• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 struct fpsimd_last_state_struct {
122 	struct user_fpsimd_state *st;
123 	void *sve_state;
124 	void *za_state;
125 	u64 *svcr;
126 	unsigned int sve_vl;
127 	unsigned int sme_vl;
128 };
129 
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
131 
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
134 	[ARM64_VEC_SVE] = {
135 		.type			= ARM64_VEC_SVE,
136 		.name			= "SVE",
137 		.min_vl			= SVE_VL_MIN,
138 		.max_vl			= SVE_VL_MIN,
139 		.max_virtualisable_vl	= SVE_VL_MIN,
140 	},
141 #endif
142 #ifdef CONFIG_ARM64_SME
143 	[ARM64_VEC_SME] = {
144 		.type			= ARM64_VEC_SME,
145 		.name			= "SME",
146 	},
147 #endif
148 };
149 
vec_vl_inherit_flag(enum vec_type type)150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
151 {
152 	switch (type) {
153 	case ARM64_VEC_SVE:
154 		return TIF_SVE_VL_INHERIT;
155 	case ARM64_VEC_SME:
156 		return TIF_SME_VL_INHERIT;
157 	default:
158 		WARN_ON_ONCE(1);
159 		return 0;
160 	}
161 }
162 
163 struct vl_config {
164 	int __default_vl;		/* Default VL for tasks */
165 };
166 
167 static struct vl_config vl_config[ARM64_VEC_MAX];
168 
get_default_vl(enum vec_type type)169 static inline int get_default_vl(enum vec_type type)
170 {
171 	return READ_ONCE(vl_config[type].__default_vl);
172 }
173 
174 #ifdef CONFIG_ARM64_SVE
175 
get_sve_default_vl(void)176 static inline int get_sve_default_vl(void)
177 {
178 	return get_default_vl(ARM64_VEC_SVE);
179 }
180 
set_default_vl(enum vec_type type,int val)181 static inline void set_default_vl(enum vec_type type, int val)
182 {
183 	WRITE_ONCE(vl_config[type].__default_vl, val);
184 }
185 
set_sve_default_vl(int val)186 static inline void set_sve_default_vl(int val)
187 {
188 	set_default_vl(ARM64_VEC_SVE, val);
189 }
190 
191 static void __percpu *efi_sve_state;
192 
193 #else /* ! CONFIG_ARM64_SVE */
194 
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
197 
198 #endif /* ! CONFIG_ARM64_SVE */
199 
200 #ifdef CONFIG_ARM64_SME
201 
get_sme_default_vl(void)202 static int get_sme_default_vl(void)
203 {
204 	return get_default_vl(ARM64_VEC_SME);
205 }
206 
set_sme_default_vl(int val)207 static void set_sme_default_vl(int val)
208 {
209 	set_default_vl(ARM64_VEC_SME, val);
210 }
211 
212 static void sme_free(struct task_struct *);
213 
214 #else
215 
sme_free(struct task_struct * t)216 static inline void sme_free(struct task_struct *t) { }
217 
218 #endif
219 
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222 
223 static void fpsimd_bind_task_to_cpu(void);
224 
__get_cpu_fpsimd_context(void)225 static void __get_cpu_fpsimd_context(void)
226 {
227 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228 
229 	WARN_ON(busy);
230 }
231 
232 /*
233  * Claim ownership of the CPU FPSIMD context for use by the calling context.
234  *
235  * The caller may freely manipulate the FPSIMD context metadata until
236  * put_cpu_fpsimd_context() is called.
237  *
238  * The double-underscore version must only be called if you know the task
239  * can't be preempted.
240  */
get_cpu_fpsimd_context(void)241 static void get_cpu_fpsimd_context(void)
242 {
243 	local_bh_disable();
244 	__get_cpu_fpsimd_context();
245 }
246 
__put_cpu_fpsimd_context(void)247 static void __put_cpu_fpsimd_context(void)
248 {
249 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
250 
251 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
252 }
253 
254 /*
255  * Release the CPU FPSIMD context.
256  *
257  * Must be called from a context in which get_cpu_fpsimd_context() was
258  * previously called, with no call to put_cpu_fpsimd_context() in the
259  * meantime.
260  */
put_cpu_fpsimd_context(void)261 static void put_cpu_fpsimd_context(void)
262 {
263 	__put_cpu_fpsimd_context();
264 	local_bh_enable();
265 }
266 
have_cpu_fpsimd_context(void)267 static bool have_cpu_fpsimd_context(void)
268 {
269 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
270 }
271 
272 /*
273  * Call __sve_free() directly only if you know task can't be scheduled
274  * or preempted.
275  */
__sve_free(struct task_struct * task)276 static void __sve_free(struct task_struct *task)
277 {
278 	kfree(task->thread.sve_state);
279 	task->thread.sve_state = NULL;
280 }
281 
sve_free(struct task_struct * task)282 static void sve_free(struct task_struct *task)
283 {
284 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
285 
286 	__sve_free(task);
287 }
288 
task_get_vl(const struct task_struct * task,enum vec_type type)289 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
290 {
291 	return task->thread.vl[type];
292 }
293 
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)294 void task_set_vl(struct task_struct *task, enum vec_type type,
295 		 unsigned long vl)
296 {
297 	task->thread.vl[type] = vl;
298 }
299 
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)300 unsigned int task_get_vl_onexec(const struct task_struct *task,
301 				enum vec_type type)
302 {
303 	return task->thread.vl_onexec[type];
304 }
305 
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)306 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
307 			unsigned long vl)
308 {
309 	task->thread.vl_onexec[type] = vl;
310 }
311 
312 /*
313  * TIF_SME controls whether a task can use SME without trapping while
314  * in userspace, when TIF_SME is set then we must have storage
315  * alocated in sve_state and za_state to store the contents of both ZA
316  * and the SVE registers for both streaming and non-streaming modes.
317  *
318  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
319  * may disable TIF_SME and reenable traps.
320  */
321 
322 
323 /*
324  * TIF_SVE controls whether a task can use SVE without trapping while
325  * in userspace, and also (together with TIF_SME) the way a task's
326  * FPSIMD/SVE state is stored in thread_struct.
327  *
328  * The kernel uses this flag to track whether a user task is actively
329  * using SVE, and therefore whether full SVE register state needs to
330  * be tracked.  If not, the cheaper FPSIMD context handling code can
331  * be used instead of the more costly SVE equivalents.
332  *
333  *  * TIF_SVE or SVCR.SM set:
334  *
335  *    The task can execute SVE instructions while in userspace without
336  *    trapping to the kernel.
337  *
338  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
339  *    corresponding Zn), P0-P15 and FFR are encoded in in
340  *    task->thread.sve_state, formatted appropriately for vector
341  *    length task->thread.sve_vl or, if SVCR.SM is set,
342  *    task->thread.sme_vl.
343  *
344  *    task->thread.sve_state must point to a valid buffer at least
345  *    sve_state_size(task) bytes in size.
346  *
347  *    During any syscall, the kernel may optionally clear TIF_SVE and
348  *    discard the vector state except for the FPSIMD subset.
349  *
350  *  * TIF_SVE clear:
351  *
352  *    An attempt by the user task to execute an SVE instruction causes
353  *    do_sve_acc() to be called, which does some preparation and then
354  *    sets TIF_SVE.
355  *
356  *    When stored, FPSIMD registers V0-V31 are encoded in
357  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
358  *    logically zero but not stored anywhere; P0-P15 and FFR are not
359  *    stored and have unspecified values from userspace's point of
360  *    view.  For hygiene purposes, the kernel zeroes them on next use,
361  *    but userspace is discouraged from relying on this.
