1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131 }
132
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205 }
206
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222 }
223
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236 }
237
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240 {
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256 }
257
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260 {
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291 }
292
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311 }
312
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317 }
318
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325 }
326
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329 {
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349 }
350
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369 }
370
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395 }
396
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409 }
410
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454 }
455
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458 {
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544 }
545
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548 {
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562 retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611 cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620 }
621
622 /*
623 * readahead MAX_RA_NODE number of node pages.
624 */
f2fs_ra_node_pages(struct page * parent,int start,int n)625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, (int)NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643 }
644
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])682 static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684 {
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752 got:
753 return level;
754 }
755
756 /*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 block_t blkaddr;
857
858 if (!c_len)
859 goto out;
860
861 blkaddr = f2fs_data_blkaddr(dn);
862 if (blkaddr == COMPRESS_ADDR)
863 blkaddr = data_blkaddr(dn->inode, dn->node_page,
864 dn->ofs_in_node + 1);
865
866 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867 index, blkaddr,
868 F2FS_I(dn->inode)->i_cluster_size,
869 c_len);
870 }
871 out:
872 return 0;
873
874 release_pages:
875 f2fs_put_page(parent, 1);
876 if (i > 1)
877 f2fs_put_page(npage[0], 0);
878 release_out:
879 dn->inode_page = NULL;
880 dn->node_page = NULL;
881 if (err == -ENOENT) {
882 dn->cur_level = i;
883 dn->max_level = level;
884 dn->ofs_in_node = offset[level];
885 }
886 return err;
887 }
888
truncate_node(struct dnode_of_data * dn)889 static int truncate_node(struct dnode_of_data *dn)
890 {
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 struct node_info ni;
893 int err;
894 pgoff_t index;
895
896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897 if (err)
898 return err;
899
900 /* Deallocate node address */
901 f2fs_invalidate_blocks(sbi, ni.blk_addr);
902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903 set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905 if (dn->nid == dn->inode->i_ino) {
906 f2fs_remove_orphan_inode(sbi, dn->nid);
907 dec_valid_inode_count(sbi);
908 f2fs_inode_synced(dn->inode);
909 }
910
911 clear_node_page_dirty(dn->node_page);
912 set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914 index = dn->node_page->index;
915 f2fs_put_page(dn->node_page, 1);
916
917 invalidate_mapping_pages(NODE_MAPPING(sbi),
918 index, index);
919
920 dn->node_page = NULL;
921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923 return 0;
924 }
925
truncate_dnode(struct dnode_of_data * dn)926 static int truncate_dnode(struct dnode_of_data *dn)
927 {
928 struct page *page;
929 int err;
930
931 if (dn->nid == 0)
932 return 1;
933
934 /* get direct node */
935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
936 if (PTR_ERR(page) == -ENOENT)
937 return 1;
938 else if (IS_ERR(page))
939 return PTR_ERR(page);
940
941 /* Make dnode_of_data for parameter */
942 dn->node_page = page;
943 dn->ofs_in_node = 0;
944 f2fs_truncate_data_blocks(dn);
945 err = truncate_node(dn);
946 if (err) {
947 f2fs_put_page(page, 1);
948 return err;
949 }
950
951 return 1;
952 }
953
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)954 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
955 int ofs, int depth)
956 {
957 struct dnode_of_data rdn = *dn;
958 struct page *page;
959 struct f2fs_node *rn;
960 nid_t child_nid;
961 unsigned int child_nofs;
962 int freed = 0;
963 int i, ret;
964
965 if (dn->nid == 0)
966 return NIDS_PER_BLOCK + 1;
967
968 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
969
970 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
971 if (IS_ERR(page)) {
972 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
973 return PTR_ERR(page);
974 }
975
976 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
977
978 rn = F2FS_NODE(page);
979 if (depth < 3) {
980 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
981 child_nid = le32_to_cpu(rn->in.nid[i]);
982 if (child_nid == 0)
983 continue;
984 rdn.nid = child_nid;
985 ret = truncate_dnode(&rdn);
986 if (ret < 0)
987 goto out_err;
988 if (set_nid(page, i, 0, false))
989 dn->node_changed = true;
990 }
991 } else {
992 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
993 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
994 child_nid = le32_to_cpu(rn->in.nid[i]);
995 if (child_nid == 0) {
996 child_nofs += NIDS_PER_BLOCK + 1;
997 continue;
998 }
999 rdn.nid = child_nid;
1000 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1001 if (ret == (NIDS_PER_BLOCK + 1)) {
1002 if (set_nid(page, i, 0, false))
1003 dn->node_changed = true;
1004 child_nofs += ret;
1005 } else if (ret < 0 && ret != -ENOENT) {
1006 goto out_err;
1007 }
1008 }
1009 freed = child_nofs;
1010 }
1011
1012 if (!ofs) {
1013 /* remove current indirect node */
1014 dn->node_page = page;
1015 ret = truncate_node(dn);
1016 if (ret)
1017 goto out_err;
1018 freed++;
1019 } else {
1020 f2fs_put_page(page, 1);
1021 }
1022 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1023 return freed;
1024
1025 out_err:
1026 f2fs_put_page(page, 1);
1027 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1028 return ret;
1029 }
1030
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1031 static int truncate_partial_nodes(struct dnode_of_data *dn,
1032 struct f2fs_inode *ri, int *offset, int depth)
1033 {
1034 struct page *pages[2];
1035 nid_t nid[3];
1036 nid_t child_nid;
1037 int err = 0;
1038 int i;
1039 int idx = depth - 2;
1040
1041 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1042 if (!nid[0])
1043 return 0;
1044
1045 /* get indirect nodes in the path */
1046 for (i = 0; i < idx + 1; i++) {
1047 /* reference count'll be increased */
1048 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1049 if (IS_ERR(pages[i])) {
1050 err = PTR_ERR(pages[i]);
1051 idx = i - 1;
1052 goto fail;
1053 }
1054 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1055 }
1056
1057 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1058
1059 /* free direct nodes linked to a partial indirect node */
1060 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1061 child_nid = get_nid(pages[idx], i, false);
1062 if (!child_nid)
1063 continue;
1064 dn->nid = child_nid;
1065 err = truncate_dnode(dn);
1066 if (err < 0)
1067 goto fail;
1068 if (set_nid(pages[idx], i, 0, false))
1069 dn->node_changed = true;
1070 }
1071
1072 if (offset[idx + 1] == 0) {
1073 dn->node_page = pages[idx];
1074 dn->nid = nid[idx];
1075 err = truncate_node(dn);
1076 if (err)
1077 goto fail;
1078 } else {
1079 f2fs_put_page(pages[idx], 1);
1080 }
1081 offset[idx]++;
1082 offset[idx + 1] = 0;
1083 idx--;
1084 fail:
1085 for (i = idx; i >= 0; i--)
1086 f2fs_put_page(pages[i], 1);
1087
1088 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1089
1090 return err;
1091 }
1092
1093 /*
1094 * All the block addresses of data and nodes should be nullified.
1095 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1096 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1097 {
1098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1099 int err = 0, cont = 1;
1100 int level, offset[4], noffset[4];
1101 unsigned int nofs = 0;
1102 struct f2fs_inode *ri;
1103 struct dnode_of_data dn;
1104 struct page *page;
1105
1106 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1107
1108 level = get_node_path(inode, from, offset, noffset);
1109 if (level < 0) {
1110 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1111 return level;
1112 }
1113
1114 page = f2fs_get_node_page(sbi, inode->i_ino);
1115 if (IS_ERR(page)) {
1116 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1117 return PTR_ERR(page);
1118 }
1119
1120 set_new_dnode(&dn, inode, page, NULL, 0);
1121 unlock_page(page);
1122
1123 ri = F2FS_INODE(page);
1124 switch (level) {
1125 case 0:
1126 case 1:
1127 nofs = noffset[1];
1128 break;
1129 case 2:
1130 nofs = noffset[1];
1131 if (!offset[level - 1])
1132 goto skip_partial;
1133 err = truncate_partial_nodes(&dn, ri, offset, level);
1134 if (err < 0 && err != -ENOENT)
1135 goto fail;
1136 nofs += 1 + NIDS_PER_BLOCK;
1137 break;
1138 case 3:
1139 nofs = 5 + 2 * NIDS_PER_BLOCK;
1140 if (!offset[level - 1])
1141 goto skip_partial;
1142 err = truncate_partial_nodes(&dn, ri, offset, level);
1143 if (err < 0 && err != -ENOENT)
1144 goto fail;
1145 break;
1146 default:
1147 BUG();
1148 }
1149
1150 skip_partial:
1151 while (cont) {
1152 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1153 switch (offset[0]) {
1154 case NODE_DIR1_BLOCK:
1155 case NODE_DIR2_BLOCK:
1156 err = truncate_dnode(&dn);
1157 break;
1158
1159 case NODE_IND1_BLOCK:
1160 case NODE_IND2_BLOCK:
1161 err = truncate_nodes(&dn, nofs, offset[1], 2);
1162 break;
1163
1164 case NODE_DIND_BLOCK:
1165 err = truncate_nodes(&dn, nofs, offset[1], 3);
1166 cont = 0;
1167 break;
1168
1169 default:
1170 BUG();
1171 }
1172 if (err < 0 && err != -ENOENT)
1173 goto fail;
1174 if (offset[1] == 0 &&
1175 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1176 lock_page(page);
1177 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1178 f2fs_wait_on_page_writeback(page, NODE, true, true);
1179 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1180 set_page_dirty(page);
1181 unlock_page(page);
1182 }
1183 offset[1] = 0;
1184 offset[0]++;
1185 nofs += err;
1186 }
1187 fail:
1188 f2fs_put_page(page, 0);
1189 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1190 return err > 0 ? 0 : err;
1191 }
1192
1193 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1194 int f2fs_truncate_xattr_node(struct inode *inode)
1195 {
1196 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1197 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1198 struct dnode_of_data dn;
1199 struct page *npage;
1200 int err;
1201
1202 if (!nid)
1203 return 0;
1204
1205 npage = f2fs_get_node_page(sbi, nid);
1206 if (IS_ERR(npage))
1207 return PTR_ERR(npage);
1208
1209 set_new_dnode(&dn, inode, NULL, npage, nid);
1210 err = truncate_node(&dn);
1211 if (err) {
1212 f2fs_put_page(npage, 1);
1213 return err;
1214 }
1215
1216 f2fs_i_xnid_write(inode, 0);
1217
1218 return 0;
1219 }
1220
1221 /*
1222 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1223 * f2fs_unlock_op().
