(inode);
1769 else
1770 f2fs_i_size_write(inode, new_size);
1771 }
1772
1773 return err;
1774 }
1775
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1776 static long f2fs_fallocate(struct file *file, int mode,
1777 loff_t offset, loff_t len)
1778 {
1779 struct inode *inode = file_inode(file);
1780 long ret = 0;
1781
1782 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1783 return -EIO;
1784 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1785 return -ENOSPC;
1786 if (!f2fs_is_compress_backend_ready(inode))
1787 return -EOPNOTSUPP;
1788
1789 /* f2fs only support ->fallocate for regular file */
1790 if (!S_ISREG(inode->i_mode))
1791 return -EINVAL;
1792
1793 if (IS_ENCRYPTED(inode) &&
1794 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1795 return -EOPNOTSUPP;
1796
1797 /*
1798 * Pinned file should not support partial truncation since the block
1799 * can be used by applications.
1800 */
1801 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1802 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1803 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1804 return -EOPNOTSUPP;
1805
1806 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1807 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1808 FALLOC_FL_INSERT_RANGE))
1809 return -EOPNOTSUPP;
1810
1811 inode_lock(inode);
1812
1813 ret = file_modified(file);
1814 if (ret)
1815 goto out;
1816
1817 if (mode & FALLOC_FL_PUNCH_HOLE) {
1818 if (offset >= inode->i_size)
1819 goto out;
1820
1821 ret = f2fs_punch_hole(inode, offset, len);
1822 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1823 ret = f2fs_collapse_range(inode, offset, len);
1824 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1825 ret = f2fs_zero_range(inode, offset, len, mode);
1826 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1827 ret = f2fs_insert_range(inode, offset, len);
1828 } else {
1829 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1830 }
1831
1832 if (!ret) {
1833 inode->i_mtime = inode->i_ctime = current_time(inode);
1834 f2fs_mark_inode_dirty_sync(inode, false);
1835 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1836 }
1837
1838 out:
1839 inode_unlock(inode);
1840
1841 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1842 return ret;
1843 }
1844
f2fs_release_file(struct inode * inode,struct file * filp)1845 static int f2fs_release_file(struct inode *inode, struct file *filp)
1846 {
1847 /*
1848 * f2fs_release_file is called at every close calls. So we should
1849 * not drop any inmemory pages by close called by other process.
1850 */
1851 if (!(filp->f_mode & FMODE_WRITE) ||
1852 atomic_read(&inode->i_writecount) != 1)
1853 return 0;
1854
1855 inode_lock(inode);
1856 f2fs_abort_atomic_write(inode, true);
1857 inode_unlock(inode);
1858
1859 return 0;
1860 }
1861
f2fs_file_flush(struct file * file,fl_owner_t id)1862 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1863 {
1864 struct inode *inode = file_inode(file);
1865
1866 /*
1867 * If the process doing a transaction is crashed, we should do
1868 * roll-back. Otherwise, other reader/write can see corrupted database
1869 * until all the writers close its file. Since this should be done
1870 * before dropping file lock, it needs to do in ->flush.
1871 */
1872 if (F2FS_I(inode)->atomic_write_task == current &&
1873 (current->flags & PF_EXITING)) {
1874 inode_lock(inode);
1875 f2fs_abort_atomic_write(inode, true);
1876 inode_unlock(inode);
1877 }
1878
1879 return 0;
1880 }
1881
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1882 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1883 {
1884 struct f2fs_inode_info *fi = F2FS_I(inode);
1885 u32 masked_flags = fi->i_flags & mask;
1886
1887 /* mask can be shrunk by flags_valid selector */
1888 iflags &= mask;
1889
1890 /* Is it quota file? Do not allow user to mess with it */
1891 if (IS_NOQUOTA(inode))
1892 return -EPERM;
1893
1894 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1895 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1896 return -EOPNOTSUPP;
1897 if (!f2fs_empty_dir(inode))
1898 return -ENOTEMPTY;
1899 }
1900
1901 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1902 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1903 return -EOPNOTSUPP;
1904 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1905 return -EINVAL;
1906 }
1907
1908 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1909 if (masked_flags & F2FS_COMPR_FL) {
1910 if (!f2fs_disable_compressed_file(inode))
1911 return -EINVAL;
1912 } else {
1913 /* try to convert inline_data to support compression */
1914 int err = f2fs_convert_inline_inode(inode);
1915 if (err)
1916 return err;
1917 if (!f2fs_may_compress(inode))
1918 return -EINVAL;
1919 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1920 return -EINVAL;
1921 if (set_compress_context(inode))
1922 return -EOPNOTSUPP;
1923 }
1924 }
1925
1926 fi->i_flags = iflags | (fi->i_flags & ~mask);
1927 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1928 (fi->i_flags & F2FS_NOCOMP_FL));
1929
1930 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1931 set_inode_flag(inode, FI_PROJ_INHERIT);
1932 else
1933 clear_inode_flag(inode, FI_PROJ_INHERIT);
1934
1935 inode->i_ctime = current_time(inode);
1936 f2fs_set_inode_flags(inode);
1937 f2fs_mark_inode_dirty_sync(inode, true);
1938 return 0;
1939 }
1940
1941 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1942
1943 /*
1944 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1945 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1946 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1947 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1948 *
1949 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1950 * FS_IOC_FSSETXATTR is done by the VFS.
1951 */
1952
1953 static const struct {
1954 u32 iflag;
1955 u32 fsflag;
1956 } f2fs_fsflags_map[] = {
1957 { F2FS_COMPR_FL, FS_COMPR_FL },
1958 { F2FS_SYNC_FL, FS_SYNC_FL },
1959 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1960 { F2FS_APPEND_FL, FS_APPEND_FL },
1961 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1962 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1963 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1964 { F2FS_INDEX_FL, FS_INDEX_FL },
1965 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1966 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1967 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1968 };
1969
1970 #define F2FS_GETTABLE_FS_FL ( \
1971 FS_COMPR_FL | \
1972 FS_SYNC_FL | \
1973 FS_IMMUTABLE_FL | \
1974 FS_APPEND_FL | \
1975 FS_NODUMP_FL | \
1976 FS_NOATIME_FL | \
1977 FS_NOCOMP_FL | \
1978 FS_INDEX_FL | \
1979 FS_DIRSYNC_FL | \
1980 FS_PROJINHERIT_FL | \
1981 FS_ENCRYPT_FL | \
1982 FS_INLINE_DATA_FL | \
1983 FS_NOCOW_FL | \
1984 FS_VERITY_FL | \
1985 FS_CASEFOLD_FL)
1986
1987 #define F2FS_SETTABLE_FS_FL ( \
1988 FS_COMPR_FL | \
1989 FS_SYNC_FL | \
1990 FS_IMMUTABLE_FL | \
1991 FS_APPEND_FL | \
1992 FS_NODUMP_FL | \
1993 FS_NOATIME_FL | \
1994 FS_NOCOMP_FL | \
1995 FS_DIRSYNC_FL | \
1996 FS_PROJINHERIT_FL | \
1997 FS_CASEFOLD_FL)
1998
1999 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2000 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2001 {
2002 u32 fsflags = 0;
2003 int i;
2004
2005 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2006 if (iflags & f2fs_fsflags_map[i].iflag)
2007 fsflags |= f2fs_fsflags_map[i].fsflag;
2008
2009 return fsflags;
2010 }
2011
2012 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2013 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2014 {
2015 u32 iflags = 0;
2016 int i;
2017
2018 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2019 if (fsflags & f2fs_fsflags_map[i].fsflag)
2020 iflags |= f2fs_fsflags_map[i].iflag;
2021
2022 return iflags;
2023 }
2024
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2025 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2026 {
2027 struct inode *inode = file_inode(filp);
2028
2029 return put_user(inode->i_generation, (int __user *)arg);
2030 }
2031
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2032 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2033 {
2034 struct inode *inode = file_inode(filp);
2035 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2036 struct f2fs_inode_info *fi = F2FS_I(inode);
2037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2038 struct inode *pinode;
2039 loff_t isize;
2040 int ret;
2041
2042 if (!inode_owner_or_capable(mnt_userns, inode))
2043 return -EACCES;
2044
2045 if (!S_ISREG(inode->i_mode))
2046 return -EINVAL;
2047
2048 if (filp->f_flags & O_DIRECT)
2049 return -EINVAL;
2050
2051 ret = mnt_want_write_file(filp);
2052 if (ret)
2053 return ret;
2054
2055 inode_lock(inode);
2056
2057 if (!f2fs_disable_compressed_file(inode)) {
2058 ret = -EINVAL;
2059 goto out;
2060 }
2061
2062 if (f2fs_is_atomic_file(inode))
2063 goto out;
2064
2065 ret = f2fs_convert_inline_inode(inode);
2066 if (ret)
2067 goto out;
2068
2069 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2070
2071 /*
2072 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2073 * f2fs_is_atomic_file.
