1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 #include <linux/pgtable.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56
57 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58 module_param(fs_enet_debug, int, 0);
59 MODULE_PARM_DESC(fs_enet_debug,
60 "Freescale bitmapped debugging message enable value");
61
62 #define RX_RING_SIZE 32
63 #define TX_RING_SIZE 64
64
65 #ifdef CONFIG_NET_POLL_CONTROLLER
66 static void fs_enet_netpoll(struct net_device *dev);
67 #endif
68
fs_set_multicast_list(struct net_device * dev)69 static void fs_set_multicast_list(struct net_device *dev)
70 {
71 struct fs_enet_private *fep = netdev_priv(dev);
72
73 (*fep->ops->set_multicast_list)(dev);
74 }
75
skb_align(struct sk_buff * skb,int align)76 static void skb_align(struct sk_buff *skb, int align)
77 {
78 int off = ((unsigned long)skb->data) & (align - 1);
79
80 if (off)
81 skb_reserve(skb, align - off);
82 }
83
84 /* NAPI function */
fs_enet_napi(struct napi_struct * napi,int budget)85 static int fs_enet_napi(struct napi_struct *napi, int budget)
86 {
87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
88 struct net_device *dev = fep->ndev;
89 const struct fs_platform_info *fpi = fep->fpi;
90 cbd_t __iomem *bdp;
91 struct sk_buff *skb, *skbn;
92 int received = 0;
93 u16 pkt_len, sc;
94 int curidx;
95 int dirtyidx, do_wake, do_restart;
96 int tx_left = TX_RING_SIZE;
97
98 spin_lock(&fep->tx_lock);
99 bdp = fep->dirty_tx;
100
101 /* clear status bits for napi*/
102 (*fep->ops->napi_clear_event)(dev);
103
104 do_wake = do_restart = 0;
105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
106 dirtyidx = bdp - fep->tx_bd_base;
107
108 if (fep->tx_free == fep->tx_ring)
109 break;
110
111 skb = fep->tx_skbuff[dirtyidx];
112
113 /*
114 * Check for errors.
115 */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118
119 if (sc & BD_ENET_TX_HB) /* No heartbeat */
120 dev->stats.tx_heartbeat_errors++;
121 if (sc & BD_ENET_TX_LC) /* Late collision */
122 dev->stats.tx_window_errors++;
123 if (sc & BD_ENET_TX_RL) /* Retrans limit */
124 dev->stats.tx_aborted_errors++;
125 if (sc & BD_ENET_TX_UN) /* Underrun */
126 dev->stats.tx_fifo_errors++;
127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
128 dev->stats.tx_carrier_errors++;
129
130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
131 dev->stats.tx_errors++;
132 do_restart = 1;
133 }
134 } else
135 dev->stats.tx_packets++;
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /*
143 * Deferred means some collisions occurred during transmit,
144 * but we eventually sent the packet OK.
145 */
146 if (sc & BD_ENET_TX_DEF)
147 dev->stats.collisions++;
148
149 /* unmap */
150 if (fep->mapped_as_page[dirtyidx])
151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
152 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
153 else
154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
155 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
156
157 /*
158 * Free the sk buffer associated with this last transmit.
159 */
160 if (skb) {
161 dev_kfree_skb(skb);
162 fep->tx_skbuff[dirtyidx] = NULL;
163 }
164
165 /*
166 * Update pointer to next buffer descriptor to be transmitted.
167 */
168 if ((sc & BD_ENET_TX_WRAP) == 0)
169 bdp++;
170 else
171 bdp = fep->tx_bd_base;
172
173 /*
174 * Since we have freed up a buffer, the ring is no longer
175 * full.
176 */
177 if (++fep->tx_free == MAX_SKB_FRAGS)
178 do_wake = 1;
179 tx_left--;
180 }
181
182 fep->dirty_tx = bdp;
183
184 if (do_restart)
185 (*fep->ops->tx_restart)(dev);
186
187 spin_unlock(&fep->tx_lock);
188
189 if (do_wake)
190 netif_wake_queue(dev);
191
192 /*
193 * First, grab all of the stats for the incoming packet.