1224 */
f2fs_remove_inode_page(struct inode * inode)1225 int f2fs_remove_inode_page(struct inode *inode)
1226 {
1227 struct dnode_of_data dn;
1228 int err;
1229
1230 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1231 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1232 if (err)
1233 return err;
1234
1235 err = f2fs_truncate_xattr_node(inode);
1236 if (err) {
1237 f2fs_put_dnode(&dn);
1238 return err;
1239 }
1240
1241 /* remove potential inline_data blocks */
1242 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1243 S_ISLNK(inode->i_mode))
1244 f2fs_truncate_data_blocks_range(&dn, 1);
1245
1246 /* 0 is possible, after f2fs_new_inode() has failed */
1247 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1248 f2fs_put_dnode(&dn);
1249 return -EIO;
1250 }
1251
1252 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1253 f2fs_warn(F2FS_I_SB(inode),
1254 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1255 inode->i_ino, (unsigned long long)inode->i_blocks);
1256 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1257 }
1258
1259 /* will put inode & node pages */
1260 err = truncate_node(&dn);
1261 if (err) {
1262 f2fs_put_dnode(&dn);
1263 return err;
1264 }
1265 return 0;
1266 }
1267
f2fs_new_inode_page(struct inode * inode)1268 struct page *f2fs_new_inode_page(struct inode *inode)
1269 {
1270 struct dnode_of_data dn;
1271
1272 /* allocate inode page for new inode */
1273 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1274
1275 /* caller should f2fs_put_page(page, 1); */
1276 return f2fs_new_node_page(&dn, 0);
1277 }
1278
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1279 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1280 {
1281 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1282 struct node_info new_ni;
1283 struct page *page;
1284 int err;
1285
1286 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1287 return ERR_PTR(-EPERM);
1288
1289 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1290 if (!page)
1291 return ERR_PTR(-ENOMEM);
1292
1293 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1294 goto fail;
1295
1296 #ifdef CONFIG_F2FS_CHECK_FS
1297 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1298 if (err) {
1299 dec_valid_node_count(sbi, dn->inode, !ofs);
1300 goto fail;
1301 }
1302 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1303 err = -EFSCORRUPTED;
1304 set_sbi_flag(sbi, SBI_NEED_FSCK);
1305 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1306 goto fail;
1307 }
1308 #endif
1309 new_ni.nid = dn->nid;
1310 new_ni.ino = dn->inode->i_ino;
1311 new_ni.blk_addr = NULL_ADDR;
1312 new_ni.flag = 0;
1313 new_ni.version = 0;
1314 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1315
1316 f2fs_wait_on_page_writeback(page, NODE, true, true);
1317 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1318 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1319 if (!PageUptodate(page))
1320 SetPageUptodate(page);
1321 if (set_page_dirty(page))
1322 dn->node_changed = true;
1323
1324 if (f2fs_has_xattr_block(ofs))
1325 f2fs_i_xnid_write(dn->inode, dn->nid);
1326
1327 if (ofs == 0)
1328 inc_valid_inode_count(sbi);
1329 return page;
1330
1331 fail:
1332 clear_node_page_dirty(page);
1333 f2fs_put_page(page, 1);
1334 return ERR_PTR(err);
1335 }
1336
1337 /*
1338 * Caller should do after getting the following values.
1339 * 0: f2fs_put_page(page, 0)
1340 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1341 */
read_node_page(struct page * page,int op_flags)1342 static int read_node_page(struct page *page, int op_flags)
1343 {
1344 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345 struct node_info ni;
1346 struct f2fs_io_info fio = {
1347 .sbi = sbi,
1348 .type = NODE,
1349 .op = REQ_OP_READ,
1350 .op_flags = op_flags,
1351 .page = page,
1352 .encrypted_page = NULL,
1353 };
1354 int err;
1355
1356 if (PageUptodate(page)) {
1357 if (!f2fs_inode_chksum_verify(sbi, page)) {
1358 ClearPageUptodate(page);
1359 return -EFSBADCRC;
1360 }
1361 return LOCKED_PAGE;
1362 }
1363
1364 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1365 if (err)
1366 return err;
1367
1368 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1369 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1370 ClearPageUptodate(page);
1371 return -ENOENT;
1372 }
1373
1374 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1375
1376 err = f2fs_submit_page_bio(&fio);
1377
1378 if (!err)
1379 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1380
1381 return err;
1382 }
1383
1384 /*
1385 * Readahead a node page
1386 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1387 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1388 {
1389 struct page *apage;
1390 int err;
1391
1392 if (!nid)
1393 return;
1394 if (f2fs_check_nid_range(sbi, nid))
1395 return;
1396
1397 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1398 if (apage)
1399 return;
1400
1401 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1402 if (!apage)
1403 return;
1404
1405 err = read_node_page(apage, REQ_RAHEAD);
1406 f2fs_put_page(apage, err ? 1 : 0);
1407 }
1408
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1409 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1410 struct page *parent, int start)
1411 {
1412 struct page *page;
1413 int err;
1414
1415 if (!nid)
1416 return ERR_PTR(-ENOENT);
1417 if (f2fs_check_nid_range(sbi, nid))
1418 return ERR_PTR(-EINVAL);
1419 repeat:
1420 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1421 if (!page)
1422 return ERR_PTR(-ENOMEM);
1423
1424 err = read_node_page(page, 0);
1425 if (err < 0) {
1426 goto out_put_err;
1427 } else if (err == LOCKED_PAGE) {
1428 err = 0;
1429 goto page_hit;
1430 }
1431
1432 if (parent)
1433 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1434
1435 lock_page(page);
1436
1437 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1438 f2fs_put_page(page, 1);
1439 goto repeat;
1440 }
1441
1442 if (unlikely(!PageUptodate(page))) {
1443 err = -EIO;
1444 goto out_err;
1445 }
1446
1447 if (!f2fs_inode_chksum_verify(sbi, page)) {
1448 err = -EFSBADCRC;
1449 goto out_err;
1450 }
1451 page_hit:
1452 if (likely(nid == nid_of_node(page)))
1453 return page;
1454
1455 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1456 nid, nid_of_node(page), ino_of_node(page),
1457 ofs_of_node(page), cpver_of_node(page),
1458 next_blkaddr_of_node(page));
1459 set_sbi_flag(sbi, SBI_NEED_FSCK);
1460 err = -EINVAL;
1461 out_err:
1462 ClearPageUptodate(page);
1463 out_put_err:
1464 /* ENOENT comes from read_node_page which is not an error. */
1465 if (err != -ENOENT)
1466 f2fs_handle_page_eio(sbi, page->index, NODE);
1467 f2fs_put_page(page, 1);
1468 return ERR_PTR(err);
1469 }
1470
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1471 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1472 {
1473 return __get_node_page(sbi, nid, NULL, 0);
1474 }
1475
f2fs_get_node_page_ra(struct page * parent,int start)1476 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1477 {
1478 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1479 nid_t nid = get_nid(parent, start, false);
1480
1481 return __get_node_page(sbi, nid, parent, start);
1482 }
1483
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1484 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1485 {
1486 struct inode *inode;
1487 struct page *page;
1488 int ret;
1489
1490 /* should flush inline_data before evict_inode */
1491 inode = ilookup(sbi->sb, ino);
1492 if (!inode)
1493 return;
1494
1495 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1496 FGP_LOCK|FGP_NOWAIT, 0);
1497 if (!page)
1498 goto iput_out;
1499
1500 if (!PageUptodate(page))
1501 goto page_out;
1502
1503 if (!PageDirty(page))
1504 goto page_out;
1505
1506 if (!clear_page_dirty_for_io(page))
1507 goto page_out;
1508
1509 ret = f2fs_write_inline_data(inode, page);
1510 inode_dec_dirty_pages(inode);
1511 f2fs_remove_dirty_inode(inode);
1512 if (ret)
1513 set_page_dirty(page);
1514 page_out:
1515 f2fs_put_page(page, 1);
1516 iput_out:
1517 iput(inode);
1518 }
1519
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1520 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1521 {
1522 pgoff_t index;
1523 struct pagevec pvec;
1524 struct page *last_page = NULL;
1525 int nr_pages;
1526
1527 pagevec_init(&pvec);
1528 index = 0;
1529
1530 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1531 PAGECACHE_TAG_DIRTY))) {
1532 int i;
1533
1534 for (i = 0; i < nr_pages; i++) {
1535 struct page *page = pvec.pages[i];
1536
1537 if (unlikely(f2fs_cp_error(sbi))) {
1538 f2fs_put_page(last_page, 0);
1539 pagevec_release(&pvec);
1540 return ERR_PTR(-EIO);
1541 }
1542
1543 if (!IS_DNODE(page) || !is_cold_node(page))
1544 continue;
1545 if (ino_of_node(page) != ino)
1546 continue;
1547
1548 lock_page(page);
1549