2074 */
2075 if (get_dirty_pages(inode))
2076 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2077 inode->i_ino, get_dirty_pages(inode));
2078 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2079 if (ret) {
2080 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2081 goto out;
2082 }
2083
2084 /* Check if the inode already has a COW inode */
2085 if (fi->cow_inode == NULL) {
2086 /* Create a COW inode for atomic write */
2087 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2088 if (IS_ERR(pinode)) {
2089 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2090 ret = PTR_ERR(pinode);
2091 goto out;
2092 }
2093
2094 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2095 iput(pinode);
2096 if (ret) {
2097 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098 goto out;
2099 }
2100
2101 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2102 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2103 } else {
2104 /* Reuse the already created COW inode */
2105 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2106 if (ret) {
2107 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2108 goto out;
2109 }
2110 }
2111
2112 f2fs_write_inode(inode, NULL);
2113
2114 stat_inc_atomic_inode(inode);
2115
2116 set_inode_flag(inode, FI_ATOMIC_FILE);
2117
2118 isize = i_size_read(inode);
2119 fi->original_i_size = isize;
2120 if (truncate) {
2121 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2122 truncate_inode_pages_final(inode->i_mapping);
2123 f2fs_i_size_write(inode, 0);
2124 isize = 0;
2125 }
2126 f2fs_i_size_write(fi->cow_inode, isize);
2127
2128 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2129
2130 f2fs_update_time(sbi, REQ_TIME);
2131 fi->atomic_write_task = current;
2132 stat_update_max_atomic_write(inode);
2133 fi->atomic_write_cnt = 0;
2134 out:
2135 inode_unlock(inode);
2136 mnt_drop_write_file(filp);
2137 return ret;
2138 }
2139
f2fs_ioc_commit_atomic_write(struct file * filp)2140 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2141 {
2142 struct inode *inode = file_inode(filp);
2143 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2144 int ret;
2145
2146 if (!inode_owner_or_capable(mnt_userns, inode))
2147 return -EACCES;
2148
2149 ret = mnt_want_write_file(filp);
2150 if (ret)
2151 return ret;
2152
2153 f2fs_balance_fs(F2FS_I_SB(inode), true);
2154
2155 inode_lock(inode);
2156
2157 if (f2fs_is_atomic_file(inode)) {
2158 ret = f2fs_commit_atomic_write(inode);
2159 if (!ret)
2160 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2161
2162 f2fs_abort_atomic_write(inode, ret);
2163 } else {
2164 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2165 }
2166
2167 inode_unlock(inode);
2168 mnt_drop_write_file(filp);
2169 return ret;
2170 }
2171
f2fs_ioc_abort_atomic_write(struct file * filp)2172 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2173 {
2174 struct inode *inode = file_inode(filp);
2175 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2176 int ret;
2177
2178 if (!inode_owner_or_capable(mnt_userns, inode))
2179 return -EACCES;
2180
2181 ret = mnt_want_write_file(filp);
2182 if (ret)
2183 return ret;
2184
2185 inode_lock(inode);
2186
2187 f2fs_abort_atomic_write(inode, true);
2188
2189 inode_unlock(inode);
2190
2191 mnt_drop_write_file(filp);
2192 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2193 return ret;
2194 }
2195
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2196 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2197 {
2198 struct inode *inode = file_inode(filp);
2199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2200 struct super_block *sb = sbi->sb;
2201 __u32 in;
2202 int ret = 0;
2203
2204 if (!capable(CAP_SYS_ADMIN))
2205 return -EPERM;
2206
2207 if (get_user(in, (__u32 __user *)arg))
2208 return -EFAULT;
2209
2210 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2211 ret = mnt_want_write_file(filp);
2212 if (ret) {
2213 if (ret == -EROFS) {
2214 ret = 0;
2215 f2fs_stop_checkpoint(sbi, false,
2216 STOP_CP_REASON_SHUTDOWN);
2217 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2218 trace_f2fs_shutdown(sbi, in, ret);
2219 }
2220 return ret;
2221 }
2222 }
2223
2224 switch (in) {
2225 case F2FS_GOING_DOWN_FULLSYNC:
2226 ret = freeze_bdev(sb->s_bdev);
2227 if (ret)
2228 goto out;
2229 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2230 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2231 thaw_bdev(sb->s_bdev);
2232 break;
2233 case F2FS_GOING_DOWN_METASYNC:
2234 /* do checkpoint only */
2235 ret = f2fs_sync_fs(sb, 1);
2236 if (ret)
2237 goto out;
2238 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2239 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2240 break;
2241 case F2FS_GOING_DOWN_NOSYNC:
2242 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2243 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2244 break;
2245 case F2FS_GOING_DOWN_METAFLUSH:
2246 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2247 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2248 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2249 break;
2250 case F2FS_GOING_DOWN_NEED_FSCK:
2251 set_sbi_flag(sbi, SBI_NEED_FSCK);
2252 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2253 set_sbi_flag(sbi, SBI_IS_DIRTY);
2254 /* do checkpoint only */
2255 ret = f2fs_sync_fs(sb, 1);
2256 goto out;
2257 default:
2258 ret = -EINVAL;
2259 goto out;
2260 }
2261
2262 f2fs_stop_gc_thread(sbi);
2263 f2fs_stop_discard_thread(sbi);
2264
2265 f2fs_drop_discard_cmd(sbi);
2266 clear_opt(sbi, DISCARD);
2267
2268 f2fs_update_time(sbi, REQ_TIME);
2269 out:
2270 if (in != F2FS_GOING_DOWN_FULLSYNC)
2271 mnt_drop_write_file(filp);
2272
2273 trace_f2fs_shutdown(sbi, in, ret);
2274
2275 return ret;
2276 }
2277
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2278 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2279 {
2280 struct inode *inode = file_inode(filp);
2281 struct super_block *sb = inode->i_sb;
2282 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2283 struct fstrim_range range;
2284 int ret;
2285
2286 if (!capable(CAP_SYS_ADMIN))
2287 return -EPERM;
2288
2289 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2290 return -EOPNOTSUPP;
2291
2292 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2293 sizeof(range)))
2294 return -EFAULT;
2295
2296 ret = mnt_want_write_file(filp);
2297 if (ret)
2298 return ret;
2299
2300 range.minlen = max((unsigned int)range.minlen,
2301 q->limits.discard_granularity);
2302 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2303 mnt_drop_write_file(filp);
2304 if (ret < 0)
2305 return ret;
2306
2307 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2308 sizeof(range)))
2309 return -EFAULT;
2310 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2311 return 0;
2312 }
2313
uuid_is_nonzero(__u8 u[16])2314 static bool uuid_is_nonzero(__u8 u[16])
2315 {
2316 int i;
2317
2318 for (i = 0; i < 16; i++)
2319 if (u[i])
2320 return true;
2321 return false;
2322 }
2323
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2324 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2325 {
2326 struct inode *inode = file_inode(filp);
2327
2328 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2329 return -EOPNOTSUPP;
2330
2331 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2332
2333 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2334 }
2335
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2336 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2337 {
2338 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2339 return -EOPNOTSUPP;
2340 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2341 }
2342
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2343 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2344 {
2345 struct inode *inode = file_inode(filp);
2346 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2347 u8 encrypt_pw_salt[16];
2348 int err;
2349
2350 if (!f2fs_sb_has_encrypt(sbi))
2351 return -EOPNOTSUPP;
2352
2353 err = mnt_want_write_file(filp);
2354 if (err)
2355 return err;
2356
2357 f2fs_down_write(&sbi->sb_lock);
2358
2359 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2360 goto got_it;
2361
2362 /* update superblock with uuid */
2363 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2364
2365 err = f2fs_commit_super(sbi, false);
2366 if (err) {
2367 /* undo new data */
2368 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2369 goto out_err;
2370 }
2371 got_it:
2372 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2373 out_err:
2374 f2fs_up_write(&sbi->sb_lock);
2375 mnt_drop_write_file(filp);
2376
2377 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2378 err = -EFAULT;
2379
2380 return err;
2381 }
2382
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2383 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2384 unsigned long arg)
2385 {
2386 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2387 return -EOPNOTSUPP;
2388
2389 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2390 }
2391
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2392 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2393 {
2394 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2395 return -EOPNOTSUPP;
2396
2397 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2398 }
2399
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2400 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2401 {
2402 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 return -EOPNOTSUPP;
2404
2405 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2406 }
2407
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2408 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2409 unsigned long arg)
2410 {
2411 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 return -EOPNOTSUPP;
2413
2414 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2415 }
2416
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2417 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2418 unsigned long arg)
2419 {
2420 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2421 return -EOPNOTSUPP;
2422
2423 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2424 }
2425
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2426 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2427 {
2428 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2429 return -EOPNOTSUPP;
2430
2431 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2432 }
2433
f2fs_ioc_gc(struct file * filp,unsigned long arg)2434 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2435 {
2436 struct inode *inode = file_inode(filp);
2437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2438 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2439 .no_bg_gc = false,
2440 .should_migrate_blocks = false,
2441 .nr_free_secs = 0 };
2442 __u32 sync;
2443 int ret;
2444
2445 if (!capable(CAP_SYS_ADMIN))
2446 return -EPERM;
2447
2448 if (get_user(sync, (__u32 __user *)arg))
2449 return -EFAULT;
2450
2451 if (f2fs_readonly(sbi->sb))
2452 return -EROFS;
2453
2454 ret = mnt_want_write_file(filp);
2455 if (ret)
2456 return ret;
2457
2458 if (!sync) {
2459 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2460 ret = -EBUSY;
2461 goto out;
2462 }
2463 } else {
2464 f2fs_down_write(&sbi->gc_lock);
2465 }
2466
2467 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2468 gc_control.err_gc_skipped = sync;
2469 ret = f2fs_gc(sbi, &gc_control);
2470 out:
2471 mnt_drop_write_file(filp);
2472 return ret;
2473 }
2474
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2475 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2476 {
2477 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2478 struct f2fs_gc_control gc_control = {
2479 .init_gc_type = range->sync ? FG_GC : BG_GC,
2480 .no_bg_gc = false,
2481 .should_migrate_blocks = false,
2482 .err_gc_skipped = range->sync,
2483 .nr_free_secs = 0 };
2484 u64 end;
2485 int ret;
2486
2487 if (!capable(CAP_SYS_ADMIN))
2488 return -EPERM;
2489 if (f2fs_readonly(sbi->sb))
2490 return -EROFS;
2491
2492 end = range->start + range->len;
2493 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2494 end >= MAX_BLKADDR(sbi))
2495 return -EINVAL;
2496
2497 ret = mnt_want_write_file(filp);
2498 if (ret)
2499 return ret;
2500
2501 do_more:
2502 if (!range->sync) {
2503 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2504 ret = -EBUSY;
2505 goto out;
2506 }
2507 } else {
2508 f2fs_down_write(&sbi->gc_lock);
2509 }
2510
2511 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2512 ret = f2fs_gc(sbi, &gc_control);
2513 if (ret) {
2514 if (ret == -EBUSY)
2515 ret = -EAGAIN;
2516 goto out;
2517 }
2518 range->start += CAP_BLKS_PER_SEC(sbi);
2519 if (range->start <= end)
2520 goto do_more;
2521 out:
2522 mnt_drop_write_file(filp);
2523 return ret;
2524 }
2525
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2526 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2527 {
2528 struct f2fs_gc_range range;
2529
2530 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2531 sizeof(range)))
2532 return -EFAULT;
2533 return __f2fs_ioc_gc_range(filp, &range);
2534 }
2535
f2fs_ioc_write_checkpoint(struct file * filp)2536 static int f2fs_ioc_write_checkpoint(struct file *filp)
2537 {
2538 struct inode *inode = file_inode(filp);
2539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2540 int ret;
2541
2542 if (!capable(CAP_SYS_ADMIN))
2543 return -EPERM;
2544
2545 if (f2fs_readonly(sbi->sb))
2546 return -EROFS;
2547
2548 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2549 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2550 return -EINVAL;
2551 }
2552
2553 ret = mnt_want_write_file(filp);
2554 if (ret)
2555 return ret;
2556
2557 ret = f2fs_sync_fs(sbi->sb, 1);
2558
2559 mnt_drop_write_file(filp);
2560 return ret;
2561 }
2562
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2563 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2564 struct file *filp,
2565 struct f2fs_defragment *range)
2566 {
2567 struct inode *inode = file_inode(filp);
2568 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2569 .m_seg_type = NO_CHECK_TYPE,
2570 .m_may_create = false };
2571 struct extent_info ei = {};
2572 pgoff_t pg_start, pg_end, next_pgofs;
2573 unsigned int blk_per_seg = sbi->blocks_per_seg;
2574 unsigned int total = 0, sec_num;
2575 block_t blk_end = 0;
2576 bool fragmented = false;
2577 int err;
2578
2579 pg_start = range->start >> PAGE_SHIFT;
2580 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2581
2582 f2fs_balance_fs(sbi, true);
2583
2584 inode_lock(inode);
2585
2586 /* if in-place-update policy is enabled, don't waste time here */
2587 set_inode_flag(inode, FI_OPU_WRITE);
2588 if (f2fs_should_update_inplace(inode, NULL)) {
2589 err = -EINVAL;
2590 goto out;
2591 }
2592
2593 /* writeback all dirty pages in the range */
2594 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2595 range->start + range->len - 1);
2596 if (err)
2597 goto out;
2598
2599 /*
2600 * lookup mapping info in extent cache, skip defragmenting if physical
2601 * block addresses are continuous.