194 * These get messed up if we get called due to a busy condition.
195 */
196 bdp = fep->cur_rx;
197
198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
199 received < budget) {
200 curidx = bdp - fep->rx_bd_base;
201
202 /*
203 * Since we have allocated space to hold a complete frame,
204 * the last indicator should be set.
205 */
206 if ((sc & BD_ENET_RX_LAST) == 0)
207 dev_warn(fep->dev, "rcv is not +last\n");
208
209 /*
210 * Check for errors.
211 */
212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
214 dev->stats.rx_errors++;
215 /* Frame too long or too short. */
216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
217 dev->stats.rx_length_errors++;
218 /* Frame alignment */
219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
220 dev->stats.rx_frame_errors++;
221 /* CRC Error */
222 if (sc & BD_ENET_RX_CR)
223 dev->stats.rx_crc_errors++;
224 /* FIFO overrun */
225 if (sc & BD_ENET_RX_OV)
226 dev->stats.rx_crc_errors++;
227
228 skbn = fep->rx_skbuff[curidx];
229 } else {
230 skb = fep->rx_skbuff[curidx];
231
232 /*
233 * Process the incoming frame.
234 */
235 dev->stats.rx_packets++;
236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
237 dev->stats.rx_bytes += pkt_len + 4;
238
239 if (pkt_len <= fpi->rx_copybreak) {
240 /* +2 to make IP header L1 cache aligned */
241 skbn = netdev_alloc_skb(dev, pkt_len + 2);
242 if (skbn != NULL) {
243 skb_reserve(skbn, 2); /* align IP header */
244 skb_copy_from_linear_data(skb,
245 skbn->data, pkt_len);
246 swap(skb, skbn);
247 dma_sync_single_for_cpu(fep->dev,
248 CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(pkt_len),
250 DMA_FROM_DEVICE);
251 }
252 } else {
253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
254
255 if (skbn) {
256 dma_addr_t dma;
257
258 skb_align(skbn, ENET_RX_ALIGN);
259
260 dma_unmap_single(fep->dev,
261 CBDR_BUFADDR(bdp),
262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
263 DMA_FROM_DEVICE);
264
265 dma = dma_map_single(fep->dev,
266 skbn->data,
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 DMA_FROM_DEVICE);
269 CBDW_BUFADDR(bdp, dma);
270 }
271 }
272
273 if (skbn != NULL) {
274 skb_put(skb, pkt_len); /* Make room */
275 skb->protocol = eth_type_trans(skb, dev);
276 received++;
277 netif_receive_skb(skb);
278 } else {
279 dev->stats.rx_dropped++;
280 skbn = skb;
281 }
282 }
283
284 fep->rx_skbuff[curidx] = skbn;
285 CBDW_DATLEN(bdp, 0);
286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
287
288 /*
289 * Update BD pointer to next entry.
290 */
291 if ((sc & BD_ENET_RX_WRAP) == 0)
292 bdp++;
293 else
294 bdp = fep->rx_bd_base;
295
296 (*fep->ops->rx_bd_done)(dev);
297 }
298
299 fep->cur_rx = bdp;
300
301 if (received < budget && tx_left) {
302 /* done */
303 napi_complete_done(napi, received);
304 (*fep->ops->napi_enable)(dev);
305
306 return received;
307 }
308
309 return budget;
310 }
311
312 /*
313 * The interrupt handler.
314 * This is called from the MPC core interrupt.