362  *
363  *    task->thread.sve_state does not need to be non-NULL, valid or any
364  *    particular size: it must not be dereferenced.
365  *
366  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
367  *    irrespective of whether TIF_SVE is clear or set, since these are
368  *    not vector length dependent.
369  */
370 
371 /*
372  * Update current's FPSIMD/SVE registers from thread_struct.
373  *
374  * This function should be called only when the FPSIMD/SVE state in
375  * thread_struct is known to be up to date, when preparing to enter
376  * userspace.
377  */
task_fpsimd_load(void)378 static void task_fpsimd_load(void)
379 {
380 	bool restore_sve_regs = false;
381 	bool restore_ffr;
382 
383 	WARN_ON(!system_supports_fpsimd());
384 	WARN_ON(!have_cpu_fpsimd_context());
385 
386 	/* Check if we should restore SVE first */
387 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
388 		sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
389 		restore_sve_regs = true;
390 		restore_ffr = true;
391 	}
392 
393 	/* Restore SME, override SVE register configuration if needed */
394 	if (system_supports_sme()) {
395 		unsigned long sme_vl = task_get_sme_vl(current);
396 
397 		/* Ensure VL is set up for restoring data */
398 		if (test_thread_flag(TIF_SME))
399 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
400 
401 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
402 
403 		if (thread_za_enabled(&current->thread))
404 			za_load_state(current->thread.za_state);
405 
406 		if (thread_sm_enabled(&current->thread)) {
407 			restore_sve_regs = true;
408 			restore_ffr = system_supports_fa64();
409 		}
410 	}
411 
412 	if (restore_sve_regs)
413 		sve_load_state(sve_pffr(&current->thread),
414 			       &current->thread.uw.fpsimd_state.fpsr,
415 			       restore_ffr);
416 	else
417 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
418 }
419 
420 /*
421  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
422  * date with respect to the CPU registers. Note carefully that the
423  * current context is the context last bound to the CPU stored in
424  * last, if KVM is involved this may be the guest VM context rather
425  * than the host thread for the VM pointed to by current. This means
426  * that we must always reference the state storage via last rather
427  * than via current, other than the TIF_ flags which KVM will
428  * carefully maintain for us.
429  */
fpsimd_save(void)430 static void fpsimd_save(void)
431 {
432 	struct fpsimd_last_state_struct const *last =
433 		this_cpu_ptr(&fpsimd_last_state);
434 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
435 	bool save_sve_regs = false;
436 	bool save_ffr;
437 	unsigned int vl;
438 
439 	WARN_ON(!system_supports_fpsimd());
440 	WARN_ON(!have_cpu_fpsimd_context());
441 
442 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
443 		return;
444 
445 	if (test_thread_flag(TIF_SVE)) {
446 		save_sve_regs = true;
447 		save_ffr = true;
448 		vl = last->sve_vl;
449 	}
450 
451 	if (system_supports_sme()) {
452 		u64 *svcr = last->svcr;
453 		*svcr = read_sysreg_s(SYS_SVCR);
454 
455 		*svcr = read_sysreg_s(SYS_SVCR);
456 
457 		if (*svcr & SVCR_ZA_MASK)
458 			za_save_state(last->za_state);
459 
460 		/* If we are in streaming mode override regular SVE. */
461 		if (*svcr & SVCR_SM_MASK) {
462 			save_sve_regs = true;
463 			save_ffr = system_supports_fa64();
464 			vl = last->sme_vl;
465 		}
466 	}
467 
468 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
469 		/* Get the configured VL from RDVL, will account for SM */
470 		if (WARN_ON(sve_get_vl() != vl)) {
471 			/*
472 			 * Can't save the user regs, so current would
473 			 * re-enter user with corrupt state.
474 			 * There's no way to recover, so kill it:
475 			 */
476 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
477 			return;
478 		}
479 
480 		sve_save_state((char *)last->sve_state +
481 					sve_ffr_offset(vl),
482 			       &last->st->fpsr, save_ffr);
483 	} else {
484 		fpsimd_save_state(last->st);
485 	}
486 }
487 
488 /*
489  * All vector length selection from userspace comes through here.
490  * We're on a slow path, so some sanity-checks are included.
491  * If things go wrong there's a bug somewhere, but try to fall back to a
492  * safe choice.
493  */
find_supported_vector_length(enum vec_type type,unsigned int vl)494 static unsigned int find_supported_vector_length(enum vec_type type,
495 						 unsigned int vl)
496 {
497 	struct vl_info *info = &vl_info[type];
498 	int bit;
499 	int max_vl = info->max_vl;
500 
501 	if (WARN_ON(!sve_vl_valid(vl)))
502 		vl = info->min_vl;
503 
504 	if (WARN_ON(!sve_vl_valid(max_vl)))
505 		max_vl = info->min_vl;
506 
507 	if (vl > max_vl)
508 		vl = max_vl;
509 	if (vl < info->min_vl)
510 		vl = info->min_vl;
511 
512 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
513 			    __vq_to_bit(sve_vq_from_vl(vl)));
514 	return sve_vl_from_vq(__bit_to_vq(bit));
515 }
516 
517 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
518 
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)519 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
520 				  void *buffer, size_t *lenp, loff_t *ppos)
521 {
522 	struct vl_info *info = table->extra1;
523 	enum vec_type type = info->type;
524 	int ret;
525 	int vl = get_default_vl(type);
526 	struct ctl_table tmp_table = {
527 		.data = &vl,
528 		.maxlen = sizeof(vl),
529 	};
530 
531 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
532 	if (ret || !write)
533 		return ret;
534 
535 	/* Writing -1 has the special meaning "set to max": */
536 	if (vl == -1)
537 		vl = info->max_vl;
538 
539 	if (!sve_vl_valid(vl))
540 		return -EINVAL;
541 
542 	set_default_vl(type, find_supported_vector_length(type, vl));
543 	return 0;
544 }
545 
546 static struct ctl_table sve_default_vl_table[] = {
547 	{
548 		.procname	= "sve_default_vector_length",
549 		.mode		= 0644,
550 		.proc_handler	= vec_proc_do_default_vl,
551 		.extra1		= &vl_info[ARM64_VEC_SVE],
552 	},
553 	{ }
554 };
555 
sve_sysctl_init(void)556 static int __init sve_sysctl_init(void)
557 {
558 	if (system_supports_sve())
559 		if (!register_sysctl("abi", sve_default_vl_table))
560 			return -EINVAL;
561 
562 	return 0;
563 }
564 
565 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)566 static int __init sve_sysctl_init(void) { return 0; }
567 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
568 
569 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
570 static struct ctl_table sme_default_vl_table[] = {
571 	{
572 		.procname	= "sme_default_vector_length",
573 		.mode		= 0644,
574 		.proc_handler	= vec_proc_do_default_vl,
575 		.extra1		= &vl_info[ARM64_VEC_SME],
576 	},
577 	{ }
578 };
579 
sme_sysctl_init(void)580 static int __init sme_sysctl_init(void)
581 {
582 	if (system_supports_sme())
583 		if (!register_sysctl("abi", sme_default_vl_table))
584 			return -EINVAL;
585 
586 	return 0;
587 }
588 
589 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)590 static int __init sme_sysctl_init(void) { return 0; }
591 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
592 
593 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
594 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
595 
596 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)597 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
598 {
599 	u64 a = swab64(x);
600 	u64 b = swab64(x >> 64);
601 
602 	return ((__uint128_t)a << 64) | b;
603 }
604 #else
arm64_cpu_to_le128(__uint128_t x)605 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
606 {
607 	return x;
608 }
609 #endif
610 
611 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
612 
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)613 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
614 			    unsigned int vq)
615 {
616 	unsigned int i;
617 	__uint128_t *p;
618 
619 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
620 		p = (__uint128_t *)ZREG(sst, vq, i);
621 		*p = arm64_cpu_to_le128(fst->vregs[i]);
622 	}
623 }
624 
625 /*
626  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
627  * task->thread.sve_state.