2602 */
2603 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2604 if (ei.fofs + ei.len >= pg_end)
2605 goto out;
2606 }
2607
2608 map.m_lblk = pg_start;
2609 map.m_next_pgofs = &next_pgofs;
2610
2611 /*
2612 * lookup mapping info in dnode page cache, skip defragmenting if all
2613 * physical block addresses are continuous even if there are hole(s)
2614 * in logical blocks.
2615 */
2616 while (map.m_lblk < pg_end) {
2617 map.m_len = pg_end - map.m_lblk;
2618 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2619 if (err)
2620 goto out;
2621
2622 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2623 map.m_lblk = next_pgofs;
2624 continue;
2625 }
2626
2627 if (blk_end && blk_end != map.m_pblk)
2628 fragmented = true;
2629
2630 /* record total count of block that we're going to move */
2631 total += map.m_len;
2632
2633 blk_end = map.m_pblk + map.m_len;
2634
2635 map.m_lblk += map.m_len;
2636 }
2637
2638 if (!fragmented) {
2639 total = 0;
2640 goto out;
2641 }
2642
2643 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2644
2645 /*
2646 * make sure there are enough free section for LFS allocation, this can
2647 * avoid defragment running in SSR mode when free section are allocated
2648 * intensively
2649 */
2650 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2651 err = -EAGAIN;
2652 goto out;
2653 }
2654
2655 map.m_lblk = pg_start;
2656 map.m_len = pg_end - pg_start;
2657 total = 0;
2658
2659 while (map.m_lblk < pg_end) {
2660 pgoff_t idx;
2661 int cnt = 0;
2662
2663 do_map:
2664 map.m_len = pg_end - map.m_lblk;
2665 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2666 if (err)
2667 goto clear_out;
2668
2669 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2670 map.m_lblk = next_pgofs;
2671 goto check;
2672 }
2673
2674 set_inode_flag(inode, FI_SKIP_WRITES);
2675
2676 idx = map.m_lblk;
2677 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2678 struct page *page;
2679
2680 page = f2fs_get_lock_data_page(inode, idx, true);
2681 if (IS_ERR(page)) {
2682 err = PTR_ERR(page);
2683 goto clear_out;
2684 }
2685
2686 set_page_dirty(page);
2687 set_page_private_gcing(page);
2688 f2fs_put_page(page, 1);
2689
2690 idx++;
2691 cnt++;
2692 total++;
2693 }
2694
2695 map.m_lblk = idx;
2696 check:
2697 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2698 goto do_map;
2699
2700 clear_inode_flag(inode, FI_SKIP_WRITES);
2701
2702 err = filemap_fdatawrite(inode->i_mapping);
2703 if (err)
2704 goto out;
2705 }
2706 clear_out:
2707 clear_inode_flag(inode, FI_SKIP_WRITES);
2708 out:
2709 clear_inode_flag(inode, FI_OPU_WRITE);
2710 inode_unlock(inode);
2711 if (!err)
2712 range->len = (u64)total << PAGE_SHIFT;
2713 return err;
2714 }
2715
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2716 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2717 {
2718 struct inode *inode = file_inode(filp);
2719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2720 struct f2fs_defragment range;
2721 int err;
2722
2723 if (!capable(CAP_SYS_ADMIN))
2724 return -EPERM;
2725
2726 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2727 return -EINVAL;
2728
2729 if (f2fs_readonly(sbi->sb))
2730 return -EROFS;
2731
2732 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2733 sizeof(range)))
2734 return -EFAULT;
2735
2736 /* verify alignment of offset & size */
2737 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2738 return -EINVAL;
2739
2740 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2741 max_file_blocks(inode)))
2742 return -EINVAL;
2743
2744 err = mnt_want_write_file(filp);
2745 if (err)
2746 return err;
2747
2748 err = f2fs_defragment_range(sbi, filp, &range);
2749 mnt_drop_write_file(filp);
2750
2751 f2fs_update_time(sbi, REQ_TIME);
2752 if (err < 0)
2753 return err;
2754
2755 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2756 sizeof(range)))
2757 return -EFAULT;
2758
2759 return 0;
2760 }
2761
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2762 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2763 struct file *file_out, loff_t pos_out, size_t len)
2764 {
2765 struct inode *src = file_inode(file_in);
2766 struct inode *dst = file_inode(file_out);
2767 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2768 size_t olen = len, dst_max_i_size = 0;
2769 size_t dst_osize;
2770 int ret;
2771
2772 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2773 src->i_sb != dst->i_sb)
2774 return -EXDEV;
2775
2776 if (unlikely(f2fs_readonly(src->i_sb)))
2777 return -EROFS;
2778
2779 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2780 return -EINVAL;
2781
2782 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2783 return -EOPNOTSUPP;
2784
2785 if (pos_out < 0 || pos_in < 0)
2786 return -EINVAL;
2787
2788 if (src == dst) {
2789 if (pos_in == pos_out)
2790 return 0;
2791 if (pos_out > pos_in && pos_out < pos_in + len)
2792 return -EINVAL;
2793 }
2794
2795 inode_lock(src);
2796 if (src != dst) {
2797 ret = -EBUSY;
2798 if (!inode_trylock(dst))
2799 goto out;
2800 }
2801
2802 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2803 ret = -EOPNOTSUPP;
2804 goto out_unlock;
2805 }
2806
2807 ret = -EINVAL;
2808 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2809 goto out_unlock;
2810 if (len == 0)
2811 olen = len = src->i_size - pos_in;
2812 if (pos_in + len == src->i_size)
2813 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2814 if (len == 0) {
2815 ret = 0;
2816 goto out_unlock;
2817 }
2818
2819 dst_osize = dst->i_size;
2820 if (pos_out + olen > dst->i_size)
2821 dst_max_i_size = pos_out + olen;
2822
2823 /* verify the end result is block aligned */
2824 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2825 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2826 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2827 goto out_unlock;
2828
2829 ret = f2fs_convert_inline_inode(src);
2830 if (ret)
2831 goto out_unlock;
2832
2833 ret = f2fs_convert_inline_inode(dst);
2834 if (ret)
2835 goto out_unlock;
2836
2837 /* write out all dirty pages from offset */
2838 ret = filemap_write_and_wait_range(src->i_mapping,
2839 pos_in, pos_in + len);
2840 if (ret)
2841 goto out_unlock;
2842
2843 ret = filemap_write_and_wait_range(dst->i_mapping,
2844 pos_out, pos_out + len);
2845 if (ret)
2846 goto out_unlock;
2847
2848 f2fs_balance_fs(sbi, true);
2849
2850 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2851 if (src != dst) {
2852 ret = -EBUSY;
2853 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2854 goto out_src;
2855 }
2856
2857 f2fs_lock_op(sbi);
2858 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2859 pos_out >> F2FS_BLKSIZE_BITS,
2860 len >> F2FS_BLKSIZE_BITS, false);
2861
2862 if (!ret) {
2863 if (dst_max_i_size)
2864 f2fs_i_size_write(dst, dst_max_i_size);
2865 else if (dst_osize != dst->i_size)
2866 f2fs_i_size_write(dst, dst_osize);
2867 }
2868 f2fs_unlock_op(sbi);
2869
2870 if (src != dst)
2871 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2872 out_src:
2873 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2874 out_unlock:
2875 if (src != dst)
2876 inode_unlock(dst);
2877 out:
2878 inode_unlock(src);
2879 return ret;
2880 }
2881
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2882 static int __f2fs_ioc_move_range(struct file *filp,
2883 struct f2fs_move_range *range)
2884 {
2885 struct fd dst;
2886 int err;
2887
2888 if (!(filp->f_mode & FMODE_READ) ||
2889 !(filp->f_mode & FMODE_WRITE))
2890 return -EBADF;
2891
2892 dst = fdget(range->dst_fd);
2893 if (!dst.file)
2894 return -EBADF;
2895
2896 if (!(dst.file->f_mode & FMODE_WRITE)) {
2897 err = -EBADF;
2898 goto err_out;
2899 }
2900
2901 err = mnt_want_write_file(filp);
2902 if (err)
2903 goto err_out;
2904
2905 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2906 range->pos_out, range->len);
2907
2908 mnt_drop_write_file(filp);
2909 err_out:
2910 fdput(dst);
2911 return err;
2912 }
2913
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2914 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2915 {
2916 struct f2fs_move_range range;
2917
2918 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2919 sizeof(range)))
2920 return -EFAULT;
2921 return __f2fs_ioc_move_range(filp, &range);
2922 }
2923
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2924 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2925 {
2926 struct inode *inode = file_inode(filp);
2927 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2928 struct sit_info *sm = SIT_I(sbi);
2929 unsigned int start_segno = 0, end_segno = 0;
2930 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2931 struct f2fs_flush_device range;
2932 struct f2fs_gc_control gc_control = {
2933 .init_gc_type = FG_GC,
2934 .should_migrate_blocks = true,
2935 .err_gc_skipped = true,
2936 .nr_free_secs = 0 };
2937 int ret;
2938
2939 if (!capable(CAP_SYS_ADMIN))
2940 return -EPERM;
2941
2942 if (f2fs_readonly(sbi->sb))
2943 return -EROFS;
2944
2945 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2946 return -EINVAL;
2947
2948 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2949 sizeof(range)))
2950 return -EFAULT;
2951
2952 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2953 __is_large_section(sbi)) {
2954 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2955 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2956 return -EINVAL;
2957 }
2958
2959 ret = mnt_want_write_file(filp);
2960 if (ret)
2961 return ret;
2962
2963 if (range.dev_num != 0)
2964 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2965 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2966
2967 start_segno = sm->last_victim[FLUSH_DEVICE];
2968 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2969 start_segno = dev_start_segno;
2970 end_segno = min(start_segno + range.segments, dev_end_segno);
2971
2972 while (start_segno < end_segno) {
2973 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2974 ret = -EBUSY;
2975 goto out;
2976 }
2977 sm->last_victim[GC_CB] = end_segno + 1;
2978 sm->last_victim[GC_GREEDY] = end_segno + 1;
2979 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2980
2981 gc_control.victim_segno = start_segno;
2982 ret = f2fs_gc(sbi, &gc_control);
2983 if (ret == -EAGAIN)
2984 ret = 0;
2985 else if (ret < 0)
2986 break;
2987 start_segno++;
2988 }
2989 out:
2990 mnt_drop_write_file(filp);
2991 return ret;
2992 }
2993
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2994 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2995 {
2996 struct inode *inode = file_inode(filp);
2997 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2998
2999 /* Must validate to set it with SQLite behavior in Android. */
3000 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3001
3002 return put_user(sb_feature, (u32 __user *)arg);
3003 }
3004
3005 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3006 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3007 {
3008 struct dquot *transfer_to[MAXQUOTAS] = {};