1550 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1551 continue_unlock:
1552 unlock_page(page);
1553 continue;
1554 }
1555 if (ino_of_node(page) != ino)
1556 goto continue_unlock;
1557
1558 if (!PageDirty(page)) {
1559 /* someone wrote it for us */
1560 goto continue_unlock;
1561 }
1562
1563 if (last_page)
1564 f2fs_put_page(last_page, 0);
1565
1566 get_page(page);
1567 last_page = page;
1568 unlock_page(page);
1569 }
1570 pagevec_release(&pvec);
1571 cond_resched();
1572 }
1573 return last_page;
1574 }
1575
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1576 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1577 struct writeback_control *wbc, bool do_balance,
1578 enum iostat_type io_type, unsigned int *seq_id)
1579 {
1580 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1581 nid_t nid;
1582 struct node_info ni;
1583 struct f2fs_io_info fio = {
1584 .sbi = sbi,
1585 .ino = ino_of_node(page),
1586 .type = NODE,
1587 .op = REQ_OP_WRITE,
1588 .op_flags = wbc_to_write_flags(wbc),
1589 .page = page,
1590 .encrypted_page = NULL,
1591 .submitted = 0,
1592 .io_type = io_type,
1593 .io_wbc = wbc,
1594 };
1595 unsigned int seq;
1596
1597 trace_f2fs_writepage(page, NODE);
1598
1599 if (unlikely(f2fs_cp_error(sbi))) {
1600 ClearPageUptodate(page);
1601 dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 unlock_page(page);
1603 return 0;
1604 }
1605
1606 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1607 goto redirty_out;
1608
1609 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1610 wbc->sync_mode == WB_SYNC_NONE &&
1611 IS_DNODE(page) && is_cold_node(page))
1612 goto redirty_out;
1613
1614 /* get old block addr of this node page */
1615 nid = nid_of_node(page);
1616 f2fs_bug_on(sbi, page->index != nid);
1617
1618 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1619 goto redirty_out;
1620
1621 if (wbc->for_reclaim) {
1622 if (!f2fs_down_read_trylock(&sbi->node_write))
1623 goto redirty_out;
1624 } else {
1625 f2fs_down_read(&sbi->node_write);
1626 }
1627
1628 /* This page is already truncated */
1629 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1630 ClearPageUptodate(page);
1631 dec_page_count(sbi, F2FS_DIRTY_NODES);
1632 f2fs_up_read(&sbi->node_write);
1633 unlock_page(page);
1634 return 0;
1635 }
1636
1637 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1638 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1639 DATA_GENERIC_ENHANCE)) {
1640 f2fs_up_read(&sbi->node_write);
1641 goto redirty_out;
1642 }
1643
1644 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1645 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1646
1647 /* should add to global list before clearing PAGECACHE status */
1648 if (f2fs_in_warm_node_list(sbi, page)) {
1649 seq = f2fs_add_fsync_node_entry(sbi, page);
1650 if (seq_id)
1651 *seq_id = seq;
1652 }
1653
1654 set_page_writeback(page);
1655
1656 fio.old_blkaddr = ni.blk_addr;
1657 f2fs_do_write_node_page(nid, &fio);
1658 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1659 dec_page_count(sbi, F2FS_DIRTY_NODES);
1660 f2fs_up_read(&sbi->node_write);
1661
1662 if (wbc->for_reclaim) {
1663 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1664 submitted = NULL;
1665 }
1666
1667 unlock_page(page);
1668
1669 if (unlikely(f2fs_cp_error(sbi))) {
1670 f2fs_submit_merged_write(sbi, NODE);
1671 submitted = NULL;
1672 }
1673 if (submitted)
1674 *submitted = fio.submitted;
1675
1676 if (do_balance)
1677 f2fs_balance_fs(sbi, false);
1678 return 0;
1679
1680 redirty_out:
1681 redirty_page_for_writepage(wbc, page);
1682 return AOP_WRITEPAGE_ACTIVATE;
1683 }
1684
f2fs_move_node_page(struct page * node_page,int gc_type)1685 int f2fs_move_node_page(struct page *node_page, int gc_type)
1686 {
1687 int err = 0;
1688
1689 if (gc_type == FG_GC) {
1690 struct writeback_control wbc = {
1691 .sync_mode = WB_SYNC_ALL,
1692 .nr_to_write = 1,
1693 .for_reclaim = 0,
1694 };
1695
1696 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1697
1698 set_page_dirty(node_page);
1699
1700 if (!clear_page_dirty_for_io(node_page)) {
1701 err = -EAGAIN;
1702 goto out_page;
1703 }
1704
1705 if (__write_node_page(node_page, false, NULL,
1706 &wbc, false, FS_GC_NODE_IO, NULL)) {
1707 err = -EAGAIN;
1708 unlock_page(node_page);
1709 }
1710 goto release_page;
1711 } else {
1712 /* set page dirty and write it */
1713 if (!PageWriteback(node_page))
1714 set_page_dirty(node_page);
1715 }
1716 out_page:
1717 unlock_page(node_page);
1718 release_page:
1719 f2fs_put_page(node_page, 0);
1720 return err;
1721 }
1722
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1723 static int f2fs_write_node_page(struct page *page,
1724 struct writeback_control *wbc)
1725 {
1726 return __write_node_page(page, false, NULL, wbc, false,
1727 FS_NODE_IO, NULL);
1728 }
1729
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1730 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1731 struct writeback_control *wbc, bool atomic,
1732 unsigned int *seq_id)
1733 {
1734 pgoff_t index;
1735 struct pagevec pvec;
1736 int ret = 0;
1737 struct page *last_page = NULL;
1738 bool marked = false;
1739 nid_t ino = inode->i_ino;
1740 int nr_pages;
1741 int nwritten = 0;
1742
1743 if (atomic) {
1744 last_page = last_fsync_dnode(sbi, ino);
1745 if (IS_ERR_OR_NULL(last_page))
1746 return PTR_ERR_OR_ZERO(last_page);
1747 }
1748 retry:
1749 pagevec_init(&pvec);
1750 index = 0;
1751
1752 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1753 PAGECACHE_TAG_DIRTY))) {
1754 int i;
1755
1756 for (i = 0; i < nr_pages; i++) {
1757 struct page *page = pvec.pages[i];
1758 bool submitted = false;
1759
1760 if (unlikely(f2fs_cp_error(sbi))) {
1761 f2fs_put_page(last_page, 0);
1762 pagevec_release(&pvec);
1763 ret = -EIO;
1764 goto out;
1765 }
1766
1767 if (!IS_DNODE(page) || !is_cold_node(page))
1768 continue;
1769 if (ino_of_node(page) != ino)
1770 continue;
1771
1772 lock_page(page);
1773
1774 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1775 continue_unlock:
1776 unlock_page(page);
1777 continue;
1778 }
1779 if (ino_of_node(page) != ino)
1780 goto continue_unlock;
1781
1782 if (!PageDirty(page) && page != last_page) {
1783 /* someone wrote it for us */
1784 goto continue_unlock;
1785 }
1786
1787 f2fs_wait_on_page_writeback(page, NODE, true, true);
1788
1789 set_fsync_mark(page, 0);
1790 set_dentry_mark(page, 0);
1791
1792 if (!atomic || page == last_page) {
1793 set_fsync_mark(page, 1);
1794 percpu_counter_inc(&sbi->rf_node_block_count);
1795 if (IS_INODE(page)) {
1796 if (is_inode_flag_set(inode,
1797 FI_DIRTY_INODE))
1798 f2fs_update_inode(inode, page);
1799 set_dentry_mark(page,
1800 f2fs_need_dentry_mark(sbi, ino));
1801 }
1802 /* may be written by other thread */
1803 if (!PageDirty(page))
1804 set_page_dirty(page);
1805 }
1806
1807 if (!clear_page_dirty_for_io(page))
1808 goto continue_unlock;
1809
1810 ret = __write_node_page(page, atomic &&
1811 page == last_page,
1812 &submitted, wbc, true,
1813 FS_NODE_IO, seq_id);
1814 if (ret) {
1815 unlock_page(page);
1816 f2fs_put_page(last_page, 0);
1817 break;
1818 } else if (submitted) {
1819 nwritten++;
1820 }
1821
1822 if (page == last_page) {
1823 f2fs_put_page(page, 0);
1824 marked = true;
1825 break;
1826 }
1827 }
1828 pagevec_release(&pvec);
1829 cond_resched();
1830
1831 if (ret || marked)
1832 break;
1833 }
1834 if (!ret && atomic && !marked) {
1835 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1836 ino, last_page->index);
1837 lock_page(last_page);
1838 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1839 set_page_dirty(last_page);
1840 unlock_page(last_page);
1841 goto retry;
1842 }
1843 out:
1844 if (nwritten)
1845 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1846 return ret ? -EIO : 0;
1847 }
1848
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1849 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1850 {
1851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1852 bool clean;
1853
1854 if (inode->i_ino != ino)
1855 return 0;
1856
1857 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1858 return 0;
1859
1860 spin_lock(&sbi->inode_lock[DIRTY_META]);
1861 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1862 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1863
1864 if (clean)
1865 return 0;
1866
1867 inode = igrab(inode);
1868 if (!inode)
1869 return 0;
1870 return 1;
1871 }
1872
flush_dirty_inode(struct page * page)1873 static bool flush_dirty_inode(struct page *page)
1874 {
1875 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1876 struct inode *inode;
1877 nid_t ino = ino_of_node(page);
1878
1879 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1880 if (!inode)
1881 return false;
1882
1883 f2fs_update_inode(inode, page);
1884 unlock_page(page);
1885
1886 iput(inode);
1887 return true;
1888 }
1889