628  *
629  * Task can be a non-runnable task, or current.  In the latter case,
630  * the caller must have ownership of the cpu FPSIMD context before calling
631  * this function.
632  * task->thread.sve_state must point to at least sve_state_size(task)
633  * bytes of allocated kernel memory.
634  * task->thread.uw.fpsimd_state must be up to date before calling this
635  * function.
636  */
fpsimd_to_sve(struct task_struct * task)637 static void fpsimd_to_sve(struct task_struct *task)
638 {
639 	unsigned int vq;
640 	void *sst = task->thread.sve_state;
641 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
642 
643 	if (!system_supports_sve())
644 		return;
645 
646 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
647 	__fpsimd_to_sve(sst, fst, vq);
648 }
649 
650 /*
651  * Transfer the SVE state in task->thread.sve_state to
652  * task->thread.uw.fpsimd_state.
653  *
654  * Task can be a non-runnable task, or current.  In the latter case,
655  * the caller must have ownership of the cpu FPSIMD context before calling
656  * this function.
657  * task->thread.sve_state must point to at least sve_state_size(task)
658  * bytes of allocated kernel memory.
659  * task->thread.sve_state must be up to date before calling this function.
660  */
sve_to_fpsimd(struct task_struct * task)661 static void sve_to_fpsimd(struct task_struct *task)
662 {
663 	unsigned int vq, vl;
664 	void const *sst = task->thread.sve_state;
665 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
666 	unsigned int i;
667 	__uint128_t const *p;
668 
669 	if (!system_supports_sve())
670 		return;
671 
672 	vl = thread_get_cur_vl(&task->thread);
673 	vq = sve_vq_from_vl(vl);
674 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
675 		p = (__uint128_t const *)ZREG(sst, vq, i);
676 		fst->vregs[i] = arm64_le128_to_cpu(*p);
677 	}
678 }
679 
680 #ifdef CONFIG_ARM64_SVE
681 
682 /*
683  * Return how many bytes of memory are required to store the full SVE
684  * state for task, given task's currently configured vector length.
685  */
sve_state_size(struct task_struct const * task)686 size_t sve_state_size(struct task_struct const *task)
687 {
688 	unsigned int vl = 0;
689 
690 	if (system_supports_sve())
691 		vl = task_get_sve_vl(task);
692 	if (system_supports_sme())
693 		vl = max(vl, task_get_sme_vl(task));
694 
695 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
696 }
697 
698 /*
699  * Ensure that task->thread.sve_state is allocated and sufficiently large.
700  *
701  * This function should be used only in preparation for replacing
702  * task->thread.sve_state with new data.  The memory is always zeroed
703  * here to prevent stale data from showing through: this is done in
704  * the interest of testability and predictability: except in the
705  * do_sve_acc() case, there is no ABI requirement to hide stale data
706  * written previously be task.
707  */
sve_alloc(struct task_struct * task,bool flush)708 void sve_alloc(struct task_struct *task, bool flush)
709 {
710 	if (task->thread.sve_state) {
711 		if (flush)
712 			memset(task->thread.sve_state, 0,
713 			       sve_state_size(task));
714 		return;
715 	}
716 
717 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
718 	task->thread.sve_state =
719 		kzalloc(sve_state_size(task), GFP_KERNEL);
720 }
721 
722 
723 /*
724  * Force the FPSIMD state shared with SVE to be updated in the SVE state
725  * even if the SVE state is the current active state.
726  *
727  * This should only be called by ptrace.  task must be non-runnable.
728  * task->thread.sve_state must point to at least sve_state_size(task)
729  * bytes of allocated kernel memory.
730  */
fpsimd_force_sync_to_sve(struct task_struct * task)731 void fpsimd_force_sync_to_sve(struct task_struct *task)
732 {
733 	fpsimd_to_sve(task);
734 }
735 
736 /*
737  * Ensure that task->thread.sve_state is up to date with respect to
738  * the user task, irrespective of when SVE is in use or not.
739  *
740  * This should only be called by ptrace.  task must be non-runnable.
741  * task->thread.sve_state must point to at least sve_state_size(task)
742  * bytes of allocated kernel memory.
743  */
fpsimd_sync_to_sve(struct task_struct * task)744 void fpsimd_sync_to_sve(struct task_struct *task)
745 {
746 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
747 	    !thread_sm_enabled(&task->thread))
748 		fpsimd_to_sve(task);
749 }
750 
751 /*
752  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
753  * the user task, irrespective of whether SVE is in use or not.
754  *
755  * This should only be called by ptrace.  task must be non-runnable.
756  * task->thread.sve_state must point to at least sve_state_size(task)
757  * bytes of allocated kernel memory.
758  */
sve_sync_to_fpsimd(struct task_struct * task)759 void sve_sync_to_fpsimd(struct task_struct *task)
760 {
761 	if (test_tsk_thread_flag(task, TIF_SVE) ||
762 	    thread_sm_enabled(&task->thread))
763 		sve_to_fpsimd(task);
764 }
765 
766 /*
767  * Ensure that task->thread.sve_state is up to date with respect to
768  * the task->thread.uw.fpsimd_state.
769  *
770  * This should only be called by ptrace to merge new FPSIMD register
771  * values into a task for which SVE is currently active.
772  * task must be non-runnable.
773  * task->thread.sve_state must point to at least sve_state_size(task)
774  * bytes of allocated kernel memory.
775  * task->thread.uw.fpsimd_state must already have been initialised with
776  * the new FPSIMD register values to be merged in.
777  */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)778 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
779 {
780 	unsigned int vq;
781 	void *sst = task->thread.sve_state;
782 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
783 
784 	if (!test_tsk_thread_flag(task, TIF_SVE))
785 		return;
786 
787 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
788 
789 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
790 	__fpsimd_to_sve(sst, fst, vq);
791 }
792 
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)793 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
794 			  unsigned long vl, unsigned long flags)
795 {
796 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
797 				     PR_SVE_SET_VL_ONEXEC))
798 		return -EINVAL;
799 
800 	if (!sve_vl_valid(vl))
801 		return -EINVAL;
802 
803 	/*
804 	 * Clamp to the maximum vector length that VL-agnostic code
805 	 * can work with.  A flag may be assigned in the future to
806 	 * allow setting of larger vector lengths without confusing
807 	 * older software.
808 	 */
809 	if (vl > VL_ARCH_MAX)
810 		vl = VL_ARCH_MAX;
811 
812 	vl = find_supported_vector_length(type, vl);
813 
814 	if (flags & (PR_SVE_VL_INHERIT |
815 		     PR_SVE_SET_VL_ONEXEC))
816 		task_set_vl_onexec(task, type, vl);
817 	else
818 		/* Reset VL to system default on next exec: */
819 		task_set_vl_onexec(task, type, 0);
820 
821 	/* Only actually set the VL if not deferred: */
822 	if (flags & PR_SVE_SET_VL_ONEXEC)
823 		goto out;
824 
825 	if (vl == task_get_vl(task, type))
826 		goto out;
827 
828 	/*
829 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
830 	 * write any live register state back to task_struct, and convert to a
831 	 * regular FPSIMD thread.