3009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3010 struct super_block *sb = sbi->sb;
3011 int err;
3012
3013 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3014 if (IS_ERR(transfer_to[PRJQUOTA]))
3015 return PTR_ERR(transfer_to[PRJQUOTA]);
3016
3017 err = __dquot_transfer(inode, transfer_to);
3018 if (err)
3019 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3020 dqput(transfer_to[PRJQUOTA]);
3021 return err;
3022 }
3023
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3024 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3025 {
3026 struct f2fs_inode_info *fi = F2FS_I(inode);
3027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3028 struct f2fs_inode *ri = NULL;
3029 kprojid_t kprojid;
3030 int err;
3031
3032 if (!f2fs_sb_has_project_quota(sbi)) {
3033 if (projid != F2FS_DEF_PROJID)
3034 return -EOPNOTSUPP;
3035 else
3036 return 0;
3037 }
3038
3039 if (!f2fs_has_extra_attr(inode))
3040 return -EOPNOTSUPP;
3041
3042 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3043
3044 if (projid_eq(kprojid, fi->i_projid))
3045 return 0;
3046
3047 err = -EPERM;
3048 /* Is it quota file? Do not allow user to mess with it */
3049 if (IS_NOQUOTA(inode))
3050 return err;
3051
3052 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3053 return -EOVERFLOW;
3054
3055 err = f2fs_dquot_initialize(inode);
3056 if (err)
3057 return err;
3058
3059 f2fs_lock_op(sbi);
3060 err = f2fs_transfer_project_quota(inode, kprojid);
3061 if (err)
3062 goto out_unlock;
3063
3064 fi->i_projid = kprojid;
3065 inode->i_ctime = current_time(inode);
3066 f2fs_mark_inode_dirty_sync(inode, true);
3067 out_unlock:
3068 f2fs_unlock_op(sbi);
3069 return err;
3070 }
3071 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3072 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3073 {
3074 return 0;
3075 }
3076
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3077 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3078 {
3079 if (projid != F2FS_DEF_PROJID)
3080 return -EOPNOTSUPP;
3081 return 0;
3082 }
3083 #endif
3084
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3085 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3086 {
3087 struct inode *inode = d_inode(dentry);
3088 struct f2fs_inode_info *fi = F2FS_I(inode);
3089 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3090
3091 if (IS_ENCRYPTED(inode))
3092 fsflags |= FS_ENCRYPT_FL;
3093 if (IS_VERITY(inode))
3094 fsflags |= FS_VERITY_FL;
3095 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3096 fsflags |= FS_INLINE_DATA_FL;
3097 if (is_inode_flag_set(inode, FI_PIN_FILE))
3098 fsflags |= FS_NOCOW_FL;
3099
3100 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3101
3102 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3103 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3104
3105 return 0;
3106 }
3107
f2fs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)3108 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3109 struct dentry *dentry, struct fileattr *fa)
3110 {
3111 struct inode *inode = d_inode(dentry);
3112 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3113 u32 iflags;
3114 int err;
3115
3116 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3117 return -EIO;
3118 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3119 return -ENOSPC;
3120 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3121 return -EOPNOTSUPP;
3122 fsflags &= F2FS_SETTABLE_FS_FL;
3123 if (!fa->flags_valid)
3124 mask &= FS_COMMON_FL;
3125
3126 iflags = f2fs_fsflags_to_iflags(fsflags);
3127 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3128 return -EOPNOTSUPP;
3129
3130 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3131 if (!err)
3132 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3133
3134 return err;
3135 }
3136
f2fs_pin_file_control(struct inode * inode,bool inc)3137 int f2fs_pin_file_control(struct inode *inode, bool inc)
3138 {
3139 struct f2fs_inode_info *fi = F2FS_I(inode);
3140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3141
3142 /* Use i_gc_failures for normal file as a risk signal. */
3143 if (inc)
3144 f2fs_i_gc_failures_write(inode,
3145 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3146
3147 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3148 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3149 __func__, inode->i_ino,
3150 fi->i_gc_failures[GC_FAILURE_PIN]);
3151 clear_inode_flag(inode, FI_PIN_FILE);
3152 return -EAGAIN;
3153 }
3154 return 0;
3155 }
3156
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3157 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3158 {
3159 struct inode *inode = file_inode(filp);
3160 __u32 pin;
3161 int ret = 0;
3162
3163 if (get_user(pin, (__u32 __user *)arg))
3164 return -EFAULT;
3165
3166 if (!S_ISREG(inode->i_mode))
3167 return -EINVAL;
3168
3169 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3170 return -EROFS;
3171
3172 ret = mnt_want_write_file(filp);
3173 if (ret)
3174 return ret;
3175
3176 inode_lock(inode);
3177
3178 if (!pin) {
3179 clear_inode_flag(inode, FI_PIN_FILE);
3180 f2fs_i_gc_failures_write(inode, 0);
3181 goto done;
3182 }
3183
3184 if (f2fs_should_update_outplace(inode, NULL)) {
3185 ret = -EINVAL;
3186 goto out;
3187 }
3188
3189 if (f2fs_pin_file_control(inode, false)) {
3190 ret = -EAGAIN;
3191 goto out;
3192 }
3193
3194 ret = f2fs_convert_inline_inode(inode);
3195 if (ret)
3196 goto out;
3197
3198 if (!f2fs_disable_compressed_file(inode)) {
3199 ret = -EOPNOTSUPP;
3200 goto out;
3201 }
3202
3203 set_inode_flag(inode, FI_PIN_FILE);
3204 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3205 done:
3206 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3207 out:
3208 inode_unlock(inode);
3209 mnt_drop_write_file(filp);
3210 return ret;
3211 }
3212
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3213 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3214 {
3215 struct inode *inode = file_inode(filp);
3216 __u32 pin = 0;
3217
3218 if (is_inode_flag_set(inode, FI_PIN_FILE))
3219 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3220 return put_user(pin, (u32 __user *)arg);
3221 }
3222
f2fs_precache_extents(struct inode * inode)3223 int f2fs_precache_extents(struct inode *inode)
3224 {
3225 struct f2fs_inode_info *fi = F2FS_I(inode);
3226 struct f2fs_map_blocks map;
3227 pgoff_t m_next_extent;
3228 loff_t end;
3229 int err;
3230
3231 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3232 return -EOPNOTSUPP;
3233
3234 map.m_lblk = 0;
3235 map.m_pblk = 0;
3236 map.m_next_pgofs = NULL;
3237 map.m_next_extent = &m_next_extent;
3238 map.m_seg_type = NO_CHECK_TYPE;
3239 map.m_may_create = false;
3240 end = max_file_blocks(inode);
3241
3242 while (map.m_lblk < end) {
3243 map.m_len = end - map.m_lblk;
3244
3245 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3246 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3247 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3248 if (err)
3249 return err;
3250
3251 map.m_lblk = m_next_extent;
3252 }
3253
3254 return 0;
3255 }
3256
f2fs_ioc_precache_extents(struct file * filp)3257 static int f2fs_ioc_precache_extents(struct file *filp)
3258 {
3259 return f2fs_precache_extents(file_inode(filp));
3260 }
3261
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3262 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3263 {
3264 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3265 __u64 block_count;
3266
3267 if (!capable(CAP_SYS_ADMIN))
3268 return -EPERM;
3269
3270 if (f2fs_readonly(sbi->sb))
3271 return -EROFS;
3272
3273 if (copy_from_user(&block_count, (void __user *)arg,
3274 sizeof(block_count)))
3275 return -EFAULT;
3276
3277 return f2fs_resize_fs(filp, block_count);
3278 }
3279
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3280 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3281 {
3282 struct inode *inode = file_inode(filp);
3283
3284 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3285
3286 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3287 f2fs_warn(F2FS_I_SB(inode),
3288 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3289 inode->i_ino);
3290 return -EOPNOTSUPP;
3291 }
3292
3293 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3294 }
3295
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3296 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3297 {
3298 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3299 return -EOPNOTSUPP;
3300
3301 return fsverity_ioctl_measure(filp, (void __user *)arg);
3302 }
3303
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3304 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3305 {
3306 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3307 return -EOPNOTSUPP;
3308
3309 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3310 }
3311
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3312 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3313 {
3314 struct inode *inode = file_inode(filp);
3315 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3316 char *vbuf;
3317 int count;
3318 int err = 0;
3319
3320 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3321 if (!vbuf)
3322 return -ENOMEM;
3323
3324 f2fs_down_read(&sbi->sb_lock);
3325 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3326 ARRAY_SIZE(sbi->raw_super->volume_name),
3327 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3328 f2fs_up_read(&sbi->sb_lock);
3329
3330 if (copy_to_user((char __user *)arg, vbuf,
3331 min(FSLABEL_MAX, count)))
3332 err = -EFAULT;
3333
3334 kfree(vbuf);
3335 return err;
3336 }
3337
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3338 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3339 {
3340 struct inode *inode = file_inode(filp);
3341 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342 char *vbuf;
3343 int err = 0;
3344
3345 if (!capable(CAP_SYS_ADMIN))
3346 return -EPERM;
3347
3348 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3349 if (IS_ERR(vbuf))
3350 return PTR_ERR(vbuf);
3351
3352 err = mnt_want_write_file(filp);
3353 if (err)
3354 goto out;
3355
3356 f2fs_down_write(&sbi->sb_lock);
3357
3358 memset(sbi->raw_super->volume_name, 0,
3359 sizeof(sbi->raw_super->volume_name));
3360 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3361 sbi->raw_super->volume_name,
3362 ARRAY_SIZE(sbi->raw_super->volume_name));
3363
3364 err = f2fs_commit_super(sbi, false);
3365
3366 f2fs_up_write(&sbi->sb_lock);
3367
3368 mnt_drop_write_file(filp);
3369 out:
3370 kfree(vbuf);
3371 return err;
3372 }
3373
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3374 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3375 {
3376 struct inode *inode = file_inode(filp);
3377 __u64 blocks;
3378
3379 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3380 return -EOPNOTSUPP;
3381
3382 if (!f2fs_compressed_file(inode))
3383 return -EINVAL;
3384
3385 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3386 return put_user(blocks, (u64 __user *)arg);
3387 }
3388
