1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/mutex.h>
16 #include <linux/rwsem.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/highmem.h>
20 #include <linux/delay.h>
21 #include <linux/pagemap.h>
22 #include <linux/hmm.h>
23 #include <linux/vmalloc.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/sched/mm.h>
27 #include <linux/platform_device.h>
28 #include <linux/rmap.h>
29
30 #include "test_hmm_uapi.h"
31
32 #define DMIRROR_NDEVICES 2
33 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000
34 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U)
35 #define DEVMEM_CHUNKS_RESERVE 16
36
37 static const struct dev_pagemap_ops dmirror_devmem_ops;
38 static const struct mmu_interval_notifier_ops dmirror_min_ops;
39 static dev_t dmirror_dev;
40
41 struct dmirror_device;
42
43 struct dmirror_bounce {
44 void *ptr;
45 unsigned long size;
46 unsigned long addr;
47 unsigned long cpages;
48 };
49
50 #define DPT_XA_TAG_ATOMIC 1UL
51 #define DPT_XA_TAG_WRITE 3UL
52
53 /*
54 * Data structure to track address ranges and register for mmu interval
55 * notifier updates.
56 */
57 struct dmirror_interval {
58 struct mmu_interval_notifier notifier;
59 struct dmirror *dmirror;
60 };
61
62 /*
63 * Data attached to the open device file.
64 * Note that it might be shared after a fork().
65 */
66 struct dmirror {
67 struct dmirror_device *mdevice;
68 struct xarray pt;
69 struct mmu_interval_notifier notifier;
70 struct mutex mutex;
71 };
72
73 /*
74 * ZONE_DEVICE pages for migration and simulating device memory.
75 */
76 struct dmirror_chunk {
77 struct dev_pagemap pagemap;
78 struct dmirror_device *mdevice;
79 };
80
81 /*
82 * Per device data.
83 */
84 struct dmirror_device {
85 struct cdev cdevice;
86 struct hmm_devmem *devmem;
87
88 unsigned int devmem_capacity;
89 unsigned int devmem_count;
90 struct dmirror_chunk **devmem_chunks;
91 struct mutex devmem_lock; /* protects the above */
92
93 unsigned long calloc;
94 unsigned long cfree;
95 struct page *free_pages;
96 spinlock_t lock; /* protects the above */
97 };
98
99 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
100
dmirror_bounce_init(struct dmirror_bounce * bounce,unsigned long addr,unsigned long size)101 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
102 unsigned long addr,
103 unsigned long size)
104 {
105 bounce->addr = addr;
106 bounce->size = size;
107 bounce->cpages = 0;
108 bounce->ptr = vmalloc(size);
109 if (!bounce->ptr)
110 return -ENOMEM;
111 return 0;
112 }
113
dmirror_bounce_fini(struct dmirror_bounce * bounce)114 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
115 {
116 vfree(bounce->ptr);
117 }
118
dmirror_fops_open(struct inode * inode,struct file * filp)119 static int dmirror_fops_open(struct inode *inode, struct file *filp)
120 {
121 struct cdev *cdev = inode->i_cdev;
122 struct dmirror *dmirror;
123 int ret;
124
125 /* Mirror this process address space */
126 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
127 if (dmirror == NULL)
128 return -ENOMEM;
129
130 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
131 mutex_init(&dmirror->mutex);
132 xa_init(&dmirror->pt);
133
134 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
135 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
136 if (ret) {
137 kfree(dmirror);
138 return ret;
139 }
140
141 filp->private_data = dmirror;
142 return 0;
143 }
144
dmirror_fops_release(struct inode * inode,struct file * filp)145 static int dmirror_fops_release(struct inode *inode, struct file *filp)
146 {
147 struct dmirror *dmirror = filp->private_data;
148
149 mmu_interval_notifier_remove(&dmirror->notifier);
150 xa_destroy(&dmirror->pt);
151 kfree(dmirror);
152 return 0;
153 }
154
dmirror_page_to_device(struct page * page)155 static struct dmirror_device *dmirror_page_to_device(struct page *page)
156
157 {
158 return container_of(page->pgmap, struct dmirror_chunk,
159 pagemap)->mdevice;
160 }
161
dmirror_do_fault(struct dmirror * dmirror,struct hmm_range * range)162 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
163 {
164 unsigned long *pfns = range->hmm_pfns;
165 unsigned long pfn;
166
167 for (pfn = (range->start >> PAGE_SHIFT);
168 pfn < (range->end >> PAGE_SHIFT);
169 pfn++, pfns++) {
170 struct page *page;
171 void *entry;
172
173 /*
174 * Since we asked for hmm_range_fault() to populate pages,
175 * it shouldn't return an error entry on success.