832 	 */
833 	if (task == current) {
834 		get_cpu_fpsimd_context();
835 
836 		fpsimd_save();
837 	}
838 
839 	fpsimd_flush_task_state(task);
840 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
841 	    thread_sm_enabled(&task->thread))
842 		sve_to_fpsimd(task);
843 
844 	if (system_supports_sme() && type == ARM64_VEC_SME) {
845 		task->thread.svcr &= ~(SVCR_SM_MASK |
846 				       SVCR_ZA_MASK);
847 		clear_thread_flag(TIF_SME);
848 	}
849 
850 	if (task == current)
851 		put_cpu_fpsimd_context();
852 
853 	/*
854 	 * Force reallocation of task SVE and SME state to the correct
855 	 * size on next use:
856 	 */
857 	sve_free(task);
858 	if (system_supports_sme() && type == ARM64_VEC_SME)
859 		sme_free(task);
860 
861 	task_set_vl(task, type, vl);
862 
863 out:
864 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
865 			       flags & PR_SVE_VL_INHERIT);
866 
867 	return 0;
868 }
869 
870 /*
871  * Encode the current vector length and flags for return.
872  * This is only required for prctl(): ptrace has separate fields.
873  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
874  *
875  * flags are as for vec_set_vector_length().
876  */
vec_prctl_status(enum vec_type type,unsigned long flags)877 static int vec_prctl_status(enum vec_type type, unsigned long flags)
878 {
879 	int ret;
880 
881 	if (flags & PR_SVE_SET_VL_ONEXEC)
882 		ret = task_get_vl_onexec(current, type);
883 	else
884 		ret = task_get_vl(current, type);
885 
886 	if (test_thread_flag(vec_vl_inherit_flag(type)))
887 		ret |= PR_SVE_VL_INHERIT;
888 
889 	return ret;
890 }
891 
892 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)893 int sve_set_current_vl(unsigned long arg)
894 {
895 	unsigned long vl, flags;
896 	int ret;
897 
898 	vl = arg & PR_SVE_VL_LEN_MASK;
899 	flags = arg & ~vl;
900 
901 	if (!system_supports_sve() || is_compat_task())
902 		return -EINVAL;
903 
904 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
905 	if (ret)
906 		return ret;
907 
908 	return vec_prctl_status(ARM64_VEC_SVE, flags);
909 }
910 
911 /* PR_SVE_GET_VL */
sve_get_current_vl(void)912 int sve_get_current_vl(void)
913 {
914 	if (!system_supports_sve() || is_compat_task())
915 		return -EINVAL;
916 
917 	return vec_prctl_status(ARM64_VEC_SVE, 0);
918 }
919 
920 #ifdef CONFIG_ARM64_SME
921 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)922 int sme_set_current_vl(unsigned long arg)
923 {
924 	unsigned long vl, flags;
925 	int ret;
926 
927 	vl = arg & PR_SME_VL_LEN_MASK;
928 	flags = arg & ~vl;
929 
930 	if (!system_supports_sme() || is_compat_task())
931 		return -EINVAL;
932 
933 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
934 	if (ret)
935 		return ret;
936 
937 	return vec_prctl_status(ARM64_VEC_SME, flags);
938 }
939 
940 /* PR_SME_GET_VL */
sme_get_current_vl(void)941 int sme_get_current_vl(void)
942 {
943 	if (!system_supports_sme() || is_compat_task())
944 		return -EINVAL;
945 
946 	return vec_prctl_status(ARM64_VEC_SME, 0);
947 }
948 #endif /* CONFIG_ARM64_SME */
949 
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))950 static void vec_probe_vqs(struct vl_info *info,
951 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
952 {
953 	unsigned int vq, vl;
954 
955 	bitmap_zero(map, SVE_VQ_MAX);
956 
957 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
958 		write_vl(info->type, vq - 1); /* self-syncing */
959 
960 		switch (info->type) {
961 		case ARM64_VEC_SVE:
962 			vl = sve_get_vl();
963 			break;
964 		case ARM64_VEC_SME:
965 			vl = sme_get_vl();
966 			break;
967 		default:
968 			vl = 0;
969 			break;
970 		}
971 
972 		/* Minimum VL identified? */
973 		if (sve_vq_from_vl(vl) > vq)
974 			break;
975 
976 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
977 		set_bit(__vq_to_bit(vq), map);
978 	}
979 }
980 
981 /*
982  * Initialise the set of known supported VQs for the boot CPU.
983  * This is called during kernel boot, before secondary CPUs are brought up.
984  */
vec_init_vq_map(enum vec_type type)985 void __init vec_init_vq_map(enum vec_type type)
986 {
987 	struct vl_info *info = &vl_info[type];
988 	vec_probe_vqs(info, info->vq_map);
989 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
990 }
991 
992 /*
993  * If we haven't committed to the set of supported VQs yet, filter out
994  * those not supported by the current CPU.
995  * This function is called during the bring-up of early secondary CPUs only.
996  */
vec_update_vq_map(enum vec_type type)997 void vec_update_vq_map(enum vec_type type)
998 {
999 	struct vl_info *info = &vl_info[type];
1000 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1001 
1002 	vec_probe_vqs(info, tmp_map);
1003 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1004 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1005 		  SVE_VQ_MAX);
1006 }
1007 
1008 /*
1009  * Check whether the current CPU supports all VQs in the committed set.
1010  * This function is called during the bring-up of late secondary CPUs only.
1011  */
vec_verify_vq_map(enum vec_type type)1012 int vec_verify_vq_map(enum vec_type type)
1013 {
1014 	struct vl_info *info = &vl_info[type];
1015 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1016 	unsigned long b;
1017 
1018 	vec_probe_vqs(info, tmp_map);
1019 
1020 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1021 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1022 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1023 			info->name, smp_processor_id());
1024 		return -EINVAL;
1025 	}
1026 
1027 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1028 		return 0;
1029 
1030 	/*
1031 	 * For KVM, it is necessary to ensure that this CPU doesn't
1032 	 * support any vector length that guests may have probed as
1033 	 * unsupported.
1034 	 */
1035 
1036 	/* Recover the set of supported VQs: */
1037 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1038 	/* Find VQs supported that are not globally supported: */
1039 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1040 
1041 	/* Find the lowest such VQ, if any: */
1042 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1043 	if (b >= SVE_VQ_MAX)
1044 		return 0; /* no mismatches */
1045 
1046 	/*
1047 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1048 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1049 	 */
1050 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1051 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1052 			info->name, smp_processor_id());
1053 		return -EINVAL;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
sve_efi_setup(void)1059 static void __init sve_efi_setup(void)
1060 {
1061 	int max_vl = 0;
1062 	int i;
1063 
1064 	if (!IS_ENABLED(CONFIG_EFI))
1065 		return;
1066 
1067 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1068 		max_vl = max(vl_info[i].max_vl, max_vl);
1069 
1070 	/*
1071 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1072 	 * This is evidence of a crippled system and we are returning void,
1073 	 * so no attempt is made to handle this situation here.
1074 	 */
1075 	if (!sve_vl_valid(max_vl))
1076 		goto fail;
1077 
1078 	efi_sve_state = __alloc_percpu(
1079 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1080 	if (!efi_sve_state)
1081 		goto fail;
1082 
1083 	return;
1084 
1085 fail:
1086 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1087 }
1088 
1089 /*
1090  * Enable SVE for EL1.