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1890 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1891 {
1892 pgoff_t index = 0;
1893 struct pagevec pvec;
1894 int nr_pages;
1895
1896 pagevec_init(&pvec);
1897
1898 while ((nr_pages = pagevec_lookup_tag(&pvec,
1899 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1900 int i;
1901
1902 for (i = 0; i < nr_pages; i++) {
1903 struct page *page = pvec.pages[i];
1904
1905 if (!IS_DNODE(page))
1906 continue;
1907
1908 lock_page(page);
1909
1910 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1911 continue_unlock:
1912 unlock_page(page);
1913 continue;
1914 }
1915
1916 if (!PageDirty(page)) {
1917 /* someone wrote it for us */
1918 goto continue_unlock;
1919 }
1920
1921 /* flush inline_data, if it's async context. */
1922 if (page_private_inline(page)) {
1923 clear_page_private_inline(page);
1924 unlock_page(page);
1925 flush_inline_data(sbi, ino_of_node(page));
1926 continue;
1927 }
1928 unlock_page(page);
1929 }
1930 pagevec_release(&pvec);
1931 cond_resched();
1932 }
1933 }
1934
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1935 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1936 struct writeback_control *wbc,
1937 bool do_balance, enum iostat_type io_type)
1938 {
1939 pgoff_t index;
1940 struct pagevec pvec;
1941 int step = 0;
1942 int nwritten = 0;
1943 int ret = 0;
1944 int nr_pages, done = 0;
1945
1946 pagevec_init(&pvec);
1947
1948 next_step:
1949 index = 0;
1950
1951 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1952 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1953 int i;
1954
1955 for (i = 0; i < nr_pages; i++) {
1956 struct page *page = pvec.pages[i];
1957 bool submitted = false;
1958
1959 /* give a priority to WB_SYNC threads */
1960 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1961 wbc->sync_mode == WB_SYNC_NONE) {
1962 done = 1;
1963 break;
1964 }
1965
1966 /*
1967 * flushing sequence with step:
1968 * 0. indirect nodes
1969 * 1. dentry dnodes
1970 * 2. file dnodes
1971 */
1972 if (step == 0 && IS_DNODE(page))
1973 continue;
1974 if (step == 1 && (!IS_DNODE(page) ||
1975 is_cold_node(page)))
1976 continue;
1977 if (step == 2 && (!IS_DNODE(page) ||
1978 !is_cold_node(page)))
1979 continue;
1980 lock_node:
1981 if (wbc->sync_mode == WB_SYNC_ALL)
1982 lock_page(page);
1983 else if (!trylock_page(page))
1984 continue;
1985
1986 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1987 continue_unlock:
1988 unlock_page(page);
1989 continue;
1990 }
1991
1992 if (!PageDirty(page)) {
1993 /* someone wrote it for us */
1994 goto continue_unlock;
1995 }
1996
1997 /* flush inline_data/inode, if it's async context. */
1998 if (!do_balance)
1999 goto write_node;
2000
2001 /* flush inline_data */
2002 if (page_private_inline(page)) {
2003 clear_page_private_inline(page);
2004 unlock_page(page);
2005 flush_inline_data(sbi, ino_of_node(page));
2006 goto lock_node;
2007 }
2008
2009 /* flush dirty inode */
2010 if (IS_INODE(page) && flush_dirty_inode(page))
2011 goto lock_node;
2012 write_node:
2013 f2fs_wait_on_page_writeback(page, NODE, true, true);
2014
2015 if (!clear_page_dirty_for_io(page))
2016 goto continue_unlock;
2017
2018 set_fsync_mark(page, 0);
2019 set_dentry_mark(page, 0);
2020
2021 ret = __write_node_page(page, false, &submitted,
2022 wbc, do_balance, io_type, NULL);
2023 if (ret)
2024 unlock_page(page);
2025 else if (submitted)
2026 nwritten++;
2027
2028 if (--wbc->nr_to_write == 0)
2029 break;
2030 }
2031 pagevec_release(&pvec);
2032 cond_resched();
2033
2034 if (wbc->nr_to_write == 0) {
2035 step = 2;
2036 break;
2037 }
2038 }
2039
2040 if (step < 2) {
2041 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2042 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2043 goto out;
2044 step++;
2045 goto next_step;
2046 }
2047 out:
2048 if (nwritten)
2049 f2fs_submit_merged_write(sbi, NODE);
2050
2051 if (unlikely(f2fs_cp_error(sbi)))
2052 return -EIO;
2053 return ret;
2054 }
2055
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2056 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2057 unsigned int seq_id)
2058 {
2059 struct fsync_node_entry *fn;
2060 struct page *page;
2061 struct list_head *head = &sbi->fsync_node_list;
2062 unsigned long flags;
2063 unsigned int cur_seq_id = 0;
2064 int ret2, ret = 0;
2065
2066 while (seq_id && cur_seq_id < seq_id) {
2067 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2068 if (list_empty(head)) {
2069 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2070 break;
2071 }
2072 fn = list_first_entry(head, struct fsync_node_entry, list);
2073 if (fn->seq_id > seq_id) {
2074 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2075 break;
2076 }
2077 cur_seq_id = fn->seq_id;
2078 page = fn->page;
2079 get_page(page);
2080 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2081
2082 f2fs_wait_on_page_writeback(page, NODE, true, false);
2083
2084 put_page(page);
2085
2086 if (ret)
2087 break;
2088 }
2089
2090 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2091 if (!ret)
2092 ret = ret2;
2093
2094 return ret;
2095 }
2096
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2097 static int f2fs_write_node_pages(struct address_space *mapping,
2098 struct writeback_control *wbc)
2099 {
2100 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2101 struct blk_plug plug;
2102 long diff;
2103
2104 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2105 goto skip_write;
2106
2107 /* balancing f2fs's metadata in background */
2108 f2fs_balance_fs_bg(sbi, true);
2109
2110 /* collect a number of dirty node pages and write together */
2111 if (wbc->sync_mode != WB_SYNC_ALL &&
2112 get_pages(sbi, F2FS_DIRTY_NODES) <
2113 nr_pages_to_skip(sbi, NODE))
2114 goto skip_write;
2115
2116 if (wbc->sync_mode == WB_SYNC_ALL)
2117 atomic_inc(&sbi->wb_sync_req[NODE]);
2118 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2119 /* to avoid potential deadlock */
2120 if (current->plug)
2121 blk_finish_plug(current->plug);
2122 goto skip_write;
2123 }
2124
2125 trace_f2fs_writepages(mapping->host, wbc, NODE);
2126
2127 diff = nr_pages_to_write(sbi, NODE, wbc);
2128 blk_start_plug(&plug);
2129 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2130 blk_finish_plug(&plug);
2131 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2132
2133 if (wbc->sync_mode == WB_SYNC_ALL)
2134 atomic_dec(&sbi->wb_sync_req[NODE]);
2135 return 0;
2136
2137 skip_write:
2138 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2139 trace_f2fs_writepages(mapping->host, wbc, NODE);
2140 return 0;
2141 }
2142
f2fs_set_node_page_dirty(struct page * page)2143 static int f2fs_set_node_page_dirty(struct page *page)
2144 {
2145 trace_f2fs_set_page_dirty(page, NODE);
2146
2147 if (!PageUptodate(page))
2148 SetPageUptodate(page);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 if (IS_INODE(page))
2151 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2152 #endif
2153 if (__set_page_dirty_nobuffers(page)) {
2154 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2155 set_page_private_reference(page);
2156 return 1;
2157 }
2158 return 0;
2159 }
2160
2161 /*
2162 * Structure of the f2fs node operations
2163 */
2164 const struct address_space_operations f2fs_node_aops = {
2165 .writepage = f2fs_write_node_page,
2166 .writepages = f2fs_write_node_pages,
2167 .set_page_dirty = f2fs_set_node_page_dirty,
2168 .invalidatepage = f2fs_invalidate_page,
2169 .releasepage = f2fs_release_page,
2170 #ifdef CONFIG_MIGRATION
2171 .migratepage = f2fs_migrate_page,
2172 #endif
2173 };
2174
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2175 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176 nid_t n)
2177 {
2178 return radix_tree_lookup(&nm_i->free_nid_root, n);
2179 }
2180
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2181 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182 struct free_nid *i)
2183 {
2184 struct f2fs_nm_info *nm_i = NM_I(sbi);
2185 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187 if (err)
2188 return err;
2189
2190 nm_i->nid_cnt[FREE_NID]++;
2191 list_add_tail(&i->list, &nm_i->free_nid_list);
2192 return 0;
2193 }
2194
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2195 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196 struct free_nid *i, enum nid_state state)
2197 {
2198 struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200 f2fs_bug_on(sbi, state != i->state);
2201 nm_i->nid_cnt[state]--;
2202 if (state == FREE_NID)
2203 list_del(&i->list);
2204 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205 }
2206
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2207 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208 enum nid_state org_state, enum nid_state dst_state)
2209 {
2210 struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212 f2fs_bug_on(sbi, org_state != i->state);
2213 i->state = dst_state;