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3389 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3390 {
3391 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3392 unsigned int released_blocks = 0;
3393 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3394 block_t blkaddr;
3395 int i;
3396
3397 for (i = 0; i < count; i++) {
3398 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3399 dn->ofs_in_node + i);
3400
3401 if (!__is_valid_data_blkaddr(blkaddr))
3402 continue;
3403 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3404 DATA_GENERIC_ENHANCE))) {
3405 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3406 return -EFSCORRUPTED;
3407 }
3408 }
3409
3410 while (count) {
3411 int compr_blocks = 0;
3412
3413 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3414 blkaddr = f2fs_data_blkaddr(dn);
3415
3416 if (i == 0) {
3417 if (blkaddr == COMPRESS_ADDR)
3418 continue;
3419 dn->ofs_in_node += cluster_size;
3420 goto next;
3421 }
3422
3423 if (__is_valid_data_blkaddr(blkaddr))
3424 compr_blocks++;
3425
3426 if (blkaddr != NEW_ADDR)
3427 continue;
3428
3429 dn->data_blkaddr = NULL_ADDR;
3430 f2fs_set_data_blkaddr(dn);
3431 }
3432
3433 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3434 dec_valid_block_count(sbi, dn->inode,
3435 cluster_size - compr_blocks);
3436
3437 released_blocks += cluster_size - compr_blocks;
3438 next:
3439 count -= cluster_size;
3440 }
3441
3442 return released_blocks;
3443 }
3444
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3445 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3446 {
3447 struct inode *inode = file_inode(filp);
3448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3449 pgoff_t page_idx = 0, last_idx;
3450 unsigned int released_blocks = 0;
3451 int ret;
3452 int writecount;
3453
3454 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3455 return -EOPNOTSUPP;
3456
3457 if (!f2fs_compressed_file(inode))
3458 return -EINVAL;
3459
3460 if (f2fs_readonly(sbi->sb))
3461 return -EROFS;
3462
3463 ret = mnt_want_write_file(filp);
3464 if (ret)
3465 return ret;
3466
3467 f2fs_balance_fs(F2FS_I_SB(inode), true);
3468
3469 inode_lock(inode);
3470
3471 writecount = atomic_read(&inode->i_writecount);
3472 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3473 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3474 ret = -EBUSY;
3475 goto out;
3476 }
3477
3478 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3479 ret = -EINVAL;
3480 goto out;
3481 }
3482
3483 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3484 if (ret)
3485 goto out;
3486
3487 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3488 inode->i_ctime = current_time(inode);
3489 f2fs_mark_inode_dirty_sync(inode, true);
3490
3491 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3492 goto out;
3493
3494 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3495 filemap_invalidate_lock(inode->i_mapping);
3496
3497 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3498
3499 while (page_idx < last_idx) {
3500 struct dnode_of_data dn;
3501 pgoff_t end_offset, count;
3502
3503 set_new_dnode(&dn, inode, NULL, NULL, 0);
3504 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3505 if (ret) {
3506 if (ret == -ENOENT) {
3507 page_idx = f2fs_get_next_page_offset(&dn,
3508 page_idx);
3509 ret = 0;
3510 continue;
3511 }
3512 break;
3513 }
3514
3515 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3516 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3517 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3518
3519 ret = release_compress_blocks(&dn, count);
3520
3521 f2fs_put_dnode(&dn);
3522
3523 if (ret < 0)
3524 break;
3525
3526 page_idx += count;
3527 released_blocks += ret;
3528 }
3529
3530 filemap_invalidate_unlock(inode->i_mapping);
3531 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3532 out:
3533 inode_unlock(inode);
3534
3535 mnt_drop_write_file(filp);
3536
3537 if (ret >= 0) {
3538 ret = put_user(released_blocks, (u64 __user *)arg);
3539 } else if (released_blocks &&
3540 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3541 set_sbi_flag(sbi, SBI_NEED_FSCK);
3542 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3543 "iblocks=%llu, released=%u, compr_blocks=%u, "
3544 "run fsck to fix.",
3545 __func__, inode->i_ino, inode->i_blocks,
3546 released_blocks,
3547 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3548 }
3549
3550 return ret;
3551 }
3552
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3553 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3554 {
3555 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3556 unsigned int reserved_blocks = 0;
3557 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3558 block_t blkaddr;
3559 int i;
3560
3561 for (i = 0; i < count; i++) {
3562 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3563 dn->ofs_in_node + i);
3564
3565 if (!__is_valid_data_blkaddr(blkaddr))
3566 continue;
3567 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3568 DATA_GENERIC_ENHANCE))) {
3569 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3570 return -EFSCORRUPTED;
3571 }
3572 }
3573
3574 while (count) {
3575 int compr_blocks = 0;
3576 blkcnt_t reserved;
3577 int ret;
3578
3579 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3580 blkaddr = f2fs_data_blkaddr(dn);
3581
3582 if (i == 0) {
3583 if (blkaddr == COMPRESS_ADDR)
3584 continue;
3585 dn->ofs_in_node += cluster_size;
3586 goto next;
3587 }
3588
3589 if (__is_valid_data_blkaddr(blkaddr)) {
3590 compr_blocks++;
3591 continue;
3592 }
3593
3594 dn->data_blkaddr = NEW_ADDR;
3595 f2fs_set_data_blkaddr(dn);
3596 }
3597
3598 reserved = cluster_size - compr_blocks;
3599 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3600 if (ret)
3601 return ret;
3602
3603 if (reserved != cluster_size - compr_blocks)
3604 return -ENOSPC;
3605
3606 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3607
3608 reserved_blocks += reserved;
3609 next:
3610 count -= cluster_size;
3611 }
3612
3613 return reserved_blocks;
3614 }
3615
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3616 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3617 {
3618 struct inode *inode = file_inode(filp);
3619 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3620 pgoff_t page_idx = 0, last_idx;
3621 unsigned int reserved_blocks = 0;
3622 int ret;
3623
3624 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3625 return -EOPNOTSUPP;
3626
3627 if (!f2fs_compressed_file(inode))
3628 return -EINVAL;
3629
3630 if (f2fs_readonly(sbi->sb))
3631 return -EROFS;
3632
3633 ret = mnt_want_write_file(filp);
3634 if (ret)
3635 return ret;
3636
3637 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3638 goto out;
3639
3640 f2fs_balance_fs(F2FS_I_SB(inode), true);
3641
3642 inode_lock(inode);
3643
3644 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3645 ret = -EINVAL;
3646 goto unlock_inode;
3647 }
3648
3649 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3650 filemap_invalidate_lock(inode->i_mapping);
3651
3652 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3653
3654 while (page_idx < last_idx) {
3655 struct dnode_of_data dn;
3656 pgoff_t end_offset, count;
3657
3658 set_new_dnode(&dn, inode, NULL, NULL, 0);
3659 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3660 if (ret) {
3661 if (ret == -ENOENT) {
3662 page_idx = f2fs_get_next_page_offset(&dn,
3663 page_idx);
3664 ret = 0;
3665 continue;
3666 }
3667 break;
3668 }
3669
3670 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3671 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3672 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3673
3674 ret = reserve_compress_blocks(&dn, count);
3675
3676 f2fs_put_dnode(&dn);
3677
3678 if (ret < 0)
3679 break;
3680
3681 page_idx += count;
3682 reserved_blocks += ret;
3683 }
3684
3685 filemap_invalidate_unlock(inode->i_mapping);
3686 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3687
3688 if (ret >= 0) {
3689 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3690 inode->i_ctime = current_time(inode);
3691 f2fs_mark_inode_dirty_sync(inode, true);
3692 }
3693 unlock_inode:
3694 inode_unlock(inode);
3695 out:
3696 mnt_drop_write_file(filp);
3697
3698 if (ret >= 0) {
3699 ret = put_user(reserved_blocks, (u64 __user *)arg);
3700 } else if (reserved_blocks &&
3701 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3702 set_sbi_flag(sbi, SBI_NEED_FSCK);
3703 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3704 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3705 "run fsck to fix.",
3706 __func__, inode->i_ino, inode->i_blocks,
3707 reserved_blocks,
3708 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3709 }
3710
3711 return ret;
3712 }
3713
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3714 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3715 pgoff_t off, block_t block, block_t len, u32 flags)
3716 {
3717 struct request_queue *q = bdev_get_queue(bdev);
3718 sector_t sector = SECTOR_FROM_BLOCK(block);
3719 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3720 int ret = 0;
3721
3722 if (!q)
3723 return -ENXIO;
3724
3725 if (flags & F2FS_TRIM_FILE_DISCARD)
3726 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3727 blk_queue_secure_erase(q) ?
3728 BLKDEV_DISCARD_SECURE : 0);
3729
3730 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3731 if (IS_ENCRYPTED(inode))
3732 ret = fscrypt_zeroout_range(inode, off, block, len);
3733 else
3734 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3735 GFP_NOFS, 0);
3736 }
3737
3738 return ret;
3739 }
3740
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3741 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3742 {
3743 struct inode *inode = file_inode(filp);
3744 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3745 struct address_space *mapping = inode->i_mapping;
3746 struct block_device *prev_bdev = NULL;
3747 struct f2fs_sectrim_range range;
3748 pgoff_t index, pg_end, prev_index = 0;
3749 block_t prev_block = 0, len = 0;
3750 loff_t end_addr;
3751 bool to_end = false;
3752 int ret = 0;
3753
3754 if (!(filp->f_mode & FMODE_WRITE))
3755 return -EBADF;
3756
3757 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3758 sizeof(range)))
3759 return -EFAULT;
3760
3761 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3762 !S_ISREG(inode->i_mode))
3763 return -EINVAL;
3764
3765 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3766 !f2fs_hw_support_discard(sbi)) ||
3767 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3768 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3769 return -EOPNOTSUPP;
3770
3771 file_start_write(filp);
3772 inode_lock(inode);
3773
3774 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3775 range.start >= inode->i_size) {
3776 ret = -EINVAL;
3777 goto err;
3778 }
3779
3780 if (range.len == 0)
3781 goto err;
3782
3783 if (inode->i_size - range.start > range.len) {
3784 end_addr = range.start + range.len;
3785 } else {
3786 end_addr = range.len == (u64)-1 ?
