• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 #include <linux/random.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "gc.h"
24 #include "iostat.h"
25 #include <trace/events/f2fs.h>
26 
27 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 
29 static struct kmem_cache *discard_entry_slab;
30 static struct kmem_cache *discard_cmd_slab;
31 static struct kmem_cache *sit_entry_set_slab;
32 static struct kmem_cache *revoke_entry_slab;
33 
__reverse_ulong(unsigned char * str)34 static unsigned long __reverse_ulong(unsigned char *str)
35 {
36 	unsigned long tmp = 0;
37 	int shift = 24, idx = 0;
38 
39 #if BITS_PER_LONG == 64
40 	shift = 56;
41 #endif
42 	while (shift >= 0) {
43 		tmp |= (unsigned long)str[idx++] << shift;
44 		shift -= BITS_PER_BYTE;
45 	}
46 	return tmp;
47 }
48 
49 /*
50  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
51  * MSB and LSB are reversed in a byte by f2fs_set_bit.
52  */
__reverse_ffs(unsigned long word)53 static inline unsigned long __reverse_ffs(unsigned long word)
54 {
55 	int num = 0;
56 
57 #if BITS_PER_LONG == 64
58 	if ((word & 0xffffffff00000000UL) == 0)
59 		num += 32;
60 	else
61 		word >>= 32;
62 #endif
63 	if ((word & 0xffff0000) == 0)
64 		num += 16;
65 	else
66 		word >>= 16;
67 
68 	if ((word & 0xff00) == 0)
69 		num += 8;
70 	else
71 		word >>= 8;
72 
73 	if ((word & 0xf0) == 0)
74 		num += 4;
75 	else
76 		word >>= 4;
77 
78 	if ((word & 0xc) == 0)
79 		num += 2;
80 	else
81 		word >>= 2;
82 
83 	if ((word & 0x2) == 0)
84 		num += 1;
85 	return num;
86 }
87 
88 /*
89  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
90  * f2fs_set_bit makes MSB and LSB reversed in a byte.
91  * @size must be integral times of unsigned long.
92  * Example:
93  *                             MSB <--> LSB
94  *   f2fs_set_bit(0, bitmap) => 1000 0000
95  *   f2fs_set_bit(7, bitmap) => 0000 0001
96  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)97 static unsigned long __find_rev_next_bit(const unsigned long *addr,
98 			unsigned long size, unsigned long offset)
99 {
100 	const unsigned long *p = addr + BIT_WORD(offset);
101 	unsigned long result = size;
102 	unsigned long tmp;
103 
104 	if (offset >= size)
105 		return size;
106 
107 	size -= (offset & ~(BITS_PER_LONG - 1));
108 	offset %= BITS_PER_LONG;
109 
110 	while (1) {
111 		if (*p == 0)
112 			goto pass;
113 
114 		tmp = __reverse_ulong((unsigned char *)p);
115 
116 		tmp &= ~0UL >> offset;
117 		if (size < BITS_PER_LONG)
118 			tmp &= (~0UL << (BITS_PER_LONG - size));
119 		if (tmp)
120 			goto found;
121 pass:
122 		if (size <= BITS_PER_LONG)
123 			break;
124 		size -= BITS_PER_LONG;
125 		offset = 0;
126 		p++;
127 	}
128 	return result;
129 found:
130 	return result - size + __reverse_ffs(tmp);
131 }
132 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
134 			unsigned long size, unsigned long offset)
135 {
136 	const unsigned long *p = addr + BIT_WORD(offset);
137 	unsigned long result = size;
138 	unsigned long tmp;
139 
140 	if (offset >= size)
141 		return size;
142 
143 	size -= (offset & ~(BITS_PER_LONG - 1));
144 	offset %= BITS_PER_LONG;
145 
146 	while (1) {
147 		if (*p == ~0UL)
148 			goto pass;
149 
150 		tmp = __reverse_ulong((unsigned char *)p);
151 
152 		if (offset)
153 			tmp |= ~0UL << (BITS_PER_LONG - offset);
154 		if (size < BITS_PER_LONG)
155 			tmp |= ~0UL >> size;
156 		if (tmp != ~0UL)
157 			goto found;
158 pass:
159 		if (size <= BITS_PER_LONG)
160 			break;
161 		size -= BITS_PER_LONG;
162 		offset = 0;
163 		p++;
164 	}
165 	return result;
166 found:
167 	return result - size + __reverse_ffz(tmp);
168 }
169 
f2fs_need_SSR(struct f2fs_sb_info * sbi)170 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 {
172 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
173 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
174 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 
176 	if (f2fs_lfs_mode(sbi))
177 		return false;
178 	if (sbi->gc_mode == GC_URGENT_HIGH)
179 		return true;
180 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
181 		return true;
182 
183 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186 
f2fs_abort_atomic_write(struct inode * inode,bool clean)187 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
188 {
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 
191 	if (!f2fs_is_atomic_file(inode))
192 		return;
193 
194 	release_atomic_write_cnt(inode);
195 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
196 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
197 	clear_inode_flag(inode, FI_ATOMIC_FILE);
198 	stat_dec_atomic_inode(inode);
199 
200 	F2FS_I(inode)->atomic_write_task = NULL;
201 
202 	if (clean) {
203 		truncate_inode_pages_final(inode->i_mapping);
204 		f2fs_i_size_write(inode, fi->original_i_size);
205 		fi->original_i_size = 0;
206 	}
207 }
208 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)209 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
210 			block_t new_addr, block_t *old_addr, bool recover)
211 {
212 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
213 	struct dnode_of_data dn;
214 	struct node_info ni;
215 	int err;
216 
217 retry:
218 	set_new_dnode(&dn, inode, NULL, NULL, 0);
219 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
220 	if (err) {
221 		if (err == -ENOMEM) {
222 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
223 			goto retry;
224 		}
225 		return err;
226 	}
227 
228 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
229 	if (err) {
230 		f2fs_put_dnode(&dn);
231 		return err;
232 	}
233 
234 	if (recover) {
235 		/* dn.data_blkaddr is always valid */
236 		if (!__is_valid_data_blkaddr(new_addr)) {
237 			if (new_addr == NULL_ADDR)
238 				dec_valid_block_count(sbi, inode, 1);
239 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
240 			f2fs_update_data_blkaddr(&dn, new_addr);
241 		} else {
242 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
243 				new_addr, ni.version, true, true);
244 		}
245 	} else {
246 		blkcnt_t count = 1;
247 
248 		err = inc_valid_block_count(sbi, inode, &count);
249 		if (err) {
250 			f2fs_put_dnode(&dn);
251 			return err;
252 		}
253 
254 		*old_addr = dn.data_blkaddr;
255 		f2fs_truncate_data_blocks_range(&dn, 1);
256 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
257 
258 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
259 					ni.version, true, false);
260 	}
261 
262 	f2fs_put_dnode(&dn);
263 
264 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
265 			index, old_addr ? *old_addr : 0, new_addr, recover);
266 	return 0;
267 }
268 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)269 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
270 					bool revoke)
271 {
272 	struct revoke_entry *cur, *tmp;
273 	pgoff_t start_index = 0;
274 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
275 
276 	list_for_each_entry_safe(cur, tmp, head, list) {
277 		if (revoke) {
278 			__replace_atomic_write_block(inode, cur->index,
279 						cur->old_addr, NULL, true);
280 		} else if (truncate) {
281 			f2fs_truncate_hole(inode, start_index, cur->index);
282 			start_index = cur->index + 1;
283 		}
284 
285 		list_del(&cur->list);
286 		kmem_cache_free(revoke_entry_slab, cur);
287 	}
288 
289 	if (!revoke && truncate)
290 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
291 }
292 
__f2fs_commit_atomic_write(struct inode * inode)293 static int __f2fs_commit_atomic_write(struct inode *inode)
294 {
295 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
296 	struct f2fs_inode_info *fi = F2FS_I(inode);
297 	struct inode *cow_inode = fi->cow_inode;
298 	struct revoke_entry *new;
299 	struct list_head revoke_list;
300 	block_t blkaddr;
301 	struct dnode_of_data dn;
302 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
303 	pgoff_t off = 0, blen, index;
304 	int ret = 0, i;
305 
306 	INIT_LIST_HEAD(&revoke_list);
307 
308 	while (len) {
309 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
310 
311 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
312 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
313 		if (ret && ret != -ENOENT) {
314 			goto out;
315 		} else if (ret == -ENOENT) {
316 			ret = 0;
317 			if (dn.max_level == 0)
318 				goto out;
319 			goto next;
320 		}
321 
322 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
323 				len);
324 		index = off;
325 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
326 			blkaddr = f2fs_data_blkaddr(&dn);
327 
328 			if (!__is_valid_data_blkaddr(blkaddr)) {
329 				continue;
330 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
331 					DATA_GENERIC_ENHANCE)) {
332 				f2fs_put_dnode(&dn);
333 				ret = -EFSCORRUPTED;
334 				f2fs_handle_error(sbi,
335 						ERROR_INVALID_BLKADDR);
336 				goto out;
337 			}
338 
339 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
340 							true, NULL);
341 
342 			ret = __replace_atomic_write_block(inode, index, blkaddr,
343 							&new->old_addr, false);
344 			if (ret) {
345 				f2fs_put_dnode(&dn);
346 				kmem_cache_free(revoke_entry_slab, new);
347 				goto out;
348 			}
349 
350 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
351 			new->index = index;
352 			list_add_tail(&new->list, &revoke_list);
353 		}
354 		f2fs_put_dnode(&dn);
355 next:
356 		off += blen;
357 		len -= blen;
358 	}
359 
360 out:
361 	if (ret) {
362 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
363 	} else {
364 		sbi->committed_atomic_block += fi->atomic_write_cnt;
365 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
366 	}
367 
368 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
369 
370 	return ret;
371 }
372 
f2fs_commit_atomic_write(struct inode * inode)373 int f2fs_commit_atomic_write(struct inode *inode)
374 {
375 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
376 	struct f2fs_inode_info *fi = F2FS_I(inode);
377 	int err;
378 
379 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
380 	if (err)
381 		return err;
382 
383 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
384 	f2fs_lock_op(sbi);
385 
386 	err = __f2fs_commit_atomic_write(inode);
387 
388 	f2fs_unlock_op(sbi);
389 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
390 
391 	return err;
392 }
393 
394 /*
395  * This function balances dirty node and dentry pages.
396  * In addition, it controls garbage collection.
397  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)398 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
399 {
400 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
401 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
402 
403 	/* balance_fs_bg is able to be pending */
404 	if (need && excess_cached_nats(sbi))
405 		f2fs_balance_fs_bg(sbi, false);
406 
407 	if (!f2fs_is_checkpoint_ready(sbi))
408 		return;
409 
410 	/*
411 	 * We should do GC or end up with checkpoint, if there are so many dirty
412 	 * dir/node pages without enough free segments.
413 	 */
414 	if (has_enough_free_secs(sbi, 0, 0))
415 		return;
416 
417 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
418 				sbi->gc_thread->f2fs_gc_task) {
419 		DEFINE_WAIT(wait);
420 
421 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
422 					TASK_UNINTERRUPTIBLE);
423 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
424 		io_schedule();
425 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
426 	} else {
427 		struct f2fs_gc_control gc_control = {
428 			.victim_segno = NULL_SEGNO,
429 			.init_gc_type = BG_GC,
430 			.no_bg_gc = true,
431 			.should_migrate_blocks = false,
432 			.err_gc_skipped = false,
433 			.nr_free_secs = 1 };
434 		f2fs_down_write(&sbi->gc_lock);
435 		f2fs_gc(sbi, &gc_control);
436 	}
437 }
438 
excess_dirty_threshold(struct f2fs_sb_info * sbi)439 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
440 {
441 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
442 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
443 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
444 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
445 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
446 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
447 	unsigned int threshold = sbi->blocks_per_seg * factor *
448 					DEFAULT_DIRTY_THRESHOLD;
449 	unsigned int global_threshold = threshold * 3 / 2;
450 
451 	if (dents >= threshold || qdata >= threshold ||
452 		nodes >= threshold || meta >= threshold ||
453 		imeta >= threshold)
454 		return true;
455 	return dents + qdata + nodes + meta + imeta >  global_threshold;
456 }
457 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)458 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
459 {
460 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
461 		return;
462 
463 	/* try to shrink extent cache when there is no enough memory */
464 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
465 		f2fs_shrink_read_extent_tree(sbi,
466 				READ_EXTENT_CACHE_SHRINK_NUMBER);
467 
468 	/* try to shrink age extent cache when there is no enough memory */
469 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
470 		f2fs_shrink_age_extent_tree(sbi,
471 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
472 
473 	/* check the # of cached NAT entries */
474 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
475 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
476 
477 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
478 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
479 	else
480 		f2fs_build_free_nids(sbi, false, false);
481 
482 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
483 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
484 		goto do_sync;
485 
486 	/* there is background inflight IO or foreground operation recently */
487 	if (is_inflight_io(sbi, REQ_TIME) ||
488 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
489 		return;
490 
491 	/* exceed periodical checkpoint timeout threshold */
492 	if (f2fs_time_over(sbi, CP_TIME))
493 		goto do_sync;
494 
495 	/* checkpoint is the only way to shrink partial cached entries */
496 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
497 		f2fs_available_free_memory(sbi, INO_ENTRIES))
498 		return;
499 
500 do_sync:
501 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
502 		struct blk_plug plug;
503 
504 		mutex_lock(&sbi->flush_lock);
505 
506 		blk_start_plug(&plug);
507 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
508 		blk_finish_plug(&plug);
509 
510 		mutex_unlock(&sbi->flush_lock);
511 	}
512 	f2fs_sync_fs(sbi->sb, 1);
513 	stat_inc_bg_cp_count(sbi->stat_info);
514 }
515 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)516 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
517 				struct block_device *bdev)
518 {
519 	int ret = blkdev_issue_flush(bdev);
520 
521 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
522 				test_opt(sbi, FLUSH_MERGE), ret);
523 	if (!ret)
524 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
525 	return ret;
526 }
527 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)528 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
529 {
530 	int ret = 0;
531 	int i;
532 
533 	if (!f2fs_is_multi_device(sbi))
534 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
535 
536 	for (i = 0; i < sbi->s_ndevs; i++) {
537 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
538 			continue;
539 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
540 		if (ret)
541 			break;
542 	}
543 	return ret;
544 }
545 
issue_flush_thread(void * data)546 static int issue_flush_thread(void *data)
547 {
548 	struct f2fs_sb_info *sbi = data;
549 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
550 	wait_queue_head_t *q = &fcc->flush_wait_queue;
551 repeat:
552 	if (kthread_should_stop())
553 		return 0;
554 
555 	if (!llist_empty(&fcc->issue_list)) {
556 		struct flush_cmd *cmd, *next;
557 		int ret;
558 
559 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
560 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
561 
562 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
563 
564 		ret = submit_flush_wait(sbi, cmd->ino);
565 		atomic_inc(&fcc->issued_flush);
566 
567 		llist_for_each_entry_safe(cmd, next,
568 					  fcc->dispatch_list, llnode) {
569 			cmd->ret = ret;
570 			complete(&cmd->wait);
571 		}
572 		fcc->dispatch_list = NULL;
573 	}
574 
575 	wait_event_interruptible(*q,
576 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
577 	goto repeat;
578 }
579 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)580 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
581 {
582 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
583 	struct flush_cmd cmd;
584 	int ret;
585 
586 	if (test_opt(sbi, NOBARRIER))
587 		return 0;
588 
589 	if (!test_opt(sbi, FLUSH_MERGE)) {
590 		atomic_inc(&fcc->queued_flush);
591 		ret = submit_flush_wait(sbi, ino);
592 		atomic_dec(&fcc->queued_flush);
593 		atomic_inc(&fcc->issued_flush);
594 		return ret;
595 	}
596 
597 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
598 	    f2fs_is_multi_device(sbi)) {
599 		ret = submit_flush_wait(sbi, ino);
600 		atomic_dec(&fcc->queued_flush);
601 
602 		atomic_inc(&fcc->issued_flush);
603 		return ret;
604 	}
605 
606 	cmd.ino = ino;
607 	init_completion(&cmd.wait);
608 
609 	llist_add(&cmd.llnode, &fcc->issue_list);
610 
611 	/*
612 	 * update issue_list before we wake up issue_flush thread, this
613 	 * smp_mb() pairs with another barrier in ___wait_event(), see
614 	 * more details in comments of waitqueue_active().
615 	 */
616 	smp_mb();
617 
618 	if (waitqueue_active(&fcc->flush_wait_queue))
619 		wake_up(&fcc->flush_wait_queue);
620 
621 	if (fcc->f2fs_issue_flush) {
622 		wait_for_completion(&cmd.wait);
623 		atomic_dec(&fcc->queued_flush);
624 	} else {
625 		struct llist_node *list;
626 
627 		list = llist_del_all(&fcc->issue_list);
628 		if (!list) {
629 			wait_for_completion(&cmd.wait);
630 			atomic_dec(&fcc->queued_flush);
631 		} else {
632 			struct flush_cmd *tmp, *next;
633 
634 			ret = submit_flush_wait(sbi, ino);
635 
636 			llist_for_each_entry_safe(tmp, next, list, llnode) {
637 				if (tmp == &cmd) {
638 					cmd.ret = ret;
639 					atomic_dec(&fcc->queued_flush);
640 					continue;
641 				}
642 				tmp->ret = ret;
643 				complete(&tmp->wait);
644 			}
645 		}
646 	}
647 
648 	return cmd.ret;
649 }
650 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)651 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
652 {
653 	dev_t dev = sbi->sb->s_bdev->bd_dev;
654 	struct flush_cmd_control *fcc;
655 
656 	if (SM_I(sbi)->fcc_info) {
657 		fcc = SM_I(sbi)->fcc_info;
658 		if (fcc->f2fs_issue_flush)
659 			return 0;
660 		goto init_thread;
661 	}
662 
663 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
664 	if (!fcc)
665 		return -ENOMEM;
666 	atomic_set(&fcc->issued_flush, 0);
667 	atomic_set(&fcc->queued_flush, 0);
668 	init_waitqueue_head(&fcc->flush_wait_queue);
669 	init_llist_head(&fcc->issue_list);
670 	SM_I(sbi)->fcc_info = fcc;
671 	if (!test_opt(sbi, FLUSH_MERGE))
672 		return 0;
673 
674 init_thread:
675 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
676 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
677 	if (IS_ERR(fcc->f2fs_issue_flush)) {
678 		int err = PTR_ERR(fcc->f2fs_issue_flush);
679 
680 		fcc->f2fs_issue_flush = NULL;
681 		return err;
682 	}
683 
684 	return 0;
685 }
686 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)687 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
688 {
689 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
690 
691 	if (fcc && fcc->f2fs_issue_flush) {
692 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
693 
694 		fcc->f2fs_issue_flush = NULL;
695 		kthread_stop(flush_thread);
696 	}
697 	if (free) {
698 		kfree(fcc);
699 		SM_I(sbi)->fcc_info = NULL;
700 	}
701 }
702 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)703 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
704 {
705 	int ret = 0, i;
706 
707 	if (!f2fs_is_multi_device(sbi))
708 		return 0;
709 
710 	if (test_opt(sbi, NOBARRIER))
711 		return 0;
712 
713 	for (i = 1; i < sbi->s_ndevs; i++) {
714 		int count = DEFAULT_RETRY_IO_COUNT;
715 
716 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
717 			continue;
718 
719 		do {
720 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
721 			if (ret)
722 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
723 		} while (ret && --count);
724 
725 		if (ret) {
726 			f2fs_stop_checkpoint(sbi, false,
727 					STOP_CP_REASON_FLUSH_FAIL);
728 			break;
729 		}
730 
731 		spin_lock(&sbi->dev_lock);
732 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
733 		spin_unlock(&sbi->dev_lock);
734 	}
735 
736 	return ret;
737 }
738 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)739 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
740 		enum dirty_type dirty_type)
741 {
742 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
743 
744 	/* need not be added */
745 	if (IS_CURSEG(sbi, segno))
746 		return;
747 
748 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
749 		dirty_i->nr_dirty[dirty_type]++;
750 
751 	if (dirty_type == DIRTY) {
752 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
753 		enum dirty_type t = sentry->type;
754 
755 		if (unlikely(t >= DIRTY)) {
756 			f2fs_bug_on(sbi, 1);
757 			return;
758 		}
759 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
760 			dirty_i->nr_dirty[t]++;
761 
762 		if (__is_large_section(sbi)) {
763 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
764 			block_t valid_blocks =
765 				get_valid_blocks(sbi, segno, true);
766 
767 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
768 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
769 
770 			if (!IS_CURSEC(sbi, secno))
771 				set_bit(secno, dirty_i->dirty_secmap);
772 		}
773 	}
774 }
775 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)776 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777 		enum dirty_type dirty_type)
778 {
779 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 	block_t valid_blocks;
781 
782 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
783 		dirty_i->nr_dirty[dirty_type]--;
784 
785 	if (dirty_type == DIRTY) {
786 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
787 		enum dirty_type t = sentry->type;
788 
789 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
790 			dirty_i->nr_dirty[t]--;
791 
792 		valid_blocks = get_valid_blocks(sbi, segno, true);
793 		if (valid_blocks == 0) {
794 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
795 						dirty_i->victim_secmap);
796 #ifdef CONFIG_F2FS_CHECK_FS
797 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
798 #endif
799 		}
800 		if (__is_large_section(sbi)) {
801 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
802 
803 			if (!valid_blocks ||
804 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
805 				clear_bit(secno, dirty_i->dirty_secmap);
806 				return;
807 			}
808 
809 			if (!IS_CURSEC(sbi, secno))
810 				set_bit(secno, dirty_i->dirty_secmap);
811 		}
812 	}
813 }
814 
815 /*
816  * Should not occur error such as -ENOMEM.