2214 nm_i->nid_cnt[org_state]--;
2215 nm_i->nid_cnt[dst_state]++;
2216
2217 switch (dst_state) {
2218 case PREALLOC_NID:
2219 list_del(&i->list);
2220 break;
2221 case FREE_NID:
2222 list_add_tail(&i->list, &nm_i->free_nid_list);
2223 break;
2224 default:
2225 BUG_ON(1);
2226 }
2227 }
2228
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2229 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230 {
2231 struct f2fs_nm_info *nm_i = NM_I(sbi);
2232 unsigned int i;
2233 bool ret = true;
2234
2235 f2fs_down_read(&nm_i->nat_tree_lock);
2236 for (i = 0; i < nm_i->nat_blocks; i++) {
2237 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238 ret = false;
2239 break;
2240 }
2241 }
2242 f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244 return ret;
2245 }
2246
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2247 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248 bool set, bool build)
2249 {
2250 struct f2fs_nm_info *nm_i = NM_I(sbi);
2251 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252 unsigned int nid_ofs = nid - START_NID(nid);
2253
2254 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255 return;
2256
2257 if (set) {
2258 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259 return;
2260 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261 nm_i->free_nid_count[nat_ofs]++;
2262 } else {
2263 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264 return;
2265 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266 if (!build)
2267 nm_i->free_nid_count[nat_ofs]--;
2268 }
2269 }
2270
2271 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2272 static bool add_free_nid(struct f2fs_sb_info *sbi,
2273 nid_t nid, bool build, bool update)
2274 {
2275 struct f2fs_nm_info *nm_i = NM_I(sbi);
2276 struct free_nid *i, *e;
2277 struct nat_entry *ne;
2278 int err = -EINVAL;
2279 bool ret = false;
2280
2281 /* 0 nid should not be used */
2282 if (unlikely(nid == 0))
2283 return false;
2284
2285 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286 return false;
2287
2288 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289 i->nid = nid;
2290 i->state = FREE_NID;
2291
2292 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294 spin_lock(&nm_i->nid_list_lock);
2295
2296 if (build) {
2297 /*
2298 * Thread A Thread B
2299 * - f2fs_create
2300 * - f2fs_new_inode
2301 * - f2fs_alloc_nid
2302 * - __insert_nid_to_list(PREALLOC_NID)
2303 * - f2fs_balance_fs_bg
2304 * - f2fs_build_free_nids
2305 * - __f2fs_build_free_nids
2306 * - scan_nat_page
2307 * - add_free_nid
2308 * - __lookup_nat_cache
2309 * - f2fs_add_link
2310 * - f2fs_init_inode_metadata
2311 * - f2fs_new_inode_page
2312 * - f2fs_new_node_page
2313 * - set_node_addr
2314 * - f2fs_alloc_nid_done
2315 * - __remove_nid_from_list(PREALLOC_NID)
2316 * - __insert_nid_to_list(FREE_NID)
2317 */
2318 ne = __lookup_nat_cache(nm_i, nid);
2319 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320 nat_get_blkaddr(ne) != NULL_ADDR))
2321 goto err_out;
2322
2323 e = __lookup_free_nid_list(nm_i, nid);
2324 if (e) {
2325 if (e->state == FREE_NID)
2326 ret = true;
2327 goto err_out;
2328 }
2329 }
2330 ret = true;
2331 err = __insert_free_nid(sbi, i);
2332 err_out:
2333 if (update) {
2334 update_free_nid_bitmap(sbi, nid, ret, build);
2335 if (!build)
2336 nm_i->available_nids++;
2337 }
2338 spin_unlock(&nm_i->nid_list_lock);
2339 radix_tree_preload_end();
2340
2341 if (err)
2342 kmem_cache_free(free_nid_slab, i);
2343 return ret;
2344 }
2345
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2346 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347 {
2348 struct f2fs_nm_info *nm_i = NM_I(sbi);
2349 struct free_nid *i;
2350 bool need_free = false;
2351
2352 spin_lock(&nm_i->nid_list_lock);
2353 i = __lookup_free_nid_list(nm_i, nid);
2354 if (i && i->state == FREE_NID) {
2355 __remove_free_nid(sbi, i, FREE_NID);
2356 need_free = true;
2357 }
2358 spin_unlock(&nm_i->nid_list_lock);
2359
2360 if (need_free)
2361 kmem_cache_free(free_nid_slab, i);
2362 }
2363
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2364 static int scan_nat_page(struct f2fs_sb_info *sbi,
2365 struct page *nat_page, nid_t start_nid)
2366 {
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369 block_t blk_addr;
2370 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371 int i;
2372
2373 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375 i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2378 if (unlikely(start_nid >= nm_i->max_nid))
2379 break;
2380
2381 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383 if (blk_addr == NEW_ADDR)
2384 return -EINVAL;
2385
2386 if (blk_addr == NULL_ADDR) {
2387 add_free_nid(sbi, start_nid, true, true);
2388 } else {
2389 spin_lock(&NM_I(sbi)->nid_list_lock);
2390 update_free_nid_bitmap(sbi, start_nid, false, true);
2391 spin_unlock(&NM_I(sbi)->nid_list_lock);
2392 }
2393 }
2394
2395 return 0;
2396 }
2397
scan_curseg_cache(struct f2fs_sb_info * sbi)2398 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399 {
2400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401 struct f2fs_journal *journal = curseg->journal;
2402 int i;
2403
2404 down_read(&curseg->journal_rwsem);
2405 for (i = 0; i < nats_in_cursum(journal); i++) {
2406 block_t addr;
2407 nid_t nid;
2408
2409 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410 nid = le32_to_cpu(nid_in_journal(journal, i));
2411 if (addr == NULL_ADDR)
2412 add_free_nid(sbi, nid, true, false);
2413 else
2414 remove_free_nid(sbi, nid);
2415 }
2416 up_read(&curseg->journal_rwsem);
2417 }
2418
scan_free_nid_bits(struct f2fs_sb_info * sbi)2419 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420 {
2421 struct f2fs_nm_info *nm_i = NM_I(sbi);
2422 unsigned int i, idx;
2423 nid_t nid;
2424
2425 f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427 for (i = 0; i < nm_i->nat_blocks; i++) {
2428 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429 continue;
2430 if (!nm_i->free_nid_count[i])
2431 continue;
2432 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434 NAT_ENTRY_PER_BLOCK, idx);
2435 if (idx >= NAT_ENTRY_PER_BLOCK)
2436 break;
2437
2438 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439 add_free_nid(sbi, nid, true, false);
2440
2441 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442 goto out;
2443 }
2444 }
2445 out:
2446 scan_curseg_cache(sbi);
2447
2448 f2fs_up_read(&nm_i->nat_tree_lock);
2449 }
2450
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2451 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452 bool sync, bool mount)
2453 {
2454 struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 int i = 0, ret;
2456 nid_t nid = nm_i->next_scan_nid;
2457
2458 if (unlikely(nid >= nm_i->max_nid))
2459 nid = 0;
2460
2461 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464 /* Enough entries */
2465 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466 return 0;
2467
2468 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469 return 0;
2470
2471 if (!mount) {
2472 /* try to find free nids in free_nid_bitmap */
2473 scan_free_nid_bits(sbi);
2474
2475 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476 return 0;
2477 }
2478
2479 /* readahead nat pages to be scanned */
2480 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481 META_NAT, true);
2482
2483 f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485 while (1) {
2486 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487 nm_i->nat_block_bitmap)) {
2488 struct page *page = get_current_nat_page(sbi, nid);
2489
2490 if (IS_ERR(page)) {
2491 ret = PTR_ERR(page);
2492 } else {
2493 ret = scan_nat_page(sbi, page, nid);
2494 f2fs_put_page(page, 1);
2495 }
2496
2497 if (ret) {
2498 f2fs_up_read(&nm_i->nat_tree_lock);
2499 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500 return ret;
2501 }
2502 }
2503
2504 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505 if (unlikely(nid >= nm_i->max_nid))
2506 nid = 0;
2507
2508 if (++i >= FREE_NID_PAGES)
2509 break;
2510 }
2511
2512 /* go to the next free nat pages to find free nids abundantly */
2513 nm_i->next_scan_nid = nid;
2514
2515 /* find free nids from current sum_pages */
2516 scan_curseg_cache(sbi);
2517
2518 f2fs_up_read(&nm_i->nat_tree_lock);
2519
2520 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521 nm_i->ra_nid_pages, META_NAT, false);
2522
2523 return 0;
2524 }
2525
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2526 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527 {
2528 int ret;
2529
2530 mutex_lock(&NM_I(sbi)->build_lock);
2531 ret = __f2fs_build_free_nids(sbi, sync, mount);
2532 mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534 return ret;
2535 }
2536
2537 /*
2538 * If this function returns success, caller can obtain a new nid
2539 * from second parameter of this function.