1091  * Intended for use by the cpufeatures code during CPU boot.
1092  */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1093 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1094 {
1095 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1096 	isb();
1097 }
1098 
1099 /*
1100  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1101  * vector length.
1102  *
1103  * Use only if SVE is present.
1104  * This function clobbers the SVE vector length.
1105  */
read_zcr_features(void)1106 u64 read_zcr_features(void)
1107 {
1108 	u64 zcr;
1109 	unsigned int vq_max;
1110 
1111 	/*
1112 	 * Set the maximum possible VL, and write zeroes to all other
1113 	 * bits to see if they stick.
1114 	 */
1115 	sve_kernel_enable(NULL);
1116 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1117 
1118 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1119 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1120 	vq_max = sve_vq_from_vl(sve_get_vl());
1121 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1122 
1123 	return zcr;
1124 }
1125 
sve_setup(void)1126 void __init sve_setup(void)
1127 {
1128 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1129 	u64 zcr;
1130 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1131 	unsigned long b;
1132 
1133 	if (!system_supports_sve())
1134 		return;
1135 
1136 	/*
1137 	 * The SVE architecture mandates support for 128-bit vectors,
1138 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1139 	 * If something went wrong, at least try to patch it up:
1140 	 */
1141 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1142 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1143 
1144 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1145 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1146 
1147 	/*
1148 	 * Sanity-check that the max VL we determined through CPU features
1149 	 * corresponds properly to sve_vq_map.  If not, do our best:
1150 	 */
1151 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1152 								 info->max_vl)))
1153 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1154 							    info->max_vl);
1155 
1156 	/*
1157 	 * For the default VL, pick the maximum supported value <= 64.
1158 	 * VL == 64 is guaranteed not to grow the signal frame.
1159 	 */
1160 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1161 
1162 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1163 		      SVE_VQ_MAX);
1164 
1165 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1166 	if (b >= SVE_VQ_MAX)
1167 		/* No non-virtualisable VLs found */
1168 		info->max_virtualisable_vl = SVE_VQ_MAX;
1169 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1170 		/* No virtualisable VLs?  This is architecturally forbidden. */
1171 		info->max_virtualisable_vl = SVE_VQ_MIN;
1172 	else /* b + 1 < SVE_VQ_MAX */
1173 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1174 
1175 	if (info->max_virtualisable_vl > info->max_vl)
1176 		info->max_virtualisable_vl = info->max_vl;
1177 
1178 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1179 		info->name, info->max_vl);
1180 	pr_info("%s: default vector length %u bytes per vector\n",
1181 		info->name, get_sve_default_vl());
1182 
1183 	/* KVM decides whether to support mismatched systems. Just warn here: */
1184 	if (sve_max_virtualisable_vl() < sve_max_vl())
1185 		pr_warn("%s: unvirtualisable vector lengths present\n",
1186 			info->name);
1187 
1188 	sve_efi_setup();
1189 }
1190 
1191 /*
1192  * Called from the put_task_struct() path, which cannot get here
1193  * unless dead_task is really dead and not schedulable.
1194  */
fpsimd_release_task(struct task_struct * dead_task)1195 void fpsimd_release_task(struct task_struct *dead_task)
1196 {
1197 	__sve_free(dead_task);
1198 	sme_free(dead_task);
1199 }
1200 
1201 #endif /* CONFIG_ARM64_SVE */
1202 
1203 #ifdef CONFIG_ARM64_SME
1204 
1205 /*
1206  * Ensure that task->thread.za_state is allocated and sufficiently large.
1207  *
1208  * This function should be used only in preparation for replacing
1209  * task->thread.za_state with new data.  The memory is always zeroed
1210  * here to prevent stale data from showing through: this is done in
1211  * the interest of testability and predictability, the architecture
1212  * guarantees that when ZA is enabled it will be zeroed.
1213  */
sme_alloc(struct task_struct * task)1214 void sme_alloc(struct task_struct *task)
1215 {
1216 	if (task->thread.za_state) {
1217 		memset(task->thread.za_state, 0, za_state_size(task));
1218 		return;
1219 	}
1220 
1221 	/* This could potentially be up to 64K. */
1222 	task->thread.za_state =
1223 		kzalloc(za_state_size(task), GFP_KERNEL);
1224 }
1225 
sme_free(struct task_struct * task)1226 static void sme_free(struct task_struct *task)
1227 {
1228 	kfree(task->thread.za_state);
1229 	task->thread.za_state = NULL;
1230 }
1231 
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1232 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1233 {
1234 	/* Set priority for all PEs to architecturally defined minimum */
1235 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1236 		       SYS_SMPRI_EL1);
1237 
1238 	/* Allow SME in kernel */
1239 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1240 	isb();
1241 
1242 	/* Allow EL0 to access TPIDR2 */
1243 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1244 	isb();
1245 }
1246 
1247 /*
1248  * This must be called after sme_kernel_enable(), we rely on the
1249  * feature table being sorted to ensure this.
1250  */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1251 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1252 {
1253 	/* Allow use of FA64 */
1254 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1255 		       SYS_SMCR_EL1);
1256 }
1257 
1258 /*
1259  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1260  * vector length.
1261  *
1262  * Use only if SME is present.
1263  * This function clobbers the SME vector length.
1264  */
read_smcr_features(void)1265 u64 read_smcr_features(void)
1266 {
1267 	u64 smcr;
1268 	unsigned int vq_max;
1269 
1270 	sme_kernel_enable(NULL);
1271 	sme_smstart_sm();
1272 
1273 	/*
1274 	 * Set the maximum possible VL.
1275 	 */
1276 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1277 		       SYS_SMCR_EL1);
1278 
1279 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1280 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1281 	vq_max = sve_vq_from_vl(sve_get_vl());
1282 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1283 
1284 	sme_smstop_sm();
1285 
1286 	return smcr;
1287 }
1288 
sme_setup(void)1289 void __init sme_setup(void)
1290 {
1291 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1292 	u64 smcr;
1293 	int min_bit;
1294 
1295 	if (!system_supports_sme())
1296 		return;
1297 
1298 	/*
1299 	 * SME doesn't require any particular vector length be
1300 	 * supported but it does require at least one.  We should have
1301 	 * disabled the feature entirely while bringing up CPUs but
1302 	 * let's double check here.
1303 	 */
1304 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1305 
1306 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1307 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1308 
1309 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1310 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1311 
1312 	/*
1313 	 * Sanity-check that the max VL we determined through CPU features
1314 	 * corresponds properly to sme_vq_map.  If not, do our best:
1315 	 */
1316 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1317 								 info->max_vl)))
1318 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1319 							    info->max_vl);
1320 
1321 	WARN_ON(info->min_vl > info->max_vl);
1322 
1323 	/*
1324 	 * For the default VL, pick the maximum supported value <= 32
1325 	 * (256 bits) if there is one since this is guaranteed not to
1326 	 * grow the signal frame when in streaming mode, otherwise the
1327 	 * minimum available VL will be used.
1328 	 */
1329 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1330 
1331 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1332 		info->min_vl);
1333 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1334 		info->max_vl);
1335 	pr_info("SME: default vector length %u bytes per vector\n",
1336 		get_sme_default_vl());
1337 }
1338 
1339 #endif /* CONFIG_ARM64_SME */
1340 
sve_init_regs(void)1341 static void sve_init_regs(void)
1342 {
1343 	/*
1344 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1345 	 * is not shared with FPSIMD. If (as is likely) the current
1346 	 * state is live in the registers then do this there and
1347 	 * update our metadata for the current task including
1348 	 * disabling the trap, otherwise update our in-memory copy.