3787 sbi->sb->s_maxbytes : inode->i_size;
3788 to_end = true;
3789 }
3790
3791 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3792 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3793 ret = -EINVAL;
3794 goto err;
3795 }
3796
3797 index = F2FS_BYTES_TO_BLK(range.start);
3798 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3799
3800 ret = f2fs_convert_inline_inode(inode);
3801 if (ret)
3802 goto err;
3803
3804 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3805 filemap_invalidate_lock(mapping);
3806
3807 ret = filemap_write_and_wait_range(mapping, range.start,
3808 to_end ? LLONG_MAX : end_addr - 1);
3809 if (ret)
3810 goto out;
3811
3812 truncate_inode_pages_range(mapping, range.start,
3813 to_end ? -1 : end_addr - 1);
3814
3815 while (index < pg_end) {
3816 struct dnode_of_data dn;
3817 pgoff_t end_offset, count;
3818 int i;
3819
3820 set_new_dnode(&dn, inode, NULL, NULL, 0);
3821 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3822 if (ret) {
3823 if (ret == -ENOENT) {
3824 index = f2fs_get_next_page_offset(&dn, index);
3825 continue;
3826 }
3827 goto out;
3828 }
3829
3830 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3831 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3832 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3833 struct block_device *cur_bdev;
3834 block_t blkaddr = f2fs_data_blkaddr(&dn);
3835
3836 if (!__is_valid_data_blkaddr(blkaddr))
3837 continue;
3838
3839 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3840 DATA_GENERIC_ENHANCE)) {
3841 ret = -EFSCORRUPTED;
3842 f2fs_put_dnode(&dn);
3843 f2fs_handle_error(sbi,
3844 ERROR_INVALID_BLKADDR);
3845 goto out;
3846 }
3847
3848 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3849 if (f2fs_is_multi_device(sbi)) {
3850 int di = f2fs_target_device_index(sbi, blkaddr);
3851
3852 blkaddr -= FDEV(di).start_blk;
3853 }
3854
3855 if (len) {
3856 if (prev_bdev == cur_bdev &&
3857 index == prev_index + len &&
3858 blkaddr == prev_block + len) {
3859 len++;
3860 } else {
3861 ret = f2fs_secure_erase(prev_bdev,
3862 inode, prev_index, prev_block,
3863 len, range.flags);
3864 if (ret) {
3865 f2fs_put_dnode(&dn);
3866 goto out;
3867 }
3868
3869 len = 0;
3870 }
3871 }
3872
3873 if (!len) {
3874 prev_bdev = cur_bdev;
3875 prev_index = index;
3876 prev_block = blkaddr;
3877 len = 1;
3878 }
3879 }
3880
3881 f2fs_put_dnode(&dn);
3882
3883 if (fatal_signal_pending(current)) {
3884 ret = -EINTR;
3885 goto out;
3886 }
3887 cond_resched();
3888 }
3889
3890 if (len)
3891 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3892 prev_block, len, range.flags);
3893 out:
3894 filemap_invalidate_unlock(mapping);
3895 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3896 err:
3897 inode_unlock(inode);
3898 file_end_write(filp);
3899
3900 return ret;
3901 }
3902
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)3903 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3904 {
3905 struct inode *inode = file_inode(filp);
3906 struct f2fs_comp_option option;
3907
3908 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3909 return -EOPNOTSUPP;
3910
3911 inode_lock_shared(inode);
3912
3913 if (!f2fs_compressed_file(inode)) {
3914 inode_unlock_shared(inode);
3915 return -ENODATA;
3916 }
3917
3918 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3919 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3920
3921 inode_unlock_shared(inode);
3922
3923 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3924 sizeof(option)))
3925 return -EFAULT;
3926
3927 return 0;
3928 }
3929
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)3930 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3931 {
3932 struct inode *inode = file_inode(filp);
3933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3934 struct f2fs_comp_option option;
3935 int ret = 0;
3936
3937 if (!f2fs_sb_has_compression(sbi))
3938 return -EOPNOTSUPP;
3939
3940 if (!(filp->f_mode & FMODE_WRITE))
3941 return -EBADF;
3942
3943 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3944 sizeof(option)))
3945 return -EFAULT;
3946
3947 if (!f2fs_compressed_file(inode) ||
3948 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3949 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3950 option.algorithm >= COMPRESS_MAX)
3951 return -EINVAL;
3952
3953 file_start_write(filp);
3954 inode_lock(inode);
3955
3956 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3957 ret = -EBUSY;
3958 goto out;
3959 }
3960
3961 if (F2FS_HAS_BLOCKS(inode)) {
3962 ret = -EFBIG;
3963 goto out;
3964 }
3965
3966 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3967 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3968 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
3969 f2fs_mark_inode_dirty_sync(inode, true);
3970
3971 if (!f2fs_is_compress_backend_ready(inode))
3972 f2fs_warn(sbi, "compression algorithm is successfully set, "
3973 "but current kernel doesn't support this algorithm.");
3974 out:
3975 inode_unlock(inode);
3976 file_end_write(filp);
3977
3978 return ret;
3979 }
3980
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)3981 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3982 {
3983 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3984 struct address_space *mapping = inode->i_mapping;
3985 struct page *page;
3986 pgoff_t redirty_idx = page_idx;
3987 int i, page_len = 0, ret = 0;
3988
3989 page_cache_ra_unbounded(&ractl, len, 0);
3990
3991 for (i = 0; i < len; i++, page_idx++) {
3992 page = read_cache_page(mapping, page_idx, NULL, NULL);
3993 if (IS_ERR(page)) {
3994 ret = PTR_ERR(page);
3995 break;
3996 }
3997 page_len++;
3998 }
3999
4000 for (i = 0; i < page_len; i++, redirty_idx++) {
4001 page = find_lock_page(mapping, redirty_idx);
4002
4003 /* It will never fail, when page has pinned above */
4004 f2fs_bug_on(F2FS_I_SB(inode), !page);
4005
4006 set_page_dirty(page);
4007 set_page_private_gcing(page);
4008 f2fs_put_page(page, 1);
4009 f2fs_put_page(page, 0);
4010 }
4011
4012 return ret;
4013 }
4014
f2fs_ioc_decompress_file(struct file * filp)4015 static int f2fs_ioc_decompress_file(struct file *filp)
4016 {
4017 struct inode *inode = file_inode(filp);
4018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4019 struct f2fs_inode_info *fi = F2FS_I(inode);
4020 pgoff_t page_idx = 0, last_idx;
4021 unsigned int blk_per_seg = sbi->blocks_per_seg;
4022 int cluster_size = fi->i_cluster_size;
4023 int count, ret;
4024
4025 if (!f2fs_sb_has_compression(sbi) ||
4026 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4027 return -EOPNOTSUPP;
4028
4029 if (!(filp->f_mode & FMODE_WRITE))
4030 return -EBADF;
4031
4032 if (!f2fs_compressed_file(inode))
4033 return -EINVAL;
4034
4035 f2fs_balance_fs(F2FS_I_SB(inode), true);
4036
4037 file_start_write(filp);
4038 inode_lock(inode);
4039
4040 if (!f2fs_is_compress_backend_ready(inode)) {
4041 ret = -EOPNOTSUPP;
4042 goto out;
4043 }
4044
4045 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4046 ret = -EINVAL;
4047 goto out;
4048 }
4049
4050 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4051 if (ret)
4052 goto out;
4053
4054 if (!atomic_read(&fi->i_compr_blocks))
4055 goto out;
4056
4057 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4058
4059 count = last_idx - page_idx;
4060 while (count) {
4061 int len = min(cluster_size, count);
4062
4063 ret = redirty_blocks(inode, page_idx, len);
4064 if (ret < 0)
4065 break;
4066
4067 if (get_dirty_pages(inode) >= blk_per_seg) {
4068 ret = filemap_fdatawrite(inode->i_mapping);
4069 if (ret < 0)
4070 break;
4071 }
4072
4073 count -= len;
4074 page_idx += len;
4075 }
4076
4077 if (!ret)
4078 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4079 LLONG_MAX);
4080
4081 if (ret)
4082 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4083 __func__, ret);
4084 out:
4085 inode_unlock(inode);
4086 file_end_write(filp);
4087
4088 return ret;
4089 }
4090
f2fs_ioc_compress_file(struct file * filp)4091 static int f2fs_ioc_compress_file(struct file *filp)
4092 {
4093 struct inode *inode = file_inode(filp);
4094 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4095 pgoff_t page_idx = 0, last_idx;
4096 unsigned int blk_per_seg = sbi->blocks_per_seg;
4097 int cluster_size = F2FS_I(inode)->i_cluster_size;
4098 int count, ret;
4099
4100 if (!f2fs_sb_has_compression(sbi) ||
4101 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4102 return -EOPNOTSUPP;
4103
4104 if (!(filp->f_mode & FMODE_WRITE))
4105 return -EBADF;
4106
4107 if (!f2fs_compressed_file(inode))
4108 return -EINVAL;
4109
4110 f2fs_balance_fs(F2FS_I_SB(inode), true);
4111
4112 file_start_write(filp);
4113 inode_lock(inode);
4114
4115 if (!f2fs_is_compress_backend_ready(inode)) {
4116 ret = -EOPNOTSUPP;
4117 goto out;
4118 }
4119
4120 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4121 ret = -EINVAL;
4122 goto out;
4123 }
4124
4125 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4126 if (ret)
4127 goto out;
4128
4129 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4130
4131 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4132
4133 count = last_idx - page_idx;
4134 while (count) {
4135 int len = min(cluster_size, count);
4136
4137 ret = redirty_blocks(inode, page_idx, len);
4138 if (ret < 0)
4139 break;
4140
4141 if (get_dirty_pages(inode) >= blk_per_seg) {
4142 ret = filemap_fdatawrite(inode->i_mapping);
4143 if (ret < 0)
4144 break;
4145 }
4146
4147 count -= len;
4148 page_idx += len;
4149 }
4150
4151 if (!ret)
4152 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4153 LLONG_MAX);
4154
4155 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4156
4157 if (ret)
4158 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4159 __func__, ret);
4160 out:
4161 inode_unlock(inode);
4162 file_end_write(filp);
4163
4164 return ret;
4165 }
4166
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4167 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4168 {
4169 switch (cmd) {
4170 case FS_IOC_GETVERSION:
4171 return f2fs_ioc_getversion(filp, arg);
4172 case F2FS_IOC_START_ATOMIC_WRITE:
4173 return f2fs_ioc_start_atomic_write(filp, false);
4174 case F2FS_IOC_START_ATOMIC_REPLACE:
4175 return f2fs_ioc_start_atomic_write(filp, true);
4176 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4177 return f2fs_ioc_commit_atomic_write(filp);
4178 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4179 return f2fs_ioc_abort_atomic_write(filp);
4180 case F2FS_IOC_START_VOLATILE_WRITE:
4181 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4182 return -EOPNOTSUPP;
4183 case F2FS_IOC_SHUTDOWN:
4184 return f2fs_ioc_shutdown(filp, arg);
4185 case FITRIM:
4186 return f2fs_ioc_fitrim(filp, arg);
4187 case FS_IOC_SET_ENCRYPTION_POLICY:
4188 return f2fs_ioc_set_encryption_policy(filp, arg);
4189 case FS_IOC_GET_ENCRYPTION_POLICY:
4190 return f2fs_ioc_get_encryption_policy(filp, arg);
4191 case FS_IOC_GET_ENCRYPTION_PWSALT:
4192 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4193 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4194 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4195 case FS_IOC_ADD_ENCRYPTION_KEY:
4196 return f2fs_ioc_add_encryption_key(filp, arg);
4197 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4198 return f2fs_ioc_remove_encryption_key(filp, arg);
4199 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4200 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4201 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4202 return f2fs_ioc_get_encryption_key_status(filp, arg);
4203 case FS_IOC_GET_ENCRYPTION_NONCE:
4204 return f2fs_ioc_get_encryption_nonce(filp, arg);
4205 case F2FS_IOC_GARBAGE_COLLECT:
4206 return f2fs_ioc_gc(filp, arg);
4207 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4208 return f2fs_ioc_gc_range(filp, arg);
4209 case F2FS_IOC_WRITE_CHECKPOINT:
4210 return f2fs_ioc_write_checkpoint(filp);
4211 case F2FS_IOC_DEFRAGMENT:
4212 return f2fs_ioc_defragment(filp, arg);
4213 case F2FS_IOC_MOVE_RANGE:
4214 return f2fs_ioc_move_range(filp, arg);
4215 case F2FS_IOC_FLUSH_DEVICE:
4216 return f2fs_ioc_flush_device(filp, arg);
4217 case F2FS_IOC_GET_FEATURES:
4218 return f2fs_ioc_get_features(filp, arg);
4219 case F2FS_IOC_GET_PIN_FILE:
4220 return f2fs_ioc_get_pin_file(filp, arg);
4221 case F2FS_IOC_SET_PIN_FILE:
4222 return f2fs_ioc_set_pin_file(filp, arg);
4223 case F2FS_IOC_PRECACHE_EXTENTS:
4224 return f2fs_ioc_precache_extents(filp);
4225 case F2FS_IOC_RESIZE_FS:
4226 return f2fs_ioc_resize_fs(filp, arg);
4227 case FS_IOC_ENABLE_VERITY:
4228 return f2fs_ioc_enable_verity(filp, arg);
4229 case FS_IOC_MEASURE_VERITY:
4230 return f2fs_ioc_measure_verity(filp, arg);
4231 case FS_IOC_READ_VERITY_METADATA:
4232 return f2fs_ioc_read_verity_metadata(filp, arg);
4233 case FS_IOC_GETFSLABEL:
4234 return f2fs_ioc_getfslabel(filp, arg);
4235 case FS_IOC_SETFSLABEL:
4236 return f2fs_ioc_setfslabel(filp, arg);
4237 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4238 return f2fs_get_compress_blocks(filp, arg);
4239 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4240 return f2fs_release_compress_blocks(filp, arg);
4241 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4242 return f2fs_reserve_compress_blocks(filp, arg);
4243 case F2FS_IOC_SEC_TRIM_FILE:
4244 return f2fs_sec_trim_file(filp, arg);
4245 case F2FS_IOC_GET_COMPRESS_OPTION:
4246 return f2fs_ioc_get_compress_option(filp, arg);
4247 case F2FS_IOC_SET_COMPRESS_OPTION:
4248 return f2fs_ioc_set_compress_option(filp, arg);
4249 case F2FS_IOC_DECOMPRESS_FILE:
4250 return f2fs_ioc_decompress_file(filp);
4251 case F2FS_IOC_COMPRESS_FILE:
4252 return f2fs_ioc_compress_file(filp);
4253 default:
4254 return -ENOTTY;
4255 }
4256 }
4257
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4258 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4259 {
4260 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4261 return -EIO;
4262 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4263 return -ENOSPC;
4264
4265 return __f2fs_ioctl(filp, cmd, arg);
4266 }
4267
4268 /*
4269 * Return %true if the given read or write request should use direct I/O, or
4270 * %false if it should use buffered I/O.
