1 /*
2 * Freescale Memory Controller kernel module
3 *
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
6 * split out from mpc85xx_edac EDAC driver.
7 *
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
9 *
10 * Author: Dave Jiang <djiang@mvista.com>
11 *
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
15 * or implied.
16 */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/ctype.h>
21 #include <linux/io.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/edac.h>
24 #include <linux/smp.h>
25 #include <linux/gfp.h>
26
27 #include <linux/of_platform.h>
28 #include <linux/of_device.h>
29 #include <linux/of_address.h>
30 #include "edac_module.h"
31 #include "fsl_ddr_edac.h"
32
33 #define EDAC_MOD_STR "fsl_ddr_edac"
34
35 static int edac_mc_idx;
36
37 static u32 orig_ddr_err_disable;
38 static u32 orig_ddr_err_sbe;
39 static bool little_endian;
40
ddr_in32(void __iomem * addr)41 static inline u32 ddr_in32(void __iomem *addr)
42 {
43 return little_endian ? ioread32(addr) : ioread32be(addr);
44 }
45
ddr_out32(void __iomem * addr,u32 value)46 static inline void ddr_out32(void __iomem *addr, u32 value)
47 {
48 if (little_endian)
49 iowrite32(value, addr);
50 else
51 iowrite32be(value, addr);
52 }
53
54 #ifdef CONFIG_EDAC_DEBUG
55 /************************ MC SYSFS parts ***********************************/
56
57 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
58
fsl_mc_inject_data_hi_show(struct device * dev,struct device_attribute * mattr,char * data)59 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
60 struct device_attribute *mattr,
61 char *data)
62 {
63 struct mem_ctl_info *mci = to_mci(dev);
64 struct fsl_mc_pdata *pdata = mci->pvt_info;
65 return sprintf(data, "0x%08x",
66 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
67 }
68
fsl_mc_inject_data_lo_show(struct device * dev,struct device_attribute * mattr,char * data)69 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
70 struct device_attribute *mattr,
71 char *data)
72 {
73 struct mem_ctl_info *mci = to_mci(dev);
74 struct fsl_mc_pdata *pdata = mci->pvt_info;
75 return sprintf(data, "0x%08x",
76 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
77 }
78
fsl_mc_inject_ctrl_show(struct device * dev,struct device_attribute * mattr,char * data)79 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
80 struct device_attribute *mattr,
81 char *data)
82 {
83 struct mem_ctl_info *mci = to_mci(dev);
84 struct fsl_mc_pdata *pdata = mci->pvt_info;
85 return sprintf(data, "0x%08x",
86 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
87 }
88
fsl_mc_inject_data_hi_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)89 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
90 struct device_attribute *mattr,
91 const char *data, size_t count)
92 {
93 struct mem_ctl_info *mci = to_mci(dev);
94 struct fsl_mc_pdata *pdata = mci->pvt_info;
95 unsigned long val;
96 int rc;
97
98 if (isdigit(*data)) {
99 rc = kstrtoul(data, 0, &val);
100 if (rc)
101 return rc;
102
103 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
104 return count;
105 }
106 return 0;
107 }
108
fsl_mc_inject_data_lo_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)109 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
110 struct device_attribute *mattr,
111 const char *data, size_t count)
112 {
113 struct mem_ctl_info *mci = to_mci(dev);
114 struct fsl_mc_pdata *pdata = mci->pvt_info;
115 unsigned long val;
116 int rc;
117
118 if (isdigit(*data)) {
119 rc = kstrtoul(data, 0, &val);
120 if (rc)
121 return rc;
122
123 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
124 return count;
125 }
126 return 0;
127 }
128
fsl_mc_inject_ctrl_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)129 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
130 struct device_attribute *mattr,
131 const char *data, size_t count)
132 {
133 struct mem_ctl_info *mci = to_mci(dev);
134 struct fsl_mc_pdata *pdata = mci->pvt_info;
135 unsigned long val;
136 int rc;
137
138 if (isdigit(*data)) {
139 rc = kstrtoul(data, 0, &val);
140 if (rc)
141 return rc;
142
143 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
144 return count;
145 }
146 return 0;
147 }
148
149 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
150 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
151 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
152 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
153 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
154 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
155 #endif /* CONFIG_EDAC_DEBUG */
156
157 static struct attribute *fsl_ddr_dev_attrs[] = {
158 #ifdef CONFIG_EDAC_DEBUG
159 &dev_attr_inject_data_hi.attr,
160 &dev_attr_inject_data_lo.attr,
161 &dev_attr_inject_ctrl.attr,
162 #endif
163 NULL
164 };
165
166 ATTRIBUTE_GROUPS(fsl_ddr_dev);
167
168 /**************************** MC Err device ***************************/
169
170 /*
171 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
172 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
173 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
174 * below correspond to Freescale's manuals.