176 */
177 WARN_ON(*pfns & HMM_PFN_ERROR);
178 WARN_ON(!(*pfns & HMM_PFN_VALID));
179
180 page = hmm_pfn_to_page(*pfns);
181 WARN_ON(!page);
182
183 entry = page;
184 if (*pfns & HMM_PFN_WRITE)
185 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
186 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
187 return -EFAULT;
188 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
189 if (xa_is_err(entry))
190 return xa_err(entry);
191 }
192
193 return 0;
194 }
195
dmirror_do_update(struct dmirror * dmirror,unsigned long start,unsigned long end)196 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
197 unsigned long end)
198 {
199 unsigned long pfn;
200 void *entry;
201
202 /*
203 * The XArray doesn't hold references to pages since it relies on
204 * the mmu notifier to clear page pointers when they become stale.
205 * Therefore, it is OK to just clear the entry.
206 */
207 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
208 end >> PAGE_SHIFT)
209 xa_erase(&dmirror->pt, pfn);
210 }
211
dmirror_interval_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)212 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
213 const struct mmu_notifier_range *range,
214 unsigned long cur_seq)
215 {
216 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
217
218 /*
219 * Ignore invalidation callbacks for device private pages since
220 * the invalidation is handled as part of the migration process.
221 */
222 if (range->event == MMU_NOTIFY_MIGRATE &&
223 range->owner == dmirror->mdevice)
224 return true;
225
226 if (mmu_notifier_range_blockable(range))
227 mutex_lock(&dmirror->mutex);
228 else if (!mutex_trylock(&dmirror->mutex))
229 return false;
230
231 mmu_interval_set_seq(mni, cur_seq);
232 dmirror_do_update(dmirror, range->start, range->end);
233
234 mutex_unlock(&dmirror->mutex);
235 return true;
236 }
237
238 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
239 .invalidate = dmirror_interval_invalidate,
240 };
241
dmirror_range_fault(struct dmirror * dmirror,struct hmm_range * range)242 static int dmirror_range_fault(struct dmirror *dmirror,
243 struct hmm_range *range)
244 {
245 struct mm_struct *mm = dmirror->notifier.mm;
246 unsigned long timeout =
247 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
248 int ret;
249
250 while (true) {
251 if (time_after(jiffies, timeout)) {
252 ret = -EBUSY;
253 goto out;
254 }
255
256 range->notifier_seq = mmu_interval_read_begin(range->notifier);
257 mmap_read_lock(mm);
258 ret = hmm_range_fault(range);
259 mmap_read_unlock(mm);
260 if (ret) {
261 if (ret == -EBUSY)
262 continue;
263 goto out;
264 }
265
266 mutex_lock(&dmirror->mutex);
267 if (mmu_interval_read_retry(range->notifier,
268 range->notifier_seq)) {
269 mutex_unlock(&dmirror->mutex);
270 continue;
271 }
272 break;
273 }
274
275 ret = dmirror_do_fault(dmirror, range);
276
277 mutex_unlock(&dmirror->mutex);
278 out:
279 return ret;
280 }
281
dmirror_fault(struct dmirror * dmirror,unsigned long start,unsigned long end,bool write)282 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
283 unsigned long end, bool write)
284 {
285 struct mm_struct *mm = dmirror->notifier.mm;
286 unsigned long addr;
287 unsigned long pfns[64];
288 struct hmm_range range = {
289 .notifier = &dmirror->notifier,
290 .hmm_pfns = pfns,
291 .pfn_flags_mask = 0,
292 .default_flags =
293 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
294 .dev_private_owner = dmirror->mdevice,
295 };
296 int ret = 0;
297
298 /* Since the mm is for the mirrored process, get a reference first. */
299 if (!mmget_not_zero(mm))
300 return 0;
301
302 for (addr = start; addr < end; addr = range.end) {
303 range.start = addr;
304 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
305
306 ret = dmirror_range_fault(dmirror, &range);
307 if (ret)
308 break;
309 }
310
311 mmput(mm);
312 return ret;
313 }
314
dmirror_do_read(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)315 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
316 unsigned long end, struct dmirror_bounce *bounce)
317 {
318 unsigned long pfn;
319 void *ptr;
320
321 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
322
323 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
324 void *entry;
325 struct page *page;
326 void *tmp;
327
328 entry = xa_load(&dmirror->pt, pfn);
329 page = xa_untag_pointer(entry);
330 if (!page)
331 return -ENOENT;
332
333 tmp = kmap(page);
334 memcpy(ptr, tmp, PAGE_SIZE);
335 kunmap(page);
336
337 ptr += PAGE_SIZE;
338 bounce->cpages++;
339 }
340
341 return 0;
342 }
343
dmirror_read(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)344 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
345 {
346 struct dmirror_bounce bounce;
347 unsigned long start, end;
348 unsigned long size = cmd->npages << PAGE_SHIFT;
349 int ret;
350
351 start = cmd->addr;
352 end = start + size;
353 if (end < start)
354 return -EINVAL;
355
356 ret = dmirror_bounce_init(&bounce, start, size);
357 if (ret)
358 return ret;
359
360 while (1) {
361 mutex_lock(&dmirror->mutex);