4271 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4272 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4273 struct iov_iter *iter)
4274 {
4275 unsigned int align;
4276
4277 if (!(iocb->ki_flags & IOCB_DIRECT))
4278 return false;
4279
4280 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4281 return false;
4282
4283 /*
4284 * Direct I/O not aligned to the disk's logical_block_size will be
4285 * attempted, but will fail with -EINVAL.
4286 *
4287 * f2fs additionally requires that direct I/O be aligned to the
4288 * filesystem block size, which is often a stricter requirement.
4289 * However, f2fs traditionally falls back to buffered I/O on requests
4290 * that are logical_block_size-aligned but not fs-block aligned.
4291 *
4292 * The below logic implements this behavior.
4293 */
4294 align = iocb->ki_pos | iov_iter_alignment(iter);
4295 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4296 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4297 return false;
4298
4299 return true;
4300 }
4301
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4302 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4303 unsigned int flags)
4304 {
4305 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4306
4307 dec_page_count(sbi, F2FS_DIO_READ);
4308 if (error)
4309 return error;
4310 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4311 return 0;
4312 }
4313
4314 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4315 .end_io = f2fs_dio_read_end_io,
4316 };
4317
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4318 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4319 {
4320 struct file *file = iocb->ki_filp;
4321 struct inode *inode = file_inode(file);
4322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4323 struct f2fs_inode_info *fi = F2FS_I(inode);
4324 const loff_t pos = iocb->ki_pos;
4325 const size_t count = iov_iter_count(to);
4326 struct iomap_dio *dio;
4327 ssize_t ret;
4328
4329 if (count == 0)
4330 return 0; /* skip atime update */
4331
4332 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4333
4334 if (iocb->ki_flags & IOCB_NOWAIT) {
4335 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4336 ret = -EAGAIN;
4337 goto out;
4338 }
4339 } else {
4340 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4341 }
4342
4343 /*
4344 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4345 * the higher-level function iomap_dio_rw() in order to ensure that the
4346 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4347 */
4348 inc_page_count(sbi, F2FS_DIO_READ);
4349 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4350 &f2fs_iomap_dio_read_ops, 0, 0);
4351 if (IS_ERR_OR_NULL(dio)) {
4352 ret = PTR_ERR_OR_ZERO(dio);
4353 if (ret != -EIOCBQUEUED)
4354 dec_page_count(sbi, F2FS_DIO_READ);
4355 } else {
4356 ret = iomap_dio_complete(dio);
4357 }
4358
4359 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4360
4361 file_accessed(file);
4362 out:
4363 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4364 return ret;
4365 }
4366
f2fs_trace_rw_file_path(struct kiocb * iocb,size_t count,int rw)4367 static void f2fs_trace_rw_file_path(struct kiocb *iocb, size_t count, int rw)
4368 {
4369 struct inode *inode = file_inode(iocb->ki_filp);
4370 char *buf, *path;
4371
4372 buf = f2fs_getname(F2FS_I_SB(inode));
4373 if (!buf)
4374 return;
4375 path = dentry_path_raw(file_dentry(iocb->ki_filp), buf, PATH_MAX);
4376 if (IS_ERR(path))
4377 goto free_buf;
4378 if (rw == WRITE)
4379 trace_f2fs_datawrite_start(inode, iocb->ki_pos, count,
4380 current->pid, path, current->comm);
4381 else
4382 trace_f2fs_dataread_start(inode, iocb->ki_pos, count,
4383 current->pid, path, current->comm);
4384 free_buf:
4385 f2fs_putname(buf);
4386 }
4387
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4388 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4389 {
4390 struct inode *inode = file_inode(iocb->ki_filp);
4391 const loff_t pos = iocb->ki_pos;
4392 ssize_t ret;
4393
4394 if (!f2fs_is_compress_backend_ready(inode))
4395 return -EOPNOTSUPP;
4396
4397 if (trace_f2fs_dataread_start_enabled())
4398 f2fs_trace_rw_file_path(iocb, iov_iter_count(to), READ);
4399
4400 if (f2fs_should_use_dio(inode, iocb, to)) {
4401 ret = f2fs_dio_read_iter(iocb, to);
4402 } else {
4403 ret = filemap_read(iocb, to, 0);
4404 if (ret > 0)
4405 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4406 APP_BUFFERED_READ_IO, ret);
4407 }
4408 if (trace_f2fs_dataread_end_enabled())
4409 trace_f2fs_dataread_end(inode, pos, ret);
4410 return ret;
4411 }
4412
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4413 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4414 {
4415 struct file *file = iocb->ki_filp;
4416 struct inode *inode = file_inode(file);
4417 ssize_t count;
4418 int err;
4419
4420 if (IS_IMMUTABLE(inode))
4421 return -EPERM;
4422
4423 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4424 return -EPERM;
4425
4426 count = generic_write_checks(iocb, from);
4427 if (count <= 0)
4428 return count;
4429
4430 err = file_modified(file);
4431 if (err)
4432 return err;
4433 return count;
4434 }
4435
4436 /*
4437 * Preallocate blocks for a write request, if it is possible and helpful to do
4438 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4439 * blocks were preallocated, or a negative errno value if something went
4440 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4441 * requested blocks (not just some of them) have been allocated.
4442 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4443 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4444 bool dio)
4445 {
4446 struct inode *inode = file_inode(iocb->ki_filp);
4447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4448 const loff_t pos = iocb->ki_pos;
4449 const size_t count = iov_iter_count(iter);
4450 struct f2fs_map_blocks map = {};
4451 int flag;
4452 int ret;
4453
4454 /* If it will be an out-of-place direct write, don't bother. */
4455 if (dio && f2fs_lfs_mode(sbi))
4456 return 0;
4457 /*
4458 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4459 * buffered IO, if DIO meets any holes.
4460 */
4461 if (dio && i_size_read(inode) &&
4462 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4463 return 0;
4464
4465 /* No-wait I/O can't allocate blocks. */
4466 if (iocb->ki_flags & IOCB_NOWAIT)
4467 return 0;
4468
4469 /* If it will be a short write, don't bother. */
4470 if (fault_in_iov_iter_readable(iter, count))
4471 return 0;
4472
4473 if (f2fs_has_inline_data(inode)) {
4474 /* If the data will fit inline, don't bother. */
4475 if (pos + count <= MAX_INLINE_DATA(inode))
4476 return 0;
4477 ret = f2fs_convert_inline_inode(inode);
4478 if (ret)
4479 return ret;
4480 }
4481
4482 /* Do not preallocate blocks that will be written partially in 4KB. */
4483 map.m_lblk = F2FS_BLK_ALIGN(pos);
4484 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4485 if (map.m_len > map.m_lblk)
4486 map.m_len -= map.m_lblk;
4487 else
4488 map.m_len = 0;
4489 map.m_may_create = true;
4490 if (dio) {
4491 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4492 flag = F2FS_GET_BLOCK_PRE_DIO;
4493 } else {
4494 map.m_seg_type = NO_CHECK_TYPE;
4495 flag = F2FS_GET_BLOCK_PRE_AIO;
4496 }
4497
4498 ret = f2fs_map_blocks(inode, &map, flag);
4499 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4500 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4501 return ret;
4502 if (ret == 0)
4503 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4504 return map.m_len;
4505 }
4506
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4507 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4508 struct iov_iter *from)
4509 {
4510 struct file *file = iocb->ki_filp;
4511 struct inode *inode = file_inode(file);
4512 ssize_t ret;
4513
4514 if (iocb->ki_flags & IOCB_NOWAIT)
4515 return -EOPNOTSUPP;
4516
4517 current->backing_dev_info = inode_to_bdi(inode);
4518 ret = generic_perform_write(file, from, iocb->ki_pos);
4519 current->backing_dev_info = NULL;
4520
4521 if (ret > 0) {
4522 iocb->ki_pos += ret;
4523 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4524 APP_BUFFERED_IO, ret);
4525 }
4526 return ret;
4527 }
4528
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4529 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4530 unsigned int flags)
4531 {
4532 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4533
4534 dec_page_count(sbi, F2FS_DIO_WRITE);
4535 if (error)
4536 return error;
4537 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4538 return 0;
4539 }
4540
4541 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4542 .end_io = f2fs_dio_write_end_io,
4543 };
4544
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4545 static void f2fs_flush_buffered_write(struct address_space *mapping,
4546 loff_t start_pos, loff_t end_pos)
4547 {
4548 int ret;
4549
4550 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4551 if (ret < 0)
4552 return;
4553 invalidate_mapping_pages(mapping,
4554 start_pos >> PAGE_SHIFT,
4555 end_pos >> PAGE_SHIFT);
4556 }
4557
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4558 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4559 bool *may_need_sync)
4560 {
4561 struct file *file = iocb->ki_filp;
4562 struct inode *inode = file_inode(file);
4563 struct f2fs_inode_info *fi = F2FS_I(inode);
4564 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4565 const bool do_opu = f2fs_lfs_mode(sbi);
4566 const loff_t pos = iocb->ki_pos;
4567 const ssize_t count = iov_iter_count(from);
4568 unsigned int dio_flags;
4569 struct iomap_dio *dio;
4570 ssize_t ret;
4571
4572 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4573
4574 if (iocb->ki_flags & IOCB_NOWAIT) {
4575 /* f2fs_convert_inline_inode() and block allocation can block */
4576 if (f2fs_has_inline_data(inode) ||
4577 !f2fs_overwrite_io(inode, pos, count)) {
4578 ret = -EAGAIN;
4579 goto out;
4580 }
4581
4582 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4583 ret = -EAGAIN;
4584 goto out;
4585 }
4586 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4587 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4588 ret = -EAGAIN;
4589 goto out;
4590 }
4591 } else {
4592 ret = f2fs_convert_inline_inode(inode);
4593 if (ret)
4594 goto out;
4595
4596 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4597 if (do_opu)
4598 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4599 }
4600 /*
4601 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4602 * the higher-level function iomap_dio_rw() in order to ensure that the
4603 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4604 */
4605 inc_page_count(sbi, F2FS_DIO_WRITE);
4606 dio_flags = 0;
4607 if (pos + count > inode->i_size)
4608 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4609 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4610 &f2fs_iomap_dio_write_ops, dio_flags, 0);
4611 if (IS_ERR_OR_NULL(dio)) {
4612 ret = PTR_ERR_OR_ZERO(dio);
4613 if (ret == -ENOTBLK)
4614 ret = 0;
4615 if (ret != -EIOCBQUEUED)
4616 dec_page_count(sbi, F2FS_DIO_WRITE);
4617 } else {
4618 ret = iomap_dio_complete(dio);
4619 }
4620
4621 if (do_opu)
4622 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4623 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4624
4625 if (ret < 0)
4626 goto out;
4627 if (pos + ret > inode->i_size)
4628 f2fs_i_size_write(inode, pos + ret);
4629 if (!do_opu)
4630 set_inode_flag(inode, FI_UPDATE_WRITE);
4631
4632 if (iov_iter_count(from)) {
4633 ssize_t ret2;
4634 loff_t bufio_start_pos = iocb->ki_pos;
4635
4636 /*
4637 * The direct write was partial, so we need to fall back to a
4638 * buffered write for the remainder.