1349 	 * We are guaranteed to not be in streaming mode, we can only
1350 	 * take a SVE trap when not in streaming mode and we can't be
1351 	 * in streaming mode when taking a SME trap.
1352 	 */
1353 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1354 		unsigned long vq_minus_one =
1355 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1356 		sve_set_vq(vq_minus_one);
1357 		sve_flush_live(true, vq_minus_one);
1358 		fpsimd_bind_task_to_cpu();
1359 	} else {
1360 		fpsimd_to_sve(current);
1361 	}
1362 }
1363 
1364 /*
1365  * Trapped SVE access
1366  *
1367  * Storage is allocated for the full SVE state, the current FPSIMD
1368  * register contents are migrated across, and the access trap is
1369  * disabled.
1370  *
1371  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1372  * would have disabled the SVE access trap for userspace during
1373  * ret_to_user, making an SVE access trap impossible in that case.
1374  */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1375 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1376 {
1377 	/* Even if we chose not to use SVE, the hardware could still trap: */
1378 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1379 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1380 		return;
1381 	}
1382 
1383 	sve_alloc(current, true);
1384 	if (!current->thread.sve_state) {
1385 		force_sig(SIGKILL);
1386 		return;
1387 	}
1388 
1389 	get_cpu_fpsimd_context();
1390 
1391 	if (test_and_set_thread_flag(TIF_SVE))
1392 		WARN_ON(1); /* SVE access shouldn't have trapped */
1393 
1394 	/*
1395 	 * Even if the task can have used streaming mode we can only
1396 	 * generate SVE access traps in normal SVE mode and
1397 	 * transitioning out of streaming mode may discard any
1398 	 * streaming mode state.  Always clear the high bits to avoid
1399 	 * any potential errors tracking what is properly initialised.
1400 	 */
1401 	sve_init_regs();
1402 
1403 	put_cpu_fpsimd_context();
1404 }
1405 
1406 /*
1407  * Trapped SME access
1408  *
1409  * Storage is allocated for the full SVE and SME state, the current
1410  * FPSIMD register contents are migrated to SVE if SVE is not already
1411  * active, and the access trap is disabled.
1412  *
1413  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1414  * would have disabled the SME access trap for userspace during
1415  * ret_to_user, making an SVE access trap impossible in that case.
1416  */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1417 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1418 {
1419 	/* Even if we chose not to use SME, the hardware could still trap: */
1420 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1421 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1422 		return;
1423 	}
1424 
1425 	/*
1426 	 * If this not a trap due to SME being disabled then something
1427 	 * is being used in the wrong mode, report as SIGILL.
1428 	 */
1429 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1430 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1431 		return;
1432 	}
1433 
1434 	sve_alloc(current, false);
1435 	sme_alloc(current);
1436 	if (!current->thread.sve_state || !current->thread.za_state) {
1437 		force_sig(SIGKILL);
1438 		return;
1439 	}
1440 
1441 	get_cpu_fpsimd_context();
1442 
1443 	/* With TIF_SME userspace shouldn't generate any traps */
1444 	if (test_and_set_thread_flag(TIF_SME))
1445 		WARN_ON(1);
1446 
1447 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1448 		unsigned long vq_minus_one =
1449 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1450 		sme_set_vq(vq_minus_one);
1451 
1452 		fpsimd_bind_task_to_cpu();
1453 	}
1454 
1455 	put_cpu_fpsimd_context();
1456 }
1457 
1458 /*
1459  * Trapped FP/ASIMD access.
1460  */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1461 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1462 {
1463 	/* TODO: implement lazy context saving/restoring */
1464 	WARN_ON(1);
1465 }
1466 
1467 /*
1468  * Raise a SIGFPE for the current process.
1469  */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1470 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1471 {
1472 	unsigned int si_code = FPE_FLTUNK;
1473 
1474 	if (esr & ESR_ELx_FP_EXC_TFV) {
1475 		if (esr & FPEXC_IOF)
1476 			si_code = FPE_FLTINV;
1477 		else if (esr & FPEXC_DZF)
1478 			si_code = FPE_FLTDIV;
1479 		else if (esr & FPEXC_OFF)
1480 			si_code = FPE_FLTOVF;
1481 		else if (esr & FPEXC_UFF)
1482 			si_code = FPE_FLTUND;
1483 		else if (esr & FPEXC_IXF)
1484 			si_code = FPE_FLTRES;
1485 	}
1486 
1487 	send_sig_fault(SIGFPE, si_code,
1488 		       (void __user *)instruction_pointer(regs),
1489 		       current);
1490 }
1491 
fpsimd_thread_switch(struct task_struct * next)1492 void fpsimd_thread_switch(struct task_struct *next)
1493 {
1494 	bool wrong_task, wrong_cpu;
1495 
1496 	if (!system_supports_fpsimd())
1497 		return;
1498 
1499 	__get_cpu_fpsimd_context();
1500 
1501 	/* Save unsaved fpsimd state, if any: */
1502 	fpsimd_save();
1503 
1504 	/*
1505 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1506 	 * state.  For kernel threads, FPSIMD registers are never loaded
1507 	 * and wrong_task and wrong_cpu will always be true.
1508 	 */
1509 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1510 					&next->thread.uw.fpsimd_state;
1511 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1512 
1513 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1514 			       wrong_task || wrong_cpu);
1515 
1516 	__put_cpu_fpsimd_context();
1517 }
1518 
fpsimd_flush_thread_vl(enum vec_type type)1519 static void fpsimd_flush_thread_vl(enum vec_type type)
1520 {
1521 	int vl, supported_vl;
1522 
1523 	/*
1524 	 * Reset the task vector length as required.  This is where we
1525 	 * ensure that all user tasks have a valid vector length
1526 	 * configured: no kernel task can become a user task without
1527 	 * an exec and hence a call to this function.  By the time the
1528 	 * first call to this function is made, all early hardware
1529 	 * probing is complete, so __sve_default_vl should be valid.
1530 	 * If a bug causes this to go wrong, we make some noise and
1531 	 * try to fudge thread.sve_vl to a safe value here.
1532 	 */
1533 	vl = task_get_vl_onexec(current, type);
1534 	if (!vl)
1535 		vl = get_default_vl(type);
1536 
1537 	if (WARN_ON(!sve_vl_valid(vl)))
1538 		vl = vl_info[type].min_vl;
1539 
1540 	supported_vl = find_supported_vector_length(type, vl);
1541 	if (WARN_ON(supported_vl != vl))
1542 		vl = supported_vl;
1543 
1544 	task_set_vl(current, type, vl);
1545 
1546 	/*
1547 	 * If the task is not set to inherit, ensure that the vector
1548 	 * length will be reset by a subsequent exec:
1549 	 */
1550 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1551 		task_set_vl_onexec(current, type, 0);
1552 }
1553 
fpsimd_flush_thread(void)1554 void fpsimd_flush_thread(void)
1555 {
1556 	if (!system_supports_fpsimd())
1557 		return;
1558 
1559 	get_cpu_fpsimd_context();
1560 
1561 	fpsimd_flush_task_state(current);
1562 	memset(&current->thread.uw.fpsimd_state, 0,
1563 	       sizeof(current->thread.uw.fpsimd_state));
1564 
1565 	if (system_supports_sve()) {
1566 		clear_thread_flag(TIF_SVE);
1567 		sve_free(current);
1568 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1569 	}
1570 
1571 	if (system_supports_sme()) {
1572 		clear_thread_flag(TIF_SME);
1573 		sme_free(current);
1574 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1575 		current->thread.svcr = 0;
1576 	}
1577 
1578 	put_cpu_fpsimd_context();
1579 }
1580 
1581 /*
1582  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1583  * currently held in the registers does in fact belong to 'current'
1584  */
fpsimd_preserve_current_state(void)1585 void fpsimd_preserve_current_state(void)
1586 {
1587 	if (!system_supports_fpsimd())
1588 		return;
1589 
1590 	get_cpu_fpsimd_context();
1591 	fpsimd_save();
1592 	put_cpu_fpsimd_context();
1593 }
1594 
1595 /*
1596  * Like fpsimd_preserve_current_state(), but ensure that
1597  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1598  * the signal frame.