817  * Adding dirty entry into seglist is not critical operation.
818  * If a given segment is one of current working segments, it won't be added.
819  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)820 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
821 {
822 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
823 	unsigned short valid_blocks, ckpt_valid_blocks;
824 	unsigned int usable_blocks;
825 
826 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
827 		return;
828 
829 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
830 	mutex_lock(&dirty_i->seglist_lock);
831 
832 	valid_blocks = get_valid_blocks(sbi, segno, false);
833 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
834 
835 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
836 		ckpt_valid_blocks == usable_blocks)) {
837 		__locate_dirty_segment(sbi, segno, PRE);
838 		__remove_dirty_segment(sbi, segno, DIRTY);
839 	} else if (valid_blocks < usable_blocks) {
840 		__locate_dirty_segment(sbi, segno, DIRTY);
841 	} else {
842 		/* Recovery routine with SSR needs this */
843 		__remove_dirty_segment(sbi, segno, DIRTY);
844 	}
845 
846 	mutex_unlock(&dirty_i->seglist_lock);
847 }
848 
849 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)850 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
851 {
852 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
853 	unsigned int segno;
854 
855 	mutex_lock(&dirty_i->seglist_lock);
856 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
857 		if (get_valid_blocks(sbi, segno, false))
858 			continue;
859 		if (IS_CURSEG(sbi, segno))
860 			continue;
861 		__locate_dirty_segment(sbi, segno, PRE);
862 		__remove_dirty_segment(sbi, segno, DIRTY);
863 	}
864 	mutex_unlock(&dirty_i->seglist_lock);
865 }
866 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)867 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
868 {
869 	int ovp_hole_segs =
870 		(overprovision_segments(sbi) - reserved_segments(sbi));
871 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
872 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
873 	block_t holes[2] = {0, 0};	/* DATA and NODE */
874 	block_t unusable;
875 	struct seg_entry *se;
876 	unsigned int segno;
877 
878 	mutex_lock(&dirty_i->seglist_lock);
879 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
880 		se = get_seg_entry(sbi, segno);
881 		if (IS_NODESEG(se->type))
882 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
883 							se->valid_blocks;
884 		else
885 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
886 							se->valid_blocks;
887 	}
888 	mutex_unlock(&dirty_i->seglist_lock);
889 
890 	unusable = max(holes[DATA], holes[NODE]);
891 	if (unusable > ovp_holes)
892 		return unusable - ovp_holes;
893 	return 0;
894 }
895 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)896 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
897 {
898 	int ovp_hole_segs =
899 		(overprovision_segments(sbi) - reserved_segments(sbi));
900 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
901 		return -EAGAIN;
902 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
903 		dirty_segments(sbi) > ovp_hole_segs)
904 		return -EAGAIN;
905 	return 0;
906 }
907 
908 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)909 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
910 {
911 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
912 	unsigned int segno = 0;
913 
914 	mutex_lock(&dirty_i->seglist_lock);
915 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
916 		if (get_valid_blocks(sbi, segno, false))
917 			continue;
918 		if (get_ckpt_valid_blocks(sbi, segno, false))
919 			continue;
920 		mutex_unlock(&dirty_i->seglist_lock);
921 		return segno;
922 	}
923 	mutex_unlock(&dirty_i->seglist_lock);
924 	return NULL_SEGNO;
925 }
926 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)927 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
928 		struct block_device *bdev, block_t lstart,
929 		block_t start, block_t len)
930 {
931 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
932 	struct list_head *pend_list;
933 	struct discard_cmd *dc;
934 
935 	f2fs_bug_on(sbi, !len);
936 
937 	pend_list = &dcc->pend_list[plist_idx(len)];
938 
939 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
940 	INIT_LIST_HEAD(&dc->list);
941 	dc->bdev = bdev;
942 	dc->di.lstart = lstart;
943 	dc->di.start = start;
944 	dc->di.len = len;
945 	dc->ref = 0;
946 	dc->state = D_PREP;
947 	dc->queued = 0;
948 	dc->error = 0;
949 	init_completion(&dc->wait);
950 	list_add_tail(&dc->list, pend_list);
951 	spin_lock_init(&dc->lock);
952 	dc->bio_ref = 0;
953 	atomic_inc(&dcc->discard_cmd_cnt);
954 	dcc->undiscard_blks += len;
955 
956 	return dc;
957 }
958 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)959 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
960 {
961 #ifdef CONFIG_F2FS_CHECK_FS
962 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
963 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
964 	struct discard_cmd *cur_dc, *next_dc;
965 
966 	while (cur) {
967 		next = rb_next(cur);
968 		if (!next)
969 			return true;
970 
971 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
972 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
973 
974 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
975 			f2fs_info(sbi, "broken discard_rbtree, "
976 				"cur(%u, %u) next(%u, %u)",
977 				cur_dc->di.lstart, cur_dc->di.len,
978 				next_dc->di.lstart, next_dc->di.len);
979 			return false;
980 		}
981 		cur = next;
982 	}
983 #endif
984 	return true;
985 }
986 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)987 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
988 						block_t blkaddr)
989 {
990 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
991 	struct rb_node *node = dcc->root.rb_root.rb_node;
992 	struct discard_cmd *dc;
993 
994 	while (node) {
995 		dc = rb_entry(node, struct discard_cmd, rb_node);
996 
997 		if (blkaddr < dc->di.lstart)
998 			node = node->rb_left;
999 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1000 			node = node->rb_right;
1001 		else
1002 			return dc;
1003 	}
1004 	return NULL;
1005 }
1006 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1007 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1008 				block_t blkaddr,
1009 				struct discard_cmd **prev_entry,
1010 				struct discard_cmd **next_entry,
1011 				struct rb_node ***insert_p,
1012 				struct rb_node **insert_parent)
1013 {
1014 	struct rb_node **pnode = &root->rb_root.rb_node;
1015 	struct rb_node *parent = NULL, *tmp_node;
1016 	struct discard_cmd *dc;
1017 
1018 	*insert_p = NULL;
1019 	*insert_parent = NULL;
1020 	*prev_entry = NULL;
1021 	*next_entry = NULL;
1022 
1023 	if (RB_EMPTY_ROOT(&root->rb_root))
1024 		return NULL;
1025 
1026 	while (*pnode) {
1027 		parent = *pnode;
1028 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1029 
1030 		if (blkaddr < dc->di.lstart)
1031 			pnode = &(*pnode)->rb_left;
1032 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1033 			pnode = &(*pnode)->rb_right;
1034 		else
1035 			goto lookup_neighbors;
1036 	}
1037 
1038 	*insert_p = pnode;
1039 	*insert_parent = parent;
1040 
1041 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1042 	tmp_node = parent;
1043 	if (parent && blkaddr > dc->di.lstart)
1044 		tmp_node = rb_next(parent);
1045 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1046 
1047 	tmp_node = parent;
1048 	if (parent && blkaddr < dc->di.lstart)
1049 		tmp_node = rb_prev(parent);
1050 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1051 	return NULL;
1052 
1053 lookup_neighbors:
1054 	/* lookup prev node for merging backward later */
1055 	tmp_node = rb_prev(&dc->rb_node);
1056 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1057 
1058 	/* lookup next node for merging frontward later */
1059 	tmp_node = rb_next(&dc->rb_node);
1060 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061 	return dc;
1062 }
1063 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1064 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1065 							struct discard_cmd *dc)
1066 {
1067 	if (dc->state == D_DONE)
1068 		atomic_sub(dc->queued, &dcc->queued_discard);
1069 
1070 	list_del(&dc->list);
1071 	rb_erase_cached(&dc->rb_node, &dcc->root);
1072 	dcc->undiscard_blks -= dc->di.len;
1073 
1074 	kmem_cache_free(discard_cmd_slab, dc);
1075 
1076 	atomic_dec(&dcc->discard_cmd_cnt);
1077 }
1078 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1079 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1080 							struct discard_cmd *dc)
1081 {
1082 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083 	unsigned long flags;
1084 
1085 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1086 
1087 	spin_lock_irqsave(&dc->lock, flags);
1088 	if (dc->bio_ref) {
1089 		spin_unlock_irqrestore(&dc->lock, flags);
1090 		return;
1091 	}
1092 	spin_unlock_irqrestore(&dc->lock, flags);
1093 
1094 	f2fs_bug_on(sbi, dc->ref);
1095 
1096 	if (dc->error == -EOPNOTSUPP)
1097 		dc->error = 0;
1098 
1099 	if (dc->error)
1100 		printk_ratelimited(
1101 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1102 			KERN_INFO, sbi->sb->s_id,
1103 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1104 	__detach_discard_cmd(dcc, dc);
1105 }
1106 
f2fs_submit_discard_endio(struct bio * bio)1107 static void f2fs_submit_discard_endio(struct bio *bio)
1108 {
1109 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1110 	unsigned long flags;
1111 
1112 	spin_lock_irqsave(&dc->lock, flags);
1113 	if (!dc->error)
1114 		dc->error = blk_status_to_errno(bio->bi_status);
1115 	dc->bio_ref--;
1116 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1117 		dc->state = D_DONE;
1118 		complete_all(&dc->wait);
1119 	}
1120 	spin_unlock_irqrestore(&dc->lock, flags);
1121 	bio_put(bio);
1122 }
1123 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1124 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1125 				block_t start, block_t end)
1126 {
1127 #ifdef CONFIG_F2FS_CHECK_FS
1128 	struct seg_entry *sentry;
1129 	unsigned int segno;
1130 	block_t blk = start;
1131 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1132 	unsigned long *map;
1133 
1134 	while (blk < end) {
1135 		segno = GET_SEGNO(sbi, blk);
1136 		sentry = get_seg_entry(sbi, segno);
1137 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1138 
1139 		if (end < START_BLOCK(sbi, segno + 1))
1140 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1141 		else
1142 			size = max_blocks;
1143 		map = (unsigned long *)(sentry->cur_valid_map);
1144 		offset = __find_rev_next_bit(map, size, offset);
1145 		f2fs_bug_on(sbi, offset != size);
1146 		blk = START_BLOCK(sbi, segno + 1);
1147 	}
1148 #endif
1149 }
1150 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1151 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1152 				struct discard_policy *dpolicy,
1153 				int discard_type, unsigned int granularity)
1154 {
1155 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1156 
1157 	/* common policy */
1158 	dpolicy->type = discard_type;
1159 	dpolicy->sync = true;
1160 	dpolicy->ordered = false;
1161 	dpolicy->granularity = granularity;
1162 
1163 	dpolicy->max_requests = dcc->max_discard_request;
1164 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1165 	dpolicy->timeout = false;
1166 
1167 	if (discard_type == DPOLICY_BG) {
1168 		dpolicy->min_interval = dcc->min_discard_issue_time;
1169 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1170 		dpolicy->max_interval = dcc->max_discard_issue_time;
1171 		dpolicy->io_aware = true;
1172 		dpolicy->sync = false;
1173 		dpolicy->ordered = true;
1174 		if (utilization(sbi) > dcc->discard_urgent_util) {
1175 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1176 			if (atomic_read(&dcc->discard_cmd_cnt))
1177 				dpolicy->max_interval =
1178 					dcc->min_discard_issue_time;
1179 		}
1180 	} else if (discard_type == DPOLICY_FORCE) {
1181 		dpolicy->min_interval = dcc->min_discard_issue_time;
1182 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1183 		dpolicy->max_interval = dcc->max_discard_issue_time;
1184 		dpolicy->io_aware = false;
1185 	} else if (discard_type == DPOLICY_FSTRIM) {
1186 		dpolicy->io_aware = false;
1187 	} else if (discard_type == DPOLICY_UMOUNT) {
1188 		dpolicy->io_aware = false;
1189 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1190 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1191 		dpolicy->timeout = true;
1192 	}
1193 }
1194 
1195 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1196 				struct block_device *bdev, block_t lstart,
1197 				block_t start, block_t len);
1198 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1199 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1200 				struct discard_policy *dpolicy,
1201 				struct discard_cmd *dc, int *issued)
1202 {
1203 	struct block_device *bdev = dc->bdev;
1204 	struct request_queue *q = bdev_get_queue(bdev);
1205 	unsigned int max_discard_blocks =
1206 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1207 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1208 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1209 					&(dcc->fstrim_list) : &(dcc->wait_list);
1210 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1211 	block_t lstart, start, len, total_len;
1212 	int err = 0;
1213 
1214 	if (dc->state != D_PREP)
1215 		return 0;
1216 
1217 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1218 		return 0;
1219 
1220 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1221 
1222 	lstart = dc->di.lstart;
1223 	start = dc->di.start;
1224 	len = dc->di.len;
1225 	total_len = len;
1226 
1227 	dc->di.len = 0;
1228 
1229 	while (total_len && *issued < dpolicy->max_requests && !err) {
1230 		struct bio *bio = NULL;
1231 		unsigned long flags;
1232 		bool last = true;
1233 
1234 		if (len > max_discard_blocks) {
1235 			len = max_discard_blocks;
1236 			last = false;
1237 		}
1238 
1239 		(*issued)++;
1240 		if (*issued == dpolicy->max_requests)
1241 			last = true;
1242 
1243 		dc->di.len += len;
1244 
1245 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1246 			err = -EIO;
1247 		} else {
1248 			err = __blkdev_issue_discard(bdev,
1249 					SECTOR_FROM_BLOCK(start),
1250 					SECTOR_FROM_BLOCK(len),
1251 					GFP_NOFS, 0, &bio);
1252 		}
1253 		if (err) {
1254 			spin_lock_irqsave(&dc->lock, flags);
1255 			if (dc->state == D_PARTIAL)
1256 				dc->state = D_SUBMIT;
1257 			spin_unlock_irqrestore(&dc->lock, flags);
1258 
1259 			break;
1260 		}
1261 
1262 		f2fs_bug_on(sbi, !bio);
1263 
1264 		/*
1265 		 * should keep before submission to avoid D_DONE
1266 		 * right away
1267 		 */
1268 		spin_lock_irqsave(&dc->lock, flags);
1269 		if (last)
1270 			dc->state = D_SUBMIT;
1271 		else
1272 			dc->state = D_PARTIAL;
1273 		dc->bio_ref++;
1274 		spin_unlock_irqrestore(&dc->lock, flags);
1275 
1276 		atomic_inc(&dcc->queued_discard);
1277 		dc->queued++;
1278 		list_move_tail(&dc->list, wait_list);
1279 
1280 		/* sanity check on discard range */
1281 		__check_sit_bitmap(sbi, lstart, lstart + len);
1282 
1283 		bio->bi_private = dc;
1284 		bio->bi_end_io = f2fs_submit_discard_endio;
1285 		bio->bi_opf |= flag;
1286 		submit_bio(bio);
1287 
1288 		atomic_inc(&dcc->issued_discard);
1289 
1290 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1291 
1292 		lstart += len;
1293 		start += len;
1294 		total_len -= len;
1295 		len = total_len;
1296 	}
1297 
1298 	if (!err && len) {
1299 		dcc->undiscard_blks -= len;
1300 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1301 	}
1302 	return err;
1303 }
1304 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1305 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1306 				struct block_device *bdev, block_t lstart,
1307 				block_t start, block_t len)
1308 {
1309 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1310 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1311 	struct rb_node *parent = NULL;
1312 	struct discard_cmd *dc;
1313 	bool leftmost = true;
1314 
1315 	/* look up rb tree to find parent node */
1316 	while (*p) {
1317 		parent = *p;
1318 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1319 
1320 		if (lstart < dc->di.lstart) {
1321 			p = &(*p)->rb_left;
1322 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1323 			p = &(*p)->rb_right;
1324 			leftmost = false;
1325 		} else {
1326 			f2fs_bug_on(sbi, 1);
1327 		}
1328 	}
1329 
1330 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1331 
1332 	rb_link_node(&dc->rb_node, parent, p);
1333 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1334 }
1335 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1336 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1337 						struct discard_cmd *dc)
1338 {
1339 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1340 }
1341 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1342 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1343 				struct discard_cmd *dc, block_t blkaddr)
1344 {
1345 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 	struct discard_info di = dc->di;
1347 	bool modified = false;
1348 
1349 	if (dc->state == D_DONE || dc->di.len == 1) {
1350 		__remove_discard_cmd(sbi, dc);
1351 		return;
1352 	}
1353 
1354 	dcc->undiscard_blks -= di.len;
1355 
1356 	if (blkaddr > di.lstart) {
1357 		dc->di.len = blkaddr - dc->di.lstart;
1358 		dcc->undiscard_blks += dc->di.len;
1359 		__relocate_discard_cmd(dcc, dc);
1360 		modified = true;
1361 	}
1362 
1363 	if (blkaddr < di.lstart + di.len - 1) {
1364 		if (modified) {
1365 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1366 					di.start + blkaddr + 1 - di.lstart,
1367 					di.lstart + di.len - 1 - blkaddr);
1368 		} else {
1369 			dc->di.lstart++;
1370 			dc->di.len--;
1371 			dc->di.start++;
1372 			dcc->undiscard_blks += dc->di.len;
1373 			__relocate_discard_cmd(dcc, dc);
1374 		}
1375 	}
1376 }
1377 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1378 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1379 				struct block_device *bdev, block_t lstart,
1380 				block_t start, block_t len)
1381 {
1382 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1383 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1384 	struct discard_cmd *dc;
1385 	struct discard_info di = {0};
1386 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1387 	struct request_queue *q = bdev_get_queue(bdev);
1388 	unsigned int max_discard_blocks =
1389 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1390 	block_t end = lstart + len;
1391 
1392 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1393 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1394 	if (dc)
1395 		prev_dc = dc;
1396 
1397 	if (!prev_dc) {
1398 		di.lstart = lstart;
1399 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1400 		di.len = min(di.len, len);
1401 		di.start = start;
1402 	}
1403 
1404 	while (1) {
1405 		struct rb_node *node;
1406 		bool merged = false;
1407 		struct discard_cmd *tdc = NULL;
1408 
1409 		if (prev_dc) {
1410 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1411 			if (di.lstart < lstart)
1412 				di.lstart = lstart;
1413 			if (di.lstart >= end)
1414 				break;
1415 
1416 			if (!next_dc || next_dc->di.lstart > end)
1417 				di.len = end - di.lstart;
1418 			else
1419 				di.len = next_dc->di.lstart - di.lstart;
1420 			di.start = start + di.lstart - lstart;
1421 		}
1422 
1423 		if (!di.len)
1424 			goto next;
1425 
1426 		if (prev_dc && prev_dc->state == D_PREP &&
1427 			prev_dc->bdev == bdev &&
1428 			__is_discard_back_mergeable(&di, &prev_dc->di,
1429 							max_discard_blocks)) {
1430 			prev_dc->di.len += di.len;
1431 			dcc->undiscard_blks += di.len;
1432 			__relocate_discard_cmd(dcc, prev_dc);
1433 			di = prev_dc->di;
1434 			tdc = prev_dc;
1435 			merged = true;
1436 		}
1437 
1438 		if (next_dc && next_dc->state == D_PREP &&
1439 			next_dc->bdev == bdev &&
1440 			__is_discard_front_mergeable(&di, &next_dc->di,
1441 							max_discard_blocks)) {
1442 			next_dc->di.lstart = di.lstart;
1443 			next_dc->di.len += di.len;
1444 			next_dc->di.start = di.start;
1445 			dcc->undiscard_blks += di.len;
1446 			__relocate_discard_cmd(dcc, next_dc);
1447 			if (tdc)
1448 				__remove_discard_cmd(sbi, tdc);
1449 			merged = true;
1450 		}
1451 
1452 		if (!merged)
1453 			__insert_discard_cmd(sbi, bdev,
1454 						di.lstart, di.start, di.len);
1455  next:
1456 		prev_dc = next_dc;
1457 		if (!prev_dc)
1458 			break;
1459 
1460 		node = rb_next(&prev_dc->rb_node);
1461 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1462 	}
1463 }
1464 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1465 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1466 		struct block_device *bdev, block_t blkstart, block_t blklen)
1467 {
1468 	block_t lblkstart = blkstart;
1469 
1470 	if (!f2fs_bdev_support_discard(bdev))
1471 		return;
1472 
1473 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1474 
1475 	if (f2fs_is_multi_device(sbi)) {
1476 		int devi = f2fs_target_device_index(sbi, blkstart);
1477 
1478 		blkstart -= FDEV(devi).start_blk;
1479 	}
1480 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1481 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1482 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1483 }
1484 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1485 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1486 		struct discard_policy *dpolicy, int *issued)
1487 {
1488 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1489 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1490 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1491 	struct discard_cmd *dc;
1492 	struct blk_plug plug;
1493 	bool io_interrupted = false;
1494 
1495 	mutex_lock(&dcc->cmd_lock);
1496 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1497 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1498 	if (!dc)
1499 		dc = next_dc;
1500 
1501 	blk_start_plug(&plug);
1502 
1503 	while (dc) {
1504 		struct rb_node *node;
1505 		int err = 0;
1506 
1507 		if (dc->state != D_PREP)
1508 			goto next;
1509 
1510 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1511 			io_interrupted = true;
1512 			break;
1513 		}
1514 
1515 		dcc->next_pos = dc->di.lstart + dc->di.len;
1516 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1517 
1518 		if (*issued >= dpolicy->max_requests)
1519 			break;
1520 next:
1521 		node = rb_next(&dc->rb_node);
1522 		if (err)
1523 			__remove_discard_cmd(sbi, dc);