362 ret = dmirror_do_read(dmirror, start, end, &bounce);
363 mutex_unlock(&dmirror->mutex);
364 if (ret != -ENOENT)
365 break;
366
367 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
368 ret = dmirror_fault(dmirror, start, end, false);
369 if (ret)
370 break;
371 cmd->faults++;
372 }
373
374 if (ret == 0) {
375 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
376 bounce.size))
377 ret = -EFAULT;
378 }
379 cmd->cpages = bounce.cpages;
380 dmirror_bounce_fini(&bounce);
381 return ret;
382 }
383
dmirror_do_write(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)384 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
385 unsigned long end, struct dmirror_bounce *bounce)
386 {
387 unsigned long pfn;
388 void *ptr;
389
390 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
391
392 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
393 void *entry;
394 struct page *page;
395 void *tmp;
396
397 entry = xa_load(&dmirror->pt, pfn);
398 page = xa_untag_pointer(entry);
399 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
400 return -ENOENT;
401
402 tmp = kmap(page);
403 memcpy(tmp, ptr, PAGE_SIZE);
404 kunmap(page);
405
406 ptr += PAGE_SIZE;
407 bounce->cpages++;
408 }
409
410 return 0;
411 }
412
dmirror_write(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)413 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
414 {
415 struct dmirror_bounce bounce;
416 unsigned long start, end;
417 unsigned long size = cmd->npages << PAGE_SHIFT;
418 int ret;
419
420 start = cmd->addr;
421 end = start + size;
422 if (end < start)
423 return -EINVAL;
424
425 ret = dmirror_bounce_init(&bounce, start, size);
426 if (ret)
427 return ret;
428 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
429 bounce.size)) {
430 ret = -EFAULT;
431 goto fini;
432 }
433
434 while (1) {
435 mutex_lock(&dmirror->mutex);
436 ret = dmirror_do_write(dmirror, start, end, &bounce);
437 mutex_unlock(&dmirror->mutex);
438 if (ret != -ENOENT)
439 break;
440
441 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
442 ret = dmirror_fault(dmirror, start, end, true);
443 if (ret)
444 break;
445 cmd->faults++;
446 }
447
448 fini:
449 cmd->cpages = bounce.cpages;
450 dmirror_bounce_fini(&bounce);
451 return ret;
452 }
453
dmirror_allocate_chunk(struct dmirror_device * mdevice,struct page ** ppage)454 static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
455 struct page **ppage)
456 {
457 struct dmirror_chunk *devmem;
458 struct resource *res;
459 unsigned long pfn;
460 unsigned long pfn_first;
461 unsigned long pfn_last;
462 void *ptr;
463
464 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
465 if (!devmem)
466 return false;
467
468 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
469 "hmm_dmirror");
470 if (IS_ERR(res))
471 goto err_devmem;
472
473 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
474 devmem->pagemap.range.start = res->start;
475 devmem->pagemap.range.end = res->end;
476 devmem->pagemap.nr_range = 1;
477 devmem->pagemap.ops = &dmirror_devmem_ops;
478 devmem->pagemap.owner = mdevice;
479
480 mutex_lock(&mdevice->devmem_lock);
481
482 if (mdevice->devmem_count == mdevice->devmem_capacity) {
483 struct dmirror_chunk **new_chunks;
484 unsigned int new_capacity;
485
486 new_capacity = mdevice->devmem_capacity +
487 DEVMEM_CHUNKS_RESERVE;
488 new_chunks = krealloc(mdevice->devmem_chunks,
489 sizeof(new_chunks[0]) * new_capacity,
490 GFP_KERNEL);
491 if (!new_chunks)
492 goto err_release;
493 mdevice->devmem_capacity = new_capacity;
494 mdevice->devmem_chunks = new_chunks;
495 }
496
497 ptr = memremap_pages(&devmem->pagemap, numa_node_id());
498 if (IS_ERR(ptr))
499 goto err_release;
500
501 devmem->mdevice = mdevice;
502 pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
503 pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
504 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
505
506 mutex_unlock(&mdevice->devmem_lock);
507
508 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
509 DEVMEM_CHUNK_SIZE / (1024 * 1024),
510 mdevice->devmem_count,
511 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
512 pfn_first, pfn_last);
513
514 spin_lock(&mdevice->lock);
515 for (pfn = pfn_first; pfn < pfn_last; pfn++) {
516 struct page *page = pfn_to_page(pfn);
517
518 page->zone_device_data = mdevice->free_pages;
519 mdevice->free_pages = page;
520 }
521 if (ppage) {
522 *ppage = mdevice->free_pages;
523 mdevice->free_pages = (*ppage)->zone_device_data;
524 mdevice->calloc++;
525 }
526 spin_unlock(&mdevice->lock);
527
528 return true;
529
530 err_release:
531 mutex_unlock(&mdevice->devmem_lock);
532 release_mem_region(devmem->pagemap.range.start, range_len(&devmem->pagemap.range));
533 err_devmem:
534 kfree(devmem);
535
536 return false;
537 }
538
dmirror_devmem_alloc_page(struct dmirror_device * mdevice)539 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
540 {
541 struct page *dpage = NULL;
542 struct page *rpage;
543
544 /*
545 * This is a fake device so we alloc real system memory to store
546 * our device memory.