315 */
316 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)317 fs_enet_interrupt(int irq, void *dev_id)
318 {
319 struct net_device *dev = dev_id;
320 struct fs_enet_private *fep;
321 const struct fs_platform_info *fpi;
322 u32 int_events;
323 u32 int_clr_events;
324 int nr, napi_ok;
325 int handled;
326
327 fep = netdev_priv(dev);
328 fpi = fep->fpi;
329
330 nr = 0;
331 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
332 nr++;
333
334 int_clr_events = int_events;
335 int_clr_events &= ~fep->ev_napi;
336
337 (*fep->ops->clear_int_events)(dev, int_clr_events);
338
339 if (int_events & fep->ev_err)
340 (*fep->ops->ev_error)(dev, int_events);
341
342 if (int_events & fep->ev) {
343 napi_ok = napi_schedule_prep(&fep->napi);
344
345 (*fep->ops->napi_disable)(dev);
346 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
347
348 /* NOTE: it is possible for FCCs in NAPI mode */
349 /* to submit a spurious interrupt while in poll */
350 if (napi_ok)
351 __napi_schedule(&fep->napi);
352 }
353
354 }
355
356 handled = nr > 0;
357 return IRQ_RETVAL(handled);
358 }
359
fs_init_bds(struct net_device * dev)360 void fs_init_bds(struct net_device *dev)
361 {
362 struct fs_enet_private *fep = netdev_priv(dev);
363 cbd_t __iomem *bdp;
364 struct sk_buff *skb;
365 int i;
366
367 fs_cleanup_bds(dev);
368
369 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
370 fep->tx_free = fep->tx_ring;
371 fep->cur_rx = fep->rx_bd_base;
372
373 /*
374 * Initialize the receive buffer descriptors.
375 */
376 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
377 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
378 if (skb == NULL)
379 break;
380
381 skb_align(skb, ENET_RX_ALIGN);
382 fep->rx_skbuff[i] = skb;
383 CBDW_BUFADDR(bdp,
384 dma_map_single(fep->dev, skb->data,
385 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
386 DMA_FROM_DEVICE));
387 CBDW_DATLEN(bdp, 0); /* zero */
388 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
389 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
390 }
391 /*
392 * if we failed, fillup remainder
393 */
394 for (; i < fep->rx_ring; i++, bdp++) {
395 fep->rx_skbuff[i] = NULL;
396 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
397 }
398
399 /*
400 * ...and the same for transmit.
401 */
402 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
403 fep->tx_skbuff[i] = NULL;
404 CBDW_BUFADDR(bdp, 0);
405 CBDW_DATLEN(bdp, 0);
406 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
407 }
408 }
409
fs_cleanup_bds(struct net_device * dev)410 void fs_cleanup_bds(struct net_device *dev)
411 {
412 struct fs_enet_private *fep = netdev_priv(dev);
413 struct sk_buff *skb;
414 cbd_t __iomem *bdp;
415 int i;
416
417 /*
418 * Reset SKB transmit buffers.
419 */
420 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
421 if ((skb = fep->tx_skbuff[i]) == NULL)
422 continue;
423
424 /* unmap */
425 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
426 skb->len, DMA_TO_DEVICE);
427
428 fep->tx_skbuff[i] = NULL;
429 dev_kfree_skb(skb);
430 }
431
432 /*
433 * Reset SKB receive buffers
434 */
435 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
436 if ((skb = fep->rx_skbuff[i]) == NULL)
437 continue;
438
439 /* unmap */
440 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
441 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
442 DMA_FROM_DEVICE);
443
444 fep->rx_skbuff[i] = NULL;
445
446 dev_kfree_skb(skb);
447 }
448 }
449
450 /**********************************************************************************/
451
452 #ifdef CONFIG_FS_ENET_MPC5121_FEC
453 /*
454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
455 */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)456 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
457 struct sk_buff *skb)
458 {
459 struct sk_buff *new_skb;
460
461 if (skb_linearize(skb))
462 return NULL;
463
464 /* Alloc new skb */
465 new_skb = netdev_alloc_skb(dev, skb->len + 4);
466 if (!new_skb)
467 return NULL;
468
469 /* Make sure new skb is properly aligned */
470 skb_align(new_skb, 4);
471
472 /* Copy data to new skb ... */
473 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
474 skb_put(new_skb, skb->len);
475
476 /* ... and free an old one */
477 dev_kfree_skb_any(skb);
478
479 return new_skb;
480 }
481 #endif
482
483 static netdev_tx_t
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)484 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485 {
486 struct fs_enet_private *fep = netdev_priv(dev);
487 cbd_t __iomem *bdp;
488 int curidx;
489 u16 sc;
490 int nr_frags;
491 skb_frag_t *frag;
492 int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494 int is_aligned = 1;
495 int i;
496
497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498 is_aligned = 0;
499 } else {
500 nr_frags = skb_shinfo(skb)->nr_frags;
501 frag = skb_shinfo(skb)->frags;
502 for (i = 0; i < nr_frags; i++, frag++) {
503 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
504 is_aligned = 0;
505 break;
506 }
507 }
508 }
509
510 if (!is_aligned) {
511 skb = tx_skb_align_workaround(dev, skb);
512 if (!skb) {
513 /*
514 * We have lost packet due to memory allocation error
515 * in tx_skb_align_workaround(). Hopefully original
516 * skb is still valid, so try transmit it later.