1524 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1525 	}
1526 
1527 	blk_finish_plug(&plug);
1528 
1529 	if (!dc)
1530 		dcc->next_pos = 0;
1531 
1532 	mutex_unlock(&dcc->cmd_lock);
1533 
1534 	if (!(*issued) && io_interrupted)
1535 		*issued = -1;
1536 }
1537 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1538 					struct discard_policy *dpolicy);
1539 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1540 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1541 					struct discard_policy *dpolicy)
1542 {
1543 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1544 	struct list_head *pend_list;
1545 	struct discard_cmd *dc, *tmp;
1546 	struct blk_plug plug;
1547 	int i, issued;
1548 	bool io_interrupted = false;
1549 
1550 	if (dpolicy->timeout)
1551 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1552 
1553 retry:
1554 	issued = 0;
1555 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1556 		if (dpolicy->timeout &&
1557 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1558 			break;
1559 
1560 		if (i + 1 < dpolicy->granularity)
1561 			break;
1562 
1563 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1564 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1565 			return issued;
1566 		}
1567 
1568 		pend_list = &dcc->pend_list[i];
1569 
1570 		mutex_lock(&dcc->cmd_lock);
1571 		if (list_empty(pend_list))
1572 			goto next;
1573 		if (unlikely(dcc->rbtree_check))
1574 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1575 		blk_start_plug(&plug);
1576 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1577 			f2fs_bug_on(sbi, dc->state != D_PREP);
1578 
1579 			if (dpolicy->timeout &&
1580 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1581 				break;
1582 
1583 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1584 						!is_idle(sbi, DISCARD_TIME)) {
1585 				io_interrupted = true;
1586 				break;
1587 			}
1588 
1589 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1590 
1591 			if (issued >= dpolicy->max_requests)
1592 				break;
1593 		}
1594 		blk_finish_plug(&plug);
1595 next:
1596 		mutex_unlock(&dcc->cmd_lock);
1597 
1598 		if (issued >= dpolicy->max_requests || io_interrupted)
1599 			break;
1600 	}
1601 
1602 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1603 		__wait_all_discard_cmd(sbi, dpolicy);
1604 		goto retry;
1605 	}
1606 
1607 	if (!issued && io_interrupted)
1608 		issued = -1;
1609 
1610 	return issued;
1611 }
1612 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1613 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1614 {
1615 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1616 	struct list_head *pend_list;
1617 	struct discard_cmd *dc, *tmp;
1618 	int i;
1619 	bool dropped = false;
1620 
1621 	mutex_lock(&dcc->cmd_lock);
1622 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1623 		pend_list = &dcc->pend_list[i];
1624 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1625 			f2fs_bug_on(sbi, dc->state != D_PREP);
1626 			__remove_discard_cmd(sbi, dc);
1627 			dropped = true;
1628 		}
1629 	}
1630 	mutex_unlock(&dcc->cmd_lock);
1631 
1632 	return dropped;
1633 }
1634 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1635 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1636 {
1637 	__drop_discard_cmd(sbi);
1638 }
1639 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1640 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1641 							struct discard_cmd *dc)
1642 {
1643 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1644 	unsigned int len = 0;
1645 
1646 	wait_for_completion_io(&dc->wait);
1647 	mutex_lock(&dcc->cmd_lock);
1648 	f2fs_bug_on(sbi, dc->state != D_DONE);
1649 	dc->ref--;
1650 	if (!dc->ref) {
1651 		if (!dc->error)
1652 			len = dc->di.len;
1653 		__remove_discard_cmd(sbi, dc);
1654 	}
1655 	mutex_unlock(&dcc->cmd_lock);
1656 
1657 	return len;
1658 }
1659 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1660 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1661 						struct discard_policy *dpolicy,
1662 						block_t start, block_t end)
1663 {
1664 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1665 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1666 					&(dcc->fstrim_list) : &(dcc->wait_list);
1667 	struct discard_cmd *dc = NULL, *iter, *tmp;
1668 	unsigned int trimmed = 0;
1669 
1670 next:
1671 	dc = NULL;
1672 
1673 	mutex_lock(&dcc->cmd_lock);
1674 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1675 		if (iter->di.lstart + iter->di.len <= start ||
1676 					end <= iter->di.lstart)
1677 			continue;
1678 		if (iter->di.len < dpolicy->granularity)
1679 			continue;
1680 		if (iter->state == D_DONE && !iter->ref) {
1681 			wait_for_completion_io(&iter->wait);
1682 			if (!iter->error)
1683 				trimmed += iter->di.len;
1684 			__remove_discard_cmd(sbi, iter);
1685 		} else {
1686 			iter->ref++;
1687 			dc = iter;
1688 			break;
1689 		}
1690 	}
1691 	mutex_unlock(&dcc->cmd_lock);
1692 
1693 	if (dc) {
1694 		trimmed += __wait_one_discard_bio(sbi, dc);
1695 		goto next;
1696 	}
1697 
1698 	return trimmed;
1699 }
1700 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1701 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1702 						struct discard_policy *dpolicy)
1703 {
1704 	struct discard_policy dp;
1705 	unsigned int discard_blks;
1706 
1707 	if (dpolicy)
1708 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1709 
1710 	/* wait all */
1711 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1712 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1713 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1714 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1715 
1716 	return discard_blks;
1717 }
1718 
1719 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1720 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1721 {
1722 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1723 	struct discard_cmd *dc;
1724 	bool need_wait = false;
1725 
1726 	mutex_lock(&dcc->cmd_lock);
1727 	dc = __lookup_discard_cmd(sbi, blkaddr);
1728 	if (dc) {
1729 		if (dc->state == D_PREP) {
1730 			__punch_discard_cmd(sbi, dc, blkaddr);
1731 		} else {
1732 			dc->ref++;
1733 			need_wait = true;
1734 		}
1735 	}
1736 	mutex_unlock(&dcc->cmd_lock);
1737 
1738 	if (need_wait)
1739 		__wait_one_discard_bio(sbi, dc);
1740 }
1741 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1742 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1743 {
1744 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1745 
1746 	if (dcc && dcc->f2fs_issue_discard) {
1747 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1748 
1749 		dcc->f2fs_issue_discard = NULL;
1750 		kthread_stop(discard_thread);
1751 	}
1752 }
1753 
1754 /**
1755  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1756  * @sbi: the f2fs_sb_info data for discard cmd to issue
1757  *
1758  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1759  *
1760  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1761  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1762 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1763 {
1764 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1765 	struct discard_policy dpolicy;
1766 	bool dropped;
1767 
1768 	if (!atomic_read(&dcc->discard_cmd_cnt))
1769 		return true;
1770 
1771 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1772 					dcc->discard_granularity);
1773 	__issue_discard_cmd(sbi, &dpolicy);
1774 	dropped = __drop_discard_cmd(sbi);
1775 
1776 	/* just to make sure there is no pending discard commands */
1777 	__wait_all_discard_cmd(sbi, NULL);
1778 
1779 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1780 	return !dropped;
1781 }
1782 
issue_discard_thread(void * data)1783 static int issue_discard_thread(void *data)
1784 {
1785 	struct f2fs_sb_info *sbi = data;
1786 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1787 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1788 	struct discard_policy dpolicy;
1789 	unsigned int wait_ms = dcc->min_discard_issue_time;
1790 	int issued;
1791 
1792 	set_freezable();
1793 
1794 	do {
1795 		wait_event_interruptible_timeout(*q,
1796 				kthread_should_stop() || freezing(current) ||
1797 				dcc->discard_wake,
1798 				msecs_to_jiffies(wait_ms));
1799 
1800 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1801 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1802 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1803 						MIN_DISCARD_GRANULARITY);
1804 		else
1805 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1806 						dcc->discard_granularity);
1807 
1808 		if (dcc->discard_wake)
1809 			dcc->discard_wake = false;
1810 
1811 		/* clean up pending candidates before going to sleep */
1812 		if (atomic_read(&dcc->queued_discard))
1813 			__wait_all_discard_cmd(sbi, NULL);
1814 
1815 		if (try_to_freeze())
1816 			continue;
1817 		if (f2fs_readonly(sbi->sb))
1818 			continue;
1819 		if (kthread_should_stop())
1820 			return 0;
1821 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1822 			!atomic_read(&dcc->discard_cmd_cnt)) {
1823 			wait_ms = dpolicy.max_interval;
1824 			continue;
1825 		}
1826 
1827 		sb_start_intwrite(sbi->sb);
1828 
1829 		issued = __issue_discard_cmd(sbi, &dpolicy);
1830 		if (issued > 0) {
1831 			__wait_all_discard_cmd(sbi, &dpolicy);
1832 			wait_ms = dpolicy.min_interval;
1833 		} else if (issued == -1) {
1834 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1835 			if (!wait_ms)
1836 				wait_ms = dpolicy.mid_interval;
1837 		} else {
1838 			wait_ms = dpolicy.max_interval;
1839 		}
1840 		if (!atomic_read(&dcc->discard_cmd_cnt))
1841 			wait_ms = dpolicy.max_interval;
1842 
1843 		sb_end_intwrite(sbi->sb);
1844 
1845 	} while (!kthread_should_stop());
1846 	return 0;
1847 }
1848 
1849 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1850 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1851 		struct block_device *bdev, block_t blkstart, block_t blklen)
1852 {
1853 	sector_t sector, nr_sects;
1854 	block_t lblkstart = blkstart;
1855 	int devi = 0;
1856 	u64 remainder = 0;
1857 
1858 	if (f2fs_is_multi_device(sbi)) {
1859 		devi = f2fs_target_device_index(sbi, blkstart);
1860 		if (blkstart < FDEV(devi).start_blk ||
1861 		    blkstart > FDEV(devi).end_blk) {
1862 			f2fs_err(sbi, "Invalid block %x", blkstart);
1863 			return -EIO;
1864 		}
1865 		blkstart -= FDEV(devi).start_blk;
1866 	}
1867 
1868 	/* For sequential zones, reset the zone write pointer */
1869 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1870 		sector = SECTOR_FROM_BLOCK(blkstart);
1871 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1872 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1873 
1874 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1875 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1876 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1877 				 blkstart, blklen);
1878 			return -EIO;
1879 		}
1880 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1881 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1882 					sector, nr_sects, GFP_NOFS);
1883 	}
1884 
1885 	/* For conventional zones, use regular discard if supported */
1886 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1887 	return 0;
1888 }
1889 #endif
1890 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1891 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1892 		struct block_device *bdev, block_t blkstart, block_t blklen)
1893 {
1894 #ifdef CONFIG_BLK_DEV_ZONED
1895 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1896 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1897 #endif
1898 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1899 	return 0;
1900 }
1901 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1902 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1903 				block_t blkstart, block_t blklen)
1904 {
1905 	sector_t start = blkstart, len = 0;
1906 	struct block_device *bdev;
1907 	struct seg_entry *se;
1908 	unsigned int offset;
1909 	block_t i;
1910 	int err = 0;
1911 
1912 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1913 
1914 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1915 		if (i != start) {
1916 			struct block_device *bdev2 =
1917 				f2fs_target_device(sbi, i, NULL);
1918 
1919 			if (bdev2 != bdev) {
1920 				err = __issue_discard_async(sbi, bdev,
1921 						start, len);
1922 				if (err)
1923 					return err;
1924 				bdev = bdev2;
1925 				start = i;
1926 				len = 0;
1927 			}
1928 		}
1929 
1930 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1931 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1932 
1933 		if (f2fs_block_unit_discard(sbi) &&
1934 				!f2fs_test_and_set_bit(offset, se->discard_map))
1935 			sbi->discard_blks--;
1936 	}
1937 
1938 	if (len)
1939 		err = __issue_discard_async(sbi, bdev, start, len);
1940 	return err;
1941 }
1942 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1943 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1944 							bool check_only)
1945 {
1946 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1947 	int max_blocks = sbi->blocks_per_seg;
1948 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1949 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1950 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1951 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1952 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1953 	unsigned int start = 0, end = -1;
1954 	bool force = (cpc->reason & CP_DISCARD);
1955 	struct discard_entry *de = NULL;
1956 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1957 	int i;
1958 
1959 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1960 			!f2fs_block_unit_discard(sbi))
1961 		return false;
1962 
1963 	if (!force) {
1964 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1965 			SM_I(sbi)->dcc_info->nr_discards >=
1966 				SM_I(sbi)->dcc_info->max_discards)
1967 			return false;
1968 	}
1969 
1970 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1971 	for (i = 0; i < entries; i++)
1972 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1973 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1974 
1975 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1976 				SM_I(sbi)->dcc_info->max_discards) {
1977 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1978 		if (start >= max_blocks)
1979 			break;
1980 
1981 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1982 		if (force && start && end != max_blocks
1983 					&& (end - start) < cpc->trim_minlen)
1984 			continue;
1985 
1986 		if (check_only)
1987 			return true;
1988 
1989 		if (!de) {
1990 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1991 						GFP_F2FS_ZERO, true, NULL);
1992 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1993 			list_add_tail(&de->list, head);
1994 		}
1995 
1996 		for (i = start; i < end; i++)
1997 			__set_bit_le(i, (void *)de->discard_map);
1998 
1999 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2000 	}
2001 	return false;
2002 }
2003 
release_discard_addr(struct discard_entry * entry)2004 static void release_discard_addr(struct discard_entry *entry)
2005 {
2006 	list_del(&entry->list);
2007 	kmem_cache_free(discard_entry_slab, entry);
2008 }
2009 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2010 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2011 {
2012 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2013 	struct discard_entry *entry, *this;
2014 
2015 	/* drop caches */
2016 	list_for_each_entry_safe(entry, this, head, list)
2017 		release_discard_addr(entry);
2018 }
2019 
2020 /*
2021  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2022  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2023 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2024 {
2025 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2026 	unsigned int segno;
2027 
2028 	mutex_lock(&dirty_i->seglist_lock);
2029 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2030 		__set_test_and_free(sbi, segno, false);
2031 	mutex_unlock(&dirty_i->seglist_lock);
2032 }
2033 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2034 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2035 						struct cp_control *cpc)
2036 {
2037 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2038 	struct list_head *head = &dcc->entry_list;
2039 	struct discard_entry *entry, *this;
2040 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2041 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2042 	unsigned int start = 0, end = -1;
2043 	unsigned int secno, start_segno;
2044 	bool force = (cpc->reason & CP_DISCARD);
2045 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2046 						DISCARD_UNIT_SECTION;
2047 
2048 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2049 		section_alignment = true;
2050 
2051 	mutex_lock(&dirty_i->seglist_lock);
2052 
2053 	while (1) {
2054 		int i;
2055 
2056 		if (section_alignment && end != -1)
2057 			end--;
2058 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2059 		if (start >= MAIN_SEGS(sbi))
2060 			break;
2061 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2062 								start + 1);
2063 
2064 		if (section_alignment) {
2065 			start = rounddown(start, sbi->segs_per_sec);
2066 			end = roundup(end, sbi->segs_per_sec);
2067 		}
2068 
2069 		for (i = start; i < end; i++) {
2070 			if (test_and_clear_bit(i, prefree_map))
2071 				dirty_i->nr_dirty[PRE]--;
2072 		}
2073 
2074 		if (!f2fs_realtime_discard_enable(sbi))
2075 			continue;
2076 
2077 		if (force && start >= cpc->trim_start &&
2078 					(end - 1) <= cpc->trim_end)
2079 			continue;
2080 
2081 		/* Should cover 2MB zoned device for zone-based reset */
2082 		if (!f2fs_sb_has_blkzoned(sbi) &&
2083 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2084 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2085 				(end - start) << sbi->log_blocks_per_seg);
2086 			continue;
2087 		}
2088 next:
2089 		secno = GET_SEC_FROM_SEG(sbi, start);
2090 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2091 		if (!IS_CURSEC(sbi, secno) &&
2092 			!get_valid_blocks(sbi, start, true))
2093 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2094 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2095 
2096 		start = start_segno + sbi->segs_per_sec;
2097 		if (start < end)
2098 			goto next;
2099 		else
2100 			end = start - 1;
2101 	}
2102 	mutex_unlock(&dirty_i->seglist_lock);
2103 
2104 	if (!f2fs_block_unit_discard(sbi))
2105 		goto wakeup;
2106 
2107 	/* send small discards */
2108 	list_for_each_entry_safe(entry, this, head, list) {
2109 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2110 		bool is_valid = test_bit_le(0, entry->discard_map);
2111 
2112 find_next:
2113 		if (is_valid) {
2114 			next_pos = find_next_zero_bit_le(entry->discard_map,
2115 					sbi->blocks_per_seg, cur_pos);
2116 			len = next_pos - cur_pos;
2117 
2118 			if (f2fs_sb_has_blkzoned(sbi) ||
2119 			    (force && len < cpc->trim_minlen))
2120 				goto skip;
2121 
2122 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2123 									len);
2124 			total_len += len;
2125 		} else {
2126 			next_pos = find_next_bit_le(entry->discard_map,
2127 					sbi->blocks_per_seg, cur_pos);
2128 		}
2129 skip:
2130 		cur_pos = next_pos;
2131 		is_valid = !is_valid;
2132 
2133 		if (cur_pos < sbi->blocks_per_seg)
2134 			goto find_next;
2135 
2136 		release_discard_addr(entry);
2137 		dcc->nr_discards -= total_len;
2138 	}
2139 
2140 wakeup:
2141 	wake_up_discard_thread(sbi, false);
2142 }
2143 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2144 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2145 {
2146 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2147 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2148 	int err = 0;
2149 
2150 	if (!f2fs_realtime_discard_enable(sbi))
2151 		return 0;
2152 
2153 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2154 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2155 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2156 		err = PTR_ERR(dcc->f2fs_issue_discard);
2157 		dcc->f2fs_issue_discard = NULL;
2158 	}
2159 
2160 	return err;
2161 }
2162 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2163 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2164 {
2165 	struct discard_cmd_control *dcc;
2166 	int err = 0, i;
2167 
2168 	if (SM_I(sbi)->dcc_info) {
2169 		dcc = SM_I(sbi)->dcc_info;
2170 		goto init_thread;
2171 	}
2172 
2173 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2174 	if (!dcc)
2175 		return -ENOMEM;
2176 
2177 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2178 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2179 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2180 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2181 		dcc->discard_granularity = sbi->blocks_per_seg;
2182 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2183 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2184 
2185 	INIT_LIST_HEAD(&dcc->entry_list);
2186 	for (i = 0; i < MAX_PLIST_NUM; i++)
2187 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2188 	INIT_LIST_HEAD(&dcc->wait_list);
2189 	INIT_LIST_HEAD(&dcc->fstrim_list);
2190 	mutex_init(&dcc->cmd_lock);
2191 	atomic_set(&dcc->issued_discard, 0);
2192 	atomic_set(&dcc->queued_discard, 0);
2193 	atomic_set(&dcc->discard_cmd_cnt, 0);
2194 	dcc->nr_discards = 0;
2195 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2196 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2197 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2198 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2199 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2200 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2201 	dcc->undiscard_blks = 0;
2202 	dcc->next_pos = 0;
2203 	dcc->root = RB_ROOT_CACHED;
2204 	dcc->rbtree_check = false;
2205 
2206 	init_waitqueue_head(&dcc->discard_wait_queue);
2207 	SM_I(sbi)->dcc_info = dcc;
2208 init_thread:
2209 	err = f2fs_start_discard_thread(sbi);
2210 	if (err) {
2211 		kfree(dcc);
2212 		SM_I(sbi)->dcc_info = NULL;
2213 	}
2214 
2215 	return err;
2216 }
2217 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2218 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2219 {
2220 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2221 
2222 	if (!dcc)
2223 		return;
2224 
2225 	f2fs_stop_discard_thread(sbi);
2226 
2227 	/*
2228 	 * Recovery can cache discard commands, so in error path of
2229 	 * fill_super(), it needs to give a chance to handle them.