547 */
548 rpage = alloc_page(GFP_HIGHUSER);
549 if (!rpage)
550 return NULL;
551
552 spin_lock(&mdevice->lock);
553
554 if (mdevice->free_pages) {
555 dpage = mdevice->free_pages;
556 mdevice->free_pages = dpage->zone_device_data;
557 mdevice->calloc++;
558 spin_unlock(&mdevice->lock);
559 } else {
560 spin_unlock(&mdevice->lock);
561 if (!dmirror_allocate_chunk(mdevice, &dpage))
562 goto error;
563 }
564
565 dpage->zone_device_data = rpage;
566 get_page(dpage);
567 lock_page(dpage);
568 return dpage;
569
570 error:
571 __free_page(rpage);
572 return NULL;
573 }
574
dmirror_migrate_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)575 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
576 struct dmirror *dmirror)
577 {
578 struct dmirror_device *mdevice = dmirror->mdevice;
579 const unsigned long *src = args->src;
580 unsigned long *dst = args->dst;
581 unsigned long addr;
582
583 for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
584 src++, dst++) {
585 struct page *spage;
586 struct page *dpage;
587 struct page *rpage;
588
589 if (!(*src & MIGRATE_PFN_MIGRATE))
590 continue;
591
592 /*
593 * Note that spage might be NULL which is OK since it is an
594 * unallocated pte_none() or read-only zero page.
595 */
596 spage = migrate_pfn_to_page(*src);
597
598 dpage = dmirror_devmem_alloc_page(mdevice);
599 if (!dpage)
600 continue;
601
602 rpage = dpage->zone_device_data;
603 if (spage)
604 copy_highpage(rpage, spage);
605 else
606 clear_highpage(rpage);
607
608 /*
609 * Normally, a device would use the page->zone_device_data to
610 * point to the mirror but here we use it to hold the page for
611 * the simulated device memory and that page holds the pointer
612 * to the mirror.
613 */
614 rpage->zone_device_data = dmirror;
615
616 *dst = migrate_pfn(page_to_pfn(dpage)) |
617 MIGRATE_PFN_LOCKED;
618 if ((*src & MIGRATE_PFN_WRITE) ||
619 (!spage && args->vma->vm_flags & VM_WRITE))
620 *dst |= MIGRATE_PFN_WRITE;
621 }
622 }
623
dmirror_check_atomic(struct dmirror * dmirror,unsigned long start,unsigned long end)624 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
625 unsigned long end)
626 {
627 unsigned long pfn;
628
629 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
630 void *entry;
631
632 entry = xa_load(&dmirror->pt, pfn);
633 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
634 return -EPERM;
635 }
636
637 return 0;
638 }
639
dmirror_atomic_map(unsigned long start,unsigned long end,struct page ** pages,struct dmirror * dmirror)640 static int dmirror_atomic_map(unsigned long start, unsigned long end,
641 struct page **pages, struct dmirror *dmirror)
642 {
643 unsigned long pfn, mapped = 0;
644 int i;
645
646 /* Map the migrated pages into the device's page tables. */
647 mutex_lock(&dmirror->mutex);
648
649 for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
650 void *entry;
651
652 if (!pages[i])
653 continue;
654
655 entry = pages[i];
656 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
657 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
658 if (xa_is_err(entry)) {
659 mutex_unlock(&dmirror->mutex);
660 return xa_err(entry);
661 }
662
663 mapped++;
664 }
665
666 mutex_unlock(&dmirror->mutex);
667 return mapped;
668 }
669
dmirror_migrate_finalize_and_map(struct migrate_vma * args,struct dmirror * dmirror)670 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
671 struct dmirror *dmirror)
672 {
673 unsigned long start = args->start;
674 unsigned long end = args->end;
675 const unsigned long *src = args->src;
676 const unsigned long *dst = args->dst;
677 unsigned long pfn;
678
679 /* Map the migrated pages into the device's page tables. */
680 mutex_lock(&dmirror->mutex);
681
682 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
683 src++, dst++) {
684 struct page *dpage;
685 void *entry;
686
687 if (!(*src & MIGRATE_PFN_MIGRATE))
688 continue;
689
690 dpage = migrate_pfn_to_page(*dst);
691 if (!dpage)
692 continue;
693
694 /*
695 * Store the page that holds the data so the page table
696 * doesn't have to deal with ZONE_DEVICE private pages.