517 */
518 return NETDEV_TX_BUSY;
519 }
520 }
521 #endif
522
523 spin_lock(&fep->tx_lock);
524
525 /*
526 * Fill in a Tx ring entry
527 */
528 bdp = fep->cur_tx;
529
530 nr_frags = skb_shinfo(skb)->nr_frags;
531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532 netif_stop_queue(dev);
533 spin_unlock(&fep->tx_lock);
534
535 /*
536 * Ooops. All transmit buffers are full. Bail out.
537 * This should not happen, since the tx queue should be stopped.
538 */
539 dev_warn(fep->dev, "tx queue full!.\n");
540 return NETDEV_TX_BUSY;
541 }
542
543 curidx = bdp - fep->tx_bd_base;
544
545 len = skb->len;
546 dev->stats.tx_bytes += len;
547 if (nr_frags)
548 len -= skb->data_len;
549 fep->tx_free -= nr_frags + 1;
550 /*
551 * Push the data cache so the CPM does not get stale memory data.
552 */
553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554 skb->data, len, DMA_TO_DEVICE));
555 CBDW_DATLEN(bdp, len);
556
557 fep->mapped_as_page[curidx] = 0;
558 frag = skb_shinfo(skb)->frags;
559 while (nr_frags) {
560 CBDC_SC(bdp,
561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562 BD_ENET_TX_TC);
563 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
566 bdp++;
567 curidx++;
568 } else {
569 bdp = fep->tx_bd_base;
570 curidx = 0;
571 }
572
573 len = skb_frag_size(frag);
574 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
575 DMA_TO_DEVICE));
576 CBDW_DATLEN(bdp, len);
577
578 fep->tx_skbuff[curidx] = NULL;
579 fep->mapped_as_page[curidx] = 1;
580
581 frag++;
582 nr_frags--;
583 }
584
585 /* Trigger transmission start */
586 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
587 BD_ENET_TX_LAST | BD_ENET_TX_TC;
588
589 /* note that while FEC does not have this bit
590 * it marks it as available for software use
591 * yay for hw reuse :) */
592 if (skb->len <= 60)
593 sc |= BD_ENET_TX_PAD;
594 CBDC_SC(bdp, BD_ENET_TX_STATS);
595 CBDS_SC(bdp, sc);
596
597 /* Save skb pointer. */
598 fep->tx_skbuff[curidx] = skb;
599
600 /* If this was the last BD in the ring, start at the beginning again. */
601 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
602 bdp++;
603 else
604 bdp = fep->tx_bd_base;
605 fep->cur_tx = bdp;
606
607 if (fep->tx_free < MAX_SKB_FRAGS)
608 netif_stop_queue(dev);
609
610 skb_tx_timestamp(skb);
611
612 (*fep->ops->tx_kickstart)(dev);
613
614 spin_unlock(&fep->tx_lock);
615
616 return NETDEV_TX_OK;
617 }
618
fs_timeout_work(struct work_struct * work)619 static void fs_timeout_work(struct work_struct *work)
620 {
621 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