2230 	 */
2231 	f2fs_issue_discard_timeout(sbi);
2232 
2233 	kfree(dcc);
2234 	SM_I(sbi)->dcc_info = NULL;
2235 }
2236 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2237 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2238 {
2239 	struct sit_info *sit_i = SIT_I(sbi);
2240 
2241 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2242 		sit_i->dirty_sentries++;
2243 		return false;
2244 	}
2245 
2246 	return true;
2247 }
2248 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2249 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2250 					unsigned int segno, int modified)
2251 {
2252 	struct seg_entry *se = get_seg_entry(sbi, segno);
2253 
2254 	se->type = type;
2255 	if (modified)
2256 		__mark_sit_entry_dirty(sbi, segno);
2257 }
2258 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2259 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2260 								block_t blkaddr)
2261 {
2262 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2263 
2264 	if (segno == NULL_SEGNO)
2265 		return 0;
2266 	return get_seg_entry(sbi, segno)->mtime;
2267 }
2268 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2269 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2270 						unsigned long long old_mtime)
2271 {
2272 	struct seg_entry *se;
2273 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2274 	unsigned long long ctime = get_mtime(sbi, false);
2275 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2276 
2277 	if (segno == NULL_SEGNO)
2278 		return;
2279 
2280 	se = get_seg_entry(sbi, segno);
2281 
2282 	if (!se->mtime)
2283 		se->mtime = mtime;
2284 	else
2285 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2286 						se->valid_blocks + 1);
2287 
2288 	if (ctime > SIT_I(sbi)->max_mtime)
2289 		SIT_I(sbi)->max_mtime = ctime;
2290 }
2291 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2292 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2293 {
2294 	struct seg_entry *se;
2295 	unsigned int segno, offset;
2296 	long int new_vblocks;
2297 	bool exist;
2298 #ifdef CONFIG_F2FS_CHECK_FS
2299 	bool mir_exist;
2300 #endif
2301 
2302 	segno = GET_SEGNO(sbi, blkaddr);
2303 
2304 	se = get_seg_entry(sbi, segno);
2305 	new_vblocks = se->valid_blocks + del;
2306 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2307 
2308 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2309 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2310 
2311 	se->valid_blocks = new_vblocks;
2312 
2313 	/* Update valid block bitmap */
2314 	if (del > 0) {
2315 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2316 #ifdef CONFIG_F2FS_CHECK_FS
2317 		mir_exist = f2fs_test_and_set_bit(offset,
2318 						se->cur_valid_map_mir);
2319 		if (unlikely(exist != mir_exist)) {
2320 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2321 				 blkaddr, exist);
2322 			f2fs_bug_on(sbi, 1);
2323 		}
2324 #endif
2325 		if (unlikely(exist)) {
2326 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2327 				 blkaddr);
2328 			f2fs_bug_on(sbi, 1);
2329 			se->valid_blocks--;
2330 			del = 0;
2331 		}
2332 
2333 		if (f2fs_block_unit_discard(sbi) &&
2334 				!f2fs_test_and_set_bit(offset, se->discard_map))
2335 			sbi->discard_blks--;
2336 
2337 		/*
2338 		 * SSR should never reuse block which is checkpointed
2339 		 * or newly invalidated.
2340 		 */
2341 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2342 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2343 				se->ckpt_valid_blocks++;
2344 		}
2345 	} else {
2346 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2347 #ifdef CONFIG_F2FS_CHECK_FS
2348 		mir_exist = f2fs_test_and_clear_bit(offset,
2349 						se->cur_valid_map_mir);
2350 		if (unlikely(exist != mir_exist)) {
2351 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2352 				 blkaddr, exist);
2353 			f2fs_bug_on(sbi, 1);
2354 		}
2355 #endif
2356 		if (unlikely(!exist)) {
2357 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2358 				 blkaddr);
2359 			f2fs_bug_on(sbi, 1);
2360 			se->valid_blocks++;
2361 			del = 0;
2362 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2363 			/*
2364 			 * If checkpoints are off, we must not reuse data that
2365 			 * was used in the previous checkpoint. If it was used
2366 			 * before, we must track that to know how much space we
2367 			 * really have.
2368 			 */
2369 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2370 				spin_lock(&sbi->stat_lock);
2371 				sbi->unusable_block_count++;
2372 				spin_unlock(&sbi->stat_lock);
2373 			}
2374 		}
2375 
2376 		if (f2fs_block_unit_discard(sbi) &&
2377 			f2fs_test_and_clear_bit(offset, se->discard_map))
2378 			sbi->discard_blks++;
2379 	}
2380 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2381 		se->ckpt_valid_blocks += del;
2382 
2383 	__mark_sit_entry_dirty(sbi, segno);
2384 
2385 	/* update total number of valid blocks to be written in ckpt area */
2386 	SIT_I(sbi)->written_valid_blocks += del;
2387 
2388 	if (__is_large_section(sbi))
2389 		get_sec_entry(sbi, segno)->valid_blocks += del;
2390 }
2391 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2392 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2393 {
2394 	unsigned int segno = GET_SEGNO(sbi, addr);
2395 	struct sit_info *sit_i = SIT_I(sbi);
2396 
2397 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2398 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2399 		return;
2400 
2401 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2402 	f2fs_invalidate_compress_page(sbi, addr);
2403 
2404 	/* add it into sit main buffer */
2405 	down_write(&sit_i->sentry_lock);
2406 
2407 	update_segment_mtime(sbi, addr, 0);
2408 	update_sit_entry(sbi, addr, -1);
2409 
2410 	/* add it into dirty seglist */
2411 	locate_dirty_segment(sbi, segno);
2412 
2413 	up_write(&sit_i->sentry_lock);
2414 }
2415 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2416 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2417 {
2418 	struct sit_info *sit_i = SIT_I(sbi);
2419 	unsigned int segno, offset;
2420 	struct seg_entry *se;
2421 	bool is_cp = false;
2422 
2423 	if (!__is_valid_data_blkaddr(blkaddr))
2424 		return true;
2425 
2426 	down_read(&sit_i->sentry_lock);
2427 
2428 	segno = GET_SEGNO(sbi, blkaddr);
2429 	se = get_seg_entry(sbi, segno);
2430 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2431 
2432 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2433 		is_cp = true;
2434 
2435 	up_read(&sit_i->sentry_lock);
2436 
2437 	return is_cp;
2438 }
2439 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2440 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2441 {
2442 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2443 
2444 	if (sbi->ckpt->alloc_type[type] == SSR)
2445 		return sbi->blocks_per_seg;
2446 	return curseg->next_blkoff;
2447 }
2448 
2449 /*
2450  * Calculate the number of current summary pages for writing
2451  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2452 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2453 {
2454 	int valid_sum_count = 0;
2455 	int i, sum_in_page;
2456 
2457 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2458 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2459 			valid_sum_count +=
2460 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2461 		else
2462 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2463 	}
2464 
2465 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2466 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2467 	if (valid_sum_count <= sum_in_page)
2468 		return 1;
2469 	else if ((valid_sum_count - sum_in_page) <=
2470 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2471 		return 2;
2472 	return 3;
2473 }
2474 
2475 /*
2476  * Caller should put this summary page
2477  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2478 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2479 {
2480 	if (unlikely(f2fs_cp_error(sbi)))
2481 		return ERR_PTR(-EIO);
2482 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2483 }
2484 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2485 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2486 					void *src, block_t blk_addr)
2487 {
2488 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2489 
2490 	memcpy(page_address(page), src, PAGE_SIZE);
2491 	set_page_dirty(page);
2492 	f2fs_put_page(page, 1);
2493 }
2494 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2495 static void write_sum_page(struct f2fs_sb_info *sbi,
2496 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2497 {
2498 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2499 }
2500 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2501 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2502 						int type, block_t blk_addr)
2503 {
2504 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2505 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2506 	struct f2fs_summary_block *src = curseg->sum_blk;
2507 	struct f2fs_summary_block *dst;
2508 
2509 	dst = (struct f2fs_summary_block *)page_address(page);
2510 	memset(dst, 0, PAGE_SIZE);
2511 
2512 	mutex_lock(&curseg->curseg_mutex);
2513 
2514 	down_read(&curseg->journal_rwsem);
2515 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2516 	up_read(&curseg->journal_rwsem);
2517 
2518 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2519 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2520 
2521 	mutex_unlock(&curseg->curseg_mutex);
2522 
2523 	set_page_dirty(page);
2524 	f2fs_put_page(page, 1);
2525 }
2526 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2527 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2528 				struct curseg_info *curseg, int type)
2529 {
2530 	unsigned int segno = curseg->segno + 1;
2531 	struct free_segmap_info *free_i = FREE_I(sbi);
2532 
2533 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2534 		return !test_bit(segno, free_i->free_segmap);
2535 	return 0;
2536 }
2537 
2538 /*
2539  * Find a new segment from the free segments bitmap to right order
2540  * This function should be returned with success, otherwise BUG
2541  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2542 static void get_new_segment(struct f2fs_sb_info *sbi,
2543 			unsigned int *newseg, bool new_sec, int dir)
2544 {
2545 	struct free_segmap_info *free_i = FREE_I(sbi);
2546 	unsigned int segno, secno, zoneno;
2547 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2548 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2549 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2550 	unsigned int left_start = hint;
2551 	bool init = true;
2552 	int go_left = 0;
2553 	int i;
2554 
2555 	spin_lock(&free_i->segmap_lock);
2556 
2557 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2558 		segno = find_next_zero_bit(free_i->free_segmap,
2559 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2560 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2561 			goto got_it;
2562 	}
2563 find_other_zone:
2564 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2565 	if (secno >= MAIN_SECS(sbi)) {
2566 		if (dir == ALLOC_RIGHT) {
2567 			secno = find_next_zero_bit(free_i->free_secmap,
2568 							MAIN_SECS(sbi), 0);
2569 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2570 		} else {
2571 			go_left = 1;
2572 			left_start = hint - 1;
2573 		}
2574 	}
2575 	if (go_left == 0)
2576 		goto skip_left;
2577 
2578 	while (test_bit(left_start, free_i->free_secmap)) {
2579 		if (left_start > 0) {
2580 			left_start--;
2581 			continue;
2582 		}
2583 		left_start = find_next_zero_bit(free_i->free_secmap,
2584 							MAIN_SECS(sbi), 0);
2585 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2586 		break;
2587 	}
2588 	secno = left_start;
2589 skip_left:
2590 	segno = GET_SEG_FROM_SEC(sbi, secno);
2591 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2592 
2593 	/* give up on finding another zone */
2594 	if (!init)
2595 		goto got_it;
2596 	if (sbi->secs_per_zone == 1)
2597 		goto got_it;
2598 	if (zoneno == old_zoneno)
2599 		goto got_it;
2600 	if (dir == ALLOC_LEFT) {
2601 		if (!go_left && zoneno + 1 >= total_zones)
2602 			goto got_it;
2603 		if (go_left && zoneno == 0)
2604 			goto got_it;
2605 	}
2606 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2607 		if (CURSEG_I(sbi, i)->zone == zoneno)
2608 			break;
2609 
2610 	if (i < NR_CURSEG_TYPE) {
2611 		/* zone is in user, try another */
2612 		if (go_left)
2613 			hint = zoneno * sbi->secs_per_zone - 1;
2614 		else if (zoneno + 1 >= total_zones)
2615 			hint = 0;
2616 		else
2617 			hint = (zoneno + 1) * sbi->secs_per_zone;
2618 		init = false;
2619 		goto find_other_zone;
2620 	}
2621 got_it:
2622 	/* set it as dirty segment in free segmap */
2623 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2624 	__set_inuse(sbi, segno);
2625 	*newseg = segno;
2626 	spin_unlock(&free_i->segmap_lock);
2627 }
2628 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2629 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2630 {
2631 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2632 	struct summary_footer *sum_footer;
2633 	unsigned short seg_type = curseg->seg_type;
2634 
2635 	curseg->inited = true;
2636 	curseg->segno = curseg->next_segno;
2637 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2638 	curseg->next_blkoff = 0;
2639 	curseg->next_segno = NULL_SEGNO;
2640 
2641 	sum_footer = &(curseg->sum_blk->footer);
2642 	memset(sum_footer, 0, sizeof(struct summary_footer));
2643 
2644 	sanity_check_seg_type(sbi, seg_type);
2645 
2646 	if (IS_DATASEG(seg_type))
2647 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2648 	if (IS_NODESEG(seg_type))
2649 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2650 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2651 }
2652 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2653 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2654 {
2655 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2656 	unsigned short seg_type = curseg->seg_type;
2657 
2658 	sanity_check_seg_type(sbi, seg_type);
2659 	if (f2fs_need_rand_seg(sbi))
2660 		return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2661 
2662 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2663 	if (__is_large_section(sbi))
2664 		return curseg->segno;
2665 
2666 	/* inmem log may not locate on any segment after mount */
2667 	if (!curseg->inited)
2668 		return 0;
2669 
2670 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2671 		return 0;
2672 
2673 	if (test_opt(sbi, NOHEAP) &&
2674 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2675 		return 0;
2676 
2677 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2678 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2679 
2680 	/* find segments from 0 to reuse freed segments */
2681 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2682 		return 0;
2683 
2684 	return curseg->segno;
2685 }
2686 
2687 /*
2688  * Allocate a current working segment.
2689  * This function always allocates a free segment in LFS manner.