697 */
698 entry = dpage->zone_device_data;
699 if (*dst & MIGRATE_PFN_WRITE)
700 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
701 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
702 if (xa_is_err(entry)) {
703 mutex_unlock(&dmirror->mutex);
704 return xa_err(entry);
705 }
706 }
707
708 mutex_unlock(&dmirror->mutex);
709 return 0;
710 }
711
dmirror_exclusive(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)712 static int dmirror_exclusive(struct dmirror *dmirror,
713 struct hmm_dmirror_cmd *cmd)
714 {
715 unsigned long start, end, addr;
716 unsigned long size = cmd->npages << PAGE_SHIFT;
717 struct mm_struct *mm = dmirror->notifier.mm;
718 struct page *pages[64];
719 struct dmirror_bounce bounce;
720 unsigned long next;
721 int ret;
722
723 start = cmd->addr;
724 end = start + size;
725 if (end < start)
726 return -EINVAL;
727
728 /* Since the mm is for the mirrored process, get a reference first. */
729 if (!mmget_not_zero(mm))
730 return -EINVAL;
731
732 mmap_read_lock(mm);
733 for (addr = start; addr < end; addr = next) {
734 unsigned long mapped = 0;
735 int i;
736
737 if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
738 next = end;
739 else
740 next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
741
742 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
743 /*
744 * Do dmirror_atomic_map() iff all pages are marked for
745 * exclusive access to avoid accessing uninitialized
746 * fields of pages.
747 */
748 if (ret == (next - addr) >> PAGE_SHIFT)
749 mapped = dmirror_atomic_map(addr, next, pages, dmirror);
750 for (i = 0; i < ret; i++) {
751 if (pages[i]) {
752 unlock_page(pages[i]);
753 put_page(pages[i]);
754 }
755 }
756
757 if (addr + (mapped << PAGE_SHIFT) < next) {
758 mmap_read_unlock(mm);
759 mmput(mm);
760 return -EBUSY;
761 }
762 }
763 mmap_read_unlock(mm);
764 mmput(mm);
765
766 /* Return the migrated data for verification. */
767 ret = dmirror_bounce_init(&bounce, start, size);
768 if (ret)
769 return ret;
770 mutex_lock(&dmirror->mutex);
771 ret = dmirror_do_read(dmirror, start, end, &bounce);
772 mutex_unlock(&dmirror->mutex);
773 if (ret == 0) {
774 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
775 bounce.size))
776 ret = -EFAULT;
777 }
778
779 cmd->cpages = bounce.cpages;
780 dmirror_bounce_fini(&bounce);
781 return ret;
782 }
783
dmirror_migrate(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)784 static int dmirror_migrate(struct dmirror *dmirror,
785 struct hmm_dmirror_cmd *cmd)
786 {
787 unsigned long start, end, addr;
788 unsigned long size = cmd->npages << PAGE_SHIFT;
789 struct mm_struct *mm = dmirror->notifier.mm;
790 struct vm_area_struct *vma;
791 unsigned long src_pfns[64];
792 unsigned long dst_pfns[64];
793 struct dmirror_bounce bounce;
794 struct migrate_vma args;
795 unsigned long next;
796 int ret;
797
798 start = cmd->addr;
799 end = start + size;
800 if (end < start)
801 return -EINVAL;
802
803 /* Since the mm is for the mirrored process, get a reference first. */
804 if (!mmget_not_zero(mm))
805 return -EINVAL;
806
807 mmap_read_lock(mm);
808 for (addr = start; addr < end; addr = next) {
809 vma = vma_lookup(mm, addr);
810 if (!vma || !(vma->vm_flags & VM_READ)) {
811 ret = -EINVAL;
812 goto out;
813 }
814 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
815 if (next > vma->vm_end)
816 next = vma->vm_end;
817
818 args.vma = vma;
819 args.src = src_pfns;
820 args.dst = dst_pfns;
821 args.start = addr;
822 args.end = next;
823 args.pgmap_owner = dmirror->mdevice;
824 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
825 ret = migrate_vma_setup(&args);
826 if (ret)
827 goto out;
828
829 dmirror_migrate_alloc_and_copy(&args, dmirror);
830 migrate_vma_pages(&args);
831 dmirror_migrate_finalize_and_map(&args, dmirror);
832 migrate_vma_finalize(&args);
833 }
834 mmap_read_unlock(mm);
835 mmput(mm);
836
837 /* Return the migrated data for verification. */
838 ret = dmirror_bounce_init(&bounce, start, size);
839 if (ret)
840 return ret;
841 mutex_lock(&dmirror->mutex);
842 ret = dmirror_do_read(dmirror, start, end, &bounce);
843 mutex_unlock(&dmirror->mutex);
844 if (ret == 0) {
845 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
846 bounce.size))
847 ret = -EFAULT;
848 }
849 cmd->cpages = bounce.cpages;
850 dmirror_bounce_fini(&bounce);
851 return ret;
852
853 out:
854 mmap_read_unlock(mm);
855 mmput(mm);
856 return ret;