1599  */
fpsimd_signal_preserve_current_state(void)1600 void fpsimd_signal_preserve_current_state(void)
1601 {
1602 	fpsimd_preserve_current_state();
1603 	if (test_thread_flag(TIF_SVE))
1604 		sve_to_fpsimd(current);
1605 }
1606 
1607 /*
1608  * Associate current's FPSIMD context with this cpu
1609  * The caller must have ownership of the cpu FPSIMD context before calling
1610  * this function.
1611  */
fpsimd_bind_task_to_cpu(void)1612 static void fpsimd_bind_task_to_cpu(void)
1613 {
1614 	struct fpsimd_last_state_struct *last =
1615 		this_cpu_ptr(&fpsimd_last_state);
1616 
1617 	WARN_ON(!system_supports_fpsimd());
1618 	last->st = &current->thread.uw.fpsimd_state;
1619 	last->sve_state = current->thread.sve_state;
1620 	last->za_state = current->thread.za_state;
1621 	last->sve_vl = task_get_sve_vl(current);
1622 	last->sme_vl = task_get_sme_vl(current);
1623 	last->svcr = &current->thread.svcr;
1624 	current->thread.fpsimd_cpu = smp_processor_id();
1625 
1626 	/*
1627 	 * Toggle SVE and SME trapping for userspace if needed, these
1628 	 * are serialsied by ret_to_user().
1629 	 */
1630 	if (system_supports_sme()) {
1631 		if (test_thread_flag(TIF_SME))
1632 			sme_user_enable();
1633 		else
1634 			sme_user_disable();
1635 	}
1636 
1637 	if (system_supports_sve()) {
1638 		if (test_thread_flag(TIF_SVE))
1639 			sve_user_enable();
1640 		else
1641 			sve_user_disable();
1642 	}
1643 }
1644 
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl,void * za_state,unsigned int sme_vl,u64 * svcr)1645 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1646 			      unsigned int sve_vl, void *za_state,
1647 			      unsigned int sme_vl, u64 *svcr)
1648 {
1649 	struct fpsimd_last_state_struct *last =
1650 		this_cpu_ptr(&fpsimd_last_state);
1651 
1652 	WARN_ON(!system_supports_fpsimd());
1653 	WARN_ON(!in_softirq() && !irqs_disabled());
1654 
1655 	last->st = st;
1656 	last->svcr = svcr;
1657 	last->sve_state = sve_state;
1658 	last->za_state = za_state;
1659 	last->sve_vl = sve_vl;
1660 	last->sme_vl = sme_vl;
1661 }
1662 
1663 /*
1664  * Load the userland FPSIMD state of 'current' from memory, but only if the
1665  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1666  * state of 'current'
1667  */
fpsimd_restore_current_state(void)1668 void fpsimd_restore_current_state(void)
1669 {
1670 	/*
1671 	 * For the tasks that were created before we detected the absence of
1672 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1673 	 * e.g, init. This could be then inherited by the children processes.
1674 	 * If we later detect that the system doesn't support FP/SIMD,
1675 	 * we must clear the flag for  all the tasks to indicate that the
1676 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1677 	 * do_notify_resume().
1678 	 */
1679 	if (!system_supports_fpsimd()) {
1680 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1681 		return;
1682 	}
1683 
1684 	get_cpu_fpsimd_context();
1685 
1686 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1687 		task_fpsimd_load();
1688 		fpsimd_bind_task_to_cpu();
1689 	}
1690 
1691 	put_cpu_fpsimd_context();
1692 }
1693 
1694 /*
1695  * Load an updated userland FPSIMD state for 'current' from memory and set the
1696  * flag that indicates that the FPSIMD register contents are the most recent
1697  * FPSIMD state of 'current'
1698  */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1699 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1700 {
1701 	if (WARN_ON(!system_supports_fpsimd()))
1702 		return;
1703 
1704 	get_cpu_fpsimd_context();
1705 
1706 	current->thread.uw.fpsimd_state = *state;
1707 	if (test_thread_flag(TIF_SVE))
1708 		fpsimd_to_sve(current);
1709 
1710 	task_fpsimd_load();
1711 	fpsimd_bind_task_to_cpu();
1712 
1713 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1714 
1715 	put_cpu_fpsimd_context();
1716 }
1717 
1718 /*
1719  * Invalidate live CPU copies of task t's FPSIMD state
1720  *
1721  * This function may be called with preemption enabled.  The barrier()
1722  * ensures that the assignment to fpsimd_cpu is visible to any
1723  * preemption/softirq that could race with set_tsk_thread_flag(), so
1724  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1725  *
1726  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1727  * subsequent code.
1728  */
fpsimd_flush_task_state(struct task_struct * t)1729 void fpsimd_flush_task_state(struct task_struct *t)
1730 {
1731 	t->thread.fpsimd_cpu = NR_CPUS;
1732 	/*
1733 	 * If we don't support fpsimd, bail out after we have
1734 	 * reset the fpsimd_cpu for this task and clear the
1735 	 * FPSTATE.
1736 	 */
1737 	if (!system_supports_fpsimd())
1738 		return;
1739 	barrier();
1740 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1741 
1742 	barrier();
1743 }
1744 
1745 /*
1746  * Invalidate any task's FPSIMD state that is present on this cpu.
1747  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1748  * before calling this function.
1749  */
fpsimd_flush_cpu_state(void)1750 static void fpsimd_flush_cpu_state(void)
1751 {
1752 	WARN_ON(!system_supports_fpsimd());
1753 	__this_cpu_write(fpsimd_last_state.st, NULL);
1754 
1755 	/*
1756 	 * Leaving streaming mode enabled will cause issues for any kernel
1757 	 * NEON and leaving streaming mode or ZA enabled may increase power
1758 	 * consumption.
1759 	 */
1760 	if (system_supports_sme())
1761 		sme_smstop();
1762 
1763 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1764 }
1765 
1766 /*
1767  * Save the FPSIMD state to memory and invalidate cpu view.
1768  * This function must be called with preemption disabled.
1769  */
fpsimd_save_and_flush_cpu_state(void)1770 void fpsimd_save_and_flush_cpu_state(void)
1771 {
1772 	if (!system_supports_fpsimd())
1773 		return;
1774 	WARN_ON(preemptible());
1775 	__get_cpu_fpsimd_context();
1776 	fpsimd_save();
1777 	fpsimd_flush_cpu_state();
1778 	__put_cpu_fpsimd_context();
1779 }
1780 
1781 #ifdef CONFIG_KERNEL_MODE_NEON
1782 
1783 /*
1784  * Kernel-side NEON support functions
1785  */
1786 
1787 /*
1788  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1789  * context
1790  *
1791  * Must not be called unless may_use_simd() returns true.