622 timeout_work);
623 struct net_device *dev = fep->ndev;
624 unsigned long flags;
625 int wake = 0;
626
627 dev->stats.tx_errors++;
628
629 spin_lock_irqsave(&fep->lock, flags);
630
631 if (dev->flags & IFF_UP) {
632 phy_stop(dev->phydev);
633 (*fep->ops->stop)(dev);
634 (*fep->ops->restart)(dev);
635 }
636
637 phy_start(dev->phydev);
638 wake = fep->tx_free >= MAX_SKB_FRAGS &&
639 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
640 spin_unlock_irqrestore(&fep->lock, flags);
641
642 if (wake)
643 netif_wake_queue(dev);
644 }
645
fs_timeout(struct net_device * dev,unsigned int txqueue)646 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
647 {
648 struct fs_enet_private *fep = netdev_priv(dev);
649
650 schedule_work(&fep->timeout_work);
651 }
652
653 /*-----------------------------------------------------------------------------
654 * generic link-change handler - should be sufficient for most cases
655 *-----------------------------------------------------------------------------*/
generic_adjust_link(struct net_device * dev)656 static void generic_adjust_link(struct net_device *dev)
657 {
658 struct fs_enet_private *fep = netdev_priv(dev);
659 struct phy_device *phydev = dev->phydev;
660 int new_state = 0;
661
662 if (phydev->link) {
663 /* adjust to duplex mode */
664 if (phydev->duplex != fep->oldduplex) {
665 new_state = 1;
666 fep->oldduplex = phydev->duplex;
667 }
668
669 if (phydev->speed != fep->oldspeed) {
670 new_state = 1;
671 fep->oldspeed = phydev->speed;
672 }
673
674 if (!fep->oldlink) {
675 new_state = 1;
676 fep->oldlink = 1;
677 }
678
679 if (new_state)
680 fep->ops->restart(dev);
681 } else if (fep->oldlink) {
682 new_state = 1;
683 fep->oldlink = 0;
684 fep->oldspeed = 0;
685 fep->oldduplex = -1;
686 }
687
688 if (new_state && netif_msg_link(fep))
689 phy_print_status(phydev);
690 }
691
692
fs_adjust_link(struct net_device * dev)693 static void fs_adjust_link(struct net_device *dev)
694 {
695 struct fs_enet_private *fep = netdev_priv(dev);
696 unsigned long flags;
697
698 spin_lock_irqsave(&fep->lock, flags);
699
700 if(fep->ops->adjust_link)
701 fep->ops->adjust_link(dev);
702 else
703 generic_adjust_link(dev);
704
705 spin_unlock_irqrestore(&fep->lock, flags);
706 }
707
fs_init_phy(struct net_device * dev)708 static int fs_init_phy(struct net_device *dev)
709 {
710 struct fs_enet_private *fep = netdev_priv(dev);
711 struct phy_device *phydev;
712 phy_interface_t iface;
713
714 fep->oldlink = 0;
715 fep->oldspeed = 0;
716 fep->oldduplex = -1;
717
718 iface = fep->fpi->use_rmii ?