857 }
858
dmirror_mkentry(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm,unsigned long entry)859 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
860 unsigned char *perm, unsigned long entry)
861 {
862 struct page *page;
863
864 if (entry & HMM_PFN_ERROR) {
865 *perm = HMM_DMIRROR_PROT_ERROR;
866 return;
867 }
868 if (!(entry & HMM_PFN_VALID)) {
869 *perm = HMM_DMIRROR_PROT_NONE;
870 return;
871 }
872
873 page = hmm_pfn_to_page(entry);
874 if (is_device_private_page(page)) {
875 /* Is the page migrated to this device or some other? */
876 if (dmirror->mdevice == dmirror_page_to_device(page))
877 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
878 else
879 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
880 } else if (is_zero_pfn(page_to_pfn(page)))
881 *perm = HMM_DMIRROR_PROT_ZERO;
882 else
883 *perm = HMM_DMIRROR_PROT_NONE;
884 if (entry & HMM_PFN_WRITE)
885 *perm |= HMM_DMIRROR_PROT_WRITE;
886 else
887 *perm |= HMM_DMIRROR_PROT_READ;
888 if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
889 *perm |= HMM_DMIRROR_PROT_PMD;
890 else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
891 *perm |= HMM_DMIRROR_PROT_PUD;
892 }
893
dmirror_snapshot_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)894 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
895 const struct mmu_notifier_range *range,
896 unsigned long cur_seq)
897 {
898 struct dmirror_interval *dmi =
899 container_of(mni, struct dmirror_interval, notifier);
900 struct dmirror *dmirror = dmi->dmirror;
901
902 if (mmu_notifier_range_blockable(range))
903 mutex_lock(&dmirror->mutex);
904 else if (!mutex_trylock(&dmirror->mutex))
905 return false;
906
907 /*
908 * Snapshots only need to set the sequence number since any
909 * invalidation in the interval invalidates the whole snapshot.
910 */
911 mmu_interval_set_seq(mni, cur_seq);
912
913 mutex_unlock(&dmirror->mutex);
914 return true;
915 }
916
917 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
918 .invalidate = dmirror_snapshot_invalidate,
919 };
920
dmirror_range_snapshot(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm)921 static int dmirror_range_snapshot(struct dmirror *dmirror,
922 struct hmm_range *range,
923 unsigned char *perm)
924 {
925 struct mm_struct *mm = dmirror->notifier.mm;
926 struct dmirror_interval notifier;
927 unsigned long timeout =
928 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
929 unsigned long i;
930 unsigned long n;
931 int ret = 0;
932
933 notifier.dmirror = dmirror;
934 range->notifier = ¬ifier.notifier;
935
936 ret = mmu_interval_notifier_insert(range->notifier, mm,
937 range->start, range->end - range->start,
938 &dmirror_mrn_ops);
939 if (ret)
940 return ret;
941
942 while (true) {
943 if (time_after(jiffies, timeout)) {
944 ret = -EBUSY;
945 goto out;
946 }
947
948 range->notifier_seq = mmu_interval_read_begin(range->notifier);
949
950 mmap_read_lock(mm);
951 ret = hmm_range_fault(range);
952 mmap_read_unlock(mm);
953 if (ret) {
954 if (ret == -EBUSY)
955 continue;
956 goto out;
957 }
958
959 mutex_lock(&dmirror->mutex);
960 if (mmu_interval_read_retry(range->notifier,
961 range->notifier_seq)) {
962 mutex_unlock(&dmirror->mutex);
963 continue;
964 }
965 break;
966 }
967
968 n = (range->end - range->start) >> PAGE_SHIFT;
969 for (i = 0; i < n; i++)
970 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
971
972 mutex_unlock(&dmirror->mutex);
973 out:
974 mmu_interval_notifier_remove(range->notifier);
975 return ret;
976 }
977
dmirror_snapshot(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)978 static int dmirror_snapshot(struct dmirror *dmirror,
979 struct hmm_dmirror_cmd *cmd)
980 {
981 struct mm_struct *mm = dmirror->notifier.mm;
982 unsigned long start, end;
983 unsigned long size = cmd->npages << PAGE_SHIFT;
984 unsigned long addr;
985 unsigned long next;
986 unsigned long pfns[64];
987 unsigned char perm[64];
988 char __user *uptr;
989 struct hmm_range range = {
990 .hmm_pfns = pfns,
991 .dev_private_owner = dmirror->mdevice,
992 };
993 int ret = 0;
994
995 start = cmd->addr;
996 end = start + size;
997 if (end < start)
998 return -EINVAL;
999
1000 /* Since the mm is for the mirrored process, get a reference first. */
1001 if (!mmget_not_zero(mm))
1002 return -EINVAL;
1003
1004 /*
1005 * Register a temporary notifier to detect invalidations even if it
1006 * overlaps with other mmu_interval_notifiers.