175 */
176 static unsigned int ecc_table[16] = {
177 /* MSB LSB */
178 /* [0:31] [32:63] */
179 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
180 0x00ff00ff, 0x00fff0ff,
181 0x0f0f0f0f, 0x0f0fff00,
182 0x11113333, 0x7777000f,
183 0x22224444, 0x8888222f,
184 0x44448888, 0xffff4441,
185 0x8888ffff, 0x11118882,
186 0xffff1111, 0x22221114, /* Syndrome bit 0 */
187 };
188
189 /*
190 * Calculate the correct ECC value for a 64-bit value specified by high:low
191 */
calculate_ecc(u32 high,u32 low)192 static u8 calculate_ecc(u32 high, u32 low)
193 {
194 u32 mask_low;
195 u32 mask_high;
196 int bit_cnt;
197 u8 ecc = 0;
198 int i;
199 int j;
200
201 for (i = 0; i < 8; i++) {
202 mask_high = ecc_table[i * 2];
203 mask_low = ecc_table[i * 2 + 1];
204 bit_cnt = 0;
205
206 for (j = 0; j < 32; j++) {
207 if ((mask_high >> j) & 1)
208 bit_cnt ^= (high >> j) & 1;
209 if ((mask_low >> j) & 1)
210 bit_cnt ^= (low >> j) & 1;
211 }
212
213 ecc |= bit_cnt << i;
214 }
215
216 return ecc;
217 }
218
219 /*
220 * Create the syndrome code which is generated if the data line specified by
221 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
222 * User's Manual and 9-61 in the MPC8572 User's Manual.
223 */
syndrome_from_bit(unsigned int bit)224 static u8 syndrome_from_bit(unsigned int bit) {
225 int i;
226 u8 syndrome = 0;
227
228 /*
229 * Cycle through the upper or lower 32-bit portion of each value in
230 * ecc_table depending on if 'bit' is in the upper or lower half of
231 * 64-bit data.
232 */
233 for (i = bit < 32; i < 16; i += 2)
234 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
235
236 return syndrome;
237 }
238
239 /*
240 * Decode data and ecc syndrome to determine what went wrong
241 * Note: This can only decode single-bit errors
242 */
sbe_ecc_decode(u32 cap_high,u32 cap_low,u32 cap_ecc,int * bad_data_bit,int * bad_ecc_bit)243 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
244 int *bad_data_bit, int *bad_ecc_bit)
245 {
246 int i;
247 u8 syndrome;
248
249 *bad_data_bit = -1;
250 *bad_ecc_bit = -1;
251
252 /*
253 * Calculate the ECC of the captured data and XOR it with the captured
254 * ECC to find an ECC syndrome value we can search for
255 */
256 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
257
258 /* Check if a data line is stuck... */
259 for (i = 0; i < 64; i++) {
260 if (syndrome == syndrome_from_bit(i)) {
261 *bad_data_bit = i;
262 return;
263 }
264 }
265
266 /* If data is correct, check ECC bits for errors... */
267 for (i = 0; i < 8; i++) {
268 if ((syndrome >> i) & 0x1) {
269 *bad_ecc_bit = i;
270 return;
271 }
272 }
273 }
274
275 #define make64(high, low) (((u64)(high) << 32) | (low))
276
fsl_mc_check(struct mem_ctl_info * mci)277 static void fsl_mc_check(struct mem_ctl_info *mci)
278 {
279 struct fsl_mc_pdata *pdata = mci->pvt_info;
280 struct csrow_info *csrow;
281 u32 bus_width;
282 u32 err_detect;
283 u32 syndrome;
284 u64 err_addr;
285 u32 pfn;
286 int row_index;
287 u32 cap_high;
288 u32 cap_low;
289 int bad_data_bit;
290 int bad_ecc_bit;
291
292 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
293 if (!err_detect)
294 return;
295
296 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
297 err_detect);
298
299 /* no more processing if not ECC bit errors */
300 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
301 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
302 return;
303 }
304
305 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
306
307 /* Mask off appropriate bits of syndrome based on bus width */
308 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
309 DSC_DBW_MASK) ? 32 : 64;
310 if (bus_width == 64)
311 syndrome &= 0xff;
312 else
313 syndrome &= 0xffff;
314
315 err_addr = make64(
316 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
317 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
318 pfn = err_addr >> PAGE_SHIFT;
319
320 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
321 csrow = mci->csrows[row_index];
322 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
323 break;
324 }
325
326 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
327 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
328
329 /*
330 * Analyze single-bit errors on 64-bit wide buses
331 * TODO: Add support for 32-bit wide buses
332 */
333 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
334 sbe_ecc_decode(cap_high, cap_low, syndrome,
335 &bad_data_bit, &bad_ecc_bit);
336