2690  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2691 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2692 {
2693 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2694 	unsigned short seg_type = curseg->seg_type;
2695 	unsigned int segno = curseg->segno;
2696 	int dir = ALLOC_LEFT;
2697 
2698 	if (curseg->inited)
2699 		write_sum_page(sbi, curseg->sum_blk,
2700 				GET_SUM_BLOCK(sbi, segno));
2701 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2702 		dir = ALLOC_RIGHT;
2703 
2704 	if (test_opt(sbi, NOHEAP))
2705 		dir = ALLOC_RIGHT;
2706 
2707 	segno = __get_next_segno(sbi, type);
2708 	get_new_segment(sbi, &segno, new_sec, dir);
2709 	curseg->next_segno = segno;
2710 	reset_curseg(sbi, type, 1);
2711 	curseg->alloc_type = LFS;
2712 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2713 		curseg->fragment_remained_chunk =
2714 				prandom_u32() % sbi->max_fragment_chunk + 1;
2715 }
2716 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2717 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2718 					int segno, block_t start)
2719 {
2720 	struct seg_entry *se = get_seg_entry(sbi, segno);
2721 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2722 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2723 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2724 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2725 	int i;
2726 
2727 	for (i = 0; i < entries; i++)
2728 		target_map[i] = ckpt_map[i] | cur_map[i];
2729 
2730 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2731 }
2732 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)2733 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2734 		struct curseg_info *seg)
2735 {
2736 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2737 }
2738 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2739 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2740 {
2741 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2742 }
2743 
2744 /*
2745  * This function always allocates a used segment(from dirty seglist) by SSR
2746  * manner, so it should recover the existing segment information of valid blocks
2747  */
change_curseg(struct f2fs_sb_info * sbi,int type)2748 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2749 {
2750 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2751 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2752 	unsigned int new_segno = curseg->next_segno;
2753 	struct f2fs_summary_block *sum_node;
2754 	struct page *sum_page;
2755 
2756 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2757 
2758 	__set_test_and_inuse(sbi, new_segno);
2759 
2760 	mutex_lock(&dirty_i->seglist_lock);
2761 	__remove_dirty_segment(sbi, new_segno, PRE);
2762 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2763 	mutex_unlock(&dirty_i->seglist_lock);
2764 
2765 	reset_curseg(sbi, type, 1);
2766 	curseg->alloc_type = SSR;
2767 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2768 
2769 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2770 	if (IS_ERR(sum_page)) {
2771 		/* GC won't be able to use stale summary pages by cp_error */
2772 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2773 		return;
2774 	}
2775 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2776 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2777 	f2fs_put_page(sum_page, 1);
2778 }
2779 
2780 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2781 				int alloc_mode, unsigned long long age);
2782 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2783 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2784 					int target_type, int alloc_mode,
2785 					unsigned long long age)
2786 {
2787 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2788 
2789 	curseg->seg_type = target_type;
2790 
2791 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2792 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2793 
2794 		curseg->seg_type = se->type;
2795 		change_curseg(sbi, type);
2796 	} else {
2797 		/* allocate cold segment by default */
2798 		curseg->seg_type = CURSEG_COLD_DATA;
2799 		new_curseg(sbi, type, true);
2800 	}
2801 	stat_inc_seg_type(sbi, curseg);
2802 }
2803 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2804 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2805 {
2806 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2807 
2808 	if (!sbi->am.atgc_enabled)
2809 		return;
2810 
2811 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2812 
2813 	mutex_lock(&curseg->curseg_mutex);
2814 	down_write(&SIT_I(sbi)->sentry_lock);
2815 
2816 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2817 
2818 	up_write(&SIT_I(sbi)->sentry_lock);
2819 	mutex_unlock(&curseg->curseg_mutex);
2820 
2821 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2822 
2823 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2824 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2825 {
2826 	__f2fs_init_atgc_curseg(sbi);
2827 }
2828 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2829 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2830 {
2831 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2832 
2833 	mutex_lock(&curseg->curseg_mutex);
2834 	if (!curseg->inited)
2835 		goto out;
2836 
2837 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2838 		write_sum_page(sbi, curseg->sum_blk,
2839 				GET_SUM_BLOCK(sbi, curseg->segno));
2840 	} else {
2841 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2842 		__set_test_and_free(sbi, curseg->segno, true);
2843 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2844 	}
2845 out:
2846 	mutex_unlock(&curseg->curseg_mutex);
2847 }
2848 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2849 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2850 {
2851 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2852 
2853 	if (sbi->am.atgc_enabled)
2854 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2855 }
2856 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2857 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2858 {
2859 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2860 
2861 	mutex_lock(&curseg->curseg_mutex);
2862 	if (!curseg->inited)
2863 		goto out;
2864 	if (get_valid_blocks(sbi, curseg->segno, false))
2865 		goto out;
2866 
2867 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2868 	__set_test_and_inuse(sbi, curseg->segno);
2869 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2870 out:
2871 	mutex_unlock(&curseg->curseg_mutex);
2872 }
2873 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2874 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2875 {
2876 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2877 
2878 	if (sbi->am.atgc_enabled)
2879 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2880 }
2881 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2882 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2883 				int alloc_mode, unsigned long long age)
2884 {
2885 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2886 	unsigned segno = NULL_SEGNO;
2887 	unsigned short seg_type = curseg->seg_type;
2888 	int i, cnt;
2889 	bool reversed = false;
2890 
2891 	sanity_check_seg_type(sbi, seg_type);
2892 
2893 	/* f2fs_need_SSR() already forces to do this */
2894 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2895 		curseg->next_segno = segno;
2896 		return 1;
2897 	}
2898 
2899 	/* For node segments, let's do SSR more intensively */
2900 	if (IS_NODESEG(seg_type)) {
2901 		if (seg_type >= CURSEG_WARM_NODE) {
2902 			reversed = true;
2903 			i = CURSEG_COLD_NODE;
2904 		} else {
2905 			i = CURSEG_HOT_NODE;
2906 		}
2907 		cnt = NR_CURSEG_NODE_TYPE;
2908 	} else {
2909 		if (seg_type >= CURSEG_WARM_DATA) {
2910 			reversed = true;
2911 			i = CURSEG_COLD_DATA;
2912 		} else {
2913 			i = CURSEG_HOT_DATA;
2914 		}
2915 		cnt = NR_CURSEG_DATA_TYPE;
2916 	}
2917 
2918 	for (; cnt-- > 0; reversed ? i-- : i++) {
2919 		if (i == seg_type)
2920 			continue;
2921 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2922 			curseg->next_segno = segno;
2923 			return 1;
2924 		}
2925 	}
2926 
2927 	/* find valid_blocks=0 in dirty list */
2928 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2929 		segno = get_free_segment(sbi);
2930 		if (segno != NULL_SEGNO) {
2931 			curseg->next_segno = segno;
2932 			return 1;
2933 		}
2934 	}
2935 	return 0;
2936 }
2937 
need_new_seg(struct f2fs_sb_info * sbi,int type)2938 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2939 {
2940 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 
2942 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2943 	    curseg->seg_type == CURSEG_WARM_NODE)
2944 		return true;
2945 	if (curseg->alloc_type == LFS &&
2946 	    is_next_segment_free(sbi, curseg, type) &&
2947 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2948 		return true;
2949 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2950 		return true;
2951 	return false;
2952 }
2953 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2954 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2955 					unsigned int start, unsigned int end)
2956 {
2957 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2958 	unsigned int segno;
2959 
2960 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2961 	mutex_lock(&curseg->curseg_mutex);
2962 	down_write(&SIT_I(sbi)->sentry_lock);
2963 
2964 	segno = CURSEG_I(sbi, type)->segno;
2965 	if (segno < start || segno > end)
2966 		goto unlock;
2967 
2968 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2969 		change_curseg(sbi, type);
2970 	else
2971 		new_curseg(sbi, type, true);
2972 
2973 	stat_inc_seg_type(sbi, curseg);
2974 
2975 	locate_dirty_segment(sbi, segno);
2976 unlock:
2977 	up_write(&SIT_I(sbi)->sentry_lock);
2978 
2979 	if (segno != curseg->segno)
2980 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2981 			    type, segno, curseg->segno);
2982 
2983 	mutex_unlock(&curseg->curseg_mutex);
2984 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2985 }
2986 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2987 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2988 						bool new_sec, bool force)
2989 {
2990 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2991 	unsigned int old_segno;
2992 
2993 	if (!force && curseg->inited &&
2994 	    !curseg->next_blkoff &&
2995 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
2996 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2997 		return;
2998 
2999 	old_segno = curseg->segno;
3000 	new_curseg(sbi, type, true);
3001 	stat_inc_seg_type(sbi, curseg);
3002 	locate_dirty_segment(sbi, old_segno);
3003 }
3004 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3005 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3006 {
3007 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3008 	down_write(&SIT_I(sbi)->sentry_lock);
3009 	__allocate_new_segment(sbi, type, true, force);
3010 	up_write(&SIT_I(sbi)->sentry_lock);
3011 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3012 }
3013 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3014 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3015 {
3016 	int i;
3017 
3018 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3019 	down_write(&SIT_I(sbi)->sentry_lock);
3020 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3021 		__allocate_new_segment(sbi, i, false, false);
3022 	up_write(&SIT_I(sbi)->sentry_lock);
3023 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3024 }
3025 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3026 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3027 						struct cp_control *cpc)
3028 {
3029 	__u64 trim_start = cpc->trim_start;
3030 	bool has_candidate = false;
3031 
3032 	down_write(&SIT_I(sbi)->sentry_lock);
3033 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3034 		if (add_discard_addrs(sbi, cpc, true)) {
3035 			has_candidate = true;
3036 			break;
3037 		}
3038 	}
3039 	up_write(&SIT_I(sbi)->sentry_lock);
3040 
3041 	cpc->trim_start = trim_start;
3042 	return has_candidate;
3043 }
3044 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3045 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3046 					struct discard_policy *dpolicy,
3047 					unsigned int start, unsigned int end)
3048 {
3049 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3050 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3051 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3052 	struct discard_cmd *dc;
3053 	struct blk_plug plug;
3054 	int issued;
3055 	unsigned int trimmed = 0;
3056 
3057 next:
3058 	issued = 0;
3059 
3060 	mutex_lock(&dcc->cmd_lock);
3061 	if (unlikely(dcc->rbtree_check))
3062 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3063 
3064 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3065 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3066 	if (!dc)
3067 		dc = next_dc;
3068 
3069 	blk_start_plug(&plug);
3070 
3071 	while (dc && dc->di.lstart <= end) {
3072 		struct rb_node *node;
3073 		int err = 0;
3074 
3075 		if (dc->di.len < dpolicy->granularity)
3076 			goto skip;
3077 
3078 		if (dc->state != D_PREP) {
3079 			list_move_tail(&dc->list, &dcc->fstrim_list);
3080 			goto skip;
3081 		}
3082 
3083 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3084 
3085 		if (issued >= dpolicy->max_requests) {
3086 			start = dc->di.lstart + dc->di.len;
3087 
3088 			if (err)
3089 				__remove_discard_cmd(sbi, dc);
3090 
3091 			blk_finish_plug(&plug);
3092 			mutex_unlock(&dcc->cmd_lock);
3093 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3094 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3095 			goto next;
3096 		}
3097 skip:
3098 		node = rb_next(&dc->rb_node);
3099 		if (err)
3100 			__remove_discard_cmd(sbi, dc);
3101 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3102 
3103 		if (fatal_signal_pending(current))
3104 			break;
3105 	}
3106 
3107 	blk_finish_plug(&plug);
3108 	mutex_unlock(&dcc->cmd_lock);
3109 
3110 	return trimmed;
3111 }
3112 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3113 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3114 {
3115 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3116 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3117 	unsigned int start_segno, end_segno;
3118 	block_t start_block, end_block;
3119 	struct cp_control cpc;
3120 	struct discard_policy dpolicy;
3121 	unsigned long long trimmed = 0;
3122 	int err = 0;
3123 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3124 
3125 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3126 		return -EINVAL;
3127 
3128 	if (end < MAIN_BLKADDR(sbi))
3129 		goto out;
3130 
3131 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3132 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3133 		return -EFSCORRUPTED;
3134 	}
3135 
3136 	/* start/end segment number in main_area */
3137 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3138 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3139 						GET_SEGNO(sbi, end);
3140 	if (need_align) {
3141 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3142 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3143 	}
3144 
3145 	cpc.reason = CP_DISCARD;
3146 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3147 	cpc.trim_start = start_segno;
3148 	cpc.trim_end = end_segno;
3149 
3150 	if (sbi->discard_blks == 0)
3151 		goto out;
3152 
3153 	f2fs_down_write(&sbi->gc_lock);
3154 	err = f2fs_write_checkpoint(sbi, &cpc);
3155 	f2fs_up_write(&sbi->gc_lock);
3156 	if (err)
3157 		goto out;
3158 
3159 	/*
3160 	 * We filed discard candidates, but actually we don't need to wait for
3161 	 * all of them, since they'll be issued in idle time along with runtime
3162 	 * discard option. User configuration looks like using runtime discard
3163 	 * or periodic fstrim instead of it.
3164 	 */
3165 	if (f2fs_realtime_discard_enable(sbi))
3166 		goto out;
3167 
3168 	start_block = START_BLOCK(sbi, start_segno);
3169 	end_block = START_BLOCK(sbi, end_segno + 1);
3170 
3171 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3172 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3173 					start_block, end_block);
3174 
3175 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3176 					start_block, end_block);
3177 out:
3178 	if (!err)
3179 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3180 	return err;
3181 }
3182 
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3183 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3184 {
3185 	switch (hint) {
3186 	case WRITE_LIFE_SHORT:
3187 		return CURSEG_HOT_DATA;
3188 	case WRITE_LIFE_EXTREME:
3189 		return CURSEG_COLD_DATA;
3190 	default:
3191 		return CURSEG_WARM_DATA;
3192 	}
3193 }
3194 
__get_segment_type_2(struct f2fs_io_info * fio)3195 static int __get_segment_type_2(struct f2fs_io_info *fio)
3196 {
3197 	if (fio->type == DATA)
3198 		return CURSEG_HOT_DATA;
3199 	else
3200 		return CURSEG_HOT_NODE;
3201 }
3202 
__get_segment_type_4(struct f2fs_io_info * fio)3203 static int __get_segment_type_4(struct f2fs_io_info *fio)
3204 {
3205 	if (fio->type == DATA) {
3206 		struct inode *inode = fio->page->mapping->host;
3207 
3208 		if (S_ISDIR(inode->i_mode))
3209 			return CURSEG_HOT_DATA;
3210 		else
3211 			return CURSEG_COLD_DATA;
3212 	} else {
3213 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3214 			return CURSEG_WARM_NODE;
3215 		else
3216 			return CURSEG_COLD_NODE;
3217 	}
3218 }
3219 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3220 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3221 {
3222 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3223 	struct extent_info ei = {};
3224 
3225 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3226 		if (!ei.age)
3227 			return NO_CHECK_TYPE;
3228 		if (ei.age <= sbi->hot_data_age_threshold)
3229 			return CURSEG_HOT_DATA;
3230 		if (ei.age <= sbi->warm_data_age_threshold)
3231 			return CURSEG_WARM_DATA;
3232 		return CURSEG_COLD_DATA;
3233 	}
3234 	return NO_CHECK_TYPE;
3235 }
3236 
__get_segment_type_6(struct f2fs_io_info * fio)3237 static int __get_segment_type_6(struct f2fs_io_info *fio)
3238 {
3239 	if (fio->type == DATA) {
3240 		struct inode *inode = fio->page->mapping->host;
3241 		int type;
3242 
3243 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3244 			return CURSEG_COLD_DATA_PINNED;
3245 
3246 		if (page_private_gcing(fio->page)) {
3247 			if (fio->sbi->am.atgc_enabled &&
3248 				(fio->io_type == FS_DATA_IO) &&
3249 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3250 				return CURSEG_ALL_DATA_ATGC;
3251 			else
3252 				return CURSEG_COLD_DATA;
3253 		}
3254 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3255 			return CURSEG_COLD_DATA;
3256 
3257 		type = __get_age_segment_type(inode, fio->page->index);
3258 		if (type != NO_CHECK_TYPE)
3259 			return type;
3260 
3261 		if (file_is_hot(inode) ||
3262 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3263 				f2fs_is_cow_file(inode))
3264 			return CURSEG_HOT_DATA;
3265 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3266 	} else {
3267 		if (IS_DNODE(fio->page))
3268 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3269 						CURSEG_HOT_NODE;
3270 		return CURSEG_COLD_NODE;
3271 	}
3272 }
3273 
__get_segment_type(struct f2fs_io_info * fio)3274 static int __get_segment_type(struct f2fs_io_info *fio)
3275 {
3276 	int type = 0;
3277 
3278 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3279 	case 2:
3280 		type = __get_segment_type_2(fio);
3281 		break;
3282 	case 4:
3283 		type = __get_segment_type_4(fio);
3284 		break;
3285 	case 6:
3286 		type = __get_segment_type_6(fio);
3287 		break;
3288 	default:
3289 		f2fs_bug_on(fio->sbi, true);
3290 	}
3291 
3292 	if (IS_HOT(type))
3293 		fio->temp = HOT;
3294 	else if (IS_WARM(type))
3295 		fio->temp = WARM;
3296 	else
3297 		fio->temp = COLD;
3298 	return type;
3299 }
3300 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3301 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3302 		struct curseg_info *seg)
3303 {
3304 	/* To allocate block chunks in different sizes, use random number */
3305 	if (--seg->fragment_remained_chunk > 0)
3306 		return;
3307 
3308 	seg->fragment_remained_chunk =
3309 		prandom_u32() % sbi->max_fragment_chunk + 1;
3310 	seg->next_blkoff +=
3311 		prandom_u32() % sbi->max_fragment_hole + 1;
3312 }
3313 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3314 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3315 		block_t old_blkaddr, block_t *new_blkaddr,
3316 		struct f2fs_summary *sum, int type,
3317 		struct f2fs_io_info *fio)
3318 {
3319 	struct sit_info *sit_i = SIT_I(sbi);
3320 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3321 	unsigned long long old_mtime;
3322 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3323 	struct seg_entry *se = NULL;
3324 	bool segment_full = false;
3325 
3326 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3327 
3328 	mutex_lock(&curseg->curseg_mutex);
3329 	down_write(&sit_i->sentry_lock);
3330 
3331 	if (from_gc) {
3332 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3333 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3334 		sanity_check_seg_type(sbi, se->type);
3335 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3336 	}
3337 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3338 
3339 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3340 
3341 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3342 
3343 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3344 	if (curseg->alloc_type == SSR) {
3345 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3346 	} else {
3347 		curseg->next_blkoff++;
3348 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3349 			f2fs_randomize_chunk(sbi, curseg);
3350 	}
3351 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3352 		segment_full = true;
3353 	stat_inc_block_count(sbi, curseg);
3354 
3355 	if (from_gc) {
3356 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3357 	} else {
3358 		update_segment_mtime(sbi, old_blkaddr, 0);
3359 		old_mtime = 0;
3360 	}
3361 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3362 
3363 	/*
3364 	 * SIT information should be updated before segment allocation,
3365 	 * since SSR needs latest valid block information.
3366 	 */
3367 	update_sit_entry(sbi, *new_blkaddr, 1);
3368 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3369 		update_sit_entry(sbi, old_blkaddr, -1);
3370 
3371 	/*
3372 	 * If the current segment is full, flush it out and replace it with a
3373 	 * new segment.