1007 */
1008 uptr = u64_to_user_ptr(cmd->ptr);
1009 for (addr = start; addr < end; addr = next) {
1010 unsigned long n;
1011
1012 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1013 range.start = addr;
1014 range.end = next;
1015
1016 ret = dmirror_range_snapshot(dmirror, &range, perm);
1017 if (ret)
1018 break;
1019
1020 n = (range.end - range.start) >> PAGE_SHIFT;
1021 if (copy_to_user(uptr, perm, n)) {
1022 ret = -EFAULT;
1023 break;
1024 }
1025
1026 cmd->cpages += n;
1027 uptr += n;
1028 }
1029 mmput(mm);
1030
1031 return ret;
1032 }
1033
dmirror_fops_unlocked_ioctl(struct file * filp,unsigned int command,unsigned long arg)1034 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1035 unsigned int command,
1036 unsigned long arg)
1037 {
1038 void __user *uarg = (void __user *)arg;
1039 struct hmm_dmirror_cmd cmd;
1040 struct dmirror *dmirror;
1041 int ret;
1042
1043 dmirror = filp->private_data;
1044 if (!dmirror)
1045 return -EINVAL;
1046
1047 if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1048 return -EFAULT;
1049
1050 if (cmd.addr & ~PAGE_MASK)
1051 return -EINVAL;
1052 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1053 return -EINVAL;
1054
1055 cmd.cpages = 0;
1056 cmd.faults = 0;
1057
1058 switch (command) {
1059 case HMM_DMIRROR_READ:
1060 ret = dmirror_read(dmirror, &cmd);
1061 break;
1062
1063 case HMM_DMIRROR_WRITE:
1064 ret = dmirror_write(dmirror, &cmd);
1065 break;
1066
1067 case HMM_DMIRROR_MIGRATE:
1068 ret = dmirror_migrate(dmirror, &cmd);
1069 break;
1070
1071 case HMM_DMIRROR_EXCLUSIVE:
1072 ret = dmirror_exclusive(dmirror, &cmd);
1073 break;
1074
1075 case HMM_DMIRROR_CHECK_EXCLUSIVE:
1076 ret = dmirror_check_atomic(dmirror, cmd.addr,
1077 cmd.addr + (cmd.npages << PAGE_SHIFT));
1078 break;
1079
1080 case HMM_DMIRROR_SNAPSHOT:
1081 ret = dmirror_snapshot(dmirror, &cmd);
1082 break;
1083
1084 default:
1085 return -EINVAL;
1086 }
1087 if (ret)
1088 return ret;
1089
1090 if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1091 return -EFAULT;
1092
1093 return 0;
1094 }
1095
dmirror_fops_mmap(struct file * file,struct vm_area_struct * vma)1096 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1097 {
1098 unsigned long addr;
1099
1100 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1101 struct page *page;
1102 int ret;
1103
1104 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1105 if (!page)
1106 return -ENOMEM;
1107
1108 ret = vm_insert_page(vma, addr, page);
1109 if (ret) {
1110 __free_page(page);
1111 return ret;
1112 }
1113 put_page(page);
1114 }
1115
1116 return 0;
1117 }
1118
1119 static const struct file_operations dmirror_fops = {
1120 .open = dmirror_fops_open,
1121 .release = dmirror_fops_release,
1122 .mmap = dmirror_fops_mmap,
1123 .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1124 .llseek = default_llseek,
1125 .owner = THIS_MODULE,
1126 };
1127
dmirror_devmem_free(struct page * page)1128 static void dmirror_devmem_free(struct page *page)
1129 {
1130 struct page *rpage = page->zone_device_data;
1131 struct dmirror_device *mdevice;
1132
1133 if (rpage)
1134 __free_page(rpage);
1135
1136 mdevice = dmirror_page_to_device(page);
1137
1138 spin_lock(&mdevice->lock);
1139 mdevice->cfree++;
1140 page->zone_device_data = mdevice->free_pages;
1141 mdevice->free_pages = page;
1142 spin_unlock(&mdevice->lock);
1143 }
1144
dmirror_devmem_fault_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)1145 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
1146 struct dmirror *dmirror)
1147 {
1148 const unsigned long *src = args->src;
1149 unsigned long *dst = args->dst;
1150 unsigned long start = args->start;
1151 unsigned long end = args->end;
1152 unsigned long addr;
1153
1154 for (addr = start; addr < end; addr += PAGE_SIZE,
1155 src++, dst++) {
1156 struct page *dpage, *spage;
1157
1158 spage = migrate_pfn_to_page(*src);
1159 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
1160 continue;
1161 spage = spage->zone_device_data;
1162
1163 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
1164 if (!dpage)
1165 continue;
1166
1167 lock_page(dpage);
1168 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
1169 copy_highpage(dpage, spage);
1170 *dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
1171 if (*src & MIGRATE_PFN_WRITE)
1172 *dst |= MIGRATE_PFN_WRITE;
1173 }
1174 return 0;
1175 }
1176
dmirror_devmem_fault(struct vm_fault * vmf)1177 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1178 {
1179 struct migrate_vma args;
1180 unsigned long src_pfns;
1181 unsigned long dst_pfns;
1182 struct page *rpage;
1183 struct dmirror *dmirror;
1184 vm_fault_t ret;
1185
1186 /*
1187 * Normally, a device would use the page->zone_device_data to point to
1188 * the mirror but here we use it to hold the page for the simulated
1189 * device memory and that page holds the pointer to the mirror.