2540 * The returned nid could be used ino as well as nid when inode is created.
2541 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2542 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543 {
2544 struct f2fs_nm_info *nm_i = NM_I(sbi);
2545 struct free_nid *i = NULL;
2546 retry:
2547 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2548 return false;
2549
2550 spin_lock(&nm_i->nid_list_lock);
2551
2552 if (unlikely(nm_i->available_nids == 0)) {
2553 spin_unlock(&nm_i->nid_list_lock);
2554 return false;
2555 }
2556
2557 /* We should not use stale free nids created by f2fs_build_free_nids */
2558 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2559 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2560 i = list_first_entry(&nm_i->free_nid_list,
2561 struct free_nid, list);
2562 *nid = i->nid;
2563
2564 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2565 nm_i->available_nids--;
2566
2567 update_free_nid_bitmap(sbi, *nid, false, false);
2568
2569 spin_unlock(&nm_i->nid_list_lock);
2570 return true;
2571 }
2572 spin_unlock(&nm_i->nid_list_lock);
2573
2574 /* Let's scan nat pages and its caches to get free nids */
2575 if (!f2fs_build_free_nids(sbi, true, false))
2576 goto retry;
2577 return false;
2578 }
2579
2580 /*
2581 * f2fs_alloc_nid() should be called prior to this function.
2582 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2583 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2584 {
2585 struct f2fs_nm_info *nm_i = NM_I(sbi);
2586 struct free_nid *i;
2587
2588 spin_lock(&nm_i->nid_list_lock);
2589 i = __lookup_free_nid_list(nm_i, nid);
2590 f2fs_bug_on(sbi, !i);
2591 __remove_free_nid(sbi, i, PREALLOC_NID);
2592 spin_unlock(&nm_i->nid_list_lock);
2593
2594 kmem_cache_free(free_nid_slab, i);
2595 }
2596
2597 /*
2598 * f2fs_alloc_nid() should be called prior to this function.
2599 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2600 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2601 {
2602 struct f2fs_nm_info *nm_i = NM_I(sbi);
2603 struct free_nid *i;
2604 bool need_free = false;
2605
2606 if (!nid)
2607 return;
2608
2609 spin_lock(&nm_i->nid_list_lock);
2610 i = __lookup_free_nid_list(nm_i, nid);
2611 f2fs_bug_on(sbi, !i);
2612
2613 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2614 __remove_free_nid(sbi, i, PREALLOC_NID);
2615 need_free = true;
2616 } else {
2617 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2618 }
2619
2620 nm_i->available_nids++;
2621
2622 update_free_nid_bitmap(sbi, nid, true, false);
2623
2624 spin_unlock(&nm_i->nid_list_lock);
2625
2626 if (need_free)
2627 kmem_cache_free(free_nid_slab, i);
2628 }
2629
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2630 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2631 {
2632 struct f2fs_nm_info *nm_i = NM_I(sbi);
2633 int nr = nr_shrink;
2634
2635 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2636 return 0;
2637
2638 if (!mutex_trylock(&nm_i->build_lock))
2639 return 0;
2640
2641 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2642 struct free_nid *i, *next;
2643 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2644
2645 spin_lock(&nm_i->nid_list_lock);
2646 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2647 if (!nr_shrink || !batch ||
2648 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2649 break;
2650 __remove_free_nid(sbi, i, FREE_NID);
2651 kmem_cache_free(free_nid_slab, i);
2652 nr_shrink--;
2653 batch--;
2654 }
2655 spin_unlock(&nm_i->nid_list_lock);
2656 }
2657
2658 mutex_unlock(&nm_i->build_lock);
2659
2660 return nr - nr_shrink;
2661 }
2662
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2663 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2664 {
2665 void *src_addr, *dst_addr;
2666 size_t inline_size;
2667 struct page *ipage;
2668 struct f2fs_inode *ri;
2669
2670 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2671 if (IS_ERR(ipage))
2672 return PTR_ERR(ipage);
2673
2674 ri = F2FS_INODE(page);
2675 if (ri->i_inline & F2FS_INLINE_XATTR) {
2676 if (!f2fs_has_inline_xattr(inode)) {
2677 set_inode_flag(inode, FI_INLINE_XATTR);
2678 stat_inc_inline_xattr(inode);
2679 }
2680 } else {
2681 if (f2fs_has_inline_xattr(inode)) {
2682 stat_dec_inline_xattr(inode);
2683 clear_inode_flag(inode, FI_INLINE_XATTR);
2684 }
2685 goto update_inode;
2686 }
2687
2688 dst_addr = inline_xattr_addr(inode, ipage);
2689 src_addr = inline_xattr_addr(inode, page);
2690 inline_size = inline_xattr_size(inode);
2691
2692 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2693 memcpy(dst_addr, src_addr, inline_size);
2694 update_inode:
2695 f2fs_update_inode(inode, ipage);
2696 f2fs_put_page(ipage, 1);
2697 return 0;
2698 }
2699
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2700 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2701 {
2702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2703 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2704 nid_t new_xnid;
2705 struct dnode_of_data dn;
2706 struct node_info ni;
2707 struct page *xpage;
2708 int err;
2709
2710 if (!prev_xnid)
2711 goto recover_xnid;
2712
2713 /* 1: invalidate the previous xattr nid */
2714 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2715 if (err)
2716 return err;
2717
2718 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2719 dec_valid_node_count(sbi, inode, false);
2720 set_node_addr(sbi, &ni, NULL_ADDR, false);
2721
2722 recover_xnid:
2723 /* 2: update xattr nid in inode */
2724 if (!f2fs_alloc_nid(sbi, &new_xnid))
2725 return -ENOSPC;
2726
2727 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2728 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2729 if (IS_ERR(xpage)) {
2730 f2fs_alloc_nid_failed(sbi, new_xnid);
2731 return PTR_ERR(xpage);
2732 }
2733
2734 f2fs_alloc_nid_done(sbi, new_xnid);
2735 f2fs_update_inode_page(inode);
2736
2737 /* 3: update and set xattr node page dirty */
2738 if (page)
2739 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2740 VALID_XATTR_BLOCK_SIZE);
2741
2742 set_page_dirty(xpage);
2743 f2fs_put_page(xpage, 1);
2744
2745 return 0;
2746 }
2747
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2748 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749 {
2750 struct f2fs_inode *src, *dst;
2751 nid_t ino = ino_of_node(page);
2752 struct node_info old_ni, new_ni;
2753 struct page *ipage;
2754 int err;
2755
2756 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757 if (err)
2758 return err;
2759
2760 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761 return -EINVAL;
2762 retry:
2763 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764 if (!ipage) {
2765 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2766 goto retry;
2767 }
2768
2769 /* Should not use this inode from free nid list */
2770 remove_free_nid(sbi, ino);
2771
2772 if (!PageUptodate(ipage))
2773 SetPageUptodate(ipage);
2774 fill_node_footer(ipage, ino, ino, 0, true);
2775 set_cold_node(ipage, false);
2776
2777 src = F2FS_INODE(page);
2778 dst = F2FS_INODE(ipage);
2779
2780 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781 dst->i_size = 0;
2782 dst->i_blocks = cpu_to_le64(1);
2783 dst->i_links = cpu_to_le32(1);
2784 dst->i_xattr_nid = 0;
2785 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787 dst->i_extra_isize = src->i_extra_isize;
2788
2789 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791 i_inline_xattr_size))
2792 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794 if (f2fs_sb_has_project_quota(sbi) &&
2795 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796 i_projid))
2797 dst->i_projid = src->i_projid;
2798
2799 if (f2fs_sb_has_inode_crtime(sbi) &&
2800 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801 i_crtime_nsec)) {
2802 dst->i_crtime = src->i_crtime;
2803 dst->i_crtime_nsec = src->i_crtime_nsec;
2804 }
2805 }
2806
2807 new_ni = old_ni;
2808 new_ni.ino = ino;
2809
2810 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811 WARN_ON(1);
2812 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813 inc_valid_inode_count(sbi);
2814 set_page_dirty(ipage);
2815 f2fs_put_page(ipage, 1);
2816 return 0;
2817 }
2818
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2819 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2820 unsigned int segno, struct f2fs_summary_block *sum)
2821 {
2822 struct f2fs_node *rn;
2823 struct f2fs_summary *sum_entry;
2824 block_t addr;
2825 int i, idx, last_offset, nrpages;
2826
2827 /* scan the node segment */
2828 last_offset = sbi->blocks_per_seg;
2829 addr = START_BLOCK(sbi, segno);
2830 sum_entry = &sum->entries[0];
2831
2832 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833 nrpages = bio_max_segs(last_offset - i);
2834
2835 /* readahead node pages */
2836 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838 for (idx = addr; idx < addr + nrpages; idx++) {
2839 struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841 if (IS_ERR(page))
2842 return PTR_ERR(page);
2843
2844 rn = F2FS_NODE(page);
2845 sum_entry->nid = rn->footer.nid;
2846 sum_entry->version = 0;
2847 sum_entry->ofs_in_node = 0;
2848 sum_entry++;
2849 f2fs_put_page(page, 1);
2850 }
2851
2852 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853 addr + nrpages);
2854 }
2855 return 0;
2856 }
2857
remove_nats_in_journal(struct f2fs_sb_info * sbi)2858 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859 {
2860 struct f2fs_nm_info *nm_i = NM_I(sbi);
2861 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862 struct f2fs_journal *journal = curseg->journal;
2863 int i;
2864
2865 down_write(&curseg->journal_rwsem);
2866 for (i = 0; i < nats_in_cursum(journal); i++) {
2867 struct nat_entry *ne;
2868 struct f2fs_nat_entry raw_ne;
2869 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871 if (f2fs_check_nid_range(sbi, nid))
2872 continue;
2873
2874 raw_ne = nat_in_journal(journal, i);
2875
2876 ne = __lookup_nat_cache(nm_i, nid);
2877 if (!ne) {
2878 ne = __alloc_nat_entry(sbi, nid, true);
2879 __init_nat_entry(nm_i, ne, &raw_ne, true);
2880 }
2881
2882 /*
2883 * if a free nat in journal has not been used after last
2884 * checkpoint, we should remove it from available nids,
2885 * since later we will add it again.