337 if (bad_data_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty Data bit: %d\n", bad_data_bit);
340 if (bad_ecc_bit != -1)
341 fsl_mc_printk(mci, KERN_ERR,
342 "Faulty ECC bit: %d\n", bad_ecc_bit);
343
344 fsl_mc_printk(mci, KERN_ERR,
345 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
346 cap_high ^ (1 << (bad_data_bit - 32)),
347 cap_low ^ (1 << bad_data_bit),
348 syndrome ^ (1 << bad_ecc_bit));
349 }
350
351 fsl_mc_printk(mci, KERN_ERR,
352 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
353 cap_high, cap_low, syndrome);
354 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
355 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
356
357 /* we are out of range */
358 if (row_index == mci->nr_csrows)
359 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
360
361 if (err_detect & DDR_EDE_SBE)
362 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
363 pfn, err_addr & ~PAGE_MASK, syndrome,
364 row_index, 0, -1,
365 mci->ctl_name, "");
366
367 if (err_detect & DDR_EDE_MBE)
368 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
369 pfn, err_addr & ~PAGE_MASK, syndrome,
370 row_index, 0, -1,
371 mci->ctl_name, "");
372
373 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
374 }
375
fsl_mc_isr(int irq,void * dev_id)376 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
377 {
378 struct mem_ctl_info *mci = dev_id;
379 struct fsl_mc_pdata *pdata = mci->pvt_info;
380 u32 err_detect;
381
382 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
383 if (!err_detect)
384 return IRQ_NONE;
385
386 fsl_mc_check(mci);
387
388 return IRQ_HANDLED;
389 }
390
fsl_ddr_init_csrows(struct mem_ctl_info * mci)391 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
392 {
393 struct fsl_mc_pdata *pdata = mci->pvt_info;
394 struct csrow_info *csrow;
395 struct dimm_info *dimm;
396 u32 sdram_ctl;
397 u32 sdtype;
398 enum mem_type mtype;
399 u32 cs_bnds;
400 int index;
401
402 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
403
404 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
405 if (sdram_ctl & DSC_RD_EN) {
406 switch (sdtype) {
407 case 0x02000000:
408 mtype = MEM_RDDR;
409 break;
410 case 0x03000000:
411 mtype = MEM_RDDR2;
412 break;
413 case 0x07000000:
414 mtype = MEM_RDDR3;
415 break;
416 case 0x05000000:
417 mtype = MEM_RDDR4;
418 break;
419 default:
420 mtype = MEM_UNKNOWN;
421 break;
422 }
423 } else {
424 switch (sdtype) {
425 case 0x02000000:
426 mtype = MEM_DDR;
427 break;
428 case 0x03000000:
429 mtype = MEM_DDR2;
430 break;
431 case 0x07000000:
432 mtype = MEM_DDR3;
433 break;
434 case 0x05000000:
435 mtype = MEM_DDR4;
436 break;
437 default:
438 mtype = MEM_UNKNOWN;
439 break;
440 }
441 }
442
443 for (index = 0; index < mci->nr_csrows; index++) {
444 u32 start;
445 u32 end;
446
447 csrow = mci->csrows[index];
448 dimm = csrow->channels[0]->dimm;
449
450 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
451 (index * FSL_MC_CS_BNDS_OFS));
452
453 start = (cs_bnds & 0xffff0000) >> 16;
454 end = (cs_bnds & 0x0000ffff);
455
456 if (start == end)
457 continue; /* not populated */
458
459 start <<= (24 - PAGE_SHIFT);
460 end <<= (24 - PAGE_SHIFT);
461 end |= (1 << (24 - PAGE_SHIFT)) - 1;
462
463 csrow->first_page = start;
464 csrow->last_page = end;
465
466 dimm->nr_pages = end + 1 - start;
467 dimm->grain = 8;
468 dimm->mtype = mtype;
469 dimm->dtype = DEV_UNKNOWN;
470 if (sdram_ctl & DSC_X32_EN)
471 dimm->dtype = DEV_X32;
472 dimm->edac_mode = EDAC_SECDED;
473 }
474 }
475
fsl_mc_err_probe(struct platform_device * op)476 int fsl_mc_err_probe(struct platform_device *op)
477 {
478 struct mem_ctl_info *mci;
479 struct edac_mc_layer layers[2];
480 struct fsl_mc_pdata *pdata;
481 struct resource r;
482 u32 sdram_ctl;
483 int res;
484
485 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
486 return -ENOMEM;
487
488 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
489 layers[0].size = 4;
490 layers[0].is_virt_csrow = true;
491 layers[1].type = EDAC_MC_LAYER_CHANNEL;
492 layers[1].size = 1;
493 layers[1].is_virt_csrow = false;
494 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
495 sizeof(*pdata));
496 if (!mci) {
497 devres_release_group(&op->dev, fsl_mc_err_probe);
498 return -ENOMEM;
499 }
500
501 pdata = mci->pvt_info;
502 pdata->name = "fsl_mc_err";
503 mci->pdev = &op->dev;
504 pdata->edac_idx = edac_mc_idx++;
505 dev_set_drvdata(mci->pdev, mci);
506 mci->ctl_name = pdata->name;
507 mci->dev_name = pdata->name;
508
509 /*
510 * Get the endianness of DDR controller registers.