1190 */
1191 rpage = vmf->page->zone_device_data;
1192 dmirror = rpage->zone_device_data;
1193
1194 /* FIXME demonstrate how we can adjust migrate range */
1195 args.vma = vmf->vma;
1196 args.start = vmf->address;
1197 args.end = args.start + PAGE_SIZE;
1198 args.src = &src_pfns;
1199 args.dst = &dst_pfns;
1200 args.pgmap_owner = dmirror->mdevice;
1201 args.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
1202
1203 if (migrate_vma_setup(&args))
1204 return VM_FAULT_SIGBUS;
1205
1206 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1207 if (ret)
1208 return ret;
1209 migrate_vma_pages(&args);
1210 /*
1211 * No device finalize step is needed since
1212 * dmirror_devmem_fault_alloc_and_copy() will have already
1213 * invalidated the device page table.
1214 */
1215 migrate_vma_finalize(&args);
1216 return 0;
1217 }
1218
1219 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1220 .page_free = dmirror_devmem_free,
1221 .migrate_to_ram = dmirror_devmem_fault,
1222 };
1223
dmirror_device_init(struct dmirror_device * mdevice,int id)1224 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1225 {
1226 dev_t dev;
1227 int ret;
1228
1229 dev = MKDEV(MAJOR(dmirror_dev), id);
1230 mutex_init(&mdevice->devmem_lock);
1231 spin_lock_init(&mdevice->lock);
1232
1233 cdev_init(&mdevice->cdevice, &dmirror_fops);
1234 mdevice->cdevice.owner = THIS_MODULE;
1235 ret = cdev_add(&mdevice->cdevice, dev, 1);
1236 if (ret)
1237 return ret;
1238
1239 /* Build a list of free ZONE_DEVICE private struct pages */
1240 dmirror_allocate_chunk(mdevice, NULL);
1241
1242 return 0;
1243 }
1244
dmirror_device_remove(struct dmirror_device * mdevice)1245 static void dmirror_device_remove(struct dmirror_device *mdevice)
1246 {
1247 unsigned int i;
1248
1249 if (mdevice->devmem_chunks) {
1250 for (i = 0; i < mdevice->devmem_count; i++) {
1251 struct dmirror_chunk *devmem =
1252 mdevice->devmem_chunks[i];
1253
1254 memunmap_pages(&devmem->pagemap);
1255 release_mem_region(devmem->pagemap.range.start,
1256 range_len(&devmem->pagemap.range));
1257 kfree(devmem);
1258 }
1259 kfree(mdevice->devmem_chunks);
1260 }
1261
1262 cdev_del(&mdevice->cdevice);
1263 }
1264
hmm_dmirror_init(void)1265 static int __init hmm_dmirror_init(void)
1266 {
1267 int ret;
1268 int id;
1269
1270 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1271 "HMM_DMIRROR");
1272 if (ret)
1273 goto err_unreg;
1274
1275 for (id = 0; id < DMIRROR_NDEVICES; id++) {
1276 ret = dmirror_device_init(dmirror_devices + id, id);
1277 if (ret)
1278 goto err_chrdev;
1279 }
1280
1281 pr_info("HMM test module loaded. This is only for testing HMM.\n");
1282 return 0;
1283
1284 err_chrdev:
1285 while (--id >= 0)
1286 dmirror_device_remove(dmirror_devices + id);
1287 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1288 err_unreg:
1289 return ret;
1290 }
1291
hmm_dmirror_exit(void)1292 static void __exit hmm_dmirror_exit(void)
1293 {
1294 int id;
1295
1296 for (id = 0; id < DMIRROR_NDEVICES; id++)
1297 dmirror_device_remove(dmirror_devices + id);
1298 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1299 }
1300
1301 module_init(hmm_dmirror_init);
1302 module_exit(hmm_dmirror_exit);
1303 MODULE_LICENSE("GPL");
1304