719 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
720
721 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
722 iface);
723 if (!phydev) {
724 dev_err(&dev->dev, "Could not attach to PHY\n");
725 return -ENODEV;
726 }
727
728 return 0;
729 }
730
fs_enet_open(struct net_device * dev)731 static int fs_enet_open(struct net_device *dev)
732 {
733 struct fs_enet_private *fep = netdev_priv(dev);
734 int r;
735 int err;
736
737 /* to initialize the fep->cur_rx,... */
738 /* not doing this, will cause a crash in fs_enet_napi */
739 fs_init_bds(fep->ndev);
740
741 napi_enable(&fep->napi);
742
743 /* Install our interrupt handler. */
744 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
745 "fs_enet-mac", dev);
746 if (r != 0) {
747 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
748 napi_disable(&fep->napi);
749 return -EINVAL;
750 }
751
752 err = fs_init_phy(dev);
753 if (err) {
754 free_irq(fep->interrupt, dev);
755 napi_disable(&fep->napi);
756 return err;
757 }
758 phy_start(dev->phydev);
759
760 netif_start_queue(dev);
761
762 return 0;
763 }
764
fs_enet_close(struct net_device * dev)765 static int fs_enet_close(struct net_device *dev)
766 {
767 struct fs_enet_private *fep = netdev_priv(dev);
768 unsigned long flags;
769
770 netif_stop_queue(dev);
771 netif_carrier_off(dev);
772 napi_disable(&fep->napi);
773 cancel_work_sync(&fep->timeout_work);
774 phy_stop(dev->phydev);
775
776 spin_lock_irqsave(&fep->lock, flags);
777 spin_lock(&fep->tx_lock);
778 (*fep->ops->stop)(dev);
779 spin_unlock(&fep->tx_lock);
780 spin_unlock_irqrestore(&fep->lock, flags);
781
782 /* release any irqs */
783 phy_disconnect(dev->phydev);
784 free_irq(fep->interrupt, dev);
785
786 return 0;
787 }
788
789 /*************************************************************************/
790
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)791 static void fs_get_drvinfo(struct net_device *dev,
792 struct ethtool_drvinfo *info)
793 {
794 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
795 }
796
fs_get_regs_len(struct net_device * dev)797 static int fs_get_regs_len(struct net_device *dev)
798 {
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return (*fep->ops->get_regs_len)(dev);
802 }
803
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)804 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
805 void *p)
806 {
807 struct fs_enet_private *fep = netdev_priv(dev);
808 unsigned long flags;
809 int r, len;
810
811 len = regs->len;
812
813 spin_lock_irqsave(&fep->lock, flags);
814 r = (*fep->ops->get_regs)(dev, p, &len);
815 spin_unlock_irqrestore(&fep->lock, flags);
816
817 if (r == 0)
818 regs->version = 0;
819 }
820
fs_get_msglevel(struct net_device * dev)821 static u32 fs_get_msglevel(struct net_device *dev)
822 {
823 struct fs_enet_private *fep = netdev_priv(dev);
824 return fep->msg_enable;
825 }
826
fs_set_msglevel(struct net_device * dev,u32 value)827 static void fs_set_msglevel(struct net_device *dev, u32 value)
828 {
829 struct fs_enet_private *fep = netdev_priv(dev);
830 fep->msg_enable = value;
831 }
832
fs_get_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,void * data)833 static int fs_get_tunable(struct net_device *dev,
834 const struct ethtool_tunable *tuna, void *data)
835 {
836 struct fs_enet_private *fep = netdev_priv(dev);
837 struct fs_platform_info *fpi = fep->fpi;
838 int ret = 0;
839
840 switch (tuna->id) {
841 case ETHTOOL_RX_COPYBREAK:
842 *(u32 *)data = fpi->rx_copybreak;
843 break;
844 default:
845 ret = -EINVAL;
846 break;
847 }
848
849 return ret;
850 }
851
fs_set_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,const void * data)852 static int fs_set_tunable(struct net_device *dev,
853 const struct ethtool_tunable *tuna, const void *data)
854 {
855 struct fs_enet_private *fep = netdev_priv(dev);