2886 */
2887 if (!get_nat_flag(ne, IS_DIRTY) &&
2888 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889 spin_lock(&nm_i->nid_list_lock);
2890 nm_i->available_nids--;
2891 spin_unlock(&nm_i->nid_list_lock);
2892 }
2893
2894 __set_nat_cache_dirty(nm_i, ne);
2895 }
2896 update_nats_in_cursum(journal, -i);
2897 up_write(&curseg->journal_rwsem);
2898 }
2899
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2900 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901 struct list_head *head, int max)
2902 {
2903 struct nat_entry_set *cur;
2904
2905 if (nes->entry_cnt >= max)
2906 goto add_out;
2907
2908 list_for_each_entry(cur, head, set_list) {
2909 if (cur->entry_cnt >= nes->entry_cnt) {
2910 list_add(&nes->set_list, cur->set_list.prev);
2911 return;
2912 }
2913 }
2914 add_out:
2915 list_add_tail(&nes->set_list, head);
2916 }
2917
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2918 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919 unsigned int valid)
2920 {
2921 if (valid == 0) {
2922 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924 return;
2925 }
2926
2927 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928 if (valid == NAT_ENTRY_PER_BLOCK)
2929 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 else
2931 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932 }
2933
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2934 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935 struct page *page)
2936 {
2937 struct f2fs_nm_info *nm_i = NM_I(sbi);
2938 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939 struct f2fs_nat_block *nat_blk = page_address(page);
2940 int valid = 0;
2941 int i = 0;
2942
2943 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944 return;
2945
2946 if (nat_index == 0) {
2947 valid = 1;
2948 i = 1;
2949 }
2950 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952 valid++;
2953 }
2954
2955 __update_nat_bits(nm_i, nat_index, valid);
2956 }
2957
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2958 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959 {
2960 struct f2fs_nm_info *nm_i = NM_I(sbi);
2961 unsigned int nat_ofs;
2962
2963 f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966 unsigned int valid = 0, nid_ofs = 0;
2967
2968 /* handle nid zero due to it should never be used */
2969 if (unlikely(nat_ofs == 0)) {
2970 valid = 1;
2971 nid_ofs = 1;
2972 }
2973
2974 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975 if (!test_bit_le(nid_ofs,
2976 nm_i->free_nid_bitmap[nat_ofs]))
2977 valid++;
2978 }
2979
2980 __update_nat_bits(nm_i, nat_ofs, valid);
2981 }
2982
2983 f2fs_up_read(&nm_i->nat_tree_lock);
2984 }
2985
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2986 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987 struct nat_entry_set *set, struct cp_control *cpc)
2988 {
2989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990 struct f2fs_journal *journal = curseg->journal;
2991 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992 bool to_journal = true;
2993 struct f2fs_nat_block *nat_blk;
2994 struct nat_entry *ne, *cur;
2995 struct page *page = NULL;
2996
2997 /*
2998 * there are two steps to flush nat entries:
2999 * #1, flush nat entries to journal in current hot data summary block.
3000 * #2, flush nat entries to nat page.
3001 */
3002 if ((cpc->reason & CP_UMOUNT) ||
3003 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004 to_journal = false;
3005
3006 if (to_journal) {
3007 down_write(&curseg->journal_rwsem);
3008 } else {
3009 page = get_next_nat_page(sbi, start_nid);
3010 if (IS_ERR(page))
3011 return PTR_ERR(page);
3012
3013 nat_blk = page_address(page);
3014 f2fs_bug_on(sbi, !nat_blk);
3015 }
3016
3017 /* flush dirty nats in nat entry set */
3018 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019 struct f2fs_nat_entry *raw_ne;
3020 nid_t nid = nat_get_nid(ne);
3021 int offset;
3022
3023 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3024
3025 if (to_journal) {
3026 offset = f2fs_lookup_journal_in_cursum(journal,
3027 NAT_JOURNAL, nid, 1);
3028 f2fs_bug_on(sbi, offset < 0);
3029 raw_ne = &nat_in_journal(journal, offset);
3030 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031 } else {
3032 raw_ne = &nat_blk->entries[nid - start_nid];
3033 }
3034 raw_nat_from_node_info(raw_ne, &ne->ni);
3035 nat_reset_flag(ne);
3036 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038 add_free_nid(sbi, nid, false, true);
3039 } else {
3040 spin_lock(&NM_I(sbi)->nid_list_lock);
3041 update_free_nid_bitmap(sbi, nid, false, false);
3042 spin_unlock(&NM_I(sbi)->nid_list_lock);
3043 }
3044 }
3045
3046 if (to_journal) {
3047 up_write(&curseg->journal_rwsem);
3048 } else {
3049 update_nat_bits(sbi, start_nid, page);
3050 f2fs_put_page(page, 1);
3051 }
3052
3053 /* Allow dirty nats by node block allocation in write_begin */
3054 if (!set->entry_cnt) {
3055 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056 kmem_cache_free(nat_entry_set_slab, set);
3057 }
3058 return 0;
3059 }
3060
3061 /*
3062 * This function is called during the checkpointing process.
3063 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3064 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065 {
3066 struct f2fs_nm_info *nm_i = NM_I(sbi);
3067 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068 struct f2fs_journal *journal = curseg->journal;
3069 struct nat_entry_set *setvec[SETVEC_SIZE];
3070 struct nat_entry_set *set, *tmp;
3071 unsigned int found;
3072 nid_t set_idx = 0;
3073 LIST_HEAD(sets);
3074 int err = 0;
3075
3076 /*
3077 * during unmount, let's flush nat_bits before checking
3078 * nat_cnt[DIRTY_NAT].
3079 */
3080 if (cpc->reason & CP_UMOUNT) {
3081 f2fs_down_write(&nm_i->nat_tree_lock);
3082 remove_nats_in_journal(sbi);
3083 f2fs_up_write(&nm_i->nat_tree_lock);
3084 }
3085
3086 if (!nm_i->nat_cnt[DIRTY_NAT])
3087 return 0;
3088
3089 f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091 /*
3092 * if there are no enough space in journal to store dirty nat
3093 * entries, remove all entries from journal and merge them
3094 * into nat entry set.