1792  * Task context in the FPSIMD registers is saved back to memory as necessary.
1793  *
1794  * A matching call to kernel_neon_end() must be made before returning from the
1795  * calling context.
1796  *
1797  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1798  * called.
1799  */
kernel_neon_begin(void)1800 void kernel_neon_begin(void)
1801 {
1802 	if (WARN_ON(!system_supports_fpsimd()))
1803 		return;
1804 
1805 	BUG_ON(!may_use_simd());
1806 
1807 	get_cpu_fpsimd_context();
1808 
1809 	/* Save unsaved fpsimd state, if any: */
1810 	fpsimd_save();
1811 
1812 	/* Invalidate any task state remaining in the fpsimd regs: */
1813 	fpsimd_flush_cpu_state();
1814 }
1815 EXPORT_SYMBOL(kernel_neon_begin);
1816 
1817 /*
1818  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1819  *
1820  * Must be called from a context in which kernel_neon_begin() was previously
1821  * called, with no call to kernel_neon_end() in the meantime.
1822  *
1823  * The caller must not use the FPSIMD registers after this function is called,
1824  * unless kernel_neon_begin() is called again in the meantime.
1825  */
kernel_neon_end(void)1826 void kernel_neon_end(void)
1827 {
1828 	if (!system_supports_fpsimd())
1829 		return;
1830 
1831 	put_cpu_fpsimd_context();
1832 }
1833 EXPORT_SYMBOL(kernel_neon_end);
1834 
1835 #ifdef CONFIG_EFI
1836 
1837 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1838 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1839 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1840 static DEFINE_PER_CPU(bool, efi_sm_state);
1841 
1842 /*
1843  * EFI runtime services support functions
1844  *
1845  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1846  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1847  * is always used rather than being an optional accelerator.
1848  *
1849  * These functions provide the necessary support for ensuring FPSIMD
1850  * save/restore in the contexts from which EFI is used.
1851  *
1852  * Do not use them for any other purpose -- if tempted to do so, you are
1853  * either doing something wrong or you need to propose some refactoring.
1854  */
1855 
1856 /*
1857  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1858  */
__efi_fpsimd_begin(void)1859 void __efi_fpsimd_begin(void)
1860 {
1861 	if (!system_supports_fpsimd())
1862 		return;
1863 
1864 	WARN_ON(preemptible());
1865 
1866 	if (may_use_simd()) {
1867 		kernel_neon_begin();
1868 	} else {
1869 		/*
1870 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1871 		 * preserving:
1872 		 */
1873 		if (system_supports_sve() && likely(efi_sve_state)) {
1874 			char *sve_state = this_cpu_ptr(efi_sve_state);
1875 			bool ffr = true;
1876 			u64 svcr;
1877 
1878 			__this_cpu_write(efi_sve_state_used, true);
1879 
1880 			if (system_supports_sme()) {
1881 				svcr = read_sysreg_s(SYS_SVCR);
1882 
1883 				__this_cpu_write(efi_sm_state,
1884 						 svcr & SVCR_SM_MASK);
1885 
1886 				/*
1887 				 * Unless we have FA64 FFR does not
1888 				 * exist in streaming mode.
1889 				 */
1890 				if (!system_supports_fa64())
1891 					ffr = !(svcr & SVCR_SM_MASK);
1892 			}
1893 
1894 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1895 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1896 				       ffr);
1897 
1898 			if (system_supports_sme())
1899 				sysreg_clear_set_s(SYS_SVCR,
1900 						   SVCR_SM_MASK, 0);
1901 
1902 		} else {
1903 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1904 		}
1905 
1906 		__this_cpu_write(efi_fpsimd_state_used, true);
1907 	}
1908 }
1909 
1910 /*
1911  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1912  */
__efi_fpsimd_end(void)1913 void __efi_fpsimd_end(void)
1914 {
1915 	if (!system_supports_fpsimd())
1916 		return;
1917 
1918 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1919 		kernel_neon_end();
1920 	} else {
1921 		if (system_supports_sve() &&
1922 		    likely(__this_cpu_read(efi_sve_state_used))) {
1923 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1924 			bool ffr = true;
1925 
1926 			/*
1927 			 * Restore streaming mode; EFI calls are
1928 			 * normal function calls so should not return in
1929 			 * streaming mode.
1930 			 */
1931 			if (system_supports_sme()) {
1932 				if (__this_cpu_read(efi_sm_state)) {
1933 					sysreg_clear_set_s(SYS_SVCR,
1934 							   0,
1935 							   SVCR_SM_MASK);
1936 
1937 					/*
1938 					 * Unless we have FA64 FFR does not
1939 					 * exist in streaming mode.
1940 					 */
1941 					if (!system_supports_fa64())
1942 						ffr = false;
1943 				}
1944 			}
1945 
1946 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1947 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1948 				       ffr);
1949 
1950 			__this_cpu_write(efi_sve_state_used, false);
1951 		} else {
1952 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1953 		}
1954 	}
1955 }
1956 
1957 #endif /* CONFIG_EFI */
1958 
1959 #endif /* CONFIG_KERNEL_MODE_NEON */
1960 
1961 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1962 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1963 				  unsigned long cmd, void *v)
1964 {
1965 	switch (cmd) {
1966 	case CPU_PM_ENTER:
1967 		fpsimd_save_and_flush_cpu_state();
1968 		break;
1969 	case CPU_PM_EXIT:
1970 		break;
1971 	case CPU_PM_ENTER_FAILED:
1972 	default:
1973 		return NOTIFY_DONE;
1974 	}
1975 	return NOTIFY_OK;
1976 }
1977 
1978 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1979 	.notifier_call = fpsimd_cpu_pm_notifier,
1980 };
1981 
fpsimd_pm_init(void)1982 static void __init fpsimd_pm_init(void)
1983 {
1984 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1985 }
1986 
1987 #else
fpsimd_pm_init(void)1988 static inline void fpsimd_pm_init(void) { }
1989 #endif /* CONFIG_CPU_PM */
1990 
1991 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1992 static int fpsimd_cpu_dead(unsigned int cpu)
1993 {
1994 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1995 	return 0;
1996 }
1997 
fpsimd_hotplug_init(void)1998 static inline void fpsimd_hotplug_init(void)
1999 {
2000 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2001 				  NULL, fpsimd_cpu_dead);
2002 }
2003 
2004 #else
fpsimd_hotplug_init(void)2005 static inline void fpsimd_hotplug_init(void) { }
2006 #endif
2007 
2008 /*
2009  * FP/SIMD support code initialisation.
2010  */
fpsimd_init(void)2011 static int __init fpsimd_init(void)
2012 {
2013 	if (cpu_have_named_feature(FP)) {
2014 		fpsimd_pm_init();
2015 		fpsimd_hotplug_init();
2016 	} else {
2017 		pr_notice("Floating-point is not implemented\n");
2018 	}
2019 
2020 	if (!cpu_have_named_feature(ASIMD))
2021 		pr_notice("Advanced SIMD is not implemented\n");
2022 
2023 
2024 	if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2025 		pr_notice("SME is implemented but not SVE\n");
2026 
2027 	sve_sysctl_init();
2028 	sme_sysctl_init();
2029 
2030 	return 0;
2031 }
2032 core_initcall(fpsimd_init);
2033