3374 	 */
3375 	if (segment_full) {
3376 		if (from_gc) {
3377 			get_atssr_segment(sbi, type, se->type,
3378 						AT_SSR, se->mtime);
3379 		} else {
3380 			if (need_new_seg(sbi, type))
3381 				new_curseg(sbi, type, false);
3382 			else
3383 				change_curseg(sbi, type);
3384 			stat_inc_seg_type(sbi, curseg);
3385 		}
3386 	}
3387 	/*
3388 	 * segment dirty status should be updated after segment allocation,
3389 	 * so we just need to update status only one time after previous
3390 	 * segment being closed.
3391 	 */
3392 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3393 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3394 
3395 	if (IS_DATASEG(type))
3396 		atomic64_inc(&sbi->allocated_data_blocks);
3397 
3398 	up_write(&sit_i->sentry_lock);
3399 
3400 	if (page && IS_NODESEG(type)) {
3401 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3402 
3403 		f2fs_inode_chksum_set(sbi, page);
3404 	}
3405 
3406 	if (fio) {
3407 		struct f2fs_bio_info *io;
3408 
3409 		if (F2FS_IO_ALIGNED(sbi))
3410 			fio->retry = 0;
3411 
3412 		INIT_LIST_HEAD(&fio->list);
3413 		fio->in_list = 1;
3414 		io = sbi->write_io[fio->type] + fio->temp;
3415 		spin_lock(&io->io_lock);
3416 		list_add_tail(&fio->list, &io->io_list);
3417 		spin_unlock(&io->io_lock);
3418 	}
3419 
3420 	mutex_unlock(&curseg->curseg_mutex);
3421 
3422 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3423 }
3424 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3425 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3426 					block_t blkaddr, unsigned int blkcnt)
3427 {
3428 	if (!f2fs_is_multi_device(sbi))
3429 		return;
3430 
3431 	while (1) {
3432 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3433 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3434 
3435 		/* update device state for fsync */
3436 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3437 
3438 		/* update device state for checkpoint */
3439 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3440 			spin_lock(&sbi->dev_lock);
3441 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3442 			spin_unlock(&sbi->dev_lock);
3443 		}
3444 
3445 		if (blkcnt <= blks)
3446 			break;
3447 		blkcnt -= blks;
3448 		blkaddr += blks;
3449 	}
3450 }
3451 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3452 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3453 {
3454 	int type = __get_segment_type(fio);
3455 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3456 
3457 	if (keep_order)
3458 		f2fs_down_read(&fio->sbi->io_order_lock);
3459 reallocate:
3460 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3461 			&fio->new_blkaddr, sum, type, fio);
3462 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3463 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3464 					fio->old_blkaddr, fio->old_blkaddr);
3465 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3466 	}
3467 
3468 	/* writeout dirty page into bdev */
3469 	f2fs_submit_page_write(fio);
3470 	if (fio->retry) {
3471 		fio->old_blkaddr = fio->new_blkaddr;
3472 		goto reallocate;
3473 	}
3474 
3475 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3476 
3477 	if (keep_order)
3478 		f2fs_up_read(&fio->sbi->io_order_lock);
3479 }
3480 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3481 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3482 					enum iostat_type io_type)
3483 {
3484 	struct f2fs_io_info fio = {
3485 		.sbi = sbi,
3486 		.type = META,
3487 		.temp = HOT,
3488 		.op = REQ_OP_WRITE,
3489 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3490 		.old_blkaddr = page->index,
3491 		.new_blkaddr = page->index,
3492 		.page = page,
3493 		.encrypted_page = NULL,
3494 		.in_list = 0,
3495 	};
3496 
3497 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3498 		fio.op_flags &= ~REQ_META;
3499 
3500 	set_page_writeback(page);
3501 	f2fs_submit_page_write(&fio);
3502 
3503 	stat_inc_meta_count(sbi, page->index);
3504 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3505 }
3506 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3507 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3508 {
3509 	struct f2fs_summary sum;
3510 
3511 	set_summary(&sum, nid, 0, 0);
3512 	do_write_page(&sum, fio);
3513 
3514 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3515 }
3516 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3517 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3518 					struct f2fs_io_info *fio)
3519 {
3520 	struct f2fs_sb_info *sbi = fio->sbi;
3521 	struct f2fs_summary sum;
3522 
3523 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3524 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3525 		f2fs_update_age_extent_cache(dn);
3526 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3527 	do_write_page(&sum, fio);
3528 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3529 
3530 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3531 }
3532 
f2fs_inplace_write_data(struct f2fs_io_info * fio)3533 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3534 {
3535 	int err;
3536 	struct f2fs_sb_info *sbi = fio->sbi;
3537 	unsigned int segno;
3538 
3539 	fio->new_blkaddr = fio->old_blkaddr;
3540 	/* i/o temperature is needed for passing down write hints */
3541 	__get_segment_type(fio);
3542 
3543 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3544 
3545 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3546 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3547 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3548 			  __func__, segno);
3549 		err = -EFSCORRUPTED;
3550 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3551 		goto drop_bio;
3552 	}
3553 
3554 	if (f2fs_cp_error(sbi)) {
3555 		err = -EIO;
3556 		goto drop_bio;
3557 	}
3558 
3559 	if (fio->post_read)
3560 		invalidate_mapping_pages(META_MAPPING(sbi),
3561 				fio->new_blkaddr, fio->new_blkaddr);
3562 
3563 	stat_inc_inplace_blocks(fio->sbi);
3564 
3565 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3566 		err = f2fs_merge_page_bio(fio);
3567 	else
3568 		err = f2fs_submit_page_bio(fio);
3569 	if (!err) {
3570 		f2fs_update_device_state(fio->sbi, fio->ino,
3571 						fio->new_blkaddr, 1);
3572 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3573 						fio->io_type, F2FS_BLKSIZE);
3574 	}
3575 
3576 	return err;
3577 drop_bio:
3578 	if (fio->bio && *(fio->bio)) {
3579 		struct bio *bio = *(fio->bio);
3580 
3581 		bio->bi_status = BLK_STS_IOERR;
3582 		bio_endio(bio);
3583 		*(fio->bio) = NULL;
3584 	}
3585 	return err;
3586 }
3587 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3588 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3589 						unsigned int segno)
3590 {
3591 	int i;
3592 
3593 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3594 		if (CURSEG_I(sbi, i)->segno == segno)
3595 			break;
3596 	}
3597 	return i;
3598 }
3599 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3600 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3601 				block_t old_blkaddr, block_t new_blkaddr,
3602 				bool recover_curseg, bool recover_newaddr,
3603 				bool from_gc)
3604 {
3605 	struct sit_info *sit_i = SIT_I(sbi);
3606 	struct curseg_info *curseg;
3607 	unsigned int segno, old_cursegno;
3608 	struct seg_entry *se;
3609 	int type;
3610 	unsigned short old_blkoff;
3611 	unsigned char old_alloc_type;
3612 
3613 	segno = GET_SEGNO(sbi, new_blkaddr);
3614 	se = get_seg_entry(sbi, segno);
3615 	type = se->type;
3616 
3617 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3618 
3619 	if (!recover_curseg) {
3620 		/* for recovery flow */
3621 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3622 			if (old_blkaddr == NULL_ADDR)
3623 				type = CURSEG_COLD_DATA;
3624 			else
3625 				type = CURSEG_WARM_DATA;
3626 		}
3627 	} else {
3628 		if (IS_CURSEG(sbi, segno)) {
3629 			/* se->type is volatile as SSR allocation */
3630 			type = __f2fs_get_curseg(sbi, segno);
3631 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3632 		} else {
3633 			type = CURSEG_WARM_DATA;
3634 		}
3635 	}
3636 
3637 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3638 	curseg = CURSEG_I(sbi, type);
3639 
3640 	mutex_lock(&curseg->curseg_mutex);
3641 	down_write(&sit_i->sentry_lock);
3642 
3643 	old_cursegno = curseg->segno;
3644 	old_blkoff = curseg->next_blkoff;
3645 	old_alloc_type = curseg->alloc_type;
3646 
3647 	/* change the current segment */
3648 	if (segno != curseg->segno) {
3649 		curseg->next_segno = segno;
3650 		change_curseg(sbi, type);
3651 	}
3652 
3653 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3654 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3655 
3656 	if (!recover_curseg || recover_newaddr) {
3657 		if (!from_gc)
3658 			update_segment_mtime(sbi, new_blkaddr, 0);
3659 		update_sit_entry(sbi, new_blkaddr, 1);
3660 	}
3661 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3662 		invalidate_mapping_pages(META_MAPPING(sbi),
3663 					old_blkaddr, old_blkaddr);
3664 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3665 		if (!from_gc)
3666 			update_segment_mtime(sbi, old_blkaddr, 0);
3667 		update_sit_entry(sbi, old_blkaddr, -1);
3668 	}
3669 
3670 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3671 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3672 
3673 	locate_dirty_segment(sbi, old_cursegno);
3674 
3675 	if (recover_curseg) {
3676 		if (old_cursegno != curseg->segno) {
3677 			curseg->next_segno = old_cursegno;
3678 			change_curseg(sbi, type);
3679 		}
3680 		curseg->next_blkoff = old_blkoff;
3681 		curseg->alloc_type = old_alloc_type;
3682 	}
3683 
3684 	up_write(&sit_i->sentry_lock);
3685 	mutex_unlock(&curseg->curseg_mutex);
3686 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3687 }
3688 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3689 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3690 				block_t old_addr, block_t new_addr,
3691 				unsigned char version, bool recover_curseg,
3692 				bool recover_newaddr)
3693 {
3694 	struct f2fs_summary sum;
3695 
3696 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3697 
3698 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3699 					recover_curseg, recover_newaddr, false);
3700 
3701 	f2fs_update_data_blkaddr(dn, new_addr);
3702 }
3703 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3704 void f2fs_wait_on_page_writeback(struct page *page,
3705 				enum page_type type, bool ordered, bool locked)
3706 {
3707 	if (PageWriteback(page)) {
3708 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3709 
3710 		/* submit cached LFS IO */
3711 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3712 		/* submit cached IPU IO */
3713 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3714 		if (ordered) {
3715 			wait_on_page_writeback(page);
3716 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3717 		} else {
3718 			wait_for_stable_page(page);
3719 		}
3720 	}
3721 }
3722 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3723 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3724 {
3725 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3726 	struct page *cpage;
3727 
3728 	if (!f2fs_post_read_required(inode))
3729 		return;
3730 
3731 	if (!__is_valid_data_blkaddr(blkaddr))
3732 		return;
3733 
3734 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3735 	if (cpage) {
3736 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3737 		f2fs_put_page(cpage, 1);
3738 	}
3739 }
3740 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3741 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3742 								block_t len)
3743 {
3744 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3745 	block_t i;
3746 
3747 	if (!f2fs_post_read_required(inode))
3748 		return;
3749 
3750 	for (i = 0; i < len; i++)
3751 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3752 
3753 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3754 }
3755 
read_compacted_summaries(struct f2fs_sb_info * sbi)3756 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757 {
3758 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759 	struct curseg_info *seg_i;
3760 	unsigned char *kaddr;
3761 	struct page *page;
3762 	block_t start;
3763 	int i, j, offset;
3764 
3765 	start = start_sum_block(sbi);
3766 
3767 	page = f2fs_get_meta_page(sbi, start++);
3768 	if (IS_ERR(page))
3769 		return PTR_ERR(page);
3770 	kaddr = (unsigned char *)page_address(page);
3771 
3772 	/* Step 1: restore nat cache */
3773 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775 
3776 	/* Step 2: restore sit cache */
3777 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779 	offset = 2 * SUM_JOURNAL_SIZE;
3780 
3781 	/* Step 3: restore summary entries */
3782 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783 		unsigned short blk_off;
3784 		unsigned int segno;
3785 
3786 		seg_i = CURSEG_I(sbi, i);
3787 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789 		seg_i->next_segno = segno;
3790 		reset_curseg(sbi, i, 0);
3791 		seg_i->alloc_type = ckpt->alloc_type[i];
3792 		seg_i->next_blkoff = blk_off;
3793 
3794 		if (seg_i->alloc_type == SSR)
3795 			blk_off = sbi->blocks_per_seg;
3796 
3797 		for (j = 0; j < blk_off; j++) {
3798 			struct f2fs_summary *s;
3799 
3800 			s = (struct f2fs_summary *)(kaddr + offset);
3801 			seg_i->sum_blk->entries[j] = *s;
3802 			offset += SUMMARY_SIZE;
3803 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804 						SUM_FOOTER_SIZE)
3805 				continue;
3806 
3807 			f2fs_put_page(page, 1);
3808 			page = NULL;
3809 
3810 			page = f2fs_get_meta_page(sbi, start++);
3811 			if (IS_ERR(page))
3812 				return PTR_ERR(page);
3813 			kaddr = (unsigned char *)page_address(page);
3814 			offset = 0;
3815 		}
3816 	}
3817 	f2fs_put_page(page, 1);
3818 	return 0;
3819 }
3820 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3821 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822 {
3823 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824 	struct f2fs_summary_block *sum;
3825 	struct curseg_info *curseg;
3826 	struct page *new;
3827 	unsigned short blk_off;
3828 	unsigned int segno = 0;
3829 	block_t blk_addr = 0;
3830 	int err = 0;
3831 
3832 	/* get segment number and block addr */
3833 	if (IS_DATASEG(type)) {
3834 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836 							CURSEG_HOT_DATA]);
3837 		if (__exist_node_summaries(sbi))
3838 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839 		else
3840 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841 	} else {
3842 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843 							CURSEG_HOT_NODE]);
3844 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845 							CURSEG_HOT_NODE]);
3846 		if (__exist_node_summaries(sbi))
3847 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848 							type - CURSEG_HOT_NODE);
3849 		else
3850 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3851 	}
3852 
3853 	new = f2fs_get_meta_page(sbi, blk_addr);
3854 	if (IS_ERR(new))
3855 		return PTR_ERR(new);
3856 	sum = (struct f2fs_summary_block *)page_address(new);
3857 
3858 	if (IS_NODESEG(type)) {
3859 		if (__exist_node_summaries(sbi)) {
3860 			struct f2fs_summary *ns = &sum->entries[0];
3861 			int i;
3862 
3863 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864 				ns->version = 0;
3865 				ns->ofs_in_node = 0;
3866 			}
3867 		} else {
3868 			err = f2fs_restore_node_summary(sbi, segno, sum);
3869 			if (err)
3870 				goto out;
3871 		}
3872 	}
3873 
3874 	/* set uncompleted segment to curseg */
3875 	curseg = CURSEG_I(sbi, type);
3876 	mutex_lock(&curseg->curseg_mutex);
3877 
3878 	/* update journal info */
3879 	down_write(&curseg->journal_rwsem);
3880 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881 	up_write(&curseg->journal_rwsem);
3882 
3883 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885 	curseg->next_segno = segno;
3886 	reset_curseg(sbi, type, 0);
3887 	curseg->alloc_type = ckpt->alloc_type[type];
3888 	curseg->next_blkoff = blk_off;
3889 	mutex_unlock(&curseg->curseg_mutex);
3890 out:
3891 	f2fs_put_page(new, 1);
3892 	return err;
3893 }
3894 
restore_curseg_summaries(struct f2fs_sb_info * sbi)3895 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896 {
3897 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899 	int type = CURSEG_HOT_DATA;
3900 	int err;
3901 
3902 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3904 
3905 		if (npages >= 2)
3906 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907 							META_CP, true);
3908 
3909 		/* restore for compacted data summary */
3910 		err = read_compacted_summaries(sbi);
3911 		if (err)
3912 			return err;
3913 		type = CURSEG_HOT_NODE;
3914 	}
3915 
3916 	if (__exist_node_summaries(sbi))
3917 		f2fs_ra_meta_pages(sbi,
3918 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920 
3921 	for (; type <= CURSEG_COLD_NODE; type++) {
3922 		err = read_normal_summaries(sbi, type);
3923 		if (err)
3924 			return err;
3925 	}
3926 
3927 	/* sanity check for summary blocks */
3928 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932 		return -EINVAL;
3933 	}
3934 
3935 	return 0;
3936 }
3937 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3938 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939 {
3940 	struct page *page;
3941 	unsigned char *kaddr;
3942 	struct f2fs_summary *summary;
3943 	struct curseg_info *seg_i;
3944 	int written_size = 0;
3945 	int i, j;
3946 
3947 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3948 	kaddr = (unsigned char *)page_address(page);
3949 	memset(kaddr, 0, PAGE_SIZE);
3950 
3951 	/* Step 1: write nat cache */
3952 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954 	written_size += SUM_JOURNAL_SIZE;
3955 
3956 	/* Step 2: write sit cache */
3957 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959 	written_size += SUM_JOURNAL_SIZE;
3960 
3961 	/* Step 3: write summary entries */
3962 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963 		seg_i = CURSEG_I(sbi, i);
3964 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
3965 			if (!page) {
3966 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3967 				kaddr = (unsigned char *)page_address(page);
3968 				memset(kaddr, 0, PAGE_SIZE);
3969 				written_size = 0;
3970 			}
3971 			summary = (struct f2fs_summary *)(kaddr + written_size);
3972 			*summary = seg_i->sum_blk->entries[j];
3973 			written_size += SUMMARY_SIZE;
3974 
3975 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3976 							SUM_FOOTER_SIZE)
3977 				continue;
3978 
3979 			set_page_dirty(page);
3980 			f2fs_put_page(page, 1);
3981 			page = NULL;
3982 		}
3983 	}
3984 	if (page) {
3985 		set_page_dirty(page);
3986 		f2fs_put_page(page, 1);
3987 	}
3988 }
3989 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3990 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3991 					block_t blkaddr, int type)
3992 {
3993 	int i, end;
3994 
3995 	if (IS_DATASEG(type))
3996 		end = type + NR_CURSEG_DATA_TYPE;
3997 	else
3998 		end = type + NR_CURSEG_NODE_TYPE;
3999 
4000 	for (i = type; i < end; i++)
4001 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4002 }
4003 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4004 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4005 {
4006 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4007 		write_compacted_summaries(sbi, start_blk);
4008 	else
4009 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4010 }
4011 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4012 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4013 {
4014 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4015 }
4016 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4017 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4018 					unsigned int val, int alloc)
4019 {
4020 	int i;
4021 
4022 	if (type == NAT_JOURNAL) {
4023 		for (i = 0; i < nats_in_cursum(journal); i++) {
4024 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4025 				return i;
4026 		}
4027 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4028 			return update_nats_in_cursum(journal, 1);
4029 	} else if (type == SIT_JOURNAL) {
4030 		for (i = 0; i < sits_in_cursum(journal); i++)
4031 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4032 				return i;
4033 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4034 			return update_sits_in_cursum(journal, 1);
4035 	}
4036 	return -1;
4037 }
4038 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4039 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4040 					unsigned int segno)
4041 {
4042 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4043 }
4044 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4045 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4046 					unsigned int start)
4047 {
4048 	struct sit_info *sit_i = SIT_I(sbi);
4049 	struct page *page;
4050 	pgoff_t src_off, dst_off;
4051 
4052 	src_off = current_sit_addr(sbi, start);
4053 	dst_off = next_sit_addr(sbi, src_off);
4054 
4055 	page = f2fs_grab_meta_page(sbi, dst_off);
4056 	seg_info_to_sit_page(sbi, page, start);
4057 
4058 	set_page_dirty(page);
4059 	set_to_next_sit(sit_i, start);
4060 
4061 	return page;
4062 }
4063 
grab_sit_entry_set(void)4064 static struct sit_entry_set *grab_sit_entry_set(void)
4065 {
4066 	struct sit_entry_set *ses =
4067 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4068 						GFP_NOFS, true, NULL);
4069 
4070 	ses->entry_cnt = 0;
4071 	INIT_LIST_HEAD(&ses->set_list);
4072 	return ses;
4073 }
4074 
release_sit_entry_set(struct sit_entry_set * ses)4075 static void release_sit_entry_set(struct sit_entry_set *ses)
4076 {
4077 	list_del(&ses->set_list);
4078 	kmem_cache_free(sit_entry_set_slab, ses);
4079 }
4080 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4081 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4082 						struct list_head *head)
4083 {
4084 	struct sit_entry_set *next = ses;
4085 
4086 	if (list_is_last(&ses->set_list, head))
4087 		return;
4088 
4089 	list_for_each_entry_continue(next, head, set_list)
4090 		if (ses->entry_cnt <= next->entry_cnt) {
4091 			list_move_tail(&ses->set_list, &next->set_list);
4092 			return;
4093 		}
4094 
4095 	list_move_tail(&ses->set_list, head);
4096 }
4097 
add_sit_entry(unsigned int segno,struct list_head * head)4098 static void add_sit_entry(unsigned int segno, struct list_head *head)
4099 {
4100 	struct sit_entry_set *ses;
4101 	unsigned int start_segno = START_SEGNO(segno);
4102 
4103 	list_for_each_entry(ses, head, set_list) {
4104 		if (ses->start_segno == start_segno) {
4105 			ses->entry_cnt++;
4106 			adjust_sit_entry_set(ses, head);
4107 			return;
4108 		}
4109 	}
4110 
4111 	ses = grab_sit_entry_set();
4112 
4113 	ses->start_segno = start_segno;
4114 	ses->entry_cnt++;
4115 	list_add(&ses->set_list, head);
4116 }
4117 
add_sits_in_set(struct f2fs_sb_info * sbi)4118 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4119 {
4120 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4121 	struct list_head *set_list = &sm_info->sit_entry_set;
4122 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4123 	unsigned int segno;
4124 
4125 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4126 		add_sit_entry(segno, set_list);
4127 }
4128 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4129 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4130 {
4131 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4132 	struct f2fs_journal *journal = curseg->journal;
4133 	int i;
4134 
4135 	down_write(&curseg->journal_rwsem);
4136 	for (i = 0; i < sits_in_cursum(journal); i++) {
4137 		unsigned int segno;
4138 		bool dirtied;
4139 
4140 		segno = le32_to_cpu(segno_in_journal(journal, i));
4141 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4142 
4143 		if (!dirtied)
4144 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4145 	}
4146 	update_sits_in_cursum(journal, -i);
4147 	up_write(&curseg->journal_rwsem);
4148 }
4149 
4150 /*
4151  * CP calls this function, which flushes SIT entries including sit_journal,
4152  * and moves prefree segs to free segs.