511 * Default is big endian.
512 */
513 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
514
515 res = of_address_to_resource(op->dev.of_node, 0, &r);
516 if (res) {
517 pr_err("%s: Unable to get resource for MC err regs\n",
518 __func__);
519 goto err;
520 }
521
522 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
523 pdata->name)) {
524 pr_err("%s: Error while requesting mem region\n",
525 __func__);
526 res = -EBUSY;
527 goto err;
528 }
529
530 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
531 if (!pdata->mc_vbase) {
532 pr_err("%s: Unable to setup MC err regs\n", __func__);
533 res = -ENOMEM;
534 goto err;
535 }
536
537 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
538 if (!(sdram_ctl & DSC_ECC_EN)) {
539 /* no ECC */
540 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
541 res = -ENODEV;
542 goto err;
543 }
544
545 edac_dbg(3, "init mci\n");
546 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
547 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
548 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
549 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
550 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
551 mci->edac_cap = EDAC_FLAG_SECDED;
552 mci->mod_name = EDAC_MOD_STR;
553
554 if (edac_op_state == EDAC_OPSTATE_POLL)
555 mci->edac_check = fsl_mc_check;
556
557 mci->ctl_page_to_phys = NULL;
558
559 mci->scrub_mode = SCRUB_SW_SRC;
560
561 fsl_ddr_init_csrows(mci);
562
563 /* store the original error disable bits */
564 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
566
567 /* clear all error bits */
568 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
569
570 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
571 if (res) {
572 edac_dbg(3, "failed edac_mc_add_mc()\n");
573 goto err;
574 }
575
576 if (edac_op_state == EDAC_OPSTATE_INT) {
577 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
578 DDR_EIE_MBEE | DDR_EIE_SBEE);
579
580 /* store the original error management threshold */
581 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
582 FSL_MC_ERR_SBE) & 0xff0000;
583
584 /* set threshold to 1 error per interrupt */
585 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
586
587 /* register interrupts */
588 pdata->irq = platform_get_irq(op, 0);
589 res = devm_request_irq(&op->dev, pdata->irq,
590 fsl_mc_isr,
591 IRQF_SHARED,
592 "[EDAC] MC err", mci);
593 if (res < 0) {
594 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
595 __func__, pdata->irq);
596 res = -ENODEV;
597 goto err2;
598 }
599
600 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
601 pdata->irq);
602 }
603
604 devres_remove_group(&op->dev, fsl_mc_err_probe);
605 edac_dbg(3, "success\n");
606 pr_info(EDAC_MOD_STR " MC err registered\n");
607
608 return 0;
609
610 err2:
611 edac_mc_del_mc(&op->dev);
612 err:
613 devres_release_group(&op->dev, fsl_mc_err_probe);
614 edac_mc_free(mci);
615 return res;
616 }
617
fsl_mc_err_remove(struct platform_device * op)618 int fsl_mc_err_remove(struct platform_device *op)
619 {
620 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
621 struct fsl_mc_pdata *pdata = mci->pvt_info;
622
623 edac_dbg(0, "\n");
624
625 if (edac_op_state == EDAC_OPSTATE_INT) {
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
627 }
628
629 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
630 orig_ddr_err_disable);
631 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
632
633 edac_mc_del_mc(&op->dev);
634 edac_mc_free(mci);
635 return 0;
636 }
637