3095 */
3096 if (cpc->reason & CP_UMOUNT ||
3097 !__has_cursum_space(journal,
3098 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099 remove_nats_in_journal(sbi);
3100
3101 while ((found = __gang_lookup_nat_set(nm_i,
3102 set_idx, SETVEC_SIZE, setvec))) {
3103 unsigned idx;
3104
3105 set_idx = setvec[found - 1]->set + 1;
3106 for (idx = 0; idx < found; idx++)
3107 __adjust_nat_entry_set(setvec[idx], &sets,
3108 MAX_NAT_JENTRIES(journal));
3109 }
3110
3111 /* flush dirty nats in nat entry set */
3112 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113 err = __flush_nat_entry_set(sbi, set, cpc);
3114 if (err)
3115 break;
3116 }
3117
3118 f2fs_up_write(&nm_i->nat_tree_lock);
3119 /* Allow dirty nats by node block allocation in write_begin */
3120
3121 return err;
3122 }
3123
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3124 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125 {
3126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127 struct f2fs_nm_info *nm_i = NM_I(sbi);
3128 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129 unsigned int i;
3130 __u64 cp_ver = cur_cp_version(ckpt);
3131 block_t nat_bits_addr;
3132
3133 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136 if (!nm_i->nat_bits)
3137 return -ENOMEM;
3138
3139 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143 return 0;
3144
3145 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146 nm_i->nat_bits_blocks;
3147 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148 struct page *page;
3149
3150 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151 if (IS_ERR(page))
3152 return PTR_ERR(page);
3153
3154 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155 page_address(page), F2FS_BLKSIZE);
3156 f2fs_put_page(page, 1);
3157 }
3158
3159 cp_ver |= (cur_cp_crc(ckpt) << 32);
3160 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164 return 0;
3165 }
3166
3167 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168 return 0;
3169 }
3170
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3171 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172 {
3173 struct f2fs_nm_info *nm_i = NM_I(sbi);
3174 unsigned int i = 0;
3175 nid_t nid, last_nid;
3176
3177 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178 return;
3179
3180 for (i = 0; i < nm_i->nat_blocks; i++) {
3181 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182 if (i >= nm_i->nat_blocks)
3183 break;
3184
3185 __set_bit_le(i, nm_i->nat_block_bitmap);
3186
3187 nid = i * NAT_ENTRY_PER_BLOCK;
3188 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3189
3190 spin_lock(&NM_I(sbi)->nid_list_lock);
3191 for (; nid < last_nid; nid++)
3192 update_free_nid_bitmap(sbi, nid, true, true);
3193 spin_unlock(&NM_I(sbi)->nid_list_lock);
3194 }
3195
3196 for (i = 0; i < nm_i->nat_blocks; i++) {
3197 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198 if (i >= nm_i->nat_blocks)
3199 break;
3200
3201 __set_bit_le(i, nm_i->nat_block_bitmap);
3202 }
3203 }
3204
init_node_manager(struct f2fs_sb_info * sbi)3205 static int init_node_manager(struct f2fs_sb_info *sbi)
3206 {
3207 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208 struct f2fs_nm_info *nm_i = NM_I(sbi);
3209 unsigned char *version_bitmap;
3210 unsigned int nat_segs;
3211 int err;
3212
3213 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215 /* segment_count_nat includes pair segment so divide to 2. */
3216 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3219
3220 /* not used nids: 0, node, meta, (and root counted as valid node) */
3221 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222 F2FS_RESERVED_NODE_NUM;
3223 nm_i->nid_cnt[FREE_NID] = 0;
3224 nm_i->nid_cnt[PREALLOC_NID] = 0;
3225 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231 INIT_LIST_HEAD(&nm_i->free_nid_list);
3232 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234 INIT_LIST_HEAD(&nm_i->nat_entries);
3235 spin_lock_init(&nm_i->nat_list_lock);
3236
3237 mutex_init(&nm_i->build_lock);
3238 spin_lock_init(&nm_i->nid_list_lock);
3239 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3244 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245 GFP_KERNEL);
3246 if (!nm_i->nat_bitmap)
3247 return -ENOMEM;
3248
3249 err = __get_nat_bitmaps(sbi);
3250 if (err)
3251 return err;
3252
3253 #ifdef CONFIG_F2FS_CHECK_FS
3254 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255 GFP_KERNEL);
3256 if (!nm_i->nat_bitmap_mir)
3257 return -ENOMEM;
3258 #endif
3259
3260 return 0;
3261 }
3262
init_free_nid_cache(struct f2fs_sb_info * sbi)3263 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264 {
3265 struct f2fs_nm_info *nm_i = NM_I(sbi);
3266 int i;
3267
3268 nm_i->free_nid_bitmap =
3269 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270 nm_i->nat_blocks),
3271 GFP_KERNEL);
3272 if (!nm_i->free_nid_bitmap)
3273 return -ENOMEM;
3274
3275 for (i = 0; i < nm_i->nat_blocks; i++) {
3276 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278 if (!nm_i->free_nid_bitmap[i])
3279 return -ENOMEM;
3280 }
3281
3282 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283 GFP_KERNEL);
3284 if (!nm_i->nat_block_bitmap)
3285 return -ENOMEM;
3286
3287 nm_i->free_nid_count =
3288 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289 nm_i->nat_blocks),
3290 GFP_KERNEL);
3291 if (!nm_i->free_nid_count)
3292 return -ENOMEM;
3293 return 0;
3294 }
3295
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3296 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297 {
3298 int err;
3299
3300 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301 GFP_KERNEL);
3302 if (!sbi->nm_info)
3303 return -ENOMEM;
3304
3305 err = init_node_manager(sbi);
3306 if (err)
3307 return err;
3308
3309 err = init_free_nid_cache(sbi);
3310 if (err)
3311 return err;
3312
3313 /* load free nid status from nat_bits table */
3314 load_free_nid_bitmap(sbi);
3315
3316 return f2fs_build_free_nids(sbi, true, true);
3317 }
3318
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3319 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320 {
3321 struct f2fs_nm_info *nm_i = NM_I(sbi);
3322 struct free_nid *i, *next_i;
3323 struct nat_entry *natvec[NATVEC_SIZE];
3324 struct nat_entry_set *setvec[SETVEC_SIZE];
3325 nid_t nid = 0;
3326 unsigned int found;
3327
3328 if (!nm_i)
3329 return;
3330
3331 /* destroy free nid list */
3332 spin_lock(&nm_i->nid_list_lock);
3333 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334 __remove_free_nid(sbi, i, FREE_NID);
3335 spin_unlock(&nm_i->nid_list_lock);
3336 kmem_cache_free(free_nid_slab, i);
3337 spin_lock(&nm_i->nid_list_lock);
3338 }
3339 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342 spin_unlock(&nm_i->nid_list_lock);
3343
3344 /* destroy nat cache */
3345 f2fs_down_write(&nm_i->nat_tree_lock);
3346 while ((found = __gang_lookup_nat_cache(nm_i,
3347 nid, NATVEC_SIZE, natvec))) {
3348 unsigned idx;
3349
3350 nid = nat_get_nid(natvec[found - 1]) + 1;
3351 for (idx = 0; idx < found; idx++) {
3352 spin_lock(&nm_i->nat_list_lock);
3353 list_del(&natvec[idx]->list);
3354 spin_unlock(&nm_i->nat_list_lock);
3355
3356 __del_from_nat_cache(nm_i, natvec[idx]);
3357 }
3358 }
3359 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361 /* destroy nat set cache */
3362 nid = 0;
3363 while ((found = __gang_lookup_nat_set(nm_i,
3364 nid, SETVEC_SIZE, setvec))) {
3365 unsigned idx;
3366
3367 nid = setvec[found - 1]->set + 1;
3368 for (idx = 0; idx < found; idx++) {
3369 /* entry_cnt is not zero, when cp_error was occurred */
3370 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373 }
3374 }
3375 f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377 kvfree(nm_i->nat_block_bitmap);
3378 if (nm_i->free_nid_bitmap) {
3379 int i;
3380
3381 for (i = 0; i < nm_i->nat_blocks; i++)
3382 kvfree(nm_i->free_nid_bitmap[i]);
3383 kvfree(nm_i->free_nid_bitmap);
3384 }
3385 kvfree(nm_i->free_nid_count);
3386
3387 kvfree(nm_i->nat_bitmap);
3388 kvfree(nm_i->nat_bits);
3389 #ifdef CONFIG_F2FS_CHECK_FS
3390 kvfree(nm_i->nat_bitmap_mir);
3391 #endif
3392 sbi->nm_info = NULL;
3393 kfree(nm_i);
3394 }
3395
f2fs_create_node_manager_caches(void)3396 int __init f2fs_create_node_manager_caches(void)
3397 {
3398 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399 sizeof(struct nat_entry));
3400 if (!nat_entry_slab)
3401 goto fail;
3402
3403 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404 sizeof(struct free_nid));
3405 if (!free_nid_slab)
3406 goto destroy_nat_entry;
3407
3408 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409 sizeof(struct nat_entry_set));
3410 if (!nat_entry_set_slab)
3411 goto destroy_free_nid;
3412
3413 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414 sizeof(struct fsync_node_entry));
3415 if (!fsync_node_entry_slab)
3416 goto destroy_nat_entry_set;
3417 return 0;
3418
3419 destroy_nat_entry_set:
3420 kmem_cache_destroy(nat_entry_set_slab);
3421 destroy_free_nid:
3422 kmem_cache_destroy(free_nid_slab);
3423 destroy_nat_entry:
3424 kmem_cache_destroy(nat_entry_slab);
3425 fail:
3426 return -ENOMEM;
3427 }
3428
f2fs_destroy_node_manager_caches(void)3429 void f2fs_destroy_node_manager_caches(void)
3430 {
3431 kmem_cache_destroy(fsync_node_entry_slab);
3432 kmem_cache_destroy(nat_entry_set_slab);
3433 kmem_cache_destroy(free_nid_slab);
3434 kmem_cache_destroy(nat_entry_slab);
3435 }
3436