4153  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4154 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4155 {
4156 	struct sit_info *sit_i = SIT_I(sbi);
4157 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4158 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4159 	struct f2fs_journal *journal = curseg->journal;
4160 	struct sit_entry_set *ses, *tmp;
4161 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4162 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4163 	struct seg_entry *se;
4164 
4165 	down_write(&sit_i->sentry_lock);
4166 
4167 	if (!sit_i->dirty_sentries)
4168 		goto out;
4169 
4170 	/*
4171 	 * add and account sit entries of dirty bitmap in sit entry
4172 	 * set temporarily
4173 	 */
4174 	add_sits_in_set(sbi);
4175 
4176 	/*
4177 	 * if there are no enough space in journal to store dirty sit
4178 	 * entries, remove all entries from journal and add and account
4179 	 * them in sit entry set.
4180 	 */
4181 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4182 								!to_journal)
4183 		remove_sits_in_journal(sbi);
4184 
4185 	/*
4186 	 * there are two steps to flush sit entries:
4187 	 * #1, flush sit entries to journal in current cold data summary block.
4188 	 * #2, flush sit entries to sit page.
4189 	 */
4190 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4191 		struct page *page = NULL;
4192 		struct f2fs_sit_block *raw_sit = NULL;
4193 		unsigned int start_segno = ses->start_segno;
4194 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4195 						(unsigned long)MAIN_SEGS(sbi));
4196 		unsigned int segno = start_segno;
4197 
4198 		if (to_journal &&
4199 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4200 			to_journal = false;
4201 
4202 		if (to_journal) {
4203 			down_write(&curseg->journal_rwsem);
4204 		} else {
4205 			page = get_next_sit_page(sbi, start_segno);
4206 			raw_sit = page_address(page);
4207 		}
4208 
4209 		/* flush dirty sit entries in region of current sit set */
4210 		for_each_set_bit_from(segno, bitmap, end) {
4211 			int offset, sit_offset;
4212 
4213 			se = get_seg_entry(sbi, segno);
4214 #ifdef CONFIG_F2FS_CHECK_FS
4215 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4216 						SIT_VBLOCK_MAP_SIZE))
4217 				f2fs_bug_on(sbi, 1);
4218 #endif
4219 
4220 			/* add discard candidates */
4221 			if (!(cpc->reason & CP_DISCARD)) {
4222 				cpc->trim_start = segno;
4223 				add_discard_addrs(sbi, cpc, false);
4224 			}
4225 
4226 			if (to_journal) {
4227 				offset = f2fs_lookup_journal_in_cursum(journal,
4228 							SIT_JOURNAL, segno, 1);
4229 				f2fs_bug_on(sbi, offset < 0);
4230 				segno_in_journal(journal, offset) =
4231 							cpu_to_le32(segno);
4232 				seg_info_to_raw_sit(se,
4233 					&sit_in_journal(journal, offset));
4234 				check_block_count(sbi, segno,
4235 					&sit_in_journal(journal, offset));
4236 			} else {
4237 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4238 				seg_info_to_raw_sit(se,
4239 						&raw_sit->entries[sit_offset]);
4240 				check_block_count(sbi, segno,
4241 						&raw_sit->entries[sit_offset]);
4242 			}
4243 
4244 			__clear_bit(segno, bitmap);
4245 			sit_i->dirty_sentries--;
4246 			ses->entry_cnt--;
4247 		}
4248 
4249 		if (to_journal)
4250 			up_write(&curseg->journal_rwsem);
4251 		else
4252 			f2fs_put_page(page, 1);
4253 
4254 		f2fs_bug_on(sbi, ses->entry_cnt);
4255 		release_sit_entry_set(ses);
4256 	}
4257 
4258 	f2fs_bug_on(sbi, !list_empty(head));
4259 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4260 out:
4261 	if (cpc->reason & CP_DISCARD) {
4262 		__u64 trim_start = cpc->trim_start;
4263 
4264 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4265 			add_discard_addrs(sbi, cpc, false);
4266 
4267 		cpc->trim_start = trim_start;
4268 	}
4269 	up_write(&sit_i->sentry_lock);
4270 
4271 	set_prefree_as_free_segments(sbi);
4272 }
4273 
build_sit_info(struct f2fs_sb_info * sbi)4274 static int build_sit_info(struct f2fs_sb_info *sbi)
4275 {
4276 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4277 	struct sit_info *sit_i;
4278 	unsigned int sit_segs, start;
4279 	char *src_bitmap, *bitmap;
4280 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4281 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4282 
4283 	/* allocate memory for SIT information */
4284 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4285 	if (!sit_i)
4286 		return -ENOMEM;
4287 
4288 	SM_I(sbi)->sit_info = sit_i;
4289 
4290 	sit_i->sentries =
4291 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4292 					      MAIN_SEGS(sbi)),
4293 			      GFP_KERNEL);
4294 	if (!sit_i->sentries)
4295 		return -ENOMEM;
4296 
4297 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4298 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4299 								GFP_KERNEL);
4300 	if (!sit_i->dirty_sentries_bitmap)
4301 		return -ENOMEM;
4302 
4303 #ifdef CONFIG_F2FS_CHECK_FS
4304 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4305 #else
4306 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4307 #endif
4308 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4309 	if (!sit_i->bitmap)
4310 		return -ENOMEM;
4311 
4312 	bitmap = sit_i->bitmap;
4313 
4314 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4315 		sit_i->sentries[start].cur_valid_map = bitmap;
4316 		bitmap += SIT_VBLOCK_MAP_SIZE;
4317 
4318 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4319 		bitmap += SIT_VBLOCK_MAP_SIZE;
4320 
4321 #ifdef CONFIG_F2FS_CHECK_FS
4322 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4323 		bitmap += SIT_VBLOCK_MAP_SIZE;
4324 #endif
4325 
4326 		if (discard_map) {
4327 			sit_i->sentries[start].discard_map = bitmap;
4328 			bitmap += SIT_VBLOCK_MAP_SIZE;
4329 		}
4330 	}
4331 
4332 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4333 	if (!sit_i->tmp_map)
4334 		return -ENOMEM;
4335 
4336 	if (__is_large_section(sbi)) {
4337 		sit_i->sec_entries =
4338 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4339 						      MAIN_SECS(sbi)),
4340 				      GFP_KERNEL);
4341 		if (!sit_i->sec_entries)
4342 			return -ENOMEM;
4343 	}
4344 
4345 	/* get information related with SIT */
4346 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4347 
4348 	/* setup SIT bitmap from ckeckpoint pack */
4349 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4350 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4351 
4352 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4353 	if (!sit_i->sit_bitmap)
4354 		return -ENOMEM;
4355 
4356 #ifdef CONFIG_F2FS_CHECK_FS
4357 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4358 					sit_bitmap_size, GFP_KERNEL);
4359 	if (!sit_i->sit_bitmap_mir)
4360 		return -ENOMEM;
4361 
4362 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4363 					main_bitmap_size, GFP_KERNEL);
4364 	if (!sit_i->invalid_segmap)
4365 		return -ENOMEM;
4366 #endif
4367 
4368 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4369 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4370 	sit_i->written_valid_blocks = 0;
4371 	sit_i->bitmap_size = sit_bitmap_size;
4372 	sit_i->dirty_sentries = 0;
4373 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4374 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4375 	sit_i->mounted_time = ktime_get_boottime_seconds();
4376 	init_rwsem(&sit_i->sentry_lock);
4377 	return 0;
4378 }
4379 
build_free_segmap(struct f2fs_sb_info * sbi)4380 static int build_free_segmap(struct f2fs_sb_info *sbi)
4381 {
4382 	struct free_segmap_info *free_i;
4383 	unsigned int bitmap_size, sec_bitmap_size;
4384 
4385 	/* allocate memory for free segmap information */
4386 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4387 	if (!free_i)
4388 		return -ENOMEM;
4389 
4390 	SM_I(sbi)->free_info = free_i;
4391 
4392 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4393 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4394 	if (!free_i->free_segmap)
4395 		return -ENOMEM;
4396 
4397 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4398 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4399 	if (!free_i->free_secmap)
4400 		return -ENOMEM;
4401 
4402 	/* set all segments as dirty temporarily */
4403 	memset(free_i->free_segmap, 0xff, bitmap_size);
4404 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4405 
4406 	/* init free segmap information */
4407 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4408 	free_i->free_segments = 0;
4409 	free_i->free_sections = 0;
4410 	spin_lock_init(&free_i->segmap_lock);
4411 	return 0;
4412 }
4413 
build_curseg(struct f2fs_sb_info * sbi)4414 static int build_curseg(struct f2fs_sb_info *sbi)
4415 {
4416 	struct curseg_info *array;
4417 	int i;
4418 
4419 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4420 					sizeof(*array)), GFP_KERNEL);
4421 	if (!array)
4422 		return -ENOMEM;
4423 
4424 	SM_I(sbi)->curseg_array = array;
4425 
4426 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4427 		mutex_init(&array[i].curseg_mutex);
4428 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4429 		if (!array[i].sum_blk)
4430 			return -ENOMEM;
4431 		init_rwsem(&array[i].journal_rwsem);
4432 		array[i].journal = f2fs_kzalloc(sbi,
4433 				sizeof(struct f2fs_journal), GFP_KERNEL);
4434 		if (!array[i].journal)
4435 			return -ENOMEM;
4436 		if (i < NR_PERSISTENT_LOG)
4437 			array[i].seg_type = CURSEG_HOT_DATA + i;
4438 		else if (i == CURSEG_COLD_DATA_PINNED)
4439 			array[i].seg_type = CURSEG_COLD_DATA;
4440 		else if (i == CURSEG_ALL_DATA_ATGC)
4441 			array[i].seg_type = CURSEG_COLD_DATA;
4442 		array[i].segno = NULL_SEGNO;
4443 		array[i].next_blkoff = 0;
4444 		array[i].inited = false;
4445 	}
4446 	return restore_curseg_summaries(sbi);
4447 }
4448 
build_sit_entries(struct f2fs_sb_info * sbi)4449 static int build_sit_entries(struct f2fs_sb_info *sbi)
4450 {
4451 	struct sit_info *sit_i = SIT_I(sbi);
4452 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4453 	struct f2fs_journal *journal = curseg->journal;
4454 	struct seg_entry *se;
4455 	struct f2fs_sit_entry sit;
4456 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4457 	unsigned int i, start, end;
4458 	unsigned int readed, start_blk = 0;
4459 	int err = 0;
4460 	block_t sit_valid_blocks[2] = {0, 0};
4461 
4462 	do {
4463 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4464 							META_SIT, true);
4465 
4466 		start = start_blk * sit_i->sents_per_block;
4467 		end = (start_blk + readed) * sit_i->sents_per_block;
4468 
4469 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4470 			struct f2fs_sit_block *sit_blk;
4471 			struct page *page;
4472 
4473 			se = &sit_i->sentries[start];
4474 			page = get_current_sit_page(sbi, start);
4475 			if (IS_ERR(page))
4476 				return PTR_ERR(page);
4477 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4478 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4479 			f2fs_put_page(page, 1);
4480 
4481 			err = check_block_count(sbi, start, &sit);
4482 			if (err)
4483 				return err;
4484 			seg_info_from_raw_sit(se, &sit);
4485 
4486 			if (se->type >= NR_PERSISTENT_LOG) {
4487 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4488 							se->type, start);
4489 				f2fs_handle_error(sbi,
4490 						ERROR_INCONSISTENT_SUM_TYPE);
4491 				return -EFSCORRUPTED;
4492 			}
4493 
4494 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4495 
4496 			if (f2fs_block_unit_discard(sbi)) {
4497 				/* build discard map only one time */
4498 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4499 					memset(se->discard_map, 0xff,
4500 						SIT_VBLOCK_MAP_SIZE);
4501 				} else {
4502 					memcpy(se->discard_map,
4503 						se->cur_valid_map,
4504 						SIT_VBLOCK_MAP_SIZE);
4505 					sbi->discard_blks +=
4506 						sbi->blocks_per_seg -
4507 						se->valid_blocks;
4508 				}
4509 			}
4510 
4511 			if (__is_large_section(sbi))
4512 				get_sec_entry(sbi, start)->valid_blocks +=
4513 							se->valid_blocks;
4514 		}
4515 		start_blk += readed;
4516 	} while (start_blk < sit_blk_cnt);
4517 
4518 	down_read(&curseg->journal_rwsem);
4519 	for (i = 0; i < sits_in_cursum(journal); i++) {
4520 		unsigned int old_valid_blocks;
4521 
4522 		start = le32_to_cpu(segno_in_journal(journal, i));
4523 		if (start >= MAIN_SEGS(sbi)) {
4524 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4525 				 start);
4526 			err = -EFSCORRUPTED;
4527 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4528 			break;
4529 		}
4530 
4531 		se = &sit_i->sentries[start];
4532 		sit = sit_in_journal(journal, i);
4533 
4534 		old_valid_blocks = se->valid_blocks;
4535 
4536 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4537 
4538 		err = check_block_count(sbi, start, &sit);
4539 		if (err)
4540 			break;
4541 		seg_info_from_raw_sit(se, &sit);
4542 
4543 		if (se->type >= NR_PERSISTENT_LOG) {
4544 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4545 							se->type, start);
4546 			err = -EFSCORRUPTED;
4547 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4548 			break;
4549 		}
4550 
4551 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4552 
4553 		if (f2fs_block_unit_discard(sbi)) {
4554 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4555 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4556 			} else {
4557 				memcpy(se->discard_map, se->cur_valid_map,
4558 							SIT_VBLOCK_MAP_SIZE);
4559 				sbi->discard_blks += old_valid_blocks;
4560 				sbi->discard_blks -= se->valid_blocks;
4561 			}
4562 		}
4563 
4564 		if (__is_large_section(sbi)) {
4565 			get_sec_entry(sbi, start)->valid_blocks +=
4566 							se->valid_blocks;
4567 			get_sec_entry(sbi, start)->valid_blocks -=
4568 							old_valid_blocks;
4569 		}
4570 	}
4571 	up_read(&curseg->journal_rwsem);
4572 
4573 	if (err)
4574 		return err;
4575 
4576 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4577 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4578 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4579 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4580 		return -EFSCORRUPTED;
4581 	}
4582 
4583 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4584 				valid_user_blocks(sbi)) {
4585 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4586 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4587 			 valid_user_blocks(sbi));
4588 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4589 		return -EFSCORRUPTED;
4590 	}
4591 
4592 	return 0;
4593 }
4594 
init_free_segmap(struct f2fs_sb_info * sbi)4595 static void init_free_segmap(struct f2fs_sb_info *sbi)
4596 {
4597 	unsigned int start;
4598 	int type;
4599 	struct seg_entry *sentry;
4600 
4601 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4602 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4603 			continue;
4604 		sentry = get_seg_entry(sbi, start);
4605 		if (!sentry->valid_blocks)
4606 			__set_free(sbi, start);
4607 		else
4608 			SIT_I(sbi)->written_valid_blocks +=
4609 						sentry->valid_blocks;
4610 	}
4611 
4612 	/* set use the current segments */
4613 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4614 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4615 
4616 		__set_test_and_inuse(sbi, curseg_t->segno);
4617 	}
4618 }
4619 
init_dirty_segmap(struct f2fs_sb_info * sbi)4620 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4621 {
4622 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4623 	struct free_segmap_info *free_i = FREE_I(sbi);
4624 	unsigned int segno = 0, offset = 0, secno;
4625 	block_t valid_blocks, usable_blks_in_seg;
4626 
4627 	while (1) {
4628 		/* find dirty segment based on free segmap */
4629 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4630 		if (segno >= MAIN_SEGS(sbi))
4631 			break;
4632 		offset = segno + 1;
4633 		valid_blocks = get_valid_blocks(sbi, segno, false);
4634 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4635 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4636 			continue;
4637 		if (valid_blocks > usable_blks_in_seg) {
4638 			f2fs_bug_on(sbi, 1);
4639 			continue;
4640 		}
4641 		mutex_lock(&dirty_i->seglist_lock);
4642 		__locate_dirty_segment(sbi, segno, DIRTY);
4643 		mutex_unlock(&dirty_i->seglist_lock);
4644 	}
4645 
4646 	if (!__is_large_section(sbi))
4647 		return;
4648 
4649 	mutex_lock(&dirty_i->seglist_lock);
4650 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4651 		valid_blocks = get_valid_blocks(sbi, segno, true);
4652 		secno = GET_SEC_FROM_SEG(sbi, segno);
4653 
4654 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4655 			continue;
4656 		if (IS_CURSEC(sbi, secno))
4657 			continue;
4658 		set_bit(secno, dirty_i->dirty_secmap);
4659 	}
4660 	mutex_unlock(&dirty_i->seglist_lock);
4661 }
4662 
init_victim_secmap(struct f2fs_sb_info * sbi)4663 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4664 {
4665 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4666 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4667 
4668 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4669 	if (!dirty_i->victim_secmap)
4670 		return -ENOMEM;
4671 
4672 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4673 	if (!dirty_i->pinned_secmap)
4674 		return -ENOMEM;
4675 
4676 	dirty_i->pinned_secmap_cnt = 0;
4677 	dirty_i->enable_pin_section = true;
4678 	return 0;
4679 }
4680 
build_dirty_segmap(struct f2fs_sb_info * sbi)4681 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4682 {
4683 	struct dirty_seglist_info *dirty_i;
4684 	unsigned int bitmap_size, i;
4685 
4686 	/* allocate memory for dirty segments list information */
4687 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4688 								GFP_KERNEL);
4689 	if (!dirty_i)
4690 		return -ENOMEM;
4691 
4692 	SM_I(sbi)->dirty_info = dirty_i;
4693 	mutex_init(&dirty_i->seglist_lock);
4694 
4695 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4696 
4697 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4698 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4699 								GFP_KERNEL);
4700 		if (!dirty_i->dirty_segmap[i])
4701 			return -ENOMEM;
4702 	}
4703 
4704 	if (__is_large_section(sbi)) {
4705 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4706 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4707 						bitmap_size, GFP_KERNEL);
4708 		if (!dirty_i->dirty_secmap)
4709 			return -ENOMEM;
4710 	}
4711 
4712 	init_dirty_segmap(sbi);
4713 	return init_victim_secmap(sbi);
4714 }
4715 
sanity_check_curseg(struct f2fs_sb_info * sbi)4716 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4717 {
4718 	int i;
4719 
4720 	/*
4721 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4722 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4723 	 */
4724 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4725 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4726 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4727 		unsigned int blkofs = curseg->next_blkoff;
4728 
4729 		if (f2fs_sb_has_readonly(sbi) &&
4730 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4731 			continue;
4732 
4733 		sanity_check_seg_type(sbi, curseg->seg_type);
4734 
4735 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4736 			f2fs_err(sbi,
4737 				 "Current segment has invalid alloc_type:%d",
4738 				 curseg->alloc_type);
4739 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4740 			return -EFSCORRUPTED;
4741 		}
4742 
4743 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4744 			goto out;
4745 
4746 		if (curseg->alloc_type == SSR)
4747 			continue;
4748 
4749 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4750 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4751 				continue;
4752 out:
4753 			f2fs_err(sbi,
4754 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4755 				 i, curseg->segno, curseg->alloc_type,
4756 				 curseg->next_blkoff, blkofs);
4757 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4758 			return -EFSCORRUPTED;
4759 		}
4760 	}
4761 	return 0;
4762 }
4763 
4764 #ifdef CONFIG_BLK_DEV_ZONED
4765 
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4766 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4767 				    struct f2fs_dev_info *fdev,
4768 				    struct blk_zone *zone)
4769 {
4770 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4771 	block_t zone_block, wp_block, last_valid_block;
4772 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4773 	int i, s, b, ret;
4774 	struct seg_entry *se;
4775 
4776 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4777 		return 0;
4778 
4779 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4780 	wp_segno = GET_SEGNO(sbi, wp_block);
4781 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4782 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4783 	zone_segno = GET_SEGNO(sbi, zone_block);
4784 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4785 
4786 	if (zone_segno >= MAIN_SEGS(sbi))
4787 		return 0;
4788 
4789 	/*
4790 	 * Skip check of zones cursegs point to, since
4791 	 * fix_curseg_write_pointer() checks them.