4639 */
4640
4641 ret2 = f2fs_buffered_write_iter(iocb, from);
4642 if (iov_iter_count(from))
4643 f2fs_write_failed(inode, iocb->ki_pos);
4644 if (ret2 < 0)
4645 goto out;
4646
4647 /*
4648 * Ensure that the pagecache pages are written to disk and
4649 * invalidated to preserve the expected O_DIRECT semantics.
4650 */
4651 if (ret2 > 0) {
4652 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4653
4654 ret += ret2;
4655
4656 f2fs_flush_buffered_write(file->f_mapping,
4657 bufio_start_pos,
4658 bufio_end_pos);
4659 }
4660 } else {
4661 /* iomap_dio_rw() already handled the generic_write_sync(). */
4662 *may_need_sync = false;
4663 }
4664 out:
4665 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4666 return ret;
4667 }
4668
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4669 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4670 {
4671 struct inode *inode = file_inode(iocb->ki_filp);
4672 const loff_t orig_pos = iocb->ki_pos;
4673 const size_t orig_count = iov_iter_count(from);
4674 loff_t target_size;
4675 bool dio;
4676 bool may_need_sync = true;
4677 int preallocated;
4678 ssize_t ret;
4679
4680 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4681 ret = -EIO;
4682 goto out;
4683 }
4684
4685 if (!f2fs_is_compress_backend_ready(inode)) {
4686 ret = -EOPNOTSUPP;
4687 goto out;
4688 }
4689
4690 if (iocb->ki_flags & IOCB_NOWAIT) {
4691 if (!inode_trylock(inode)) {
4692 ret = -EAGAIN;
4693 goto out;
4694 }
4695 } else {
4696 inode_lock(inode);
4697 }
4698
4699 ret = f2fs_write_checks(iocb, from);
4700 if (ret <= 0)
4701 goto out_unlock;
4702
4703 /* Determine whether we will do a direct write or a buffered write. */
4704 dio = f2fs_should_use_dio(inode, iocb, from);
4705
4706 /* Possibly preallocate the blocks for the write. */
4707 target_size = iocb->ki_pos + iov_iter_count(from);
4708 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4709 if (preallocated < 0) {
4710 ret = preallocated;
4711 } else {
4712 if (trace_f2fs_datawrite_start_enabled())
4713 f2fs_trace_rw_file_path(iocb, orig_count, WRITE);
4714
4715 /* Do the actual write. */
4716 ret = dio ?
4717 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4718 f2fs_buffered_write_iter(iocb, from);
4719
4720 if (trace_f2fs_datawrite_end_enabled())
4721 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4722 }
4723
4724 /* Don't leave any preallocated blocks around past i_size. */
4725 if (preallocated && i_size_read(inode) < target_size) {
4726 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4727 filemap_invalidate_lock(inode->i_mapping);
4728 if (!f2fs_truncate(inode))
4729 file_dont_truncate(inode);
4730 filemap_invalidate_unlock(inode->i_mapping);
4731 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4732 } else {
4733 file_dont_truncate(inode);
4734 }
4735
4736 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4737 out_unlock:
4738 inode_unlock(inode);
4739 out:
4740 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4741
4742 if (ret > 0 && may_need_sync)
4743 ret = generic_write_sync(iocb, ret);
4744
4745 /* If buffered IO was forced, flush and drop the data from
4746 * the page cache to preserve O_DIRECT semantics
4747 */
4748 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4749 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4750 orig_pos,
4751 orig_pos + ret - 1);
4752
4753 return ret;
4754 }
4755
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4756 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4757 int advice)
4758 {
4759 struct address_space *mapping;
4760 struct backing_dev_info *bdi;
4761 struct inode *inode = file_inode(filp);
4762 int err;
4763
4764 if (advice == POSIX_FADV_SEQUENTIAL) {
4765 if (S_ISFIFO(inode->i_mode))
4766 return -ESPIPE;
4767
4768 mapping = filp->f_mapping;
4769 if (!mapping || len < 0)
4770 return -EINVAL;
4771
4772 bdi = inode_to_bdi(mapping->host);
4773 filp->f_ra.ra_pages = bdi->ra_pages *
4774 F2FS_I_SB(inode)->seq_file_ra_mul;
4775 spin_lock(&filp->f_lock);
4776 filp->f_mode &= ~FMODE_RANDOM;
4777 spin_unlock(&filp->f_lock);
4778 return 0;
4779 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4780 /* Load extent cache at the first readahead. */
4781 f2fs_precache_extents(inode);
4782 }
4783
4784 err = generic_fadvise(filp, offset, len, advice);
4785 if (!err && advice == POSIX_FADV_DONTNEED &&
4786 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4787 f2fs_compressed_file(inode))
4788 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4789
4790 return err;
4791 }
4792
4793 #ifdef CONFIG_COMPAT
4794 struct compat_f2fs_gc_range {
4795 u32 sync;
4796 compat_u64 start;
4797 compat_u64 len;
4798 };
4799 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4800 struct compat_f2fs_gc_range)
4801
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4802 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4803 {
4804 struct compat_f2fs_gc_range __user *urange;
4805 struct f2fs_gc_range range;
4806 int err;
4807
4808 urange = compat_ptr(arg);
4809 err = get_user(range.sync, &urange->sync);
4810 err |= get_user(range.start, &urange->start);
4811 err |= get_user(range.len, &urange->len);
4812 if (err)
4813 return -EFAULT;
4814
4815 return __f2fs_ioc_gc_range(file, &range);
4816 }
4817
4818 struct compat_f2fs_move_range {
4819 u32 dst_fd;
4820 compat_u64 pos_in;
4821 compat_u64 pos_out;
4822 compat_u64 len;
4823 };
4824 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4825 struct compat_f2fs_move_range)
4826
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4827 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4828 {
4829 struct compat_f2fs_move_range __user *urange;
4830 struct f2fs_move_range range;
4831 int err;
4832
4833 urange = compat_ptr(arg);
4834 err = get_user(range.dst_fd, &urange->dst_fd);
4835 err |= get_user(range.pos_in, &urange->pos_in);
4836 err |= get_user(range.pos_out, &urange->pos_out);
4837 err |= get_user(range.len, &urange->len);
4838 if (err)
4839 return -EFAULT;
4840
4841 return __f2fs_ioc_move_range(file, &range);
4842 }
4843
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4844 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4845 {
4846 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4847 return -EIO;
4848 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4849 return -ENOSPC;
4850
4851 switch (cmd) {
4852 case FS_IOC32_GETVERSION:
4853 cmd = FS_IOC_GETVERSION;
4854 break;
4855 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4856 return f2fs_compat_ioc_gc_range(file, arg);
4857 case F2FS_IOC32_MOVE_RANGE:
4858 return f2fs_compat_ioc_move_range(file, arg);
4859 case F2FS_IOC_START_ATOMIC_WRITE:
4860 case F2FS_IOC_START_ATOMIC_REPLACE:
4861 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4862 case F2FS_IOC_START_VOLATILE_WRITE:
4863 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4864 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4865 case F2FS_IOC_SHUTDOWN:
4866 case FITRIM:
4867 case FS_IOC_SET_ENCRYPTION_POLICY:
4868 case FS_IOC_GET_ENCRYPTION_PWSALT:
4869 case FS_IOC_GET_ENCRYPTION_POLICY:
4870 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4871 case FS_IOC_ADD_ENCRYPTION_KEY:
4872 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4873 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4874 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4875 case FS_IOC_GET_ENCRYPTION_NONCE:
4876 case F2FS_IOC_GARBAGE_COLLECT:
4877 case F2FS_IOC_WRITE_CHECKPOINT:
4878 case F2FS_IOC_DEFRAGMENT:
4879 case F2FS_IOC_FLUSH_DEVICE:
4880 case F2FS_IOC_GET_FEATURES:
4881 case F2FS_IOC_GET_PIN_FILE:
4882 case F2FS_IOC_SET_PIN_FILE:
4883 case F2FS_IOC_PRECACHE_EXTENTS:
4884 case F2FS_IOC_RESIZE_FS:
4885 case FS_IOC_ENABLE_VERITY:
4886 case FS_IOC_MEASURE_VERITY:
4887 case FS_IOC_READ_VERITY_METADATA:
4888 case FS_IOC_GETFSLABEL:
4889 case FS_IOC_SETFSLABEL:
4890 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4891 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4892 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4893 case F2FS_IOC_SEC_TRIM_FILE:
4894 case F2FS_IOC_GET_COMPRESS_OPTION:
4895 case F2FS_IOC_SET_COMPRESS_OPTION:
4896 case F2FS_IOC_DECOMPRESS_FILE:
4897 case F2FS_IOC_COMPRESS_FILE:
4898 break;
4899 default:
4900 return -ENOIOCTLCMD;
4901 }
4902 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4903 }
4904 #endif
4905
4906 const struct file_operations f2fs_file_operations = {
4907 .llseek = f2fs_llseek,
4908 .read_iter = f2fs_file_read_iter,
4909 .write_iter = f2fs_file_write_iter,
4910 .iopoll = iomap_dio_iopoll,
4911 .open = f2fs_file_open,
4912 .release = f2fs_release_file,
4913 .mmap = f2fs_file_mmap,
4914 .flush = f2fs_file_flush,
4915 .fsync = f2fs_sync_file,
4916 .fallocate = f2fs_fallocate,
4917 .unlocked_ioctl = f2fs_ioctl,
4918 #ifdef CONFIG_COMPAT
4919 .compat_ioctl = f2fs_compat_ioctl,
4920 #endif
4921 .splice_read = generic_file_splice_read,
4922 .splice_write = iter_file_splice_write,
4923 .fadvise = f2fs_file_fadvise,
4924 };
4925