856 struct fs_platform_info *fpi = fep->fpi;
857 int ret = 0;
858
859 switch (tuna->id) {
860 case ETHTOOL_RX_COPYBREAK:
861 fpi->rx_copybreak = *(u32 *)data;
862 break;
863 default:
864 ret = -EINVAL;
865 break;
866 }
867
868 return ret;
869 }
870
871 static const struct ethtool_ops fs_ethtool_ops = {
872 .get_drvinfo = fs_get_drvinfo,
873 .get_regs_len = fs_get_regs_len,
874 .nway_reset = phy_ethtool_nway_reset,
875 .get_link = ethtool_op_get_link,
876 .get_msglevel = fs_get_msglevel,
877 .set_msglevel = fs_set_msglevel,
878 .get_regs = fs_get_regs,
879 .get_ts_info = ethtool_op_get_ts_info,
880 .get_link_ksettings = phy_ethtool_get_link_ksettings,
881 .set_link_ksettings = phy_ethtool_set_link_ksettings,
882 .get_tunable = fs_get_tunable,
883 .set_tunable = fs_set_tunable,
884 };
885
886 extern int fs_mii_connect(struct net_device *dev);
887 extern void fs_mii_disconnect(struct net_device *dev);
888
889 /**************************************************************************************/
890
891 #ifdef CONFIG_FS_ENET_HAS_FEC
892 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
893 #else
894 #define IS_FEC(match) 0
895 #endif
896
897 static const struct net_device_ops fs_enet_netdev_ops = {
898 .ndo_open = fs_enet_open,
899 .ndo_stop = fs_enet_close,
900 .ndo_start_xmit = fs_enet_start_xmit,
901 .ndo_tx_timeout = fs_timeout,
902 .ndo_set_rx_mode = fs_set_multicast_list,
903 .ndo_eth_ioctl = phy_do_ioctl_running,
904 .ndo_validate_addr = eth_validate_addr,
905 .ndo_set_mac_address = eth_mac_addr,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller = fs_enet_netpoll,
908 #endif
909 };
910
911 static const struct of_device_id fs_enet_match[];
fs_enet_probe(struct platform_device * ofdev)912 static int fs_enet_probe(struct platform_device *ofdev)
913 {
914 const struct of_device_id *match;
915 struct net_device *ndev;
916 struct fs_enet_private *fep;
917 struct fs_platform_info *fpi;
918 const u32 *data;
919 struct clk *clk;
920 int err;
921 const char *phy_connection_type;
922 int privsize, len, ret = -ENODEV;
923
924 match = of_match_device(fs_enet_match, &ofdev->dev);
925 if (!match)
926 return -EINVAL;
927
928 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
929 if (!fpi)
930 return -ENOMEM;
931
932 if (!IS_FEC(match)) {
933 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
934 if (!data || len != 4)
935 goto out_free_fpi;
936
937 fpi->cp_command = *data;
938 }
939
940 fpi->rx_ring = RX_RING_SIZE;
941 fpi->tx_ring = TX_RING_SIZE;
942 fpi->rx_copybreak = 240;
943 fpi->napi_weight = 17;
944 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
945 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
946 err = of_phy_register_fixed_link(ofdev->dev.of_node);
947 if (err)
948 goto out_free_fpi;
949
950 /* In the case of a fixed PHY, the DT node associated
951 * to the PHY is the Ethernet MAC DT node.
952 */
953 fpi->phy_node = of_node_get(ofdev->dev.of_node);
954 }
955
956 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
957 phy_connection_type = of_get_property(ofdev->dev.of_node,
958 "phy-connection-type", NULL);
959 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
960 fpi->use_rmii = 1;
961 }
962
963 /* make clock lookup non-fatal (the driver is shared among platforms),
964 * but require enable to succeed when a clock was specified/found,
965 * keep a reference to the clock upon successful acquisition
966 */
967 clk = devm_clk_get(&ofdev->dev, "per");
968 if (!IS_ERR(clk)) {
969 ret = clk_prepare_enable(clk);
970 if (ret)
971 goto out_deregister_fixed_link;
972
973 fpi->clk_per = clk;
974 }
975
976 privsize = sizeof(*fep) +
977 sizeof(struct sk_buff **) *
978 (fpi->rx_ring + fpi->tx_ring) +
979 sizeof(char) * fpi->tx_ring;
980
981 ndev = alloc_etherdev(privsize);
982 if (!ndev) {
983 ret = -ENOMEM;
984 goto out_put;
985 }
986