4792 	 */
4793 	for (i = 0; i < NO_CHECK_TYPE; i++)
4794 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4795 						   CURSEG_I(sbi, i)->segno))
4796 			return 0;
4797 
4798 	/*
4799 	 * Get last valid block of the zone.
4800 	 */
4801 	last_valid_block = zone_block - 1;
4802 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4803 		segno = zone_segno + s;
4804 		se = get_seg_entry(sbi, segno);
4805 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4806 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4807 				last_valid_block = START_BLOCK(sbi, segno) + b;
4808 				break;
4809 			}
4810 		if (last_valid_block >= zone_block)
4811 			break;
4812 	}
4813 
4814 	/*
4815 	 * If last valid block is beyond the write pointer, report the
4816 	 * inconsistency. This inconsistency does not cause write error
4817 	 * because the zone will not be selected for write operation until
4818 	 * it get discarded. Just report it.
4819 	 */
4820 	if (last_valid_block >= wp_block) {
4821 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4822 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4823 			    GET_SEGNO(sbi, last_valid_block),
4824 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4825 			    wp_segno, wp_blkoff);
4826 		return 0;
4827 	}
4828 
4829 	/*
4830 	 * If there is no valid block in the zone and if write pointer is
4831 	 * not at zone start, reset the write pointer.
4832 	 */
4833 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4834 		f2fs_notice(sbi,
4835 			    "Zone without valid block has non-zero write "
4836 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4837 			    wp_segno, wp_blkoff);
4838 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4839 					zone->len >> log_sectors_per_block);
4840 		if (ret) {
4841 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4842 				 fdev->path, ret);
4843 			return ret;
4844 		}
4845 	}
4846 
4847 	return 0;
4848 }
4849 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4850 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4851 						  block_t zone_blkaddr)
4852 {
4853 	int i;
4854 
4855 	for (i = 0; i < sbi->s_ndevs; i++) {
4856 		if (!bdev_is_zoned(FDEV(i).bdev))
4857 			continue;
4858 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4859 				zone_blkaddr <= FDEV(i).end_blk))
4860 			return &FDEV(i);
4861 	}
4862 
4863 	return NULL;
4864 }
4865 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4866 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4867 			      void *data)
4868 {
4869 	memcpy(data, zone, sizeof(struct blk_zone));
4870 	return 0;
4871 }
4872 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4873 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4874 {
4875 	struct curseg_info *cs = CURSEG_I(sbi, type);
4876 	struct f2fs_dev_info *zbd;
4877 	struct blk_zone zone;
4878 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4879 	block_t cs_zone_block, wp_block;
4880 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4881 	sector_t zone_sector;
4882 	int err;
4883 
4884 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4885 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4886 
4887 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4888 	if (!zbd)
4889 		return 0;
4890 
4891 	/* report zone for the sector the curseg points to */
4892 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4893 		<< log_sectors_per_block;
4894 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4895 				  report_one_zone_cb, &zone);
4896 	if (err != 1) {
4897 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4898 			 zbd->path, err);
4899 		return err;
4900 	}
4901 
4902 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4903 		return 0;
4904 
4905 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4906 	wp_segno = GET_SEGNO(sbi, wp_block);
4907 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4908 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4909 
4910 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4911 		wp_sector_off == 0)
4912 		return 0;
4913 
4914 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4915 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4916 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4917 
4918 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4919 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4920 
4921 	f2fs_allocate_new_section(sbi, type, true);
4922 
4923 	/* check consistency of the zone curseg pointed to */
4924 	if (check_zone_write_pointer(sbi, zbd, &zone))
4925 		return -EIO;
4926 
4927 	/* check newly assigned zone */
4928 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4929 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4930 
4931 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4932 	if (!zbd)
4933 		return 0;
4934 
4935 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4936 		<< log_sectors_per_block;
4937 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4938 				  report_one_zone_cb, &zone);
4939 	if (err != 1) {
4940 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4941 			 zbd->path, err);
4942 		return err;
4943 	}
4944 
4945 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4946 		return 0;
4947 
4948 	if (zone.wp != zone.start) {
4949 		f2fs_notice(sbi,
4950 			    "New zone for curseg[%d] is not yet discarded. "
4951 			    "Reset the zone: curseg[0x%x,0x%x]",
4952 			    type, cs->segno, cs->next_blkoff);
4953 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
4954 					zone.len >> log_sectors_per_block);
4955 		if (err) {
4956 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4957 				 zbd->path, err);
4958 			return err;
4959 		}
4960 	}
4961 
4962 	return 0;
4963 }
4964 
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4965 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4966 {
4967 	int i, ret;
4968 
4969 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4970 		ret = fix_curseg_write_pointer(sbi, i);
4971 		if (ret)
4972 			return ret;
4973 	}
4974 
4975 	return 0;
4976 }
4977 
4978 struct check_zone_write_pointer_args {
4979 	struct f2fs_sb_info *sbi;
4980 	struct f2fs_dev_info *fdev;
4981 };
4982 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4983 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4984 				      void *data)
4985 {
4986 	struct check_zone_write_pointer_args *args;
4987 
4988 	args = (struct check_zone_write_pointer_args *)data;
4989 
4990 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4991 }
4992 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4993 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4994 {
4995 	int i, ret;
4996 	struct check_zone_write_pointer_args args;
4997 
4998 	for (i = 0; i < sbi->s_ndevs; i++) {
4999 		if (!bdev_is_zoned(FDEV(i).bdev))
5000 			continue;
5001 
5002 		args.sbi = sbi;
5003 		args.fdev = &FDEV(i);
5004 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5005 					  check_zone_write_pointer_cb, &args);
5006 		if (ret < 0)
5007 			return ret;
5008 	}
5009 
5010 	return 0;
5011 }
5012 
5013 /*
5014  * Return the number of usable blocks in a segment. The number of blocks
5015  * returned is always equal to the number of blocks in a segment for
5016  * segments fully contained within a sequential zone capacity or a
5017  * conventional zone. For segments partially contained in a sequential
5018  * zone capacity, the number of usable blocks up to the zone capacity
5019  * is returned. 0 is returned in all other cases.
5020  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5021 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5022 			struct f2fs_sb_info *sbi, unsigned int segno)
5023 {
5024 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5025 	unsigned int secno;
5026 
5027 	if (!sbi->unusable_blocks_per_sec)
5028 		return sbi->blocks_per_seg;
5029 
5030 	secno = GET_SEC_FROM_SEG(sbi, segno);
5031 	seg_start = START_BLOCK(sbi, segno);
5032 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5033 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5034 
5035 	/*
5036 	 * If segment starts before zone capacity and spans beyond
5037 	 * zone capacity, then usable blocks are from seg start to
5038 	 * zone capacity. If the segment starts after the zone capacity,
5039 	 * then there are no usable blocks.
5040 	 */
5041 	if (seg_start >= sec_cap_blkaddr)
5042 		return 0;
5043 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5044 		return sec_cap_blkaddr - seg_start;
5045 
5046 	return sbi->blocks_per_seg;
5047 }
5048 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5049 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5050 {
5051 	return 0;
5052 }
5053 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5054 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5055 {
5056 	return 0;
5057 }
5058 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5059 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5060 							unsigned int segno)
5061 {
5062 	return 0;
5063 }
5064 
5065 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5066 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5067 					unsigned int segno)
5068 {
5069 	if (f2fs_sb_has_blkzoned(sbi))
5070 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5071 
5072 	return sbi->blocks_per_seg;
5073 }
5074 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5075 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5076 					unsigned int segno)
5077 {
5078 	if (f2fs_sb_has_blkzoned(sbi))
5079 		return CAP_SEGS_PER_SEC(sbi);
5080 
5081 	return sbi->segs_per_sec;
5082 }
5083 
5084 /*
5085  * Update min, max modified time for cost-benefit GC algorithm
5086  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5087 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5088 {
5089 	struct sit_info *sit_i = SIT_I(sbi);
5090 	unsigned int segno;
5091 
5092 	down_write(&sit_i->sentry_lock);
5093 
5094 	sit_i->min_mtime = ULLONG_MAX;
5095 
5096 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5097 		unsigned int i;
5098 		unsigned long long mtime = 0;
5099 
5100 		for (i = 0; i < sbi->segs_per_sec; i++)
5101 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5102 
5103 		mtime = div_u64(mtime, sbi->segs_per_sec);
5104 
5105 		if (sit_i->min_mtime > mtime)
5106 			sit_i->min_mtime = mtime;
5107 	}
5108 	sit_i->max_mtime = get_mtime(sbi, false);
5109 	sit_i->dirty_max_mtime = 0;
5110 	up_write(&sit_i->sentry_lock);
5111 }
5112 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5113 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5114 {
5115 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5116 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5117 	struct f2fs_sm_info *sm_info;
5118 	int err;
5119 
5120 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5121 	if (!sm_info)
5122 		return -ENOMEM;
5123 
5124 	/* init sm info */
5125 	sbi->sm_info = sm_info;
5126 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5127 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5128 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5129 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5130 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5131 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5132 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5133 	sm_info->rec_prefree_segments = sm_info->main_segments *
5134 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5135 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5136 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5137 
5138 	if (!f2fs_lfs_mode(sbi))
5139 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5140 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5141 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5142 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5143 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5144 	sm_info->min_ssr_sections = reserved_sections(sbi);
5145 
5146 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5147 
5148 	init_f2fs_rwsem(&sm_info->curseg_lock);
5149 
5150 	err = f2fs_create_flush_cmd_control(sbi);
5151 	if (err)
5152 		return err;
5153 
5154 	err = create_discard_cmd_control(sbi);
5155 	if (err)
5156 		return err;
5157 
5158 	err = build_sit_info(sbi);
5159 	if (err)
5160 		return err;
5161 	err = build_free_segmap(sbi);
5162 	if (err)
5163 		return err;
5164 	err = build_curseg(sbi);
5165 	if (err)
5166 		return err;
5167 
5168 	/* reinit free segmap based on SIT */
5169 	err = build_sit_entries(sbi);
5170 	if (err)
5171 		return err;
5172 
5173 	init_free_segmap(sbi);
5174 	err = build_dirty_segmap(sbi);
5175 	if (err)
5176 		return err;
5177 
5178 	err = sanity_check_curseg(sbi);
5179 	if (err)
5180 		return err;
5181 
5182 	init_min_max_mtime(sbi);
5183 	return 0;
5184 }
5185 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5186 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5187 		enum dirty_type dirty_type)
5188 {
5189 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5190 
5191 	mutex_lock(&dirty_i->seglist_lock);
5192 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5193 	dirty_i->nr_dirty[dirty_type] = 0;
5194 	mutex_unlock(&dirty_i->seglist_lock);
5195 }
5196 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5197 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5198 {
5199 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5200 
5201 	kvfree(dirty_i->pinned_secmap);
5202 	kvfree(dirty_i->victim_secmap);
5203 }
5204 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5205 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5206 {
5207 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5208 	int i;
5209 
5210 	if (!dirty_i)
5211 		return;
5212 
5213 	/* discard pre-free/dirty segments list */
5214 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5215 		discard_dirty_segmap(sbi, i);
5216 
5217 	if (__is_large_section(sbi)) {
5218 		mutex_lock(&dirty_i->seglist_lock);
5219 		kvfree(dirty_i->dirty_secmap);
5220 		mutex_unlock(&dirty_i->seglist_lock);
5221 	}
5222 
5223 	destroy_victim_secmap(sbi);
5224 	SM_I(sbi)->dirty_info = NULL;
5225 	kfree(dirty_i);
5226 }
5227 
destroy_curseg(struct f2fs_sb_info * sbi)5228 static void destroy_curseg(struct f2fs_sb_info *sbi)
5229 {
5230 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5231 	int i;
5232 
5233 	if (!array)
5234 		return;
5235 	SM_I(sbi)->curseg_array = NULL;
5236 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5237 		kfree(array[i].sum_blk);
5238 		kfree(array[i].journal);
5239 	}
5240 	kfree(array);
5241 }
5242 
destroy_free_segmap(struct f2fs_sb_info * sbi)5243 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5244 {
5245 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5246 
5247 	if (!free_i)
5248 		return;
5249 	SM_I(sbi)->free_info = NULL;
5250 	kvfree(free_i->free_segmap);
5251 	kvfree(free_i->free_secmap);
5252 	kfree(free_i);
5253 }
5254 
destroy_sit_info(struct f2fs_sb_info * sbi)5255 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5256 {
5257 	struct sit_info *sit_i = SIT_I(sbi);
5258 
5259 	if (!sit_i)
5260 		return;
5261 
5262 	if (sit_i->sentries)
5263 		kvfree(sit_i->bitmap);
5264 	kfree(sit_i->tmp_map);
5265 
5266 	kvfree(sit_i->sentries);
5267 	kvfree(sit_i->sec_entries);
5268 	kvfree(sit_i->dirty_sentries_bitmap);
5269 
5270 	SM_I(sbi)->sit_info = NULL;
5271 	kvfree(sit_i->sit_bitmap);
5272 #ifdef CONFIG_F2FS_CHECK_FS
5273 	kvfree(sit_i->sit_bitmap_mir);
5274 	kvfree(sit_i->invalid_segmap);
5275 #endif
5276 	kfree(sit_i);
5277 }
5278 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5279 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5280 {
5281 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5282 
5283 	if (!sm_info)
5284 		return;
5285 	f2fs_destroy_flush_cmd_control(sbi, true);
5286 	destroy_discard_cmd_control(sbi);
5287 	destroy_dirty_segmap(sbi);
5288 	destroy_curseg(sbi);
5289 	destroy_free_segmap(sbi);
5290 	destroy_sit_info(sbi);
5291 	sbi->sm_info = NULL;
5292 	kfree(sm_info);
5293 }
5294 
f2fs_create_segment_manager_caches(void)5295 int __init f2fs_create_segment_manager_caches(void)
5296 {
5297 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5298 			sizeof(struct discard_entry));
5299 	if (!discard_entry_slab)
5300 		goto fail;
5301 
5302 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5303 			sizeof(struct discard_cmd));
5304 	if (!discard_cmd_slab)
5305 		goto destroy_discard_entry;
5306 
5307 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5308 			sizeof(struct sit_entry_set));
5309 	if (!sit_entry_set_slab)
5310 		goto destroy_discard_cmd;
5311 
5312 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5313 			sizeof(struct revoke_entry));
5314 	if (!revoke_entry_slab)
5315 		goto destroy_sit_entry_set;
5316 	return 0;
5317 
5318 destroy_sit_entry_set:
5319 	kmem_cache_destroy(sit_entry_set_slab);
5320 destroy_discard_cmd:
5321 	kmem_cache_destroy(discard_cmd_slab);
5322 destroy_discard_entry:
5323 	kmem_cache_destroy(discard_entry_slab);
5324 fail:
5325 	return -ENOMEM;
5326 }
5327 
f2fs_destroy_segment_manager_caches(void)5328 void f2fs_destroy_segment_manager_caches(void)
5329 {
5330 	kmem_cache_destroy(sit_entry_set_slab);
5331 	kmem_cache_destroy(discard_cmd_slab);
5332 	kmem_cache_destroy(discard_entry_slab);
5333 	kmem_cache_destroy(revoke_entry_slab);
5334 }
5335