987 SET_NETDEV_DEV(ndev, &ofdev->dev);
988 platform_set_drvdata(ofdev, ndev);
989
990 fep = netdev_priv(ndev);
991 fep->dev = &ofdev->dev;
992 fep->ndev = ndev;
993 fep->fpi = fpi;
994 fep->ops = match->data;
995
996 ret = fep->ops->setup_data(ndev);
997 if (ret)
998 goto out_free_dev;
999
1000 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1001 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1002 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1003 fpi->tx_ring);
1004
1005 spin_lock_init(&fep->lock);
1006 spin_lock_init(&fep->tx_lock);
1007
1008 of_get_ethdev_address(ofdev->dev.of_node, ndev);
1009
1010 ret = fep->ops->allocate_bd(ndev);
1011 if (ret)
1012 goto out_cleanup_data;
1013
1014 fep->rx_bd_base = fep->ring_base;
1015 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1016
1017 fep->tx_ring = fpi->tx_ring;
1018 fep->rx_ring = fpi->rx_ring;
1019
1020 ndev->netdev_ops = &fs_enet_netdev_ops;
1021 ndev->watchdog_timeo = 2 * HZ;
1022 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1023 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1024
1025 ndev->ethtool_ops = &fs_ethtool_ops;
1026
1027 netif_carrier_off(ndev);
1028
1029 ndev->features |= NETIF_F_SG;
1030
1031 ret = register_netdev(ndev);
1032 if (ret)
1033 goto out_free_bd;
1034
1035 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1036
1037 return 0;
1038
1039 out_free_bd:
1040 fep->ops->free_bd(ndev);
1041 out_cleanup_data:
1042 fep->ops->cleanup_data(ndev);
1043 out_free_dev:
1044 free_netdev(ndev);
1045 out_put:
1046 clk_disable_unprepare(fpi->clk_per);
1047 out_deregister_fixed_link:
1048 of_node_put(fpi->phy_node);
1049 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1050 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1051 out_free_fpi:
1052 kfree(fpi);
1053 return ret;
1054 }
1055
fs_enet_remove(struct platform_device * ofdev)1056 static int fs_enet_remove(struct platform_device *ofdev)
1057 {
1058 struct net_device *ndev = platform_get_drvdata(ofdev);
1059 struct fs_enet_private *fep = netdev_priv(ndev);
1060
1061 unregister_netdev(ndev);
1062
1063 fep->ops->free_bd(ndev);
1064 fep->ops->cleanup_data(ndev);
1065 dev_set_drvdata(fep->dev, NULL);
1066 of_node_put(fep->fpi->phy_node);
1067 clk_disable_unprepare(fep->fpi->clk_per);
1068 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1069 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1070 free_netdev(ndev);
1071 return 0;
1072 }
1073
1074 static const struct of_device_id fs_enet_match[] = {
1075 #ifdef CONFIG_FS_ENET_HAS_SCC
1076 {
1077 .compatible = "fsl,cpm1-scc-enet",
1078 .data = (void *)&fs_scc_ops,
1079 },
1080 {
1081 .compatible = "fsl,cpm2-scc-enet",
1082 .data = (void *)&fs_scc_ops,
1083 },
1084 #endif
1085 #ifdef CONFIG_FS_ENET_HAS_FCC
1086 {
1087 .compatible = "fsl,cpm2-fcc-enet",
1088 .data = (void *)&fs_fcc_ops,
1089 },
1090 #endif
1091 #ifdef CONFIG_FS_ENET_HAS_FEC
1092 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1093 {
1094 .compatible = "fsl,mpc5121-fec",
1095 .data = (void *)&fs_fec_ops,
1096 },
1097 {
1098 .compatible = "fsl,mpc5125-fec",
1099 .data = (void *)&fs_fec_ops,
1100 },
1101 #else
1102 {
1103 .compatible = "fsl,pq1-fec-enet",
1104 .data = (void *)&fs_fec_ops,
1105 },
1106 #endif
1107 #endif
1108 {}
1109 };
1110 MODULE_DEVICE_TABLE(of, fs_enet_match);
1111
1112 static struct platform_driver fs_enet_driver = {
1113 .driver = {
1114 .name = "fs_enet",
1115 .of_match_table = fs_enet_match,
1116 },
1117 .probe = fs_enet_probe,
1118 .remove = fs_enet_remove,
1119 };
1120
1121 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1122 static void fs_enet_netpoll(struct net_device *dev)
1123 {
1124 disable_irq(dev->irq);
1125 fs_enet_interrupt(dev->irq, dev);
1126 enable_irq(dev->irq);
1127 }
1128 #endif
1129
1130 module_platform_driver(fs_enet_driver);
1131